Table of Contents

1. DOCUMENTEEION ...ttt sttt ettt bbbt e e e b e s b e s bt st e s ae e b e ae e e e s e benb e s beebesseeseene e b e nnenbenrens 3
2. What 1S thE OPEIGLOI? .....eecveeiieeieiee st et seeseeste s e e steeee s e e steeseesreesseeseesseesseaneesseesseeneesseensesnenssennsennenns 3
G I 1< o o S 3
A, REQUITEIMENES ....veiiveetieeiesteeeeeesieetesseesseesaesseesseesseaseesseessesseesseasseaseesseessesseesseansesseessennsssseessessnssennsens 4
I 11015 = = oo USSP 4
LS ©o g1 11011 = 1 o o S 4
A C = 1] g0 TS = = SR 5
S 1015 | = 1 oo PSSP 5
S T L S (= o J TP RR 5
LO. OVEIVIBIW ..ttt sttt b e b e b bt a et e e et e Ao e b e e b e e bt e bt e a e e ae et et e e b e nb e e b e e be e bt e ae e e et et e neeneas 5
10, QUICKSLAIT ....vvieteeiiiecctee ettt ettt e et e st e et e st e e eteeease e beesabeesbeesaseeaseesaseesseesaseesneeenseesaeeenbeessnennrenss 6
O 1 = S TSP 6
11.2. Openshift Container PlatfOrm ..........cccoiieiieiesicceee e 7
L2, INEXE SEEPS .ieeiiiiie ettt ettt ettt e b e e ettt e s be e e e st e e e abe e e ab e e e se e e e abbeeeabeeesabeeesaneeesaneeenaneeenas 7
G (0] T= ot S {1 o (U] = USSR 7
14. INStallation Prer@QUSITES ......ccveiieieiiesieeieseeseestesee e eesreesteeae s e s aeeeesseesseenseeseesseensesseessennsesnnessens 8
15. BaSIC INSEAIBIION ...ttt ettt et bbb bt ene e e 9
15.1. HostPath Persistent VOIUMES ........ccoiiiiiiiieiesese st 9
15.2. NFS PerSIStEnt VOIUMES ....ccoiiiieiiiiiiiieeeie sttt sttt 9
16. BUild IMageS & DEPIOY ...ocveiieiiciece ettt ettt ae s te e e e ae et e nneenne e e 9
16.1. PaCKaged IMBOES .......oceeiiiieiieie ettt ettt e esae e teeseesaeenseeneesneeseeneenneenes 9
16.2. BUIIA TTOM SOUICE ...ttt bbbttt e bt 10
Y = T T FS T I o T £ S 11
L8, INEXE SEEPIS ..uiiieiiiieiiee ettt ettt st et e et e e bt e e e bt e e e bt e e e se e e sabe e e ease e s aaseeenneesbeeesabeeennbeeennneeens 12
RS o 1 10 (T O USSP 12
PO N S (< 01 TSRO R PSPPI 12
P I O V= V= ST 12
22. Openshift Container PlatfOrmM ........coooiiee ettt reene e 12
23. SECUNtY CONFIQUIBLION ....ecieieeiieeieeeieseesie e ee s e et see s e te e steeae s e e s seenteeseesseeseeseasseenseenensreensennenns 13
23.1. KUDE RBAC ...ttt bbbttt e et bbb bt bt e et et e e nbenaenbenre s 13
23.2. BASIC AULNENTICATON .....ovevirieiiieiisieeieee ettt st ne et sbe st 13
PG TR T 0 1 To 10 = N 0 OSSPSR 14
23.4. PGO RBAC ...ttt bbbttt bbb e ens 14
A RSN (=51 I o I o g T 18 = 1 oo 16
23.6. PostgreSQL Operator Container Configuration ..........cccecuereeresiesieeseseeseese e seesee e 22
24, Bash COMPIELION ..ottt e s a e e eseesreeneeneesseenneeneennen 22
25. REST APl e et e bbb bRt b A e bR bt bt et et et et st ne e 23
LG R T= o [0}/ T g o T | o S 24
AT (o ="o L= @] 1o U] o S 25
DA 5 T 1 TSP 25
B 2 )Y 4= 0 [ oSSR 26
27.3. GKE ot b et bbbt ettt e b e nns 26
28. VEXiTY OPEIAIOr SLLUS .....ccveeeeieeerieeieseesteeseesseesseessesseesseessesseesseessesseesseesssssesssesssessesssesssesssessesssens 27
29. CoNfIGUIE PO CHENT ....eoiiee ettt e e et esaeesteenaesse e seeneesreenseenseaneenneas 27
29.1. Running KuberneteS LOCAIlY ........ccceieeieeesiese et s 28
G 0T VA oo o TN X = o S 29




3 I N (= 0L PRSPPSO 29
G o (= o (V1T (=0 [ oo =1 == 31
G I @ro 1 To 101 (o] o 1N o S 32
A = o = TSRS S PP 32
GG T o o (U1 (=0 [ oo =1 == 32
3G I I @0 1 To 101 (o] o 1N o 32
33.2. CONLAINES RESOUICES ......ecveeviereiueestiesieeseeseestesseesseesseaseesseessessessseesseaseesseessesssssseessessessessses 32
33.3. KUDE RBAC ...ttt sttt st b bbbt e et et et e st e saesbenre s 33
33.4. APPHICALON RBAC ...ttt sttt s e st e teeaeesseeseeneenbeeneesneenneennens 33
G ST U LS 01 = (o) o OSSO 33
G ST = o] [ Tor= O I ST 34
T T S (= = OSSPSR 34
ST O [0S 1= gl AN = =SOSR 34
GG T 1= o - S 34
ST @ o= = (o Y A= £ T o SRS 34
36.2. OPEIALOT SEALUS .....vveiiuvieiiiiieeiitieesitesssieeesieeeste e e steeesse e s sssee s ssseesassessbaeesseeesbeeesabeeesareesnsseas 34
RS AN @7 = (o @ ©Xe a1 1T 1 = 1 o o S 35
ST B TS S 0o = o 1 S 35
O [0S (= g = oSS 35
N I O == (= 1 1 = O SPRSPN 35
B B 1= 1= (= I O 11 (= OSSP 39
37.3. SNOW CHUSLES ..ottt e e s e te e e e ere e te e e e sseenseeneesaeennenneens 40
S = A o ] = 1 o o S 41
10 TR0 0011 TS = 1] S 42
1 I I (= [0 7= o [ ST 42
G T2 = T ot LU oSS 42
G TR S 0= L1 | oo 44
I IS o= 110 = o 0= USSR 46
38.5. MaNUal FailOVED ......ccueeieeeceecece ettt et e et e et esneenneennenneenn 48
38.6. Upgrading POSIGrESQL .......ceciieiiiiieri ettt ee sttt esneenneennenneens 49
3B.7. LADEIS et b b ettt bbb ne e 50
38.8. Creating SQL POlICIES .......ccoueiieitece ettt sttt re et e ne e ne e nns 51
11 IS I o= o [ o TN I - - S 52
K1 TN U 110 1= 011 1 o OSSR 54
39.1. Credential ManageMENT ........cceccueiieiieie et e e e e e sreesre e e e sreesseesesreesneesesneensens 54
40. PODOUNCEr BASICS ....uviiveeiieiecieesieeiestee e e te st esteseesseesteeeesseesseessesseesseensesseesseenseaseeaseensesneessennsenneans 56
O oo 00T I = = oS 56
O O == (= o0 oo o SR 56
7 D T = (= oo oo o) S 57
S I VLY o o S 57
42. REFEreNCE ATCHITECIUIE ......cveeieceee ettt e e e e e s re e te e e e s re e neeneeeneens 58
43. Custom ReSOUIrCE DEFINITIONS ......cccuiieeiieeie et e s e tesneesreenesneenrens 58
44, Command LiNe INLEITACE ......oiviee et e e s re e re e e sneenne s 58
45, Operator DEPIOYMENT .......ceeiieieiieeieieeee st e st e e et e e e sre e seeaesreesseensesseesseensesneesreesenneens 59
LG O I B 1= [ o PRSPPI 59
LI Y= 1 o ST TTRTR 59
2 N i 0 P 59
VLS I T o U Te o 1 o [P SRPS 60
49, PEXSISIENT VOIUMIES .....ooivieiiceie sttt ettt et e s s e be e e e sneesteenseeneesseenteeneesreensenneeaneensens 60




50. PostgreSQL Operator Deployment SErategI€S ......cc.ecveieerieieesieieceeseesiesee e see e sae e e 60

L0 (= =0 (1= USSP 60
50.2. SPECITYING @ SLTALEQY ..veeveereeieeieiieseeieeeeeste e e s e sreesteeee e eeesseesseesesseesseesesseesseensesneensens 61
50.3. Strategy TeMPIALE FIIES .......ocveieeeee ettt e e neennens 61
50.4. Default Cluster Deployment Strategy (1) ....veceeveeeeereereeieeseesieeeesreeseeseesseesseseesreessesneens 61
50.5. ClUSLEr DEIBLION ....c.eoiiiiiiisiieieeieee ettt sttt bbb enes 62
50.6. Custom Postgres CONfigUIaions ........c..uccueiierieieiee s esiesee s ese e se e s e saeesre e e sreenesneens 62
50.7. MELNICS COIHBCLION ..ottt nb e 64
50.8. MaANUBI FIOVEL ..ottt bbbttt b b nne s 64
50.9. AULO FAITOVED ..ottt ettt bbbttt ettt e b 65

title: "Crunchy Data PostgreSQL Operator" date: 2018-04-23T14:52:09-07:00 draft: false

Latest Release: 3.4.0 2018-12-04

1.

Documentation

Please view the official Crunchy Data PostgreSQL Operator documentation here [https:.//
crunchydata.github.io/postgres-operator/stable/]. If you are interested in contributing or making an
update to the documentation, please view the Contributing Guidelines [/contributing/].

2.

What is the Operator?

The postgres-oper ator isacontroller that runs within a Kubernetes cluster that provides a means to
deploy and manage PostgreSQL clusters.

Use the postgres-operator to -

3.

deploy PostgreSQL containers including streaming replication clusters
scale up PostgreSQL clusters with extrareplicas

add pgpool and metrics sidecars to PostgreSQL clusters

apply SQL policiesto PostgreSQL clusters

assign metadata tags to PostgreSQL clusters

maintain PostgreSQL users and passwords

perform minor and major upgrades to PostgreSQL clusters

load simple CSV and JSON filesinto PostgreSQL clusters

perform database backups

Design

The postgres-operator design incorporates the following concepts -



https://crunchydata.github.io/postgres-operator/stable/
https://crunchydata.github.io/postgres-operator/stable/
https://crunchydata.github.io/postgres-operator/stable/
/contributing/
/contributing/

adds Custom Resource Definitions for PostgreSQL to Kubernetes

adds controller logic that watches events on PostgreSQL resources

provides a command line client (pgo) and REST API for interfacing with the postgres-operator

provides for very customized deployments including container resources, storage configurations,
and PostgreSQL custom configurations

More design information is found on the How It Works [/how-it-works/] page.

4. Requirements

The postgres-operator runs on any Kubernetes and Openshift platform that supports Custom Resource
Definitions.

The Operator project builds and operates with the following containers -
» PVC Listing Container [https://hub.docker.com/r/crunchydata/pgo-lspvc/]

* Remove Data Container [https://hub.docker.com/r/crunchydata/pgo-rmdata/]

postgres-operator Container [https://hub.docker.com/r/crunchydata/postgres-operator/]

apiserver Container [https://hub.docker.com/r/crunchydata/pgo-apiserver/]

file load Container [https://hub.docker.com/r/crunchydata/pgo-load/]

backrest interface Container [https://hub.docker.com/r/crunchydata/pgo-backrest/]

This Operator is devel oped and tested on the following operating systems but is known to run on other
operating systems -

* CentOS7

* RHEL 7

5. Installation

To build and deploy the Operator on your Kubernetes system, follow the instructions documented on
the Installation [/installation/] page.

If you' re seeking to upgrade your existing Operator installation, please visit the Upgrading the
Operator [/installation/upgrading-the-operator/] page.

6. Configuration

The operator is template-driven; this makes it smple to configure both the client and the operator. The
configuration options are documented on the Configuration [/installation/configuration/] page.



/how-it-works/
/how-it-works/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-backrest/
https://hub.docker.com/r/crunchydata/pgo-backrest/
/installation/
/installation/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/configuration/
/installation/configuration/

/. Getting Started

postgres-oper ator commands are documented on the Getting Started [/getting-started/] page.
title: "Installation” date: 2018-04-24T18:27:02-07:00 draft: false weight: 10
Latest Release: 3.4.0 2018-12-04

8. Installation

For a quick deployment on either a GKE or OpenShift environment, visit the Quick Installation [/
installation/quick-installation/] page.

For amanual installation of the Operator on either a Kubernetes or OpenShift environment, visit the
Manual Installation [/installation/manual-installation/] page.

A Helm Chart [/installation/helm-chart/] is also provided.

If you' re looking to upgrade a current PostgreSQL Operator installation, visit the Upgrading the
Operator [/installation/upgrading-the-operator/] page.

There are many ways to configure the operator further. Some sample configurations are documented
on the Configuration [/installation/configuration/] page. This includes setting up security and storage
configurations for your environment.

After completing the installation steps, ensure you visit the Deployment [/install ation/depl oyment/]
page to deploy the Operator to your environment.

9. Next Steps

Y ou may want to find out more information on how the operator is designed to work and deploy. This
information can be found in the How It Works [/how-it-works/] page.

Information can be found on the full scope of commands on the Getting Started [/getting-started/]
page.

title: "Quick Installation” date: 2018-04-26T15:22:14-07:00 draft: false weight: 10
Latest Release: 3.4.0 2018-12-04

10. Overview

There are currently quickstart script that seek to automate the deployment to popular Kubernetes
environments -

* quickstart.sh [https://github.com/CrunchyData/postgres-operator/bl ob/master/examples/
quickstart.sh]

The quickstart script will deploy the operator to a GKE Kube cluster or an Openshift Container
Platform cluster. The quickstart script isintended to get you up and running quickly, for atypical
more custom installation, the manual installation is recommended.



/getting-started/
/getting-started/
/installation/quick-installation/
/installation/quick-installation/
/installation/quick-installation/
/installation/manual-installation/
/installation/manual-installation/
/installation/helm-chart/
/installation/helm-chart/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/configuration/
/installation/configuration/
/installation/deployment/
/installation/deployment/
/how-it-works/
/how-it-works/
/getting-started/
/getting-started/
https://github.com/CrunchyData/postgres-operator/blob/master/examples/quickstart.sh
https://github.com/CrunchyData/postgres-operator/blob/master/examples/quickstart.sh
https://github.com/CrunchyData/postgres-operator/blob/master/examples/quickstart.sh

The script assumes you have a StorageClass defined for persistence.

Pre-compiled versions of the Operator pgo client are provided for the x86_64, Mac OSX, and
Windows hosts.

11. Quickstart
11.1. GKE/PKS

The quickstart.sh script will allow users to set up the Postgres Operator quickly on GKE, PKS, and
Openshift.

The script requires afew thingsin order to work -
* wget utility installed

* kubectl or oc utility installed

» StorageClass defined on your GKE instance

Executing the script will give you a default Operator deployment that assumes dynamic storage and
astorage class named standard, user provided values are also allowed by the script to override these
defaults.

The script performs the following -

» downloads the Operator configuration files

o setsthe SHOME/.pgouser file to default settings

* deploys the Operator Deployment

 setsyour .bashrc to include the Operator environment variables

» satsyour SHOME/.bash _completion file to be the pgo bash_completion file
Note

Y ou should copy the quickstart.sh script from github rather than cloning the entire github
Operator repository!

