BLACKDUCK | Hub

Installing Hub using
Kubernetes

Version 4.6.1

This edition of the Installing Hub using Kubernetes refers to version 4.6.1 of the Black Duck Hub.

This document created or updated on Tuesday, April 17,2018.
Please send your comments and suggestions to:

Black Duck Software, Incorporated
800 District Avenue, Suite 201
Burlington, MA01803-5061 USA

Copyright © 2018 by Black Duck Software, Inc.

All rights reserved. All use of this documentation is subject to the license agreement between Black Duck
Software, Inc. and the licensee. No part of the contents of this document may be reproduced or

transmitted in any form or by any means without the prior written permission of Black Duck Software,
Inc.

Black Duck, Know Your Code, and the Black Duck logo are registered trademarks of Black Duck Software,
Inc. in the United States and other jurisdictions. Black Duck Code Center, Black Duck Code Sight, Black
Duck Hub, Black Duck Protex, and Black Duck Suite are trademarks of Black Duck Software, Inc. All other
trademarks or registered trademarks are the sole property of their respective owners.

Contents

Chapter 1: OVerVIeW L 1
HUb Architecture 1
Components hosted on Black Duck servers .. . 1

Chapter 2: Installation planning 2
Getting started .. L 2

New iNStallations ... o 2

Upgrading from a previous version of the Hub 2
Hardware requirements ... 2
Kubernetes requIiremMeNtS . . . 3
Operating Sy S @M . 3
Software reqUIreMIENES .. 3
Network requUIreMIENES . L 4
Database reqUIremMeNtS . 4

Understanding PostgreSQL's security configuration _....... 5
Proxy server reqUIremMIeNtS . 5
Configuring your NGiNX server to work withtheHub 5
ANAZON SOV S il 5
Additional port information 6

Chapter 3: Installing the Hub 7

1. Obtaining the orchestration files ... 8
Download from the GitHUD Page i e 8
Download using the wget command ... 8
DSt UL ONS 8

2. Creating @ NAMESPACEo 9

3. Creating the CoNfig Map ... il 9

4. Installing the Hub containerso 9
a. ldentify and label the PostgreSQL node and create thedatastore _.............................. 10
b. Installing the PostgreSQL/cfssl containers oo 10
¢. Migrating data from a previous version of the Hub 11
d. Installing/Running the remaining Hub containers 11
Verifying the Hub containers are rtunning ... 11

5. Exposing your Kubernetes SernviCe o 11

Connecting to the HUD ... 12

BLACKDUCK Page]i Black Duck Hub 4.6.1

Installing Hub using Kubernetes Contents

Chapter 4: Administrative tasks 13
Understanding the default sysadmin user 13
Environment variables . 13
Web server SettingS ... 14

Host name modification 14
Port MOdIfiCatioN 14
Disabling 1PV 14
PrOXY St S il 14
Authenticated proxXy PassWordo 15
Configuring the Hub session timeout 16
Configuring an external PostgreSQL instance i 16
PostgreSQL configuUration .l 16
HUb Configuration . 17
Managing CertifiCates .. .l 19
Using a custom web server certificate-key pair in Kubernetes 20
ScalingJob Runner and Scan ContaiNers 21
Scaling Job Runner containers 21
Scaling SCan CONLaINEIS . 21
Configuring the report database password 21
Accessing the APl documentation through a proxy server 22
Accessing the REST APIs from anon-Hub server 23
ConfigUNNg SECUIe LD AP 24
Obtaining your LDAP information 24
Importing the server certificate 25
LDAP trust StOre PasSWOIdo 26
Configuring SAML for Single Sign-On .. 26
Backing up PostgreSQL VOIUMES .. L 29

Chapter 5: Upgrading the Hub 30

Upgrading the Hub on Kubernetes L 30
Backing up the PostgreSQL database 30
Backing up an PostgreSQL database from an AppMgr architecture 30
Backing up a Kubernetes PostgreSQL database 31
Restoring/migrating database data 32
Upgrading the HUb .. . 32

Appendix A: Debugging a running deployment 34
VieWINg rUNNING POAS L 34
Executing Docker commands and viewing container logfiles 34
ACCessiNg l0g fileS 35

Appendix B: Containers 36

Wb AP CONaINEr 37
SCaAN CONTAINGY 38

BLACKDUCK Page |ii Black Duck Hub 4.6.1

Installing Hub using Kubernetes Contents

JOb rUNNer CONtaINEr L 39
SOl CONE A N 40
Registration container 40
DB CONLAINGY 41
Wb S eV er CONtaINEr L 42
ZooKeeper CONTaAINeY .. 43
LogStash CoNtaiNer 44
CA CONEAIN Y e 44
Authentication Container .. . 45
Documentation CoNtaiNer . 45

BLACKDUCK Page | ii Black Duck Hub 4.6.1

Preface

The Hub documentation
The documentation for the Hub consists of online help and these documents:

Title File Description

Release Notes release_notes_bd_hub.pdf Contains information about the new and
improved features, resolved issues, and
known issues in the current and previous

releases.
Installing Hub hub_install_compose.pdf Contains information about installing and
using Docker upgrading the Hub using Docker Compose.
Compose
Installing Hub hub_install_swarm.pdf Contains information about installing and
using Docker upgrading the Hub using Docker Swarm.
Swarm
Installing Hub hub_install_kubernetes.pdf Contains information about installing and
using Kubernetes upgrading the Hub using Kubernetes.
Installing Hub hub_install_openshift.pdf Contains information about installing and
using OpenShift upgrading the Hub using OpenShift.
Getting Started hub_getting_started.pdf Provides first-time users with information on
using the Hub.
Scanning Best hub_scanning_best_practices.pdf Provides best practices for scanning.
Practices
Getting Started getting_started_hub_sdk.pdf Contains overview information and a sample
with the Hub SDK use case.
Report Database | report_db_bd_hub.pdf Contains information on using the report

database.
Hub integration documentation can be found on Confluence.
Training

Black Duck Academy is a one-stop resource for all your Black Duck education needs. It provides you with
24x7 access to online training courses and how-to videos.

BLACKDUCK Page|iv Black Duck Hub 4.6.1

https://blackducksoftware.atlassian.net/wiki/spaces/INTDOCS/overview

Installing Hub using Kubernetes Preface

New videos and courses are added monthly.

At Black Duck Academy, you can:

Learn at your own pace.

m Review courses as often as you wish.

m Take assessments to test your skills.

m Print certificates of completion to showcase your accomplishments.

Learn more at https://www.blackducksoftware.com/services/training

View the full catalog of courses and try some free courses at https://academy.blackducksoftware.com

When you are ready to learn, log in or sign up for an account: https://academy.blackducksoftware.com

Customer Success Community

The Black Duck Customer Success Community is our primary online resource for customer support,
solutions and information. The Customer Success Community allows users to quickly and easily open
support cases and monitor progress, learn important product information, search a knowledgebase, and
gain insights from other Black Duck customers. The many features included in the Customer Success
Community center around the following collaborative actions:

m Connect - Open support cases and monitor their progress, as well as, monitor issues that require
Engineering or Product Management assistance

m Learn - Insights and best practices from other Black Duck product users to allow you to learn
valuable lessons from a diverse group of industry leading companies. In addition, the Customer
Hub puts all the latest product news and updates from Black Duck at your fingertips, helping you to
better utilize our products and services to maximize the value of open source within your
organization.

m Solve - Quickly and easily get the answers you're seeking with the access to rich content and
product knowledge from Black Duck experts and our Knowledgebase.

m Share - Collaborate and connect with Black Duck staff and other customers to crowdsource
solutions and share your thoughts on product direction.

Access the Customer Success Community. If you do not have an account or have trouble accessing the
system, please send an email to communityfeedback@blackducksoftware.com or call us at +1
781.891.5100 ext. 5.

To see all the ways you can interact with Black Duck Support, visit:
https.//www.blackducksoftware.com/support/contact-support.

BLACKDUCK Page|v Black Duck Hub 4.6.1

https://www.blackducksoftware.com/services/training
https://www.blackducksoftware.com/academy-catalog
https://www.blackducksoftware.com/academy
https://www.blackducksoftware.com/support/customer-success-community
https://www.blackducksoftware.com/support/contact-support

Chapter 1: Overview

Kubernetes is an orchestration tool used for managing cloud workloads through containers. This
document provides instructions for installing Black Duck Hub using Kubernetes.

