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§0. About Go 101

About Go 101

I feel it is hard to describe the contents in this article in the general description manner. So this article will

use the interview manner to make descriptions instead.

IHi Tapir, when and why did you plan to write this book?

At about July 2016, after (not very intensively) using Go for two years, I felt that Go is a simple language
and I had mastered Go programming. At that time, I had collected many details in Go programming. I
thought I can archive these details into a book. I thought it should be an easy job.

I was wrong. I was overconfident. In trying to make explanations for some details, I found I couldn't
explain them clearly. With more and more confusions being gathered, I felt my Go knowledge was so
limited that I was still a newbie Go programmer.

I gave up writing that book.

IGave up? Isn't this book almost finished now?

It was that book being cancelled, not the book Go 101. I eventually cleared almost all the confusions by
reading many official Go documentation and all kinds of Go articles on Internet, and by finding answers
from some Go forums and the Go project issue tracker.

I spent about one year clearing the confusions. During the period, from time to time, once I had cleared
most confusions on a topic and regained the confidence on explaining that topic, I wrote one blog article
for that topic. In the end, I had written about twenty Go articles. And I had collected more Go details than
before. It was the time to restart the plan of writing a Go book.

I wrote another ten basic tutorial articles and twenty more articles on all kinds of other Go topics. So now
Go 101 has about 50 articles.

|What were your ever confusions?

Some of the confusions were a few syntax and semantics design details, some of them involved values of
certain kinds of types (mainly slices, interfaces and channels), and a few of them were related to standard
package APIs.

|What are the causes of your ever confusions do you think?
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Thinking Go is easy to master is considered harmful. Holding such opinion will make you understand Go
shallowly and prevent you from mastering Go.

Go is a feature rich language. Its syntax set is surely not large, but we also can't say it is small. Some
syntax and semantics designs in Go are straightforward, some are a little counter-intuitive or inconsistent
with others. There are several trade-offs in Go syntax and semantics designs. A programmer needs certain
Go programming experiences to comprehend the trade-offs.

Go provides several first-citizen non-essential kinds of types. Some encapsulations are made in
implementing these types to hide the internal structures of these types. On one hand, the encapsulations
bring much convenience to Go programming. On the other hand, the encapsulations make some obstacles
to understand the behaviors of values of these types more deeply.

Many official and unofficial Go tutorials are very simple and only cover the general use cases by ignoring
many details. This may be good to encourage new Go programmers to learn and use Go. On the other
hand, this also makes many Go programmers overconfident on the extent of their Go knowledge.

Several functions and types declared in some standard packages are not got detailed explanations. This is
understandable, for many details are so subtle that it is hard to find proper wordings to explain them
clearly. Saying a few accurate words is better than says some lots of words with inaccuracies. But this
really leaves some confusions for the package users.

ISo do you think simplicity is not a selling point of Go?

I think, at least, simplicity is not a main selling point of Go. After all, there are several other languages
simpler than Go. On the other hand, Go, as a feature rich language, is also not a complicated language. A
new Go programmer with right attitudes can master Go programming in one year.

IThen what are the selling points of Go do you think?

Personally, I think the fact that, as a static language, Go is flexible as many dynamic script languages is

the main selling point of Go language.

Memory saving, fast program warming-up and fast code execution speed combined is another main selling
point of Go. Although this is a common selling point of many C family languages. But for web
development area, seldom languages own the three characteristics at the same time. In fact, this is the

reason why I switched to Go from Java for web development.

Built-in concurrent programming support is also a selling point of Go, though personally I don't think it is

the main selling point of Go.

Great code readability is another important selling point of Go. I feel readability is the most important

factor considered in designing Go.
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Great cross-platform support is also a selling point of Go, though this selling point is not much unique

nowadays.

A stable core design and development team and an active community together can also be viewed as a

selling point of Go.

IWhat does Go 101 do to clear these confusions?

Go 101 tries to clear many confusions by doing the followings.

1.

Emphasizes on basic concepts and terminologies. Without understanding these basic concepts and
terminologies, it is hard to fully understand many rules and high level concepts.

Adds the value part terminology and use one special article to explain value parts. This article
uncovers the underlying structures of some kinds of types, so that Go programmers could understand
Go values of those types more deeply. I think knowing a little possible underlying implementations
is very helpful to clear some confusions about all kinds of Go values.

Explains memory blocks in detail. Knowing the relations between Go values and memory blocks is
very helpful to understand how a garbage collector works and how to avoid memory leaking.

Views interface values as boxes for wrapping non-interface values. I found thinking interface values
as value boxes is very helpful to clear many interface related confusions.

Makes several summary articles and special topic articles by aggregating many knowledge points
and details, which would save Go programmers much learning time.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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§2. An Introduction of Go

An Introduction of Go

Go is a compiled and static typed programming language born from Google. Many of the core Go design
and SDK development team members have many years of experience in the field of programming
language research.

Go has many features. Some are unique, some are borrowed from other programming languages:

e Dbuilt-in concurrent programming support
o goroutines (green threads) and start new goroutines easily.
o channels (based on CSP model) and select mechanisms to do synchronizations between

goroutines.

¢ the container types map and slice are first-class citizens.

¢ polymorphism through interfaces.

e value boxing and reflection through interfaces.

e pointers.

¢ function closures.

e methods.

¢ deferred function calls.

e type embedding.

¢ type deduction.

e memory safety.

e automatic garbage collection.

e great cross-platform compatibility.

Besides the above features, further highlights are:

e The syntax of Go is deliberately designed to be simple, clean, and similar to other popular
programming languages. This makes Go programming easy to pick up.

e Go comes with a great set of standard code packages which provide all kinds of common
functionalities. Most of the packages are cross-platform.

e Go also has an active community, and there are plenty of high quality third party Go packages and
projects g to import and use.

Go programmers are often called gophers.

In fact, although Go is a compiled and static typed programming language, Go also has many features
which are usually only available in dynamic script languages. It is hard to combine these two kinds into
one language, but Go did it. In other words, Go owns both the strictness of static languages and the
flexibility of dynamic languages. I can't say there are not any compromises between the two, but the effect

of the compromises is much weaker than the benefits of the combination in Go.

Readability is an important factor which affects the design of Go heavily. It is not hard for a gopher to

mnderstand the Go code written hv other gonhers.
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§2. An Introduction of Go

understand the Go code written by other gophers.

Currently, the most popular Go compiler is written in Go and maintained by the Go design team. Later we
shall call it the standard Go compiler, or gc (an abbreviation for Go compiler, not for garbage collection

GC). The Go design team also maintains a second Go compiler, gccgo. Nowadays it's use is less popular
than gc, but it always serves as a reference, and both compilers are in active development. As of now the

Go team focuses on the improvement of gc.

gc is provided in the official Go SDK. Go SDK 1.0 was release in March, 2012. The version of Go is

consistent with the version of Go SDK. There were/are two major versions released each year.

Since the release of Go 1.0, the syntax of Go has changed a little, but there were/are many improvements
for the tools in Go SDK, from version to version, especially for gc. For example, noticeable lags caused
by garbage collecting is a common criticism for languages with automatic memory management. But since
Go 1.8, improvements made for the concurrent garbage collection implementation in gc basically

eliminated the lag problem.

gc supports cross-platform compilation. For example, we can build a Windows executable on a Linux

OS, and vice versa.

Programs written in go language mostly compile very fast. Compilation time is an important factor for the
happiness in development. Short build time is one reason why many programmers like programming with
Go.

Advantages of Go executables are:

¢ small memory footprint
e fast code execution

e short warm-up duration (so great deployment experience)

Some other compiled languages, such as C/C++/Rust may also have these three advantages (and they may

have their respective advantages compared to Go), but they lack three important characteristics of Go:

o fast compilation results in happy local development experience and short deployment iteration
cycles
o flexible, like dynamic languages

e built-in concurrent programming support

All the above advantages combined make Go an outstanding language and a good choice for many kinds
of projects. Currently, Go is popularly used in network, system tools, database development and block

chain development areas. Lately more and more embrace Go for building games, big data and Al projects.

Finally, Go is not perfect in all aspects. There are certain trade-offs in Go design. And the current Go 1
really has some shortcomings. For example, Go doesn't support generics for custom types and functions

now. Go team members are not against introducing custom generics into Go, they just haven't found a

10



§2. An Introduction of Go

good solution yet which keeps Go clean and simple. Go 2 is in planning now. Nothing is impossible in the

future.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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§3. The Official Go SDK

The Official Go SDK

Currently, the tools in the official Go SDK are the most used tools to develop Go projects. In Go 101
article series, all examples are compiled and verified with the standard Go compiler.

This article will introduce how to setup the Go development environment and how to run simple Go
programs. Some tools of the official Go SDK will also be introduced.

IInstall Go SDK

Please download # the official Go SDK and install it according to the instructions shown in the
download page.

The version of an official Go SDK release is consistent with the highest Go language version the release
supports. For example, the latest Go SDK 1.13.x supports all Go language versions from 1.0 to Go 1.13.

The path to the bin subfolder in the Go SDK installation root path must be put in the PATH environment
variable to execute the tools (mainly the go subcommands) in the SDK without inputting their full paths.
If your Go SDK is installed with an installer or with a package manager, the path to the bin subfolder

may have been already set in the PATH environment variable automatically for you.

Earlier Go SDK versions might require GOROOT and GOPATH environment variables to be set. The latest
Go SDK has no such requirements. The default value of the GOPATH environment variable is the path to
the go folder under the home directory of the current user. GOPATH environment variable may list

multiple paths.

There is a GOBIN environment variable which controls where the binary files generated by some go
subcommands, such as the go install subcommand (see below), will be stored. If the environment
variable is not set, the go command will use the path to bin subfolder in the first path specified in the
GOPATH environment variable to store the generated binary files. The path to the folder for storing the
binary files should be set in the PATH environment variable to run the binary files without specifying their

full paths.

Before Go SDK 1.11, it is recommended to put all custom Go packages into the src subfolder of any path
specified in the GOPATH environment variable, in particular when a Go project depends on some third

party packages. Packages will be introduced in packages and imports (§10) later.

In Go SDK 1.11, an experimental feature, Go modules, is supported. The Go modules feature lets us put

our Go projects freely in any folder. We can get more module releated information from this wiki
page §# .

Note, since Go SDK 1.13, the Go modules feature will become as the preferred mode (to the old GOPATH

12
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§3. The Official Go SDK

mode). The necessity and meaningfulenss of the GOPATH environment variable will be weakened much,
even be abolished eventually. On the other hand, the importance of the GOBIN environment variable will

be promoted, for there is still a need to store the binary files produced by some go subcommands.

|The Simplest Go Program

Let's write a simple example and learn how to run simple Go programs.
The following program is the simplest Go program.

1| package main

2|
3| func main() {
4| }

The words package and func are two keywords. The two main words are two identifiers. Keywords

and identifiers are introduced in a coming article (85).
The first line package main specifies the package name (main here) of the source file.
The second line is a blank line for better readability.

The remaining code declares a function which is also called main. This main function in a main

package specifies the entry point of a program. (Note that some other user code might be executed before
the main function gets invoked.)

IRun Go Programs

The official Go SDK requires that Go source code file to have the extension .go. Here, we assume the

above source code is saved in a file named simplest-go-program.go.

Open a terminal and change the current directory to the directory which contains the above source file,

then run
$ go run simplest-go-program.go
Nothing is output? Yes, this program outputs nothing.
If there are some syntax errors in the source code, then these errors will be reported as compilation errors.

Note: if multiple source files are in the main package of a program, then we should run the program with

the following command

$ go run .

13
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Note, the go run command is not recommended to compile and run large Go projects. It is just a
convenient way to run simple Go programs, like the ones in the Go 101 articles. For large Go projects,
please use the commands go build or go install to build and create executable binary files instead.

IMore go Subcommands

The three commands, go run, go build and go install, only output code syntax errors (if any).
They don't (try to) output code warnings (a.k.a., possible code logic mistakes). We can use the go vet

command to check and report such warnings.

We can use the go fmt command to format Go source code with a consistent coding style.

We can use the go get command to get a remote third-party go package to Icoal. go get requires the

corresponding version control tool must be installed.

We can use the go test command to run tests and benchmarks.

We can use the go doc command to view Go documentation in terminal windows.
Since Go SDK 1.11, we can use the go mod command to manage dependencies.

We can use the go help aSubCommand command to view the help message for a specified sub

command.

The go command run without any arguments shows the supported subcommands.

The Go 101 article series will not explain much more on how to use the tools provided by the official Go
SDK. Please read the official documentation . for details.

IView Go Documentation in Browsers

We can view all kinds of Go documentation at the official Go website golang.org & .

We can also run godoc -http=:9999 to start a local clone of the official website at localhost:9999 & .

Please note,

e since Go SDK 1.13, the godoc command has been removed from Go SDK # . Please run go get

golang.org/x/tools/cmd/godoc to install it separately. The latest godoc version supports

modules mode.
e for Go SDK 1.10, if the GOROOT environment variable is unset, we must specify the goroot flag

when running the local godoc server, e. g. godoc -http=:9999 -goroot path/to/go/sdk.
This inconvenience is caused by a bug in Go SDK 1.10. This bug has been fixed since Go SDK
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1.11.

e since Go SDK 1.12, the documentation "A Tour of Go" is not packaged in Go SDK any more. We

canrun go get golang.org/x/tour; tour to view the documentation locally.

The godoc command tries to list the documentation of all the packages under the paths specified in the
GOPATH environment variable. If you only want to view the documentation of the standard packages, you

can set the GOPATH environment variable to a non-exist path before running godoc, for example, run
GOPATH=nonexist godoc -http=:9999 on Linux.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently

from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Introduction to Source Code Elements

Go is known for its simple and clean syntax. This article introduces the common source code elements in
programming through a simple example. This will help new gophers (Go programmers) get a basic idea of
the usage of Go elements.

IProgramming and Source Code Elements

Programming can be viewed as manipulating operations in all kinds of ways to reach certain goals.
Operations write data to and read data from hardware devices to complete tasks. For modern computers,
elemental operations are low-level CPU and GPU instructions. Common hardware devices include
memory, disk, network card, graphics card, monitor, keyboard and mouse, etc.

Programming by manipulating low-level instructions directly is tedious and error-prone. High-level
programming languages make some encapsulations for low-level operations, and make some abstracts for

data, to make programming more intuitive and human-friendly.

In popular high-level programming languages, operations are mainly achieved by calling functions and
using operators. Most popular high-level programming languages support several kinds of conditional
and loop control flows, we can think of them as special operations. The syntax of these control flows is
close to human language so that the code written by programmers is easy to understand.

Data is abstracted as types and values in most high-level programming languages. Types can be viewed as
value templates, and values can be viewed as type instances. Most languages support several built-in
types, and also support custom types. The type system of a programming language is the spirit of the
language.

There may be a large number of values used in programming. Some of them can be represented with their
literals (text representations) directly, but others can't. To make programming flexible and less error-

prone, many values are named. Such values include variables and named constants.

Named functions, named values (including variables and named constants), defined types and type alias
are called resources in Go 101. The names of resources must be identifiers (§5). Package names and

package import names shall also be identifiers.

High-level programming code will be translated to low-level CPU instructions by compilers to get
executed. To help compilers parse high-level programming code, many words are reserved to prevent

them from being used as identifiers. Such words are called keywords (85).

Many modern high-level programming languages use packages to organize code. A package must import
another package to use the exported (public) resources in the other package. Package names and package

import names shall also be identifiers.
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machine languages, we still need some comments for some code to explain the logic. The example

84. Introduction to Source Code Elements

program in the next section contains many comments.

IA Simple Go Demo Program

Let's view a short Go demo program to know all kinds of code elements in Go. Like some other
languages, in Go, line comments start with //, and each block comment is enclosed in a pair of /* and

*/.

Below is the demo Go program. Please read the comments for explanations. More explanations are

following the program.

1]

2|

3]

4]

5]

6]

7]

8]

9]
10|
11|
12|
13|
14|
15|
16|
17]
18]
19|
20|
21|
22|
23]
24|
25|
26|
27
28|
29|
30|
31|
32|
33|

package main // specify the source file's package

import "math/rand" // import a standard package

const MaxRnd = 16 // a named constant declaration

// A function declaration
/%
StatRandomNumbers produces a certain number of
non-negative random integers which are less than
MaxRnd, then counts and returns the numbers of
small and large ones among the produced randoms.
n specifies how many randoms to be produced.
*/
func StatRandomNumbers(n int) (int, int) {
// Declare two variables (both as 0).
var a, b int
// A for-loop control flow.
for 1 (= 0; 1 < n; i++ {
// An if-else control flow.
if rand.Intn(MaxRnd) < MaxRnd/2 {
a=-a+1
} else {
b++ // same as: b = b + 1

}

return a, b // this function return two results

// "main" function is the entry function of a program.
func main() {

var num = 100

// Call the declared StatRandomNumbers function.

17
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34| X, Yy := StatRandomNumbers(num)

35| // Call two built-in functions (prlnt and println).
36| print("Result: ", x, "+ ", y, " =", num, "? ")
37| println(x+y == num)

38| }

Save above source code to a file named basic-code-element-demo.go and run this program by:

$ go run basic-code-element-demo.go
Result: 46 + 54 = 100? true

In the above program, package, import, const, func, var, for, if, else, and return are all

keywords. Most other words in the program are identifiers. Please read keywords and identifiers (§5) for

more information about keywords and identifiers.

The four int words at line 15 and line 17 denote the built-in int type, one of many kinds of integer
types in Go. The 16 at line 5, @ at line 19, 1 at line 22 and 100 at line 32 are some integer literals. The
"Result: " atline 36 is a string literal. Please read basic types and their value literals (§6) for more

information about above built-in basic types and their value literals. Some other types (composite types)
will be introduced later in other articles.

Line 22 is an assignment. Line 5 declares a named constant, MaxRnd. Line 17 and line 32 declare three
variables, with the standard variable declaration form. Variables i at line 19, x and y at line 34 are
declared with the short variable declaration form. We have specified the type for variables a and b as
int. Go compiler will deduce that the types of i, num, x and y are all int, because they are initialized

with integer literals. Please read constants and variables (§7) for more information about untyped values,

type deduction, value assignments, and how to declare variables and named constants.

There are many operators used in the program, such as the less-than comparison operator < at line 19 and
21, the equal-to operator == at line 37, and the addition operator + at line 22 and line 37. Yes, + at line

36 is not an operator, it is one character in a string literal. The values involved in an operator operation are
called operands. Please read common operators (88) for more information. More operators will be
introduced in other articles later.

At line 36 and line 37, two built-in functions, print and println, are called. A custom function
StatRandomNumbers is declared from line 15 to line 28, and is called at line 34. Line 21 also calls a
function, Intn, which is a function declared in the math/rand standard package. A function call is a

function operation. The input values used in a function call are called arguments. Please read function

declarations and calls (§9) for more information.

(Note, the built-in print and println functions are not recommended to be used in formal Go
programming. The corresponding functions in the fmt standard packages should be used instead in

formal Go projects. In Go 101, the two functions are only used in the several starting articles.)

Line 1 specifies the package name of the current source file. The main entry function must be declared in
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a package which is also called main. Line 3 imports a package, the math/rand standard code package.
Its import name is rand. The function Intn declared in this standard package is called at line 21. Please

read code packages and package imports (§10) for more information about how to organize code packages
and import packages.

The article expressions, statements and simple statements (§11) will introduce what are expressions and
statements. In particular, all kinds of simple statements, which are special statements, are listed. Some
portions of all kinds of control flows must be simple statements, and some portions must be expressions.

In the StatRandomNumbers function body, two control flows are used. One is a for loop control flow,

which nests the other one, an if-else conditional control flow. Please read basic control flows (§12) for

more information about all kinds of basic control flows. Some other special control flows will be
introduced in other articles later.

Blank lines have been used in the above program to improve the readability of the code. And as this
program is for code elements introduction purpose, there are many comments in it. Except the
documentation comment for the StatRandomNumbers function, other comments are for demonstration
purpose only. We should try to make code self-explanatory and only use necessary comments in formal
projects.

IAbout Line Breaks

Like many other languages, Go also uses a pair of braces ({ and }) to form an explicit code block.

However, in Go programming, coding style can't be arbitrary. For example, many of the starting curly
braces ({) can't be put on the next line. If we modify the StatRandomNumbers function declaration in

the above program as the following, the program will fail to compile.

1| func StatRandomNumbers(n int) (int, int)
2| { // syntax error

3| var a, b int

4| for i (= 0; i < n; i++
5] { // syntax error

6| if rand.Intn(MaxRnd) < MaxRnd/2
7| { // syntax error
8| a=-a+1

9] } else {

10| b++

11| }

12| }

13| return a, b

14| }

Some programmers may not like the line break restrictions. But the restrictions have two benefits:
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1. they make code compilations become faster.
2. they make the coding styles written by different gophers look similar, so that it is more easily for
gophers to read and understand the code written by other gophers.

We can learn more about line break rules in a later article (§28). At present, we should avoid putting a
starting curly brace on a new line. In other words, generally, the first non-blank character of a code line
should not be the starting curly brace character. (But, please remember, this is not a universal rule.)

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Keywords and Identifiers in Go

This article will introduce keywords and identifiers in Go.

IKeywords

Keywords are the special words which help compilers understand and parse user code.

Up to now (Go 1.13), Go has only 25 keywords:

1| break default func interface select
2| case defer go map struct
3| chan else goto package switch
4| const fallthrough if range type
5| continue for import return var

They can be categorized as four groups:

e const, func, import, package, type and var are used to declare all kinds of code elements in

Go programs.
e chan, interface, map and struct are used as parts in some composite type denotations.

e break, case, continue, default, else, fallthrough, for, goto, if, range, return,
select and switch are used to control flow of code.

e defer and go are also control flow keywords, but in other specific manners. They modify function
calls, which we'll talk about in this article (§13).

These keywords will be explained in details in other articles.

IIdentifiers

An identifier is a token which must be composed of Unicode letters, Unicode digits (Number category Nd

in Unicode Standard 8.0) and _ (underscore), and start with either an Unicode letter or _. Here,

e Unicode letters mean the characters defined in the Letter categories Lu, LI, Lt, Lm, or Lo of The
Unicode Standard 8.0 § .

e Unicode digits mean the characters defined in the Number category Nd of The Unicode Standard
8.0.

keywords can not be used as identifiers.

Identifier _ is a special identifier, it is called blank identifier.

Later we will learn that all names of types, variables, constants, labels, package names and package import
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Later we will learn that all names of types, variables, constants, labels, package names and package import
names must be identifiers.

An identifier starting with an Unicode upper case letter #  is called an exported identifier. The word

exported can be interpreted as public in many other languages. The identifiers which don't start with an
Unicode upper case letter are called non-exported identifiers. The word non-exported can be interpreted as
private in many other languages. Currently (Go 1.13), eastern characters are viewed as non-exported
letters. Sometimes, non-exported identifiers are also called unexported identifiers.

Here are some legal exported identifiers:

1| Player_9

2| DoSomething
3| VERSION

4| Go

5/ n

Here are some legal non-exported identifiers:

1| _

2| _status
3| memStat
4| book

5|

6] —EAH
7|

8| rJ—

And here are some tokens which are illegal to be used as identifiers:

1| // Starting with a Unicode digit.

2| 123
3| 3apples
4]

5| // Containing Unicode characters not
6| // satisfying the requirements.

7] a.b
8| *ptr
9| $name
10| a@b.c
11|
12| // These are keywords.
13| type
14| range

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
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Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Basic Types and Basic Value Literals

Types can be viewed as value templates, and values can be viewed as type instances. This article will
introduce the built-in basic types and their value literals in Go. Composite types will not get introduced in
this article.

