
1

Table of Contents
1. Documentation ... 3
2. What is the Operator? ... 3
3. Design .. 3
4. Requirements ... 4
5. Installation ... 4
6. Configuration ... 4
7. Getting Started ... 5
8. Installation ... 5
9. Next Steps .. 5
10. Overview .. 5
11. Quickstart ... 6

11.1. GKE/PKS .. 6
11.2. Openshift Container Platform .. 7

12. Next Steps .. 7
13. Project Structure .. 7
14. Installation Prerequsites ... 8
15. Basic Installation ... 9

15.1. HostPath Persistent Volumes ... 9
15.2. NFS Persistent Volumes ... 9

16. Build Images & Deploy .. 9
16.1. Packaged Images .. 9
16.2. Build from Source .. 10

17. Makefile Targets .. 11
18. Next Steps .. 12
19. Helm Chart .. 12
20. Next Steps .. 12
21. Overview .. 12
22. Openshift Container Platform ... 12
23. Security Configuration .. 13

23.1. Kube RBAC .. 13
23.2. Basic Authentication ... 13
23.3. Configure TLS .. 14
23.4. pgo RBAC .. 14
23.5. REST API Configuration ... 16
23.6. PostgreSQL Operator Container Configuration ... 22

24. Bash Completion ... 22
25. REST API .. 23
26. Deploying pgPool .. 24
27. Storage Configuration .. 25

27.1. NFS ... 25
27.2. Dynamic .. 26
27.3. GKE .. 26

28. Verify Operator Status .. 27
29. Configure pgo Client ... 27

29.1. Running Kubernetes Locally .. 28
30. Verify pgo Client ... 29

2

31. Next Steps .. 29
32. Required Updates .. 31

32.1. Configuration File ... 32
32.2. Secrets ... 32

33. Required Updates .. 32
33.1. Configuration File ... 32
33.2. Container Resources ... 32
33.3. Kube RBAC .. 33
33.4. Application RBAC ... 33
33.5. User Creation .. 33
33.6. Replica CRD ... 34

34. First Steps .. 34
35. Cluster Names ... 34
36. General ... 34

36.1. Operator Version .. 34
36.2. Operator Status ... 34
36.3. Operator Configuration ... 35
36.4. Disk Capacity ... 35

37. Cluster Basics .. 35
37.1. Create Cluster ... 35
37.2. Delete Cluster ... 39
37.3. Show Cluster .. 40
37.4. Test Connection .. 41

38. Administration ... 42
38.1. Reload ... 42
38.2. Backups ... 42
38.3. Scheduling ... 44
38.4. Scaling Replicas ... 46
38.5. Manual Failover .. 48
38.6. Upgrading PostgreSQL ... 49
38.7. Labels .. 50
38.8. Creating SQL Policies .. 51
38.9. Loading Data .. 52

39. Authentication .. 54
39.1. Credential Management .. 54

40. pgbouncer Basics ... 56
41. pgpool Basics ... 56

41.1. Create pgpool .. 56
41.2. Delete pgpool .. 57
41.3. Workflow .. 57

42. Reference Architecture .. 58
43. Custom Resource Definitions .. 58
44. Command Line Interface ... 58
45. Operator Deployment .. 59
46. CLI Design .. 59

46.1. Verbs ... 59
47. Affinity ... 59
48. Debugging .. 60
49. Persistent Volumes .. 60

3

50. PostgreSQL Operator Deployment Strategies ... 60
50.1. Strategies ... 60
50.2. Specifying a Strategy ... 61
50.3. Strategy Template Files .. 61
50.4. Default Cluster Deployment Strategy (1) .. 61
50.5. Cluster Deletion .. 62
50.6. Custom Postgres Configurations .. 62
50.7. Metrics Collection .. 64
50.8. Manual Failover .. 64
50.9. Auto Failover .. 65

title: "Crunchy Data PostgreSQL Operator" date: 2018-04-23T14:52:09-07:00 draft: false

Latest Release: 3.4.0 2018-12-04

1. Documentation
Please view the official Crunchy Data PostgreSQL Operator documentation here [https://
crunchydata.github.io/postgres-operator/stable/]. If you are interested in contributing or making an
update to the documentation, please view the Contributing Guidelines [/contributing/].

2. What is the Operator?
The postgres-operator is a controller that runs within a Kubernetes cluster that provides a means to
deploy and manage PostgreSQL clusters.

Use the postgres-operator to -

• deploy PostgreSQL containers including streaming replication clusters

• scale up PostgreSQL clusters with extra replicas

• add pgpool and metrics sidecars to PostgreSQL clusters

• apply SQL policies to PostgreSQL clusters

• assign metadata tags to PostgreSQL clusters

• maintain PostgreSQL users and passwords

• perform minor and major upgrades to PostgreSQL clusters

• load simple CSV and JSON files into PostgreSQL clusters

• perform database backups

3. Design
The postgres-operator design incorporates the following concepts -

https://crunchydata.github.io/postgres-operator/stable/
https://crunchydata.github.io/postgres-operator/stable/
https://crunchydata.github.io/postgres-operator/stable/
/contributing/
/contributing/

4

• adds Custom Resource Definitions for PostgreSQL to Kubernetes

• adds controller logic that watches events on PostgreSQL resources

• provides a command line client (pgo) and REST API for interfacing with the postgres-operator

• provides for very customized deployments including container resources, storage configurations,
and PostgreSQL custom configurations

More design information is found on the How It Works [/how-it-works/] page.

4. Requirements
The postgres-operator runs on any Kubernetes and Openshift platform that supports Custom Resource
Definitions.

The Operator project builds and operates with the following containers -

• PVC Listing Container [https://hub.docker.com/r/crunchydata/pgo-lspvc/]

• Remove Data Container [https://hub.docker.com/r/crunchydata/pgo-rmdata/]

• postgres-operator Container [https://hub.docker.com/r/crunchydata/postgres-operator/]

• apiserver Container [https://hub.docker.com/r/crunchydata/pgo-apiserver/]

• file load Container [https://hub.docker.com/r/crunchydata/pgo-load/]

• backrest interface Container [https://hub.docker.com/r/crunchydata/pgo-backrest/]

This Operator is developed and tested on the following operating systems but is known to run on other
operating systems -

• CentOS 7

• RHEL 7

5. Installation
To build and deploy the Operator on your Kubernetes system, follow the instructions documented on
the Installation [/installation/] page.

If you’re seeking to upgrade your existing Operator installation, please visit the Upgrading the
Operator [/installation/upgrading-the-operator/] page.

6. Configuration
The operator is template-driven; this makes it simple to configure both the client and the operator. The
configuration options are documented on the Configuration [/installation/configuration/] page.

/how-it-works/
/how-it-works/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-backrest/
https://hub.docker.com/r/crunchydata/pgo-backrest/
/installation/
/installation/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/configuration/
/installation/configuration/

5

7. Getting Started
postgres-operator commands are documented on the Getting Started [/getting-started/] page.

title: "Installation" date: 2018-04-24T18:27:02-07:00 draft: false weight: 10

Latest Release: 3.4.0 2018-12-04

8. Installation
For a quick deployment on either a GKE or OpenShift environment, visit the Quick Installation [/
installation/quick-installation/] page.

For a manual installation of the Operator on either a Kubernetes or OpenShift environment, visit the
Manual Installation [/installation/manual-installation/] page.

A Helm Chart [/installation/helm-chart/] is also provided.

If you’re looking to upgrade a current PostgreSQL Operator installation, visit the Upgrading the
Operator [/installation/upgrading-the-operator/] page.

There are many ways to configure the operator further. Some sample configurations are documented
on the Configuration [/installation/configuration/] page. This includes setting up security and storage
configurations for your environment.

After completing the installation steps, ensure you visit the Deployment [/installation/deployment/]
page to deploy the Operator to your environment.

9. Next Steps
You may want to find out more information on how the operator is designed to work and deploy. This
information can be found in the How It Works [/how-it-works/] page.

Information can be found on the full scope of commands on the Getting Started [/getting-started/]
page.

title: "Quick Installation" date: 2018-04-26T15:22:14-07:00 draft: false weight: 10

Latest Release: 3.4.0 2018-12-04

10. Overview
There are currently quickstart script that seek to automate the deployment to popular Kubernetes
environments -

• quickstart.sh [https://github.com/CrunchyData/postgres-operator/blob/master/examples/
quickstart.sh]

The quickstart script will deploy the operator to a GKE Kube cluster or an Openshift Container
Platform cluster. The quickstart script is intended to get you up and running quickly, for a typical
more custom installation, the manual installation is recommended.

/getting-started/
/getting-started/
/installation/quick-installation/
/installation/quick-installation/
/installation/quick-installation/
/installation/manual-installation/
/installation/manual-installation/
/installation/helm-chart/
/installation/helm-chart/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/upgrading-the-operator/
/installation/configuration/
/installation/configuration/
/installation/deployment/
/installation/deployment/
/how-it-works/
/how-it-works/
/getting-started/
/getting-started/
https://github.com/CrunchyData/postgres-operator/blob/master/examples/quickstart.sh
https://github.com/CrunchyData/postgres-operator/blob/master/examples/quickstart.sh
https://github.com/CrunchyData/postgres-operator/blob/master/examples/quickstart.sh

6

The script assumes you have a StorageClass defined for persistence.

Pre-compiled versions of the Operator pgo client are provided for the x86_64, Mac OSX, and
Windows hosts.

11. Quickstart

11.1. GKE/PKS
The quickstart.sh script will allow users to set up the Postgres Operator quickly on GKE, PKS, and
Openshift.

The script requires a few things in order to work -

• wget utility installed

• kubectl or oc utility installed

• StorageClass defined on your GKE instance

Executing the script will give you a default Operator deployment that assumes dynamic storage and
a storage class named standard, user provided values are also allowed by the script to override these
defaults.

The script performs the following -

• downloads the Operator configuration files

• sets the $HOME/.pgouser file to default settings

• deploys the Operator Deployment

• sets your .bashrc to include the Operator environment variables

• sets your $HOME/.bash_completion file to be the pgo bash_completion file

Note

You should copy the quickstart.sh script from github rather than cloning the entire github
Operator repository!

A tip, if you want to set your Kube context to some particular namespace you can run commands
similar to this to set it to a demo namespace if that namespace has already been created on your GKE
cluster:

kubectl create -f $COROOT/examples/demo-namespace.json
kubectl config set-context demo --cluster=gke_crunchy-a-test_us-central1-a_usera-quickstart --namespace=demo --user=gke_crunchy-a-test_us-central1-a_usera-quickstart
kubectl config use-context demo

For Mac and Windows users, pre-built pgo binaries are included in the operator release tar ball, you
would download the pgo CLI binaries from the Releases page to your local machine as part of the
quick installation:

7

• pgo-mac is the Mac binary

• pgo.exe is the Windows binary

• pgo is the Linux binary

• expenv-mac is the expenv binary for Mac

• expenv.exe is the expenv binary for Windows

Currently the quickstart scripts are meant for Linux installs, you will need to modify this script for
Windows or Mac installs until we support and provide Windows and Mac installation scripts.

11.2. Openshift Container Platform
The script also is used for installing the operator on OCP.

12. Next Steps
Next, visit the Deployment [/installation/deployment/] page to deploy the Operator, verify the
installation, and view various storage configurations.

title: "Manual Installation" date: 2018-04-26T15:22:21-07:00 draft: false weight: 20

Latest Release: 3.4.0 2018-12-04

13. Project Structure
First, define the following environment variables in .bashrc:

export GOPATH=$HOME/odev
export GOBIN=$GOPATH/bin
export PATH=$PATH:$GOBIN
export CO_NAMESPACE=demo
export CO_CMD=kubectl
export COROOT=$GOPATH/src/github.com/crunchydata/postgres-operator
export CO_IMAGE_PREFIX=crunchydata
export CO_BASEOS=centos7
export CO_VERSION=3.4.0
export CO_IMAGE_TAG=$CO_BASEOS-$CO_VERSION

for the pgo CLI auth
export PGO_CA_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_KEY=$COROOT/conf/postgres-operator/server.key

for crunchy-scheduler startup
export CCP_IMAGE_PREFIX=crunchydata
export CCP_IMAGE_TAG=centos7-10.6-2.2.0

useful aliases
alias setip='export CO_APISERVER_URL=https://`kubectl get service postgres-operator -o=jsonpath="{.spec.clusterIP}"`:8443'
alias alog='kubectl logs `kubectl get pod --selector=name=postgres-operator -o jsonpath="{.items[0].metadata.name}"` -c apiserver'
alias olog='kubectl logs `kubectl get pod --selector=name=postgres-operator -o jsonpath="{.items[0].metadata.name}"` -c operator'

/installation/deployment/
/installation/deployment/

8

If you have access to the Crunchy RHEL images, you would change the above references to centos7
to rhel7.

When deploying on Openshift Container Platform, the CO_CMD environment variable should be:

export CO_CMD=oc

To perform an installation of the operator, first create the project structure as follows on your host,
here we assume a local directory called odev -

. .bashrc
mkdir -p $HOME/odev/src $HOME/odev/bin $HOME/odev/pkg $GOPATH/src/github.com/crunchydata/

Next, get a tagged release of the source code -

cd $GOPATH/src/github.com/crunchydata
git clone https://github.com/CrunchyData/postgres-operator.git
cd postgres-operator
git checkout 3.4.0

14. Installation Prerequsites
To run the operator and the pgo client, you will need the following -

• a running Kubernetes or OpenShift cluster

• the kubectl or oc clients installed in your PATH and configured to connect to the cluster (e.g. export
KUBECONFIG=/etc/kubernetes/admin.conf)

• a Kubernetes namespace created and set to where you want the operator installed. For this install
we assume a namespace of demo has been created.

kubectl create -f examples/demo-namespace.json
kubectl config set-context $(kubectl config current-context) --namespace=demo
kubectl config view -o "jsonpath={.contexts[?(@.name==\"$(kubectl config current-context 2>/dev/null)\")].context.namespace}"

On Openshift Container Platform, you would have a Project and User defined for installing the
Operator.

Run the Makefile setup target to install depedencies.

make setup

Next, run the Makefile installrbac target as a user with cluster-admin priviledges, not as a normal
Kube or Openshift user. This target creates the RBAC roles and CRDs required by the Operator and is
only required to be created one time.