Hub Architecture

The Black Duck Hub is deployed as a set of containers so that third-party orchestration tools such as
Kubernetes can be leveraged to manage individual Hub services.

This architecture brings these significant improvements to the Hub over monolithic deployments:

Improved performance
m Easier installation and updates

Scalability
Product component orchestration and stability

See containers for more information on the Docker containers that comprise the Hub application.

Visit the Kubernetes website for more information on Kubernetes.

Components hosted on Black Duck servers

The following remote Black Duck services are leveraged by the Black Duck Hub:

m Registration server: Used to validate the Hub license.

m Black Duck KnowledgeBase server: The Black Duck KnowledgeBase (KB) is the industry’s most
comprehensive database of open source project, license, and security information. Leveraging the
Black Duck KB in the cloud ensures that the Hub can display the most up-to-date information
about open source software (OSS) without requiring regular updates to your Hub.

BLACKDUCK Page|1 Black Duck Hub 4.6.1

https://kubernetes.io/

Chapter 2: Installation planning

This chapter describes the pre-installation planning and configuration that must be performed before
you can install the Black Duck Hub.

Getting started

The process for installing the Hub depends on whether you are installing the Hub for the first time or
upgrading from a previous version of the Hub.

New installations
For new installation of the Hub:
1. Read this planning chapter to review all requirements.
2. After ensuring that you meet all requirements, go to Chapter 3 for installation instructions.
3. Review Chapter 4 for any post-installation tasks.
Upgrading from a previous version of the Hub
1. Read this planning chapter to review all requirements,
2. After ensuring that you meet all requirements, go to Chapter 6 for upgrade instructions.

3. Review Chapter 4 for any post-installation tasks.

Hardware requirements

The following is the minimum hardware that is needed to run a single instance of all containers:

m 5 CPU cores
= 20 GB RAM
m 250 GB of free disk space for the database and other Hub containers
m Commensurate space for database backups
The descriptions of each container provides the container's requirements, including if running on a

different machine or if more than one instance of a container will be running (currently only supported
for the Job Runner and Scan containers).

Note: The amount of required disk space is dependent on the number of projects being managed, so

BLACKDUCK Page|?2 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 2: Installation planning

individual requirements can vary. Consider that each project requires approximately 200 MB.

In order to avoid underlying hardware resource exhaustion by the Hub, ensure that your Kubernetes
system administrator has put enterprise-level metrics and logging in place to identify unhealthy nodes
on the cluster.

Kubernetes requirements

The Hub supports Kubernetes versions 1.6.x through 1.9,x on Amazon Web Services (AWS) and Google
Compute Engine (GCE)

There are two restrictions when using Hub in Kubernetes:
m The PostgreSQL DB must run on the same node so that data is not lost (hub-database service).
Storage must be provided for this node.
This does not apply to installations using an external PostgreSQL instance.

m The hub-webapp service and the hub-logstash service must run on the same pod for proper log
integration.

This is required so that the webapp service can access the logs that need to be downloaded.

Operating systems

The Dockerized Hub is supported on any Kubernetes cluster that passes the standards for Kubernetes
cluster Conformance. (Click here for more on Kubernetes conformance.) Platforms that support
Kubernetes include, but are not limited to:

s CentOS7.3
Red Hat Enterprise Linux server 7.3

Ubuntu 16.04.x
m SUSE Linux Enterprise server version 12.x (64-bit)

m Oracle Enterprise Linux 7.3

Windows operating system is currently not supported.

Software requirements

The Hub is a web application that has an HTML interface. You access the application via a web browser.
The following web browser versions have been tested with the Hub:

m Chrome 65.0.3325.181 (Official Build) (64-bit)
m Firefox 57.0.1

m Internet Explorer 11.0.9600.18860
= Microsoft Edge 40.15063.674.0

BLACKDUCK Page|3 Black Duck Hub 4.6.1

https://github.com/cncf/k8s-conformance/blob/master/instructions.md

Installing Hub using Kubernetes Chapter 2: Installation planning

m Microsoft EdgeHTML 15.15063
m Safari11.1(13605.1.33.1.2)

Note that the Hub does not support compatibility mode.

Note: These browser versions are the currently-released versions on which Black Duck has tested
Hub. Newer browser versions may be available after the Hub is released, and may or may not
work as expected. Older browser versions may work as expected, but have not been tested
and may not be supported.

Network requirements

The Hub requires the following ports to be externally accessible:

m Port 443 - Web server HTTPS port for the Hub via NGINX

m Port 55436 - Read-only database port from PostgreSQL for reporting (or an equivalent exposable
port for PostgreSQL read-only)

If your corporate security policy requires registration of specific URLs, connectivity from your Hub
installation to Black Duck hosted servers is limited to communications via HTTPS/TCP on port 443 with
the following servers:

m updates.suite.blackducksoftware.com (to register your software)
m kb.blackducksoftware.com (access the Black Duck KB data)

Note: If you are using a network proxy, these URLs must be configured as destinations in your proxy
configuration. Network proxy information can be expressed as environment variables and
placed in the Hub's pod.env file. See the pod.env and the other.env files in GitHub for more
information.

Database requirements

The Hub uses the PostgreSQL object-relational database to store data.

Prior to installing the Hub, determine whether you want to use the database container that is
automatically installed or an external (for example, Amazon Relational Database Service (RDS))
PostgreSQL instance.

£ To use an external PostgreSQL instance:

1. Set up your external PostgreSQL instance using Amazon RDS.

When creating your RDS instance, set the "Master User" to blackduck.
2. Configure your database connection settings.
3. Install or upgrade the Hub.

Currently, the Hub requires PostgreSQL 9.6.X.

BLACKDUCK Page|4 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 2: Installation planning

PostgreSQL versions

For the Hub version 4.6.1, the currently-supported version of PostgreSQL is 9.6.x, which is the version
supplied in the Hub's PostgreSQL container. If you choose to run your own PostgreSQL instance, you
must be at PostgreSQL version 9.6.x for compatibility with the Hub version 4.6.1.

Refer to Chapter 6, Upgrading the Hub for database migration instructions if upgrading from a pre-4.2.0
version of the Hub.

Understanding PostgreSQL's security configuration
PostgreSQL security is derived from CFSSL, which runs as a service inside your cluster.
For your Hub database to be secure, ensure that:

1. The namespace you are running PostgreSQL in is secure.

2. You have control over the users starting containers in that namespace.

3. The node which was labeled for PostgreSQL is protected from SSH by untrusted users.

Proxy server requirements

The Hub supports:

m No Authentication
m Digest
m Basic
s NTLM

If you are going to make proxy requests to the Hub, work with the proxy server administrator to get the
following required information:

m The protocol used by proxy server host (http or https).
m The name of the proxy server host
m The port on which the proxy server host is listening.

Configuring your NGiNX server to work with the Hub

Given that Kubernetes manages load balancing, there is no need to configure an NGiNX reverse proxy
outside the external load balancer.

Amazon services

You can:
= Install the Hub on Amazon Web Services (AWS)

Refer to your AWS documentation for more information on AWS.

m Use Amazon Relational Database Service (RDS) for the PostgreSQL database that is used by the

BLACKDUCK Page|5 Black Duck Hub 4.6.1

https://aws.amazon.com/documentation/

Installing Hub using Kubernetes Chapter 2: Installation planning

Hub.

Refer to your Amazon Relational Database Service documentation for more information on
Amazon RDS.

Currently the Hub requires PostgreSQL version 9.6.x.

Click here for more information on configuring an external PostgreSQL server.

Additional port information

The following list of ports cannot be blocked by firewall rules or by your Docker configuration. Examples
of how these ports may be blocked include:

m Theiptables configuration on the host machine.

m Afirewalld configuration on the host machine.

m External firewall configurations on another router/server on the network.

Special Docker networking rules applied above and beyond what Docker creates by default, and
also what Black Duck creates by default.

