
Performance Testing for Liquidity Module

B-Harvest

1. Introduction

- Core Tendermint & Cosmos-SDK computations for Liquidity Module
- Tendermint :

- Consensus process among validators
- P2P communications for transaction relaying

- Cosmos-SDK Ante :
- Signature verification
- Gas Calculation

- Cosmos-SDK Bank :
- Multisend
- Supply

- Liquidity Module :
- Swap message storage
- Batch process computation

- Main Objectives

- To test the computation performance of Liquidity Module
- Figure out bottleneck points if there exists significant performance

problems
- Addressing solutions to solve performance problems by computation

algorithm optimization in Liquidity Module

- No Goal
- Performance delay due to bottlenecks outside Liquidity Module is out

of scope for investigation

2. Testing Setup

- Hardwares
- Instance : AWS m5.Large (2 Core, 8Gb Ram)
- Location : US West, US East, Europe, Asia
- Sentry Architecture : 1 validator and 1 sentry in each location

- Liquidity Module

- Milestone 2 WIP version
- cosmos-sdk v0.40.0
- tendermint v0.34.1

- Swap Bot Model

- Random Order Price

- Every order has different order prices
- Statistically, half of submitted orders are executed

- Number of Accounts

- We utilized 6 accounts to submit swap orders

- Bulk / Splitted Transactions : Two different simulations
- Bulk Transactions

- Large number of messages in one transaction(hence
small number of transactions)

- Purely testing Liquidity Module performance(Minimal
burden on transaction handling)

- Splitted Transactions
- Low number of messages in one transaction(hence

large number of transactions)
- Performance might be impacted by the basic

transaction handling processes in Tendermint and
Cosmos-SDK

- https://github.com/b-harvest/swapbot

https://github.com/tendermint/liquidity/tree/1631ad4a86cc5064137b7164d1f4416594b761e9
https://github.com/b-harvest/swapbot

3. Results

- Below result is a simulation result statistics with given scenarios
- We assumed batch period as one block(batch processed every block)
- Swap orders submitted to one liquidity pool to stress-test performance when

swap orders are concentrated into one liquidity pool

4. Conclusion

- We observed that in Splitted Transaction scenarios, validators are ​starting to miss
significant amount of transactions​ to be included in each block when number of
transactions in a block increased to ​more than 700 txs

- But, in Bulk Transaction scenarios, where ​the impact of Liquidity Module
computation is more purely affected​, transaction missing is not happening even in
3,198 messages per block scenarios

- We have block time delay with ​fairly less than linear correlation​ with number of
messages in a block (Bulk Transaction scenarios)

- 1.01​ second delay in ​1,596​ msgs per block
- 1.71​ second delay in ​3,198​ msgs per block
- 2.86​ second delay in ​6,396​ msgs per block

- In 798 msgs per block scenarios, if we compare swap messages and send
messages, the block time difference for Bulk/Splitted simulations are ​0.26s​ and ​0.25s
respectively. We conclude that ​these differences are not significant​ considering
much more computation processes existing for swap messages than send messages

Simulation
Type

of msgs
(per block)

of txs
(per block)

Average
Block Time

Average
CPU Usage

tx Missing
(per block)

No tx 0 0 6.19s 1% -

Bulk 1 102 6 6.27s 2% -
Splitted 1 102 102 6.46s 5.5% -

Bulk 2 198 6 6.38s 4.5% -

Splitted 2 198 198 6.66s 15% -

Bulk 3 396 6 6.60s 12% -

Splitted 3 396 396 6.90s 20% -
Bulk 4 798 6 6.88s 25% -

Splitted 4 798 798 7.41s 42% 148

Bulk 5 1,596 6 7.21s 50% -

Splitted 5 1,596 1,596 7.88s 75% 101

Bulk 6 3,198 6 7.90s 85% -
Splitted 6 3,198 3,198 7.83s 120% 1,146

Bulk 6 6,396 6 9.05s 120% 1

Splitted 6 6,396 6,396 - - too many

Bulk(Send) 798 6 6.62s 8% -

Splitted(Send) 798 798 7.16s 40% -