For example, on an Openshift system you would run this target as follows using the system:admin
Openshift user:

$ sudo su -
oc login -u system:admin
cd /home/oper
. .bashrc
export PATH=$PATH:/home/oper/odev/bin
cd odev/src/github.com/crunchydata/postgres-operator
make installrbac

9

On a Kube system, you would be connected as a cluster-admin user and just issue:

cd /home/oper
. .bashrc
export PATH=$PATH:/home/oper/odev/bin
cd odev/src/github.com/crunchydata/postgres-operator
make installrbac

15. Basic Installation
The basic pgo.yaml configuration specifies 3 different storage configurations: * hostpath * nfs
(default) * storage-class

Storage configurations are documented here: here [/installation/configuration/
#_storage_configuration].

The default storage configuration used for creating Primary, Replica, and Backups is set to NFS in the
default pgo.yaml file. Adjust this setting to meet your storage requirements.

Sample PV creation scripts are found in the following directory:

examples/pv

15.1. HostPath Persistent Volumes
The default Persistent Volume script assumes a default HostPath directory be created called /data:

sudo mkdir /data
sudo chmod 777 /data

Create some sample Persistent Volumes using the following script:

$COROOT/pv/create-pv.sh

15.2. NFS Persistent Volumes
The NFS Persistent Volume script assumes a default directory be created called /nfsfileshare as the
NFS mount point on your system:

sudo ls /nfsfileshare

See the crunchy-containers documentation on how to install NFS on a centos/RHEL system if you
want to use NFS for testing the operator.

Create some sample NFS Persistent Volumes using the following script:

$COROOT/pv/create-nfs-pv.sh

16. Build Images & Deploy
16.1. Packaged Images

To pull prebuilt versions from Dockerhub of the postgres-operator containers, execute the following
Makefile target -

/installation/configuration/#_storage_configuration
/installation/configuration/#_storage_configuration
/installation/configuration/#_storage_configuration

10

make pull

To pull down the prebuilt pgo binaries, download the tar.gz release file from the following link -

• Github Releases [https://github.com/CrunchyData/postgres-operator/releases]

• extract (e.g. tar xvzf postgres-operator.3.4.0.tar.gz)

cd $HOME
tar xvzf ./postgres-operator.3.4.0.tar.gz

• copy pgo client to somewhere in your path (e.g. cp pgo /usr/local/bin)

Next, deploy the operator to your Kubernetes cluster -

cd $COROOT
make deployoperator

Warning

If you make configuration file changes you will need to re-run the deployoperator makefile
target to re-deploy the Operator with the new configuration files.

16.2. Build from Source
The purpose of this section is to illustrate how to build the PostgreSQL Operator from source. These
are considered advanced installation steps and should be primarily used by developers or those
wishing a more precise installation method.

Requirements

The postgres-operator runs on any Kubernetes and Openshift platform that supports Custom Resource
Definitions. The Operator is tested on Kubeadm and OpenShift Container Platform environments.

The operator is developed with the Golang versions greater than or equal to version 1.8. See Golang
website [https://golang.org/dl/] for details on installing golang.

The Operator project builds and operates with the following containers -

• PVC Listing Container [https://hub.docker.com/r/crunchydata/pgo-lspvc/]

• Remove Data Container [https://hub.docker.com/r/crunchydata/pgo-rmdata/]

• postgres-operator Container [https://hub.docker.com/r/crunchydata/postgres-operator/]

• apiserver Container [https://hub.docker.com/r/crunchydata/pgo-apiserver/]

• file load Container [https://hub.docker.com/r/crunchydata/pgo-load/]

• pgbackrest interface Container [https://hub.docker.com/r/crunchydata/pgo-backrest/]

This Operator is developed and tested on the following operating systems but is known to run on other
operating systems -

• CentOS 7

https://github.com/CrunchyData/postgres-operator/releases
https://github.com/CrunchyData/postgres-operator/releases
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-lspvc/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/pgo-rmdata/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/postgres-operator/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-apiserver/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-load/
https://hub.docker.com/r/crunchydata/pgo-backrest/
https://hub.docker.com/r/crunchydata/pgo-backrest/

11

• RHEL 7

17. Makefile Targets
The following table describes the Makefile targets -

Table 1. Makefile Targets

Target Description

macpgo build the Mac version of the pgo CLI
binary

winpgo build the Windows version of the pgo
CLI binary

installrbac only run once and by a cluster-admin
user, this target creates the Operator
CRDs and RBAC resources required by
the Operator

setupnamespace only run once, will create a namespace
called demo

bounce delete the Operator pod only, this is a
way to upgrade the operator without a
full redeploy, as the operator runs in a
Deployment, a new pod will be created
to replace the old one, a simple way to
bounce the pod

deployoperator deploy the Operator (apiserver and
postgers-operator) to Kubernetes

all compile all binaries and build all
images

setup fetch the dependent packages required
to build with, and create Kube RBAC
resources

main compile the postgres-operator

pgo build the pgo binary

clean remove binaries and compiled
packages, restore dependencies

operatorimage compile and build the postgres-operator
Docker image

apiserverimage compile and build the apiserver Docker
image

lsimage build the lspvc Docker image

loadimage build the file load Docker image

rmdataimage build the data deletion Docker image

12

Target Description

pgo-backrest-image build the pgbackrest interface Docker
image

release build the postgres-operator release

18. Next Steps
Next, visit the Deployment [/installation/deployment/] page to deploy the Operator, verify the
installation, and view various storage configurations.

title: "Helm Chart" date: 2018-04-26T15:24:16-07:00 draft: false weight: 30

Latest Release: 3.4.0 2018-12-04

19. Helm Chart
First, pull prebuilt versions from Dockerhub of the postgres-operator containers, specify the image
versions, and execute the following Makefile target -

export CO_IMAGE_PREFIX=crunchydata
export CO_IMAGE_TAG=centos7-3.4.0
make pull

Then, build and deploy the operator using the provided Helm chart -

cd $COROOT/chart
helm install ./postgres-operator
helm ls

20. Next Steps
Next, visit the Deployment [/installation/deployment/] page to deploy the Operator, verify the
installation, and view various storage configurations.

title: "Configuration" date: 2018-04-24T18:26:56-07:00 draft: false weight: 40

Latest Release: 3.4.0 2018-12-04

21. Overview
This document describes how to configure the operator beyond the default configurations in addition
to detailing what the configuration settings mean.

22. Openshift Container Platform
To run the Operator on Openshift Container Platform note the following requirements -

• Openshift Container Platform 3.7 or greater is required due to the dependence on Custom Resource
Definitions.

/installation/deployment/
/installation/deployment/
/installation/deployment/
/installation/deployment/

13

• The CO_CMD environment variable should be set to oc when operating in an Openshift environment.

23. Security Configuration

23.1. Kube RBAC
The cluster-rbac.yaml file is executed a single time when installing the Operator. This file,
executed by a Kubernetes user with cluster-admin priviledges, does the following:

• Creates Customer Resource Definitions

• Grants get access to Kube Node resources to the postgres-operator service account.

The rbac.yaml file is also executed a single time when installing the Operator. This file creates Role
scoped privileges which are granted to the postgres-operator service account. The postgres-operator
service account is used by the apiserver and postgres-operator containers to access Kubernetes
resources.

Both of these RBAC files are executed by the deploy/install-rbac.sh script. It can also be
installed through running make installrbac in the $CCPROOT directory.

Warning

The CO_NAMESPACE environment variable determines the namespace that is used within
the deployment of the operator. If you are deploying to the demo namespace, the following
should setting should be defined in your .bashrc: export CO_NAMESPACE=demo

See here [https://kubernetes.io/docs/admin/authorization/rbac/] for more details on how to enable
RBAC roles and modify the scope of the permissions to suit your needs.

23.2. Basic Authentication
Basic authentication between the host and the apiserver is required. It will be necessary to configure
the pgo client to specify a basic authentication username and password through the creation a file in
the user’s home directory named .pgouser. It will look similar to this, and contain only a single line -

username:password

The above excerpt specifies a username of username and a password of password. These values will
be read by the pgo client and passed to the apiserver on each REST API call.

For the apiserver, a list of usernames and passwords is specified in the pgo-auth-secret Secret. The
values specified in a deployment are found in the following location -

$COROOT/conf/postgres-operator/pgouser

The sample configuration for pgouser is as follows -

username:password:pgoadmin
testuser:testpass:pgoadmin
readonlyuser:testpass:pgoreader

Modify these values to be unique to your environment.

https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/

14

If the username and password passed by clients to the apiserver do not match, the REST call will
fail and a log message will be produced in the apiserver container log. The client will receive a 401
HTTP status code if they are not able to authenticate.

If the pgouser file is not found in the home directory of the pgo user then the next searched location
is /etc/pgo/pgouser. If the file is not found in either of the locations, the pgo client searches for the
existence of a PGOUSER environment variable in order to locate a path to the basic authentication file.

Basic authentication can be entirely disabled by setting the BasicAuth setting in the pgo.yaml
configuration file to false.

23.3. Configure TLS
TLS is used to secure communications to the apiserver. Sample keys and certifications that can be
used by TLS are found here -

$COROOT/conf/postgres-operator/server.crt
$COROOT/conf/postgres-operator/server.key

If you want to generate your own keys, you can use the script found in -

$COROOT/bin/make-certs.sh

The pgo client is required to use keys to connect to the apiserver. Specify the keys for pgo by setting
the following environment variables -

export PGO_CA_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_KEY=$COROOT/conf/postgres-operator/server.key

You can also specify these credentials using the following command flags where you can reference
they keys from any file path directly:

pgo version --pgo-ca-cert=/tmp/server.crt --pgo-client-cert=/tmp/server.crt --pgo-client-key=/tmp/server.key

The sample server keys are used as the client keys; adjust to suit security requirements.

For the apiserver TLS configuration, the keys are included in the apiserver-conf-secret Secret
when the apiserver is deployed. See the $COROOT/deploy/deploy.sh script which is where the
secret is created.

The apiserver listens on port 8443 (e.g. https://postgres-operator:8443) by default.

You can set InsecureSkipVerify to true by setting the NO_TLS_VERIFY environment variable in the
deployment.json file to true. By default this value is set to false if you do not specify a value.

23.4. pgo RBAC
The pgo command line utility talks to the apiserver REST API instead of the Kubernetes API. It is
therefore necessary for the pgo client to make use of RBAC configuration.

Starting in Release 3.0, the /conf/postgres-operator/pgorole is used to define some sample pgo roles,
pgadmin and pgoreader.

https://postgres-operator:8443

15

These roles are meant as examples that you can configure to suit security requirements as necessary.
The pgadmin role grants a user authorization to all pgo commands. The pgoreader only grants access
to pgo commands that display information such as pgo show cluster.

The pgorole file is read at start up time when the operator is deployed to the Kubernetes cluster.

Also, the pgouser file now includes the role that is assigned to a specific user as follows -

username:password:pgoadmin
testuser:testpass:pgoadmin
readonlyuser:testpass:pgoreader

The following list shows the current complete list of possible pgo permissions -

Table 2. pgo Permissions

Permission Description

ShowSecrets allow pgo show user

ShowCluster allow pgo show cluster

CreateCluster allow pgo create cluster

TestCluster allow pgo test mycluster

ShowBackup allow pgo show backup

CreateBackup allow pgo backup mycluster

DeleteBackup allow pgo delete backup
mycluster

Label allow pgo label

Load allow pgo load

CreatePolicy allow pgo create policy

DeletePolicy allow pgo delete policy

ShowPolicy allow pgo show policy

ApplyPolicy allow pgo apply policy

ShowPVC allow pgo show pvc

CreateUpgrade allow pgo upgrade

ShowUpgrade allow pgo show upgrade

DeleteUpgrade allow pgo delete upgrade

CreateUser allow pgo create user

CreateFailover allow pgo failover

ShowConfig allow pgo show config

User allow pgo user

Version allow pgo version

If the user is unauthorized for a pgo command, the user will get back this response -

FATA[0000] Authentication Failed: 40

16

23.5. REST API Configuration
The postgres-operator pod includes the apiserver which is a REST API that pgo users are able to
communicate with.

The apiserver uses the following configuration files found in $COROOT/conf/postgres-operator to
determine how the Operator will provision PostgreSQL containers -

$COROOT/conf/postgres-operator/pgo.yaml
$COROOT/conf/postgres-operator/pgo.lspvc-template.json
$COROOT/conf/postgres-operator/pgo.load-template.json

Note that the default pgo.yaml file assumes you are going to use HostPath Persistent Volumes
for your storage configuration. It will be necessary to adjust this file for NFS or other storage
configurations. Some examples of how are listed in the manual installation document.

The version of PostgreSQL container the Operator will deploy is determined by the CCPImageTag
setting in the $COROOT/conf/postgres-operator/pgo.yaml configuration file. By default, this
value is set to the latest release of the Crunchy Container Suite.