A tip, if you want to set your Kube context to some particular namespace you can run commands
similar to thisto set it to ademo namespace if that namespace has already been created on your GKE
cluster:

kubect!| create -f $COROOT/ exanpl es/ denp- namespace. j son
kubect| config set-context denp --cluster=gke_crunchy-a-test _us-central 1-a_usera- qui ckst:
kubect| config use-context denop

For Mac and Windows users, pre-built pgo binaries are included in the operator release tar ball, you
would download the pgo CLI binaries from the Releases page to your local machine as part of the
quick installation:




* pgo-mac isthe Mac binary

* pgo.exe isthe Windows binary

* pgoisthe Linux binary

» expenv-mac isthe expenv binary for Mac

* expenv.exeisthe expenv binary for Windows

Currently the quickstart scripts are meant for Linux installs, you will need to modify this script for
Windows or Mac installs until we support and provide Windows and Mac installation scripts.

11.2. Openshift Container Platform

The script also is used for installing the operator on OCP.

12. Next Steps

Next, visit the Deployment [/installation/deployment/] page to deploy the Operator, verify the
installation, and view various storage configurations.

title: "Manual Installation” date: 2018-04-26T15:22:21-07:00 draft: false weight: 20

Latest Release: 3.4.0 2018-12-04

13. Project Structure

First, define the following environment variables in .bashrc:

export GOPATH=$HOVE/ odev

export GOBlI N=$GOPATH bi n

export PATH=$PATH: $GOBI N

export CO NAVESPACE=deno

export CO CMVD=kubect |

export COROOT=$GOPATH src/ git hub. coni crunchydat a/ post gr es- oper at or
export CO_| MAGE PREFI X=cr unchydat a

export CO _BASEOS=cent os7

export CO VERSI ON=3.4.0

export CO_| MAGE_TAG=$CO BASECS- $CO_VERS| ON

# for the pgo CLI auth

export PGO_CA CERT=$COROOTI/ conf/ post gr es- oper at or/ server. crt
export PGO_CLI ENT_CERT=$COROOI/ conf / post gr es- oper at or/ server. crt
export PGO_CLI ENT_KEY=$COROOT/ conf/ post gr es- oper at or/ server . key

# for crunchy-schedul er startup
export CCP_| MAGE PREFI X=crunchydat a
export CCP_I MAGE_TAG=centos7-10.6-2.2.0

# useful aliases

alias setip="export CO APl SERVER URL=https:// kubect| get service postgres-operator -o5j
al i as al og=" kubect| |ogs "“kubectl get pod --sel ector=nane=post gres-operator -0 jsonpath=
al i as ol og=" kubect| |ogs "“kubectl get pod --sel ector=nane=postgres-operator -0 jsonpath=



/installation/deployment/
/installation/deployment/

If you have access to the Crunchy RHEL images, you would change the above references to centos?
to rhel 7.

When deploying on Openshift Container Platform, the CO_CMD environment variable should be:

export CO _CMD=ocC

To perform an installation of the operator, first create the project structure as follows on your host,
here we assume alocal directory called odev -

. bashrc
nkdir -p $HOVE/ odev/src $HOVE/ odev/ bi n $HOVE/ odev/ pkg $GOPATH src/ gi t hub. com crunchydat a

Next, get atagged release of the source code -

cd $GOPATH src/ gi t hub. conf crunchydat a

git clone https://github.com CrunchyDat a/ post gres-operator. git
cd postgres-operator

git checkout 3.4.0

14. Installation Prerequsites

To run the operator and the pgo client, you will need the following -
» arunning Kubernetes or OpensShift cluster

* the kubectl or oc clientsinstalled in your PATH and configured to connect to the cluster (e.g. export
KUBECONFI G=/etc/kubernetes/admin.conf)

» aKubernetes namespace created and set to where you want the operator installed. For thisinstall
we assume a namespace of demo has been created.

kubect!| create -f exanpl es/ denp- nanespace.json

kubect!l config set-context $(kubectl config current-context) --nanespace=denp
kubect!l config view -0 "jsonpath={. contexts[?(@ nane==\"$(kubect| config current-context

On Openshift Container Platform, you would have a Project and User defined for installing the
Operator.

Run the Makefile set up target to install depedencies.
make setup

Next, run the Makefilei nst al | r bac target as a user with cluster-admin priviledges, not as a normal
Kube or Openshift user. Thistarget creates the RBAC roles and CRDs required by the Operator and is
only required to be created one time.

For example, on an Openshift system you would run this target as follows using the system:admin
Openshift user:

$ sudo su -

# oc login -u system adm n

# cd / hone/ oper

# . bashrc

# export PATH=$PATH: / hore/ oper/ odev/ bin

# cd odev/src/github. com crunchydat a/ post gr es- oper at or
# make installrbac




On a Kube system, you would be connected as a cluster-admin user and just issue:

# cd / hone/ oper

# . .bashrc

# export PATH=$PATH: / horre/ oper/ odev/ bi n

# cd odev/src/github. com crunchydat a/ post gr es- oper at or
nmake installrbac

15. Basic Installation

The basic pgo.yaml configuration specifies 3 different storage configurations: * hostpath * nfs
(default) * storage-class

Storage configurations are documented here: here [/installation/configuration/
# storage_configuration].

The default storage configuration used for creating Primary, Replica, and Backupsis set to NFSin the
default pgo.yaml file. Adjust this setting to meet your storage requirements.

Sample PV creation scripts are found in the following directory:

exanpl es/ pv

15.1. HostPath Persistent Volumes

The default Persistent Volume script assumes a default HostPath directory be created called /data:

sudo nkdir /data
sudo chnmod 777 /data

Create some sample Persistent VVolumes using the following script:

$COROOT/ pv/ cr eat e- pv. sh

15.2. NFS Persistent Volumes

The NFS Persistent Volume script assumes a default directory be created called /nfsfileshare as the
NFS mount point on your system:

sudo |s /nfsfil eshare

See the crunchy-containers documentation on how to install NFS on a cento’RHEL system if you
want to use NFS for testing the operator.

Create some sample NFS Persistent VVolumes using the following script:

$COROOT/ pv/ cr eat e- nf s- pv. sh

16. Build Images & Deploy
16.1. Packaged Images

To pull prebuilt versions from Dockerhub of the postgres-operator containers, execute the following
Makefile target -



/installation/configuration/#_storage_configuration
/installation/configuration/#_storage_configuration
/installation/configuration/#_storage_configuration

make pul

To pull down the prebuilt pgo binaries, download the tar.gz release file from the following link -
* Github Releases [https://github.com/CrunchyData/postgres-operator/rel eases|

* extract (e.g. tar xvzf postgres-operator.3.4.0.tar.gz)

cd $HOVE
tar xvzf ./postgres-operator.3.4.0.tar.gz

» copy pgo client to somewhere in your path (e.g. cp pgo /usr/local/bin)

Next, deploy the operator to your Kubernetes cluster -

cd $COROOT
make depl oyoper at or

Warning

If you make configuration file changes you will need to re-run the depl oyoper at or makefile
target to re-deploy the Operator with the new configuration files.

16.2. Build from Source

The purpose of this section isto illustrate how to build the PostgreSQL Operator from source. These
are considered advanced installation steps and should be primarily used by developers or those
wishing a more precise installation method.

Requirements

The postgres-operator runs on any Kubernetes and Openshift platform that supports Custom Resource
Definitions. The Operator is tested on Kubeadm and OpenShift Container Platform environments.

The operator is devel oped with the Golang versions greater than or equal to version 1.8. See Golang
website [https://golang.org/dl/] for details on installing golang.

The Operator project builds and operates with the following containers -

» PVC Listing Container [https://hub.docker.com/r/crunchydata/pgo-1spvc/]

Remove Data Container [https://hub.docker.com/r/crunchydata/pgo-rmdata/]

postgres-operator Container [https://hub.docker.com/r/crunchydata/postgres-operator/]

apiserver Container [https://hub.docker.com/r/crunchydata/pgo-apiserver/]

file load Container [https://hub.docker.com/r/crunchydata/pgo-load/]
* pgbackrest interface Container [https://hub.docker.com/r/crunchydata/pgo-backrest/]

This Operator is devel oped and tested on the following operating systems but is known to run on other
operating systems -

* CentOS7

10


https://github.com/CrunchyData/postgres-operator/releases
https://github.com/CrunchyData/postgres-operator/releases
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-backrest/
https://hub.docker.com/r/crunchydata/pgo-backrest/

* RHEL 7

17. Makefile Targets

The following table describes the Makefile targets -

Table 1. Makefile Targets

Target

Description

macpgo

build the Mac version of the pgo CLI
binary

winpgo

build the Windows version of the pgo
CLI binary

installrbac

only run once and by a cluster-admin
user, thistarget creates the Operator
CRDs and RBAC resources required by
the Operator

setupnamespace

only run once, will create a namespace
called demo

bounce

delete the Operator pod only, thisisa
way to upgrade the operator without a
full redeploy, asthe operator runsin a
Deployment, a new pod will be created
to replace the old one, a simple way to
bounce the pod

deployoperator

deploy the Operator (apiserver and
postgers-operator) to Kubernetes

all

compile all binaries and build all
images

setup

fetch the dependent packages required
to build with, and create Kube RBAC
resources

main

compile the postgres-operator

Pgo

build the pgo binary

clean

remove binaries and compiled
packages, restore dependencies

operatorimage

compile and build the postgres-operator
Docker image

apiserverimage

compile and build the apiserver Docker
image

Isimage build the Ispvc Docker image
loadimage build the file load Docker image
rmdatai mage build the data deletion Docker image

11



Target Description

pgo-backrest-image build the pgbackrest interface Docker
image
release build the postgres-operator release

18. Next Steps

Next, visit the Deployment [/installation/depl oyment/] page to deploy the Operator, verify the
installation, and view various storage configurations.

title: "Helm Chart" date: 2018-04-26T15:24:16-07:00 draft: false weight: 30

Latest Release: 3.4.0 2018-12-04

19. Helm Chart

First, pull prebuilt versions from Dockerhub of the postgres-operator containers, specify the image
versions, and execute the following Makefile target -

export CO_| MAGE PREFI X=cr unchydat a
export CO_| MAGE_TAG=centos7-3.4.0
nmake pul |

Then, build and deploy the operator using the provided Helm chart -

cd $COROOT/ chart
hel minstall ./postgres-operator
helmls

20. Next Steps

Next, visit the Deployment [/installation/deployment/] page to deploy the Operator, verify the
installation, and view various storage configurations.

title: "Configuration” date: 2018-04-24T18:26:56-07:00 draft: false weight: 40

Latest Release: 3.4.0 2018-12-04

21. Overview

This document describes how to configure the operator beyond the default configurations in addition
to detailing what the configuration settings mean.

22. Openshift Container Platform

To run the Operator on Openshift Container Platform note the following requirements -

» Openshift Container Platform 3.7 or greater is required due to the dependence on Custom Resource
Definitions.

12


/installation/deployment/
/installation/deployment/
/installation/deployment/
/installation/deployment/

» The co_cwvb environment variable should be set to oc when operating in an Openshift environment.

23. Security Configuration
23.1. Kube RBAC

Thecl uster-rbac. yan fileisexecuted a single time when installing the Operator. Thisfile,
executed by a Kubernetes user with cluster-admin priviledges, does the following:

* Creates Customer Resource Definitions
» Grantsget accessto Kube Node resources to the postgres-operator service account.

Therbac. yan fileisalso executed asingle time when installing the Operator. Thisfile creates Role
scoped privileges which are granted to the postgres-operator service account. The postgres-operator
service account is used by the apiserver and postgres-operator containers to access Kubernetes
resources.

Both of these RBAC files are executed by the depl oy/ i nstal | -rbac. sh script. It can also be
installed through running make i nst al | r bac in the SCCPROOT directory.

Warning

The CO_NAMESPACE environment variable determines the namespace that is used within
the deployment of the operator. If you are deploying to the demo namespace, the following
should setting should be defined in your .bashrc: export CO NAMESPACE=deno

See here [https://kubernetes.io/docs/admin/authorization/rbac/] for more details on how to enable
RBAC roles and modify the scope of the permissions to suit your needs.

23.2. Basic Authentication

Basic authentication between the host and the apiserver isrequired. It will be necessary to configure
the pgo client to specify a basic authentication username and password through the creation afile in
the user’ s home directory named . pgouser . It will look similar to this, and contain only asingle line -

user name: password

The above excerpt specifies a username of user name and a password of password. These values will
be read by the pgo client and passed to the apiser ver on each REST API call.

For the apiserver, alist of usernames and passwords is specified in the pgo-auth-secr et Secret. The
values specified in a deployment are found in the following location -

$COROOAT/ conf / post gr es- oper at or/ pgouser
The sample configuration for pgouser isasfollows -
user name: passwor d: pgoadni n

testuser:testpass: pgoadm n
readonl yuser : t est pass: pgor eader

Modify these values to be unique to your environment.

13


https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/

If the username and password passed by clients to the apiserver do not match, the REST call will
fail and alog message will be produced in the apiserver container log. The client will receive a401
HTTP status code if they are not able to authenticate.

If the pgouser fileisnot found in the home directory of the pgo user then the next searched location
is/ et c/ pgo/ pgouser . If thefileisnot found in either of the locations, the pgo client searches for the
existence of a PGOUSER environment variable in order to locate a path to the basic authentication file.

Basic authentication can be entirely disabled by setting the BasicAuth setting in the pgo. yant
configuration fileto f al se.

23.3. Configure TLS

TLSis used to secure communications to the apiserver. Sample keys and certifications that can be
used by TLS are found here -

$COROOT/ conf / post gr es-operator/ server.crt
$COROOT/ conf / post gr es- oper at or/ server . key

If you want to generate your own keys, you can use the script found in -

$COROOT/ bi n/ make-certs. sh

The pgo client is required to use keys to connect to the apiserver. Specify the keys for pgo by setting
the following environment variables -

export PGO _CA CERT=$COROOT/ conf/ post gr es- operator/server.crt

export PGO _CLI ENT_CERT=$CORCOT/ conf/ post gr es- operator/ server.crt
export PGO _CLI ENT_KEY=$COROOT/ conf/ post gr es- oper at or/ server. key

Y ou can also specify these credentials using the following command flags where you can reference
they keysfrom any file path directly:

pgo version --pgo-ca-cert=/tnp/server.crt --pgo-client-cert=/tnp/server.crt --pgo-client:

The sample server keys are used as the client keys; adjust to suit security requirements.

For the apiserver TL S configuration, the keys are included in the apiser ver -conf-secr et Secret
when the apiserver is deployed. See the $COROOT/ depl oy/ depl oy. sh scri pt which iswhere the
secret is created.

The apiserver listens on port 8443 (e.g. https://postgres-operator:8443) by default.

You can set | nsecur eSki pVeri fy to true by setting the NO_TLS_VERI FY environment variable in the
depl oynent . j son fileto true. By default thisvalue is set to false if you do not specify avalue.

23.4. pgo RBAC

The pgo command line utility talks to the apiserver REST API instead of the Kubernetes API. Itis
therefore necessary for the pgo client to make use of RBAC configuration.

Starting in Release 3.0, the /conf/postgr es-oper ator /pgor ole is used to define some sample pgo roles,
pgadmin and pgor eader.

14


https://postgres-operator:8443

These roles are meant as examples that you can configure to suit security requirements as necessary.
The pgadmin role grants a user authorization to all pgo commands. The pgor eader only grants access
to pgo commands that display information such aspgo show cl uster.

The pgor ol e fileisread at start up time when the operator is deployed to the Kubernetes cluster.