IBuilt-in Basic Types in Go

Go supports following built-in basic types:

e one boolean built-in boolean type: bool.

e 11 built-in integer numeric types: int8, uint8, int16, uint16, int32, uint32, int64,
uint64, int, uint, and uintptr.

e two built-in floating-point numeric types: float32 and float64.

e two built-in complex numeric types: complex64 and complex128.

e one built-in string type: string.

Each of the 17 built-in basic types belongs to one different kind of type in Go. We can use the above built-
in types in code without importing any packages, though all the names of these types are non-exported
identifiers.

15 of the 17 built-in basic types are numeric types. Numeric types include integer types, floating-point
types and complex types.

Go also support two built-in type aliases,

e byte is a built-in alias of uint8. We can view byte and uint8 as the same type.

e rune is a built-in alias of int32. We can view rune and int32 as the same type.

The integer types whose names starting with an u are unsigned types. Values of unsigned types are

always non-negative. The number in the name of a type means how many binary bits a value of the type

will occupy in memory at run time. For example, every value of the uint8 occupies 8 bits in memory. So
the largest uint8 value is 255 (28-1), the largest int8 value is 127 (27-1), and the smallest int8 value
is -128 (-27).

If a value occupies N bits in memory, we say the size of the value is N bits. The sizes of all values of a

type are always the same, so value sizes are often called as type sizes.

We often measure the size of a value based on the number of bytes it occupies in memory. One byte

contains 8 bits. So the size of the uint32 type is four bytes.

The size of uintptr, int and uint values n memory are implementation-specific. Generally, The size
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of int and uint values are 4 on 32-bit architectures, and 8 on 64-bit architectures. The size of uintptr

value must be large enough to store the uninterpreted bits of any memory address.

The real and imaginary parts of a complex64 value are both float32 values, and the real and imaginary

parts of a complex128 value are both float64 values.

In memory, all floating-point numeric values in Go are stored in [EEE-754 format & .

A boolean value represents a truth. There are only two possible boolean values in memory, they are
denoted by the two predeclared named constants, false and true. Name constants will be introduced in

the next article (§87).

In logic, a string value denotes a piece of text. In memory, a string value stores a sequence of bytes, which
is the UTF-8 encoding representation of the piece of text denoted by the string value. We can learn more
facts on strings from the article strings in Go (§19) later.

Although there is only one built-in type for each of boolean and string types, we can define custom
boolean and string types for the built-in boolean and string types. So there can be many boolean and string
types. The same is for any kinds of numeric types. The following are some type declaration examples. In
these declarations, the word type is a keyword.

1| /* Some type definition declarations */

2|

3| // status and bool are two different types.
4| type status bool

5| // MyString and string are two different types.
6| type MyString string

7| // Id and uint64 are two different types.

8| type Id uint64

9| // real and float32 are two different types.
10| type real float32

11|

12| /* Some type alias declarations */

13|

14| // boolean and bool denote the same type.
15| type boolean = bool

16| // Text and string denote the same type.

17| type Text = string

18| // U8, uint8 and byte denote the same type.
19| type U8 = uint8

20| // char, rune and int32 denote the same type.
21| type char = rune

We can call the custom real type defined above and the built-in float32 type both as float32 types.

Note, the second float32 word in the last sentence is a general reference, whereas the first one is a

specified reference. Similarly, MyString and string are both string types, status and bool are both
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bool types, etc.

We can learn more on custom types in the article Go type system overview (§14) later.

|Zero Values

Each type has a zero value. The zero value of a type can be viewed as the default value of the type.

e The zero value of a boolean type is false.
e The zero value of a numeric type is zero, though zeros of different numeric types may have different
sizes in memory.

e The zero value of a string type is an empty string.

IBasic Value Literals

A literal of a value is a text representation of the value in code. A value may have many literals. The
literals denoting values of basic types are called basic value literals.

|Boolean value literals

Go specification doesn't define boolean literals. However, in general programming, we can view the two
predeclared identifiers, false and true, as boolean literals. But we should know that the two are not

literals in the strict sense.

As mentioned above, zero values of boolean types are denoted with the predeclared false constant.

|Integer value literals

There are three integer value literal forms, the decimal (base 10) form, the octal (base 8) form, the hex
(base 16) form and the binary form (base 2). For example, the following three integer literals all denote

15 in decimal.

OXF // the hex form (starts with a "Ox" or "OX")
OXF

017 // the octal form (starts with a "@", "@o0" or "00")
Qo017
0017

Ob1111 // the binary form (starts with a "Ob" or "©B")
0B1111
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15 // the decimal form (starts without a "0@")
(Note: the binary form and the octal from starting with @0 or @0 are supported since Go 1.13.)

The following program will print two true texts.

1| package main

2|

3| func main() {

4| println(15 == 017) // true
5] println(15 == OxF) // true
6] }

Note, the two == are the equal-to comparison operator, which will be introduced in common operators

(88).

Generally, zero values of integer types are denoted as 0 in literal, though there are many other legal
literals for integer zero values, such as 80 and ©x0. In fact, the zero value literals introduced in the

current article for other kinds of numeric types can also represent the zero value of any integer type.

|Floating-point value literals

A floating-point value literal can contain a decimal integer part, a decimal point, a decimal fractional part,
and an integer exponent part. Example (XEn is equivalent to x is multiplied by 10", and xE-n is

equivalent to x is divided by 10"):

1.23

01.23 // == 1.23

.23

1.

// A "e" or "E" starts the exponent part (10-based).
1.23e2 // == 123.0
123E2 // == 12300.0
123.E+2 // == 12300.0
le-1 // == 0.1
.1e0 // == 0.1
0010e-2 // == 0.1
Qe+5 // == 0.0

Since Go 1.13,
form.

Go also supports another floating point literal form, hexadecimal floating point literal

e Same as hex integer literals, a hexadecimal floating point literal also must start with ©x or 0X.
o Different from hex integer literals, letter p or P, which is followed by a 2-based exponent, can

appear in a hexadecimal floating point literal.
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e Letter e and E can't appear in hexadecimal floating point literals.

The followings are some valid hexadecimal floating point literals (yPn is equivalent to y is multiplied by

2" and yP-n is equivalent to y is divided by 2"):

Ox1p-2 // == 0.25

0x2.p1lo // == 2048.0

Ox1.Fp+@  // == 1.9375

0X.8p-0 // == 0.5

OX1FFFP-16 // == 0.1249847412109375

However, the following ones are invalid:

0x.p1l // mantissa has no digits
1p-2 // p exponent requires hexadecimal mantissa
0x1.5e-2 // hexadecimal mantissa requires p exponent

Note: the following literal is valid, but it is not a floating point literal. It is a subtraction arithmetic
expression actually. The e in it means 14 in decimal. @x15e is a hex interger literal, - is the subtraction

operator, and 2 is a decimal interger literal. (Arithmetic operators will be introduced in the article

common operators (§8).)

0x15e-2 // == 0x15e - 2 // a subtraction expression

The standard literals for zero value of floating-point types are 0.0, though there are many other legal
literals, such as 0., .0, 0e®, 0x0pO, etc. In fact, the zero value literals introduced in the current article

for other kinds of numeric types can also represent the zero value of any floating-point type.

|Imaginary value literals

An imaginary literal consists of a floating-point or integer literal and a lower-case letter i. Examples:

1.231

1.1

.231

1231

0123i // == 1231
1.23E21 // == 123i
le-1i

(Note: before Go 1.13, if the part before the lower-case letter i in an imaginary literal is an integer literal,

then it must be presented as the decimal form.)

Imaginary literals are used to represent the imaginary parts of complex values. Here are some literals to

denote complex values:
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1+ 21 // == 1.0 + 2.01
1. - .1i // == 1.0 + -0.11i
1.231 - 7.89 // == -7.89 + 1.231
1.231 // == 0.0 + 1.23i

The standard literals for zero values of complex types are 0.0+0.01, though there are many other legal
literals, such as 01, .0i, 0+01i, etc. In fact, the zero value literals introduced in the current article for

other kinds of numeric types can also represent the zero value of any complex type.

Use _ in numeric literals for better readability

Since Go 1.13, underscores _ can appear in integer, floating-point and maginary literals as digit separators

to enhance code readability. But please note, in a numeric literal,

e any _ is not allowed to be used as the first or the last character of the literal,

e the two sides of any _ must be either literal prefixs (such as 0X) or legal digit characters.

Some valid and invalid numeric literals which contain underscores:

// Valid ones:

6_9 // == 69
0_33_77_22 // == 0337722
Ox_Bad_Face // == OxBadFace
OX_1F_FFP-16 // == OX1FFFP-16
0b1011_0111 + OXA_B.Fp2i

// Invalid ones:

_69 // _ can't appear as the first character
69_ // _ can't appear as the last character
6_ 9 // one side of _ is a illegal character
0_xBadFace // "x" is not a legal octal digit
1 .5 // "." is not a legal octal digit
1.5 // "." is not a legal octal digit

|Rune value literals

Rune types, including custom defined rune types and the built-in rune type (a.k.a., int32 type), are
special integer types, so all rune values can be denoted by the integer literals introduced above. On the
other hand, many values of all kinds of integer types can also be represented by rune literals introduced

below in the current subsection.

A rune value is intended to store a Unicode code point. Generally, we can view a code point as a Unicode
character, but we should know that some Unicode characters are composed of more than one code points

each.
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A rune literal is expressed as one or more characters enclosed in a pair of quotes. The enclosed characters
denote one Unicode code point value. There are some minor variants of the rune literal form. The most
popular form of rune literals is just to enclose the characters denoted by rune values between two single
quotes. For example

'a' // an English character
I.r[l
"' // a Chinese character

The following rune literal variants are equivalentto 'a' (the Unicode value of character a is 97).

// 141 is the octal representation of decimal number 97.
"\141'

// 61 is the hex representation of decimal number 97.
"\x61'

'"\uoo6l’

'"\UO000O0061"

Please note, \ must be followed by exactly three octal digits to represent a byte value, \x must be
followed by exactly two hex digits to represent a byte value, \u must be followed by exactly four hex
digits to represent a rune value, and \U must be followed by exactly eight hex digits to represent a rune

value. Each such octal or hex digit sequence must represent a legal Unicode code point, otherwise, it fails
to compile.

The following program will print 7 true texts.

1| package main

2|

3| func main() {

4| println('a' == 97)

5] println('a' == '\141"')

6| println('a' == '\x61"')

7| println('a' == '\u0061"')

8| println('a' == "\U0GO0O0O61")
9] println(Ox61 == '\x61")
10| println('\u4fi17' == '&')
11| }

In fact, the four variant rune literal forms just mentioned are rarely used for rune values in practice. They

are occasionally used in interpreted string literals (see the next subsection for details).

If a rune literal is composed by two characters (not including the two quotes), the first one is the character

\ and the second one is not a digital character, x, u and U, then the two successive characters will be

escaped as one special character. The possible character pairs to be escaped are:

\a (Unicode value 0x07) alert or bell
\b (Unicode value 0x08) backspace
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\f (Unicode value 0x0C) form feed

\n (Unicode value OxGA) line feed or newline
\r (Unicode value 0x0D) carriage return

\t (Unicode value 0x09) horizontal tab

\v (Unicode value 0x0b) vertical tab

\\ (Unicode value 0x5c) backslash

\! (Unicode value 0x27) single quote

\n is the most used escape character pair.

An example:
1] println('\n') // 10
2] println('\r') // 13
3| printIn('\"'""') // 39
4]
5] println('\n' == 10) // true
6| println('\n' == '\x0A') // true

There are many literals which can denote the zero values of rune types, such as '\000"', '\x00"',
'"\ueee0e', etc. In fact, we can also use any numeric literal introduced above to represent the values of

rune types, such as @, 0x0, 0.0, 0e0, 0i, etc.

|String value literals

String values in Go are UTF-8 encoded. In fact, all Go source files must be UTF-8 encoding compatible.

There are two forms of string value literals, interpreted string literal (double quote form) and raw string
literal (backquote form). For example, the following two string literals are equivalent:

// The interpreted form.
"Hello\nworld!\n\"4R4F4#F\""

// The raw form.
"Hello

world!

"R AR

In the above interpreted string literal, each \n character pair will be escaped as one newline character, and
each \" character pair will be escaped as one double quote character. Most of such escape character pairs
are the same as the escape character pairs used in rune literals introduced above, except that \" is only

legal in interpreted string literals and \ " is only legal in rune literals.

The character sequence of \, \x, \u and \U followed by several octal or hex digits introduced in the last

section can also be used in interpreted string literals.
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// The following interpreted string literals are equivalent.
"\141\142\143"

"\x61\x62\x63"

"abc"

// The following interpreted string literals are equivalent.
"\u4f17\xe4\xba\xba"

// The Unicode of i is 4f17, which is

// UTF-8 encoded as three bytes: e4 bc 97.
"\xed\xbc\x97\udeba"

// The Unicode of A is 4eba, which is

// UTF-8 encoded as three bytes: e4 ba ba.
"\xed\xbc\x97\xed4\xba\xba"
H/{}\\/\ll

Please note that each English character (code point) is represented with one byte, but each Chinese
character (code point) is represented with three bytes.

In a raw string literal, no character sequences will be escaped. The backquote character is not allowed to
appear in a raw string literal. To get better cross-platform compatibility, carriage return characters
(Unicode code point @x0D ) inside raw string literals will be discarded.

Zero values of string types can be denoted as "" or " in literal.

IRepresentability of Basic Numeric Value Literals

A numeric literal can be used to represent as an integer value only if it needn't be rounded. For example,
1.23e2 can represent as values of any basic integer types, but 1.23 can't represent as values of any basic

integer types. Rounding is allowed when using a numeric literal to represent a non-integer basic numeric

values.

Each basic numeric type has a representable value range. So, if a literal overflows the value range of a

type, then the literal is not representable as values of the type.

Some examples:

The Literal Types Which Values the Literal Can Represent

256 All basic numeric types except int8 and uint8 types.
255 All basic numeric types except int8 types.
-123 All basic numeric types except the unsigned ones.
123

123.000

1.23e2 All basic numeric types.
P

1.0+01
1.23
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UX1DLLLLLLLBLBLBBLOYLY|A]) hasjc floating-point and complex numeric types.
(16 zeros)
3.5038 All basic floating-point and complex numeric types except float32 and
complex64 types.
1+21 All basic complex numeric types.
2e+308 None basic types.

Notes:

e Because no values of the basic integer types provided in Go can hold 8x10000000000000000, so
the literal is not representable as values of any basic integer types.

e The maximum IEEE-754 float32 value which can be represented accurately is
3.40282346638528859811704183484516925440e+38, so 3.5e38 is not representable as
values of any float32 and complex64 types.

e The max IEEE-754 float64 value which can be represented accurately is
1.797693134862315708145274237317043567981e+308, so 2e+308 is not representable as
values of any float64 and complex128 types.

¢ In the end, please note, although 0x10000000000000000 can represent values of float32 types,
however it can't represent any float32 values accurately in memory. In other words, it will be
rounded to the closest float32 value which can be represented accurately in memory when it is used
as values of float32 types.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Constants and Variables

This article will introduce constant and variable declarations in Go. The concept of untyped values and

explicit conversions will also be introduced.

The literals introduced in the last article (86) are all called unnamed constants (or literal constants), except
false and true, which are two predeclared (built-in) named constants. Custom named constant

declarations will be introduced below in this article.

IUntyped Values and Typed Values

In Go, some values are untyped. An untyped value means the type of the value has not been confirmed
yet. On the contrary, the type of a typed value is determined.

For most untyped values, each of them has one default type. The predeclared nil is the only untyped

value which has no default type. We will learn more about nil in other Go 101 articles later.

All literal constants (unnamed constants) are untyped values. In fact, in Go, most untyped values are literal
constants and named constants (which will be introduced below in the current article). The other untyped
values include the just mentioned nil and some boolean results returned by some operations which will

be introduced in other articles later.

The default type of a literal constant is determined by its literal form.

The default type of a string literal is string.

The default type of a boolean literal is bool.

The default type of an integer literal is int.

The default type of a rune literal is rune (a.k.a., int32).

The default type of a floating-point literal is float64.

If a literal contains an imaginary part, then its default type is complex128.

|Explicit Conversions of Untyped Constants

Like many other languages, Go also supports value conversions. We can use the form T(v) to convert a
value v to the type denoted by T (or simply speaking, type T). If the conversion T(v) is legal, Go
compilers view T(v) as a typed value of type T. Surely, for a certain type T, to make the conversion

T(v) legal, the value v can't be arbitrary.

The following mentioned rules apply for both the literal constants introduced in the last article and the

untyped named constants which will be introduced soon.
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For an untyped constant value v, there are two scenarios where T(v) is legal.

1. v (or the literal denoted by v) is representable (§6) as a value of a basic type T. The result value is
a typed constant of type T.

2. The default type of v is an integer type (int or rune)and T is a string type. The result of T(v) is
a string of type T and contains the UTF-8 representation of the integer as a Unicode code point.

Integer values outside the range of valid Unicode code points result strings represented by
"\UFFFD" (a.k.a., "\xef\xbf\xbd"). @xFFFD is the code point for the Unicode replacement

character. The result string of a conversion from an integer always contains one and only one rune.

(Note, such conversions from arbitrary integer values might be disallowed since a future Go

version i .)

In fact, the second scenario doesn't require v to be a constant. If v is a constant, then the result of the

conversion is also a constant, otherwise, the result is not a constant.
For example, the following conversions are all legal.

// Rounding happens in the following 3 lines.
complex128(1 + -1e-1000i) // 1.0+0.01
float32(0.49999999) // 0.5
float32(17000000000000000)

// No rounding in the these lines.

float32(123)

uint(1.0)

int8(-123)

int16(6+01i)

complex128(789)

string(65) // "A"
string('A") // "A"
string('\u68ee") // AR
string(-1) // "\UFFFD"
string(OXFFFD) // "\UFFFD"

string(@x2FFFFFFFF) // "\UFFFD"

And the following conversions are all illegal.

// 1.23 1is not representable as a value of int.

int(1.23)

// -1 is not representable as a value of uint8.
uint8(-1)

// 1421 is not representable as a value of floaté64.
float64(1+21)

// Constant -1e+1000 overflows float64.
float64(-1e1000)
// Constant 0x10000000000000000 overflows int.
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int (0x10000000000000000)

// The default type of 65.0 is float64,

// which is not an integer type.
string(65.0)

// The default type of 66+0i is complex128,
// which is not an integer type.
string(66+01i)

From the above examples, we know that an untyped constant, (for example -1e1000 and

0Xx10000000000000000 ), may even not be able to represent as a value of its default type.

Please note, sometimes, the form of explicit conversions must be written as (T) (V) to avoid ambiguities.

Such situations often happen in case of T is not an identifier.

We will learn more explicit conversion rules later in other Go 101 articles.

IIntroduction of Type Deductions in Go

Go supports type deduction. In other words, in many circumstances, programmers don't need to explicitly
specify the types of some values in code. Go compilers will deduce the types for these values by context.

Type deduction is also often called type inference.

In Go code, if a place needs a value of a certain type and an untyped value (often a constant) is
representable as a value of the certain type, then the untyped value can be used in the place. Go compilers
will view the untyped value as a typed value of the certain type. Such places include an operand in an
operator operation, an argument in a function call, a destination value or a source value in an assignment,
etc.

Some circumstances have no requirements on the types of the used values. If an untyped value is used in

such a circumstance, Go compilers will treat the untyped value as a typed value of its default type.
The two type deduction cases can be viewed as implicit conversions.

The below constant and variable declaration sections will show some type deduction cases. More type

deduction rules and cases will be introduced in other articles.

|Constant Declarations

Unnamed constants are all boolean, numeric and string values. Like unnamed constants, named constants

can also be only boolean, numeric and string values. The keyword const is used to declare named

constants. The following program contains some constant declarations.
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1| package main

2|

3| // Declare two individual constants. Yes,

4| // non-ASCII letters can be used in identifiers.
5| const m = 3.1416

6| const Pi = m // equivalent to: Pi == 3.1416

7]

8| // Declare multiple constants in a group.

9| const (

10| No = lYes

11| Yes = true

12| MaxDegrees = 360

13| Unit = "radian"

14] )

15|

16| func main() {

17| // Declare multiple constants in one line.
18| const TwoPi, HalfPi, Unit2 = m * 2, m * 0.5, "degree"
19]

Go specification calls each of the lines containing a = symbol in the above constant declaration group as a

constant specification.

In the above example, the * symbol is the multiplication operator and the ! symbol is the boolean-not

operator. Operators will be introduced in the next article, common operators (§8).

The = symbol means "bind" instead of "assign". We should interpret each constant specification as a
declared identifier is bound to a corresponding basic value literal. Please read the last section in the current
article for more explanations.

In the above example, the name constants Tt and Pi are both bound to the literal 3.1416. The two named
constants may be used at many places in code. Without constant declarations, the literal 3.1416 would be
populated at those places. If we want to change the literal to 3.14 later, many places need to be modified.
With the help of constant declarations, the literal 3.1416 will only appear in one constant declaration, so

only one place needs to be modified. This is the main purpose of constant declarations.

Later, we use the terminology non-constant values to denote the values who are not constants. The to be

introduced variables below, all belong to one kind of non-constant values.

Please note that, constants can be declared both at package level (out of any function body) and in function
bodies. The constants declared in function bodies are called local constants. The variables declared out of
any function body are called package-level constants. We also often call package-level constants as global

constants.

The declaration orders of two package-level constants are not important. In the above example, the

declaration orders of No and Yes can be exchanged.
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All constants declared in the last example are untyped. The default type of a named untyped constant is the
same as the literal bound to it.

|Typed named constants

We can declare typed constants, typed constants are all named. In the following example, all the four
declared constants are typed values. The types of X and Y are both float32 and the types of A and B

are both int64.

1| const X float32 = 3.14
2|

3| const (

4] A, B int64 = -3, 5
5] Y float32 = 2.718
6] )

If multiple typed constants are declared in the same constant specification, then their types must be the
same, just as the constants A and B in the above example.

We can also use explicit conversions to provide enough information for Go compilers to deduce the types
of typed named constants. The above code snippet is equivalent to the following one, in which X, Y, A

and B are all typed constants.

1] const X float32(3.14)

2|

3| const (

4] A, B = int64(-3), int64(5)
5] Y = float32(2.718)

6] )

If a basic value literal is bound to a typed constant, the basic value literal must be representable as a value

of the type of the constant. The following typed constant declarations are invalid.

1| // error: 256 overflows uint8
2| const a uint8 = 256

3| // error: 256 overflows uint8
4| const b = uint8(255) + uint8(1)
5| // error: 128 overflows int8

6| const ¢ = int8(-128) / int8(-1)
7| // error: -1 overflows uint

8| const MaxUint_a = uint(20)

9| // error: -1 overflows uint

10| const MaxUint_b uint = 70

In the above and following examples A is bitwise-not operator.
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The following typed constant declaration is valid on 64-bit OSes, but invalid on 32-bit OSes. For each
uint value has only 32 bits on 32-bit OSes. (1 << 64) - 1 is not representable as 32-bit values. (Here,

<< is bitwise-left-shift operator.)

1| const MaxUint uint = (1 << 64) - 1

Then how to declare a typed uint constant and bind the largest uint value to it? Use the following way

instead.

1| const MaxUint = Auint(0)

Similarly, we can declare a typed int constant and bind the largest int value to it. (Here, >> is bitwise-

right-shift operator.)

1| const MaxInt = int(Auint(Q) >> 1)

A similar method can be used to get the number of bits of a native word, and check the current OS is 32-
bit or 64-bit.

1| // NativeWordBits is 64 or 32.