The default pgo.yaml configuration file, included in $COROOT/conf/postgres-operator/pgo.yaml,
looks like this -

Cluster:
 PrimaryNodeLabel:
 ReplicaNodeLabel:
 CCPImagePrefix: crunchydata
 Metrics: false
 Badger: false
 CCPImageTag: centos7-10.6-2.2.0
 LogStatement: none
 LogMinDurationStatement: 60000
 Port: 5432
 User: testuser
 Database: userdb
 PasswordAgeDays: 60
 PasswordLength: 8
 Strategy: 1
 Replicas: 0
 ArchiveMode: false
 ArchiveTimeout: 60
 ServiceType: ClusterIP
 Backrest: false
 Autofail: false
PrimaryStorage: hostpathstorage
BackupStorage: hostpathstorage
ReplicaStorage: hostpathstorage
Storage:
 hostpathstorage:
 AccessMode: ReadWriteMany
 Size: 1G
 StorageType: create
 nfsstorage:
 AccessMode: ReadWriteMany
 Size: 1G
 StorageType: create
 SupplementalGroups: 65534

17

 storage2:
 AccessMode: ReadWriteMany
 Size: 1G
 StorageType: dynamic
 StorageClass: gluster-heketi
 Fsgroup: 26
 storage3:
 AccessMode: ReadWriteOnce
 Size: 1G
 StorageType: dynamic
 StorageClass: rook-ceph-block
 Fsgroup: 26
DefaultContainerResources:
DefaultLoadResources:
DefaultLspvcResources:
DefaultRmdataResources:
DefaultBackupResources:
DefaultPgbouncerResources:
DefaultPgpoolResources:
ContainerResources:
 small:
 RequestsMemory: 512Mi
 RequestsCPU: 0.1
 LimitsMemory: 512Mi
 LimitsCPU: 0.1
 large:
 RequestsMemory: 2Gi
 RequestsCPU: 2.0
 LimitsMemory: 2Gi
 LimitsCPU: 4.0
Pgo:
 AutofailSleepSeconds: 9
 Audit: false
 LSPVCTemplate: /pgo-config/pgo.lspvc-template.json
 LoadTemplate: /pgo-config/pgo.load-template.json
 COImagePrefix: crunchydata
 COImageTag: centos7-3.4.0-rc1

Values in the pgo configuration file have the following meaning:

Table 3. pgo Configuration File Definitions

Setting Definition

BasicAuth if set to true will enable Basic Authentication

Cluster.PrimaryNodeLabel newly created primary deployments will specify this node
label if specified, unless you override it using the --node-
label command line flag, if not set, no node label is specifed

Cluster.ReplicaNodeLabel newly created replica deployments will specify this node
label if specified, unless you override it using the --node-
label command line flag, if not set, no node label is specifed

Cluster.CCPImageTag newly created containers will be based on this image version
(e.g. centos7-10.4-1.8.3), unless you override it using the --
ccp-image-tag command line flag

Cluster.Port the PostgreSQL port to use for new containers (e.g. 5432)

18

Setting Definition

Cluster.LogStatement postgresql.conf log_statement value (required field) (works
with crunchy-postgres >= 2.2.0)

Cluster.LogMinDurationStatementpostgresql.conf log_min_duration_statement value (required
field) (works with crunchy-postgres >= 2.2.0)

Cluster.User the PostgreSQL normal user name

Cluster.Strategy sets the deployment strategy to be used for deploying a
cluster, currently there is only strategy 1

Cluster.Replicas the number of cluster replicas to create for newly created
clusters

Cluster.Metrics boolean, if set to true will cause each new cluster to include
crunchy-collect as a sidecar container for metrics collection,
if set to false (default), users can still add metrics on a
cluster-by-cluster basis using the pgo command flag --
metrics

Cluster.Badger boolean, if set to true will cause each new cluster to include
crunchy-pgbadger as a sidecar container for static log
analysis, if set to false (default), users can still add pgbadger
on a cluster-by-cluster basis using the pgo create cluster
command flag --pgbadger

Cluster.Policies optional, list of policies to apply to a newly created cluster,
comma separated, must be valid policies in the catalog

Cluster.PasswordAgeDays optional, if set, will set the VALID UNTIL date on
passwords to this many days in the future when creating
users or setting passwords, defaults to 60 days

Cluster.PasswordLength optional, if set, will determine the password length used
when creating passwords, defaults to 8

Cluster.ArchiveMode optional, if set to true will enable archive logging for all
clusters created, default is false.

Cluster.ArchiveTimeout optional, if set, will determine the archive timeout setting
used when ArchiveMode is true, defaults to 60 seconds

Cluster.ServiceType optional, if set, will determine the service type used when
creating primary or replica services, defaults to ClusterIP if
not set, can be overridden by the user on the command line
as well

Cluster.Backrest optional, if set, will cause clusters to have the pgbackrest
volume PVC provisioned during cluster creation

Cluster.Autofail optional, if set, will cause clusters to be checked for auto
failover in the event of a non-Ready status

PrimaryStorage required, the value of the storage configuration to use for the
primary PostgreSQL deployment

BackupStorage required, the value of the storage configuration to use for
backups, including the storage for pgbackrest repo volumes

19

Setting Definition

ReplicaStorage required, the value of the storage configuration to use for the
replica PostgreSQL deployments

Storage.storage1.StorageClassfor a dynamic storage type, you can specify the storage class
used for storage provisioning(e.g. standard, gold, fast)

Storage.storage1.AccessModethe access mode for new PVCs (e.g. ReadWriteMany,
ReadWriteOnce, ReadOnlyMany). See below for
descriptions of these.

Storage.storage1.Size the size to use when creating new PVCs (e.g. 100M, 1Gi)

Storage.storage1.StorageTypesupported values are either dynamic, create, if not supplied,
create is used

Storage.storage1.Fsgroup optional, if set, will cause a SecurityContext and fsGroup
attributes to be added to generated Pod and Deployment
definitions

Storage.storage1.SupplementalGroupsoptional, if set, will cause a SecurityContext to be added to
generated Pod and Deployment definitions

Storage.storage1.MatchLabelsoptional, if set, will cause the PVC to add a matchlabels
selector in order to match a PV, only useful when
the StorageType is create, when specified a label of
name=clustername is added to the PVC as a match criteria

DefaultContainerResource optional, the value of the container resources configuration
to use for all database containers, if not set, no resource
limits or requests are added on the database container

DefaultLoadResource optional, the value of the container resources configuration
to use for pgo-load containers, if not set, no resource limits
or requests are added on the database container

DefaultLspvcResource optional, the value of the container resources configuration
to use for pgo-lspvc containers, if not set, no resource limits
or requests are added on the database container

DefaultRmdataResource optional, the value of the container resources configuration
to use for pgo-rmdata containers, if not set, no resource
limits or requests are added on the database container

DefaultBackupResource optional, the value of the container resources configuration
to use for crunchy-backup containers, if not set, no resource
limits or requests are added on the database container

DefaultPgbouncerResource optional, the value of the container resources configuration
to use for crunchy-pgbouncer containers, if not set, no
resource limits or requests are added on the database
container

DefaultPgpoolResource optional, the value of the container resources configuration
to use for crunchy-pgpool containers, if not set, no resource
limits or requests are added on the database container

ContainerResources.small.RequestsMemoryrequest size of memory in bytes

20

Setting Definition

ContainerResources.small.RequestsCPUrequest size of CPU cores

ContainerResources.small.LimitsMemoryrequest size of memory in bytes

ContainerResources.small.LimitsCPUrequest size of CPU cores

ContainerResources.large.RequestsMemoryrequest size of memory in bytes

ContainerResources.large.RequestsCPUrequest size of CPU cores

ContainerResources.large.LimitsMemoryrequest size of memory in bytes

ContainerResources.large.LimitsCPUrequest size of CPU cores

Pgo.LSPVCTemplate the PVC lspvc template file that lists PVC contents

Pgo.LoadTemplate the load template file used for load jobs

Pgo.COImagePrefix image tag prefix to use for the Operator containers

Pgo.COImageTag image tag to use for the Operator containers

Pgo.Audit boolean, if set to true will cause each apiserver call to be
logged with an audit marking

Storage Configurations

You can define n-number of Storage configurations within the pgo.yaml file. Those Storage
configurations follow these conventions -

• they must have lowercase name (e.g. storage1)

• they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and
PrimaryStorage configuration values. However, there are command line options in the pgo client that
will let a user override these default global values to offer you the user a way to specify very targeted
storage configurations when needed (e.g. disaster recovery storage for certain backups).

You can set the storage AccessMode values to the following -

• ReadWriteMany - mounts the volume as read-write by many nodes

• ReadWriteOnce - mounts the PVC as read-write by a single node

• ReadOnlyMany - mounts the PVC as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if a non-valid configuration
is found, the apiserver will abort. These Storage values are only read at apiserver start time.

The following StorageType values are possible -

• dynamic - this will allow for dynamic provisioning of storage using a StorageClass.

• create - This setting allows for the creation of a new PVC for each PostgreSQL cluster using
a naming convention of clustername. When set, the Size, AccessMode settings are used in
constructing the new PVC.

21

The operator will create new PVCs using this naming convention: dbname where dbname is the
database name you have specified. For example, if you run:

pgo create cluster example1

It will result in a PVC being created named example1 and in the case of a backup job, the pvc is
named example1-backup

There are currently 3 sample pgo configuration files provided for users to use as a starting
configuration -

• pgo.yaml.nfs - this configuration specifies create storage to be used, this is used for NFS storage
for example where you want to have a unique PVC created for each database

• pgo.yaml.storageclass - this configuration specifies dynamic storage to be used, namely a
storageclass that refers to a dynamic provisioning strorage such as StorageOS or Portworx, or
GCE.

Note, when Storage Type is create, you can specify a storage configuration setting of MatchLabels,
when set, this will cause a selector of name=clustername to be added into the PVC, this will let you
target specific PV(s) to be matched for this cluster. Note, if a PV does not match the claim request,
then the cluster will not start. Users that want to use this feature have to place labels on their PV
resources as part of PG cluster creation before creating the PG cluster. For example, users would add a
label like this to their PV before they create the PG cluster:

kubectl label pv somepv name=myclustername

If you do not specify MatchLabels in the storage configuration, then no match filter is added and any
available PV will be used to satisfy the PVC request. This option does not apply to dynamic storage
types.

Overriding Container Resources Configuration Defaults

In the pgo.yaml configuration file you have the option to configure a default container resources
configuration that when set will add CPU and memory resource limits and requests values into each
database container when the container is created.

You can also override the default value using the --resources-config command flag when creating
a new cluster -

pgo create cluster testcluster --resources-config=large

Note, if you try to allocate more resources than your host or Kube cluster has available then you will
see your pods wait in a Pending status. The output from a kubectl describe pod command will
show output like this in this event -

Events:
 Type Reason Age From Message
- ------ ---- ---- -------
 Warning FailedScheduling 49s (x8 over 1m) default-scheduler No nodes are available that match all of the predicates: Insufficient memory (1).

Overriding Storage Configuration Defaults
pgo create cluster testcluster --storage-config=bigdisk

22

That example will create a cluster and specify a storage configuration of bigdisk to be used for the
primary database storage. The replica storage will default to the value of ReplicaStorage as specified
in pgo.yaml.

pgo create cluster testcluster2 --storage-config=fastdisk --replica-storage-config=slowdisk

That example will create a cluster and specify a storage configuration of fastdisk to be used for the
primary database storage, while the replica storage will use the storage configuration slowdisk.

pgo backup testcluster --storage-config=offsitestorage

That example will create a backup and use the offsitestorage storage configuration for persisting the
backup.

Disaster Recovery Using Storage Configurations

A simple mechanism for partial disaster recovery can be obtained by leveraging network storage,
Kubernetes storage classes, and the storage configuration options within the Operator.

For example, if you define a Kubernetes storage class that refers to a storage backend that is running
within your disaster recovery site, and then use that storage class as a storage configuration for your
backups, you essentially have moved your backup files automatically to your disaster recovery site
thanks to network storage.

23.6. PostgreSQL Operator Container
Configuration

To enable debug level messages from the operator pod, set the CRUNCHY_DEBUG environment variable
to true within its deployment file deployment.json.

Operator Templates

The database and cluster Kubernetes objects that get created by the operator are based on JSON
templates that are added into the operator deployment by means of a mounted volume.

The templates are located in the $COROOT/conf/postgres-operator directory and are added into a
config map which is mounted by the operator deployment.

24. Bash Completion
There is a bash completion file that is included for users to try located in the repository at examples/
pgo-bash-completion. To use it -

cp $COROOT/examples/pgo-bash-completion /etc/bash_completion.d/pgo
su - $USER

23

25. REST API
Because the apiserver implements a REST API, it is possible to integrate with it using your own
application code. To demonstrate this, the following curl commands show the API usage -

Note: Some setups may require the user to add ?version=x.x to the end of the commands.

pgo version

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/version

pgo show policy <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/policies/<name>

pgo delete policy <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/policiesdelete/<name>

pgo show pvc <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/pvc/<name>

pgo apply policy <name>

curl -v -X POST -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/policies/apply/<name>

pgo show ingest <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/ingest/<name>

pgo label

curl -v -X POST -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/label

pgo load

curl -v -X POST -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/load

pgo user

curl -v -X POST -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/user

pgo users <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/users/<name>

pgo delete user <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/usersdelete/<name>

pgo show upgrade <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/upgrades/<name>

pgo delete upgrade <name>

24

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/upgradesdelete/<name>

pgo show cluster <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/clusters/<name>

pgo delete cluster

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/clustersdelete/<name>

pgo test <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/clusters/test/<name>

pgo scale <name>

curl -v -X GET -u readonlyuser:testpass -H "Content-Type: application/json" --insecure https://10.101.155.218:8443/clusters/scale/<name>

26. Deploying pgPool
One option with pgo is enabling the creation of a pgpool deployment in addition to the PostgreSQL
cluster. Running pgpool is a logical inclusion when the Kubernetes cluster includes both a primary
database in addition to some number of replicas deployed. The current pgpool configuration deployed
by the operator only works when both a primary and a replica are running.

When a user creates the cluster a command flag can be passed as follows to enable the creation of the
pgpool deployment.

pgo create cluster cluster1 --pgpool
pgo scale cluster1

This will cause the operator to create a Deployment that includes the crunchy-pgpool container along
with a replica. That container will create a configuration that will perform SQL routing to your cluster
services, both for the primary and replica services.

Pgpool examines the SQL it receives and routes the SQL statement to either the primary or replica
based on the SQL action. Specifically, it will send writes and updates to only the primary service. It
will send read-only statements to the replica service.

When the operator deploys the pgpool container, it creates a secret (e.g. mycluster-pgpool-secret)
that contains pgpool configuration files. It fills out templated versions of these configuration files
specifically for this PostgreSQL cluster.

Part of the pgpool deployment also includes creating a pool_passwd file that will allow the testuser
credential to authenticate to pgpool. Adding additional users to the pgpool configuration currently
requires human intervention specifically creating a new pgpool secret and bouncing the pgpool pod to
pick up the updated secret. Future operator releases will attempt to provide pgo commands to let you
automate the addition or removal of a pgpool user.

Currently to update a pgpool user within the pool_passwd configuration file, it is necessary to copy
the existing files from the secret to your local system, update the credentials in pool_passwd with
the new user credentials, recreate the pgpool secret, and finally restart the pgpool pod to pick up the
updated configuration files.

25

As an example -

kubectl cp demo/wed10-pgpool-6cc6f6598d-wcnmf:/pgconf/ /tmp/foo

That command gets a running set of secret pgpool configuration files and places them locally on your
system for you to edit.

pgpool requires a specially formatted password credential to be placed into pool_passwd. There is a
golang program included in $COROOT/golang-examples/gen-pgpool-pass.go that, when run, will
generate the value to use within the pgpool_passwd configuration file.

go run $COROOT/golang-examples/gen-pgpool-pass.go
Enter Username: testuser
Enter Password:
Password typed: e99Mjt1dLz
hash of password is [md59c4017667828b33762665dc4558fbd76]

The value md59c4017667828b33762665dc4558fbd76 is what you will use in the pool_passwd file.