Also, the pgouser file now includes the role that is assigned to a specific user as follows -
user name: passwor d: pgoadmi n

t estuser:testpass: pgoadm n

readonl yuser : t est pass: pgor eader

The following list shows the current complete list of possible pgo permissions -

Table 2. pgo Permissions

Permission Description
ShowSecrets allow pgo show user
ShowCluster allow pgo show cluster
CreateCluster allow pgo create cluster
TestCluster allow pgo test mycluster
ShowBackup allow pgo show backup
CreateBackup allow pgo backup mycluster
DeleteBackup allow pgo delete backup
mycluster
Label allow pgo label
Load allow pgo load
CreatePolicy allow pgo create policy
DeletePolicy allow pgo delete policy
ShowPolicy allow pgo show policy
ApplyPolicy allow pgo apply policy
ShowPVC allow pgo show pvc
CreateUpgrade allow pgo upgrade
ShowUpgrade allow pgo show upgrade
DeleteUpgrade allow pgo delete upgrade
CreateUser allow pgo create user
CreateFailover allow pgo failover
ShowConfig allow pgo show config
User allow pgo user
Version allow pgo version

If the user is unauthorized for a pgo command, the user will get back this response -

FATA[ 0000] Aut hentication Failed: 40

15



23.5. REST API Configuration

The postgres-operator pod includes the apiserver which isa REST API that pgo users are able to
communicate with.

The apiserver uses the following configuration files found in $COROOT/ conf / post gr es- oper at or t0O
determine how the Operator will provision PostgreSQL containers -

$COROOT/ conf / post gr es- oper at or / pgo. yani
$COROOT/ conf / post gr es- oper at or/ pgo. | spvc-tenpl ate.j son
$CORQOOT/ conf / post gr es- oper at or/ pgo. | oad-tenpl ate. j son

Note that the default pgo.yaml file assumes you are going to use HostPath Persistent VVolumes
for your storage configuration. It will be necessary to adjust thisfile for NFS or other storage
configurations. Some examples of how are listed in the manual installation document.

The version of PostgreSQL container the Operator will deploy is determined by the CCPImageT ag
setting in the $COROOT/ conf / post gr es- oper at or / pgo. yam configuration file. By default, this
valueis set to the latest release of the Crunchy Container Suite.

The default pgo.yaml configuration file, included in $COROOT/ conf / post gr es- oper at or / pgo. yani ,
looks like this -

Cluster:
Pri mar yNodelLabel :
Repl i caNodeLabel :
CCPI magePrefi x: crunchydata
Metrics: false
Badger: false
CCPl mageTag: centos7-10.6-2.2.0
LogStatenent: none
LogM nDur ati onStatenent: 60000
Port: 5432
User: testuser
Dat abase: userdb
Passwor dAgeDays: 60
PasswordLength: 8
Strategy: 1
Replicas: O
Archi veMode: fal se
Archi veTi neout: 60
ServiceType: CusterlP
Backrest: false
Autofail: false
Pri marySt or age: host pat hst or age
BackupSt or age: host pat hst or age
Repl i caSt orage: host pat hst or age
St or age:
host pat hst or age:
AccessMbde: ReadWiteMany
Size: 1G
St orageType: create
nf sst or age:
AccessMbde: ReadWiteMany
Size: 1G
St orageType: create
Suppl erent al Groups: 65534

16



st or age2:
AccessMode:
Size: 1G
St or ageType:
St or aged ass:
Fsgroup: 26
st or age3:
AccessMode:
Size: 1G
St or ageType:
St or aged ass:
Fsgroup: 26

dynam c
gl ust er-heketi

dynam c
r ook- ceph- bl ock

ReadW i t eMany

ReadW it eOnce

Def aul t Cont ai ner Resour ces:

Def aul t LoadResour ces:

Def aul t LspvcResour ces:
Def aul t Rrdat aResour ces:
Def aul t BackupResour ces:

Def aul t Pgbouncer Resour ces:

Def aul t Pgpool Resour ces:
Cont ai ner Resour ces:
smal | :

Request sMenory: 512M
RequestsCPU. 0.1
LimtsMenory: 512M
LimtsCPU 0.1

| ar ge:
Request sMenory: 2G

RequestsCPU. 2.0
LimtsMenory: 2G
LimtsCPU 4.0

Pgo:
Aut of ai | SI eepSeconds:
Audit: false

LSPVCTenpl at e
LoadTenpl at e:
CA magePrefi x:
CA mageTag:

9

/ pgo- confi g/ pgo. | spvc-tenpl ate.json
/ pgo- confi g/ pgo. | oad-tenpl ate.json
crunchydat a
centos7-3.4.0-rcl

Valuesin the pgo configuration file have the following meaning:

Table 3. pgo Configuration File Definitions

Setting

Definition

Basi cAut h

if set to true will enable Basic Authentication

O uster. Pri mar yNodeLabe

newly created primary deployments will specify this node
label if specified, unless you override it using the --node-
label command line flag, if not set, no node label is specifed

O ust er. Repl i caNodeLabe

newly created replica deployments will specify this node
label if specified, unless you override it using the --node-
label command line flag, if not set, no node label is specifed

C ust er. CCPI nageTag

newly created containers will be based on thisimage version
(e.g. centos7-10.4-1.8.3), unless you override it using the --
ccp-image-tag command line flag

Cluster. Port

the PostgreSQL port to use for new containers (e.g. 5432)

17



Setting

Definition

Cl uster

. LogSt at enent

postgresgl.conf log_statement value (required field) (works
with crunchy-postgres >= 2.2.0)

Cl uster

. LogM nDur at i onSt

gpestgnesgl.conf log_min_duration_statement value (required
field) (works with crunchy-postgres >= 2.2.0)

Cl uster.

User

the PostgreSQL normal user name

Cl uster

. Strategy

sets the deployment strategy to be used for deploying a
cluster, currently thereis only strategy 1

Cl uster.

Repli cas

the number of cluster replicasto create for newly created
clusters

Cl uster.

Metrics

boolean, if set to true will cause each new cluster to include
crunchy-collect as a sidecar container for metrics collection,
If set to false (default), users can still add metricson a
cluster-by-cluster basis using the pgo command flag --
metrics

Cluster.

Badger

boolean, if set to true will cause each new cluster to include
crunchy-pgbadger as a sidecar container for static log
analysis, if set to false (default), users can still add pgbadger
on a cluster-by-cluster basis using the pgo create cluster
command flag --pgbadger

Cluster.

Pol i ci es

optional, list of policiesto apply to a newly created cluster,
comma separated, must be valid policiesin the catalog

Cl uster.

Passwor dAgeDays

optional, if set, will set the VALID UNTIL date on
passwords to this many days in the future when creating
users or setting passwords, defaults to 60 days

Cl uster.

Passwor dLengt h

optional, if set, will determine the password length used
when creating passwords, defaultsto 8

Cl uster.

Ar chi veMbde

optional, if set to true will enable archive logging for al
clusters created, default isfalse.

Cl uster.

Ar chi veTi neout

optional, if set, will determine the archive timeout setting
used when ArchiveMode is true, defaults to 60 seconds

Cluster.

Servi ceType

optional, if set, will determine the service type used when
creating primary or replica services, defaultsto Cluster|P if
not set, can be overridden by the user on the command line
aswell

Cluster.

Backr est

optional, if set, will cause clustersto have the pgbackrest
volume PV C provisioned during cluster creation

Cl uster.

Aut of ai |

optional, if set, will cause clustersto be checked for auto
failover in the event of anon-Ready status

Pri mar ySt or age

required, the value of the storage configuration to use for the
primary PostgreSQL deployment

BackupSt or age

required, the value of the storage configuration to use for
backups, including the storage for pgbackrest repo volumes

18



Setting

Definition

Repl i caSt or age

required, the value of the storage configuration to use for the
replica PostgreSQL deployments

St or age. st or agel.

St or age

darsadynamic storage type, you can specify the storage class
used for storage provisioning(e.g. standard, gold, fast)

St orage. storagel.

AccessMidhe access mode for new PV Cs (e.g. ReadWriteMany,

ReadWriteOnce, ReadOnlyMany). See below for
descriptions of these.

St or age. st or agel.

Si ze

the size to use when creating new PVCs (e.g. 100M, 1Gi)

St or age. st or agel.

St or age

Tsupported values are either dynamic, create, if not supplied,
createisused

St or age. st or agel.

Fsgroup

optional, if set, will cause a SecurityContext and fsGroup
attributes to be added to generated Pod and Deployment
definitions

St or age. st or agel.

Supp! encoptaolgubset, will cause a SecurityContext to be added to

generated Pod and Deployment definitions

St or age. st or agel.

Mat chLa

pepptsonal, if set, will cause the PV C to add a matchlabels
selector in order to match aPV, only useful when

the StorageType is create, when specified alabel of
name=cluster name is added to the PV C as a match criteria

Def aul t Cont ai ner Resour ce

optional, the value of the container resources configuration
to use for al database containers, if not set, no resource
limits or requests are added on the database container

Def aul t LoadResour ce

optional, the value of the container resources configuration
to use for pgo-load containers, if not set, no resource limits
or requests are added on the database container

Def aul t LspvcResour ce

optional, the value of the container resources configuration
to use for pgo-lspvc containers, if not set, no resource limits
or requests are added on the database container

Def aul t Rrdat aResour ce

optional, the value of the container resources configuration
to use for pgo-rmdata containers, if not set, no resource
limits or requests are added on the database container

Def aul t BackupResour ce

optional, the value of the container resources configuration
to use for crunchy-backup containers, if not set, no resource
limits or requests are added on the database container

Def aul t Pgbouncer Resour ce

optional, the value of the container resources configuration
to use for crunchy-pgbouncer containers, if not set, no
resource limits or requests are added on the database
container

Def aul t Pgpool Resour ce

optional, the value of the container resources configuration
to use for crunchy-pgpool containers, if not set, no resource
limits or requests are added on the database container

Cont ai ner Resour ces. snal |

IReest Sigieofomemory in bytes

19



Setting Definition
Cont ai ner Resour ces. smal | | rReass sizeraf CPU cores
Cont ai ner Resour ces. smal | | equiess stzecofymemory in bytes

Cont ai ner Resour ces. smal | | ndouiess size of CPU cores
Cont ai ner Resour ces. | ar ge| IRefiest sigesafomemory in bytes
Cont ai ner Resour ces. | ar ge| Reefyass sizeraf CPU cores
Cont ai ner Resour ces. | ar ge| teguiest siaecdfymemory in bytes

Cont ai ner Resour ces. | ar ge| ndguess size of CPU cores

Pgo. LSPVCTenpl at e the PV C Ispvc template file that lists PV C contents

Pgo. LoadTenpl at e the load template file used for load jobs

Pgo. CO magePr ef i x image tag prefix to use for the Operator containers

Pgo. CO mageTag image tag to use for the Operator containers

Pgo. Audi t boolean, if set to true will cause each apiserver call to be

logged with an audit marking

Storage Configurations

Y ou can define n-number of Storage configurations within the pgo.yaml file. Those Storage
configurations follow these conventions -

* they must have lowercase name (e.g. storagel)
* they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and
PrimaryStorage configuration values. However, there are command line options in the pgo client that
will let a user override these default global values to offer you the user away to specify very targeted
storage configurations when needed (e.g. disaster recovery storage for certain backups).

Y ou can set the storage AccessM ode values to the following -

* ReadWriteMany - mounts the volume as read-write by many nodes
* ReadWriteOnce - mounts the PV C as read-write by a single node

* ReadOnlyMany - mounts the PV C as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if anon-valid configuration
is found, the apiserver will abort. These Storage values are only read at apiserver start time.

The following StorageType values are possible -
» dynamic - thiswill allow for dynamic provisioning of storage using a StorageClass.

» create- Thissetting allows for the creation of anew PV C for each PostgreSQL cluster using
anaming convention of clustername. When set, the Size, AccessM ode settings are used in
constructing the new PVC.

20



The operator will create new PV Cs using this naming convention: dbname where dbname isthe
database name you have specified. For example, if you run:

pgo create cluster exanplel

It will result in a PV C being created named examplel and in the case of a backup job, the pvcis
named examplel-backup

There are currently 3 sample pgo configuration files provided for users to use as a starting
configuration -

* pgo. yan . nfs - this configuration specifies cr eate storage to be used, thisis used for NFS storage
for example where you want to have a unique PV C created for each database

* pgo.yan . storagecl ass - this configuration specifies dynamic storage to be used, namely a
stor ageclass that refers to a dynamic provisioning strorage such as StorageOS or Portworx, or
GCE.

Note, when Storage Type is create, you can specify a storage configuration setting of M atchL abels,
when set, thiswill cause aselector of name=cluster name to be added into the PV C, thiswill let you
target specific PV(s) to be matched for this cluster. Note, if a PV does not match the claim request,
then the cluster will not start. Users that want to use this feature have to place labels on their PV
resources as part of PG cluster creation before creating the PG cluster. For example, users would add a
label likethisto their PV before they create the PG cluster:

kubect| | abel pv sonepv nane=nycl uster nane

If you do not specify M atchL abels in the storage configuration, then no match filter is added and any
available PV will be used to satisfy the PV C request. This option does not apply to dynamic storage

types.
Overriding Container Resources Configuration Defaults

In the pgo.yaml configuration file you have the option to configure a default container resources
configuration that when set will add CPU and memory resource limits and requests values into each
database container when the container is created.

Y ou can aso override the default value using the - - r esour ces- conf i g command flag when creating
anew cluster -

pgo create cluster testcluster --resources-config=large

Note, if you try to allocate more resources than your host or Kube cluster has available then you will
see your pods wait in a Pending status. The output from akubect| descri be pod command will
show output like thisin this event -

Event s:
Type Reason Age From Message

Overriding Storage Configuration Defaults

pgo create cluster testcluster --storage-config=bigdisk

21



That example will create a cluster and specify a storage configuration of bigdisk to be used for the
primary database storage. The replica storage will default to the value of ReplicaStorage as specified
in pgo.yaml.

pgo create cluster testcluster2 --storage-config=fastdi sk --replica-storage-config=sl owdi

That example will create a cluster and specify a storage configuration of fastdisk to be used for the
primary database storage, while the replica storage will use the storage configuration slowdisk.

pgo backup testcluster --storage-config=offsitestorage

That example will create a backup and use the offsitestor age storage configuration for persisting the
backup.

Disaster Recovery Using Storage Configurations

A simple mechanism for partial disaster recovery can be obtained by leveraging network storage,
Kubernetes storage classes, and the storage configuration options within the Operator.

For example, if you define a Kubernetes storage class that refers to a storage backend that is running
within your disaster recovery site, and then use that storage class as a storage configuration for your
backups, you essentially have moved your backup files automatically to your disaster recovery site
thanks to network storage.

23.6. PostgreSQL Operator Container
Configuration

To enable debug level messages from the operator pod, set the CRUNCHY_DEBUG environment variable
to true within its deployment file depl oynent . j son.

Operator Templates

The database and cluster Kubernetes objects that get created by the operator are based on JISON
templates that are added into the operator deployment by means of a mounted volume.

The templates are located in the $COROOT/ conf / post gr es- oper at or directory and are added into a
config map which is mounted by the operator deployment.