2| const NativeWordBits = 32 << (Auint(@) >> 63)
3| const Is64bit0S = Auint(0) >> 63 != 0

4| const Is32bit0S = Auint(0) >> 32 ==

Here, != and == are not-equal-to and equal-to operators.

| Autocomplete in constant declarations

In a group-style constant declaration, except the first constant specification, other constant specifications
can be incomplete. An incomplete constant specification doesn't contain the = symbol. Compilers will
autocomplete the incomplete lines for us by copying the missing part from the first preceding complete

constant specification. For example, at compile time, compilers will automatically complete the following

code
1] const (
2| X float32 = 3.14
3| Y // here must be one identifier
4| Z // here must be one identifier
5]
6| A, B = "Go", "language"
7] c, _
8| // In the above line, the blank identifier
9| // 1is required to be present.
10| )
as
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1| const (

2| X float32 = 3.14

3] Y float32 = 3.14

4| z float32 = 3.14

5]

6| A, B = "Go", "language"
7] C, _ = "Go", "language"
8] )

iota in constant declarations

The autocomplete feature plus the iota constant generator feature brings much convenience to Go
programming. iota is a predeclared constant which can only be used in other constant declarations. It is

declared as

1| const iota = 0

But the value of an iota in code may be not always @. When the predeclared iota constant is used in a

custom constant declaration, at compile time, within the custom constant declaration, its value will be

reset to O at the first constant specification of each group of constants and will increase 1 constant
specification by constant specification. In other words, in the nth constant specification of a constant
declaration, the value of iota is n (starting from zero). So iota is only useful in group-style constant

declarations.

Here is an example using both the autocomplete and the iota constant generator features. Please read the

comments to get what will happen at compile time. The + symbol in this example is the addition operator.

1| package main

2|

3| func main() {

4| const (

5] k =3 // now, iota == 0

6]

7| m float32 = jota + .5 // m float32 = 1 5
8| n // n float32 = 2 5
9]

10| p =29 // now, jota ==

11| q = iota * 2 // q =4 *2

12| _ // _ =5 *2

13| r // r =6 * 2

14 | s, t = iota, iota // s, t =7, 7

15| u, v // u, v =28, 8

16 | ., W // _, w=29, 9

17| )

18|
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19| const x = iota // x = 0

20| const (

21| y = iota // y = 0

22| z // z =1

23| )

24|

25| println(m) // +1.500000e+000
26| println(n) // +2.500000e+000
27| println(q, r) // 8 12

28| println(s, t, u, v, w) // 7 7 8 8 9

29| println(x, vy, z) // 0 01

30|

The above example is just to demo the rules of the iota constant generator feature. Surely, in practice,

we should use it in more meaningful ways. For example,

1| const (

2| Failed = iota - 1 // == -1
3| Unknown // == 0

4| Succeeded // == 1

5] )

6]

7| const (

8] Readable = 1 << iota // == 1
9] Writable // == 2
10| Executable // == 4
11] )

Here, the - symbol is the subtraction operator, and the << symbol is the left-shift operator. Both of these

operators will be introduced in the next article.

IVariables, Variable Declarations and Value Assignments

Variables are named values. Variables are stored in memory at run time. The value represented by a

variable can be modified at run time.

All variables are typed values. When declaring a variable, there must be sufficient information provided

for compilers to deduce the type of the variable.

The variables declared within function bodies are called local variables. The variables declared out of any
function body are called package-level variables. We also often call package-level variables as global

variables.

There are two basic variable declaration forms, the standard one and the short one. The short form can

only be used to declare local variables.
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|Standard variable declaration forms

Each standard declaration starts with the var keyword, which is followed by the declared variable name.

Variable names must be identifiers (§5).

The following are some full standard declaration forms. In these declarations, the types and initial values
of the declared variables are all specified.

1| var lang, website string = "Go", "https://golang.org"
2| var compiled, dynamic bool = true, false
3| var announceYear int = 2009

As we have found, multiple variables can be declared together in one variable declaration. Please note,
there can be just one type specified in a variable declaration. So the types of the multiple variables
declared in the same declaration line must be identical.

Full standard variable declaration forms are seldom used in practice, since they are verbose. In practice,
the two standard variable declaration variant forms introduced below are used more often. In the two

variants, either the types or the initial values of the declared variables are absent.

The following are some standard variable declarations without specifying variable types. Compilers will
deduce the types of the declared variables as the types (or default types) of their respective initial values.
The following declarations are equivalent to the above ones in fact. Please note, in the following
declarations, the types of the multiple variables declared in the same declaration line can be different.

1| // The types of the lang and dynamic variables
2| // will be deduced as built-in types "string"
3| // and "bool" by compilers, respectively.

4| var lang, dynamic = "Go", false

5]

6| // The types of the compiled and announceYear
7| // variables will be deduced as built-in

8| // types "bool" and "int", respectively.

9| var compiled, announceYear = true, 2009
10|
11| // The types of the website variable will be
12| // deduced as the built-in type "string".
13| var website = "https://golang.org"

The type deductions in the above example can be viewed as implicit conversions.

The following are some standard declarations without specifying variable initial values. In these

declarations, all declared variables are initialized as the zero values of their respective types.

1| // Both are initialized as blank strings.
2| var lang, website string
3| // Both are initialized as false.
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4| var interpreted, dynamic bool
5| // n is initialized as 0.
6| var n int

Multiple variables can be grouped into one standard form declaration by using () . For example:

1| var (

2] lang, bornYear, compiled = "Go", 2007, true
3| announceAt, releaseAt int = 2009, 2012

4| createdBy, website string

5] )

The above example is formatted by using the go fmt command in the official Go SDK. In the above

example, each of the three lines are enclosed in () this is known as variable specification.

Generally, declaring related variables together will make code more readable.

|Pure value assignments

In the above variable declarations, the sign = means assignment. Once a variable is declared, we can

modify its value by using pure value assignments. Like variable declarations, multiple values can be
assigned in a pure assignment.

The expression items at the left of = symbol in a pure assignment are called destination or target values.

They must be addressable values, map index expressions, or the blank identifier. Value addresses and
maps will be introduced in later articles.

Constants are immutable, so a constant can't show up at the left side of a pure assignment as a destination
value, it can only appear at the right side as a source value. Variables can be used as both source values

and destination values, so they can appear at both sides of pure value assignments.

Blank identifiers can also appear at the left side of pure value assignments as destination values, in which
case, it means we ignore the destination values. Blank identifiers can't be used as source values in

assignments.

Example:

1] const N = 123
2| var x int
3| var y, z float32

4|

5| N =9 // error: constant N is not modifiable
6] vy =N // ok: N is deduced as a float32 value
7] x =y // error: type mismatch

8] x = N // ok: N is deduced as an int value

9| vy = x // error: type mismatch
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10| z =y // ok

11| _ =y // ok

12|

13| x, y =y, x // error: type mismatch
14| x, y = int(y), float32(x) // ok

15| z, y =y, z // ok

16| _, y =y, z // ok

17| z, _ =y, z // ok

18| ., _ =y, z // ok

19| x, y = 69, 1.23 // ok

The code at last line in the above example uses explicit conversions to make the corresponding destination
and source values matched. The explicit conversion rules for non-constant numeric values are introduced

below.
Go doesn't support assignment chain. For example, the following code is illegal.
1| var a, b int

2| a = b = 123 // syntax error

|Short variable declaration forms

We can also use short variable declaration forms to declare variables. Short variable declarations can only

be used to declare local variables. Let's view an example which uses some short variable declarations.

1| package main

2|

3| func main() {

4| // Both lang and year are newly declared.

5] lang, year := "Go language'", 2007

6]

7| // 0Only createdBy is a new declared variable.
8| // The year variable has already been

9] // declared before, so here its value is just
10| // modified, or we can say it is redeclared.
11| year, createdBy := 2009, "Google Research"
12|

13| // This is a pure assignment.

14 | lang, year = "Go", 2012

15|

16 | print(lang, " is created by ", createdBy)

17 | println(", and released at year", year)

18] }

Each short variable declaration must declare at least one new variable.

There are several differences between short and standard variable declarations.
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1. In the short declaration form, the var keyword and variable types must be omitted.
2. The assignment sign must be := instead of =.
3. In the short variable declaration, old variables and new variables can mix at the left of :=. But there

must be at least one new variable at the left.

Please note, comparing to pure assignments, there is a limit for short variable declarations. In a short
variable declaration, all items at the left of the := sign must pure identifiers. This means some other

items which can be assigned to, which will be introduced in other articles, can't appear at the left of :=.

These items include qualified identifiers, container elements, pointer dereferences and struct field
selectors. Pure assignments have no such limit.

|About the terminology "assignment"

Later, when the word "assignment" is mentioned, it means a pure assignment, a short variable declaration,

or a variable specification with initial values in a standard variable declaration.

We say x is assignable to y if y = x is a legal statement (compiles okay). Assume the type of y is Ty,

sometimes, for description convenience, we can also say x is assignable to type Ty .

Generally, if x is assignable to y, then y should be mutable, and the types of x and y are identical or x

can be implicitly converted to the type of y. Surely, y can also be the blank identifier _.

|Each local declared variable must be used at least once effectively

Please note, the standard Go compiler and gccgo both don't allow local variables declared but not used.
Package-level variables have no such limit.

If a local variable is only ever used as destination values, it will also be viewed as unused.
For example, in the following program, r is only used as destination.

1| package main

2|

3| // Some package-level variables.
4| var x, y, z = 123, true, "foo"

5]

6| func main() {

7| var q, r = 789, false
8| r, s := true, "bar"
9| r =y // r is unused.
10| X =q // q is used.
11| }
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Compiling the above program will result to the following compilation errors (assume the source file is
name example-unused.go):

./example-unused.go:6:6: r declared and not used
./example-unused.go:7:16: s declared and not used

The fix is easy, we can assign r and s to blank identifiers to avoid compilation errors.

1| package main
2|

3| var x, y, z
4|

5| func main()
6 | var q, r 789, false
7| r, s := true, "bar"
8| r=y

9] X q
10|

11 | _, _ =1, s // make r and s used.
12| 3

123, true, "foo"

-~

Generally, the above fix is not recommended to be used in production code. It should be used in
development/debug phase only. It is not a good habit to leave unused local variables in code, for unused
local variables have negative effects on both code readability and program execution performance.

Dependency relations of package-Level variables affect their
initialization order
For the following example,

1] var x, y = a+l, 5 // 8 5
2| var a, b, ¢ = b+1, c+1, v // 7 6 5

the initialization order of the package-level variablesare y = 5, ¢ = y, b = c+1, a = b+1, and x

a+tl.
Here, the + symbol is the addition operator, which will be introduced in the next article.

Package-level variables can't be depended circularly in their declaration. The following code fails to

compile.

1] var x, y =y, X

|Value Addressability
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In Go, some values are addressable (there is an address to find them). All variables are addressable and all
constants are unaddressable. We can learn more about addresses and pointers from the article pointers in
Go (815) and learn other addressable and unaddressable values from other articles later.

IExplicit Conversions on Non-Constant Numeric Values

In Go, two typed values of two different basic types can't be assigned to each other. In other words, the
types of the destination and source values in an assignment must be identical if the two values are both
basic values. If the type of the source basic value is not same as the type of the destination basic value,
then the source value must be explicitly converted to the type of the destination value.

As mentioned above, non-constant integer values can be converted to strings. Here we introduce two more

legal non-constant numeric values related conversion cases.

e Non-constant floating-point and integer values can be explicitly converted to any other floating-
point and integer types.
e Non-constant complex values can be explicitly converted to any other complex types.

Unlike constant number conversions, overflows are allowed in non-constant number conversions. And
when converting a non-constant floating-point value to an integer, rounding is also allowed. If a non-
constant floating-point value doesn't overflow an integer type the fraction part of the floating-point value
will be discarded (towards zero) when it is converted to the integer type.

In the following example, the intended implicit conversions at line 7 and line 18 both don't work. The
explicit conversions at line 5 and line 16 are also not allowed.

1| const a = -1.23

2| // The type of b is deduced as float64.

3] var b = a

4| // error: constant 1.23 truncated to integer.
5] var x = int32(a)

6| // error: cannot assign float64 to int32.

7] var y int32 = b

8| // okay: z == -1, and the type of z is int32.
9| // The fraction part of b is discarded.
10| var z = int32(b)

11|

12| const k intl16 = 255

13| // The type of n is deduced as inti16.

14| var n = k

15| // error: constant 256 overflows uint8.

16| var f = uint8(k + 1)

17| // error: cannot assign int16 to uint8.

18| var g uint8 = n + 1

19| // okay: h == 0, and the type of h is uint8.
20| // n+1l overflows uint8 and is truncated.
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21| var h = uint8(n + 1)
22|

We can think that the type deductions happen at line 3 and line 14 are two implicit conversions, where a
and k are both converted to their respective default type. More implicit conversion rules will be

introduced in other articles later.

IScopes of Variables and Named Constants

In Go, we can use a pair of { and } to form a code block. A code block can nest other code blocks. A
variable or a named constant declared in an inner code block will shadow the variables and constants
declared with the same name in outer code blocks. For examples, the following program declares three
distinct variables, all of them are called x. An inner x shadows an outer one.

1| package main

2|

3| const y = 789
4| var x int = 123

5]
6| func main() {
7| // The x variable shadows the above declared
8] // package-level variable x.
9] var x = true
10|
11| // A nested code block.
12| {
13| // Here, the left x and y are both
14 | // new declared variable. The right
15| // ones are declared in outer blocks.
16 | X, Y =X,V
17|
18| // In this code block, the just new
19| // declared x and y shadow the outer
20| // declared same-name identifiers.
21| X, z = 1x, y/10 // only z is new declared
22| y /= 100
23| println(x, y, z) // false 7 78
24| }
25| println(x) // true
26 | println(z) // error: z is undefined.
27| }

The scope (visibility range in code) of a package-level variable (or a named constant) is the whole package
of the variable (or the named constant) is declared in. The scope of a local variable (or a named constant)

begins at the end of its declaration and ends at the end of its innermost containing code block. This is why
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the last line in the main function of the above example doesn't compile.

Code blocks and identifier scopes will be explained in detail in blocks and scopes (§32) later.

|More About Constant Declarations

The value denoted by an untyped constant can overflow its default
type

For example, the following code compiles okay.

1]
2]
3
4]
5]
6
7]
8]
9]
10|
11|
12|

// 3 untyped named constants. Their bound
// values all overflow their respective
// default types. This is allowed.

const n = 1 << 64 // overflows int
const r = 'a' + OX7FFFFFFF // overflows rune
const x = 2e+308 // overflows float64

func main() {
n >> 2
r - OX7FFFFFFF
X / 2

3

But the the following code does't compile, for the constants are all typed.

1]
2|
3
4]
5]
6
7]

Each named constant identifier will be replaced with its bound literal

// 3 typed named constants. Their bound

// values are not allowed to overflow their
// respective default types. The 3 lines

// all fail to compile.

const n int = 1 << 64 // overflows int
const r rune = 'a' + OX7FFFFFFF // overflows rune
const x float64 = 2e+308 // overflows float64

value at compile time

Constant declarations can be viewed as enhanced #define macros in C. A constant declaration defines a

named constant which represents a literal. All the occurrences of a named constant will be replaced with

the literal it represents at compile time.

If the two operands of an operator operation are both constants, then the operation will be evaluated at

compile time. Please read the next article common operators (§8) for details.
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For example, at compile time, the following code

1| package main

2|

3| const X = 3

4| const Y = X + X

5| var a = X

6

7| func main() {

8] b (=Y

9| println(a, b, X, Y)
10| }

will be viewed as

1| package main

2|

3| var a = 3

4|

5| func main() {

6 | b :=6

7] println(a, b, 3, 6)
8| }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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88. Common Operators

Common Operators

Operator operations are the operations using all kinds of operators. This article will introduce common
operators in Go. More operators will be introduced in other articles later.

IAbout Some Descriptions in Operator Explanations

This article will only introduce arithmetic operators, bitwise operators, comparison operators, boolean
operators and string concatenation operator. These operators are either binary operators or unary operators.
A binary operator operation takes two operands and a unary operator operation takes only one operand.

All the operator operations introduced in this articles each returns one result.

This article doesn't pursue the accuracy of some descriptions. For example, when it says that a binary
operator requires the types of its two operands must be the same, what it means is:

e if both of the two operands are typed values, then their types must be the same one, or one operand
can be implicitly converted to the type of the other.

¢ if only one of the two operands is typed, then the other (untyped) operand must be representable as a
value of the typed of the typed operand, or the values of the default type of the other (untyped)
operand can be implicitly converted to the typed of the typed operand.

e if both of the two operands are untyped values, then they must be both boolean values, both string
values or both basic numeric values.

Similarly, when it says an operator, either a binary operator or a unary operator, requires the type of one of
its operands must be of a certain type, what it means is:

o if the operand is typed, then its type must be, or can be implicitly converted to, that certain type.
o if the operand is untyped, then the untyped value must be representable as a value of that certain

type, or the values of the default type of the operand can be implicitly converted to that certain type.

|Constant Expressions

Before introducing all kinds of operators, we should know what are constant expressions and a fact in the

evaluations of constant expressions. Expressions will get explained in a later article expressions and

statements (§11). At present, we just should know that most of the operations mentioned the current article

dre EXPFESSiOHS.

If all the operands involved in an expression are constants, then this expression is called a constant
expression. All constant expressions are evaluated at compile time. The evaluation result of a constant

expression is still a constant.
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Only if one operand in an expression is not a constant, the expression is called a non-constant expression.

|Arithmetic Operators

Go supports five basic binary arithmetic operators:

Operator Name Requirements for the Two Operands
+ addition
- subtraction . )
—————1The two operands must be both values of the same basic numeric type.
* multiplication
/ division
% remainder |The two operands must be both values of the same basic integer type.

The five operators are also often called sum, difference, product, quotient and modulo operators,
respectively. Go 101 will not explain how these operator operations work in detail.

Go supports six bitwise binary arithmetic operators:

Operator Name Requirements for the Two Operands and Mechanism Explanations

& bitwise and |4 1y operands must be both values of the same integer type.

| bitwise or  |Mechanism explanations (a value with the subscript 2 is the binary literal
form of the value):

A bitwise xor
e 1100, & 1010, results 1000,
e 1100, | 1010, results 1110,

e 1100, &\ 1010, results 0100,

The left operand must be an integer and the right operand must be also an
<< bitwise left shift [integer (if it is a constant, then it must be non-negative), their types are not
required to be identical. (Note, before Go 1.13, the right operand must be an
unsigned integer or an untyped (87) integer constant which is representable
as an uint value.)

A negative right operand (must be a non-constant) will cause a panic at run
time.

Mechanism explanations:

e 1100, << 3 results 1100000,
>>  |bitwise right shift| e 1100, >> 3 results 1,

If the left operand of a bitwise-right-shift operation is (or is viewed as) a
signed integer, then the sign bit (the highest bit) in the left operand will be
always kept in the result value. For example. if the left operand is an int8
value -128, or 10000000, in the binary literal form, then 10000000, >>

1 reanlte 11ARAAAA. alka _-R4
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Go also supports three unary arithmetic operators:

Operator Name Explanations
+ positive +n is equivalentto @ + n.
negative -n is equivalentto ® - n.

An is equivalent to m A n, where m is a value all of which bits are 1. For
example, if the type of n is int8, then m is -1, and if the type of n is
uint8, then m is OXFF.

bitwise complement
(bitwise not)

Note,

in many other languages, bitwise-complement operator is denoted as ~.

like many other languages, the addition binary operator + can also be used as string concatenation
operator, which will be introduced below.

like C and C++ languages, the multiplication binary operator * can also be used as pointer
dereference operator, and the bitwise-and operator & can also be used as pointer address operator.
Please read pointers in Go (§15) for details later.

unlike Java language, Go supports unsigned integer types, so the unsigned shift operator >>>
doesn't exist in Go.

there is no power operator in Go, please use Pow function in the math standard package instead.

Code package and package import will be introduced in the next article packages and imports (§10).

the bitwise-clear operator &7 is a unique operator in Go. m & n is equivalenttom & (~n).

Example:

1| func main() {

2] var (

3] a, b float32 = 12.0, 3.14

4| c, d int16 = 15, -6

5] e uint8 =7

6] )

7]

8| // The ones compile okay.

9] _ =12 + 'A' // two numeric untyped operands
10| _ =12 - a // one untyped and one typed operand
11| _=a*hb // two typed operands
12| _=c%d
13| _, _ =cCc + int16(e), uint8(c) + e
14| Y, ., ., _=a/b, c/d, -100 / -9, 1.23 / 1.2
15| Y —y ., _=c | d, c&d, cnrd, ce&rd
16 | ., _, ., _=d<<e 123 > e, e > 3, OxF << 0
17 | ., 4y _, _ = -b, +c, ne, N-1
18|
19| // The following ones fail to compile.
20| _=a%hb // error: a and b are not integers
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31|

88. Common Operators

_=a | b // error: a and b are not integers

_=cCc + e // error: type mismatching

_=b>5 // error: b is not an integer

_=c¢ >> -5 // error: -5 is not representable as uint

_ = e << uint(c) // compiles ok

_=e<<c // only compiles ok since Go 1.13

_ =e << -c // only compiles ok since Go 1.13,
// will cause a panic at run time.

_ = e << -1 // error: right operand is negative

}

| About the results of arithmetic operator operations

Except bitwise shift operations, the result of a binary arithmetic operator operation

is a typed value of the same type of the two operands if the two operands are both typed values of
the same type.

is a typed value of the same type of the typed operand if only one of the two operands is a typed
value. In the computation, the other (untyped) value will be deduced as a value of the type of the
typed operand. In other words, the untyped operand will be implicitly converted to the type of the
typed operand.

is still an untyped value if both of the two operands are untyped. The default type of the result value
is one of the two default types and it is the one appears latter in this list: int, rune, float64,
complex128. For example, if the default type of one untyped operand is int, and the other one is

rune, then the default type of the result untyped value is rune.

The rules for the result of a bitwise shift operator operation is a little complicated. Firstly, the result value

is always an integer value. Whether it is typed or untyped depends on specific scenarios.

If the left operand is a typed value (an integer value), then the type of the result is the same as the
type of the left operand.

If the left operand is an untyped value and the right operand is a constant, then the left operand will
be always treated as an integer value, if its default type is not an integer type, it must be
representable as an untyped integer and its default type will be viewed as int. For such cases, the
result is also an untyped value and the default type of the result is the same as the left operand.

If the left operand is an untyped value and the right operand is a non-constant integer, then the left
operand will be first converted to the type it would assume if the bitwise shift operator operation

were replaced by its left operand alone. The result is a typed value whose type is the assumed type.

Example:

1]
2|

func main() {
// Three untyped values. Their default
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3] // types are: int, rune(int32), complex64.

4| const X, Y, z=2, 'A', 31

5]

6| var a, b int = X, Y // two typed values.

7]

8| // The type of d is the default type of Y: rune.
9| d :=X+Y

10| // The type of e is the type of a: int.

11| e ;=Y - a

12| // The type of f is the types of a and b: int.
13| f:=a™*b

14 | // The type of g is Z's default type: complex64.
15| g:=zZ*Y

16|

17| // Output: 2 65 (+0.000000e+000+3.000000e+0001)
18| println(X, Y, Z)

19| // Output: 67 63 130 (+0.000000e+000+1.950000e+0021)
20| println(d, e, f, g)

21| }

Another example (bitwise shift operations):

1| const N = 2

2| // A is an untyped value (default type as int).
3] const A = 3.0 << N // A ==

4| // B is typed value (type is int8).

5| const B = int8(3.0) << N // B ==

6]

7] var m = uint(32)

8| // The following three lines are equivalent to
9| // each other. In the following twol lines, the
10| // types of the two "1" are both deduced as

11| // int64, instead of int.

12| var x int64 = 1 << m

13| var y = int64(1 << m)

14| var z = int64(1) << m

15|

16| // The following line fails to compile.