Then, create the new secrets file based on those updated files -

$COROOT/bin/create-pgpool-secrets.sh

Lastly for pgpool to pick up the new secret file, delete the existing deployment pod -

kubectl get deployment wed-pgpool
kubectl delete pod wed10-pgpool-6cc6f6598d-wcnmf

The pgpool deployment will spin up another pgpool which will pick up the updated secret file.

27. Storage Configuration
Most users after they try out the operator will want to create a more customized installation and
deployment of the operator using specific storage types.

The operator will work with HostPath, NFS, Dynamic, and GKE Storage.

27.1. NFS
To configure the operator to use NFS for storage, a sample pgo.yaml.nfs file is provided. Overlay the
default pgo.yaml file with that file -

cp $COROOT/examples/pgo.yaml.nfs $COROOT/conf/postgres-operator/pgo.yaml

Then, in your .bashrc file, set the variable CO_NFS_IP to the IP address of your NFS server:

export CO_NFS_IP=192.168.2.14

Edit the pgo.yaml file to specify the NFS GID that is set for the NFS volume mount you will be
using. The default value assumed is nfsnobody as the GID (65534). Update the value to meet your
NFS security settings.

Finally, run the $COROOT/pv/create-pv-nfs.sh script to create persistent volumes based on your
NFS settings.

26

27.2. Dynamic
To configure the operator to use Dynamic Storage classes for storage, a sample
pgo.yaml.storageclass file is provided. Overlay the default pgo.yaml file with that file -

cp $COROOT/examples/pgo.yaml.storageclass $COROOT/conf/postgres-operator/pgo.yaml

Edit the pgo.yaml file to specify the storage class you will be using, the default value assumed is
standard which is the name used by default within a GKE Kube cluster deployment. Update the value
to match your storage classes.

Notice that the FsGroup setting is required for most block storage and is set to the value of 26 since
the PostgreSQL container runs as UID 26.

27.3. GKE
Some notes for setting up GKE for the Operator deployment.

Install Kubectl

On your host you will be working from, install the kubectl command -

https://kubernetes.io/docs/tasks/tools/install-kubectl/

GCP

• Select your project

• Create a Kube cluster in that project

By default a storage class called standard is created.

Install GCloud

To access the Kubernetes cluster, install the gcloud utility -

https://cloud.google.com/sdk/downloads
cd google-cloud-sdk
./install.sh

Configure Kubectl for Cluster Access
gcloud auth login

gcloud container clusters get-credentials jeff-quickstart --zone us-central1-a --project crunchy-dev-test

kubectl get storageclass

title: "Deployment" date: 2018-04-26T15:26:40-07:00 draft: false weight: 50

Latest Release: 3.4.0 2018-12-04

https://kubernetes.io/docs/tasks/tools/install-kubectl/

27

This document details verifying the installation of the PostgreSQL Operator is successful, in addition
to detailing some different storage configurations that can be made.

28. Verify Operator Status
To verify that the operator is deployed and running, run the following:

kubectl get pod --selector=name=postgres-operator

You should see output similar to this:

NAME READY STATUS RESTARTS AGE
postgres-operator-56598999cd-tbg4w 2/2 Running 0 1m

There are 2 containers in the operator pod, both should be ready as above.

When you first run the operator, it will create the required CustomResourceDefinitions. You can view
these as follows -

kubectl get crd

The operator creates the following Custom Resource Definitions over time as the associated
commands are triggered.

kubectl get crd
NAME AGE
pgbackups.cr.client-go.k8s.io 2d
pgclusters.cr.client-go.k8s.io 2d
pgingests.cr.client-go.k8s.io 2d
pgpolicies.cr.client-go.k8s.io 2d
pgreplicas.cr.client-go.k8s.io 2d
pgtasks.cr.client-go.k8s.io 2d
pgupgrades.cr.client-go.k8s.io 2d

At this point, the server side of the operator is deployed and ready.

29. Configure pgo Client
The pgo command line client requires TLS for securing the connection to the operator’s REST API.
This configuration is performed as follows -

export PGO_CA_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_KEY=$COROOT/conf/postgres-operator/server.key

The pgo client uses Basic Authentication to authenticate to the operator REST API. For
authentication, add the following .pgouser file to your $HOME -

echo "username:password" > $HOME/.pgouser

Roles are defined in a file called pgorole. This file defines each role and the permissions for that role.
By default, two roles are defined as samples -

pgoadmin
pgoreader

28

This file, moved to your $HOME folder, is optional. These default settings can be adjusted to meet
local security requirements.

The format of this file is as follows -

rolename: permissionA, permissionB

These are defined in the following file -

$COROOT/conf/postgres-operator/pgorole

The complete set of permissions is documented in the Configuration [/installation/configuration/]
document.

The pgo client needs the URL to connect to the operator.

Depending on your Kubernetes environment this can be done the following ways.

29.1. Running Kubernetes Locally
If your local host is not set up to resolve Kubernetes Service DNS names, you can specify the operator
IP address as follows -

kubectl get service postgres-operator
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres-operator NodePort 10.109.184.8 <none> 8443:30894/TCP 5m

export CO_APISERVER_URL=https://10.109.184.8:8443
pgo version

Alternatively, an alias was set up in the .bashrc file earlier on, as follows:

alias setip='export CO_APISERVER_URL=https://`kubectl get service postgres-operator -o=jsonpath="{.spec.clusterIP}"`:8443'

This alias (setip) will set the CO_APISERVER_URL IP address for you.

Running Kubernetes Remotely

Port forwarding

Set up a port-forward tunnel from your host to the Kube remote host, specifying the operator pod -

kubectl get pod --selector=name=postgres-operator
NAME READY STATUS RESTARTS AGE
postgres-operator-56598999cd-tbg4w 2/2 Running 0 8m

kubectl port-forward postgres-operator-56598999cd-tbg4w 8443:8443

In another terminal -

export CO_APISERVER_URL=https://127.0.0.1:8443
pgo version

Using an ingress

Ingresses allows you to access Kubernetes services throught a controller.

/installation/configuration/
/installation/configuration/

29

First you will need to ensure a NGINX Ingress Controller is available in your Kubernetes cluster.

If you are using Minikube, you can easily deploy one using

minikube addons enable ingress

If not, please refer to the Nginx Ingress Controller’s official documentation [https://
kubernetes.github.io/ingress-nginx/deploy/#bare-metal] for its installation.

Once your controller is running, just deploy the ingress using

kubectl create -f $COROOT/deploy/ingress.yml

Due to the annotations used, please note this ingress is currently usable only with Nginx Ingress
Controller.

Now you can use the adress IP of the host where the nginx-ingress-controller pod is to connect to the
pgo apiserver. The port will be 443 (and not 8443).

To retrieve the address ip:

kubectl get ingress postgres-operator -o jsonpath="{.status.loadBalancer.ingress[0].ip}"

export CO_APISERVER_URL=https://`kubectl get ingress postgres-operator -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`

If you are using minikube, the address IP displayed is incorrect, just use:

minikube ip

export CO_APISERVER_URL=https://`minikube ip`

30. Verify pgo Client
At this point you should be able to connect to the operator as follows -

pgo version
pgo client version 3.4.0
apiserver version 3.4.0

Operator commands are documented on the Getting Started [/getting-started/] page.

31. Next Steps
There are many ways to configure the operator further. Some sample configurations are documented
on the Configuration [/installation/configuration/] page.

You may also want to find out more information on how the operator is designed to work and deploy.
This information can be found in the How It Works [/how-it-works/] page.

Information can be found on the full scope of commands on the Getting Started [/getting-started/]
page.

title: "Upgrading the Operator" date: 2018-04-24T18:27:30-07:00 draft: false weight: 60

https://kubernetes.github.io/ingress-nginx/deploy/#bare-metal
https://kubernetes.github.io/ingress-nginx/deploy/#bare-metal
https://kubernetes.github.io/ingress-nginx/deploy/#bare-metal
/getting-started/
/getting-started/
/installation/configuration/
/installation/configuration/
/how-it-works/
/how-it-works/
/getting-started/
/getting-started/

30

Latest Release: 3.4.0 2018-12-04

• The conf/apiserver/ configuration files were moved into the conf/postgres-operator directory to
consolidate all config files into a single location. You will need to perform this step manually start
with version 3.4.0 if you are running an existing Operator version prior to 3.4.0. The Helm chart is
also updated to reflect this change. Starting with 3.4.0 there is a secret, pgo-auth-secret that holds
authentication and authorization files used by the operator to authenticate REST clients. Also, the
configuration files are stored in a configmap named pgo-config. Existing users will need to update
their deploy.sh script and deployment.yaml files to pick up the the new naming conventions.

• new configuration settings were added into pgo.yaml to support resource configuration
settings for the various helper containers. The new settings include DefaultLoadResources,
DefaultLspvcResources, DefaultRmdataResources, DefaultBackupResources. You will need to add
these manually into your existing pgo.yaml file if you want to make use of this feature.

• the pgcluster CRD was changed to remove the password fields, instead secret names are stored in
the CRD to avoid having to have passwords in the CRD, the password fields are totally removed
starting in this release. No changes are required for existing CRD resources, new CRDs that are
created will not have the password fields.

• starting in 3.4, a new operator upgrade process is developed that eventually will handle various
forms of automated upgrades depending on user settings and changes to the postgres-operator in
between versions. When starting a new Operator it will scan the pgcluster and pgreplica instances
and update the pgo-version to match the current operator version, it will also create a user label on
the pgreplica/pgcluster to indicate the upgrade date. More advanced upgrade features are planned to
be developed.

• in 3.4, the pgo.yaml LogStatement and LogMinDurationStatement settings are present, if not set,
defaults are supplied for both. These settings let you define more precisely the degree of Postgres
logging for any Postgres clusters created by the Operator. The LogStatement default is none and the
LogMinDurationStatement defaults to 60000 (milliseconds). These settings greatly reduce the log
file sizes and only will log statements that are longer running that 60000 milliseconds. If you want
to see all statements logged, set LogStatement to all.

• in 3.4, the pgbackup CRD includes a new field called BackupOpts, used to hold the pgbasebackup
command options which can now be passed in on the CLI backup command, no changes to existing
pgbackup CRD resources is required.

• operator 3.3 introduced the alpha version of pgbackrest integration. Now in 3.4, the pgbackrest
integration was changed so that users no longer have to specify a custom configuration file using --
custom-config.

• the pgo-backrest backup-job is secured with a new service account named pgo-backrest, that SA is
now included in the rbac.yaml file and is to be created by an a cluster admin user

• the permission SHOW_WORKFLOW_PERM was created and added to the default pgorole
example, this permission lets users view workflow status, workflows are stored as pgtask CRDs

With 3.4, there is a global configmap created as part of the deployment process which will serve
this same purpose, that is to indicate to the Postgres container that it must allocate the pgbackrest
directories within the mounted /backrestrepo volume mount. This means however, that if you specify
a global configuration file or specify your own custom configuration that you have to include the

31

pgbackrest.conf file and key within that configmap. The sample global custom configuration map,
pgo-custom-pg-config, now includes pgbackrest.conf within it.

This new integration only works with pgbackrest v2.6 which is included into crunchy-postgres 2.2.0.
This means that to use pgbackrest, you must run crunchy-postgres 2.2.0 or greater which will require
users to upgrade the pgo.yaml to use the 2.2.0 CCPImageTag. pgbackrest commands will NOT work
with clusters using older Postgres images.

The following changes are mandatory when upgrading to 3.3 from previous operator versions:

• The MatchLabels attribute was added to the pgo.yaml file as an optional storage configuration
setting. You do not have to specify this setting, however, the operator-conf ConfigMap now has to
include the pvc-matchlabels.json template file as required by this new feature. If you upgrade
to 3.2, you will need to rebuild your operator-conf ConfigMap to include pvc-matchlabels.json
and redeploy the Operator using the new ConfigMap.

• The CCP_IMAGE_PREFIX, CO_IMAGE_PREFIX, and CO_IMAGE_TAG environment variables are now
pulled from the pgo.yaml configuration file that is mounted by both the apiserver and operator
containers. To clean up an existing deployment, remove these environment variable definitions
from your deployment.yaml file or Helm chart equivalent.

• The ExternalIP field was added to the apiservermsgs.ShowClusterService struct. This field
is now passed back to apiserver clients in the REST API when viewing cluster details. For custom
clients you might have written, you will see this new field in the REST message.

• Clusters that were created prior to 3.1 will need a new label to be applied. For primary
deployments, apply the label primary=true. For example, kubectl label deploy mycluster
primary=true. For replica deployments, specify primary=false. For example, kubectl label
deploy mycluster-xxxx primary=false.

• The collect.json template now specifies a pgmonitor credential that must match
the PGMONITOR_PASSWORD environment variable which was added into the cluster-
deployment-1.json template. These changes were required to support crunchy-collect (2.1.0)
changes that were introduced. Users should upgrade to crunchy-collect:centos7-10.5-2.1.0
to use this feature. If you do not want to upgrade to this new metrics collector, you will need to
retain and reuse the prior version of collect.json used by the Operator and make sure you deploy
that version.

Clusters that were created prior to 3.1 will need a new label to be applied. For primary deployments,
apply the label primary=true. For example, kubectl label deploy mycluster primary=true.
For replica deployments, specify primary=false. For example, kubectl label deploy
mycluster-xxxx primary=false.

For a full list of additions and revisions that occurred in the PostgreSQL Operator v2.5 release, please
view the related release page here [https://github.com/CrunchyData/postgres-operator/releases/
tag/2.5].

32. Required Updates
This section notes some required steps that will need to be taken in the process of upgrading from v2.4
to v2.5.

https://github.com/CrunchyData/postgres-operator/releases/tag/2.5
https://github.com/CrunchyData/postgres-operator/releases/tag/2.5
https://github.com/CrunchyData/postgres-operator/releases/tag/2.5

32

32.1. Configuration File
It will be necessary to update your existing pgo.yaml configuration file where the Storage
Configuration sections are concerned. The updated file for v2.5 can be found here [https://github.com/
CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml]. The file contained within the local
installation of the Operator is located by default in the following location -

$COROOT/conf/apiserver/pgo.yaml

32.2. Secrets
2.5 changed the names of the database credentials that are created by default in order to be consistent
with the way new database credentials are named.