The complete list of ports that must remain unblocked is:

m 55436
= 8000
m 16543
m 17543
m 16545
= 8888
m 16544
m 8983
m 443

m 8443

BLACKDUCK Page|6 Black Duck Hub 4.6.1

https://aws.amazon.com/documentation/rds/

Chapter 3: Installing the Hub

Prior to installing the Hub, ensure that you meet the following requirements:
Hub Installation Requirements
Hardware requirements

O You have ensured that your hardware meets the minimum hardware requirements.

Kubernetes requirements

O You have ensured that your system meets the Kubernetes requirements.

Software requirements

O You have ensured that your system and potential clients meet the software
requirements,

Network requirements

O You have ensured that your network meets the network requirements.

Specifically:

« Port443 and port 55436 are externally accessible.

« The server has access to updates.suite.blackducksoftware.com which is used to
validate the Hub license.

Database requirements

O You have selected your database configuration.

Specifically, you have configured database settings if you are using an external
PostgreSQL instance.

Proxy requirements

O You have ensured that your network meets the proxy requirements.

Configure proxy settings before or after installing the Hub.

Web server requirements

O Configure web server settings before or after installing the Hub.

BLACKDUCK

Page|7 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 3: Installing the Hub

1. Obtaining the orchestration files

The installation files are available on Github (https://github.com/blackducksoftware/hub).

From your Kubernetes bastion host (host with access to the Internet and the Kube cluster) with kubectl
installed, download the orchestration files. As part of the install/upgrade process, these orchestration
files pull down the necessary Docker images.

Note that although the filename of the tar.gz differs depending on how you access the file, the contents
is the same.

Download from the GitHub page

1.

Select the link to download the .tar.gz file from the GitHub page:
https://github.com/blackducksoftware/hub.

Uncompress the Hub . gz file:
gunzip hub-4.6.1.tar.gz
Unpack the Hub . tar file:

tar xvf hub-4.6.1.tar

Download using the wget command

1.

Run the following command:

wget https://github.com/blackducksoftware/hub/archive/v4.6.1.tar.gz
Uncompress the Hub . gz file:

gunzip v4.6.l.tar.gz

Unpack the Hub. tar file:

tar xvf vd.6.1l.tar

Distributions

The following is a list of files in the distribution:

external-postgres-init.pgsqgl: PostgresSQL.sql file used to configure an external
PostgreSQL database.

kubernetes-external-rds.yml: Creates Kubernetes deployments which operate against an
external database.

kubernetes-post-db.yml: Creates Kubernetes deployments to run after a database migration.

kubernetes-pre-db.yml: Creates Kubernetes deployments to run as part of database migration
or for bootstrapping.

other.env: Defines additional, optional environment variables for containers that run in the pod.
pods . env: Defines environment variables for the containers that run in the pod.

From the bin directory in the distribution:

BLACKDUCK Page|8 Black Duck Hub 4.6.1

https://github.com/blackducksoftware/hub
https://github.com/blackducksoftware/hub

Installing Hub using Kubernetes Chapter 3: Installing the Hub

m hub create data dump.sh: Script used to back up the PostgreSQL database when using the
database container provided by the Hub.

m hub reportdb changepassword.sh: Script used to set and change the report database
password.

m hub db migrate.sh: Script used to migrate the PostgreSQL database when using the database
container provided by the Hub.

2. Creating a namespace

Create a virtual cluster, or namespace, for running the Hub containers.

Any valid namespace will work, so long as it does not already exist on your cluster and you do not plan
on running other applications in it: the namespace must be unique to the Hub, in order to ensure proper
service resolution.

For example:
kubectl create ns my-ns

The namespace ensures that all containers, spanning multiple nodes, within the namespace have the
same DNS, config maps, and so on.

3. Creating the config map

There are several environment variable settings that can be used with Kubernetes. You can upload these
environment variables as a configmap for the Hub.

Throughout this installation guide, references are made to a pods.env file, which stores all Hub
configuration data. This method was used to consolidate all information into one resource to simplify
managing watches and configuration-related logic. The file can be separated if you wanted to hide
environment variables from different pods.

In the example below, the config map is created using the variables in pods.env, plus a namespace
variable specified directly on the command line:

kubectl create -f pods.env ——-namespace=my-ns

Note: The other.env file has a list of other environment variables, which you can optionally copy into
the pods.env file when you create your config map.

See Chapter 4, Administrative Tasks, for more information on environment variables that can be
configured.

4. Installing the Hub containers

There are four steps to install the Hub services in Kubernetes:
a. ldentify and label the PostgreSQL node and create the data store.

b. Install the PostgreSQL/cfssl containers so they can be available for the other Hub services.

BLACKDUCK Page|9 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 3: Installing the Hub

c. Migrate any data from a previous/legacy non-Kubernetes Hub.
d. Install/run the remaining Hub containers.

a. ldentify and label the PostgreSQL node and create the data store

Note: Skip this step if you plan to use an external PostgreSQL.

Identifying and labeling the PostgreSQL node

1. Determine which node will run PostgreSQL. The name of the node you choose must be one that
can be seen by running the following command:

kubectl get nodes —-namespace=my-ns

You should see output similar to the following:

MNAME STRATUS AGE VERESICON
gke—temp-saas-0-default-pocl-3ddellfe-141r Ready 114 vl.6.9
gke—temp-saas-0-default-pool-3ddelife-Zmrl Ready 154 vl.&6.9
gke—temp-saas-0-default-pocl-3ddellfe—-43wS Ready 114 vl.&6.9
gke—temp-saas-0-default-pocl-3ddellfe—Snxm Ready 154 vl.&.9

2. Onceyou have determined which node PostgreSQL will run on, label this node as follows:

kubectl label nodes <node-name> blackduck.hub.postgres=true —--
namespace=my-ns

This label is required for PostgreSQL host-storage. With PostgreSQL host-storage, if PostgreSQL
were migrated to a new node, the data directory might not exist.

Creating a data store

Now that you have determined and labeled the node, create a directory on the node where the data will
reside. If you have complete control of your cluster, you can SSH into this node, and create a data
directory, as follows:

mkdir -p /var/lib/hub-postgresqgl/data && chmod -R 775
/var/lib/hubpostgresgl/data

Note that the command given above is just one of many ways to satisfy the basic need for a persistent
data location in a node that Kubernetes can schedule (assign) pods to.

For example, in a production Kubernetes cluster, you may want to configure volumes differently by
changing the hostPath volume definition in the postgres pod. Consult with your Kubernetes
administrator, or with Black Duck support, to determine the storage model that works best for your
organization's needs.

b. Installing the PostgreSQL/cfssl containers

Note: Skip this step if you plan to use an external PostgreSQL.

If you plan to use the internal Hub PostgreSQL container for data storage, run the following command:

BLACKDUCK Page |10 Black Duck Hub 4.6.1

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

Installing Hub using Kubernetes Chapter 3: Installing the Hub

kubectl create -f kubernetes-pre-db.yml —--namespace=my-ns
To verify that the command succeeded, run:

kubctl get pods —-namespace=my-ns
You should see pods corresponds to PostgreSQL and cfssl.
c. Migrating data from a previous version of the Hub

If you intend to migrate data from a previously-existing version of the Hub, follow these instructions for
backing up and restoring Hub data. If not, this step can be skipped.

d. Installing/Running the remaining Hub containers

Now that the database has been set up, run one of the following commands to create the full
Kubernetes deployment of the Hub:

m With the PostgreSQL database container:
kubectl create -f kubernetes-post-db.yml --namespace=my-ns
m With an external PostgreSQL instance:
kubectl create -f kubernetes-external-rds.yml —--namespace=my-ns
Verifying the Hub containers are running

After you have created the full Kubernetes deployment of the Hub, confirm that the installation was
successful by running the following command to see the running Hub containers:

kubctl get pods —-namespace=my-ns

Note: See Docker containers for the full list of containers in the Kubernetes Hub.

If you suspect that the proper Hub Docker images cannot be pulled from the appropriate repository,
debug this issue by looking at Kubernetes events by running the following command:

kubectl get events

The output of this command could give hints on permissions or networking limitations that may impact
pulling images.