17| /*

18| var _ = 1.23 << m // error: shift of type floaté64
19| */

The last rule for bitwise shift operator operation is to avoid the cases that some bitwise shift operations
return different results on different architectures but the differences will not be detected in time. For

example, if the operand 1 is deduced as int instead of int64, the bitwise operation at line 13 (or line
12) will return different results between 32-bit architectures (@) and 64-bit architectures (0x100000000),

which may produce some bugs hard to detect.
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One interesting consequence of the last rule for bitwise shift operator operation is shown in the following

code snippet:

1]
2|
3
4]
5]
6
7]
8]
9]
10|

const n
var m

uint(2)
uint(2)

// The following two
var _ float64 = 1 <<
var _ = float64(1 <<

// The following two
var _ float64 = 1 <<
var _ = float64(1 <<

lines compile okay.
n

n)

lines fail to compile.
m
m)

The reason of the last two lines failing to compile is they are both equivalent to the followings two line:

1]
2]

var _
var _

float64(1) <
1.0 << m //

| About overflows

<m
error: shift of type float64

Overflows are not allowed for typed constant values but are allowed for non-constant and untyped

constant values, either the values are intermediate or final results. Overflows will be truncated (or wrapped

around) for non-constant values, but overflows (for default types) on untyped constant value will not be

truncated (or wrapped around).

Example:
1| // Results are non-c
2| var a, b uint8 = 255
3| // Compiles ok, high
4| var c =a+b // c
5| // Compiles ok, high
6| var d = a << b //
7]
8| // Results are untyp
9| const X = Ox1FFFFFFF
10| const R = 'a' + OX7F
11| // The above two lin
12| // two untyped value
13| // respective defaul
14|
15| // Operation results
16| // typed values. The
17| var e = X // error:
18| var h = R // error:
19| const Y = 128 - int8

onstants.

, 1

er overflowed bits are truncated.
0

overflowed bits are truncated.
254

er

ed constants.

F * OX1FFFFFFFF // overflows int
FFFFFF // overflows rune
es both compile ok, though the

X and R both overflow their

t types.

or conversion results are

se lines all fail to compile.
untyped constant X overflows int
constant 2147483744 overflows rune
(1) // error: 128 overflows int8
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20| const Z = uint8(255) + 1 // error: 256 overflow uint8

| About integer division and remainder operations

Assume x and y are two operands of the same integer type, the integer quotient q (= x / y)and
remainder r (= x % y)satisfy x == q*y + r,where |r| < |y]|.If r is not zero, its sign is the same

as x (the dividend). The result of x / vy is truncated towards zero.

If the divisor y is a constant, it must not be zero. If the divisor is zero at run time and it is an integer, a

run-time panic occurs. Panics are like exceptions in some other languages. We can learn more about
panics in this article (§13).

Example:

1| println( 5/3, 5%3) // 1 2

2| println( 5/-3, 5%-3) // -1 2
3| println(-5/3, -5%3) // -1 -2
4| println(-5/-3, -5%-3) // 1 -2

5]

6| println(5.0 / 3.0) // 1.666667
7| println((1-1i)/(1+1i)) // -1i

8]

9| var a, b = 1.0, 0.0

10| println(a/b, b/b) // +Inf NaN

11|

12| _ = int(a)/int(b) // compiles okay but panics at run time.
13|

14| // The following two lines fail to compile.

15| println(1.06/0.0) // error: division by zero

16| println(0.06/0.0) // error: division by zero

|Using op= for binary arithmetic operators
For a binary arithmetic operator op, x = x op Yy can be shortened to x op= y. In the short form, x
will be only evaluated once.

Example:

1| var a, b int8 = 3, 5

2] a += b

3| println(a) // 8
4| a *= a

5| println(a) // 64
6] a/=b

7| println(a) // 12
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8| a %= b

9| println(a) // 2
10| b <<= uint(a)
11| println(b) // 20

| The increment ++ and decrement - - operators

Like many other popular languages, Go also supports the increment ++ and decrement - - operators.
However, operations using the two operators don't return any results, so such operations can not be used as
expressions (§11). The only operand involved in such an operation must be a numeric value, the numeric
value must not be a constant, and the ++ or -- operator must follow the operand.

Example:

1| package main

2|

3| func main() {

4] a, b, ¢ := 12, 1.2, 1+2i

5] at+ // ok. <=> a += 1 <=>a =a + 1
6| b-- // ok. <=>b -=1<=>Db=Db -1
7| c+t+ // ok

8]

9] // The following lines fail to compile.
10| /*

11| _ = at+t

12| _ = b--

13| _ = Ct+t

14 | ++a

15| --b

16 | ++C

17| */

18] }

IString Concatenation Operator

As mentioned above, the addition operator can also be used as string concatenation.

Operator Name Requirements for the Two Operands

+ string concatenation [The two operands must be both values of the same string type.

The op= form also applies for the string concatenation operator.

Example:

1| println("Go" + "lang") // Golang
2| var a = "Go"
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3| a += "lang"

4| println(a) // Golang

If one of the two operands of a string concatenation operation is a typed string, then the type of the result
string is the same as the type of the typed string. If both of the two operands are untyped (constant) strings,
the result is also an untyped string value.

IBoolean Operators

Go supports two boolean binary operators and one boolean unary operator:

Operator Name Requirements for Operand(s)
& & boolean and (binary)

I boolean or (binary)

! boolean not (unary) [The type of the only operand must be a boolean type.

The two operands must be both values of the same boolean type.

We can use the !'= operator introduced in the next sub-section as the boolean xor operator.

Mechanism explanations:

// X y X &Yy X || vVy I'x ly
true true true true false false
true false false true false true
false true false true true false
false false false false true true

If one of the two operands is a typed boolean, then the type of the result boolean is the same as the type of
the typed boolean. If both of the two operands are untyped booleans, the result is also an untyped boolean

value.

IComparison Operators

Go supports six comparison binary operators:

Operator Name Requirements for the Two Operands

== equal to
d Generally, the types of its two operands must be the same. For detailed

rules, please read comparison rules in Go (§48).

1= not equal to

< less than
<= less than or equal to [The two operands must be both values of the same integer type, floating-
> larger than point type or string type.

>=  |larger than or equal to

The type of the result of any comparison operation is always an untyped boolean value. If both of the two
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operands of a comparison operation are constant, the result is also a constant (boolean) value.

Later, if we say two values are comparable, we mean they can be compared with the == and != operators.
We will learn that values of which types are not comparable later. Values of basic types are all
comparable.

Please note that, not all real numbers can be accurately represented in memory, so comparing two floating-
point (or complex) values may be not reliable. We should check whether or not the absolution of the
difference of two floating-point values is smaller than a small threshold to judge whether or not the two
floating-point values are equal.

IOperator Precedence

The following is the operator precedence in Go. Top ones have higher precedence. The operators in the
same line have the same precedence. Like many other languages, () can be used to promote precedence.

1l * / % << > & &N\

2f + - | A
3] == = < €= = >=
4| &&
5 |

One obvious difference to some other popular languages is that the precedence of << and >> is higher

than + and - in Go.

IMore About Constant Expressions

The following declared variable will be initialized as 2.2 instead of 2.7. The reason is the precedence of
the division operation is higher than the addition operation, and in the division operation, both 3 and 2

are viewed as integers. The evaluation result of 3/2 is 1.

1] var x = 1.2 + 3/2

The two named constants declared in the following program are not equal. In the first declaration, both 3
and 2 are viewed as integers, however, they are both viewed as floating-point numbers in the second

declaration.

1| package main

2|
3| const x = 3/2*0.1
4| const y = 0.1*3/2
5]

6| func main() {
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7] println(x) // +1.000000e-001
8| println(y) // +1.500000e-001
9| }

|M0re Operators

Same as C/C++, there are two pointer related operators, * and &. Yes the same operator symbols as the
multiplication and bitwise-and operators. & is used to take the address of an addressable value, and * is

used to dereference a pointer value. Unlike C/C++, in Go, values of pointer types don't support arithmetic
operations. For more details, please read pointers in Go (§15) later.

There are some other operators in Go. They will be introduced and explained in other Go 101 articles.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Function Declarations and Function Calls

Except the operator operations introduced in the last article, function operations are another kind of

popular operations in programming. Function operations are often called function calls. This article will

introduce how to declare functions and call functions.

IFunction Declarations

Let's view a function declaration.

1| func SquaresOfSumAndDiff(a int64, b int64) (s int64, d int64) {

2]
3
4]
5]
6] }

X, Yy :(=a+b, a-»b
S = X * X
d=y*y

return // <=> return s, d

We can find that, a function declaration is composed of several portions. From left to right,

1. the first portion is the func keyword.

2. the next portion is the function name, which must be an identifier. Here the function name is
SquareOfSumAndDiff.

3. the third portion is the input parameter declaration list, which is enclosed in a pair of ().

4. the fourth portion is the output (or return) result declaration list. Go functions can return multiple

results. For this specified example, the result definition list is also enclosed in a pair of ().

However, for some cases, () in result definition lists are optional (see below for details).

5. the last portion is the function body, which is enclosed in a pair of {}. In a function body, the

return keyword is used to end the normal forward execution flow and enter the exiting phase (see

the section after next) of a call of the function.

In the above example, each parameter and result declaration is composed of a name and a type (the type

follows the name). We can view parameter and result declarations as standard variable declarations

without the var keywords. The above declared function has two parameters, a and b, and has two

results, s and d. All the types of the parameters and results are int64. Parameters and results are treated

as local variables within their corresponding function bodies.

The names in the result declaration list of a function declaration can/must be present or absent all together.

Either case is used common in practice. If a result is defined with a name, then the result is called a named

result, otherwise, it is called an anonymous result.

When all the results in a function declaration are anonymous, then, within the corresponding function

body, the return keyword must be followed by a sequence of return values, each of them corresponds to
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a result declaration of the function declaration. For example, the following function declaration is
equivalent to the above one.

1| func SquaresOfSumAndDiff(a int64, b int64) (int64, int64) {
2] return (atb) * (at+b), (a-b) * (a-b)
3| 3

In fact, if all the parameters are never used within the corresponding function body, the names in the
parameter declaration list of a function declaration can be also be omitted all together. However,

anonymous parameters are rarely used in practice.

Although it looks the parameter and result variables are declared outside of the body of a function
declaration, they are viewed as general local variables within the function body. The difference is that
local variables with non-blank names declared within a function body must be ever used in the function
body. Non-blank names of top-level local variables, parameters and results in a function declaration can't
be duplicated.

Go doesn't support default parameter values. The initial value of each result is the zero value of its type.
For example, the following function will always print (and return) @ false.

1| func f() (x int, y bool) {

2] println(x, y) // 0 false
3] return
4| }

If the types of some successive parameters or results in a function declaration are the same one, then the
types of the former parameters or results can be absent. For example, the above two function declarations
with the name SquaresOfSumAndDiff are equivalent to

1| func SquaresOfSumAndDiff(a, b int64) (s, d int64) {

2| return (atb) * (atb), (a-b) * (a-b)

3| // The above line is equivalent

4| // to the following line.

5] /*

6 | s = (atb) * (atb); d = (a-b) * (a-b); return
7] */

8| }

Please note, even if both the two results are named, the return keyword can be followed with return

values.

If the result declaration list in a function declaration only contains one anonymous result declaration, then

the result declaration list doesn't need to be enclosed in a () . If the function declaration has no return

results, then the result declaration list portion can be omitted totally. The parameter declaration list portion

can never be omitted, even if the number of parameters of the declared function is zero.

Here are more function declaration examples.
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1| func CompareLower4dbits(m, n uint32) (r bool) {

2| r = m&OXF > n&OXF

3| return

4] // The above two lines is equivalent to
5] // the following line.

6| /*

7] return m&OxF > n&OXF

8] */

9| }

10|

11| // This function has no parameters.

12| func VersionString() string {

13| return "gol.0"

14]

15|

16| // This function has no results. And all of
17| // its parameters are anonymous, for we

18| // don't care about them.

19| func doNothing(string, int) {

20| }

One fact we have learned from the earlier articles in Go 101 is that the main entry function in each Go

program is declared without parameters and results.

Please note that, functions must be directly declared at package level. In other words, a function can't be
declared within the body of another function. In a later section, we will learn that we can define

anonymous functions in bodies of other functions. But anonymous functions are not function declarations.

IFunction Calls

A declared function can be called through its name plus an argument list. The argument list must be

enclosed in a (). Each single-value argument corresponds to a parameter declaration.

The type of an argument is not required to be identical with the corresponding parameter type. The only
requirement for the argument is it must be assignable (§7) (a.k.a., implicitly convertible) to the

corresponding parameter type.

The following is a full example to show how to call some declared functions.

1| package main

2|

3| func SquaresOfSumAndDiff(a int64, b int64) (int64, int64) {
4| return (atb) * (at+b), (a-b) * (a-b)

5| }

6]

7| func CompareLower4bits(m, n uint32) (r bool) {
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8] r = m&OxXF > n&OXF
9| return

10| }

11|

12| // Initialize a package-level variable
13| // with a function call.
14| var v = VersionString()

15|

16| func main() {

17 | println(v) // v1.0

18| X, Yy := SquaresOfSumAndDiff (3, 6)
19| println(x, y) // 81 9

20| b := CompareLower4bits(uint32(x), uint32(y))
21| println(b) // false

22| // "Go" is deduced as a string,
23| // and 1 is deduced as an int32.
24| doNothing("Go", 1)

25| }

26|

27| func VersionString() string {

28| return "vi.0"

29| }

30|

31| func doNothing(string, int32) {

32| }

From the above example, we can learn that a function can be either declared before or after any of its calls.

Function calls can be deferred or invoked in new goroutines (green threads) in Go. Please read a later
article (§13) for details.

IExiting Phase of a Function Call

In Go, a function call may undergo an exiting phase. The exiting phase of a function call starts when the
called function is returned. In other words, when a function call is returned, it is possible that it hasn't
exited yet. We will learn what is the exiting phase of a function call in the article mentioned at the end of

the last seciton.

More detailed explanations for exiting phases of function calls can be found in this article (§31).

|Anonymous Functions

Go supports anonymous functions. The definition of an anonymous function is almost the same as a

function declaration, except there is no function name portion in the anonymous function definition.
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An anonymous function can be called right after it is defined. Example:

1| package main

2|

3| func main() {

4| // This anonymous function has no parameters

5] // but has two results.

6| X, y := func() (int, int) {

7| println("This function has no parameters.")
8| return 3, 4

9| }() // Call it. No arguments are needed.

10|

11| // The following anonymous function have no results.
12|

13| func(a, b int) {

14| // The following line prints: a*a + b*b = 25
15| println("a*a + b*b =", a*a + b*b)

16 | }(x, y) // pass argument x and y to parameter a and b.
17|

18| func(x int) {

19| // The parameter x shadows the outer x.

20| // The following line prints: Xx*x + y*y = 32
21| println("x*x + y*y =", Xx*x + y*y)

22| }(y) // pass argument y to parameter x.

23]

24| func() {

25| // The following line prints: x*x + y*y = 25
26 | println("x*x + y*y =", x*x + y*y)

27 | }() // no arguments are needed.

28| }

Please note that, the last anonymous function is in the scope of the x and y variables declared above, it
can use the two variables directly. Such functions are called closures. In fact, all custom functions in Go

can be viewed as closures. This is why Go functions are as flexible as many dynamic languages.

Later, we will learn that an anonymous function can be assigned to a function value and can be called at

any time.

IBuilt-in Functions

There are some built-in functions in Go, for example, the println and print functions. We can call

these functions without importing any packages.

We can use the built-in real and imag functions to get the real and imaginary parts of a complex value.
We can use the built-in complex function to produce a complex value. Please note, if any of the

arguments of a call to any of the two functions are all constants, then the call will be evaluated at compile

66



§9. Function Declarations and Function Calls

time, and the result value of the call is also a constant. In particular, if any of the arguments is an untyped
constant, then the result value is also an untyped constant. The call is viewed as a constant expression.

Example:

1| // ¢ is a untyped complex constant.

2| const ¢ = complex(1.6, 3.3)

3]

4| // The results of real(c) and imag(c) are both

5| // untyped floating-point values. They are both

6| // deduced as values of type float32 below.

7| var a, b float32 = real(c), imag(c)

8]

9| // d is deduced as a typed value of type complex64.
10| // The results of real(d) and imag(d) are both

11| // typed values of type float32.

12| var d = complex(a, b)

13|

14| // e is deduced as a typed value of type complex128.
15| // The results of real(e) and imag(e) are both

16| // typed values of type float64.

17| var e = ¢

More built-in functions will be introduced in other Go 101 articles later.

IMore About Functions

There are more about function related concepts and details which are not touched in the current article. We

can learn those concepts and details in the article function types and values (§20) later.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,

Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Code Packages and Package Imports

Like many modern programming languages, Go code is also organized as code packages. To use the
exported resources (functions, types, variables and named constants, etc) in a specified package, the
package must first be imported, except the builtin standard code package. This article will explain code

packages and package imports in Go.

IIntroduction of Package Import

Let's view a small program which imports a standard code package. (Assume the source code of this
program is stored in a file named simple-import-demo.go.)

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | fmt.Println("Go has", 25, "keywords.")
71}

Some explanations:

e The first line specifies the name of the package containing the source file simple-import-
demo.go. The main entry function of a program must be put in a package named main.

e The third line imports the fmt standard package by using the import is a keyword. The identifier
fmt is the package name. It is also used as the import name of, and represents, this standard
package in the scope of containing source file. (Import names will be explained a below section.)
There are many format functions declared in this standard package for other packages to use. The
Println function is one of them. It will print the string representations of an arbitrary number of
arguments to the standard output.

e The sixth line calls the Println function. Note that the function name is prefixed with a fmt. in
the call, where fmt is the name of the package which contains the called function. The form

aImportName.AnExportedIdentifier is called a qualified identifier f .

AnExportedIdentifier is called an unqualified identifier.
e A fmt.Println function call has no requirements for its arguments, so in this program, its three
arguments will be deduced as values of their respective default types, string, int and string.
e Foreach fmt.Println call, a space character is inserted between each two consecutive string

representations and a newline character is printed at the end.
Running this program, you will get the following output:
$ go run simple-import-demo.go
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Go has 25 keywords.

Please note, only exported resources in a package can be used in the source file which imports the
package. Exported resources are the resources whose names are exported identifiers (§5). For example, the
first character of the identifier Println is an upper case letter (so the Println function is exported),

which is why the Print1ln function declared in the fmt standard package can be used in the above

example program.

The built-in functions, print and println, have similar functionalities as the corresponding functions

in the fmt standard package. Built-in functions can be used without importing any packages.

Note, the two built-in functions, print and println, are not recommended to be used in the production

environment, for they are not guaranteed to stay in the future Go versions.

All standard packages are listed here # . We can also run a local server (§3) to view Go documentation.

A package import is also called an import declaration formally in Go. An import declaration is only visible
to the source file which contains the import declaration. It is not visible to other source files in the same
package.

Let's view another example:

1| package main

2|

3| import "fmt"

4| import "math/rand"

5]

6| func main() {

7| fmt.Printf("Next random number is %v.\n", rand.Uint32())
8| }

This example imports one more standard package, the math/rand package, which is a sub-package of the

math standard package. This package provides some functions to produce pseudo-random numbers.

Some explanations:

¢ In this example, the package name rand is used as the import name of the imported math/rand
standard package. A rand.Uint32() call will return a random uint32 integer number.

e Printf is another commonly used function in the fmt standard package. A call to the Printf
function must take at least one argument. The first argument of a Printf function call must be a
string value, which specifies the format of the printed result. The %v in the first argument is

called a format verb, it will be replaced with the string representation of the second argument. As we

have learned in the article basic types and their literals (§6), the \n in a double-quoted string literal

will be escaped as a newline character.

The above program will always output:

69


https://golang.org/pkg/

§10. Code Packages and Package Imports

Next pseudo-random number is always 2596996162.

If we expect the above program to produce a different random number at each run, we should set a
different seed by calling the rand.Seed function when the program just starts.

If multiple packages are imported into a source file, we can group them in one import declaration by
enclosing themina ().

Example:

1| package main

2|

3| // Multiple packages can be imported together.
4| import (

5] "Fmt"

6 | "math/rand"

7] "time"

8] )

9]

10| func main() {

11| // Set the random seed.

12| rand.Seed(time.Now().UnixNano())

13| fmt.Printf("Next random number is %v.\n", rand.Uint32())
14]

Some explanations:

e this example imports one more package, the time standard package, which provides many time
related utilities.

e function time.Now( ) returns the current time, as a value of type time.Time.

e UnixNano is a method of the time.Time type. The method call aTime.UnixNano() returns the
number of nanoseconds elapsed since January 1, 1970 UTC to the time denoted by aTime. The
return result is a value of type int64, which is the parameter type of the rand.Seed function.

Methods are special functions. We can learn methods in the article methods in Go (§22) for details

later.

IMore About fmt.Printf Format Verbs

As the above has mentioned, if there is one format verb in the first argument of a fmt.Printf call, it will

be replaced with the string representation of the second argument. In fact, there can be multiple format

verbs in the first string argument. The second format verb will be replaced with the string

representation of the third argument, and so on.

In Go 101, only the following listed format verbs will be used.
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e %V, which will be replaced with the general string representation of the corresponding argument.

e %T, which will be replaced with the type name or type literal of the corresponding argument.

e %x, which will be replaced with the hex string representation of the corresponding argument. Note,
the hex string representations for values of some kinds of types are not defined. Generally, the
corresponding arguments of %x should be integers, integer arrays or integer slices (arrays and slices

will be explained in a later article).
e %s, which will be replaced with the string representation of the corresponding argument. The

corresponding argument should be a string or byte slice.
e Format verb %% represents a percent sign.

An example:

1| package main

2|
3| import "fmt"
4]
5| func main() {
6| a, b := 123, "Go"
7| fmt.Printf("a == %v == 0x%x, b == %s\n", a, a, b)
8] fmt.Printf("type of a: %T, type of b: %T\n", a, b)
9] fmt.Printf("1%% 50%% 99%%\n")
10|
Output:

a == 123 == 0x7b, b == Go
type of a: int, type of b: string
1% 50% 99%

For more Printf format verbs, please read the online fmt package documentation  , or view the same
documentation by running a local documentation server. We can also run go doc fmt to view the
documentation of the fmt standard package, and run go doc fmt.Printf to view the documentation of

the fmt.Printf function, in a terminal.

Package Folder, Package Import Path and Package
Dependencies

A code package may consist of several source files. These source files are located in the same folder. The
source files in a folder (not including subfolders) must belong to the same package. So, a folder
corresponds to a code package, and vice versa. The folder containing the source files of a code package is

called the folder of the package.

For the official Go SDK, a package whose import path containing an internal folder name is viewed as

a special package. It can only be imported by the packages rooted as the direct parent directory of the
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internal folder. For example, package .../a/b/c/internal/d/e/f and .../a/b/c/internal

can only be imported by the packages whose import paths have a . ../a/b/c prefix.

Depending on different scenarios, a folder with name vendor might be also viewed as a special package

folder. The following paragraphs will explain when this happens.

In Go SDK 1.11, a modules feature was introduced. A module can be viewed as a collection of packages
which have a common root (a package tree). Each module is associated with an root import path and a
semantic version # . The major version should be contained in the root import path, execpt the v@ or vi

major versions. Modules with different root import paths are viewed as different modules.

Go SDK 1.11 also introduced a GO111MODULE environment variable. Its value can be auto, on and
off. Up to now (Go SDK v1.13), its default value is auto. By context, different SDK versions interpret

auto as either on or off by different rules. Please check the official wiki ! for details.

If a package is contained within a GOPATH/src directory, and the modules feature is off, then its import
path is the relative path to either the GOPATH/src directory or the closest vendor folder which

containing the package.
For example, when the modules feature is off, then for the following hierarchical directory structure,

e the import paths of the two foo packages are both w/foo.

e the import paths of the x, y and z packages are x, x/y and x/z, respectively.