It will be necessary to run the following script to update your existing clusters. This script will
essentially copy the existing secrets values and create new secrets with those same values but named
to the new standard. Run the script by passing in the name of an existing cluster as a parameter.

$COROOT/bin/upgrade-secret.sh

For a full list of additions and revisions that occurred in the PostgreSQL Operator v2.5 release, please
view the related release page here [https://github.com/CrunchyData/postgres-operator/releases/
tag/3.3.0].

33. Required Updates
This section notes some required steps that will need to be taken in the process of upgrading from v2.5
to v2.6.

33.1. Configuration File
One update in v2.6 changed the pgo.yaml file through removing the Debug flag. The Pgo.Debug
variable can now be removed from the pgo.yaml file as a result. The debug flag is now called
CRUNCHY_DEBUG and is set in the deployment.json file as a default environment variable.

33.2. Container Resources
Release 2.6 added the concept of container resource configurations to the pgo.yaml file. In order to
specify the optional container resource configurations, add a section as follows to your pgo.yaml file -

DefaultContainerResource: small
ContainerResources:
 small:
 RequestsMemory: 2Gi
 RequestsCPU: 0.5
 LimitsMemory: 2Gi
 LimitsCPU: 1.0
 large:
 RequestsMemory: 8Gi
 RequestsCPU: 2.0

https://github.com/CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml
https://github.com/CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml
https://github.com/CrunchyData/postgres-operator/blob/2.5/conf/apiserver/pgo.yaml
https://github.com/CrunchyData/postgres-operator/releases/tag/3.3.0
https://github.com/CrunchyData/postgres-operator/releases/tag/3.3.0
https://github.com/CrunchyData/postgres-operator/releases/tag/3.3.0

33

 LimitsMemory: 12Gi
 LimitsCPU: 4.0

If these settings are set incorrectly or if the Kubernetes cluster cannot meet the defined memory and
CPU requirements, deployments will go into a pending state.

33.3. Kube RBAC
Release 2.6 added a rbac.yaml file to capture the Kube RBAC rules. These RBAC rules allow the
apiserver and postgres-operator containers access to the Kubernetes resources required for the
operator to work. As part of the deployment process, it is necessary to execute the rbac.yaml file to
set the roles and bindings required by the operator. Adjust this file to suit local security requirements.

33.4. Application RBAC
Release 2.6 added an RBAC capability to secure the pgo application. The pgouser now has a role
appended at the end of of each user definition as follows -

username:password:pgoadmin
testuser:testpass:pgoadmin
readonlyuser:testpass:pgoreader

These are defined in the following file -

$COROOT/conf/apiserver/pgouser

To match the behavior of the pre 2.6 releases, the pgadmin role is set on the previous user definitions,
but a readonlyuser is now defined to test other role definitions. The roles are defined in a new file
called pgorole. This file defines each role and the permissions for that role. By default, two roles are
defined as samples -

pgoadmin
pgoreader

Adjust these default settings to meet local security requirements.

The format of this file is as follows -

rolename: permissionA, permissionB

These are defined in the following file -

$COROOT/conf/apiserver/pgorole

The complete set of permissions is documented in the Configuration [/installation/configuration/]
document.

33.5. User Creation
Release 2.6 replaced the pgo user --add command with the pgo create user command to
improve consistency across command usage. Any scripts written using the older style of command
require an update to use the new command syntax.

/installation/configuration/
/installation/configuration/

34

33.6. Replica CRD
There is a new Kubernetes Custom Resource Definition that serves the purpose of holding replica
information, called pgreplicas. This CRD is populated with the pgo scale command and is used to
hold per-replica specific information such as the resource and storage configurations requested at run
time.

title: "Getting Started" date: 2018-04-24T18:26:43-07:00 draft: false weight: 20

Latest Release: 3.4.0 2018-12-04

34. First Steps
Prior to using pgo, users will need to specify the postgres-operator URL as follows:

kubectl get service postgres-operator
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres-operator 10.104.47.110 <none> 8443/TCP 7m
export CO_APISERVER_URL=https://10.104.47.110:8443
pgo version

35. Cluster Names
Many of the pgo commands take in a cluster name, in some cases the special name of all is accepted
which will cause the command to be applied to all PostgreSQL clusters. For example:

pgo df all

36. General

36.1. Operator Version
This command makes it possible to see what version of the pgo client and postgres-operator you are
running.

Syntax

$ pgo version

36.2. Operator Status
You can use the pgo status command to see overall pgo status. Selective metrics are displayed
to provide some insights to the pgo user and administrator as to what is running currently in this
namespace related to pgo.

Syntax

$ pgo status [FLAGS]

35

Flags

Name ShorthandInputUsage

--output=json -o
json

StringThe output format. Currently, json is the only supported value.

36.3. Operator Configuration
The pgo show config command displays the running operator configuration parameters that dictate
the setup and user defined configuration of the operator. This command can be useful for sharing your
configuration or verifying the setup is as expected.

Syntax

$ pgo show config

36.4. Disk Capacity
The pgo df command will let you see the disk capacity of a cluster’s PVC versus that of the
PostgreSQL data that has been written to disk. If the capacity is less than 50%, then the output is
printed in red in order to alert the user. The listing is broken out by the cluster’s Pods.

Syntax

$ pgo df NAME [FLAGS]

Flags

Name ShorthandInputUsage

--selector -s StringThe selector to use for cluster filtering.

Examples

Cluster Selectors

The pgo df command can either be run against a single cluster or against all clusters matching a
selector:

pgo df mycluster
pgo df --selector=project=xrayapp

37. Cluster Basics

37.1. Create Cluster
The create cluster command will automatically provision a PostgreSQL cluster within Kubernetes or
OpenShift using a Deployment.

36

Syntax

$ pgo create cluster NAME [FLAGS]

Flags

Name ShorthandInputUsage

--archive N/
A

N/
A

Enables archive logging for the database cluster.

--autofail N/
A

N/
A

If set, will cause autofailover to be enabled on this cluster.

--backup-pvc N/
A

StringThe backup archive PVC to restore from.

--backup-path N/
A

StringThe backup archive path to restore from.

--ccp-image-tag N/
A

StringThe CCPImageTag to use for cluster creation. If specified,
overrides the pgo.yaml setting.

--custom-config N/
A

StringThe name of a configMap that holds custom PostgreSQL
configuration files used to override defaults.

--labels N/
A

StringThe labels to apply to this cluster.

--metrics N/
A

N/
A

Adds the crunchy-collect container to the database pod.

--node-label N/
A

StringThe node label (key) to use in placing the primary database. If
not set, any node is used.

--password N/
A

StringThe password to use for initial database users.

--service-type N/
A

StringThe Service type to use for the PostgreSQL cluster. If not set, the
pgo.yaml default will be used.

--pgbackrest N/
A

N/
A

Enables a pgBackRest volume for the database pod.

--pgbackrest-

restore-from

N/
A

N/
A

Only applies when creating a cluster from a pgbackrest restored
PVC. This is the name of the cluster from which the restored
PVC was created from and which the new cluster credentials will
be based. This setting is required in the scenario.

--pgbadger N/
A

N/
A

Adds the crunchy-pgbadger container to the database pod.

--pgpool N/
A

N/
A

Adds the crunchy-pgpool container to the database pod.

--pgpool-secret N/
A

StringThe name of a pgpool secret to use for the pgpool configuration.

--policies N/
A

StringThe policies to apply when creating a cluster, comma separated.

37

Name ShorthandInputUsage

--replica-count N/
A

Int The number of replicas to create as part of this cluster. After
a cluster is created, you can also add replicas using the scale
command.

--replica-storage-

config

N/
A

StringThe name of a Storage config in pgo.yaml to use for the cluster
replica storage.

--resources-config N/
A

StringThe name of a container resource configuration in pgo.yaml that
holds CPU and memory requests and limits.

--secret-from N/
A

StringThe cluster name to use when restoring secrets.

--series N/
A

Int The number of clusters to create in a series (default 1).

--storage-config N/
A

StringThe name of a Storage config in pgo.yaml to use for the cluster
storage.

Examples

Simple Creation

Create a single cluster:

pgo create cluster mycluster

Create a single cluster with a single replica:

pgo create cluster mycluster --replica-count=1

Complex Creation

Create a series of clusters, specifying it as the xray project, with the xrayapp and rlspolicy policies
added:

pgo create cluster mycluster --series=3 --labels=project=xray --policies=xrayapp,rlspolicy

Image Version

New clusters typically pick up the container image version to use based on the pgo configuration file’s
CcpImageTag setting. You can override this value using the --ccp-image-tag command line flag:

pgo create cluster mycluster --ccp-image-tag=centos7-9.6.5-1.6.0

Metrics

Add the crunchy-collect [https://crunchydata.github.io/crunchy-containers/stable/container-
specifications/crunchy-collect/] container from the Crunchy Container Suite to the database cluster
pod and enable metrics collection on the database:

pgo create cluster mycluster --metrics

You can connect these containers to a metrics pipeline using Grafana [https://grafana.com] and
Prometheus [https://prometheus.io] by following the example found in the Crunchy Container Suite

https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-collect/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-collect/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-collect/
https://grafana.com
https://grafana.com
https://prometheus.io
https://prometheus.io
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection

38

documentation [https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-
and-openshift/#_metrics_collection].

pgBadger

Add a pgBadger [https://github.com/dalibo/pgbadger] sidecar into the Postgres pod:

pgo create cluster mycluster --pgbadger

This command flag adds the crunchy-pgbadger [https://crunchydata.github.io/crunchy-containers/
stable/container-specifications/crunchy-pgbadger/] container into the database pod. pgBadger reports
can then be accessed through port 10000 at /api/badgergenerate.

pgPool II

By appending the --pgpool command line flag, you can add pgPool II [http://www.pgpool.net/
mediawiki/index.php/Main_Page] to the database cluster. The container used for this functionality is
the crunchy-pgpool [https://crunchydata.github.io/crunchy-containers/stable/container-specifications/
crunchy-pgpool/] container image from the Crunchy Container Suite.

pgo create cluster mycluster --pgpool

Auto Failover

To enable auto failover on this cluster, use the following flag:

pgo create cluster mycluster --autofail

This flag, when set on the cluster, informs the operator to look or watch for NotReady events on this
cluster. When those occur, it will create a failover state machine which acts as a timer for the cluster.
If the timer expires, then a failover is triggered on the cluster turning one of the cluster replica pods
into the replacement primary pod. See the How It Works [https://crunchydata.github.io/postgres-
operator/stable/how-it-works/#_auto_failover] documentation for more details on auto failover.

pgBackRest

pgbackrest beta integration was implemented in version 3.4.0 of the Operator. NOTE: pgbackrest
integration is still subject to change in upcoming releases.

The backrestrepo PVC, used by pgBackRest, has to be created on a RWX file system type in this
release. pgBackRest is a more advanced backup and restore capability exposed by the Operator.

The pgBackRest support is enabled in a PG cluster by a user specifying the --pgbackrest command
flag. To enable this feature for all PG clusters when created, you can specify a pgbackrest setting
within the pgo.yaml configuration.

Create a PG cluster that enables pgBackRest specifically for that cluster:

pgo create cluster mycluster --pgbackrest

Setting this value will cause the Operator to create a PVC specifically dedicated for holding
pgBackRest backups.

Create a pgBackRest backup:

pgo backup mycluster --backup-type=pgbackrest

https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_collection
https://github.com/dalibo/pgbadger
https://github.com/dalibo/pgbadger
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgbadger/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgbadger/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgbadger/
http://www.pgpool.net/mediawiki/index.php/Main_Page
http://www.pgpool.net/mediawiki/index.php/Main_Page
http://www.pgpool.net/mediawiki/index.php/Main_Page
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgpool/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgpool/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-pgpool/
https://crunchydata.github.io/postgres-operator/stable/how-it-works/#_auto_failover
https://crunchydata.github.io/postgres-operator/stable/how-it-works/#_auto_failover
https://crunchydata.github.io/postgres-operator/stable/how-it-works/#_auto_failover

39

You can also pass in pgbackrest backup command options:

pgo backup mycluster --backup-type=pgbackrest --pgbackrest-opts="--type=incr"

Note, you can not specify --storage-config flag when specifying a pgbackrest backup.

List pgBackRest information:

pgo show backup mycluster --backup-type=pgbackrest

Restore from an existing cluster into a newly created PVC:

pgo restore mycluster --to-pvc=restored
pgo create cluster restored --pgbackrest-restore-from=mycluster --pgbackrest

The pgBackRest backrestrepo PVCs are created using the pgo.yaml BackupStorage setting.
Typically, this will be a RWX file system but if the file system is RWO the PVCs will be created
without having write access and a backup and restore will fail. The RWX file system setup will allow
you to restore from this PVC without having to shutdown the currently attached PostgreSQL cluster.
Note that a cluster based off of the restored PVC has to attach the same pgbackrest repo used by the
original cluster the restore was based off of.

37.2. Delete Cluster
The delete cluster command will by default delete all associated components of the selected
cluster, but will not delete the data or the backups unless specified.

Syntax

$ pgo delete cluster NAME|all [FLAGS]

Flags

Name ShorthandInputUsage

--delete-backups -b N/
A

Causes the backups for this cluster to be removed permanently.
This only is applicable with pgbasebackup backup volumes and
does not remove pgbackrest repo volumes.

--delete-configs -b N/
A

Causes the configuration maps for this cluster to be removed
permanently.

--delete-data -d N/
A

Causes the data for this cluster to be removed permanently.

--no-prompt -n N/
A

No command line confirmation.

--selector -s StringThe selector to use for cluster filtering.

Examples

Simple Deletion

Delete a single cluster:

40

pgo delete cluster mycluster

Note that this command will not remove the PVC associated with this cluster.

Complex Deletion

Selectors also apply to the delete command as follows:

pgo delete cluster --selector=project=xray

This command will cause any cluster matching the selector to be removed.

Delete Components, Data, & Backups

You can remove a cluster, it’s data files, and all backups by running:

pgo delete cluster restoredb --delete-data --delete-backups --delete-configs

When you specify a destructive delete like above, you will be prompted to make sure this is what you
want to do. If you don’t want to be prompted you can enter the --no-prompt command line flag.

37.3. Show Cluster
The show cluster command allows you to view all the associated created components of a specific
cluster or selection of clusters.

By default, you will be able to view the status of the created pod, the PVC, Deployment, Service, and
Labels associated with the cluster, and any and all specified options (such as whether crunchy_collect
is enabled).