5. Exposing your Kubernetes service

Immediately after the installation of the Hub in Kubernetes, the IP addresses of the containers are
internal (10.x), and are not visible/routable to the Internet. To make Hub services, such as the Web Ul,
externally available, expose your Kubernetes service using the following command:

kubectl expose --namespace=default deployment nginx-webapp-logstash --
type=LoadBalancer --port=443 --target-port=8443 --name=nginx-gateway

The command above leverages your cloud provider's native load balancer implementation to provision
an externally addressable IP address for your Black Duck Hub. Specifically, external packets addressed to

BLACKDUCK Page |11 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 3: Installing the Hub

this IP address at port 443 will be forwarded (via packet forwarding, for example, in GKE) to the Hub's
NGINX container at port 8443 (the NGiNX default).

Alternatively, use the --type=NodePort option which lets you access the service at any port. You
would use this if you do not have (or do not wish to use) an external load balancer; contact your system
administrator for guidance.

To verify that the provisioning of the load balancer (above) worked properly, find its external endpoint
by entering the following command:

kubectl get services -o wide
Aresponse such as the following appears:

nginx-gateway 10.99.200.3 a0145b939671d... 443:30475/TCP 2h
You can connect to the Hub's NGiNX services with a utility like curl as follows:

ubuntu@ip-10-0-22-242:~$ curl --insecure
https://a01450939671d11e7a6£f£12207729cdd-587604034.us-east-
l.elb.amazonaws.com:443

And you should be able to see a result which includes an HTTP page.
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta...

This resulting HTML is the sign that your Webapp is now reachable.

Note: If you need to make your PostgreSQL container externally accessible (for example, for third-
party or database applications running outside of the Kubernetes cluster), you will have to run
through an analogous process for the PostgreSQL container.

Connecting to the Hub

Once all of the containers for the Hub are up, the web application for the Hub will be exposed on port
443 to the Docker host. Be sure that you have configured the hostname and then you can access the
Hub by entering the following:

https://hub.example.com

The first time you access the Hub, the Registration & End User License Agreement appears. You must
accept the terms and conditions to use the Hub.

Enter the registration key provided to you to access the Hub.

Note: If you need to reregister, you must accept the terms and conditions of the End User License
Agreement again.

BLACKDUCK Page|12 Black Duck Hub 4.6.1

Chapter 4: Administrative tasks

This chapter describes these administrative tasks:

m Understanding the default sysadmin user.

m Configuring web server settings, such as configuring the hostname, host port, or disabling IPv6.

m Configuring proxy settings.

m Configuring the Hub session timeout value.

m Configuring an external PostgreSQL instance.

m Replacing the existing self-signed certificate for the Web Server with a custom certificate.

m Accessing log files.

m Scaling Job Runner and Scan containers.

m Configuring the report database password.

m Providing access to the APl documentation through a proxy server.

m Providing access to the REST APIs from a non-Hub server.

m Configuring secure LDAP.

m Configuring Single Sign-On (SSO).

m Backing up PostgreSQL volumes.

Understanding the default sysadmin user

When you install the Black Duck Hub, there is a default system administrator (sysadmin) account already
configured. The default sysadmin user has all roles and permissions associated with it.

Tip: As a best practice, you should use the default sysadmin account for your initial log in and then
immediately change the default password—blackduck—so that the server is secure. To change
your password, select My Profile from your username/user profile icon in the upper right corner
of the Hub UI.

Environment variables

Several environment variables can be set to customize your Hub installation in a Kubernetes
environment. The other.env file contains these environment variables, which can be set and added to
either the pods.env file (specifically the config-map file) or directly to the Hub distribution’s .ymi files (via
name-value pairs). See Creating the configmap on how to invoke the pods.env file when you create a
namespace, and see the previous chapter for launching the Kubernetes cluster with the yml files.

BLACKDUCK Page|13 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

Web server settings

The following sections describe the required web server settings for a Kubernetes environment.
Host name modification

When the web server starts up, if it does not have certificates configured, a self-signed certificate is
generated. To ensure that the hostname on the self-signed certificate matches the hostname actually
used to reach the web server, you must set the web server hostname. Otherwise, the certificate uses the
service name as the hostname, and SSL handshake errors could result.

To inform the webserver of the hostname used to reach it, edit the pods.env file to update the desired
host name value.

PUBLIC_HUB_WEBSERVER_HOST=LOCALHOST value
Port modification

In a Kubernetes environment, it is common to leverage an External Load Balancer (ELB) to forward
network requests to nodes. In a Hub installation in Kubernetes, this External Load Balancer will forward
web traffic to the Hub's NGINX proxy server, which sends traffic along to the Hub's webapp.

If you want to change either the port that external users use to connect to the web server (for example,
a web browser connecting to the Hub's web Ul), or, the port that the NGiNX proxy server listens on from
the ELB, you need to update the pods.env file.

To change the publicly-exposed web server port, edit PUBLIC_HUB_WEBSERVER_PORT from its default
value of 443.

To change the port that the NGIiNX listens to from the ELB, edit HUB_WEBSERVER_PORT from its default
value of 8443,

Disabling IPv6

By default, NGiNX listens on IPv4 and IPv6. If IPv6 is disabled on a host machine, change the value of
the IPV4_ONLY value in the HUB WEBSERVER SECTION in the pods.env fileto 1.

Proxy settings

There are currently four services requiring access to services hosted by Black Duck Software:

m Registration
m Jobrunner
m Webapp

m Scan

If a proxy is required for external internet access, you must configure it.

BLACKDUCK Page |14 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

£ To configure the proxy for external internet access:

1. Create a HUB PROXY SECTION in pods.env file by copying the section from the other.env file.
2. Add the required parameters for your proxy setup.
Proxy environment variables are:

m HUB_PROXY_HOST. Name of the proxy server host.
m HUB_PROXY_PORT. The port on which the proxy server host is listening.
s HUB_PROXY_SCHEME. Protocol to use to connect to the proxy server.

HUB_PROXY_USER. Username to access the proxy server.
The environment variables for NTLM proxies are:

s HUB_PROXY_WORKSTATION. The workstation the authentication request is originating from.
Essentially, the computer name for this machine.

s HUB_PROXY_DOMAIN. The domain to authenticate within.
Authenticated proxy password
There are two methods for specifying a proxy password when using Kubernetes:

m Specify an environment variable called HUB_PROXY_PASSWORD that contains the proxy password.
m Add a Kubernetes secret called HUB_PROXY_PASSWORD_FILE.

Environment Variables

The easiest method is to specify an environment variable called HUB_PROXY_PASSWORD in the
pods.env file that contains the proxy password.

Kubernetes Secret

The most secure way to specify the proxy password is to add it as a Kubernetes secret and to inject that
secret into the pod.

To store the proxy password as a secret, place the password in a file (called hpp in the following
example), then run the kubectl create secret command:

echo “mypasswordl234” > hpp
kubectl create secret generic hub-proxy-password --from-file=./hpp

After running these commands, for safety reasons, delete the hpp file.

Now the that the secret has been created in Kubernetes, you must expose the secret to the Hub services
- Webapp, Registration, Jobrunner - that require access to it.

For example, the following text added to the .yml file exposes the secret to Webapp:
In each of these pod specifications, add the secret injection next to the image that is using them.

For example, add the following text to the .yml file you use to launch the cluster to expose the secret to
the Webapp service (for example, kubernetes-external-rds.yml or kubernes-post-db.yml):

BLACKDUCK Page|15 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

image: hub-webapp:4.6.1
env:
- name: HUB PROXY PASSWORD

valueFrom:
secretKeyRef:
name: hub-proxy-password

key: hpp

Add this section of text for the Registration, Jobrunner, and Scan services by replacing image: hub-
webapp:4.6.1 with image: registration:4.6.1,image: jobrunner:4.6.1and image:
scan:4.6.1, respectively.

Configuring the Hub session timeout

By default, the Hub session timeout value is 2 hours.

To specify a different value, use the HUB_WEBAPP_SESSION_TIMEOUT property to specify the new
timeout value in number of seconds. For example, a timeout value of one hour would be 3600 seconds.