Note,

e when the file y.go imports a package with import path as w/foo, the imported package is the
package with folder GOPATH/src/x/y/vendor/w/foo.

e when the x.go or z.go file imports a package with import path w/foo, the imported package is
the package with folder GOPATH/src/x/vendor/w/foo.

_ GOPATH
|_ src
|_ X

|_ vendor
[l w
| | _ foo
| | _ foo.go // package foo
(Y
| |_ vendor
1 l—w
| | foo
| ] |_ foo.go // package foo
| |]_ y.go // package y
|_ z
| |]_ z.go // package z
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|_ x.go // package x

When the modules feature is on, the root import path of a module is often (but not required to be)
specified in a go.mod file which is directly contained in the root package folder of the module. We often

use the root import path to identify the module. The root import path is the common prefix of all packages
in the module.

Only the vendor folder directly under the root path of a module is viewed as a special folder.

For example, when the modules feature is on, then in the module identified with example.com/mypkg

shown blow,

e the import path of the first foo package is w/foo. The MyProject/vendor folder is viewed as a
special folder.

e the import path of the other foo package isexample.com/mypkg/x/y/vendor/w/foo. Note, the
MyProject/x/y/vendor folder is viewed as a normal package folder.

¢ the import paths of the x, y and z packages are example.com/mypkg/x,
example.com/mypkg/x/y and example.com/mypkg/x/z, respectively.

Note, when the x.go, y.go or z.go files import a package with import path w/foo, the imported

package is always the package with folder MyProject/vendor/w/foo.

_ MyProject
|_ go.mod // module example.com/mypkg
| _ vendor
I
| |_ foo
| |_ foo.go // package foo
|_ X
Iy
| |_ vendor
1 l-w
[ | f
| ] |_ foo.go // package foo
| |_vy.0 // package y
|_ z
| |]_ z.go // package z
|_ x.go // package X

When one source file in a package imports another package, we say the importing package depends on the
imported package.

Go doesn't support circular package dependencies. If package a depends on package b and package b
depends on package c, then source files in package ¢ can't import package a and b, and source files in

package b can't import package a.
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Surely, source files in a package can't, and don't need to, import the package itself.

Similar to package dependencies, a module might also depend on some other modules. The direct module
dependecies and their versions are often specified in the go.mod file of the module. Circular module

dependencies are supported, though such scenarios are rare in practice.

Later, we will call the packages named with main and containing main entry functions as program

packages (or command packages), and call other packages as library packages. Each Go program
should contain one and only one program package.

The name of the folder of a package is not required to be the same as the package name. However, for a
library package, it will make package users confused if the name of the package is different from the name
of the folder of the package. The cause of the confusion is that the default import path of a package is the
name of the package but what is contained in the import path of the package is the folder name of the
package. So please try to make the two names identical for each library package.

On the other hand, it is recommended to give each program package folder a meaningful name other than

its package name, main.

IThe init Functions

There can be multiple functions named as init declared in a package, even in a source code file. The

functions named as init must have not any input parameters and return results.

Note, at the top package-level block, the init identifier can only be used in function declarations. We

can't declare package-level variable/constants/types which names are init.

At run time, each init function will be (sequentially) invoked once and only once (before invoking the
main entry function). So the meaning of the init functions are much like the static initializer blocks in

Java.
Here is a simple example which contains two init functions:

1| package main

2|

3| import "fmt"

4|

5| func init() {

6| fmt.Println("hi,", bob)
7}

8]

9| func main() {

10| fmt.Println("bye")
11| }

12|
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13| func init() {

14 | fmt.Println("hello,", smith)

15| }

16|

17| func titledName(who string) string {

18] return "Mr. " + who

19] }

20|

21| var bob, smith = titledName("Bob"), titledName("Smith")

The output of this program:

hi, Mr. Bob
hello, Mr. Smith
bye

IResource Initialization Order

At run time, a package will be loaded after all its dependency packages. Each package will be loaded once
and only once.

All init functions in all involved packages in a program will be invoked sequentially. An init function
in an importing package will be invoked after all the init functions declared in the dependency packages
of the importing package for sure. All init functions will be invoked before invoking the main entry

function.

The invocation order of the init functions in the same source file is from top to bottom. Go specification
recommends, but doesn't require, to invoke the init functions in different source files of the same

package by the alphabetical order of filenames of their containing source files. So it is not a good idea to
have dependency relations between two init functions in two different source files.

All package-level variables declared in a package are initialized before any init function declared in the

same package is invoked.

Go runtime will try to initialize package-level variables in a package by their declaration order, but a
package-level variable will be initialized after all of its depended variables for sure. For example, in the
following code snippet, the initializations the four package-level variables happen in the order y, z, x,

and w.

1| func f() int {

2] return z + vy
3| }

4|

5| func g() int {
6 | return y/2
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7|}

8|

9| var (
10| w = X
11| X, y, z=T(), 123, g()
12| )

About more detailed rule of the initialization order of package-level variables, please read the article

expression evaluation order (§33).

IFull Package Import Forms

In fact, the full form of an import declaration is

import importname "path/to/package"

where importname is optional, its default value is the name (not the folder name) of the imported

package.

In fact, in the above used import declarations, the importname portions are all omitted, for they are

identical to the respective package names. These import declarations are equivalent to the following ones:

import fmt "fmt" // <=> import "fmt"
import rand "math/rand" // <=> import "math/rand"
import time "time" // <=> import "time"

If the importname portion presents in an import declaration, then the prefix tokens used in qualified

identifiers must be importname instead of the name of the imported package.

The full import declaration form is not used widely. However, sometimes we must use it. For example, if a
source file imports two packages with the same name, to avoid making compiler confused, we must use

the full import form to set a custom importname for at least one package in the two.

Here is an example of using full import declaration forms.

1| package main

2|

3| import (

4| format "fmt"

5] random "math/rand"

6| "time"

7| )

8|

9| func main() {

10| random.Seed(time.Now().UnixNano())

11| format.Print("A random number: ", random.Uint32(), "\n")
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12|

13| // The following two lines fail to compile,

14 | // for "rand" is not identified.

15| /*

16| rand.Seed(time.Now().UnixNano())

17| fmt.Print("A random number: ", rand.Uint32(), "\n")
18] */

19] }

Some explanations:

e we must use format and random as the prefix token in qualified identifiers, instead of the real
package names fmt and rand.
e Print is another function in the fmt standard package. Like Println function calls, a Print

function call can take an arbitrary number of arguments. It will print the string representations of the
passed arguments, one by one. If two consecutive arguments are both not string values, then a space
character will be automatically inserted between them in the print result.

The importname in the full form import declaration can be a dot (. ). Such imports are called dot

imports. To use the exported elements in the packages being dot imported, the prefix part in qualified
identifiers must be omitted.

Example:

1| package main

2|

3| import (

4] . "fmt"

5] . "time"

6] )

7]

8| func main() {

9] Println("Current time:", Now())
10| }

In the above example, Println instead of fmt.Println, and Now instead of time.Now must be used.

Generally, dot imports are not recommended to be used in formal projects.

The importname in the full form import declaration can be the blank identifier (_). Such imports are

called anonymous imports (some articles elsewhere also call them blank imports). The importing source
files can't use the exported resources in anonymously imported packages. The purpose of anonymous

imports is to initialize the imported packages (each of init functions in the anonymously imported

packages will be called once).

In the following example, all init functions declared in the net/http/pprof standard package 8 will
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be called before the main entry function is called.

1| package main

2|

3| import _ "net/http/pprof"
4]

5| func main() {

6| ... // do somethings
73

IEach Non-Anonymous Import Must Be Used at Least Once

Except anonymous imports, other imports must be used at least once. For example, the following example
fails to compile.

1| package main

2|

3| import (

4| "net/http" // error: imported and not used

5] . "time" // error: imported and not used

6] )

7]

8| import (

9] format "fmt" // okay: it is used once below
10| _ "math/rand" // okay: it is not required to be used
11] )
12|
13| func main() {
14 | format.Println() // use the imported "fmt" package
15] }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Expressions, Statements and Simple Statements

This article will introduce expressions and statements in Go.

Simply speaking, an expression represents a value and a statement represents an operation. However, in
fact, some special expressions may be composed of and represent several values, and some statements
may be composed of several sub operations/statements. By context, some statements can be also viewed as

expressions.

Simple statements are some special statements. In Go, some portions of all kinds of control flows must be
simple statements, and some portions must be expressions. Control flows will be introduced in the next Go
101 article.

This article will not make accurate definitions for expressions and statements. It is hard to achieve this.
This article will only list some expression and statement cases. Not all kinds of expressions and statements
will be covered in this article, but all kinds of simple statements will be listed.

ISome Expression Cases

Most expressions in Go are single-value expressions. Each of them represents one value. Other
expressions represent multiple values and they are named multi-value expressions.

In the scope of this document, when an expression is mentioned, we mean it is a single-value expression,
unless otherwise specified.

Value literals, variables, and named constants are all single-value expressions, also called elementary

expressions.

Operations (without the assignment parts) using the operators introduced in the article common operators

(88) are all single-value expressions.

If a function returns at least one result, then its calls (without the assignment parts) are expressions. In
particular, if a function returns more than one results, then its calls belong to multi-value expressions.

Calls to functions without results are not expressions.

Methods can be viewed as special functions. So the aforementioned function cases also apply to methods.
Methods will be explained in detail in the article method in Go (§22) later.

In fact, later we will learn that custom functions, including methods, are all function values, so they are

also (single-value) expressions. We will learn more about function types and values (§20) later.

Channel receive operations (without the assignment parts) are also expressions. Channel operations will be

explained in the article channels in Go (§21) later.
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Some expressions in Go, including channel receive operations, may have optional results in Go. Such
expressions can present as both single-value and multi-value expressions, depending on different contexts.

We can learn such expressions in other Go 101 articles later.

|Simple Statement Cases

There are six kinds of simple statements.

1. short variable declaration forms

2. pure value assignments (not mixing with variable declarations), including x op= y operations.

3. function/method calls and channel receive operations. As mentioned in the last section, these simple
statements can also be used as expressions.

4. channel send operations.

5. nothing (a.k.a., blank statements). We will learn some uses of blank statements in the next article.

x++ and X--.
Again, channel receive and sent operations will be introduced in the article channels in Go (§21).

Note, x++ and x-- can't be used as expressions. And Go doesn't support the ++x and --x syntax forms.

ISome Non-Simple Statement Cases

An incomplete non-simple statements list:

e standard variable declaration forms. Yes, short variable declarations are simple statements, but
standard ones are not.

e named constant declarations.

e custom type declarations.

e package import declarations.

e explicit code blocks. An explicit code block starts with a { and ends with a }. A code block may
contain many sub-statements.

¢ function declarations. A function declaration may contain many sub-statements.

e control flows and code execution jumps. Please read the next article (§12) for details.

e return lines in function declarations.

e deferred function calls and goroutine creations. The two will be introduced in the article after next

(813).

|Examples of Expressions and Statements

1| // Some non-simple statements.
2| import "time"
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4]
5]
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10|
11 |
12|
13|
14|
15|
16|
17|
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30|
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34
35
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39|
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41|
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var a = 123
const B = "Go"
type Choice bool
func f() int {
for a < 10 {

break
}
// This is an explicit code block.
{
//
¥
return 567
¥
// Some simple statements:
c := make(chan bool) // channels will be explained later
a = 789
a += 5
a = f() // here f() is used as an expression
a++
a--
C <- true // a channel send operation
z := <-c // a channel receive operation used as the

// source value in an assignment statement.

// Some expressions:
123
true

B + " language"

a - 789

a > 0 // an untyped boolean value

f // a function value of type "func ()"

// The following ones can be used as both
// simple statemetns and expressions.

()

<-c // a channel receive operation

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Basic Control Flows

The control flow code blocks in Go are much like other popular programming languages, but there are
also many differences. This article will show these similarities and differences.

IAn Introduction of Control Flows in Go

There are three kinds of basic control flow code blocks in Go:

e if-else two-way conditional execution block.
e for loop block.

e switch-case multi-way conditional execution block.
There are also some control flow code blocks which are related to some certain kinds of types in Go.

e for-range loop block for container (§18) types.
e type-switch multi-way conditional execution block for interface (§23) types.

e select-case block for channel (§21) types.

Like many other popular languages, Go also supports break, continue and goto code execution jump

statements. Besides these, there is a special code jump statement in Go, fallthrough.

Among the six kinds of control flow blocks, except the if-else control flow, the other five are called
breakable control flow blocks. We can use break statements to make executions jump out of breakable

control flow blocks.

for and for-range loop blocks are called loop control flow blocks. We can use continue statements

to end a loop step in advance in a loop control flow block, i.e. continue to the next iteration of the loop.

Please note, each of the above mentioned control flow blocks is a statement, and it may contain many

other sub-statements.

Above mentioned control flow statements are all the ones in narrow sense. The mechanisms introduced in

the next article, goroutines, deferred function calls and panic/recover (§13), and the concurrency

synchronization techniques introduced in the later article concurrency synchronization overview (836) can

be viewed as control flow statements in broad sense.

Only the basic control flow code blocks and code jump statements will be explained in the current article,

other ones will be explained in many other Go 101 articles later.

I if-else Control Flow Blocks
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The full form of a if-else code block is like

1| if InitSimpleStatement; Condition {

2] // do something
3| } else {

4] // do something
5] }

if and else are keywords. Like many other programming languages, the else branch is optional.

The InitSimpleStatement portion is also optional. It must be a simple statement (§11) if it is present.
If it is absent, we can view it as a blank statement (one kind of simple statements). In practice,
InitSimpleStatement is often a short variable declaration or a pure assignment. A Condition must

be an expression (§11) which results to a boolean value. The Condition portion can be enclosed in a pair

of () or not, but it can't be enclosed together with the InitSimpleStatement portion.

If the InitSimpleStatement ina if-else block is present, it will be executed before executing other
statements in the if-else block. If the InitSimpleStatement is absent, then the semicolon following

it is optional.

Each if-else control flow forms one implicit code block, one if branch explicit code block and one
optional else branch code block. The two branch code blocks are both nested in the implicit code block.
Upon execution, if Condition expression results true, then the if branch block will get executed,

otherwise, the else branch block will get executed.

Example:

1| package main

2|

3| import (

4] "fmt"

5] "math/rand"

6| "time"

71 )

8]

9| func main() {

10| rand.Seed(time.Now().UnixNano())

11|

12| if n = rand.Int(); n%2 == 0 {

13| fmt.Println(n, "is an even number.")
14 | } else {

15| fmt.Println(n, "is an odd number.'")
16| }

17|

18| n := rand.Int() % 2 // this n is not the above n.
19| ifn%2==0 {
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20| fmt.Println("An even number.")
21| }

22|

23| if ; n%2 1=0 {

24| fmt.Println("An odd number.")
25| }

26| }

If the InitSimpleStatement ina if-else code block is a short variable declaration, then the declared
variables will be viewed as being declared in the top nesting implicit code block of the if-else code
block.

An else branch code block can be implicit if the corresponding else is followed by another if-else

code block, otherwise, it must be explicit.
Example:

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func main() {

9] if h := time.Now().Hour(); h < 12 {

10| fmt.Println("Now is AM time.")

11| } else if h > 19 {

12| fmt.Println("Now is evening time.")
13| } else {

14 | fmt.Println("Now is afternoon time.")
15| h := h // the right one is declared above
16 | // The just new declared "h" variable
17 | // shadows the above same-name one.
18] _=h

19| }

20|

21| // h is not visible here.

22| }

Ifor Loop Control Flow Blocks

The full form of a for loop block is:

1| for InitSimpleStatement; Condition; PostSimpleStatement {
2| // do something

84



§12. Basic Control Flows

3 }

for is a keyword. The InitSimpleStatement and PostSimpleStatement portions must be both
simple statements, and the PostSimpleStatement portion must not be a short variable declaration.

Condition must be an expression which result is a boolean value. The three portions are all optional.

Unlike many other programming languages, the just mentioned three parts following the for keyword

can't be enclosed in a pair of ().

Each for control flow forms at least two code blocks, one is implicit and one is explicit. The explicit one

is nested in the implicit one.

The InitSimpleStatement in a for loop block will be executed (only once) before executing other

statements in the for loop block.

The Condition expression will be evaluated at each loop step. If the evaluation result is false, then the

loop will end. Otherwise the body (a.k.a., the explicit code block) of the loop will get executed.

The PostSimpleStatement will be executed at the end of each loop step.

A for loop example. The example will print the integers from 0 to 9.

1] for 1 := 0; i < 10; i++ {
2| fmt.Println(1i)
3| }

If the InitSimpleStatement and PostSimpleStatement portions are both absent (just view them as
blank statements), their nearby two semicolons can be omitted. The form is called as condition-only for

loop form. It is the same as the while loop in other languages.

1] var 1 = 0
2| for ; i < 10; {

3| fmt.Println(1i)
4| i++

5| }

6] for i < 20 {

7| fmt.Println(1i)
8| i++

9| }

If the Condition portion is absent, compilers will view it as true.

1| for i := 0; ; i++ { // <=> for i := 0; true; i++ {
2| fmt.Println(1i)

3] if i >= 10 {

4| // "break" statement will be explained below.
5] break

85



§12. Basic Control Flows

6] }

71}

8]

9| // The following 4 endless loops are
10| // equivalent to each other.

11| for ; true; {

12| }

13| for true {
14| }

15| for ; ; {
16| }

17| for {

18| }

If the InitSimpleStatement in a for block is a short variable declaration statement, then the declared
variables will be viewed as being declared in the top nesting implicit code block of the for block. For

example, the following code snippet prints 012 instead of 0.

1] for 1 := 0; i < 3; i++ {

2] fmt.Print (1)

3| // The left i is a new declared variable,

4| // and the right i is the loop variable.

5] i:=1

6 | // The new declared variable is modified, but
7| // the old one (the loop variable) is not yet.
8] i=10

9] _ =1

10| }

A break statement can be used to make execution jump out of the for loop control flow block in
advance, if the for loop control flow block is the innermost breakable control flow block containing the

break statement.

1] i := 0

2| for {

3] if i >= 10 {
4| break

5] }

6| i++

7| fmt.Println(1i)
8| }

A continue statement can be used to end the current loop step in advance (PostSimpleStatement
will still get executed), if the for loop control flow block is the innermost loop control flow block

containing the continue statement. For example, the following code snippet will print 13579.
1] for 1 := 0; i < 10; i++ {
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2] if 1 %2 ==0 {
3| continue

4| }

5] fmt.Print(1i)

6] }

I switch-case Control Flow Blocks

switch-case control flow block is one kind of conditional execution control flow blocks.

The full form a switch-case block is

1| switch InitSimpleStatement; CompareOperand0® {
2| case CompareOperandListl:

3] // do something

4| case CompareOperandList2:
5] // do something

6]

7| case CompareOperandListN:
8] // do something

9| default:

10| // do something

11]

In the full form,

e switch, case and default are three keywords.
e The InitSimpleStatement portion must be a simple statement. The CompareOperand® portion

is an expression which is viewed as a typed value (if it is an untyped value, then it is viewed as a
type value of its default type), hence it can't be an untyped nil. CompareOperand@ is called as

switch expression in Go specification.
e Each of the CompareOperandListX (X may represent from 1 to N) portions must be a comma

separated expression list. Each of these expressions shall be comparable with CompareOperand@.

Each of these expressions is called as a case expression in Go specification. If a case expression is
an untyped value, then it must be implicitly convertible to the type of the switch expression in the

same switch-case control flow. If the conversion is impossible to achieve, compilation fails.

Each case CompareOperandListX: or default: opens (and is followed by) an implicit code block.
The implicit code block and that case CompareOperandListX: or default: forms a branch. Each
such branch is optional to be present. We call an implicit code block in such a branch as a branch code
block later.

There can be at most one default branch in a switch-case control flow block.

Besides the branch code blocks, each switch-case control flow forms two code blocks, one is implicit
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and one is explicit. The explicit one is nested in the implicit one. All the branch code blocks are nested in

the explicit one (and nested in the implicit one indirectly).

switch-case control flow blocks are breakable, so break statements can also be used in any branch
code block in a switch-case control flow block to make execution jump out of the switch-case

control flow block in advance.

The InitSimpleStatement in a for loop block will be executed (only once) before executing other

statements in the for loop block.

The InitSimpleStatement will get executed firstly when a switch-case control flow gets executed,
then the switch CompareOperand® expression will be evaluated and only evaluated once. The evaluation
result is always a typed value. The evaluation result will be compared (by using the == operator) with the
evaluation result of each case expression in the CompareOperandListX expression lists, from top to
down and from left to right. If a case expression is found to be equal to CompareOperand®, the

comparison process stops and the corresponding branch code block of the expression will be executed. If
none case expressions are found to be equal to CompareOperand®, the default branch code block (if it is

present) will get executed.
A switch-case control flow example:

1| package main

2|

3| import (

4] "fmt"

5] "math/rand"

6| "time"

71 )

8]

9| func main() {

10| rand.Seed(time.Now().UnixNano())

11| switch n := rand.Intn(100); n%9 {

12| case 0:

13| fmt.Println(n, "is a multiple of 9.")
14|

15| // Different from many other languages,
16 | // in Go, the execution will automatically
17 | // jumps out of the switch-case block at
18| // the end of each branch block.

19| // No "break" statement is needed here.
20| case 1, 2, 3:

21| fmt.Println(n, "mod 9 is 1, 2 or 3.")
22| // hHre, this "break" statement is nonsense.
23| break

24 | case 4, 5, 6:

25| fmt.Println(n, "mod 9 is 4, 5 or 6.")
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26 | // case 6, 7, 8:

27 | // The above case line might fail to compile,
28| // for 6 is duplicate with the 6 in the last
29| // case. The behavior is compiler dependent.
30| default:

31| fmt.Println(n, "mod 9 is 7 or 8.")

32| }

33| }

The rand.Intn function returns a non-negative int random value which is smaller than the specified

argument.

Note, if any two case expressions in a switch-case control flow can be detected to be equal at compile
time, then a compiler may reject the latter one. For example, the standard Go compiler thinks the case
6, 7, 8 line in the above example is invalid if that line is not commented out. But other compilers may
think that line is okay. In fact, the current standard Go compiler (version 1.13) allows duplicate boolean
case expressions f_, and gccgo (v8.2) allows both duplicate boolean and string case expressions.

As the comments in the above example describes, unlike many other languages, in Go, at the end of each
branch code block, the execution will automatically break out of the corresponding switch-case control
block. Then how to let the execution slip into the next branch code block? Go provides a fallthrough
keyword to do this task. For example, in the following example, every branch code block will get
executed, by their orders, from top to down.

1| rand.Seed(time.Now().UnixNano())
2| switch n := rand.Intn(100) % 5; n {
3| case 0, 1, 2, 3, 4:

4| fmt.Println("n =", n)

5] // The "fallthrough" statement makes the

6 | // execution slip into the next branch.

7| fallthrough

8| case 5, 6, 7, 8:

9] // A new declared variable also called "n",
10| // it is only visible in the currrent
11| // branch code block.
12| n := 99
13| fmt.Println("n =", n) // 99
14 | fallthrough
15| default:

16 | // This "n" is the switch expression '"n"
17 | fmt.Println("n =", n)
18] }

Please note,

e a fallthrough statement must be the final statement in a branch.
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e a fallthrough statement can't show up in the final branch in a switch-case control flow block.
For example, the following fallthrough uses are all illegal.

1| switch n := rand.Intn(100) % 5; n {
2| case 0, 1, 2, 3, 4:

3] fmt.Println("n =", n)

4| // The if-block, not the fallthrough statement,
5] // 1is the final statement in this branch.