Syntax

$ pgo show cluster NAME|all [FLAGS]

Flags

Name ShorthandInputUsage

--output=json -o
json

StringThe output format. Currently, json is the only supported value.

--selector -s StringThe selector to use for cluster filtering.

--ccp-image-tag N/
A

StringFilter the results based on the PostgreSQL version of the cluster.

Examples

Simple Display

Show a single cluster:

41

pgo show cluster mycluster

Show All

Show all clusters available:

pgo show cluster all

Show Secrets

User credentials are generated through Kubernetes Secrets automatically for the testuser,
primaryuser and postgres accounts. The generated passwords can be viewed by running the pgo
show user command. More details are available on user management below.

pgo show user mycluster

Viewing Users With Passwords Set to Expire

To see user passwords that have expired past a certain number of days in the mycluster cluster:

pgo show user --expired=7 --selector=name=mycluster

Name ShorthandInputUsage

--expired N/
A

String

PostgreSQL Version

Filter the results based on the PostgeSQL version of the cluster with the --ccp-image-tag flag:

pgo show cluster all --ccp-image-tag=centos7-10.5-2.1.0

37.4. Test Connection
This command will test each service defined for the cluster using the postgres, primary, and normal
user accounts defined for the cluster. The cluster credentials are accessed and used to test the database
connections. The equivalent psql command is printed out as connections are tried, along with the
connection status.

Syntax

$ pgo test NAME|all [FLAGS]

Flags

Name ShorthandInputUsage

--output=json -o
json

StringThe output format. Currently, json is the only supported value.

--selector -s StringThe selector to use for cluster filtering.

42

Examples

Simple Test

Test the database connections to a cluster:

pgo test mycluster

Complex Test

Like other commands, you can use the selector to test a series of clusters or to test all available
clusters:

pgo test --selector=env=research
pgo test all

38. Administration

38.1. Reload
The reload command will perform a reload on the specified PostgreSQL cluster.

Syntax

$ pgo reload NAME [FLAGS]

Flags

Name ShorthandInputUsage

--no-prompt -n N/
A

No command line confirmation.

--selector -s StringThe selector to use for cluster filtering.

Examples

Simple Reload

Reload a single cluster:

pgo reload mycluster

38.2. Backups
The backup command will utilize the crunchy-backup [https://crunchydata.github.io/crunchy-
containers/stable/container-specifications/crunchy-backup/] container to execute a full backup against
another database container using the standard pg_basebackup utility that is included with PostgreSQL.

https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-backup/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-backup/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-backup/

43

When you request a backup, pgo will prompt you if you want to proceed because this action will
delete any existing backup job for this cluster that might exist. The backup files will still be left intact
but the actual Kubernetes Job will be removed prior to creating a new Job with the same name.

Syntax

$ pgo backup NAME [FLAGS]

Flags

Name ShorthandInputUsage

--selector -s StringThe selector to use for cluster filtering.

--pvc-name N/
A

StringThe PVC name to use for the backup instead of the default.

--backup-type N/
A

StringThe backup type to perform. Default is pgbasebackup, and both
pgbasebackup and pgbackrest are valid backup types.

--backup-opts N/
A

StringThe options to pass to pgbasebackup or pgbackrest, use
appropriate command options depending on which type of
backup you are performing.

--storage-config N/
A

StringThe name of a Storage config in pgo.yaml to use for the cluster
storage.

Examples

Simple Backup

You can start a backup job for a cluster as follows:

pgo backup mycluster

Show Backup

View the backup and backup status:

pgo show backup mycluster

Backup PVC Management

Note

pgo show pvc can run into file permission issues if you are trying to view a PVC that is on a
RWO (read write once) file system (e.g. cloud storage, ceph, storageos, etc.). If another pod
has the PVC mounted you will get timeout errors from the pgo lspvc command in the current
3.4.0 release.

View the PVC folder and the backups contained therein:

pgo show pvc mycluster-backup
pgo show pvc mycluster-backup --pvc-root=mycluster-backups

44

The output from this command is important in that it can let you copy/paste a backup snapshot path
and use it for restoring a database or essentially cloning a database with an existing backup archive.

For example, to restore a database from a backup archive:

pgo create cluster restoredb --backup-path=mycluster-backups/2017-03-27-13-56-49 --backup-pvc=mycluster-backup --secret-from=mycluster

This will create a new database called restoredb based on the backup found in mycluster-
backups/2017-03-27-13-56-49 and the secrets of the mycluster cluster.

Override PVC

You can override the PVC used by the backup job with the following:

pgo backup mycluster --pvc-name=myremotepvc

This might be useful for special backup cases such as creating a backup on a disaster recovery PVC.

Delete Backup

To delete a backup enter the following:

pgo delete backup mycluster

When run, this command removes the PVC used for the backups, and runs the rmdata Job to
physically perform data removal of that PVC’s contents. It also removes the pgbackup CRD for this
cluster that holds the last pg_basebackup results.

38.3. Scheduling
The schedule command will generate schedule configuration maps that are utitlized by the crunchy-
scheduler [https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-
scheduler/] container. This allows users to create automated, scheduled backups for their PostgreSQL
clusters.

Currently only two types of backups are supported with the schedule command: * pgBackRest *
pgBaseBackup

Crunchy Scheduler is a cron-like microservice that periodically queries Kubernetes for configuration
maps with the label crunchy-scheduler=true in a specific namespace. After finding the
schedule configs, the scheduler service will either exec into the container (pgBackRest) or create
pgBaseBackup jobs for the configured schedule.

Note

in operator version 3.4.0, you are REQUIRED, a single time, to run a pgbackrest backup
PRIOR to creating a pgbackrest schedule. This will not be a requirement in the 3.5.0 version of
the Operator.

Syntax

$ pgo create schedule NAME [FLAGS]

https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-scheduler/

45

Flags

Name ShorthandInputUsage

--ccp-image-tag -n N/
A

Image version to use for pgBaseBackup backup jobs. Defaults to
what PGO is configured to use.

--no-prompt -n N/
A

No command line confirmation.

--pgbackrest-

backup-type

N/
A

StringThe type of pgBackRest backup to perform. There is no default
and the following are valid: full, diff, incr

--pvc-name N/
A

StringThe PVC name to use for the backup. Only used for
pgBaseBackup schedule types and must be created prior to using.

--schedule N/
A

StringThe schedule assigned to the cron task.

--schedule-type N/
A

StringThe schedule type to perform. There is no default and both
pgbasebackup and pgbackrest are valid schedule types.

--selector -s StringThe selector to use for cluster filtering.

Examples

Creating pgBackRest Schedules

Create a pgBackRest full backup on Sunday at 1 a.m:

pgo create schedule --schedule="0 1 * * 7" --schedule-type=pgbackrest --pgbackrest-backup-type=full mycluster

Create a pgBackRest diff backup on Monday-Saturday at 1 a.m:

pgo create schedule --schedule="0 1 * * 1-6" --schedule-type=pgbackrest --pgbackrest-backup-type=diff mycluster

Creating pgBaseBackup Schedules

Create a pgBaseBackup backup every day at 1 a.m:

pgo create schedule --schedule="0 1 * * *" --schedule-type=pgbasebackup --pvc-name=mycluster-backups mycluster

Creating Schedules Using Selectors

Using the selector flag, we can create schedules for all clusters that match a label:

pgo create schedule --schedule="0 1 * * *" --schedule-type=pgbasebackup --pvc-name=mycluster-backups --selector=env=test

Show Schedules

View the schedules for cluster named mycluster:

pgo show schedule mycluster

View the schedules for all clusters with the label env=test:

pgo show schedule --selector=env=test

46

or for a particular cluster:

pgo show schedule --selector=pg-cluster=mycluster

Delete Schedules

To delete schedules for a specific cluster:

pgo delete schedule mycluster

To delete a schedule by name:

pgo delete schedule --schedule-name=mycluster-pgbackrest-full

To delete schedules for all clusters with the label env=test:

pgo delete schedule --selector=env=test

38.4. Scaling Replicas
When you create a Cluster, you will see in the output a variety of Kubernetes objects were created
including:

• a Deployment holding the primary PostgreSQL database

• a Deployment holding the replica PostgreSQL database

• a service for the primary database

• a service for the replica databases

Since PostgreSQL is a single-primary database by design, the primary Deployment is set to a replica
count of 1 and it can not scale beyond that.

With PostgreSQL, you can create any n-number of replicas each of which connect to the primary. This
forms a streaming replication PostgreSQL cluster. The PostgreSQL replicas are read-only whereas the
primary is read-write.

Syntax

$ pgo scale NAME [FLAGS]

Flags

Name ShorthandInputUsage

--service-type N/
A

StringThe service type to use in the replica Service. If not set, the
default in pgo.yaml will be used. Possible values include
LoadBalancer, ClusterIP, and NodePort.

--ccp-image-tag N/
A

StringThe CCPImageTag to use for cluster creation. If specified,
overrides the .pgo.yaml setting.

--no-prompt -n N/
A

No command line confirmation.

47

Name ShorthandInputUsage

--node-label N/
A

StringThe node label (key) to use in placing the primary database. If
not set, any node is used.

--replica-count N/
A

StringThe replica count to apply to the clusters (default 1).

--resources-config N/
A

StringThe name of a container resource configuration in pgo.yaml that
holds CPU and memory requests and limits.

--storage-config N/
A

StringThe name of a Storage config in pgo.yaml to use for the cluster
storage.

Examples

Scaling Up

Create a Postgres replica:

pgo scale mycluster

Scale a Postgres replica to a certain number of replicas:

pgo scale mycluster --replica-count=3

The pgo scale command is additive, in that each time you execute it, another replica is created which
is added to the Postgres cluster.

Scaling Down

You can cause a replica to be removed from a Postgres cluster by scaling down the replicas.

Syntax

$ pgo scaledown NAME [FLAGS]

Flags

Name ShorthandInputUsage

--query N/
A

N/
A

Prints the list of targetable replica candidates.

--delete-data -d N/
A

Causes the data for the scaled down replica to be removed
permanently.

--target N/
A

StringThe name of a replica to delete.

List the targetable replicas for a given cluster:

pgo scaledown mycluster --query

You can scale down a cluster as follows:

pgo scaledown mycluster --target=mycluster-replica-xxxx

48

Delete the PVC and associated data for the scaled down replica by using the --delete-data
command flag:

pgo scaledown mycluster --target=mycluster-replica-xxxx --delete-data

Testing Replication

There are 2 service connections available to the PostgreSQL cluster. One is to the primary database
which allows read-write SQL processing, and the other is to the set of read-only replica databases. The
replica service performs round-robin load balancing to the replica databases.

You can connect to the primary database and verify that it is replicating to the replica databases as
follows:

psql -h 10.107.180.159 -U postgres postgres -c 'table pg_stat_replication'

Specifying Nodes

The scale command will let you specify a --node-label flag which can be used to influence what
Kube node the replica will be scheduled upon.

pgo scale mycluster --node-label=speed=fast

If you don’t specify a --node-label flag, a node affinity rule of NotIn will be specified to prefer
that the replica be schedule on a node that the primary is not running on.

Overriding Storage Defaults

You can also dictate what container resource and storage configurations will be used for a replica by
passing in extra command flags:

pgo scale mycluster --storage-config=storage1 --resources-config=small

38.5. Manual Failover
Starting with Release 2.6, there is a manual failover command which can be used to promote a replica
to a primary role in a PostgreSQL cluster.

This process includes the following actions:

• pick a target replica to become the new primary

• delete the current primary deployment to avoid user requests from going to multiple primary
databases (split brain)

• promote the targeted replica using pg_ctl promote, this will cause PostgreSQL to go into read-
write mode

• re-label the targeted replica to use the primary labels, this will match the primary service selector
and cause new requests to the primary to be routed to the new primary (targeted replica)

Syntax

$ pgo failover NAME [FLAGS]

49

Flags

Name ShorthandInputUsage

--no-prompt -n N/
A

No command line confirmation.

--query N/
A

N/
A

Prints the list of failover candidates.

--target N/
A

StringThe replica target which the failover will occur on.

Examples

Manual Failover

The command works like this:

pgo failover mycluster --query

That command will show you a list of replica targets you can choose to failover to. You will select
one of those for the following command:

pgo failover mycluster --target=mycluster-abxq

There is a CRD called pgtask that will hold the failover request and also the status of that request.
You can view the status by viewing it:

kubectl get pgtasks mycluster-failover -o yaml

Once completed, you will see a new replica has been started to replace the promoted replica, which
happens automatically due to the re-label. The Deployment will recreate its pod because of this. The
failover typically takes only a few seconds, however, the creation of the replacement replica can take
longer depending on how much data is being replicated.

38.6. Upgrading PostgreSQL
The upgrade command will allow you to upgrade the PostgreSQL version of your cluster with the
pg_upgrade utility. Minor or major upgrades are supported. The Crunchy Container Suite crunchy-
upgrade [https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-
upgrade/] container is responsible for performing this task.

By default, it will request confirmation for the command as the operator deletes the existing contaniers
of the database or cluster and recreates them using the currently defined PostgreSQL contaner image
specified in the pgo.yaml configuration file or with a defined --ccp-image-tag flag. The database
data files remain untouched throughout the upgrade.

Once the upgrade job is completed, the operator will create the original database or cluster container
mounted with the new PVC which contains the upgraded database files.

As the upgrade is processed, the status of the pgupgrade CRD is updated to give the user some
insight into how the upgrade is proceeding. Upgrades like this can take a long time if your database is
large. The operator creates a watch on the upgrade job to know when and how to proceed.

https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/
https://crunchydata.github.io/crunchy-containers/stable/container-specifications/crunchy-upgrade/

50

Syntax

$ pgo upgrade NAME [FLAGS]

Flags

Name ShorthandInputUsage

--ccp-image-tag N/
A

StringThe CCPImageTag to use for cluster creation. If specified,
overrides the pgo.yaml setting.

Examples

Minor Upgrade

Perform a minor PostgreSQL version upgrade:

pgo upgrade mycluster

Overriding Version

Override the CcpImageTag variable defined in the pgo.yaml configuration file:

pgo upgrade mycluster --ccp-image-tag=centos7-9.6.9-1.8.3
pgo upgrade mycluster --ccp-image-tag=centos7-9.6.9-1.8.3

Delete Upgrade

To remove an upgrade CRD, issue the following:

pgo delete upgrade

38.7. Labels
Labels can be applied to clusters and nested according to their type, with any string input being valid.

Syntax

$ pgo label [NAME]|all [FLAGS]

Flags

Name ShorthandInputUsage

--dry-run N/
A

N/
A

Shows the clusters that the label would be applied to, without
labelling them.