As with all other environment variables, you can specify the values in the pods.env file, but it is usually
better to inject the variable directly into the webapp container by specifying it as a name/value pair in the
.yml file you use to launch the cluster (for example, kubernetes-external-rds.yml or kubernes-post-
db.yml). For example:

image: hub-webapp:4.6.1

env:

- name: HUB WEBAPP SESSION TIMEOUT
value: 3600

Configuring an external PostgreSQL instance

The Hub supports using an external PostgreSQL instance. The external PostgreSQL instance needs to be
initialized and information must be provided to the Webapp, Jobrunner, and Scan containers.

PostgreSQL configuration
1. Create a database user named blackduck with administrator privileges.
For Amazon RDS, set the "Master User" to blackduck when creating the database instance.
No other specific values are required.

2. Runtheexternal-postgres-init.pgsqgl scriptto create users, databases, and other
necessary items. For example:

psgl -U blackduck -h <hostname> -p <port> -f external postgres init.pgsql
postgres

3. Configure passwords for the blackduck, blackduck_user, and blackduck_reporter database
users.

These users were created by the external-postgres-init.pgsqgl script in the previous step.

BLACKDUCK Page |16 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

To change the passwords, open a terminal to the database using the following command:

psgl -U blackduck -h <hostname> -p <port> postgres

Then run the following three commands in the terminal to change the passwords for the three
accounts:

ALTER ROLE blackduck WITH PASSWORD 'my admin password here';
ALTER ROLE blackduck user WITH PASSWORD 'my user password here';
ALTER ROLE blackduck reporter WITH PASSWORD 'my reporter password here';

Hub configuration

1. Ensure that the following Hub environment variables are set properly for your external PostgreSQL
instance in the pods.env file:

o HUB_POSTGRES_ADMIN: "blackduck"
o HUB_POSTGRES_ENABLE_SSL: "false"

Because the connection to an external RDS is username/password rather than SSL, make sure
to set the HUB_POSTGRES_ENABLE_SSL value to "false".

« HUB_POSTGRES_HOST: "hostname"
« HUB_POSTGRES_PORT: "5432"
« HUB_POSTGRES_USER: "blackduck_user"

Note: If using a cloud PostgreSQL with a firewall, you may need to allow firewall ingress from
'anywhere' (or at least from a range of |Ps that you allocate based on your network
egress IP IT information), because you may not know beforehand the IP address of the
database that your containers will be connecting to.

2. Like setting proxy passwords, there are two methods to expose the database passwords to your
Hub services:

« Inthe clearin the config map
« AsKubernetes secrets in the config map.
This method is more secure, although more difficult to configure.
Storing passwords in the clear in the config map

Add the passwords for the three database users (blackduck, blackduck_user, and blackduck_
reporter) to a config map as follows.

1. Create a /tmp/password file for the blackduck (admin) user. The file should have the following
content:

apiVersion: vl

kind: ConfigMap

BLACKDUCK Page|17 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

metadata:
name: hpup-admin
data:
HUB POSTGRES ADMIN PASSWORD FILE: |
{password for admin user here}
Note that this matches the syntax as shown in the kubernetes-external-rds.yml file
2. Runthe following command to create the config map:
kubectl create -f /tmp/password
3. Repeat Steps 1 and 2 for the blackduck_user:
a. Create a/tmp/password file for the blackduck_user with the following content:

apivVersion: vl
kind: ConfigMap
metadata:

name: hpup-user
data:
HUB_POSTGRES USER PASSWORD FILE: |

{password for user here}
b. Run the following command to create the config map:
kubectl create -f /tmp/password
4. Repeat Steps 1 and 2 for the blackduck_reporter.
Putting DB passwords in Kubernetes secrets and exposing them to Hub services

In the previous section, database passwords were configured in the clear. For added security, you can
store the passwords as Kubernetes secrets, and expose those secrets to the appropriate Hub services.
The password secrets must be added to the pod specifications for the following Hub services:

= Jobrunner

m Webapp

m Scan

1. Tostore a DB password as a secret, place the password in a file, then run the kubectl create secret
command:

echo “adminpwl23” > admin_ pwd
echo “userpwl23” > user pwd
echo “reporterpwl23” > reporter pwd

BLACKDUCK Page |18 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

kubectl create secret generic hub postgres admin password --from-
file=./admin pwd

kubectl create secret generic hub postgres user password —--from-
file=./user pwd

kubectl create secret generic hub postgres reporter password —--from-
file=./reporter pwd

Delete these password files after running these commands.

2. Now the that the secrets have been created in Kubernetes, you must expose the secrets to the Hub
services (Webapp, Jobrunner, and Scan) that require access to it. For example, the following .yml
text exposes the secret to Webapp:

image: hub-webapp:4.6.1
env:
- name: HUB POSTGRES ADMIN PASSWORD

valueFrom:
secretKeyRef:
name: hub postgres admin password
key: admin pwd

- name: HUB POSTGRES USER PASSWORD
valueFrom:
secretKeyRef:
name: hub postgres user password
key: user pwd
- name: HUB POSTGRES REPORTER PASSWORD
valueFrom:
secretKeyRef:
name: hub postgres reporter password
key: reporter pwd

3. Add this section of text to the Jobrunner and Scan services by replacing image: hub-
webapp:4.6.1 with image: jobrunner:4.6.1and image: scan:4.6.1 inthe.ymlfileyou
used to deploy the Hub (for example, kubernetes-external-rds.yml or kubernes-post-db.yml).

Managing certificates

By default, the Hub uses an HTTPS connection. The default certificate used to run HTTPS is a self-signed
certificate which means that it was created locally and was not signed by a recognized Certificate
Authority (CA).

If you use this default certificate, you will need to make a security exception to log in to the Hub Ul, as
your browser does not recognize the issuer of the certificate, so it is not accepted by default.

You will also receive a message regarding the certificate when connecting to the Hub server when
scanning as the Hub Scanner cannot verify the certificate because it is a self-signed and is not issued by a
CA. Note that the Hub Scanner 2.0 does provide an option that allows you to connect to the Hub
instance with a self-signed certificate.

You can obtain a signed SSL certificate from a Certificate Authority of your choice. To obtain a signed SSL

BLACKDUCK Pagel|19 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

certificate, create a Certificate Signing Request (CSR), which the CA then uses to create a certificate that
will identify the server running your Hub instance as "secure". After you receive your signed SSL
certificate from the CA, you can replace the self-signed certificate.

£ To create an SSL certificate keystore

1. Atthe command line, to generate your SSL key and a CSR, type:

openssl genrsa -out <keyfile> <keystrength>

openssl req -new -key <keyfile> -out <CSRfile>
where:

« <keyfile> is <your company's server name>.key
« <keystrength> is the size of your site's public encryption key
« <CSRfile> is <your company's server name>.csr

Note: It isimportant that the name entered for your company'’s server be the full hostname
that your SSL server will reside on, and that the organization name be identical to what is
in the 'whois' record for the domain.

For example:

openssl genrsa -out server.company.com.key 1024

openssl req -new -key server.company.com.key -out server.company.com.Csr
This example creates a CSR for server.company.com to get a certificate from the CA.

2. Send the CSR to the CA by their preferred method (usually through a web portal).

3. Indicate that you need a certificate for an Apache web server.

4. Provide any requested information about your company to the CA. This information must match
your domain registry information.

5. Onceyou receive your certificate from the CA, use the instructions in the next section to upload the
certificate into the Hub instance.

Using a custom web server certificate-key pair in Kubernetes

You can use your own web server certificate-key pairs for establishing secure socket layer (SSL)
connections to the Hub's web server.