24. Bash Completion

There is abash completion file that isincluded for usersto try located in the repository at exanpl es/
pgo- bash- conpl eti on. TOuseit -

cp $COROOT/ exanpl es/ pgo- bash-conpl eti on /etc/bash_conpl eti on. d/ pgo
su - $USER

22



25. REST API

Because the apiserver implements aREST AP, it is possible to integrate with it using your own

application code. To demonstrate this, the following curl commands show the API usage -
Note: Some setups may require the user to add ?version=x.x to the end of the commands.

pgo version

curl -v -X CGET -u readonl yuser:testpass -H "Content-Type: application/json"
pgo show policy <name>

curl -v -X CGET -u readonl yuser:testpass -H "Content-Type: application/json"
pgo delete policy <name>

curl -v -X GET -u readonl yuser:testpass -H "Content-Type: application/json"
pgo show pvc <name>

curl -v -X GET -u readonl yuser:testpass -H "Content-Type: application/json”
pgo apply policy <name>

curl -v -X POST -u readonl yuser:testpass -H "Content-Type: application/json"
pgo show ingest <name>

curl -v -X CGET -u readonl yuser:testpass -H "Content-Type: application/json"
pgo label

curl -v -X POST -u readonl yuser:testpass -H "Content-Type: application/json”
pgo load

curl -v -X POST -u readonl yuser:testpass -H "Content-Type: application/json"
pgo user

curl -v -X POST -u readonl yuser:testpass -H "Content-Type: application/json"
pgo users <name>

curl -v -X CGET -u readonl yuser:testpass -H "Content-Type: application/json"
pgo delete user <name>

curl -v -X CGET -u readonl yuser:testpass -H "Content-Type: application/json"
pgo show upgrade <name>

curl -v -X CGET -u readonl yuser:testpass -H "Content-Type: application/json"

pgo delete upgrade <name>

--insecure h

--insecure ht

--insecure h

--insecure h

--insecure

--insecure h

--insecure

--insecure

--insecure

--insecure h

--insecure h

--insecure ht

23



curl -v -X CGET -u readonl yuser:testpass -H "Content-Type: application/json" --insecure

pgo show cluster <name>

curl -v -X GET -u readonl yuser:testpass -H "Content-Type: application/json" --insecure
pgo delete cluster
curl -v -X GET -u readonl yuser:testpass -H "Content-Type: application/json" --insecure

pgo test <name>

curl -v -X GET -u readonl yuser:testpass -H "Content-Type: application/json" --insecure
pgo scale <name>
curl -v -X GET -u readonl yuser:testpass -H "Content-Type: application/json" --insecure

26. Deploying pgPool

One option with pgo is enabling the creation of a pgpool deployment in addition to the PostgreSQL
cluster. Running pgpool isalogical inclusion when the Kubernetes cluster includes both a primary
database in addition to some number of replicas deployed. The current pgpool configuration deployed
by the operator only works when both a primary and areplica are running.

When a user creates the cluster acommand flag can be passed as follows to enabl e the creation of the
pgpool deployment.

pgo create cluster clusterl --pgpoo
pgo scale clusterl

Thiswill cause the operator to create a Deployment that includes the crunchy-pgpool container along
with areplica. That container will create a configuration that will perform SQL routing to your cluster
services, both for the primary and replica services.

Pgpool examines the SQL it receives and routes the SQL statement to either the primary or replica
based on the SQL action. Specifically, it will send writes and updates to only the primary service. It
will send read-only statements to the replica service.

When the operator deploys the pgpool container, it creates a secret (e.g. mycluster-pgpool-secret)
that contains pgpool configuration files. It fills out templated versions of these configuration files
specificaly for this PostgreSQL cluster.

Part of the pgpool deployment also includes creating apool _passwd file that will allow the testuser
credential to authenticate to pgpool. Adding additional users to the pgpool configuration currently
requires human intervention specifically creating a new pgpool secret and bouncing the pgpool pod to
pick up the updated secret. Future operator releases will attempt to provide pgo commands to let you
automate the addition or removal of a pgpool user.

Currently to update a pgpool user within the pool _passwd configuration file, it is necessary to copy
the existing files from the secret to your local system, update the credentialsin pool _passwd with
the new user credentials, recreate the pgpool secret, and finally restart the pgpool pod to pick up the
updated configuration files.

24



Asan example -

kubect| cp deno/wedl10- pgpool - 6¢cc6f 6598d-wennf: / pgconf/ /tnp/foo

That command gets arunning set of secret pgpool configuration files and places them locally on your
system for you to edit.

pgpool requires a specially formatted password credential to be placed into pool _passwd. Thereisa
golang program included in $COROOT/ gol ang- exanpl es/ gen- pgpool - pass. go that, when run, will
generate the value to use within the pgpool _passwd configuration file.

go run $COROOTI/ gol ang- exanpl es/ gen- pgpool - pass. go

Enter Usernane: testuser

Ent er Passwor d:

Password typed: e99Mt 1dLz
hash of password is [nd59c4017667828b33762665dc4558f bd76]

The value md59c4017667828b33762665dc4558fbd76 is what you will usein the pool _passwd file.
Then, create the new secrets file based on those updated files -
$COROAT/ bi n/ cr eat e- pgpool -secrets. sh

Lastly for pgpool to pick up the new secret file, delete the existing deployment pod -

kubect| get depl oynent wed- pgpool
kubect| del ete pod wedl10- pgpool - 6¢cc6f 6598d- wennf

The pgpool deployment will spin up another pgpool which will pick up the updated secret file.

27. Storage Configuration

Most users after they try out the operator will want to create a more customized installation and
deployment of the operator using specific storage types.

The operator will work with HostPath, NFS, Dynamic, and GKE Storage.

27.1. NFS

To configure the operator to use NFS for storage, a sample pgo.yaml.nfsfileis provided. Overlay the
default pgo. yani file with that file -

cp $COROOT/ exanpl es/ pgo. yanm . nfs $COROOT/ conf / post gr es- oper at or / pgo. yani

Then, in your .bashrc file, set the variable cO NFs_| P to the IP address of your NFS server:

export CO_NFS | P=192.168. 2. 14

Edit the pgo.yaml file to specify the NFS GID that is set for the NFS volume mount you will be
using. The default value assumed is nfsnobody as the GID (65534). Update the value to meet your
NFS security settings.

Finally, run the $COROOT/ pv/ cr eat e- pv- nf s. sh Script to create persistent volumes based on your
NFS settings.

25



27.2. Dynamic

To configure the operator to use Dynamic Storage classes for storage, a sample
pgo.yaml.storageclass file is provided. Overlay the default pgo.yaml file with that file -

cp $COROOT/ exanpl es/ pgo. yam . st or agecl ass $COROOT/ conf / post gr es- oper at or/ pgo. yant
Edit the pgo.yaml file to specify the storage class you will be using, the default value assumed is
standard which is the name used by default within a GKE Kube cluster deployment. Update the value
to match your storage classes.

Notice that the FsGroup setting is required for most block storage and is set to the value of 26 since
the PostgreSQL container runs as UID 26.

27.3. GKE

Some notes for setting up GKE for the Operator deployment.

Install Kubectl

On your host you will be working from, install the kubectl command -

https://kubernetes.io/docs/tasks/tool g/install-kubectl/

GCP

» Select your project
» Create aKube cluster in that project

By default a storage class called standard is created.

Install GCloud

To access the Kubernetes cluster, install the gcloud utility -

https://cl oud. googl e. conf sdk/ downl oads
cd googl e-cl oud- sdk
./linstall.sh

Configure Kubectl for Cluster Access
gcl oud auth | ogin

gcl oud container clusters get-credentials jeff-quickstart --zone us-central 1-a --project

kubect| get storagecl ass
title: "Deployment"” date: 2018-04-26T 15:26:40-07:00 draft: false weight: 50

Latest Release: 3.4.0 2018-12-04

26


https://kubernetes.io/docs/tasks/tools/install-kubectl/

This document details verifying the installation of the PostgreSQL Operator is successful, in addition
to detailing some different storage configurations that can be made.

28. Verify Operator Status

To verify that the operator is deployed and running, run the following:

kubect| get pod --sel ect or=nanme=post gr es- oper at or

Y ou should see output similar to this:

NANMVE READY STATUS RESTARTS  ACE
post gr es- oper at or - 56598999cd-t bgdw 2/ 2 Runni ng 0 im

There are 2 containers in the operator pod, both should be ready as above.

When you first run the operator, it will create the required CustomResourceDefinitions. Y ou can view
these as follows -

kubect| get crd

The operator creates the following Custom Resource Definitions over time as the associated
commands are triggered.

kubect| get crd

NANVE AGE
pgbackups.cr.client-go.k8s.io 2d
pgclusters.cr.client-go.k8s.io 2d
pgi ngests.cr.client-go.k8s.io 2d
pgpolicies.cr.client-go.k8s.io 2d
pgreplicas.cr.client-go.k8s.io 2d
pgt asks.cr.client-go.k8s.io 2d
pgupgrades.cr.client-go.k8s.io 2d

At this point, the server side of the operator is deployed and ready.

29. Configure pgo Client

The pgo command line client requires TLS for securing the connection to the operator’ s REST API.
This configuration is performed as follows -

export PGO _CA CERT=$COROOT/ conf/ post gr es- operator/server.crt

export PGO _CLI ENT_CERT=$CORCOT/ conf/ post gr es- operat or/ server.crt
export PGO _CLI ENT_KEY=$COROOTI/ conf/ post gr es- oper at or/ server . key

The pgo client uses Basic Authentication to authenticate to the operator REST API. For
authentication, add the following . pgouser fileto your $HOME -

echo "usernanme: password" > $HOVE/ . pgouser

Roles are defined in afile called pgorole. Thisfile defines each role and the permissions for that role.
By default, two roles are defined as samples -

pgoadni n
pgor eader

27



Thisfile, moved to your $SHOME folder, is optional. These default settings can be adjusted to meet
local security requirements.

The format of thisfileisasfollows -

rol ename: permn ssionA, perm ssionB
These are defined in the following file -
$COROOT/ conf / post gr es- oper at or/ pgorol e

The complete set of permissions is documented in the Configuration [/installation/configuration/]
document.

The pgo client needs the URL to connect to the operator.

Depending on your Kubernetes environment this can be done the following ways.

29.1. Running Kubernetes Locally

If your local host is not set up to resolve Kubernetes Service DNS names, you can specify the operator
|P address as follows -

kubect| get service postgres-operator
NANMVE TYPE CLUSTER- | P EXTERNAL- 1 P PORT(S) AGE
post gr es- oper at or NodePor t 10. 109. 184. 8 <none> 8443: 30894/ TCP  5m

export CO _API SERVER URL=https://10.109. 184. 8: 8443
pgo version

Alternatively, an alias was set up in the .bashrc file earlier on, asfollows:

alias setip="export CO APl SERVER URL=https:// kubectl get service postgres-operator -o=

Thisalias (set i p) will set the cCO_API SERVER_URL P address for you.
Running Kubernetes Remotely

Port forwarding

Set up a port-forward tunnel from your host to the Kube remote host, specifying the operator pod -
kubect| get pod --sel ector=name=post gres- oper at or

NANMVE READY STATUS RESTARTS  AGE

post gr es- oper at or - 56598999cd-t bgdw 2/ 2 Runni ng 0 8m

kubect| port-forward postgres-operator-56598999cd-t bgdw 8443: 8443

In another terminal -

export CO_API SERVER URL=https://127.0.0. 1: 8443
pgo version

Using an ingress

Ingresses alows you to access Kubernetes services throught a controller.

28


/installation/configuration/
/installation/configuration/

First you will need to ensure aNGINX Ingress Controller is available in your Kubernetes cluster.

If you are using Minikube, you can easily deploy one using

m ni kube addons enabl e ingress

If not, please refer to the Nginx Ingress Controller’ s official documentation [https:.//
kubernetes.qgithub.io/ingress-nginx/deploy/#bare-metal] for itsinstallation.

Once your controller isrunning, just deploy the ingress using
kubect!| create -f $COROOT/ depl oy/i ngress. ym

Due to the annotations used, please note thisingressis currently usable only with Nginx Ingress
Controller.

Now you can use the adress | P of the host where the nginx-ingress-controller pod is to connect to the
pgo apiserver. The port will be 443 (and not 8443).

To retrieve the address ip:

kubect| get ingress postgres-operator -o jsonpath="{.status.|oadBal ancer.ingress[0].ip}"
export CO APl SERVER URL=https:// kubect|l get ingress postgres-operator -o jsonpath="{. st
If you are using minikube, the address IP displayed isincorrect, just use:

m ni kube ip

export CO_API SERVER URL=https:// m ni kube ip’

30. Verify pgo Client

At this point you should be able to connect to the operator as follows -

pgo version
pgo client version 3.4.0
api server version 3.4.0

Operator commands are documented on the Getting Started [/getting-started/] page.

31. Next Steps

There are many ways to configure the operator further. Some sample configurations are documented
on the Configuration [/install ation/configuration/] page.

Y ou may also want to find out more information on how the operator is designed to work and deploy.
Thisinformation can be found in the How It Works [/how-it-works/] page.

Information can be found on the full scope of commands on the Getting Started [/getting-started/]
page.

title: "Upgrading the Operator” date: 2018-04-24T18:27:30-07:00 draft: false weight: 60

29


https://kubernetes.github.io/ingress-nginx/deploy/#bare-metal
https://kubernetes.github.io/ingress-nginx/deploy/#bare-metal
https://kubernetes.github.io/ingress-nginx/deploy/#bare-metal
/getting-started/
/getting-started/
/installation/configuration/
/installation/configuration/
/how-it-works/
/how-it-works/
/getting-started/
/getting-started/

Latest Release: 3.4.0 2018-12-04

The conf/apiserver/ configuration files were moved into the conf/postgres-operator directory to
consolidate all config filesinto asingle location. Y ou will need to perform this step manually start
with version 3.4.0 if you are running an existing Operator version prior to 3.4.0. The Helm chart is
also updated to reflect this change. Starting with 3.4.0 there is a secret, pgo-auth-secr et that holds
authentication and authorization files used by the operator to authenticate REST clients. Also, the
configuration files are stored in a configmap named pgo-config. Existing users will need to update
their deploy.sh script and deployment.yaml files to pick up the the new naming conventions.

new configuration settings were added into pgo.yaml to support resource configuration

settings for the various helper containers. The new settings include DefaultL oadResources,
DefaultL spvcResources, DefaultRmdataResources, DefaultBackupResources. Y ou will need to add
these manually into your existing pgo.yaml file if you want to make use of this feature.

the pgcluster CRD was changed to remove the password fields, instead secret names are stored in
the CRD to avoid having to have passwords in the CRD, the password fields are totally removed
starting in this release. No changes are required for existing CRD resources, new CRDs that are
created will not have the password fields.

starting in 3.4, a new operator upgrade process is developed that eventually will handle various
forms of automated upgrades depending on user settings and changes to the postgres-operator in
between versions. When starting a new Operator it will scan the pgcluster and pgreplicainstances
and update the pgo-version to match the current operator version, it will aso create a user label on
the pgreplica/pgcluster to indicate the upgrade date. More advanced upgrade features are planned to
be developed.

in 3.4, the pgo.yaml LogStatement and LogMinDurationStatement settings are present, if not set,
defaults are supplied for both. These settings let you define more precisely the degree of Postgres
logging for any Postgres clusters created by the Operator. The LogStatement default is none and the
LogMinDurationStatement defaults to 60000 (milliseconds). These settings greatly reduce the log
file sizesand only will log statements that are longer running that 60000 milliseconds. If you want
to see all statements logged, set L ogStatement to all.

in 3.4, the pgbackup CRD includes a new field called BackupOpts, used to hold the pgbasebackup
command options which can now be passed in on the CLI backup command, no changes to existing
pgbackup CRD resourcesis required.

operator 3.3 introduced the alpha version of pgbackrest integration. Now in 3.4, the pgbackrest
integration was changed so that users no longer have to specify a custom configuration file using --
custom-config.

the pgo-backrest backup-job is secured with a new service account named pgo-backrest, that SA is
now included in the rbac.yaml file and is to be created by an a cluster admin user

the permission SHOW_WORKFLOW_PERM was created and added to the default pgorole
example, this permission lets users view workflow status, workflows are stored as pgtask CRDs

With 3.4, thereisagloba configmap created as part of the deployment process which will serve
this same purpose, that isto indicate to the Postgres container that it must allocate the pgbackrest
directories within the mounted /backrestrepo volume mount. This means however, that if you specify
aglobal configuration file or specify your own custom configuration that you have to include the

30



pgbackrest.conf file and key within that configmap. The sample global custom configuration map,
pgo-custom-pg-config, now includes pgbackrest.conf within it.