--label N/
A

StringThe new label to apply for any selected or specified clusters.

--selector -s StringThe selector to use for cluster filtering.

51

Examples

Applying Labels

You can apply a user defined label to a cluster as follows:

pgo label mycluster --label=env=research

Or if you wanted to apply if to a selection of clusters:

pgo label --label=env=research --selector=project=xray
pgo label all --label=env=research

In the first example, a label of env=research is applied to the cluster mycluster. The second example
will apply the label to any clusters that have an existing label of project=xray applied or to all
clusters.

Removing Labels

You can delete a user defined label from a cluster as follows:

pgo delete label mycluster --label=env=research

38.8. Creating SQL Policies
Policies are SQL files that can be applied to a single cluster, a selection of clusters, or to all newly
created clusters by default.

They are automatically applied to any cluster you create if you define in your pgo.yaml configuration
a CLUSTER.POLICIES value.

Policies are executed as the superuser or postgres user in PostgreSQL. These should therefore be
exercised with caution.

Syntax

$ pgo create policy [NAME] [FLAGS]

Flags

Name ShorthandInputUsage

--in-file N/
A

StringThe policy file path to use for adding a policy.

--url N/
A

N/
A

The url to use for adding a policy.

Examples

Creating Policies

To create a policy use the following syntax:

52

pgo create policy policy1 --in-file=/tmp/policy1.sql
pgo create policy policy1 --url=https://someurl/policy1.sql

When you execute this command, it will create a policy named policy1 using the input file /tmp/
policy1.sql as input. It will create on the server a PgPolicy CRD with the name policy1 that you can
examine as follows:

kubectl get pgpolicies policy1 -o json

Apply Policies

To apply an existing policy to a set of clusters, issue a command like this:

pgo apply policy1 --selector=name=mycluster

When you execute this command, it will look up clusters that have a label value of name=mycluster
and then it will apply the policy1 label to that cluster and execute the policy SQL against that cluster
using the postgres user account.

Testing Policy Application

You can apply policies with a --dry-run flag applied to test which clusters the policy would be
applied to without actually executing the SQL:

pgo apply policy1 --dry-run --selector=name=mycluster

Show Policies

To view policies, either all of them or a specific one:

pgo show policy all
pgo show policy somepolicy

Show Clusters with a Specific Policy

If you want to view the clusters than have a specific policy applied to them, you can use the --
selector flag as follows to filter on a policy name (e.g. policy1):

pgo show cluster --selector=policy1=pgpolicy

Delete Policies

To delete a policy use the following form:

pgo delete policy policy1
pgo delete policy all

38.9. Loading Data
A CSV file loading capability is supported. This can be tested through creating a SQL Policy which
will create a database table that will be loaded with the CSV data. The loading is based on a load
definition found in the sample-load-config.yaml file. In that file, the data to be loaded is specified.

53

When the pgo load command is executed, Jobs will be created to perform the loading for each cluster
that matches the selector filter.

The load configuration file has the following YAML attributes:

Attribute Description

COImagePrefix the pgo-load image prefix to use for the load job

COImageTag the pgo-load image tag to use for the load job

DbDatabase the database schema to use for loading the data

DbUser the database user to use for loading the data

DbPort the database port of the database to load

TableToLoad the PostgreSQL table to load

FilePath the name of the file to be loaded

FileType either csv or json, determines the type of data to be loaded

PVCName the name of the PVC that holds the data file to be loaded

SecurityContext either fsGroup or SupplementalGroup values

For running the pgo load examples, you can create the csv-pvc PVC by running:

kubectl create -f examples/csv-pvc.json

Then you can copy sample load files as referenced by the examples into that PVC location (e.g. /data
or /nfsfileshare).

Syntax

$ pgo load [FLAGS]

Flags

Name ShorthandInputUsage

--load-config N/
A

StringThe load configuration to use that defines the load job.

--policies N/
A

StringThe policies to apply before loading a file, comma separated.

--selector -s StringThe selector to use for cluster filtering.

Examples

Loading CSV Files

Load a sample CSV file into a database as follows:

pgo load --load-config=$COROOT/examples/sample-load-config.yaml --selector=name=mycluster

54

Including Policies

If you include the --policies flag, any specified policies will be applied prior to the data being loaded.
For example:

pgo load --policies="rlspolicy,xrayapp" --load-config=$COROOT/examples/sample-load-config.yaml --selector=name=mycluster

39. Authentication

39.1. Credential Management
The pgo user, pgo create user, and pgo delete user commands are used to manage credentials
for the PostgreSQL clusters.

Syntax

$ pgo user [FLAGS]

Flags

Name ShorthandInputUsage

--change-password N/
A

StringUpdates the password for a user on selective clusters.

--db N/
A

StringGrants the user access to a database.

--expired N/
A

StringSpecifies number of days to check for expiring passwords when
using --update-passwords flag to update passwords.

--selector -s StringThe selector to use for cluster filtering.

--update-passwords N/
A

N/
A

Performs password updating on expired passwords.

--password N/
A

N/
A

Allows user to specify a password instead of using a generated
password.

--valid-days N/
A

Int Sets passwords for new users to X days (default 30).

--password-length N/
A

Int When no password is provided, generates a password with this
number of characters (default 12).

Examples

Basic User Creation

To create a new Postgres user assigned to the mycluster cluster, execute (password will be auto
generated and 12 characters long):

pgo create user sally --selector=name=mycluster

55

Managed User Creation

To create a new Postgres user to the mycluster cluster that has credentials created with Kubernetes
Secrets, use the --managed flag:

pgo create user sally --managed --selector=name=mycluster --password=somepass

A managed account is one that the Operator can manipulate as well; when you run pgo test
mycluster the account is tested with the other default accounts, etc.

When you create a managed user, if pgpool is part of your cluster, then pgpool is reconfigured to pick
up the new user.

Complex User Creation

In this example, a user named user1 is created with a valid until password date set to expire in 30
days. That user will be granted access to the userdb database. This user account also will have an
associated Secret created to hold the password that was generated for this user. Any clusters that
match the selector value will have this user created on it.

pgo create user user1 --valid-days=30 --db=userdb --selector=name=xraydb1

Deleting Users

To delete a Postgres user in the mycluster cluster, execute:

pgo delete user sally --selector=name=mycluster

If pgpool is part of your cluster, deletion of a managed user will cause pgpool to be reconfigured to
pick up the user deletion.

Change Password

To change the password for a user in the mycluster cluster (password will be auto generated and 12
characters long):

pgo user --change-password=sally --selector=name=mycluster

Or to change the password and set an expiration date:

pgo user --change-password=user1 --valid-days=10 --selector=name=xray1

In this example, a user named user1 has its password changed to a generated value and the valid until
expiration date set to 10 days from now. This command will take effect across all clusters that match
the selector. If you specify valid-days=-1 it will mean the password will not expire (e.g. infinity).

If pgpool is part of your cluster, changing a managed user password will cause pgpool to be
reconfigured to pick up the password change.

Updating Expired Passwords

To update expired passwords in a cluster:

pgo user --update-passwords --selector=name=mycluster --expired=5

56

40. pgbouncer Basics
When a pgbouncer deployment is added into your cluster, it will cause the creation of a Secret that
holds the pgbouncer configuration files: * pg_hba.conf * pgbouncer.ini * users.txt

Each user that is defined for your cluster is used to define the pgbouncer credentials, using the same
password.

The pgbouncer configuration includes a connection to a database with the name of your cluster (e.g.
mycluster) and also a database that connects to the cluster’s replicas (e.g. mycluster-replica).

When you add a new user, it will cause the pgbouncer to be reconfigured and a new secret to be
generated, the pgbouncer is restarted to pick up the new configuration file.

Adding a pgbouncer deployment into your PG cluster follows a sequence similar to this:

pgo create cluster mycluster --pgbouncer

You can also add pgbouncer after a cluster has been created:

pgo create pgbouncer mycluster

Note

currently you are required to have a replica in your PG cluster for the pgbouncer sidecar to
effectively work, a replica is currently not automatically created when you create a PG cluster.

41. pgpool Basics
Adding a pgpool deployment into your PG cluster follows a sequence similar to this:

pgo create cluster mycluster

Then you will scale it up:

pgo scale mycluster

Then you will add managed users of your choice:

pgo create user somenewuser mycluster --managed

Then you will create a pgpool for the new cluster:

pgo create pgpool mycluster

This will create a pgpool user credential for each pgo managed user you have created.

41.1. Create pgpool
The create pgpool command will create a pgpool deployment that is part of a cluster.

Syntax

$ pgo create pgpool CLUSTERNAME [FLAGS]

57

Flags

Name ShorthandInputUsage

--selector -s StringThe selector to use for cluster filtering.

Examples

Simple Creation

Create a pgpool:

pgo create pgpool mycluster

Note

currently you are required to have a replica in your PG cluster for the pgpool sidecar to
effectively work, a replica is currently not automatically created when you create a PG cluster.

41.2. Delete pgpool
The delete pgpool command will by delete the pgpool deployment that is part of a cluster.

Syntax

$ pgo delete pgpool CLUSTERNAME [FLAGS]

Flags

Name ShorthandInputUsage

--selector -s StringThe selector to use for cluster filtering.

Examples

Simple Deletion

Delete a pgpool:

pgo delete pgpool mycluster

41.3. Workflow
Starting with Release 3.4, there is a workflow concept that you can use to check the status of a cluster
creation. When you create a cluster (e.g. pgo create cluster), you will see in the response a workflow
ID. You can use that ID to check the status of the cluster creation.

Syntax
pgo show workflow ID

58

title: "How it Works" date: 2018-04-24T18:27:42-07:00 draft: false weight: 30

Latest Release: 3.4.0 2018-12-04

42. Reference Architecture
So, what does the Postgres Operator actually deploy when you create a cluster?

On this diagram, objects with dashed lines are components that are optionally deployed as part of
a PostgreSQL Cluster by the operator. Objects with solid lines are the fundamental and required
components.

For example, within the Primary Deployment, the metrics container is completely optional. That
component can be deployed using either the operator configuration or command line arguments if you
want to cause metrics to be collected from the Postgres container.

Replica deployments are similar to the primary deployment but are optional. A replica is not required
to be created unless the capability for one is necessary. As you scale up the Postgres cluster, the
standard set of components gets deployed and replication to the primary is started.

Notice that each cluster deployment gets its own unique Persistent Volumes. Each volume can use
different storage configurations which is quite powerful.

43. Custom Resource Definitions
Kubernetes Custom Resource Definitions are used in the design of the PostgreSQL Operator to define
the following -

• Cluster - pgclusters

• Backup - pgbackups

• Upgrade - pgupgrades

• Policy - pgpolicies

• Tasks - pgtasks

44. Command Line Interface
The pgo command line interface (CLI) is used by a normal end-user to create databases or clusters, or
make changes to existing databases.

The CLI interacts with the apiserver REST API deployed within the postgres-operator deployment.

From the CLI, users can view existing clusters that were deployed using the CLI and Operator.
Objects that were not previously created by the Crunchy Operator are now viewable from the CLI.

59

45. Operator Deployment
The PostgreSQL Operator runs within a Deployment in the Kubernetes cluster. An administrator will
deploy the operator deployment using the provided script. Once installed and running, the Operator
pod will start watching for certain defined events.

The operator watches for create/update/delete actions on the pgcluster custom resource definitions.
When the CLI creates for example a new pgcluster custom resource definition, the operator catches
that event and creates pods and services for that new cluster request.

46. CLI Design
The CLI uses the cobra package to implement CLI functionality like help text, config file processing,
and command line parsing.

The pgo client is essentially a REST client which communicates to the pgo-apiserver REST server
running within the Operator pod. In some cases you might want to split the apiserver out into its own
Deployment but the default deployment has a consolidated pod that contains both the apiserver and
operator containers simply for convenience of deployment and updates.

46.1. Verbs
A user works with the CLI by entering verbs to indicate what they want to do, as follows.

-
pgo show cluster all
pgo delete cluster db1 db2 db3
pgo create cluster mycluster
-

In the above example, the show, backup, delete, and create verbs are used. The CLI is case sensitive
and supports only lowercase.

47. Affinity
You can have the Operator add an affinity section to a new Cluster Deployment if you want to cause
Kubernetes to attempt to schedule a primary cluster to a specific Kubernetes node.

You can see the nodes on your Kube cluster by running the following -

kubectl get nodes

You can then specify one of those names (e.g. kubeadm-node2) when creating a cluster -

pgo create cluster thatcluster --node-name=kubeadm-node2

The affinity rule inserted in the Deployment will used a preferred strategy so that if the node were
down or not available, Kube would go ahead and schedule the Pod on another node.

You can always view the actual node your cluster pod is scheduled on through the following
command.

60

kubectl get pod -o wide

When you scale up a Cluster and add a replica, the scaling will take into account the use of --node-
name. If it sees that a cluster was created with a specific node name, then the replica Deployment will
add an affinity rule to attempt to schedule the replica on a different node than the node the primary is
schedule on. This provides a simple version of high availability and causes the primary and replicas to
not live on the same Kubernetes node.

48. Debugging
To see if the operator pod is running enter the following -

kubectl get pod -l 'name=postgres-operator'

To verify the operator is running and has deployed the Custom Resources execute the following -

kubectl get crd

The full list of CRDs that are created over time are shown below.

NAME KIND
pgbackups.cr.client-go.k8s.io CustomResourceDefinition.v1beta1.apiextensions.k8s.io
pgclusters.cr.client-go.k8s.io CustomResourceDefinition.v1beta1.apiextensions.k8s.io
pgpolicies.cr.client-go.k8s.io CustomResourceDefinition.v1beta1.apiextensions.k8s.io
pgpolicylogs.cr.client-go.k8s.io CustomResourceDefinition.v1beta1.apiextensions.k8s.io
pgupgrades.cr.client-go.k8s.io CustomResourceDefinition.v1beta1.apiextensions.k8s.io
pgtasks.cr.client-go.k8s.io CustomResourceDefinition.v1beta1.apiextensions.k8s.io

49. Persistent Volumes
Currently, the operator does not delete persistent volumes by default. Instead, it deletes the claims on
the volumes. Starting with release 2.4, the Operator will create Jobs that actually run rm commands
on the data volumes before actually removing the Persistent Volumes if the user passes a `--delete-
data ` flag when deleting a database cluster.