1. To use a custom certificate, create two Kubernetes secrets called WEBSERVER CUSTOM CERT FILE
and WEBSERVER CUSTOM KEY FILE with the custom certificate and custom key, respectively, in
your namespace:

kubectl secret create WEBSERVER CUSTOM CERT FILE --from-file=<certificate
file>

kubectl secret create WEBSERVER CUSTOM KEY FILE --from-file=<key file>

BLACKDUCK Page |20 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

2. Forthe webserver service, add the secrets by copying their values into the env values for the pod
specifications for NGiNX. The sample .yml configuration goes into the hub-nginx image stanza in
the .yml file you used to deploy the Hub (for example, kubernetes-external-rds.yml or kubernes-
post-db.yml):

env:
- name: WEBSERVER CUSTOM CERT FILE
valueFrom:
secretKeyRef:
name: ws-—-cust-cert

3. Add an equivalent stanza for the custom key file:
env:

- name: WEBSERVER CUSTOM KEY FILE
valueFrom:
secretKeyRef:
name: ws-cust-key

Scaling Job Runner and Scan containers

The Job Runner and Scan containers can be scaled up or down.
Scaling Job Runner containers

This example adds a second Job Runner container:

kubectl scale rc jobrunner --replicas=2

You can remove aJob Runner container by specifying a lower number than the current number of Job
Runner containers. The following example scales back the Job Runner container to a single container:

kubectl scale rc jobrunner --replicas=l
Scaling Scan containers

This example adds a second Scan container:
kubectl scale rc scan —--replicas=2

You can remove a Scan container by specifying a lower number than the current number of Scan
containers. The following example scales back the Scan container to a single container:

kubectl scale rc scan —--replicas=1

Configuring the report database password

A PostgreSQL report database provides access to the Hub data for reporting purposes. The database
port is exposed to the Kuberentes network for connections to the report user and report database.

Note the following:

BLACKDUCK Page |21 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

m Exposed port: 55436

m Username: blackduck_reporter. This user has read-only access to the database.
m Reporting database name: bds hub report

m Reporting user password. Not initially set.

« If using the database container that is automatically installed by the Hub, use the provided
script, as described below, to set the password before connecting to the database.

« If using an external PostgreSQL database, use your preferred PostgreSQL administration tool
to configure the password.

Usethehub reportdb changepassword.sh script to set or change the report database password.

Note: This script sets or changes the report database password when using the database container
that is automatically installed by the Hub. If you are using an external postgreSQL database,
use your preferred PostgreSQL administration tool to configure the password.

Note that to run the script to set or change the password:

= You may need to be a user in the docker group, a root user, or have sudo access.
= You must be on the Kubernetes node that is running the PostgreSQL database container.

In the following example, the report database password is set to 'blackduck'":
./bin/hub reportdb changepassword.sh blackduck
After the password is set, you can connect to the reporting database.

For example, run the following command to obtain information about the internal and external IP
address for your PostgreSQL service:

kubectl get service postgres -o wide
The command displays information such as the following:

MNLME CLUSTER-IF EXTERENAT-TIF EORT (2) AGE
postgres 1.2.3.4 <none> 5432/TCE ad

If your PostgreSQL client is inside the cluster, the external IP will be empty. If your PostgreSQL client is
outside the cluster, take the external IP address and run the following command to open an interactive
Postgres terminal to the remote database:

psgl -U blackduck reporter -p 55436 -h S$external ip from above -W bds hub
report

Accessing the APl documentation through a proxy server

If you are using a reverse proxy and that reverse proxy has Hub under a subpath, configure the
BLACKDUCK_SWAGGER_PROXY_PREFIX property so that you can access the APl documentation. The
value of BLACKDUCK_SWAGGER_PROXY_PREFIX is the Hub path. For example, if you have Hub being

BLACKDUCK Page |22 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

accessed under 'https://customer.companyname.com/hub' then the value of BLACKDUCK_SWAGGER_
PROXY_PREFIX would be 'hub'.

You can define these properties before or after you install the Hub:

m To configure the property before installing the Hub, edit the pod.env file and save your changes.

m To modify the property after installing the Hub, add the environment variables above into the
“hub-nginx” image stanza in the .yml file you used to deploy the Hub (for example, kubernetes-
external-rds.yml or kubernes-post-db.yml).

Accessing the REST APIs from a non-Hub server

You may wish to access the Hub REST APIs from a web page that was served from a non-Hub server.
To enable this feature, Cross Origin Resource Sharing (CORS) must be enabled.

The properties used to enable and configure CORS for Hub installations are:

Property Description

BLACKDUCK.HUB.CORS .ENABLED Required. Defines whether CORS is enabled;
"true" indicates CORS is enabled.

BLACKDUCK.CORS.ALLOWED.ORIGINS.PROP.NAME Required. Allowed origins for CORS.

The browser sends an origin header when it
makes a cross-origin request. This is the origin
that must be listed in the
blackduck.hub.cors.allowedOrigins
/BLACKDUCK_CORS ALLOWED ORIGINS
PROP_NAME property.

For example, if you are running a server that
serves a page from http:///123.34.5.67:8080,
then the browser should set this as the origin,
and this value should be added to the property.

Note that the protocol, host, and port must
match. Use a comma-separated list to specify
more than one base origin URL.

BLACKDUCK.CORS.ALLOWED.HEADERS . PROP.NAME Optional. Headers that can be used to make
the requests.

BLACKDUCK.CORS.EXPOSED.HEADERS.PROP.NAME Optional. Headers that can be accessed by the
browser requesting CORS.

These properties are shown in the BLACKDUCK CORS SECTION inthe other.envfile.
You can define these properties before or after you install the Hub:

m To configure the property before installing the Hub, edit the pod.env file and save your changes.
m To modify the property after installing the Hub, add the environment variables above into the

BLACKDUCK Page|23 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

“hub-nginx” image stanza in the .yml file you used to deploy the Hub (for example, kubernetes-
external-rds.yml or kubernes-post-db.yml).

Configuring secure LDAP

If you see certificate issues when connecting your secure LDAP server to the Hub, the most likely reason
is that the Hub server has not set up a trust connection to the secure LDAP server. This usually occurs if
you are using a self-signed certificate.

To set up a trust connection to the secure LDAP server, import the server certificate into the local Hub
LDAP truststore by:

1. Obtaining your LDAP information.
2. Usingthe Hub Ul to import the server certificate.
Obtaining your LDAP information
Contact your LDAP administrator and gather the following information:
LDAP Server Details
This is the information that the Hub uses to connect to the directory server.

m (required) The host name or IP address of the directory server, including the protocol scheme and
port, on which the instance is listening.

Example: 1daps://<server name>.<domain name>.com:339

m (optional) If your organization does not use anonymous authentication, and requires credentials
for LDAP access, the password and either the LDAP name or the absolute LDAP distinguished name
(DN) of a user that has permission to read the directory server.

Example of an absolute LDAP DN:
uid=ldapmanager, ou=employees, dc=company, dc=com

Example of an LDAP name: jdoe

m (optional) If credentials are required for LDAP access, the authentication type to use: simple or
digest-MD5.

LDAP Users Attributes
This is the information that the Hub uses to locate users in the directory server:
m (required) The absolute base DN under which users can be located.
Example: dc=example, dc=com

m (required) The attribute used to match a specific, unique user. The value of this attribute
personalizes the user profile icon with the name of the user.

Example: uid={0}

Test Username and Password

BLACKDUCK Page|24 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

m (required) The user credentials to test the connection to the directory server.

Importing the server certificate
£ To import the server certificate

1. Logintothe Hub as a system administrator.

2. Click the expanding menu icon (H) and select Administration.

The Administration page appears.

3. Select LDAP integration to display the LDAP Integration page.

LDAP Integration

Terst Fassveord =

Test Conmection

4. Select the Enable LDAP option and complete the information in the LDAP Server Details and
LDAP User Attributes sections, as described above. In the Server URL field, ensure that you

BLACKDUCK Page|25 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

have configured the secure LDAP server: the protocol scheme is Idaps://.

5. Enter the user credentials in the Test Connection, User Authentication and Field Mapping
section and click Test Connection.

6. If there are no issues with the certificate, it is automatically imported and the "Connection Test
Succeeded" message appears:

Test Connection, User Authentication and Faeld Mapping
TR UHbr i imiag = Az
Test Pasyword =

et Connectisn & Test Connection o Connet

o Firit M Frst
oF Last Name i

o [fast@comaany.com

7. If thereis an issue with the certificate, a dialog box listing details about the certificate appears:

Certificate Problem ®

Detalis about the certificates sre Bsiow. I you'd lce to acoept this certificate, prews "Save”

Cortificans Details

[EEre g, (e Black
rstns, CsLis

Subiecl g, e Black
s, C=Lr5

AL i £, Rk

Expinds O Juin 19, 2019
Alparithim SHATwWIRESA

Do one of the following:
« Click Cancel to fix the certificate issues.

Once fixed, retest the connection to verify that the certificate issues have been fixed and the
certificate has been imported. If successful, the "Connection Test Succeeded" message
appears.