This new integration only works with pgbackrest v2.6 which isincluded into crunchy-postgres 2.2.0.
This means that to use pgbackrest, you must run crunchy-postgres 2.2.0 or greater which will require
users to upgrade the pgo.yaml to use the 2.2.0 CCPImageTag. pgbackrest commands will NOT work
with clusters using older Postgres images.

The following changes are mandatory when upgrading to 3.3 from previous operator versions:

» The MatchL abels attribute was added to the pgo.yaml file as an optional storage configuration
setting. Y ou do not have to specify this setting, however, the operator-conf ConfigMap now has to
include the pvc- mat chl abel s. j son template file as required by this new feature. If you upgrade
to 3.2, you will need to rebuild your oper ator -conf ConfigMap to include pvc- mat chl abel s. j son
and redeploy the Operator using the new ConfigMap.

» The CCP_I MAGE_PREFI X, CO_| MAGE_PREFI X, and CO_| MAGE_TAG environment variables are now
pulled from the pgo. yani configuration file that is mounted by both the apiserver and operator
containers. To clean up an existing deployment, remove these environment variable definitions
from your depl oynent . yam file or Helm chart equivalent.

* TheExt ernal | Pfield was added to the api ser ver nsgs. Showd ust er Ser vi ce struct. Thisfield
is now passed back to apiserver clientsin the REST APl when viewing cluster details. For custom
clients you might have written, you will see this new field in the REST message.

» Clustersthat were created prior to 3.1 will need a new label to be applied. For primary
deployments, apply the label pri mar y=t r ue. For example, kubect| | abel depl oy nycl uster
pri mar y=t r ue. For replica deployments, specify pri mar y=f al se. For example, kubect | | abel
depl oy nycl uster-xxxx prinary=fal se.

* Thecol I ect . j son template now specifies a pgmonitor credential that must match
the PGVONI TOR_PASSWORD environment variable which was added into thecl ust er -
depl oynent - 1. j son template. These changes were required to support crunchy-collect (2.1.0)
changes that were introduced. Users should upgrade to cr unchy- col | ect : cent 0s7-10.5-2.1. 0
to use thisfeature. If you do not want to upgrade to this new metrics collector, you will need to
retain and reuse the prior version of col | ect . j son used by the Operator and make sure you deploy
that version.

Clusters that were created prior to 3.1 will need a new label to be applied. For primary deployments,
apply the label pri mary=t r ue. For example, kubect| | abel depl oy nycluster prinary=true.
For replica deployments, specify pri mar y=f al se. For example, kubect | | abel depl oy

nmycl ust er - xxxx pri nary=fal se.

For afull list of additions and revisions that occurred in the PostgreSQL Operator v2.5 release, please
view the related release page here [https://github.com/CrunchyData/postgres-operator/rel eases/

tag/2.5].

32. Required Updates

This section notes some required steps that will need to be taken in the process of upgrading from v2.4
tov2.5.

31


https://github.com/CrunchyData/postgres-operator/releases/tag/2.5
https://github.com/CrunchyData/postgres-operator/releases/tag/2.5
https://github.com/CrunchyData/postgres-operator/releases/tag/2.5

32.1. Configuration File

It will be necessary to update your existing pgo. yani configuration file where the Storage
Configuration sections are concerned. The updated file for v2.5 can be found here [https.//github.com/
CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml]. The file contained within the local
installation of the Operator islocated by default in the following location -

$COROOT/ conf / api server/ pgo. yan

32.2. Secrets

2.5 changed the names of the database credentials that are created by default in order to be consistent
with the way new database credentials are named.

It will be necessary to run the following script to update your existing clusters. This script will
essentially copy the existing secrets values and create new secrets with those same values but named
to the new standard. Run the script by passing in the name of an existing cluster as a parameter.

$COROOT/ bi n/ upgr ade- secr et . sh

For afull list of additions and revisions that occurred in the PostgreSQL Operator v2.5 release, please
view the related rel ease page here [https://github.com/CrunchyData/postgres-operator/rel eases/

tag/3.3.0].

33. Required Updates

This section notes some required steps that will need to be taken in the process of upgrading from v2.5
tov2.6.

33.1. Configuration File

One update in v2.6 changed the pgo. yani file through removing the Debug flag. The Pgo. Debug
variable can now be removed from the pgo. yani file asaresult. The debug flag is now called
CRUNCHY_DEBUG and is set in the depl oynent . j son file as a default environment variable.

33.2. Container Resources

Release 2.6 added the concept of container resource configurations to the pgo. yani file. In order to
specify the optional container resource configurations, add a section as followsto your pgo. yam file -

Def aul t Cont ai ner Resour ce: smal |

Cont ai ner Resour ces:

snal | :
Request sMenory: 2G
RequestsCPU. 0.5
LimtsMenory: 2G
LimtsCPU 1.0

| ar ge:
Request sMenory: 8G
RequestsCPU. 2.0

32


https://github.com/CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml
https://github.com/CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml
https://github.com/CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml
https://github.com/CrunchyData/postgres-operator/releases/tag/3.3.0
https://github.com/CrunchyData/postgres-operator/releases/tag/3.3.0
https://github.com/CrunchyData/postgres-operator/releases/tag/3.3.0

LimtsMenory: 12G
LimtsCPU. 4.0

If these settings are set incorrectly or if the Kubernetes cluster cannot meet the defined memory and
CPU requirements, deployments will go into a pending state.

33.3. Kube RBAC

Release 2.6 added ar bac. yani file to capture the Kube RBAC rules. These RBAC rules alow the
apiserver and postgres-operator containers access to the Kubernetes resources required for the
operator to work. As part of the deployment process, it is necessary to execute ther bac. yani fileto
set the roles and bindings required by the operator. Adjust this file to suit local security requirements.

33.4. Application RBAC

Release 2.6 added an RBAC capability to secure the pgo application. The pgouser now hasarole
appended at the end of of each user definition as follows -

user name: passwor d: pgoadni n

t estuser:testpass: pgoadm n
readonl yuser : t est pass: pgor eader

These are defined in the following file -

$COROAT/ conf / api server/ pgouser

To match the behavior of the pre 2.6 releases, the pgadmin roleis set on the previous user definitions,
but areadonlyuser isnow defined to test other role definitions. The roles are defined in anew file
called pgorole. Thisfile defines each role and the permissions for that role. By default, two roles are
defined as samples -

pgoadm n
pgor eader

Adjust these default settings to meet local security requirements.
The format of thisfileisasfollows -

rol enanme: perm ssi onA, pernissionB

These are defined in the following file -

$COROOT/ conf / api server/ pgorol e

The complete set of permissions is documented in the Configuration [/installation/configuration/]
document.

33.5. User Creation

Release 2.6 replaced the pgo user - -add command with the pgo create user command to
improve consistency across command usage. Any scripts written using the older style of command
require an update to use the new command syntax.

33


/installation/configuration/
/installation/configuration/

33.6. Replica CRD

There is anew Kubernetes Custom Resource Definition that serves the purpose of holding replica
information, called pgreplicas. This CRD is populated with the pgo scale command and is used to
hold per-replica specific information such as the resource and storage configurations requested at run
time.

title: "Getting Started” date: 2018-04-24T18:26:43-07:00 draft: false weight: 20

Latest Release: 3.4.0 2018-12-04

34. First Steps

Prior to using pgo, users will need to specify the postgres-operator URL asfollows:

kubect| get service postgres-operator

NANME CLUSTER- 1 P EXTERNAL-1P  PORT(S) AGE
post gr es- oper at or 10.104.47.110 <none> 8443/ TCP  7m
export CO_API SERVER URL=https://10.104.47.110: 8443

pgo version

35. Cluster Names

Many of the pgo commands take in a cluster name, in some cases the special name of all is accepted
which will cause the command to be applied to al PostgreSQL clusters. For example:

pgo df all

36. General
36.1. Operator Version

This command makes it possible to see what version of the pgo client and postgres-operator you are
running.

Syntax

$ pgo version

36.2. Operator Status

Y ou can use the pgo status command to see overall pgo status. Selective metrics are displayed
to provide some insights to the pgo user and administrator as to what is running currently in this
namespace related to pgo.

Syntax

$ pgo status [FLAGS]

34



Flags

Name Sh thhinpw Usage
- - out put =j son -0 StringThe output format. Currently, json is the only supported value.
json

36.3. Operator Configuration
Thepgo show confi g command displays the running operator configuration parameters that dictate

the setup and user defined configuration of the operator. This command can be useful for sharing your
configuration or verifying the setup is as expected.

Syntax

$ pgo show config

36.4. Disk Capacity

The pgo df command will let you see the disk capacity of a cluster’s PV C versus that of the
PostgreSQL data that has been written to disk. If the capacity is less than 50%, then the output is
printed in red in order to alert the user. Thelisting is broken out by the cluster’s Pods.

Syntax

$ pgo df NAME [FLAGS]

Flags

Name Sh :)rthinpw Usage

--sel ect or -s StringThe selector to use for cluster filtering.

Examples

Cluster Selectors

Thepgo df command can either be run against asingle cluster or against all clusters matching a
selector:

pgo df nycl uster
pgo df --sel ector=project=xrayapp

37. Cluster Basics
37.1. Create Cluster

The create cluster command will automatically provision a PostgreSQL cluster within Kubernetes or
OpenShift using a Deployment.

35



Syntax

$ pgo create cluster NAME [FLAGS]

Flags

Name Sh 3rthin¢u1 Usage

--archive N/ | N/ |Enables archive logging for the database cluster.
AlA

- - aut of ai | N/ | N/ |If set, will cause autofailover to be enabled on this cluster.
AlA

- - backup- pvc N/ $StringThe backup archive PV C to restore from.
A

- - backup- pat h N/ $StringThe backup archive path to restore from.
A

--ccp-i mage-tag N/ StringThe CCPImageTag to use for cluster creation. If specified,
A overrides the pgo.yaml setting.

--customconfig N/ StringThe name of a configMap that holds custom PostgreSQL
A configuration files used to override defaults.

--l abel s N/ StringThe labelsto apply to this cluster.
A

--metrics N/ | N/ |Adds the crunchy-collect container to the database pod.
AlA

--node- | abel N/ StringThe node label (key) to use in placing the primary database. If
A not set, any node is used.

- - passwor d N/ StringThe password to use for initial database users.
A

--service-type N/ StringThe Service type to use for the PostgreSQL cluster. If not set, the
A pgo.yaml default will be used.

- - pgbackr est N/ | N/ |Enables a pgBackRest volume for the database pod.
AlA

- - pgbackr est - N/ | N/ |Only applies when creating a cluster from a pgbackrest restored

restore-from A | A |PVC. Thisisthe name of the cluster from which the restored

PV C was created from and which the new cluster credentials will
be based. This setting is required in the scenario.

- - pgbadger N/ | N/ |Adds the crunchy-pgbadger container to the database pod.
AlA

- - pgpool N/ | N/ |Adds the crunchy-pgpool container to the database pod.
AlA

- - pgpool - secr et N/ $StringThe name of a pgpool secret to use for the pgpool configuration.
A

--policies N/ StringThe policiesto apply when creating a cluster, comma separated.
A

36



Name Sh thhinow Usage

--replica-count N/ | Int | The number of replicas to create as part of this cluster. After
A acluster is created, you can aso add replicas using the scale
command.
--replica-storage- | N/ $tringThe name of a Storage config in pgo.yaml to use for the cluster
config A replica storage.
--resources-config | N/ StringThe name of a container resource configuration in pgo.yaml that
A holds CPU and memory requests and limits.
--secret-from N/ StringThe cluster name to use when restoring secrets.
A
--series N/ | Int | The number of clustersto createin aseries (default 1).
A
--storage-config N/ StringThe name of a Storage config in pgo.yaml to use for the cluster
A storage.

Examples

Simple Creation
Create asingle cluster:
pgo create cluster mycluster
Create asingle cluster with asingle replica
pgo create cluster mycluster --replica-count=1

Complex Creation

Create a series of clusters, specifying it as the xray project, with the xrayapp and rlspolicy policies
added:

pgo create cluster nycluster --series=3 --1|abel s=project=xray --policies=xrayapp,rlspoli
Image Version

New clusterstypically pick up the container image version to use based on the pgo configuration file's
Ccpl mageTag Setting. Y ou can override this value using the - - ccp- i mage-t ag command line flag:

pgo create cluster mycluster --ccp-inage-tag=centos7-9.6.5-1.6.0
Metrics

Add the crunchy-collect [https://crunchydata.github.io/crunchy-contai ners/stabl e/contai ner-
specifications/crunchy-collect/] container from the Crunchy Container Suite to the database cluster
pod and enable metrics collection on the database:

pgo create cluster mycluster --netrics

Y ou can connect these containers to a metrics pipeline using Grafana [ https:.//grafana.com] and
Prometheus [https.//prometheus.io] by following the example found in the Crunchy Container Suite

37


https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-collect/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-collect/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-collect/
https://grafana.com
https://grafana.com
https://prometheus.io
https://prometheus.io
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection

documentation [ https://crunchydata.github.io/crunchy-contai ners/stabl e/getting-started/kubernetes-
and-openshift/# metrics_collection].

pgBadger
Add a pgBadger [https://github.com/dalibo/pgbadger] sidecar into the Postgres pod:

pgo create cluster mycluster --pgbadger

This command flag adds the crunchy-pgbadger [https://crunchydata.github.io/crunchy-containers/
stabl e/contai ner-specifications/crunchy-pgbadger/] container into the database pod. pgBadger reports
can then be accessed through port 10000 at / api / badger gener at e.

pgPool Il

By appending the - - pgpool command line flag, you can add pgPool 11 [http://www.pgpool.net/
mediawiki/index.php/Main_Page] to the database cluster. The container used for this functionality is
the crunchy-pgpool [https.//crunchydata.github.io/crunchy-contai ners/stabl e/contai ner-specifications/
crunchy-pgpool/] container image from the Crunchy Container Suite.

pgo create cluster mycluster --pgpool
Auto Failover

To enable auto failover on this cluster, use the following flag:

pgo create cluster mycluster --autofai

Thisflag, when set on the cluster, informs the operator to look or watch for NotReady events on this
cluster. When those occur, it will create afailover state machine which acts as atimer for the cluster.
If the timer expires, then afailover istriggered on the cluster turning one of the cluster replica pods
into the replacement primary pod. See the How It Works [https://crunchydata.github.io/postgres-
operator/stable/how-it-works/# auto failover] documentation for more details on auto failover.

pgBackRest

pgbackrest beta integration was implemented in version 3.4.0 of the Operator. NOTE: pgbackrest
integration is still subject to change in upcoming rel eases.

The backrestrepo PV C, used by pgBackRest, hasto be created on a RWX file system typein this
release. pgBackRest is a more advanced backup and restore capability exposed by the Operator.

The pgBackRest support is enabled in a PG cluster by a user specifying the - - pgbackr est command
flag. To enable thisfeature for al PG clusters when created, you can specify apgbackr est setting
within the pgo.yaml configuration.

Create a PG cluster that enables pgBackRest specifically for that cluster:

pgo create cluster mycluster --pgbackrest

Setting this value will cause the Operator to create a PV C specifically dedicated for holding
pgBackRest backups.

Create a pgBackRest backup:
pgo backup mycluster --backup-type=pgbackrest

38


https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection
https://github.com/dalibo/pgbadger
https://github.com/dalibo/pgbadger
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgbadger/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgbadger/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgbadger/
http://www.pgpool.net/mediawiki/index.php/Main_Page
http://www.pgpool.net/mediawiki/index.php/Main_Page
http://www.pgpool.net/mediawiki/index.php/Main_Page
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgpool/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgpool/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgpool/
https://crunchydata.github.io/postgres-operator/stable/how-it-works/#_auto_failover
https://crunchydata.github.io/postgres-operator/stable/how-it-works/#_auto_failover
https://crunchydata.github.io/postgres-operator/stable/how-it-works/#_auto_failover

Y ou can aso pass in pgbackrest backup command options:

pgo backup mycluster --backup-type=pgbackrest --pgbackrest-opts="--type=incr"
Note, you can not specify --stor age-config flag when specifying a pgbackrest backup.