6 | if true {

7| fallthrough // error: not the final statement
8] }

9| case 5, 6, 7, 8:

10| n := 99

11| fallthrough // error: not the final statement
12| _=n

13| default:

14| fmt.Println(n)

15| fallthrough // error: show up in the final branch
16| }

The InitSimpleStatement and CompareOperand® portions in a switch-case control flow are both
optional. If the CompareOperand@ portion is absent, it will be viewed as true, a typed value of the
built-in type bool. If the InitSimpleStatement portion is absent, the semicolon following it can be

omitted.

And as above has mentioned, all branches are optional. So the following code blocks are all legal, all of

them can be viewed as no-ops.

1| switch n :=5; n {

2| }

3]

4| switch 5 {

5| }

6|

7] switch _ = 5; {
8| }

9|

10| switch {

11| }

For the latter two switch-case control flow blocks in the last example, as above has mentioned, each of
the absent CompareOperand® portions is viewed as a typed value true of the built-in type bool. So the

following code snippet will print hello.

1] switch {
2| case true: fmt.Println("hello")
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3| default: fmt.Println("bye")
4| }

Another obvious difference from many other languages is the order of the default branch in a switch-
case control flow block can be arbitrary. For example, the following three switch-case control flow

blocks are equivalent to each other.

1| switch n := rand.Intn(3); n {
2| case 0: fmt.Println("n == 0")
3| case 1: fmt.Println("n == 1")
4| default: fmt.Println("n == 2")

5[ }
6
7| switch n := rand.Intn(3); n {

8| default: fmt.Println("n == 2")
9| case 0: fmt.Println("n == 0")
10| case 1: fmt.Println("n == 1")

11| }
12|
13| switch n := rand.Intn(3); n {

14| case 0: fmt.Println("n == 0")
15| default: fmt.Println("n == 2")
16| case 1: fmt.Println("n == 1")
17| }

Igoto Statement and Label Declaration

Like many other languages, Go also supports goto statement. A goto keyword must be followed by a
label to form a statement. A label is declared with the form LabelName: , where LabelName must be an

identifier. A label which name is not the blank identifier must be used at least once.

A goto statement will make the execution jump to the next statement following the declaration of the

label used in the goto statement. So a label declaration must be followed by one statement.

A label must be declared within a function body. A use of a label can appear before or after the declaration
of the label. But a label is not visible (and can't appear) outside the innermost code block the label is

declared in.
The following example uses a goto statement and a label to implement a loop control flow.

1| package main

2|

3| import "fmt"
4|

5| func main() {
6 | i:=0
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7]

8| Next: // here, a label is declared.
9] fmt.Println(i)

10| i++

11| if i <5 {

12| goto Next // execution jumps
13] }

14] }

As mentioned above, a label is not visible (and can't appear) outside the innermost code block the label is
declared in. So the following example fails to compile.

1| package main

2|

3| func main() {

4| goto Labell // error

5] {

6 | Labell:

7| goto Label2 // error
8| }

9| {

10| Label2:

11| }

12| }

Note that, if a label is declared within the scope of a variable, then the uses of the label can't appear before
the declaration of the variable. Identifier scopes will be explained in the article blocks and scopes in Go
(832) later.

The following example also fails to compile.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| i:=0

7] Next:

8] if 1 >=5 {

9] // error: jumps over declaration of k
10| goto Exit
11| }
12|
13| k (= 1+ 1
14 | fmt.Println(k)
15| i++
16 | goto Next
17|
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18| // This label is declared in the scope of Kk,
19| // but its use is outside of the scope of k.
20| Exit:

21| }

The just mentioned rule may change later . Currently, to make the above code compile okay, we must
adjust the scope of the variable k. There are two ways to fix the problem in the last example.

One way is to shrink the scope of the variable k.

1| func main() {

2| i:=0

3| Next:

4| if i >=5 {

5] goto Exit

6] }

7| // Create an explicit code block to
8] // shrink the scope of k.
9] {

10| k =1+ 1

11| fmt.Println(k)

12| }

13| i++

14 | goto Next

15| Exit:

16| }

The other way is to enlarge the scope of the variable k.

1] func main() {

2| var k int // move the declaration of k here.
3| i:=0

4| Next:

5] if 1 >=5 {

6| goto Exit
7] }

8]

9| k =1+ i
10| fmt.Println(k)
11| i++
12| goto Next
13| Exit:
14| }

|break and continue Statements With Labels

A goto statement must contain a label. A break or continue statement can also contain a label, but the
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label is optional. Generally, break containing labels are used in nested breakable control flow blocks and

continue statements containing labels are used in nested loop control flow blocks.

If a break statement contains a label, the label must be declared just before a breakable control flow
block which contains the break statement. We can view the label name as the name of the breakable
control flow block. The break statement will make execution jump out of the breakable control flow

block, even if the breakable control flow block is not the innermost breakable control flow block

containing break statement.

If a continue statement contains a label, the label must be declared just before a loop control flow block
which contains the continue statement. We can view the label name as the name of the loop control
flow block. The continue statement will end the current loop step of the loop control flow block in

advance, even if the loop control flow block is not the innermost loop control flow block containing the

continue statement.

The following is an example of using break and continue statements with labels.

1| package main

2|
3| import "fmt"
4|
5| func FindSmallestPrimelLargerThan(n int) int {
6| Outer:
7| for n++; ; n++{
8| for 1 := 2; ; i++ {
9] switch {
10| case i * i > n:
11| break Outer
12| case n % i == 0:
13| continue Outer
14| }
15| }
16| }
17 | return n
18] }
19|
20| func main() {
21| for 1 := 90; i < 100; i++ {
22| n := FindSmallestPrimelLargerThan(i)
23| fmt.Print("The smallest prime number larger than ")
24 | fmt.Println(i, "is", n)
25| }
26| }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
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from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Goroutines, Deferred Function Calls and
Panic/Recover

This article will introduce goroutines and deferred function calls. Goroutine and deferred function call are
two unique features in Go. This article also explains panic and recover mechanism. Not all knowledge

relating to these features is covered in this article, more will be introduced in future articles.

IGoroutines

Modern CPUs often have multiple cores, and some CPU cores support hyper-threading. In other words,
modern CPUs can process multiple instruction pipelines simultaneously. To fully use the power of modern

CPUs, we need to do concurrent programming in coding our programs.

Concurrent computing is a form of computing in which several computations are executed during
overlapping time periods. The following picture depicts two concurrent computing cases. In the picture, A
and B represent two separate computations. The second case is also called parallel computing, which is
special concurrent computing. In the first case, A and B are only in parallel during a small piece of time.

Concurrent:

Parallel:

Concurrent computing may happen in a program, a computer, or a network. In Go 101, we only talk about
program-scope concurrent computing. Goroutine is the Go way to create concurrent computations in Go
programming.

Goroutines are also often called green threads. Green threads are maintained and scheduled by the
language runtime instead of the operating systems. The cost of memory consumption and context
switching, of a goroutine is much lesser than an OS thread. So, it is not a problem for a Go program to

maintain tens of thousands goroutines at the same time, as long as the system memory is sufficient.

Go doesn't support the creation of system threads in user code. So, using goroutines is the only way to do

(program scope) concurrent programming in Go.

Each Go program starts with only one goroutine, we call it the main goroutine. A goroutine can create new

goroutines. It is super easy to create a new goroutine in Go, just use the keyword go followed by a

function call. The function call will then be executed in a newly created goroutine. The new created
goroutine will exit alongside the exit of the called function.

All the result values of a goroutine function call (if the called function returns values) must be discarded in
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the function call statement. The following is an example which creates two new goroutines in the main

goroutine. In the example, time.Duration is a custom type defined in the time standard package. Its

underlying type is the built-in type int64. Underlying types will be explained in the next article (§14).

1| package main

2|

3| import (

4] "log"

5] "math/rand"

6| "time"

71 )

8]

9| func SayGreetings(greeting string, times int) {
10| for 1 := 0; 1 < times; it++ {

11| log.Println(greeting)

12| d := time.Second * time.Duration(rand.Intn(5)) / 2
13| time.Sleep(d) // sleep for O to 2.5 seconds
14| }

15] }

16|

17| func main() {

18| rand.Seed(time.Now().UnixNano())

19| log.SetFlags(0)

20| go SayGreetings("hi!", 10)

21| go SayGreetings("hello!", 10)

22| time.Sleep(2 * time.Second)

23| }

Quite easy. Right? We do concurrent programming now! The above program may have three user-created

goroutines running simultaneously at its peak during run time. Let's run it. One possible output result:

hi!
hello!
hello!
hello!
hello!
hi!

When the main goroutine exits, the whole program also exits, even if there are still some other goroutines

which have not existed yet.

Unlike previous articles, this program uses the Println function in the 1log standard package instead of
the corresponding function in the fmt standard package. The reason is the print functions in the log

standard package are synchronized (the next section will explain what are synchronizations), so the texts
printed by the two goroutines will not be messed up in one line (though the chance of the printed texts

being messed up by using the print functions in the fmt standard package is very small for this specific

program).
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|Concurrency Synchronization

Concurrent computations may share resources, generally memory resource. There are some circumstances
may happen in a concurrent computing.

¢ In the same period of one computation is writing data to a memory segment, another computation is
reading data from the same memory segment. Then the integrity of the data read by the other
computation might be not preserved.

¢ In the same period of one computation is writing data to a memory segment, another computation is
also writing data to the same memory segment. Then the integrity of the data stored at the memory
segment might be not preserved.

These circumstances are called data races. One of the duties in concurrent programming is to control
resource sharing among concurrent computations, so that data races will never happen. The ways to
implement this duty are called concurrency synchronizations, or data synchronizations, which will be
introduced one by one in later Go 101 articles.

Other duties in concurrent programming include

e determine how many computations are needed.
e determine when to start, block, unblock and end a computation.

e determine how to distribute workload among concurrent computations.

The program shown in the last section is not perfect. The two new goroutines are intended to print ten
greetings each. However, the main goroutine will exit in two seconds, so many greetings don't have a
chance to get printed. How to let the main goroutine know when the two new goroutines have both
finished their tasks? We must use something called concurrency synchronization techniques.

Go supports several concurrency synchronization techniques (836). Among them, the channel technique
(821) is the most unique and popularly used one. However, for simplicity purpose, here we will use

another technique, the WaitGroup type in the sync standard package, to synchronize the executions

between the two new goroutines and the main goroutine.

The WaitGroup type has three methods (special functions, will be explained later): Add, Done and

Wait. This type will be explained in detail later in another article. Here we can simply think

e the Add method is used to register the number of new tasks.

e the Done method is used to notify that a task is finished.

e and the Wait method makes the caller goroutine become blocking until all registered tasks are
finished.

Example:

1| package main
2|

98



§13. Goroutines, Deferred Function Calls and Panic/Recover

times int) {

3| import (

4| "log"

5] "math/rand"

6| "time"

7] "sync"

8] )

9]

10| var wg sync.wWaitGroup

11|

12| func SayGreetings(greeting string,
13| for 1 := 0; 1 < times; it++ {

14| log.Println(greeting)

15| d := time.Second * time.Duration(rand.Intn(5)) / 2
16 | time.Sleep(d)

17] ¥

18| // Notify a task is finished.
19| wg.Done() // <=> wg.Add(-1)

20| }

21|

22| func main() {

23| rand.Seed(time.Now().UnixNano())
24| log.SetFlags(0)

25| wg.Add(2) // register two tasks.
26 | go SayGreetings("hi!", 10)

27 | go SayGreetings("hello!", 10)
28| wg.Wait() // block until all tasks are finished.
29| }

Run it, we can find that, before the program exits, each of the two new goroutines prints ten greetings.

IGoroutine States

The last example shows that a live goroutine may stay in (and switch between) two states, running and

blocking. In that example, the main goroutine enters the blocking state when the wg.Wait method is

called, and enter running state again when the other two goroutines both finish their respective tasks.

The following picture depicts a possible lifecycle of a goroutine.

running
h

=

blocking

Note, a goroutine in sleeping (by calling time.Sleep function) or waiting the response of a system call
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or a network connection is viewed as staying in running state.

When a new goroutine is created, it will enter running state automatically. Goroutines can only exit from
running state, and never from blocking state. If, for any reason, a goroutine stays in blocking state forever,

then it will never exit. Such cases, except some rare ones, should be avoided in concurrent programming.

A blocking goroutine can only be unblocked by an operation made in another goroutine. If all goroutines
in a Go program are in blocking state, then all of them will stay in blocking state forever. This can be
viewed as an overall deadlock. When this happens in a program, the standard Go runtime will try to crash
the program.

The following program will crash, after two seconds:

1| package main

2|
3| import (
4| "sync"
5] "time"
6| )
7|
8| var wg sync.WaitGroup
9|
10| func main() {
11| wg.Add (1)
12| go func() {
13| time.Sleep(time.Second * 2)
14 | wg.Wait()
15] 10)
16 | wg.Wait()
17| }
The output:

fatal error: all goroutines are asleep - deadlock!

Later, we will learn more operations which will make goroutines enter blocking state.

|Goroutine Schedule

Not all goroutines in running state are being executed at a given time. At any given time, the maximum
number of goroutines being executed will not exceed the number of the logical CPUs available for the

current program. We can call the runtime .NumCPU # function to get the number of logical CPUs

available for the current program. Each logical CPU can only execute one goroutine at any given time. Go

runtime must frequently switch execution contexts between goroutines to let each running goroutine have
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a chance to execute. This is similar to how operating systems switch execution contexts between OS
threads.

The following picture depicts a more detailed possible lifecycle for a goroutine. In the picture, the running
state is divided into several more sub-states. A goroutine in the queuing sub-state is waiting to be
executed. A goroutine in the executing sub-state may enter the queuing sub-state again when it has been
executed for a while (a very small piece of time).

running

sleeping, system calling, ...
I 3

L 4
@ queuing [ i executing @

blocking

Please note, for simplicity, the sub-states shown in the above picture will be not mentioned in other
articles in Go 101. And again, in Go 101, the sleeping and system calling sub-states are not viewed as sub-
states of the blocking state.

The standard Go runtime adopts the M-P-G model #  to do the goroutine schedule job, where M
represents OS threads, P represents logical/virtual processors (not logical CPUs) and G represents
goroutines. Most schedule work is made by logical processors (Ps), which act as brokers by attaching
goroutines (Gs) to OS threads (Ms). Each OS thread can only be attached to at most one goroutine at any
given time, and each goroutine can only be attached to at most one OS thread at any given time. A
goroutine can only get executed when it is attached to an OS thread. A goroutine which has been executed
for a while will try to detach itself from the corresponding OS thread, so that other running goroutines can
have a chance to get attached and executed.

At runtime. we can call the runtime.GOMAXPROCS # function to get and set the number of logical

processors (Ps). For the standard Go runtime, before Go 1.5, the default initial value of this number is 1,

but since Go 1.5, the default initial value of this number is equal to the number of logical CPUs available
for the current running program. The default initial value (the number of logical CPUs) is the best choice

for most programs. But for some file IO heavy programs, a GOMAXPROCS value larger than
runtime.NumCPU( ) may be helpful.

The default initial value of runtime.GOMAXPROCS can also be set through the GOMAXPROCS environment

variable.

At any time, the number of goroutines in the executing sub-state is no more than the smaller one of
runtime.NumCPU and runtime.GOMAXPROCS.
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|Deferred Function Calls

A deferred function call is a function call which follows a defer keyword. Like goroutine function calls,

all the result values of the function call (if the called function returns values) must be discarded in the
function call statement.

When a function call is deferred, it is not executed immediately. It will be pushed into a defer-call stack
maintained by its caller goroutine. After a function call fc(...) returns and enters its exiting phase (§9),
all the deferred function calls pushed in the function call (fc. . .) (which has not exited yet) will be

executed, by their inverse order being pushed into the defer-call stack. Once all these deferred calls are
executed, the function call fc(...) exits.

Here is a simple example to show how to use deferred function calls.

1| package main

2]
3| import "fmt"
4]
5| func main() {
6| defer fmt.Println("The third line.")
7] defer fmt.Println("The second line.")
8] fmt.Println("The first line.")
9| }
The output:

The first line.
The second line.
The third line.

In fact, each goroutine maintains two call stacks, the normal-call stack and defer-call stack.

e For two adjacent function calls in the normal-call stack of a goroutine, the later pushed one is called
by the earlier pushed one. The earliest function call in the normal-call stack is the entry call of the
goroutine.

e The function calls in the defer-call stack have no calling relations.

Here is another example which is a little more complex. The example will print @ to 9, each per line, by

their natural order.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | defer fmt.Println("9")
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7| fmt.Println("0")

8| defer fmt.Println("8")

9| fmt.Println("1")

10| if false {

11| defer fmt.Println("not reachable")
12| }

13| defer func() {

14| defer fmt.Println("7")

15| fmt.Println("3")

16 | defer func() {

17| fmt.Println("5")

18| fmt.Println("6")

19| 10)

20| fmt.Println("4")

21| 10

22| fmt.Println("2")

23| return

24| defer fmt.Println("not reachable")
25| }

Deferred Function Calls Can Modify the Named Return
Results of Nesting Functions

For example,

1| package main

2|

3| import "fmt"

4|

5| func Triple(n int) (r int) {

6| defer func() {

7| r += n // modify the return value
8] 10)

9]

10| return n + n // <=>r = n + n; return
11| }

12|

13| func main() {

14 | fmt.Println(Triple(5)) // 15

15| }

The Necessary and Benefits of the Deferred Function
Feature

103



§13. Goroutines, Deferred Function Calls and Panic/Recover

In the above examples, the deferred function calls are not absolutely necessary. However, the deferred
function call feature is a necessary feature for the panic and recover mechanism which will be introduced

below.

Deferred function calls can also help us write more clean and robust code. We can read more code
examples by using deferred function calls and learn more details on deferred function calls in the article
more about deferred functions (§29) later.

The Evaluation Moment of the Arguments of Deferred and
Goroutine Function Calls

The arguments of a deferred function call or a goroutine function call are all evaluated at the moment
when the function call is invoked.

e For a deferred function call, the invocation moment is the moment when it is pushed into the defer-
call stack of its caller goroutine.
e For a goroutine function call, the invocation moment is the moment when the corresponding

goroutine is created.

The expressions enclosed within the body of an anonymous function call, whether the call is a general call
or a deferred/goroutine call, will not be evaluated at the moment when the anonymous function call is
invoked.

Here is an example.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| func() {

7| for 1 (= 0; 1< 3; i++ {
8| defer fmt.Println("a:", 1)
9| }

10| 10)

11| fmt.Println()

12| func() {

13| for 1 (= 0; 1< 3; i++ {
14 | defer func() {

15| fmt.Println("b:", 1i)
16| 10)

17| }

18| 10)

19| }
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Run it. The output:

a: 2
a: 1
a: 0
b: 3
b: 3
b: 3

The first loop prints i as 2, 1 and @ as a sequence. The second loop always prints i as 3, for when the
three fmt.Println calls in the deferred anonymous calls are invoked, the value of the loop variable i

becomes 3.

To make the second loop print the same result as the first one, we can modify the second loop as

1] for 1 (= 0; 1< 3; i++ {
2| defer func(i int) {
3| // The "i" is the input parameter.
4| fmt.Println("b:", 1)
5] 3(1)
6] }
or
1] for i := 0; i < 3; i++ {
2] i:=1
3| defer func() {
4| // The "i" is not the loop variable.
5] fmt.Println("b:", 1)
6] 10
7] }

The same argument valuation moment rules are for goroutine function calls. The following program will
output 123 789.

1| package main
2|

3| import "fmt"
4| import "time"

5]

6| func main() {

7| var a = 123

8| go func(x int) {

9| time.Sleep(time.Second)

10| fmt.Println(x, a) // 123 789
11| 1(a)

12|
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13| a = 789

14 |

15| time.Sleep(2 * time.Second)
16| }

By the ways, it is not a good idea to do synchronizations by using time.Sleep calls in formal projects. If
the program runs on a computer which CPUs are occupied by many other programs running on the
computer, the newly created goroutine may never get a chance to execute before the program exits. We
should use the concurrency synchronization techniques introduced in the article concurrency
synchronization overview (836) to do synchronizations in formal projects.

IPanic and Recover

Go doesn't support exception throwing and catching, instead explicit error handling is preferred to use in
Go programming. In fact, Go supports an exception throw/catch alike mechanism. The mechanism is
called panic/recover.

We can call the built-in panic function to create a panic to make the current goroutine enter panicking

status. The panic is only alive within the current goroutine.

Panicking is another way to make a function return. Once a panic is produced in a function call, the
function call returns immediately and enters its exiting phase. The deferred function calls pushed in the
defer-call stack will get executed, by their inverse order being pushed.

By calling the built-in recover function in a deferred call, an alive panic in the current goroutine can be

removed so that the current goroutine will enter normal calm status again.
If a panicking goroutine exits without being recovered, it will make the whole program crash.
The built-in panic and recover functions are declared as

1] func panic(v interface{})
2| func recover() interface{}

Interface types and values will be explained in the article interfaces in Go (8§23) later. Here, we just need

to know that the blank interface type interface{} can be viewed as the any type or the Object type in

many other languages. In other words, we can pass a value of any type to a panic function call.
The value returned by a recover function call is the value a panic function call consumed.

The example below shows how to create a panic and how to recover from it.
1| package main

2|
3| import "fmt"
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4]
5| func main() {
6 | defer func() {
7] fmt.Println("exit normally.")
8] 30
9] fmt.Println("hi!")
10| defer func() {
11| vV := recover()
12| fmt.Println("recovered:", v)
13| 10
14| panic("bye!")
15| fmt.Println("unreachable")
16|
The output:
hi!

recovered: bye!
exit normally.

Here is another example which shows a panicking goroutine exits without being recovered. So the whole
program crashes.

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func main() {

9| fmt.Println("hi!")

10|
11| go func() {
12| time.Sleep(time.Second)
13| panic(123)
14| 10)
15|
16 | for {
17 | time.Sleep(time.Second)
18| }
19| }

The output:

hi!
panic: 123

goroutine 5 [running]:
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Go runtime will create panics for some circumstances, such as dividing an integer by zero. For example,

1| package main

2|
3| func main() {
4| a, b :=1, 0
5| _ = a/b
6] }

The output:

panic: runtime error: integer divide by zero

goroutine 1 [running]:

More runtime panic circumstances will be mentioned in later Go 101 articles.

Generally, panics are used for logic errors, such as human careless errors. Logic errors are the errors
which should never happen at run time. If they are happen, there must be bugs in the code. On the other
hand, non-logic errors are the errors which are hard to absolutely avoid at run time. In other words, non-
logic errors are errors happening in reality. Such errors should not cause panics and should be explicitly
returned and handled properly.

We can learn some panic/recover use cases (§30) and more about panic/recover mechanism (§831) later.

Some Fatal Errors Are Not Panics and They Are
Unrecoverable

For the standard Go compiler, some fatal errors, such as stack overflow and out of memory are not

recoverable. Once they occur, program will crash.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Go Type System Overview

This article will introduce all kinds of types in Go and the concepts regarding Go type system. It is hard to
have a thorough understanding of Go, without knowing these fundamental concepts.

IConcept: Basic Types

Built-in basic types in Go have been also introduced in built-in basic types and basic value literals (86).

For completeness of the current article, these built-in basic types are re-listed here.

e Built-in string type: string.
e Built-in boolean type: bool.
e Built-in numeric types:
o int8, uint8 (byte), int16, uint16, int32 (rune), uint32, int64, uint64, int,
uint, uintptr.
o float32, float64.
o complex64, complex128.

Note, byte is a built-in alias of uint8, and rune is a built-in alias of int32. We can also declare

custom type aliases (see below).

Except string types (§19), Go 101 article series will not try to explain more on other basic types.