Likewise, if the user passes --delete-backups during cluster deletion a Job is created to remove all
the backups for a cluster include the related Persistent Volume.

50. PostgreSQL Operator Deployment
Strategies

This section describes the various deployment strategies offered by the operator. A deployment in this
case is the set of objects created in Kubernetes when a custom resource definition of type pgcluster is
created. CRDs are created by the pgo client command and acted upon by the postgres operator.

50.1. Strategies
To support different types of deployments, the operator supports multiple strategy implementations.
Currently there is only a default cluster strategy.

61

In the future, more deployment strategies will be supported to offer users more customization to what
they see deployed in their Kubernetes cluster.

Being open source, users can also write their own strategy!

50.2. Specifying a Strategy
In the pgo client configuration file, there is a `CLUSTER.STRATEGY `setting. The current value
of the default strategy is 1. If you don’t set that value, the default strategy is assumed. If you set that
value to something not supported, the operator will log an error.

50.3. Strategy Template Files
Each strategy supplies its set of templates used by the operator to create new pods, services, etc.

When the operator is deployed, part of the deployment process is to copy the required strategy
templates into a ConfigMap (operator-conf) that gets mounted into /operator-conf within the
operator pod.

The directory structure of the strategy templates is as follows -

|-- backup-job.json
|-- cluster
| |-- 1
| |-- cluster-deployment-1.json
| |-- cluster-replica-deployment-1.json
| |-- cluster-service-1.json
|
|-- pvc.json

In this structure, each strategy’s templates live in a subdirectory that matches the strategy identifier.
The default strategy templates are denoted by the value of 1 in the directory structure above.

If you add another strategy, the file names must be unique within the entire strategy directory. This is
due to the way the templates are stored within the ConfigMap.

50.4. Default Cluster Deployment Strategy (1)
Using the default cluster strategy, a cluster when created by the operator will create the following on
a Kubernetes cluster -

• deployment running a Postgres primary container with replica count of 1

• service mapped to the primary Postgres database

• service mapped to the replica Postgres database

• PVC for the primary will be created if not specified in configuration, this assumes you are using a
non-shared volume technology (e.g. Amazon EBS), if the CLUSTER.PVC_NAME value is set in your
configuration then a shared volume technology is assumed (e.g. HostPath or NFS), if a PVC is
created for the primary, the naming convention is clustername where clustername is the name of
your cluster.

62

If you want to add a Postgres replica to a cluster, you will scale the cluster. For each replica-count, a
Deployment will be created that acts as a PostgreSQL replica.

This is very different than using a StatefulSet to scale up PostgreSQL. Why would you do it this way?
Imagine a case where you want different parts of your PostgreSQL cluster to use different storage
configurations,. With this method, it can be done through using specific placement and deployments
of each part of the cluster.

This same concept applies to node selection for the PostgreSQL cluster components. The Operator
will let you define precisely which node that the PostgreSQL component should be placed upon using
node affinity rules.

50.5. Cluster Deletion
When you run the following, the cluster and its services will be deleted. However, the data files and
backup files will remain as well as the PVCs for this cluster.

pgo delete cluster mycluster

However, to remove the data files from the PVC you can pass the following flag -

--delete-data

This causes a workflow to be started to remove the data files on the primary cluster deployment PVC.

The following flag will cause all of the backup files to be removed.

--delete-backups

The data removal workflow includes the following steps -

• create a pgtask CRD to hold the PVC name and cluster name to be removed

• the CRD is watched, and on an ADD will cause a Job to be created that will run the rmdata
container using the PVC name and cluster name as parameters which determine the PVC to mount,
and the file path to remove under that PVC

• the rmdata Job is watched by the Operator, and upon a successful status completion the actual
PVC is removed

This workflow insures that a PVC is not removed until all the data files are removed. Also, a Job was
used for the removal of files since that can be a time consuming task.

The files are removed by the rmdata container which essentially issues the following command to
remove the files -

rm -rf /pgdata/<some path>

50.6. Custom Postgres Configurations
Starting in release 2.5, users and administrators can specify a custom set of Postgres configuration
files be used when creating a new Postgres cluster. The configuration files you can change include -

63

• postgresql.conf

• pg_hba.conf

• setup.sql

Different configurations for PostgreSQL might be defined for the following -

• OLTP types of databases

• OLAP types of databases

• High Memory

• Minimal Configuration for Development

• Project Specific configurations

• Special Security Requirements

Global ConfigMap

If you create a configMap called pgo-custom-pg-config with any of the above files within it, new
clusters will use those configuration files when setting up a new database instance. You do NOT have
to specify all of the configuration files. It is entirely up to your use case to determine which to use.

This global configmap holds the pgbackrest.conf file, this is required for pgbackrest backups to
work! This also applies to ANY custom configuration file you wish to use, it MUST contain a
pgbackrest.conf file as a key. See the example for pgo-custom-pg-config for the pgbackrest.conf file
and how to add it to your custom configuration ConfigMap.

An example set of configuration files and a script to create the global configMap is found at -

$COROOT/examples/custom-config

If you run the create.sh script there, it will create the configMap that will include the PostgreSQL
configuration files within that directory.

Config Files Purpose

The postgresql.conf file is the main Postgresql configuration file that allows the definition of a wide
variety of tuning parameters and features.

The pg_hba.conf file is the way Postgresql secures client access.

The setup.sql file is a Crunchy Container Suite configuration file used to initially populate the
database after the initial initdb is run when the database is first created. Changes would be made to
this if you wanted to define which database objects are created by default.

The pgbackrest.conf file is merely used to tell the Postgres container that it should allocate a
pgbackrest configuration directory when initializing the container. The contents of this file do not

64

get inspected but the name has to be pgbackrest.conf. This requirement will change in upcoming
operator releases.

Granular Config Maps

Granular config maps can be defined if it is necessary to use a different set of configuration files for
different clusters rather than having a single configuration (e.g. Global Config Map). A specific set of
ConfigMaps with their own set of PostgreSQL configuration files can be created. When creating new
clusters, a --custom-config flag can be passed along with the name of the ConfigMap which will be
used for that specific cluster or set of clusters.

Defaults

If there’s no reason to change the default PostgreSQL configuration files that ship with the Crunchy
Postgres container, there’s no requirement to. In this event, continue using the Operator as usual and
avoid defining a global configMap.

Labeling

When a custom configMap is used in cluster creation, the Operator labels the primary Postgres
Deployment with a label of custom-config and a value of what configMap was used when creating
the database.

Commands coming in future releases will take advantage of this labeling.

50.7. Metrics Collection
If you add a --metrics flag to pgo create cluster it will cause the crunchy-collect container to be
added to your Postgres cluster.

That container requires you run the crunchy-metrics containers as defined within the crunchy-
containers project.

See the crunchy-containers Metrics example [https://crunchydata.github.io/crunchy-containers/stable/
getting-started/kubernetes-and-openshift/#_metrics_and_performance] for more details on setting up
the crunchy-metrics solution.

50.8. Manual Failover
With manual failover some key features include:

• when you perform a failover, a new replica is created to replace the replica that was promoted to
even out the cluster to the original number of replicas

• when you perform a failover, the promoted replica is removed from the pgreplica CRD to represent
the current truth

The pgo failover --query command will return a list of replica targets which you can select from.
That list include the Ready status of the database as well as the Kube node name it is running on.

https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_and_performance
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_and_performance
https://crunchydata.github.io/crunchy-containers/stable/getting-started/kubernetes-and-openshift/#_metrics_and_performance

65

50.9. Auto Failover
Starting with release 3.1, there is an auto failover mechanism that can be leveraged by pgo users if
enabled.

This feature will cause the operator to start a timer on a database primary that has received a
NotReady status after the database has started. This can happen if for instance the primary database
loses the connection to its database storage (e.g. gluster, NFS).

Once the timer is started, if the primary database does not get back to a Ready status within that timer
period, a failover is triggered for this cluster. The failover target is selected by the auto failover logic.

The amount of time (in seconds) the auto failover timer will wait before triggering a failover is
determined by the following pgo.yaml setting:

AutofailSleepSeconds: 9

If the above setting is not configured a default value of 30 seconds is chose.

The logic of auto failover works like this:

• the readiness probe on the primary database container is executed every few seconds to check the
readiness of the database, this is what tells Kubernetes whether or not the container is Ready or
NotReady.

• if a NotReady state is detected then that event is caught by the operator which is watching for
database containers created by the operator

• upon a NotReady event, a timer is started for that database which acts as the final check as to if a
failover is required for that database

• if the timer expires and the state is still Not Ready then the manual failover logic is executed for
this cluster which causes a promotion of a replica to primary, and also creates a replacement replica

• only replica targets with a status of Ready will be used to select the target to promote

The readiness probe settings are defined in the following template:

conf/postgres-operator/cluster/1/cluster-deployment-1.json

The readiness probe settings determine how often the database check is performed. See the
Kubernetes documentation on readiness probes for more details on these settings.

	
	Table of Contents
	1. Documentation
	2. What is the Operator?
	3. Design
	4. Requirements
	5. Installation
	6. Configuration
	7. Getting Started
	8. Installation
	9. Next Steps
	10. Overview
	11. Quickstart
	11.1. GKE/PKS
	11.2. Openshift Container Platform

	12. Next Steps
	13. Project Structure
	14. Installation Prerequsites
	15. Basic Installation
	15.1. HostPath Persistent Volumes
	15.2. NFS Persistent Volumes

	16. Build Images & Deploy
	16.1. Packaged Images
	16.2. Build from Source
	Requirements

	17. Makefile Targets
	18. Next Steps
	19. Helm Chart
	20. Next Steps
	21. Overview
	22. Openshift Container Platform
	23. Security Configuration
	23.1. Kube RBAC
	23.2. Basic Authentication
	23.3. Configure TLS
	23.4. pgo RBAC
	23.5. REST API Configuration
	Storage Configurations
	Overriding Container Resources Configuration Defaults
	Overriding Storage Configuration Defaults
	Disaster Recovery Using Storage Configurations

	23.6. PostgreSQL Operator Container Configuration
	Operator Templates

	24. Bash Completion
	25. REST API
	26. Deploying pgPool
	27. Storage Configuration
	27.1. NFS
	27.2. Dynamic
	27.3. GKE
	Install Kubectl
	GCP
	Install GCloud
	Configure Kubectl for Cluster Access

	28. Verify Operator Status
	29. Configure pgo Client
	29.1. Running Kubernetes Locally
	Running Kubernetes Remotely
	Port forwarding
	Using an ingress

	30. Verify pgo Client
	31. Next Steps
	32. Required Updates
	32.1. Configuration File
	32.2. Secrets

	33. Required Updates
	33.1. Configuration File
	33.2. Container Resources
	33.3. Kube RBAC
	33.4. Application RBAC
	33.5. User Creation
	33.6. Replica CRD

	34. First Steps
	35. Cluster Names
	36. General
	36.1. Operator Version
	Syntax

	36.2. Operator Status
	Syntax
	Flags

	36.3. Operator Configuration
	Syntax

	36.4. Disk Capacity
	Syntax
	Flags
	Examples
	Cluster Selectors

	37. Cluster Basics
	37.1. Create Cluster
	Syntax
	Flags
	Examples
	Simple Creation
	Complex Creation
	Image Version
	Metrics
	pgBadger
	pgPool II
	Auto Failover
	pgBackRest

	37.2. Delete Cluster
	Syntax
	Flags
	Examples
	Simple Deletion
	Complex Deletion
	Delete Components, Data, & Backups

	37.3. Show Cluster
	Syntax
	Flags
	Examples
	Simple Display
	Show All
	Show Secrets
	Viewing Users With Passwords Set to Expire
	PostgreSQL Version

	37.4. Test Connection
	Syntax
	Flags
	Examples
	Simple Test
	Complex Test

	38. Administration
	38.1. Reload
	Syntax
	Flags
	Examples
	Simple Reload

	38.2. Backups
	Syntax
	Flags
	Examples
	Simple Backup
	Show Backup
	Backup PVC Management
	Override PVC
	Delete Backup

	38.3. Scheduling
	Syntax
	Flags
	Examples
	Creating pgBackRest Schedules
	Creating pgBaseBackup Schedules

	Creating Schedules Using Selectors
	Show Schedules
	Delete Schedules

	38.4. Scaling Replicas
	Syntax
	Flags
	Examples
	Scaling Up
	Scaling Down

	Syntax
	Flags
	Testing Replication
	Specifying Nodes
	Overriding Storage Defaults

	38.5. Manual Failover
	Syntax
	Flags
	Examples
	Manual Failover

	38.6. Upgrading PostgreSQL
	Syntax
	Flags
	Examples
	Minor Upgrade
	Overriding Version
	Delete Upgrade

	38.7. Labels
	Syntax
	Flags
	Examples
	Applying Labels
	Removing Labels

	38.8. Creating SQL Policies
	Syntax
	Flags
	Examples
	Creating Policies
	Apply Policies
	Testing Policy Application
	Show Policies
	Show Clusters with a Specific Policy
	Delete Policies

	38.9. Loading Data
	Syntax
	Flags
	Examples
	Loading CSV Files
	Including Policies

	39. Authentication
	39.1. Credential Management
	Syntax
	Flags
	Examples
	Basic User Creation
	Managed User Creation
	Complex User Creation
	Deleting Users
	Change Password
	Updating Expired Passwords

	40. pgbouncer Basics
	41. pgpool Basics
	41.1. Create pgpool
	Syntax
	Flags
	Examples
	Simple Creation

	41.2. Delete pgpool
	Syntax
	Flags
	Examples
	Simple Deletion

	41.3. Workflow
	Syntax

	42. Reference Architecture
	43. Custom Resource Definitions
	44. Command Line Interface
	45. Operator Deployment
	46. CLI Design
	46.1. Verbs

	47. Affinity
	48. Debugging
	49. Persistent Volumes
	50. PostgreSQL Operator Deployment Strategies
	50.1. Strategies
	50.2. Specifying a Strategy
	50.3. Strategy Template Files
	50.4. Default Cluster Deployment Strategy (1)
	50.5. Cluster Deletion
	50.6. Custom Postgres Configurations
	Global ConfigMap
	Config Files Purpose
	Granular Config Maps
	Defaults
	Labeling

	50.7. Metrics Collection
	50.8. Manual Failover
	50.9. Auto Failover