List pgBackRest information:

pgo show backup nycl uster --backup-type=pgbackrest

Restore from an existing cluster into anewly created PVC:

pgo restore nycluster --to-pvc=restored
pgo create cluster restored --pgbackrest-restore-fronFnycl uster --pgbackrest

The pgBackRest backrestrepo PV Cs are created using the pgo.yaml BackupSt or age Setting.
Typically, thiswill beaRWX file system but if the file system is RWO the PV Cs will be created
without having write access and a backup and restore will fail. The RWX file system setup will alow
you to restore from this PV C without having to shutdown the currently attached PostgreSQL cluster.
Note that a cluster based off of the restored PV C hasto attach the same pgbackrest repo used by the
original cluster the restore was based off of.

37.2. Delete Cluster

Thedel ete cl uster command will by default delete all associated components of the selected
cluster, but will not delete the data or the backups unless specified.

Syntax
$ pgo delete cluster NAMEJall [FLAGS]
Flags
Name Sh 3rthin¢u1 Usage
- - del et e- backups -b | N/ |Causes the backups for this cluster to be removed permanently.
A |Thisonly is applicable with pgbasebackup backup volumes and
does not remove pgbackrest repo volumes.
--del ete-configs -b | N/ |Causes the configuration maps for this cluster to be removed
A |permanently.
--del ete-data -d | N/ |Causesthe datafor this cluster to be removed permanently.
A
- - no- pr onpt -n | N/ |No command line confirmation.
A
--sel ect or -s StringThe selector to use for cluster filtering.
Examples

Simple Deletion

Delete asingle cluster:

39



pgo del ete cluster mycluster

Note that this command will not remove the PV C associated with this cluster.
Complex Deletion

Selectors aso apply to the delete command as follows:

pgo del ete cluster --selector=project=xray

This command will cause any cluster matching the selector to be removed.
Delete Components, Data, & Backups

Y ou can remove acluster, it's datafiles, and all backups by running:

pgo delete cluster restoredb --del ete-data --del et e-backups --del ete-configs

When you specify a destructive delete like above, you will be prompted to make sure thisis what you
want to do. If you don’t want to be prompted you can enter the - - no- pr onpt command line flag.

37.3. Show Cluster

Theshow cl ust er command allows you to view all the associated created components of a specific
cluster or selection of clusters.

By default, you will be able to view the status of the created pod, the PV C, Deployment, Service, and
Labels associated with the cluster, and any and all specified options (such as whether crunchy_collect
is enabled).

Syntax
$ pgo show cluster NAME]Jall [FLAGS]
Flags
Name Sh :)rthinpw Usage
- - out put =j son -0 StringThe output format. Currently, json is the only supported value.
json
--sel ector -s StringThe selector to use for cluster filtering.
--ccp-image-tag N/ StringFilter the results based on the PostgreSQL version of the cluster.
A
Examples

Simple Display

Show asingle cluster:

40



pgo show cluster nycluster

Show All

Show all clusters available;

pgo show cluster all
Show Secrets

User credentials are generated through Kubernetes Secrets automatically for the testuser,
primaryuser and postgr es accounts. The generated passwords can be viewed by running the pgo
show user command. More details are available on user management below.

pgo show user mycl uster
Viewing Users With Passwords Set to Expire

To see user passwords that have expired past a certain number of daysin the mycluster cluster:

pgo show user --expired=7 --sel ector=nane=nycl uster

Name Sh 3rthin¢u1 Usage
--expired N/ $tring
A

PostgreSQL Version

Filter the results based on the PostgeSQL version of the cluster with the - - ccp- i mage-t ag flag:

pgo show cluster all --ccp-inage-tag=centos7-10.5-2.1.0

37.4. Test Connection

This command will test each service defined for the cluster using the postgres, primary, and normal
user accounts defined for the cluster. The cluster credentials are accessed and used to test the database
connections. The equivaent psgl command is printed out as connections are tried, along with the
connection status.

Syntax
$ pgo test NAMEJdll [FLAGS]
Flags
Name Sh thhinpw Usage
- - out put =j son -0 StringThe output format. Currently, json isthe only supported value.
json
--sel ector -s StringThe selector to use for cluster filtering.

41



Examples

Simple Test

Test the database connections to a cluster:

pgo test mycl uster

Complex Test

Like other commands, you can use the selector to test a series of clusters or to test all available
clusters:

pgo test --selector=env=research
pgo test al

38. Administration
38.1. Reload

The reload command will perform areload on the specified PostgreSQL cluster.

Syntax

$ pgo reload NAME [FLAGS]
Flags

Name Sharthéndw Usage

- - no- pr onpt -n | N/ |No command line confirmation.

A

--sel ector -s StringThe selector to use for cluster filtering.
Examples
Simple Reload

Reload a single cluster:

pgo rel oad mycl uster

38.2. Backups

The backup command will utilize the crunchy-backup [https://crunchydata.github.io/crunchy-
contai ners/stabl e/contai ner-specifications/crunchy-backup/] container to execute afull backup against
another database container using the standard pg_basebackup utility that isincluded with PostgreSQL.

42


https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-backup/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-backup/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-backup/

When you request a backup, pgo will prompt you if you want to proceed because this action will
delete any existing backup job for this cluster that might exist. The backup fileswill still be left intact
but the actual Kubernetes Job will be removed prior to creating a new Job with the same name.

Syntax
$ pgo backup NAME [FLAGS]
Flags
Name Sh 3rthin¢u1 Usage
--sel ector -s StringThe selector to use for cluster filtering.
- - pvc- name N/ StringThe PV C name to use for the backup instead of the defaullt.
A
- - backup-t ype N/ StringThe backup type to perform. Default is pgbasebackup, and both
A pgbasebackup and pgbackrest are valid backup types.
- - backup- opt s N/ StringThe options to pass to pgbasebackup or pgbackrest, use
A appropriate command options depending on which type of
backup you are performing.
--storage-config N/ StringThe name of a Storage config in pgo.yaml to use for the cluster
A storage.
Examples

Simple Backup
Y ou can start a backup job for a cluster as follows:
pgo backup mycl uster
Show Backup
View the backup and backup status:
pgo show backup nycl uster

Backup PVC Management

Note

pgo show pvc can run into file permission issues if you aretrying to view aPVC that ison a
RWO (read write once) file system (e.g. cloud storage, ceph, storageos, etc.). If another pod
has the PV C mounted you will get timeout errors from the pgo Ispvc command in the current
3.4.0release.

View the PV C folder and the backups contained therein:

pgo show pvc nycl uster-backup
pgo show pvc nycl uster-backup --pvc-root=nycl uster-backups

43



The output from this command isimportant in that it can let you copy/paste a backup snapshot path
and use it for restoring a database or essentially cloning a database with an existing backup archive.

For example, to restore a database from a backup archive:
pgo create cluster restoredb --backup-path=nmycl uster-backups/2017-03-27-13-56-49 --backu,

Thiswill create a new database called restor edb based on the backup found in mycluster -
backups/2017-03-27-13-56-49 and the secrets of the mycluster cluster.

Override PVC
Y ou can override the PV C used by the backup job with the following:
pgo backup mycluster --pvc-nane=mnmyrenotepvc

This might be useful for special backup cases such as creating a backup on a disaster recovery PVC.
Delete Backup

To delete a backup enter the following:

pgo del ete backup mycl uster

When run, this command removes the PV C used for the backups, and runs the rmdata Job to
physically perform data removal of that PV C’s contents. It also removes the pgbackup CRD for this
cluster that holds the last pg_basebackup results.

38.3. Scheduling

The schedul e command will generate schedule configuration maps that are utitlized by the crunchy-
scheduler [https://crunchydata.github.io/crunchy-contai ners/stabl e/contai ner-specifications/crunchy-
scheduler/] container. This allows users to create automated, scheduled backups for their PostgreSQL
clusters.

Currently only two types of backups are supported with the schedule command: * pgBackRest *
pgBaseBackup

Crunchy Scheduler is acron-like microservice that periodically queries Kubernetes for configuration
maps with the label cr unchy- schedul er =t r ue in aspecific namespace. After finding the

schedule configs, the scheduler service will either exec into the container (pgBackRest) or create
pgBaseBackup jobs for the configured schedule.

Note
in operator version 3.4.0, you are REQUIRED, a single time, to run a pgbackrest backup

PRIOR to creating a pgbackrest schedule. Thiswill not be arequirement in the 3.5.0 version of
the Operator.

Syntax

$ pgo create schedule NAME [FLAGS]



https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/

Flags

Name Sh :)rthinpw Usage
--ccp-i mage-t ag -n | N/ |Image version to use for pgBaseBackup backup jobs. Defaults to
A |what PGO is configured to use.
- - no- pr onpt -n | N/ |No command line confirmation.
A
- - pgbackr est - N/ StringThe type of pgBackRest backup to perform. There is no default
backup-type A and thefollowing arevalid: ful | , di ff,incr
- - pvc- name N/ StringThe PV C name to use for the backup. Only used for
A pgBaseBackup schedule types and must be created prior to using.
--schedul e N/ $tringThe schedule assigned to the cron task.
A
--schedul e-type N/ $tringThe schedule type to perform. Thereis no default and both
A pgbasebackup and pgbackrest are valid schedule types.
--sel ect or -s StringThe selector to use for cluster filtering.
Examples

Creating pgBackRest Schedules

Create apgBackRest f ul | backup on Sunday at 1 am:

pgo create schedule --schedule="0 1 * * 7" --schedul e-type=pgbackrest --pgbackrest-backu,

Create apgBackRest di f f backup on Monday-Saturday at 1 a.m:

pgo create schedule --schedule="0 1 * * 1-6" --schedul e-type=pgbackrest --pgbackrest-bacl

Creating pgBaseBackup Schedules
Create a pgBaseBackup backup every day at 1 am:
pgo create schedule --schedule="0 1 * * *" --schedul e-type=pgbasebackup --pvc-nane=nycl u

Creating Schedules Using Selectors

Using the sel ect or flag, we can create schedules for all clusters that match alabel:

pgo create schedule --schedule="0 1 * * *" --schedul e-type=pgbasebackup --pvc-nane=nycl u

Show Schedules

View the schedules for cluster named nycl ust er:

pgo show schedul e nycl uster

View the schedulesfor all clusters with the label env=t est :

pgo show schedul e --sel ect or=env=t est

45



or for aparticular cluster:
pgo show schedul e --sel ect or=pg-cl ust er=mycl uster

Delete Schedules

To delete schedules for a specific cluster:

pgo del ete schedul e nycl uster

To delete a schedule by name:

pgo del ete schedul e --schedul e- nane=nycl ust er - pgbackr est - f ul

To delete schedules for all clusters with the label env=t est :

pgo del ete schedul e --sel ect or=env=t est

38.4. Scaling Replicas

When you create a Cluster, you will see in the output a variety of Kubernetes objects were created
including:

» aDeployment holding the primary PostgreSQL database
» aDeployment holding the replica PostgreSQL database
» aservicefor the primary database

» aservicefor the replica databases

Since PostgreSQL is asingle-primary database by design, the primary Deployment is set to areplica
count of 1 and it can not scale beyond that.

With PostgreSQL, you can create any n-number of replicas each of which connect to the primary. This
forms a streaming replication PostgreSQL cluster. The PostgreSQL replicas are read-only whereas the
primary is read-write.

Syntax
$ pgo scale NAME [FLAGS]
Flags
Name Sh :)rthinpw Usage
--service-type N/ StringThe service type to use in the replica Service. If not set, the
A default in pgo.yaml will be used. Possible valuesinclude
LoadBalancer, ClusterlP, and NodePort.
--ccp-i mage-tag N/ StringThe CCPImageTag to use for cluster creation. If specified,
A overrides the .pgo.yaml setting.
- - no- pr onpt -n | N/ |No command line confirmation.
A

46



Name Sh thhinpw Usage
--node- | abel N/ StringThe node label (key) to use in placing the primary database. If
A not set, any node is used.
--replica-count N/ StringThe replica count to apply to the clusters (default 1).
A
--resources-config | N/ StringThe name of a container resource configuration in pgo.yaml that
A holds CPU and memory requests and limits.
--storage-config N/ StringThe name of a Storage config in pgo.yaml to use for the cluster
A storage.
Examples
Scaling Up

Create a Postgres replica:

pgo scal e nycl uster

Scale a Postgres replica to a certain number of replicas:

pgo scal e nmycluster --replica-count=3

The pgo scale command is additive, in that each time you execute it, another replicais created which
is added to the Postgres cluster.

Scaling Down

Y ou can cause areplicato be removed from a Postgres cluster by scaling down the replicas.

Syntax
$ pgo scaledown NAME [FLAGS]
Flags
Name Sh thhinpw Usage
--query N/ | N/ |Printsthe list of targetable replica candidates.
AlA
--del ete-data -d | N/ |Causes the data for the scaled down replicato be removed
A |permanently.
--target N/ $tringThe name of areplicato delete.
A

List the targetable replicas for a given cluster:
pgo scal edown mycl uster --query

Y ou can scale down acluster as follows:

pgo scal edown nycl uster --target=nycluster-replica-xxxx

47



Delete the PV C and associated data for the scaled down replica by using the - - del et e- dat a
command flag:

pgo scal edown mycl uster --target=nycluster-replica-xxxx --del ete-data
Testing Replication

There are 2 service connections available to the PostgreSQL cluster. One isto the primary database
which allows read-write SQL processing, and the other isto the set of read-only replica databases. The
replica service performs round-robin load balancing to the replica databases.

Y ou can connect to the primary database and verify that it is replicating to the replica databases as
follows:

psql -h 10.107.180.159 -U postgres postgres -c 'table pg_stat_replication’
Specifying Nodes

The scale command will et you specify a- - node- | abel flag which can be used to influence what
Kube node the replicawill be scheduled upon.

pgo scal e nycluster --node-| abel =speed=f ast

If you don’t specify a- - node- | abel flag, anode affinity rule of NotIn will be specified to prefer
that the replica be schedule on a node that the primary is not running on.

Overriding Storage Defaults

Y ou can a'so dictate what container resource and storage configurations will be used for areplica by
passing in extracommand flags:

pgo scal e nycluster --storage-config=storagel --resources-config=smal

38.5. Manual Failover

Starting with Release 2.6, there is amanual failover command which can be used to promote areplica
to aprimary role in a PostgreSQL cluster.

This process includes the following actions:
» pick atarget replicato become the new primary

* delete the current primary deployment to avoid user requests from going to multiple primary
databases (split brain)

» promote the targeted replica using pg_ctl promote, thiswill cause PostgreSQL to go into read-
write mode

* re-label the targeted replicato use the primary labels, this will match the primary service selector
and cause new requests to the primary to be routed to the new primary (targeted replica)

Syntax

$ pgo failover NAME [FLAGS]

48



Flags

Name Sh 3rthin¢u1 Usage
- - no- pr onpt -n | N/ |No command line confirmation.
A
--query N/ | N/ |Printsthelist of failover candidates.
Al A
--target N/ StringThe replicatarget which the failover will occur on.
A
Examples

Manual Failover

The command works like this;

pgo failover nycluster --query

That command will show you alist of replicatargets you can choose to failover to. Y ou will select
one of those for the following command:

pgo failover nycluster --target=mycluster-abxq

Thereisa CRD called pgtask that will hold the failover request and also the status of that request.
Y ou can view the status by viewing it:

kubect| get pgtasks nycluster-failover -0 yan

Once completed, you will see anew replica has been started to replace the promoted replica, which
happens automatically due to the re-label. The Deployment will recreate its pod because of this. The
faillover typically takes only afew seconds, however, the creation of the replacement replica can take
longer depending on how much datais being replicated.