IConcept: Composite Types

Go supports the following composite types:

e pointer types (§15) - C pointer alike.

e struct types (§816) - C struct alike.

o function types (820) - functions are first-class types in Go.
e container types (§18):

o array types - fixed-length container types.
o slice type - dynamic-length and dynamic-capacity container types.
o map types - maps are associative arrays (or dictionaries). The standard Go compiler
implements maps as hashtables.
e channel types (§21) - channels are used to synchronize data among goroutines (the green threads in
Go).

o interface types (§23) - interfaces play a key role in reflection and polymorphism.

Non-defined composite types may be denoted as their respective type literals. Following are some literal

representation examples of all kinds of non-defined composite types (non-defined types will be explained
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below).

1| // Assume T is an arbitrary type and Tkey is
2| // a type supporting comparison (== and !=).

3]

4| *T // a pointer type
5| [5]T // an array type
6| [IT // a slice type
7| map[Tkey]T // a map type

8]

9| // a struct type
10| struct {

11| name string
12| age int
13| }

14 |

15| // a function type

16| func(int) (bool, string)
17|

18| // an interface type

19| interface {

20| Method®(string) int
21| Method1() (int, bool)
22| }

23]

24| // some channel types
25| chan T

26| chan<- T
27| <-chan T

Comparable and incomparable types will be explained below.

IFact: Kinds of Types

Each of the above mentioned basic and composite types corresponds to one kind of types. Besides these

kinds, the unsafe pointer types introduced in the unsafe standard package  also belong to one kind of

types in Go. So, up to now (Go 1.13), Go has 26 kinds of types.

ISyntax: Type Definitions

(Type definition, or type definition declaration, initially called type declaration, was the only type
declaration way before Go 1.9. Since Go 1.9, type definition has become one of two forms of type

declarations. The new form is called type alias declaration, which will be introduced in the next section.)
In Go, we can define new types by using the following form. In the syntax, type is a keyword.
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1| // Define a solo new type.
2| type NewTypeName SourceType

3]

4| // Define multiple new types together.
5| type (

6| NewTypeNamel SourceTypel

7] NewTypeName2 SourceType2

8] )

New type names must be identifiers. But please note that, type names declared at package level can't be
init (§10). (This is the same for the following introduced type alias names.)

The second type declaration in the above example includes two type specifications. If a type declaration
contains more than one type specification, the type specifications must be enclosed within a pair of ().

Note,

¢ anew defined type and its respective source type in type definitions are two distinct types.

e two types defined in two type definitions are always two distinct types.

o the new defined type and the source type will share the same underlying type (see below for what
are underlying types), and their values can be converted to each other.

¢ types can be defined within function bodies.

Some type definition examples:

1| // The following new defined and source types
2| // are all basic types.

3| type (

4| MyInt int

5] Age int

6| Text string
71 )

8]

9| // The following new defined and source types are
10| // all composite types.
11| type IntPtr *int
12| type Book struct{author, title string; pages int}
13| type Convert func(in® int, inl bool)(out® int, outl string)
14| type StringArray [5]string
15| type StringSlice []string

16|

17| func f() {

18| // The names of the three defined types
19| // can be only used within the function.
20| type PersonAge map[string]int

21| type MessageQueue chan string

22| type Reader interface{Read([]byte) int}
23| }
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|Syntax: Type Alias Declarations

(Type alias declaration is one new kind of type declarations added since Go 1.9.)

As above mentioned, there are only two built-in type aliases in Go, byte (alias of uint8) and rune

(alias of int32). They are the only two type aliases before Go 1.9.

Since Go 1.9, we can declare custom type aliases by using the following syntax. The syntax of alias
declaration is much like type definition, but please note there is a = in each type alias declaration.

1| type (

2| Name = string

3| Age = int

4l )

5]

6| type table = map[string]int
7| type Table = map[Name]Age

Type alias names must be identifiers. Like type definitions, type aliases can also be declared within
function bodies.

A type name (or literal) and its aliases all denote an identical type. By the above declarations, Name is an
alias of string, so both denote the same type. The same applies to the other three pairs of type names

and literals:

e Age and int
e table and map[string]int

e Table and map[Name]Age

In fact, the literals map[string]int and map[Name]Age also denote the same type. So, the same,

aliases table and Table also denote the same type.

Note, although aliases table and Table denote the same type, Table is exported so it can be used by
other packages but this does not apply to table.

|Concept: Defined Types vs. Non-Defined Types

A defined type is a type defined in a type definition.
All basic types are defined. A non-defined type must be a composite type.

In the following example. type alias C and type literal []string both represent the same non-defined

types, but type A and type alias B both represent the same defined type.
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1| type A []string
2| type B = A
3| type C = []string

|Concept: Named Types vs. Unnamed Types

Before Go 1.9, the terminology named type is defined accurately in Go specification. A named type was
defined as a type who is represented by an identifier. Along with the type alias feature introduced in Go
1.9, this terminology is removed from Go specification as well, for it may cause some confusions in
explaining and understanding some Go concepts. For example, some type names might denote unnamed
types (such as the alias C, which is shown in the last section, denotes an unnamed type []string).

To avoid causing such confusions, since Go 1.9, a new terminology defined type is introduced to fulfill
the blank by removing the old named type terminology. However, this change brings some embarrassing
situations # , and causes some inconveniences in explaining some concepts . To avoid these new
problems, Go 101 articles try to follow several principles:

e An alias will never be called as a type, though we may say it denotes/represents a type.

e The terminology named type is viewed as an exact equivalence of defined type. (And unnamed
type exactly means non-defined type.) In other words, when it says "a type alias T is a named
type", it actually means the type represented by the alias T is a named type. If T represents an
unnamed type, we should never say T is a named type, even if the alias T itself has a name.

e When we mention a type name, it might be the name of a defined type or the name of a type alias.

IConcept: Underlying Types

In Go, each type has an underlying type. Rules:

¢ for built-in types, the respective underlying types are themselves.

e for the Pointer type defined in the unsafe standard code package, its underlying type is itself.
(At least we can think so. In fact, the underlying type of the unsafe.Pointer type is not well
documented. We can also think the underlying type is *T, where T represents an arbitrary type.)

¢ the underlying type of a non-defined type, which must be a composite type, is itself.

e in a type declaration, the newly declared type and the source type have the same underlying type.

Examples:

1| // The underlying types of the following ones are both int.

2| type (

3| MyInt int
4| Age MyInt
5] )

6]
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7| // The following new types have different underlying types.

8| type (

9] IntSlice []int // underlying type is []int
10| MyIntSlice []MyInt // underlying type is []MyInt
11| AgeSlice [1Age // underlying type is []Age
12] )
13|

14| // The underlying types of []Age, Ages, and AgeSlice
15| // are all the non-defined type []Age.
16| type Ages AgeSlice

How can an underlying type be traced given a user declared type? The rule is, when a built-in basic type or
a non-defined type is met, the tracing should be stopped. Take the type declarations shown above as
examples, let's trace their underlying types.

MyInt - int

Age - MyInt - int
IntSlice - []int
MyIntSlice - []MyInt
AgeSlice - []Age

Ages — AgeSlice - []Age

In Go,

¢ types whose underlying types are bool are called boolean types;

¢ types whose underlying types are any of the built-in integer types are called integer types;
e types whose underlying types are either float32 or float64 are called floating-point types;

e types whose underlying types are either complex64 or complex128 are called complex types;
¢ integer, floating-point and complex types are also called numeric types;
e types whose underlying types are string are called string types.

The concept of underlying type plays an important role in value conversions, assignments and
comparisons in Go (848).

IConcept: Values

An instance of a type is called a value, of the type. A type may have many values, one of them is the zero

value of the type. Values of the same type share some common properties.

Each type has a zero value, which can be viewed as the default value of the type. The predeclared nil

identifier can used to represent zero values of slices, maps, functions, channels, pointers (including type-

unsafe pointers) and interfaces. For more information on nil, please read nil in Go (§47).

There are several kinds of value representation forms in code, including literals (§6), named constants
(87), variables (87) and expressions (§11), though the former three can be viewed as special cases of the

latter one.
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A value can be typed or untyped (87).

All kinds of basic value literals have been introduced in the article basic types and basic value literals (§6).

There are two more kinds of literals in Go, composite literals and function literals.

Function literals, as the name implies, are used to represent function values. A function declaration (89) is

composed of a function literal and an identifier (the function name).

Composite literals are used to represent values of struct types and container types (arrays, slices and
maps), Please read structs in Go (§16) and containers in Go (§18) for more details.

There are no literals to represent values of pointers, channels and interfaces.

IConcept: Value Parts

At run time, many values are stored somewhere in memory. In Go, each of such values has a direct part.
However, some of them have one or more indirect parts. Each value part occupies a continuous memory

segment. The indirect underlying parts of a value are referenced by its direct part through pointers (§15).

The terminology value part (§17) is not defined in Go specification. It is just used in Go 101 to make
some explanations simpler and help Go programmers understand Go types and values better.

IConcept: Value Sizes

When a value is stored in memory, the number of bytes occupied by the direct part of the value is called
the size of the value. As all values of the same type have the same value size, we often call the same value
size of a type as the size of the type.

We can use the Sizeof function in the unsafe standard package to get the size of any value.

Go specification doesn't specify value size requirements for non-numeric types. The requirements for

value sizes of all kinds of basic numeric types are listed in the article basic types and basic value literals

(86).

|Concept: Base Type of a Pointer Type

For a pointer type, assume its underlying type can be denoted as *T in literal, then T is called the base

type of the pointer type.

More information on pointer types and values can be found in the article pointers in Go (§15).

|Concept: Fields of a Struct Type
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A struct type consists a collection of member variable declarations. Each of the member variable
declarations is called "field" of the struct type. For example, the following struct type Book has three

fields, author, title and pages.

1| struct {

2] author string
3] title string
4| pages int
5] }

More information on struct types and values can be found in the article structs in Go (§16).

IConcept: Signature of Function Types

The signature of a function type is composed of the input parameter definition list and the output result
definition list of the function.

The function name and body are not parts of a function signature. Parameter and result types are important

for a function signature, but parameter and result names are not important.

Please read functions in Go (8§20) for more details on function types and function values.

IConcept: Method and Method Set of a Type

In Go, some types can have methods (§22). Methods can also be called member functions. The method set
of a type is composed of all the methods of the type.

Concept: Dynamic Type and Dynamic Value of an Interface
Value

Interface values are values whose types are interface types.

Each interface value can box a non-interface value in it. The value boxed in an interface value is called the
dynamic value of the interface value. The type of the dynamic value is called the dynamic type of the
interface value. An interface value boxing nothing is a zero interface value. A zero interface value has

neither a dynamic value nor a dynamic type.
An interface type can specify zero or several methods, which form the method set of the interface type.

If the method set of a type, which is either an interface type or a non-interface type, is the super set of the

method set of an interface type, we say the type implements (§23) the interface type.

For more about interface types and values, please read interfaces in Go (§23).
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|Concept: Concrete Value and Concrete Type of a Value

For a (typed) non-interface value, its concrete value is itself and its concrete type is the type of the value.

A zero interface value has neither concrete type nor concrete value. For a non-zero interface value, its

concrete value is its dynamic value and its concrete type is its dynamic type.

IConcept: Container Types

Arrays, slices and maps can be viewed as formal container types.
Sometimes, string and channel types can also be viewed as container types informally.
Each value of a container type has a length, either that container type is a formal one or an informal one.

More information on formal container types and values can be found in the article containers in Go (§18).

IConcept: Key Type of a Map Type

If the underlying type of a map type can be denoted as map[Tkey]T, then Tkey is called the key type of
the map type. Tkey must be a comparable type (see below).

IConcept: Element Type of a Container Type

The types of the elements stored in values of a container type must be identical. The identical type of the
elements is called the element type of the container type.

e For an array type, if its underlying type is [N]T, then its element type is T.

e For a slice type, if its underlying type is []T, then its element type is T.

e For a map type, if its underlying type is map[Tkey]T, then its element type is T.

e For a channel type, if its underlying type is chan T, chan<- T or <-chan T, then its element
typeis T.

e The element type of any string type is always byte (a.k.a. uint8).

|Concept: Directions of Channel Types

Channel values can be viewed as synchronized first-in-first-out (FIFO) queues. Channel types and values

have directions.

e A channel value which is both sendable and receivable is called a bidirectional channel. Its type is
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called a bidirectional channel type. The underlying types of bidirectional channel types are denoted
as chan T in literal.

e A channel value which is only sendable is called a send-only channel. Its type is called a send-only
channel type. Send-only channel types are denoted as chan<- T in literal.

e A channel value which is only receivable is called a receive-only channel. Its type is called a
receive-only channel type. Receive-only channel types are denoted as <-chan T in literal.

More information on channel types and values can be found in the article channels in Go (§21).

IFact: Types Which Support or Don't Support Comparisons

Currently (Go 1.13), Go doesn't support comparisons (with the == and != operators) between values of

the following types:

e slice types

e map types

e function types

e any struct type with a field whose type is incomparable and any array type which element type is

incomparable.

Above listed types are called incomparable types. All other types are called comparable types. Compilers
forbid comparing two values of incomparable types.

Note, incomparable types are also called as incomparable types in many articles.
The key type of any map type must be a comparable type.

We can learn more about the detailed rules of comparisons from the article value conversions, assignments
and comparisons in Go (§48).

IFact: Object-Oriented Programming in Go

Go is not a full-featured object-oriented programming language, but Go really supports some object-

oriented programming styles. Please read the following listed articles for details:

e methods in Go (§22).
e implementations in Go (§23).
e type embedding in Go (824).

|Fact: Generics in Go

Up until now (Go 1.13), the generic functionalities in Go are limited to built-in types and functions.
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Custom generics are still in draft phase now. Please read built-in generics in Go (826) for details.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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§15. Pointers in Go

Pointers in Go

Although Go absorbs many features from all kinds of other languages, Go is mainly viewed as a C family
language. One evidence is Go also supports pointers. Go pointers and C pointers are much similar in many
aspects, but there are also some differences between Go pointers and C pointers. This article will list all
kinds of concepts and details related to pointers in Go.

IMemory Addresses

A memory address means an offset (number of bytes) from the start point of the whole memory managed
by a system (generally, operating system).

Generally, a memory address is stored as an unsigned native (integer) word. The size of a native word is 4
(bytes) on 32-bit architectures and 8 (bytes) on 64-bit architectures. So the theoretical maximum memory
space size is 232 bytes, a.k.a. 4GB (1GB == 239 bytes), on 32-bit architectures, and is 23*GB (16 exabytes)
on 64-bit architectures.

Memory addresses are often represented with hex integer literals, such as ®©x1234CDEF .

IValue Addresses

The address of a value means the start address of the memory segment occupied by the direct part (§17) of
the value.

IWhat Are Pointers?

Pointer is one kind of type in Go. A pointer is a value of some pointer type. A pointer value can store a

memory address. In fact, we often call a memory address as a pointer, and vice versa.

Generally, the stored memory address in a pointer is the address of another value. Unlike C language, for
safety reason, there are some restrictions made for Go pointers. Please read the following sections for
details.

|G0 Pointer Types and Values

In Go, a non-defined pointer type can be represented with *T, where T can be an arbitrary type. Type T is

called the base type of pointer type *T.

We can declare defined pointer types, but generally, it’s not recommended to use defined pointer types, for
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non-defined pointer types have better readabilities.

If the underlying type (§14) of a defined pointer type is *T, then the base type of the defined pointer type

isT.
Two non-defined pointer types with the same base type are the same type.

Example:

1| *int // A non-defined pointer type whose base type is int.
2| **int // A non-defined pointer type whose base type is *int.
3]

4| // Ptr is a defined pointer type whose base type is int.

5| type Ptr *int

6| // PP is a defined pointer type whose base type is Ptr.

7| type PP *Ptr

Zero values of any pointer types are represented with the predeclared nil. No addresses are stored in nil

pointer values.

A value of a pointer type whose base type is T can only store the addresses of values of type T.

IAbout the Word "Reference"

In Go 101, the word "reference" indicates a relation. For example, if a pointer value stores the address of
another value, then we can say the pointer value (directly) references the other value, and the other value
has at least one reference. The uses of the word "reference" in Go 101 are consistent with Go
specification.

When a pointer value references another value, we also often say the pointer value points to the other

value.

How to Get a Pointer Value and What Are Addressable
Values?

There are two ways to get a non-nil pointer value.

1. The built-in new function can be used to allocate memory for a value of any type. new(T) will
allocate memory for a T value (an anonymous variable) and return the address of the T value. The
allocated value is a zero value of type T. The returned address is viewed as a pointer value of type
*T.

2. We can also take the addresses of values which are addressable in Go. For an addressable value t of

type T, we can use the expression &t to take the address of t, where & is the operator to take value
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addresses. The type of &t is viewed as *T.

Generally speaking, an addressable value means a value which is hosted at somewhere in memory.
Currently, we just need to know that all variables are addressable, whereas constants, function calls and
explicit conversion results are all unaddressable. When a variable is declared, Go runtime will allocate a
piece of memory for the variable. The starting address of that piece of memory is the address of the

variable.

We will learn other addressable and unaddressable values from other articles later. If you have already
been familiar with Go, you can read this summary (§46) to get the lists of addressable and unaddressable

values in Go.

The next section will show an example on how to get pointer values.

IPointer Dereference

Given a pointer value p of a pointer type whose base type is T, how can you get the value at the address
stored in the pointer (a.k.a., the value being referenced by the pointer)? Just use the expression *p, where
* is called dereference operator. *p is called the dereference of pointer p. Pointer dereference is the

inverse process of address taking. The result of *p is a value of type T (the base type of the type of p).

Dereferencing a nil pointer causes a runtime panic.
The following program shows some address taking and pointer dereference examples:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| pO := new(int) // pO points to a zero int value.
7| fmt.Println(p@) // (a hex address string)
8| fmt.Println(*p0) // 0O

9]

10| // x is a copy of the value at

11| // the address stored in po0.

12| X 1= *po

13| // Both take the address of x.

14 | // X, *pl and *p2 represent the same value.
15| pl, p2 := &x, &x

16 | fmt.Println(pl == p2) // true

17 | fmt.Println(p@ == p1) // false

18| p3 := &*p0O // <=> p3 := &(*pO) <=> p3 := po
19| // Now, p3 and pO® store the same address.
20| fmt.Println(p@ == p3) // true

21| *pO, *pl = 123, 789
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22| fmt.Println(*p2, x, *p3) // 789 789 123

23]

24 | fmt.Printf("%T, %T \n", *p0@, x) // int, int
25| fmt.Printf("%T, %T \n", pO, pl) // *int, *int
26| }

The following picture depicts the relations of the values used in the above program.

I po

ananonwnousuﬂue|
I p1
I p2 - |
I p3

IWhy Do We Need Pointers?

Let's view an example firstly.

1| package main

2|

3| import "fmt"

4|

5| func double(x int) {
6| X += X

7|}

8|

9| func main() {
10| var a = 3
11| double(a)
12| fmt.Println(a) // 3
13| }

The double function in the above example is expected to modify the input argument by doubling it.

However, it fails. Why? Because all value assignments, including function argument passing, are value
copying in Go. What the double function modified is a copy (x) of variable a but not variable a.

One solution to fix the above double function is let it return the modification result. This solution doesn't

always work for all scenarios. The following example shows another solution, by using a pointer

parameter.

1| package main
2|
3| import "fmt"
4|
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5| func double(x *int) {

6| *X += *X
7| X = nil // the line is just for explanation purpose
8| }
9]
10| func main() {
11| var a = 3
12| double(&a)
13| fmt.Println(a) // 6
14 | p := &a
15| double(p)
16 | fmt.Println(a, p == nil) // 12 false
17]

We can find that, by changing the parameter to a pointer type, the passed pointer argument &a and its
copy X used in the function body both reference the same value, so the modification on *x is equivalent
to a modification on *p, a.k.a., variable a. In other words, the modification in the double function body

can be reflected out of the function now.

Surely, the modification of the copy of the passed pointer argument itself still can't be reflected on the
passed pointer argument. After the second double function call, the local pointer p doesn't get modified

to nil.

In short, pointers provide indirect ways to access some values. Many languages do not have the concept of
pointers. However, pointers are just hidden under other concepts in those languages.

IReturn Pointers of Local Variables Is Safe in Go

Unlike C language, Go is a language supporting garbage collection, so return the address of a local
variable is absolutely safe in Go.

1] func newInt() *int {

2| a := 3
3| return &a
4| }

|Restrictions on Pointers in Go

For safety reasons, Go makes some restrictions to pointers (comparing to pointers in C language). By
applying these restrictions, Go keeps the benefits of pointers, and avoids the dangerousness of pointers at
the same time.

|Go pointer values don't support arithmetic operations
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In Go, pointers can't do arithmetic operations. For a pointer p, p++ and p-2 are both illegal.

If p is a pointer to a numeric value, compilers will view *p++ is a legal statement and treat it as (*p)++.
In other words, the precedence of the address-taken operator & and the pointer dereference operator * is

higher than the increment operator ++ and decrement operator - - .

Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | a := int64(5)

7| p := &a

8|

9| // The following two lines don't compile.
10| /*

11| p++

12| p = (&) + 8

13| */
14 |
15| *pt++
16 | fmt.Println(*p, a) // 6 6
17 | fmt.Println(p == &a) // true
18|
19| *&a++
20| *&*&at++
21| **&p++
22| *&*p++
23| fmt.Println(*p, a) // 10 10
24| }

|A pointer value can't be converted to an arbitrary pointer type

In Go, a pointer value of pointer type T1 can be directly and explicitly converted to another pointer type

T2 only if either of the following two conditions is get satisfied.

1. The underlying types of type T1 and T2 are identical (ignoring struct tags), in particular if either T1
and T2 is a non-defined (§14) type and their underlying types are identical (considering struct tags),

then the conversion can be implicit. Struct types and values will be explained in the next article
(816).
2. Type T1 and T2 are both non-defined pointer types and the underlying types of their base types are

identical (ignoring struct tags).
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For example, for the below shown pointer types:

1| type MyInt int64
2| type Ta *int64
3| type Tb *MyInt

the following facts exist:

1. values of type *int64 can be implicitly converted to type Ta, and vice versa, for their underlying
types are both *int64.

2. values of type *MyInt can be implicitly converted to type Th, and vice versa, for their underlying
types are both *MyInt.

3. values of type *MyInt can be explicitly converted to type *int64, and vice versa, for they are both
non-defined and the underlying types of their base types are both int64.

4. values of type Ta can't be directly converted to type Th, even if explicitly. However, by the just
listed first three facts, a value pa of type Ta can be indirectly converted to type Tb by nesting three

explicit conversions, Th( (*MyInt)((*int64)(pa))).

None values of these pointer types can be converted to type *uint64, in any safe ways.

A pointer value can't be compared with values of an arbitrary pointer
type

In Go, pointers can be compared with == and != operators. Two Go pointer values can only be compared

if either of the following three conditions are satisfied.

1. The types of the two Go pointers are identical.

2. One pointer value can be implicitly converted to the pointer type of the other. In other words, the
underlying types of the two types must be identical and either of the two types of the two Go
pointers must be an undefined type.

3. One and only one of the two pointers is represented with the bare (untyped) nil identifier.

Example:

1| package main

2|

3| func main() {

4| type MyInt int64

5] type Ta *int64

6| type Tb *MyInt

7]

8| // 4 nil pointers of different types.
9| var pa@ Ta

10| var pal *int64
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11| var pbe® Tb

12| var pbl *MyInt

13|

14| // The following 6 lines all compile okay.
15| // The comparison results are all true.
16| _ = pa® == pal

17| _ = pb0 == pb1

18] _ = pa® == nil

19| _ = pal == nil

20| _ = pb0 == nil

21| _ = pbl == nil

22|

23| // None of the following 3 lines compile ok.
24| /*

25| _ = pa® == pbo

26 | _ = pal == pbl

27| _ = pa® == Tb(nil)

28| */

29| }

A pointer value can't be assigned to pointer values of other pointer
types

The conditions to assign a pointer value to another pointer value are the same as the conditions to compare
a pointer value to another pointer value, which are listed above.