« Click Save to import this certificate.

Verify that the certificate has been imported by clicking Test Connection. If successful, the
"Connection Test Succeeded" message appears.

LDAP trust store password

For assistance in modifying an LDAP trust store password in a Kubernetes environment, contact your
authorized Black Duck support representative.

Configuring SAML for Single Sign-On

Security Assertion Markup Language (SAML) is an XML-based, open-standard data format for

BLACKDUCK Page |26 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

exchanging authentication and authorization data between parties. For example, between an identity
provider and a service provider. Black Duck Hub's SAML implementation provides single sign-on (SSO)
functionality, enabling Hub users to be automatically signed-in to the Hub when SAML is enabled.
Enabling SAML applies to all your Hub users, and cannot be selectively applied to individual users.

To enable or disable SAML functionality, you must be a Sysadmin user.
For additional SAML information:

m Assertion Consumer Service (ACS): https://host/saml/SSO

Note the following:

m The Hub is able to sync and obtain an external user's information (Name, FirstName, LastName and
Email) if the information is provided in attribute statements. Note that the first and last name
values are case-sensitive.

The Hub is also able to sync an external user's group information if you enable group
synchronization in the Hub.

= When logging in with SAML enabled, you are re-directed to your identity provider's login page, not
to The Hub's login page.

m When SSO users log out of the Hub, a logout page now appears notifying them that they
successfully logged out of the Hub. This logout page includes a link to log back into the Hub; users
may not need to provide their credentials to successfully log back in to the Hub.

m If there are issues with the SSO system and you need to disable the SSO configuration, you can
enter the following URL: Hub servername/sso/login to log in to the Hub.

£ To enable single sign-on using SAML

1. Click the expanding menu icon (H) and select Administration.

The Administration page appears.

2. Select SAML Integration to display the SAML Integration page.

BLACKDUCK Page|27 Black Duck Hub 4.6.1

https://host/saml/SSO

Installing Hub using Kubernetes Chapter 4: Administrative tasks

Administration

SAML Integration

SAML Configuration Details

Enable SAML Enable SAML

Enable Group Enable Group Synchronization
Synchronization

Service Provider Entity
1D

Identity Provider ® URL
Metadata

XML File

3. Inthe SAML Configuration Details settings, complete the following;
a. Select the Enable SAML check box.

b. Optionally, select the Enable Group Synchronization check box. If this option is enabled,
upon login, groups from IDP are created in the Hub and users will be assigned to those groups.
Note that you must configure IDP to send groups in attribute statements with the attribute
name of 'Groups'.

c. Service Provider Entity ID field. Enter the information for the Hub server in your
environment in the format https://host where host is your Hub server.

d. ldentity Provider Metadata. Select one of the following:
« URL and enter the URL for your identity provider.

« XML File and either drop the file or click in the area shown to open a dialog box from
which you can select the XML file.

4. Click Save.

5. Addthe HUB_SAML_EXTERNAL_URL to your hub-proxy.env file (for Docker Swarm or Docker
Compose) or pods.env (for Kubernetes) or as an environment variable (for OpenShift). The value is
the public URL of the Hub server. For example:

HUB SAML EXTERNAL URL=https://blackduck-docker0Ol.dcl.lan

Note: You must restart the Hub for your configuration changes to take effect.

BLACKDUCK Page|28 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 4: Administrative tasks

£ To disable single sign-on using SAML

—_

. Click the expanding menu icon (H) and select Administration.

2. Select SAML Integration to display the SAML Integration page.
3. Inthe SAML Configuration Details settings, clear the Enable SAML check box.
4. Click Save.

Note: You must restart the Hub for your configuration changes to take effect.

Backing up PostgreSQL volumes

Ensure that the volumes you use for PostgreSQL data storage are backed up on a regular basis. Consult
your Kubernetes/Docker/PostgreSQL system administrator for information on how to back up
PostgreSQL data volumes.

BLACKDUCK Page |29 Black Duck Hub 4.6.1

Chapter 5: Upgrading the Hub

This chapter describes how to upgrade an existing Hub on Kubernetes to a newer version of the Hub on
Kubernetes.

Note: Upgrading a Hub from a non-Kubernetes Hub installation (for example, AppMgr Hub) to
Kubernetes is simply a fresh Hub install on Kubernetes plus a data migration. See Chapter 3
for information on fresh Hub installs.

Upgrading the Hub on Kubernetes

Kubernetes applications can be upgraded using native Kubernetes image update commands. As such,
upgrading the Hub on Kubernetes is basically upgrading the Hub's deployments (pods, essentially).

Backing up the PostgreSQL database
Black Duck recommends completing a PostgreSQL database backup prior to upgrading the Hub.
This section describes the process of backing up and restoring Hub database data. This section covers:

m Backing up AppMgr Hub data (for migration purposes)
m Backing up Hub Kubernetes PostgreSQL data
m Restoring Hub Kubernetes PostgreSQL data

Note: In the instructions shown for backing up and restoring Kubernetes PostgreSQL data, for
simplicity, a namespace is not declared. Please add a command line option such as --
namespace=my-ns to every command shown below based on your administrator's
conventions. If you do not do declare a namespace, the Hub containers will still work,
however, they will all be created in the default namespace.

Backing up an PostgreSQL database from an AppMgr architecture

If you have a version of the Hub using AppMgr whose data you want to migrate to a new Kubnernetes
PostgreSQL node, follow these steps to back up the data.

BLACKDUCK Page|30 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 5: Upgrading the Hub

£ To back up the original PostgreSQL database
1. Logintothe Hub server as the blckdck user.

Note: This is the user that owns the Hub database and installation directory.

2. Runthe following commands to dump to a compressed file.

export PATH=$SPATH:/opt/blackduck/hub/postgresgl/bin
export PGPORT=55436
pg dump -Fc -f /tmp/bds hub.dump bds hub

Tip: Ensure that you dump the database to a location with sufficient free space. This example
uses /tmp.

This command puts the information from the bds_hub database into a file called bds_hub . dump
in the /tmp directory. It ignores several scratch tables that do not need to be backed up.

3. Savethebds hub.dump file on another system or offline.

Tip: If you find that dumping the database takes too long, you can greatly increase the speed by
dumping it to an uncompressed file. The trade-off is that while the dump is completed up to 3
times faster, the resulting file may be 4 times larger. To experiment with this on your system, add
the —-compress=0 parameter to your pg dump command.

After completing these steps, go to Restoring/migrating database data.

Backing up a Kubernetes PostgreSQL database

To back up the Kubernetes PostgreSQL Hub database (the one that comes standard with the Kubernetes
Hub), you must locate the PostgreSQL node, SSH into it, and run a data-dump script that creates a local
backup file.

1. Find the node that is running PostgreSQL by running the following command:
kubectl get nodes -1 blackduck.hub.postgres=true
Alternatively, you can get this information by doing a query such as the following:

kubectl get pod postgres -o=jsonpath='{.spec.nodeName}'

Note: The instructions in Step 1 show how to find the node that PostgreSQL is running onin
Kubernetes. If you are using a different orchestration tool, use an equivalent command
to find the hostname of the node, then go to Step 2.

2. Now that you know the hostname where Postgres is running, you must SSH into the node and run
the command:

./bin/hub create data dump.sh <path to local PostgreSQL dump file>

3. Run the following script which creates a PostgreSQL dump file in the hub-postgres container and

BLACKDUCK Page] 31 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Chapter 5: Upgrading the Hub

then copies the dump file from the container to the local PostgreSQL dump file.

./bin/hub _create data dump.sh <path to local PostgreSQL dump file>

Important: You must runthe hub create data dump.sh script before upgrading the Hub using
the version of the script located in the pre-upgrade directory.

Restoring/migrating database data

Note: As mentioned previously, for each of the “kubectl” commands, below, make sure to include --
namespace if required by your environment.