38.6. Upgrading PostgreSQL

The upgrade command will allow you to upgrade the PostgreSQL version of your cluster with the
pg_upgrade utility. Minor or major upgrades are supported. The Crunchy Container Suite crunchy-
upgrade [ https://crunchydata.github.io/crunchy-contai ners/stabl e/contai ner-specifications/crunchy-
upgrade/] container is responsible for performing this task.

By default, it will request confirmation for the command as the operator deletes the existing contaniers
of the database or cluster and recreates them using the currently defined PostgreSQL contaner image
specified in the pgo.yaml configuration file or with adefined - - ccp- i mage- t ag flag. The database
data files remain untouched throughout the upgrade.

Once the upgrade job is completed, the operator will create the original database or cluster container
mounted with the new PV C which contains the upgraded database files.

Asthe upgrade is processed, the status of the pgupgrade CRD is updated to give the user some
insight into how the upgrade is proceeding. Upgrades like this can take along time if your database is
large. The operator creates awatch on the upgrade job to know when and how to proceed.

49


https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/

Syntax

$ pgo upgrade NAME [FLAGS]

Flags
Name Sh thhdnpw Usage
--ccp-image-tag N/ StringThe CCPImageTag to use for cluster creation. If specified,
A overrides the pgo.yaml setting.
Examples

Minor Upgrade

Perform aminor PostgreSQL version upgrade:

pgo upgrade nycl uster
Overriding Version

Override the Ccpl mageTag variable defined in the pgo.yaml configuration file:

pgo upgrade nycluster --ccp-inmage-tag=centos7-9.

6.9-1.8.3
pgo upgrade nycluster --ccp-i mage-tag=centos7-9.6.9-1.8.3

Delete Upgrade

To remove an upgrade CRD, issue the following:

pgo del et e upgrade

38.7. Labels

Labels can be applied to clusters and nested according to their type, with any string input being valid.

Syntax
$ pgo label [NAME]Jdl [FLAGS]
Flags
Name Sh 3rthin¢u1 Usage
--dry-run N/ | N/ | Shows the clusters that the label would be applied to, without
A | A |labeling them.
- - | abel N/ StringThe new label to apply for any selected or specified clusters.
A
--sel ector -s StringThe selector to use for cluster filtering.

50



Examples

Applying Labels
Y ou can apply a user defined label to a cluster asfollows:
pgo | abel nycluster --1abel =env=research

Or if you wanted to apply if to a selection of clusters:

pgo | abel --Iabel =env=research --selector=project=xray
pgo | abel all --1abel =env=research

In the first example, alabel of env=research is applied to the cluster mycluster. The second example
will apply the label to any clusters that have an existing label of project=xray applied or to al
clusters.

Removing Labels

Y ou can delete a user defined label from a cluster as follows:

pgo del ete | abel nycluster --1abel =env=research

38.8. Creating SQL Policies

Policies are SQL filesthat can be applied to asingle cluster, a selection of clusters, or to all newly
created clusters by default.

They are automatically applied to any cluster you create if you define in your pgo.yaml configuration
aCLUSTER.POLICIES value.

Policies are executed as the superuser or postgres user in PostgreSQL . These should therefore be
exercised with caution.

Syntax
$ pgo create policy [NAME] [FLAGS]
Flags
Name Sh thhinow Usage
--in-file N/ StringThe policy file path to use for adding a policy.
A
--url N/ | N/ |Theurl to use for adding a policy.
AlA
Examples

Creating Policies

To create apolicy use the following syntax:

51



pgo create policy policyl --in-file=/tnp/policyl.sq
pgo create policy policyl --url=https://someurl/policyl.sq

When you execute this command, it will create a policy named policyl using the input file /tmp/
policyl.sgl asinput. It will create on the server a PgPolicy CRD with the name policy1 that you can
examine as follows:

kubect| get pgpolicies policyl -0 json

Apply Policies
To apply an existing policy to aset of clusters, issue acommand like this:
pgo apply policyl --sel ector=nane=nycl uster

When you execute this command, it will look up clusters that have alabel value of nane=nycl ust er
and then it will apply the policyl label to that cluster and execute the policy SQL against that cluster
using the postgres user account.

Testing Policy Application

Y ou can apply policieswith a- - dry-r un flag applied to test which clusters the policy would be
applied to without actually executing the SQL:

pgo apply policyl --dry-run --sel ector=nane=nycl uster
Show Policies

To view policies, either all of them or a specific one:

pgo show policy all
pgo show policy sonepolicy

Show Clusters with a Specific Policy

If you want to view the clusters than have a specific policy applied to them, you can use the - -
sel ect or flag asfollowsto filter on a policy name (e.g. policyl):

pgo show cl uster --sel ector=policyl=pgpolicy
Delete Policies

To delete apolicy use the following form:

pgo del ete policy policyl
pgo del ete policy al

38.9. Loading Data

A CSV file loading capability is supported. This can be tested through creating a SQL Policy which
will create a database table that will be loaded with the CSV data. The loading is based on aload
definition found in the sanpl e- | oad- confi g. yan file. Inthat file, the datato be loaded is specified.

52



When the pgo | oad command is executed, Jobs will be created to perform the loading for each cluster

that matches the selector filter.

The load configuration file has the following Y AML attributes:

Attribute

Description

CO magePrefi x

the pgo-load image prefix to use for the load job

CO nageTag the pgo-load image tag to use for the load job
DbDat abase the database schemato use for loading the data
DbUser the database user to use for loading the data
DbPor t the database port of the database to load

Tabl eToLoad

the PostgreSQL table to load

Fi | ePat h the name of thefile to be loaded
Fi | eType either csv or json, determines the type of data to be loaded
PVCNane the name of the PV C that holds the datafile to be loaded

Securi t yCont ext

either fsGroup or Supplemental Group values

For running the pgo load examples, you can create the csv-pvc PV C by running:

kubect| create -f exanpl es/csv-pvc.json

Then you can copy sample load files as referenced by the examplesinto that PV C location (e.g. /data

or /nfsfileshare).

Syntax
$ pgo load [FLAGS]
Flags
Name Sh 3rthin¢u1 Usage
--1oad-config N/ StringThe load configuration to use that defines the load job.
A
--policies N/ StringThe policiesto apply before loading afile, comma separated.
A
--sel ector -s StringThe selector to use for cluster filtering.
Examples

Loading CSV Files

Load asample CSV fileinto a database as follows:

pgo | oad - -1 oad-confi g=$COROOT/ exanpl es/ sanpl e-| oad- confi g. yam

53

- - sel ect or =nanme=nycl ust



Including Policies

If you include the --policies flag, any specified policies will be applied prior to the data being loaded.
For example:

pgo | oad --policies="rlspolicy, xrayapp" --Ioad-confi g=$COROOT/ exanpl es/ sanpl e-1 oad- confi

39. Authentication

39.1. Credential Management

Thepgo user, pgo create user,andpgo del ete user commands are used to manage credentials
for the PostgreSQL clusters.

Syntax
$ pgo user [FLAGS]
Flags
Name Sh 3rthin¢u1 Usage
- - change- passwor d N/ $Stri ngrUpdates the password for a user on selective clusters.
A
--db N/ $Stri nd;Grants the user access to a database.
A
--expired N/ StringSpecifies number of daysto check for expiring passwords when
A using --update-passwords flag to update passwords.
--sel ector -s StringThe selector to use for cluster filtering.
--updat e- passwords | N/ | N/ |Performs password updating on expired passwords.
AlA
- - passwor d N/ | N/ |Allows user to specify a password instead of using a generated
A | A |password.
--val i d- days N/ | Int | Sets passwords for new usersto X days (default 30).
A
- - passwor d- | engt h N/ | Int |When no password is provided, generates a password with this
A number of characters (default 12).
Examples

Basic User Creation

To create a new Postgres user assigned to the mycluster cluster, execute (password will be auto
generated and 12 characters long):

pgo create user sally --sel ector=name=nycl uster

54



Managed User Creation

To create a new Postgres user to the mycluster cluster that has credentials created with Kubernetes
Secrets, use the --managed flag:

pgo create user sally --managed --sel ect or=nane=mycl uster --password=sonepass

A managed account is one that the Operator can manipulate as well; when you run pgo t est
mycl ust er the account is tested with the other default accounts, etc.

When you create a managed user, if pgpool is part of your cluster, then pgpool is reconfigured to pick
up the new user.

Complex User Creation

In this example, a user named user 1 is created with avalid until password date set to expirein 30
days. That user will be granted access to the user db database. This user account also will have an
associated Secr et created to hold the password that was generated for this user. Any clusters that
match the selector value will have this user created on it.

pgo create user userl --valid-days=30 --db=userdb --sel ector=name=xraydbl
Deleting Users

To delete a Postgres user in the mycluster cluster, execute:

pgo del ete user sally --sel ector=name=nycl uster

If pgpool is part of your cluster, deletion of a managed user will cause pgpool to be reconfigured to
pick up the user deletion.

Change Password

To change the password for a user in the mycluster cluster (password will be auto generated and 12
characters long):

pgo user --change-password=sally --sel ector=nanme=nycl uster
Or to change the password and set an expiration date:
pgo user --change-password=userl --valid-days=10 --sel ector=nane=xrayl

In this example, a user named user 1 has its password changed to a generated value and the valid until
expiration date set to 10 days from now. This command will take effect across all clusters that match
the selector. If you specify valid-days=-1 it will mean the password will not expire (e.g. infinity).

If pgpool is part of your cluster, changing a managed user password will cause pgpool to be
reconfigured to pick up the password change.

Updating Expired Passwords

To update expired passwords in a cluster:

pgo user --update-passwords --sel ector=nane=nycl uster --expired=5

55



40. pgbouncer Basics

When a pgbouncer deployment is added into your cluster, it will cause the creation of a Secret that
holds the pgbouncer configuration files: * pg_hba.conf * pgbouncer.ini * users.txt

Each user that is defined for your cluster is used to define the pgbouncer credentials, using the same
password.

The pgbouncer configuration includes a connection to a database with the name of your cluster (e.g.
mycluster) and also a database that connects to the cluster’ s replicas (e.g. mycluster-replica).

When you add a new user, it will cause the pgbouncer to be reconfigured and a new secret to be
generated, the pgbouncer isrestarted to pick up the new configuration file.

Adding a pgbouncer deployment into your PG cluster follows a sequence similar to this:

pgo create cluster mycluster --pgbouncer

Y ou can a'so add pgbouncer after a cluster has been created:

pgo create pgbouncer nycl uster
Note

currently you are required to have areplicain your PG cluster for the pgbouncer sidecar to
effectively work, areplicais currently not automatically created when you create a PG cluster.

41. pgpool Basics

Adding a pgpool deployment into your PG cluster follows a sequence similar to this:

pgo create cluster mycluster

Then you will scaleit up:

pgo scal e nycl uster

Then you will add managed users of your choice:

pgo create user somenewuser nycluster --nanaged

Then you will create a pgpool for the new cluster:

pgo create pgpool nycluster

Thiswill create a pgpool user credential for each pgo managed user you have created.

41.1. Create pgpool
Thecreate pgpool command will create a pgpool deployment that is part of a cluster.

Syntax

$ pgo create pgpool CLUSTERNAME [FLAGS]

56



Flags

Name Sh 3rthdn¢u1 Usage
--sel ector -s StringThe selector to use for cluster filtering.
Examples

Simple Creation

Create a pgpool:

pgo create pgpool nycluster
Note

currently you are required to have areplicain your PG cluster for the pgpool sidecar to
effectively work, areplicais currently not automatically created when you create a PG cluster.

41.2. Delete pgpool

Thedel et e pgpool command will by delete the pgpool deployment that is part of a cluster.

Syntax

$ pgo delete pgpool CLUSTERNAME [FLAGS]
Flags

Name Sh 3rthin¢u1 Usage

--sel ector -s StringThe selector to use for cluster filtering.
Examples

Simple Deletion

Delete a pgpool:

pgo del ete pgpool nycl uster

41.3. Workflow

Starting with Release 3.4, there is aworkflow concept that you can use to check the status of a cluster
creation. When you create a cluster (e.g. pgo create cluster), you will see in the response a workflow
ID. You can usethat ID to check the status of the cluster creation.

Syntax

pgo show workflow I D

57



title: "How it Works' date: 2018-04-24T18:27:42-07:00 draft: false weight: 30

Latest Release: 3.4.0 2018-12-04

42. Reference Architecture

So, what does the Postgres Operator actually deploy when you create a cluster?

On this diagram, objects with dashed lines are components that are optionally deployed as part of
a PostgreSQL Cluster by the operator. Objects with solid lines are the fundamental and required
components.

For example, within the Primary Deployment, the metrics container is completely optional. That
component can be deployed using either the operator configuration or command line arguments if you
want to cause metrics to be collected from the Postgres container.

Replica deployments are similar to the primary deployment but are optional. A replicais not required
to be created unless the capability for one is necessary. Asyou scale up the Postgres cluster, the
standard set of components gets deployed and replication to the primary is started.

Notice that each cluster deployment getsits own unigque Persistent Volumes. Each volume can use
different storage configurations which is quite powerful.

43. Custom Resource Definitions

Kubernetes Custom Resource Definitions are used in the design of the PostgreSQL Operator to define
the following -

* Cluster - pgclusters

Backup - pgbackups

Upgrade - pgupgr ades

Policy - pgpolicies

Tasks - pgtasks

44. Command Line Interface

The pgo command line interface (CLI) is used by a normal end-user to create databases or clusters, or
make changes to existing databases.

The CLI interacts with the apiserver REST API deployed within the postgr es-operator deployment.

From the CL1, users can view existing clusters that were deployed using the CLI and Operator.
Objects that were not previously created by the Crunchy Operator are now viewable from the CL1I.

58



45. Operator Deployment

The PostgreSQL Operator runs within a Deployment in the Kubernetes cluster. An administrator will
deploy the operator deployment using the provided script. Once installed and running, the Operator
pod will start watching for certain defined events.

The operator watches for create/update/del ete actions on the pgcluster custom resource definitions.
When the CLI creates for example anew pgcluster custom resource definition, the operator catches
that event and creates pods and services for that new cluster request.

46. CLI Design

The CLI uses the cobra package to implement CLI functionality like help text, config file processing,
and command line parsing.

The pgo client is essentially a REST client which communicates to the pgo-apiserver REST server
running within the Operator pod. In some cases you might want to split the apiserver out into its own
Deployment but the default deployment has a consolidated pod that contains both the apiserver and
operator containers simply for convenience of deployment and updates.

46.1. Verbs

A user works with the CLI by entering verbs to indicate what they want to do, as follows.

pgo show cl uster al
pgo del ete cluster dbl db2 db3
pgo create cluster mycluster

In the above example, the show, backup, delete, and create verbs are used. The CLI is case sensitive
and supports only lowercase.

47. Affinity

Y ou can have the Operator add an affinity section to a new Cluster Deployment if you want to cause
Kubernetes to attempt to schedule a primary cluster to a specific Kubernetes node.

Y ou can see the nodes on your Kube cluster by running the following -

kubect!| get nodes

Y ou can then specify one of those names (e.g. kubeadm-node2) when creating a cluster -
pgo create cluster thatcluster --node-nane=kubeadm node2

The affinity rule inserted in the Deployment will used a preferred strategy so that if the node were
down or not available, Kube would go ahead and schedul e the Pod on another node.

Y ou can aways view the actual node your cluster pod is scheduled on through the following
command.

59



kubect| get pod -o w de

When you scale up a Cluster and add areplica, the scaling will take into account the use of - - node-
nane. If it seesthat a cluster was created with a specific node name, then the replica Deployment will
add an affinity rule to attempt to schedule the replica on a different node than the node the primary is
schedule on. This provides asimple version of high availability and causes the primary and replicasto
not live on the same Kubernetes node.

48. Debugging

To seeif the operator pod is running enter the following -
kubect| get pod -1 'name=postgres-operator'
To verify the operator is running and has deployed the Custom Resources execute the following -

kubect| get crd

Thefull list of CRDs that are created over time are shown below.

NANVE KI ND

pgbackups.cr.client-go. k8s.io Cust onResour ceDef i ni ti on. vlbetal. api ext ensi ons.
pgclusters.cr.client-go.k8s.io Cust onResour ceDef i ni ti on. vlbetal. api ext ensi ons.
pgpolicies.cr.client-go.k8s.io Cust onResour ceDef i ni ti on. vlbetal. api ext ensi ons.
pgpol i cyl ogs.cr.client-go.k8s.io Cust onResour ceDef i ni ti on. vlbetal. api ext ensi ons.
pgupgrades. cr.client-go.k8s.io Cust onResour ceDef i ni ti on. vlbetal. api ext ensi ons.
pgt asks.cr.client-go. k8s.io Cust onResour ceDef i ni ti on. vlbetal. api ext ensi ons.

49. Persistent Volumes

Currently, the operator does not delete persistent volumes by default. Instead, it deletes the claims on
the volumes. Starting with release 2.4, the Operator will create Jobs that actually run rm commands
on the data volumes before actually removing the Persistent VVolumesiif the user passes a *--del ete-
data " flag when deleting a database cluster.

Likewise, if the user passes - - del et e- backups during cluster deletion a Job is created to remove al
the backups for a cluster include the related Persistent VVolume.

50. PostgreSQL Operator Deployment
Strategies

This section describes the various deployment strategies offered by the operator. A deployment in this
caseisthe set of objects created in Kubernetes when a custom resource definition of type pgcluster is
created. CRDs are created by the pgo client command and acted upon by the postgres operator.

50.1. Strategies

To support different types of deployments, the operator supports multiple strategy implementations.
Currently thereisonly adefault cluster strategy.

k8s. i
k8s. i
k8s. i
k8s. i
k8s. i
k8s. i

60



In the future, more deployment strategies will be supported to offer users more customization to what
they see deployed in their Kubernetes cluster.

Being open source, users can also write their own strategy!

50.2. Specifying a Strategy

In the pgo client configuration file, thereisa CLUSTER.STRATEGY "setting. The current value
of the default strategy is 1. If you don’t set that value, the default strategy is assumed. If you set that
value to something not supported, the operator will log an error.

50.3. Strategy Template Files

Each strategy supplies its set of templates used by the operator to create new pods, services, etc.

When the operator is deployed, part of the deployment processisto copy the required strategy
templates into a ConfigMap (oper ator -conf) that gets mounted into / oper at or - conf within the
operator pod.

The directory structure of the strategy templatesis as follows -

| -- backup-job.json

| -- cluster

| 1--1

| | -- cluster-depl oynment-1.json

| | -- cluster-replica-depl oynent-1.json
| | -- cluster-service-1.json

|

|

- pvc.json

In this structure, each strategy’ s templates live in a subdirectory that matches the strategy identifier.
The default strategy templates are denoted by the value of 1 in the directory structure above.

If you add another strategy, the file names must be unique within the entire strategy directory. Thisis
due to the way the templates are stored within the ConfigMap.

50.4. Default Cluster Deployment Strategy (1)

Using the default cluster strategy, a cluster when created by the operator will create the following on
a Kubernetes cluster -

* deployment running a Postgres primary container with replica count of 1
* service mapped to the primary Postgres database
 service mapped to the replica Postgres database

» PVCfortheprimary will be created if not specified in configuration, this assumes you are using a
non-shared volume technology (e.g. Amazon EBS), if the CLUSTER PVC_NAME valueis set in your
configuration then a shared volume technology is assumed (e.g. HostPath or NFS), if aPVCis
created for the primary, the naming convention is cluster name where clustername is the name of
your cluster.

61



If you want to add a Postgres replicato a cluster, you will scale the cluster. For each replica-count, a
Deployment will be created that acts as a PostgreSQL replica.

Thisisvery different than using a Stateful Set to scale up PostgreSQL . Why would you do it this way?
Imagine a case where you want different parts of your PostgreSQL cluster to use different storage
configurations,. With this method, it can be done through using specific placement and deployments
of each part of the cluster.

This same concept applies to node selection for the PostgreSQL cluster components. The Operator
will let you define precisely which node that the PostgreSQL component should be placed upon using
node affinity rules.

50.5. Cluster Deletion

When you run the following, the cluster and its services will be deleted. However, the data files and
backup fileswill remain aswell asthe PV Csfor this cluster.

pgo del ete cluster mycluster

However, to remove the data files from the PV C you can pass the following flag -

--del ete-data
This causes aworkflow to be started to remove the data files on the primary cluster deployment PV C.

The following flag will cause all of the backup files to be removed.
- - del et e- backups
The data removal workflow includes the following steps -

* create apgtask CRD to hold the PV C name and cluster name to be removed

* the CRD iswatched, and on an ADD will cause a Job to be created that will run the rmdata
container using the PV C name and cluster name as parameters which determine the PV C to mount,
and the file path to remove under that PVC

» thermdata Job is watched by the Operator, and upon a successful status completion the actual
PVC isremoved

Thisworkflow insures that a PV C is not removed until all the data files are removed. Also, a Job was
used for the removal of files since that can be a time consuming task.

The files are removed by the rmdata container which essentially issues the following command to
remove thefiles -

rm-rf /pgdatal/<sone path>

50.6. Custom Postgres Configurations

Starting in release 2.5, users and administrators can specify a custom set of Postgres configuration
files be used when creating a new Postgres cluster. The configuration files you can change include -

62



* postgresql.conf

* pg_hba.conf

* setup.sql

Different configurations for PostgreSQL might be defined for the following -

* OLTPtypes of databases

OLAP types of databases

High Memory

Minimal Configuration for Development

Project Specific configurations

Special Security Requirements
Global ConfigMap

If you create a configM ap called pgo-custom-pg-config with any of the above files within it, new
clusters will use those configuration files when setting up a new database instance. Y ou do NOT have
to specify al of the configuration files. It is entirely up to your use case to determine which to use.

This global configmap holds the pgbackrest.conf file, thisis required for pgbackrest backupsto
work! Thisalso appliesto ANY custom configuration file you wish to use, it MUST contain a
pgbackrest.conf file as a key. See the example for pgo-custom-pg-config for the pgbackrest.conf file
and how to add it to your custom configuration ConfigMap.

An example set of configuration files and a script to create the global configMap isfound at -

$COROOT/ exanpl es/ cust om confi g

If you run the create.sh script there, it will create the configMap that will include the PostgreSQL
configuration files within that directory.

Config Files Purpose

The postgresgl.conf fileis the main Postgresgl configuration file that allows the definition of awide
variety of tuning parameters and features.

The pg_hba.conf fileisthe way Postgresgl secures client access.

The setup.sgl fileisa Crunchy Container Suite configuration file used to initially populate the
database after the initial initdb is run when the database is first created. Changes would be made to
thisif you wanted to define which database objects are created by default.

The pgbackrest.conf file is merely used to tell the Postgres container that it should alocate a
pgbackrest configuration directory when initializing the container. The contents of thisfile do not

63



get inspected but the name has to be pgbackr est.conf. This requirement will change in upcoming
operator releases.

Granular Config Maps

Granular config maps can be defined if it is necessary to use a different set of configuration files for
different clusters rather than having a single configuration (e.g. Global Config Map). A specific set of
ConfigMaps with their own set of PostgreSQL configuration files can be created. WWhen creating new
clusters, a- - cust om conf i g flag can be passed along with the name of the ConfigMap which will be
used for that specific cluster or set of clusters.

Defaults

If there' s no reason to change the default PostgreSQL configuration files that ship with the Crunchy
Postgres container, there' s no requirement to. In this event, continue using the Operator as usual and
avoid defining a global configMap.

Labeling

When a custom configMap is used in cluster creation, the Operator |abels the primary Postgres
Deployment with alabel of custom-config and a value of what configMap was used when creating
the database.

Commands coming in future releases will take advantage of this labeling.

50.7. Metrics Collection

If you add a--metricsflag to pgo create cluster it will cause the crunchy-collect container to be
added to your Postgres cluster.

That container requires you run the crunchy-metrics containers as defined within the cr unchy-
containers project.

See the crunchy-containers Metrics exampl e [ https://crunchydata.github.io/crunchy-containers/stabl e/
getting-started/kubernetes-and-openshift/# metrics_and_performance] for more details on setting up
the crunchy-metrics solution.

50.8. Manual Failover

With manual failover some key features include:

» when you perform afailover, anew replicais created to replace the replica that was promoted to
even out the cluster to the original number of replicas

» when you perform afailover, the promoted replicais removed from the pgreplica CRD to represent
the current truth

Thepgo failover --query commandwill return alist of replicatargets which you can select from.
That list include the Ready status of the database as well as the Kube node name it is running on.

64


https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_and_performance
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_and_performance
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_and_performance

50.9. Auto Failover

Starting with release 3.1, thereis an auto failover mechanism that can be leveraged by pgo usersif
enabled.

Thisfeature will cause the operator to start atimer on a database primary that has received a
NotReady status after the database has started. This can happen if for instance the primary database
loses the connection to its database storage (e.g. gluster, NFS).

Oncethetimer is started, if the primary database does not get back to a Ready status within that timer
period, afailover istriggered for this cluster. The failover target is selected by the auto failover logic.

The amount of time (in seconds) the auto failover timer will wait before triggering afailover is
determined by the following pgo.yaml setting:

Aut of ai | Sl eepSeconds: 9
If the above setting is not configured a default value of 30 secondsis chose.
Thelogic of auto failover workslike this:

* the readiness probe on the primary database container is executed every few seconds to check the
readiness of the database, thisis what tells Kubernetes whether or not the container is Ready or
NotReady.

» if aNotReady state is detected then that event is caught by the operator which is watching for
database containers created by the operator

» upon aNotReady event, atimer is started for that database which acts asthe final check asto if a
failover isrequired for that database

* if thetimer expires and the state is still Not Ready then the manual failover logic is executed for
this cluster which causes a promotion of areplicato primary, and also creates a replacement replica

 only replicatargets with a status of Ready will be used to select the target to promote

The readiness probe settings are defined in the following templ ate:

conf/ post gres-operator/cluster/1/cluster-deploynment-1.json

The readiness probe settings determine how often the database check is performed. See the
Kubernetes documentation on readiness probes for more details on these settings.

65



	
	Table of Contents
	1. Documentation
	2. What is the Operator?
	3. Design
	4. Requirements
	5. Installation
	6. Configuration
	7. Getting Started
	8. Installation
	9. Next Steps
	10. Overview
	11. Quickstart
	11.1. GKE/PKS
	11.2. Openshift Container Platform

	12. Next Steps
	13. Project Structure
	14. Installation Prerequsites
	15. Basic Installation
	15.1. HostPath Persistent Volumes
	15.2. NFS Persistent Volumes

	16. Build Images & Deploy
	16.1. Packaged Images
	16.2. Build from Source
	Requirements


	17. Makefile Targets
	18. Next Steps
	19. Helm Chart
	20. Next Steps
	21. Overview
	22. Openshift Container Platform
	23. Security Configuration
	23.1. Kube RBAC
	23.2. Basic Authentication
	23.3. Configure TLS
	23.4. pgo RBAC
	23.5. REST API Configuration
	Storage Configurations
	Overriding Container Resources Configuration Defaults
	Overriding Storage Configuration Defaults
	Disaster Recovery Using Storage Configurations

	23.6. PostgreSQL Operator Container Configuration
	Operator Templates


	24. Bash Completion
	25. REST API
	26. Deploying pgPool
	27. Storage Configuration
	27.1. NFS
	27.2. Dynamic
	27.3. GKE
	Install Kubectl
	GCP
	Install GCloud
	Configure Kubectl for Cluster Access


	28. Verify Operator Status
	29. Configure pgo Client
	29.1. Running Kubernetes Locally
	Running Kubernetes Remotely
	Port forwarding
	Using an ingress



	30. Verify pgo Client
	31. Next Steps
	32. Required Updates
	32.1. Configuration File
	32.2. Secrets

	33. Required Updates
	33.1. Configuration File
	33.2. Container Resources
	33.3. Kube RBAC
	33.4. Application RBAC
	33.5. User Creation
	33.6. Replica CRD

	34. First Steps
	35. Cluster Names
	36. General
	36.1. Operator Version
	Syntax

	36.2. Operator Status
	Syntax
	Flags

	36.3. Operator Configuration
	Syntax

	36.4. Disk Capacity
	Syntax
	Flags
	Examples
	Cluster Selectors



	37. Cluster Basics
	37.1. Create Cluster
	Syntax
	Flags
	Examples
	Simple Creation
	Complex Creation
	Image Version
	Metrics
	pgBadger
	pgPool II
	Auto Failover
	pgBackRest


	37.2. Delete Cluster
	Syntax
	Flags
	Examples
	Simple Deletion
	Complex Deletion
	Delete Components, Data, & Backups


	37.3. Show Cluster
	Syntax
	Flags
	Examples
	Simple Display
	Show All
	Show Secrets
	Viewing Users With Passwords Set to Expire
	PostgreSQL Version


	37.4. Test Connection
	Syntax
	Flags
	Examples
	Simple Test
	Complex Test



	38. Administration
	38.1. Reload
	Syntax
	Flags
	Examples
	Simple Reload


	38.2. Backups
	Syntax
	Flags
	Examples
	Simple Backup
	Show Backup
	Backup PVC Management
	Override PVC
	Delete Backup


	38.3. Scheduling
	Syntax
	Flags
	Examples
	Creating pgBackRest Schedules
	Creating pgBaseBackup Schedules

	Creating Schedules Using Selectors
	Show Schedules
	Delete Schedules


	38.4. Scaling Replicas
	Syntax
	Flags
	Examples
	Scaling Up
	Scaling Down

	Syntax
	Flags
	Testing Replication
	Specifying Nodes
	Overriding Storage Defaults


	38.5. Manual Failover
	Syntax
	Flags
	Examples
	Manual Failover


	38.6. Upgrading PostgreSQL
	Syntax
	Flags
	Examples
	Minor Upgrade
	Overriding Version
	Delete Upgrade


	38.7. Labels
	Syntax
	Flags
	Examples
	Applying Labels
	Removing Labels


	38.8. Creating SQL Policies
	Syntax
	Flags
	Examples
	Creating Policies
	Apply Policies
	Testing Policy Application
	Show Policies
	Show Clusters with a Specific Policy
	Delete Policies


	38.9. Loading Data
	Syntax
	Flags
	Examples
	Loading CSV Files
	Including Policies



	39. Authentication
	39.1. Credential Management
	Syntax
	Flags
	Examples
	Basic User Creation
	Managed User Creation
	Complex User Creation
	Deleting Users
	Change Password
	Updating Expired Passwords



	40. pgbouncer Basics
	41. pgpool Basics
	41.1. Create pgpool
	Syntax
	Flags
	Examples
	Simple Creation


	41.2. Delete pgpool
	Syntax
	Flags
	Examples
	Simple Deletion


	41.3. Workflow
	Syntax


	42. Reference Architecture
	43. Custom Resource Definitions
	44. Command Line Interface
	45. Operator Deployment
	46. CLI Design
	46.1. Verbs

	47. Affinity
	48. Debugging
	49. Persistent Volumes
	50. PostgreSQL Operator Deployment Strategies
	50.1. Strategies
	50.2. Specifying a Strategy
	50.3. Strategy Template Files
	50.4. Default Cluster Deployment Strategy (1)
	50.5. Cluster Deletion
	50.6. Custom Postgres Configurations
	Global ConfigMap
	Config Files Purpose
	Granular Config Maps
	Defaults
	Labeling

	50.7. Metrics Collection
	50.8. Manual Failover
	50.9. Auto Failover