To restore your data from an existing database dump file:
1. Find the node that is running PostgreSQL by running the following command:
kubectl get nodes -1 blackduck.hub.postgres=true
Alternatively, you can get this information by doing a query such as the following:
kubectl get pod postgres -o=jsonpath='{.spec.nodeName}'

2. Now that you know the hostname where PostgreSQL is running, SSH into the node and run the
command:

./bin/hub_db migrate.sh <path to dump file>
Error messages

When the dump file is restored from the an AppMgr installation of the Hub, you may receive error
messages such as:

"ERROR: role "blckdck" does not exist"
along with other error messages. Also, at the end of the migration, you may see the following:
WARNING: errors ignored on restore: 7
These error messages and warnings can be ignored. They will not affect the restoration of the data.
Upgrading the Hub

Note: Black Duck recommends that no scans be active/initiated and that users remained logged off
the Hub web Ul while the upgrade is occurring,.

The command to upgrade a container in Kubernetes is:
kubectl set image <image> hub-image=hub-image:version
The following Hub containers each needs to be individually updated:

m hub-cfss|
= hub-documentation

BLACKDUCK Page|32 Black Duck Hub 4.6.1

Installing Hub using Kubernetes

Chapter 5: Upgrading the Hub

hub-postgres

hub-jobrunner

hub-webapp

hub-nginx

hub-logstash

hub-registration

hub-solr

hub-zookeeper

hub-scan

For example, here are the specific commands that must be run to upgrade to the Hub 4.6.1:

kubectl set image deployment/cfssl cfssl=cfssl:4.6.1

kubectl set image deployment/documentation
documentation=documentation:4.6.1

kubectl

kubectl

kubectl

kubectl

kubectl

kubectl

kubectl

kubectl

kubectl

set

set

set

set

set

set

set

set

set

image
image
image
image
image
image
image
image

image

deployment/jobrunner jobrunner=jobrunner:4.6.1

deployment/postgres postgres=postgres:4.6.1

deployment/webapp-nginx-logstash webapp=webapp:4.6.1

deployment/webapp-nginx-logstash nginx=nginx:4.6.1

deployment/webapp-nginx-logstash logstash=logstash:4.6.1

deployment/registration registration=registration:4.6.1

deployment/solr solr=solr:4.6.1

deployment/zookeeper zookeeper=zookeeper:4.6.1

deployment/scan scan=scan:4.6.1

BLACKDUCK

Page|33

Black Duck Hub 4.6.1

Appendix A: Debugging a running deployment

This chapter provides information on debugging a Hub on Kubernetes deployment. The procedures can
help you determine whether your Kubernetes cluster is working properly.

Viewing running pods

Use the following command to see which pods are running:
kubectl get pods

You should see output similar to the following:

MNAME READY STATUS RESTARTS AGE
cfss1-258485687-m3szc 1/1 Running @ 3h

Jjobrunner-1397244634-xgcn2 1/1 Running 2 26m
nginx-webapp-logstash-2564656559-6fbgd 23/3 Running @ 26m
postgres-1794281949 -ttdg] 1/1 Running @ 3h

registration-2718834894-7brjv 1/1 Running @ 26m
solr-1188389881-55cs1 1/1 Running 5 26m
zookeeper-3368698434-rnz3m 1/1 Running @ 26m

In the above example, there are pods containing a single container each (cfssl, jobrunner, postgres,
registration, solr, and zookeeper) and a pod containing three containers (nginx, webapp, logstash).

Executing Docker commands and viewing container log files

You can use the "kubectl exec” command to execute a Docker command inside a Docker container inside
a pod. This is especially helpful in viewing log files. The generic syntax is:

kubectl exec -t -i <pod name> -c <container name> <Docker command>
For example, to view the log file of the load balancer shown in the previous example, the command is:

kubectl exec -t -1 nginx-webapp-logstash-2564656559-6fbg8 -c nginx cat
/var/log/nginx/nginx-access.log

The command displays the following output:

BLACKDUCK Page|34 Black Duck Hub 4.6.1

Installing Hub using Kubernetes Appendix A: Debugging a running deployment

192.168.21.128 - - [12/Jul/2817:18:13:12 +880@] "GET /api/vl/registrations?summary=true& =1499883191824 HTTP/1.1" 28t
192.168.21.128 - - [12/Jul/2817:18:13:12 +8@8e] "GET /api/internal/logo.png HTTR/1.1" 2@8 7634 "https://a8145b939671c
10.0.25.32 - - [12/Jul/2017:18:25:42 +808@] "GET / HTTP/1.1" 288 21384 "-" “curl/7.47.8" "-"

In another example, we can use the “kubectl logs” command to view the Docker log files (from standard
out) for the Hub's Webapp container:

kubectl logs nginx-webapp-logstash-2564656559-6fbg8 -c webapp

Which displays the following information:

2817-87-12 18:13:12,864 [http-nio-8088-exec-4] INFO com.blackducksoftware.core.regupdate.impl.Registrationdpi - Exec
2817-87-12 18:13:12,871 [http-nio-8888-exec-4] ERROR com.blackducksoftware.core.regupdate.impl.Registrationdpi - Unat
2@17-87-12 18:25:42,596 [http-nio-8888-exec-1] INFO com.blackducksoftware.usermgmt.sso.impl.BdsSAMLENtryPoint - Sing
2@17-87-12 18:27:52,67@ [scanProcessorTaskScheduler-1] INFO com.blackducksoftware.scan.bom.scheduler.ScanPurgeJlobMor
2@17-87-12 18:38:88,859 [job.engine-@] WARN com.blackducksoftware.job.integration.handler.KbCacheUpdater - KB projec

3

This shows all standard output from Webapp (the Hub's web server). (Although a full description of the
content of these log files is beyond the scope of this chapter, a large time period without log message
would suggest an issue with the Webapp.)

Accessing log files

You may need to troubleshoot an issue or provide log files to Customer Support.

Users with the System Administrator role can download a zipped file that contains the current log files.
£ To download the log files from the Hub Ul

1. Login to the Hub with the System Administrator role.

2. Click the expanding menu icon (H) and select Administration.

The Administration page appears.
3. Select System Settings.

The System Settings page appears.
4. Click Download Logs (.zip).

It may take a few minutes to prepare the log files.

BLACKDUCK Page|35 Black Duck Hub 4.6.1

Appendix B: Containers

These are the containers within the Docker network that comprise the Hub application:

—_

. Web App
Scan

Job Runner App

> W N

Solr
5. Registration

6. DB

Note: This container is not included in the Hub application if you use an external Postgres
instance.

7. WebServer

8. Zookeeper

9. LogStash

10. CA

11. Authentication service
12. Documentation

The following tables provide more information on each container.

BLACKDUCK Page|36 Black Duck Hub 4.6.1

Installing Hub using Kubernetes

Appendix B: Containers

Web App container

Container Name: Web App

Image Name

Description

Scalability

Links/Ports

Alternate Host Name
Environment Variables

Constraints

blackducksoftware/hub-webapp:4.6.1

The Web App container is the container that all
Web/UI/API requests are made against. It also processes
any Ul requests. In the diagram, the ports for the Web App
are not exposed outside of the Docker network. There is
an NGiNX reverse proxy (as described in the WebServer
container) that is exposed outside of the Docker network
instead.

There should only be a single instance of this container. It
should not be scaled.

The Web App container needs to connect to these
containers/services:

« postgres

« solr

« zookeeper
« registration
« logstash

o cfssl

The container needs to expose port 8080 to other
containers that will link to it.

There are times when running in other types of
orchestrations that it is useful to have host names set for
these containers that are not the default that Docker
Compose or Docker Swarm use. These environment
variables can be set to override the default host names:

« postgres: $HUB_POSTGRES_HOST

« solr: This should be taken care of by ZooKeeper.
« zookeeper: $HUB_ZOOKEEPER_HOST

« registration: $HUB_REGISTRATION_HOST

« logstash: $HUB_LOGSTASH_HOST

o cfssl: $HUB_CFSSL_HOST

« Default maxJava heap size: 4GB
« Container memory: 4GB
« Container CPU: 1 CPU

BLACKDUCK

Page|37

Black Duck Hub 4.6.1

Installing Hub using Kubernetes

Appendix B: Containers

Container Name: Web App

Volumes

Environment File

Scan container

Container Name: Scan
Image Name

Description

Scalability

Links/Ports

Alternate Host Name
Environment Variables

Constraints

Volumes

Environment File

log-volume:/opt/blackduck/hub/logs
webapp-volume:/opt/