IIt's Possible to Break the Go Pointer Restrictions

As the start of this article has mentioned, the mechanisms (specifically, the unsafe.Pointer type)

provided by the unsafe standard package (825) can be used to break the restrictions made for pointers in
Go. The unsafe.Pointer type is like the void* in C. In general the unsafe ways are not recommended

to use.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Structs in Go

Same as C, Go also supports struct types. This article will introduce the basic knowledge of struct types

and values in Go.

IStruct Types and Struct Type Literals

Each non-defined struct type literal starts with a struct keyword which is followed by a sequence of
field definitions enclosed in a {}. Generally, each field definition is composed of a name and a type. The

number of fields of a struct type can be zero.

The following is a non-defined struct type literal:

1| struct {

2] title string
3] author string
4| pages int
5]

The above struct type has three fields. The types of the two fields title and author are both string.
The type of the pages field is int.

Some articles also call fields as member variables.

Consecutive fields with the same type can be declared together.

1| struct {

2| title, author string
3| pages int
4| }

The size of a struct type is the sum of the sizes of all its field types plus the number of some padding
bytes. The padding bytes are used to align the memory addresses of some fields. We can learn padding

and memory address alignments in a later article (§44).
The size of a zero-field struct type is zero.

A tag can be bound to a struct field when the field is declared. Field tags are optional, the default value of

each field tag is a blank string. Here is an example showing non-default field tags.

1| struct {

2| Title string “json:"title""

3| Author string “json:"author,omitempty" myfmt:"Author""
4| Pages int "json:"pages,omitempty" "
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51}

Generally, the tag of a struct field should be a collection of key-value pairs. The values are strings. We can
use the reflection (827) way to inspect field tag information.

The purpose of each field tag is application dependent. In the above example, the field tags can help the
functions in the encoding/json standard package to determine the field names in JSON texts, in the
process of encoding struct values into JSON texts or decoding JSON texts into struct values. The functions
in the encoding/json standard package will only encode and decode the exported struct fields, which is

why the first letters of the field names in the above example are all upper cased.
It is not a good idea to use field tags as comments.

Raw string literals (*. .. ") are used more popular than interpreted string literals ("...") for field tags in

practice.
Unlike C language, Go structs don't support unions.

All above shown struct types are non-defined and anonymous. In practice, defined struct types are more
popular.

Only exported fields of struct types shown up in a package can be used in other packages by importing the
package. We can view non-exported struct fields as private/protected member variables.

The field tags and the order of the field declarations in a struct type matter for the identity of the struct
type. Two non-defined struct types are identical only if they have the same sequence of field declarations.
Two field declarations are identical only if their respective names, their respective types and their
respective tags are all identical. Please note, two non-exported struct field names from different

packages are always viewed as two different names.

A struct type can't have a field of the struct type itself, neither directly nor recursively.

IStruct Value Literals and Struct Value Manipulations

In Go, the form T{. ..}, where T must be a type literal or a type name, is called a composite literal and

is used as the value literals of some kinds of types, including struct types and the container types

introduced later.

Note, a type literal T{. ..} is a typed value, its type is T.

Given a struct type S whose underlying type (§14) is struct{ x int; y bool}, the zero value of S

can be represented by the following two variants of struct composite literal forms:

1. s{0, false}. In this variant, no field names are present but all field values must be present by the

field declaration orders.
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2. S{x: 0, y: false}, S{y: false, x: 0}, S{x: 0}, S{y: false} and S{}. In this variant,
each field item is optional and the order of the field items is not important. The values of the absent
fields will be set as the zero values of their respective types. But if a field item is present, it must be
presented with the FieldName: FieldValue form. The order of the field items in this form

doesn't matter. The form S{} is the most used zero value representation of type S.

If S is a struct type imported from another package, it is recommended to use the second form, to maintain
compatibility. Consider the case where the maintainer of the package adds a new field for type S, this will

make the use of first form invalid.
Surely, we can also use the struct composite literals to represent non-zero struct value.

For a value v of type S, we can use v.x and v.y, which are called selectors (or selector expressions), to
represent the field values of v. v is called the receiver of the selectors. Later, we call the dot . ina

selector as the property selection operator.
An example:

1| package main

2|

3| import (

4] "fmt"

5] )

6]

7| type Book struct {

8| title, author string

9| pages int

10| }

11|

12| func main() {

13| book := Book{"Go 101", "Tapir", 256}

14 | fmt.Println(book) // {Go 101 Tapir 256}

15|

16 | // Create a book value with another form.

17 | // All of the three fields are specified.

18| book = Book{author: "Tapir", pages: 256, title: "Go 101"}
19|

20| // None of the fields are specified. The title and
21| // author fields are both "", pages field is 0.
22| book = Book{}

23|

24 | // 0Only specify the author field. The title field
25| // is "" and the pages field is 0.

26 | book = Book{author: "Tapir"}

27|

28| // Initialize a struct value by using selectors.
29| var book2 Book // <=> book2 := Book{}
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30| book2.author = "Tapir Liu"

31| book2.pages = 300

32| fmt.Println(book.pages) // 300
33| }

The last , in a composite literal is optional if the last item in the literal and the closing } are at the same

line. Otherwise, the last , is required. For more details, please read line break rules in Go (§28).

1| var _ = Book {

2| author: "Tapir",

3] pages: 256,

4| title: "Go 101", // here, the "," must be present

5| }

6]

7| // The last "," in the following line is optional.

8| var _ = Book{author: "Tapir", pages: 256, title: "Go 101",}

IAbout Struct Value Assignments

When a struct value is assigned to another struct value, the effect is the same as assigning each field one
by one.

1] func f() {

2] bookl := Book{pages: 300}

3] book2 := Book{"Go 101", "Tapir", 256}
4|

5] book2 = book1l

6| // The above line is equivalent to the
7| // following lines.

8| book2.title = bookl.title

9] book2.author = bookl.author

10| book2.pages = bookl.pages

11| }

Two struct values can be assigned to each other only if their types are identical or the types of the two

struct values have an identical underlying type (considering field tags) and at least one of the two types is

an non-defined type (§14).

|Struct Field Addressability

The fields of an addressable struct are also addressable. The fields of an unaddressable struct are also
unaddressable. The fields of unaddressable structs can't be modified. All composite literals, including

struct composite literals are unaddressable.

Example:
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1| package main

2|

3| import "fmt"

4]

5| func main() {

6|
7|
8|
9|
10|
11|
12|
13|
14 |
15|
16|
17|
18|
19|
20| }

Note that the precedence of the property selection operator .

type Book struct {
Pages int
}
var book = Book{} // book is addressable
p := &book.Pages
*p = 123
fmt.Println(book) // {123}

// The following two lines fail to compile, for
// Book{} is unaddressable, so is Book{}.Pages.

/*
Book{}.Pages = 123

p = &(Book{}.Pages) // <=> p = &(Book{}.Pages)

*/

operator &.

Composite Literals Are Unaddressable But Can Take

Addresses

Generally, only addressable values can take addresses. But there is a syntactic sugar in Go, which allows

us to take addresses on composite literals. A syntactic sugar is an exception in syntax to make

programming convenient.

For example,

1| package main

2]

3| func main() {

4]
5]
6
7]
8]
9]
10|
111 }

type Book struct {
Pages int
}
// Book{100} is unaddressable but can
// be taken address.

p := &Book{100} // <=> tmp := Book{100}; p := &tmp

p.Pages = 200
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|In Selectors, Struct Pointers Can Be Used as Struct Values

Unlike C, in Go, there is no -> operator for selecting struct fields through struct pointers. In Go, the ->

operator is represented by the dot operator .

For example:

1| package main

2|

3| func main() {

4| type Book struct {

5] pages int

6] }

7| bookl := &Book{100} // bookl is a struct pointer
8| book2 := new(Book) // book2 is another struct pointer
9| // Use struct pointers as structs.

10| book2.pages = bookl.pages

11| // This last line is eqivalent to the next line.
12| // In other words, if the receiver is a pointer,
13| // it will be automatic dereferenced.

14 | (*book2).pages = (*bookl).pages

15| }

IAbout Struct Value Comparisons

Most struct types are comparable types, except the ones who have fields of incomparable types (§14).

Two struct values are comparable only if they can be assigned to each other and their types are both
comparable. In other words, two struct values can be compared with each other only if the (comparable)
types of the two struct values have an identical underlying type (considering field tags) and at least one of

the two types is non-defined.

When comparing two struct values of the same type, each pair of their corresponding fields will be

compared. The two struct values are equal only if all of their corresponding fields are equal.

|About Struct Value Conversions

Values of two struct types S1 and S2 can be converted to each other's types, if S1 and S2 share the
identical underlying type (by ignoring field tags). In particular if either S1 or S2 is a non-defined type

(814) and their underlying types are identical (considering field tags), then the conversions between the

values of them can be implicit.

Given struct types S0, S1, S2, S3 and S4 in the following code snippet,
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e values of type SO can't be converted to the other four types, and vice versa, because the

corresponding field names are different.
e two values of two different types among S1, S2, S3 and S4 can be converted to each other's type.

In particular,

e values of type S2 can be implicitly converted to type S3, and vice versa.

e values of type S2 can be implicitly converted to type S4, and vice versa.

e values of type S1 must be explicitly converted to type S2, and vice versa.

e values of type S3 must be explicitly converted to type S4, and vice versa.

1| package main

2|

3| type SO struct {
4| y int "foo"
5] X bool

6| }

7|

8| // S1 is an alias of a non-defined type.
9| type S1 = struct {

10| X int "foo"
11| y bool

12| }

13|

14| // S2 is also an alias of a non-defined type.
15| type S2 = struct {

16 | X int "bar"
17 | y bool

18] }

19|

20| // If field tags are ignored, the underlying

21| // types of S3(S4) and S1 are same. If field

22| // tags are considered, the underlying types

23| // of S3(S4) and S1 are different.

24| type S3 S2 // S3 is a defined type

25| type S4 S3 // S4 is a defined type

26|

27| var vO, vi1, v2, v3, v4 = S0{}, S1{}, S2{}, S3{}, S4{}
28| func f() {

29| vl = S1(v2); v2 = S2(v1l)
30| vl = S1(v3); v3 = S3(v1)
31| vl = S1(v4); v4 = S4(vl)
32| v2 = v3; v3 = v2 // the conversions can be implicit
33| v2 = v4; v4 = v2 // the conversions can be implicit
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34| v3 = S3(v4); v4 = S4(v3)
35| }

In fact, two struct values can be assigned (or compared) to each other only if one of them can be implicitly
converted to the type of the other.

Anonymous Struct Types Can Be Used in Field
Declarations

Anonymous struct types are allowed to be used as the types of the fields of another struct type.
Anonymous struct type literals are also allowed to be used in composite literals.

An example:

1| var aBook = struct {

2| // The type of the author field is
3| // an anonymous struct type.

4| author struct {

5] firstName, lastName string

6| gender bool

7] }

8| title string

9] pages int

10| }{

11| author: struct { // an anonymous struct type
12| firstName, lastName string

13| gender bool

14| H

15| firstName: "Mark",

16 | lastName: "Twain",

17| +

18| title: "The Million Pound Note",
19| pages: 96,

20| }

Generally, for better readability, it is not recommended to use anonymous struct type literals in composite

literals.

|More About Struct Types

There are some advanced topics which are related to struct types. They will be explained in type
embedding (§24) and memory layouts (8§44) later.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
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from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com #  to get more information about these games. Hope you enjoy them.)
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Value Parts

The articles following the current one will introduce more kinds of Go types. To easily and deeply

understand those articles, it is best to read the following content in the current article firstly before reading

those articles.

ITwo Categories of Go Types

Go can be viewed as a C-family language, which can be confirmed from the two previous articles pointers

in Go (815) and structs in Go (§16). The memory structures of struct types and pointer types in Go and C

are much alike.

On the other hand, Go can be also viewed as a C language framework. This is mainly reflected from the

fact that Go supports several kinds of types whose value memory structures are not totally transparent,

whereas the main characteristic of C types is the memory structures of C values are transparent. Each C

value in memory occupies one memory block (§43) (one continuous memory segment). However, a value

of some kinds of Go types may often be hosted on more than one memory blocks.

Later, we call the parts (being distributed on different memory blocks) of a value as value parts. A value

hosting on more than one memory blocks is composed of one direct value part and several underlying

indiect parts which are referenced (§15) by that direct value part.

The above paragraphs describe two categories of Go types:

Types whose values each is only hosted on one
single memory block

Types whose values each may be hosted on
multiple memory blocks

Solo Direct Value Part

Direct Part — Underlying Part

boolean types
numeric types
pointer types
unsafe pointer types
struct types
array types

slice types

map types
channel types
function types
interface types

string types

The following Go 101 articles will make detailed explanations for many kinds of types listed in the above

table. The current article is just to make a preparation to understand those explanations more easily.

Note,

e whether or not interface and string values may contain underlying parts is compiler dependent. For

the standard Go compiler implementation, interface and string values may contain underlying parts.

e whether or not functions values may contain underlying parts is hardly, even impossible, to prove. In

Go 101, we will view functions values may contain underlying parts.
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The kinds of types in the second category bring much convenience to Go programming by encapsulating
many implementation details. Different Go compilers may adopt different internal implementations for
these types, but the external behaviors of values of these types must satisfy the requirements specified in
Go specification.

The types in the second category are not very fundamental types for a language, we can implement them
from scratch by using the types from the first category. However, by encapsulating some common or
unique functionalities and supporting these types as the first-class citizens in Go, the experiences of Go
programming become enjoyable and productive.

On the other hand, these encapsulations adopted in implementing the types in the second category hide
many internal definitions of these types. This prevents Go programmers from viewing the whole pictures
of these types, and sometimes makes some obstacles to understand Go better.

To help gophers better understand the types in the second category and their values, the following content
of this article will introduce the internal structure definitions of these kinds of types. The detailed
implementations of these types will not be explained here. The explanations in this article are based on,
but not exactly the same as, the implementations used by the standard Go compiler.

ITwo Kinds of Pointer Types in Go

Before showing the internal structure definitions of the kinds of types in the second category, let's clarify
more on pointers and references.

We have learned Go pointers (§15) in the article before the last. The pointer types in that article are type-
safe pointer types. In fact, Go also supports type-unsafe pointer types (§25). The unsafe.Pointer type

provided in the unsafe standard package is like void* in C language.

In most other articles in Go 101, if not specially specified, when a pointer type is mentioned, it means a
type-safe pointer type. However, in the following parts of the current article, when a pointer is mentioned,

it might be either a type-safe pointer or a type-unsafe pointer.

A pointer value stores a memory address of another value, unless the pointer value is a nil pointer. We can
say the pointer value references (§15) the other value, or the other value is referenced by the pointer value.

Values can also be referenced indirectly.

e [f a struct value a has a pointer field b which references a value c, then we can say the struct value
a also references value c.
e [f a value x references (either directly or indirectly) a value y, and the value y references (either

directly or indirectly) a value z, then we can also say the value x (indirectly) references value z.

Below, we call a struct type with fields of pointer types as a pointer wrapper type, and call a type whose
values may contains (either directly or indirectly) pointers a pointer holder type. Pointer types and

pointer wrapper types are all pointer holder types. Array types with pointer holder element types are also
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pointer holder types. (Array types will be explained in the next article.)

(Possible) Internal Definitions of the Types in the Second
Category

The possible internal definitions of the types in the second category are shown below. If you haven't used
all kinds of Go types much, currently you don't need to try to comprehend these definitions clearly.
Instead, it is okay to just get a rough impression on these definitions and reread this article when you get
more experience in Go programming later. Knowing the definitions roughly is good enough to help Go
programmers understand the types explained in the following articles.

|Internal definitions of map, channel and function types

The internal definitions of map, channel and function types are similar:

1| // map types

2| type _map *hashtableImpl

3]

4| // channel types

5| type _channel *channelImpl
6]

7| // function types

8| type _function *functionImpl

So, internally, types of the three kinds are just pointer types. In other words, the direct parts of values of
these types are pointers internally. For each non-zero value of these types, its direct part (a pointer)
references its indirect underlying implementation part.

BTW, the standard Go compiler uses hashtables to implement maps.

|Internal definition of slice types

The internal definition of slice types is like:

1| type _slice struct {

2| // referencing underlying elements
3| elements unsafe.Pointer

4| // number of elements and capacity
5] len, cap int

6| }

So, internally, slice types are pointer wrapper struct types. Each non-zero slice value has an indirect

underlying part which stores the element values of the slice value. The elements field of the direct part
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references the indirect underlying part of the slice value.

|Internal definition of string types

Below is the internal definition for string types:

1| type _string struct {

2| elements *byte // referencing underlying bytes
3] len int // number of bytes
4| }

So string types are also pointer wrapper struct types internally. Each string value has an indirect
underlying part storing the bytes of the string value, the indirect part is referenced by the elements field

of that string value.

|Internal definition of interface types

Below is the internal definition for general interface types:

1| type _interface struct {

2| dynamicType *_type // the dynamic type
3| dynamicValue unsafe.Pointer // the dynamic value
4| }

Internally, interface types are also pointer wrapper struct types. The internal definition of an interface type
has two pointer fields. Each non-zero interface value has two indirect underlying parts which store the
dynamic type and dynamic value of that interface value. The two indirect parts are referenced by the
dynamicType and dynamicValue fields of that interface value.

In fact, for the standard Go compiler, the above definition is only used for blank interface types. Blank
interface types are the interface types which don't specify any methods. We can learn more about

interfaces in the article interfaces in Go (§23) later. For non-blank interface types, the definition like the

following one is used.

1| type _interface struct {

2| dynamicTypeInfo *struct {

3| dynamicType *_type // the dynamic type
4| methods [1*_function // method table

5] }

6 | dynamicValue unsafe.Pointer // the dynamic value
7}

The methods field of the dynamicTypeInfo field of an interface value stores the implemented methods

of the dynamic type of the interface value for the (interface) type of the interface value.
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Underlying Value Parts Are Not Copied in Value
Assignments

Now we have learned that the internal definitions of the types in the second category are pointer holder
(pointer or pointer wrapper) types. Knowing this is very helpful to understand value copy behaviors in Go.

In Go, each value assignment (including parameter passing, etc) is a shallow value copy if the involved
destination and source values have the same type (if their types are different, we can think that the source
value will be implicitly converted to the destination type before doing that assignment). In other words,
only the direct part of the source value is copied to the destination value in an value assignment. If the
source value has underlying value part(s), then the direct parts of the destination and source values will
reference the same underlying value part(s), in other words, the destination and source values will share
the same underlying value part(s).

Source Direct Part \

In fact, the above descriptions are not 100% correct in theory, for strings and interfaces. The official Go

Underlying Part

Destination Direct Part

FAQ® says the underlying dynamic value part of an interface value should be copied as well when the
interface value is copied. However, as the dynamic value of an interface value is read only, the standard
Go compiler/runtime doesn't copy the underlying dynamic value parts in copying interface values. This
can be viewed as a compiler optimization. The same situation is for string values and the same
optimization (made by the standard Go compiler/runtime) is made for copying string values. So, for the
standard Go compiler/runtime, the descriptions in the last section are 100% correct, for values of any type.

Since an indirect underlying part may not belong to any value exclusively, it doesn't contribute to the size

returned by the unsafe.Sizeof function.

About the "Reference Type" and "Reference Value"
Terminologies

The word reference in Go world is a big mess. It brings many confusions to Go community. Some
articles, including some official ones # , use reference as qualifiers of types and values, or treat reference
as the opposite of value. This is strongly discouraged in Go 101. I really don't want to dispute on this

point. Here I just list some absolutely misuses of reference:

e only slice, map, channel and function types are reference types in Go. (If we do need the reference

type terminology in Go, then we shouldn't exclude any pointer holder types from reference types).
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o references are opposites of values. (If we do need the reference value terminology in Go, then
please view reference values as special values, instead of opposites of values.)
e some parameters are passed by reference. (Sorry, all parameters are passed by copy in Go.)

I don't mean the reference type or reference value terminologies are totally useless for Go, I just think
they are not very essential, and they bring many confusions in using Go. If we do need these
terminologies, I prefer to define them as pointer holders. And, my personal opinion is it is best to limit the
reference word to only representing relations between values by using it as a verb or a noun, and never

use it as an adjective. This will avoid many confusions in leaning, teaching and using Go.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com @ to get more information about these games. Hope you enjoy them.)
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Arrays, Slices and Maps in Go

Strictly speaking, there are three kinds of first-class citizen container types in Go, array, slice and map.
Sometimes, strings and channels can also be viewed as container types, but this article will not touch the
two kinds of types. All container types talked about in the current article are arrays, slices and maps.

There are many container related details in Go. This article will list them one by one.

ISimple Overview of Container Types and Values

Each value of the three kinds of types is used to store a collection of element values. The types of all the
elements stored in a container value are identical. The identical type is called the element type of (the
container type of) the container value.

Each element in a container has an associated key. An element value can be accessed or modified through
its associated key. The key types of map types must be comparable types (§14). The key types of array and

slice types are all the built-in type int. The keys of the elements of an array or slice are non-negative
integers which mark the positions of these elements in the array or slice. The non-negative integer keys are
often called indexes.

Each container value has a length property, which indicates how many elements are stored in that
container. The valid range of the integer keys of an array or slice value is from zero (inclusive) to the
length (exclusive) of the array or slice. For each value of a map type, the key values of that map value can
be an arbitrary value of the key type of the map type.

There are also many differences between the three kinds of container types. Most of the differences
originate from the differences between the value memory layouts of the three kinds of types. From the last
article, value parts (§17), we learned that an array value consists of only one direct part, however a slice or

map value may have an underlying part, which is referenced by the direct part of the slice or map value.

Elements of an array or a slice are both stored contiguously in a continuous memory segment. For an
array, the continuous memory segment hosts the direct part of the array. For a slice, the continuous
memory segment hosts the underlying indirect part of the slice. The map implementation of the standard
Go compiler/runtime adopts the hashtable algorithm. So all elements of a map are also stored in an
underlying continuous memory segment, but they may be not contiguous. There may be many holes
(gaps) within the continuous memory segment. Another common map implementation algorithm is the
binary tree algorithm. Whatever algorithm is used, the keys associated with the elements of a map are also

stored in (the underlying parts of) the map.

We can access an element through its key. The time complexities of element accesses on all container

values are all 0(1), though, generally map element accesses are several times slower than array and slice

element accesses. But maps have two advantages over arrays and slices:
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¢ the key types of maps can be any comparable types.
e maps consume much less memory than arrays and slices with a large quantity of sparse indexes

(integer keys).

From the last article, we have learned that the underlying parts of a value will not get copied when the
value is copied. In other words, if a value has underlying parts, a copy of the value will share the
underlying parts with the value. This is the root reason of many behavior differences between array and
slice/map values. These behavior differences will be introduced below.

ILiteral Representations of Non-defined Container Types

The literal representations of the three kinds of non-defined container types:

e array types: [N]T
o slice types: []T
e map types: map[K]T

where

e T is an arbitrary type. It specifies the element type of a container type. Only values of the specified
element type can be stored as element values of values of the container type.
e N must be a non-negative integer constant. It specifies the number of elements stored in any value of

an array type, and it can be called the length of the array type. This means the length of an array type
is the inherent part of the array type. For example, [5]int and [8]int are two distinct array types.

e K is an arbitrary comparable type. It specifies the key type of a map type. Most types in Go are

comparable, incomparable types are listed here (§14).

Here are some container type literal representation examples:

1| const Size = 32

2|

3| type Person struct {
4| name string

5] age int

6| }

7]

8| /* Array types */

9]

10| [5]string

11| [Size]int

12| // Element type is a slice type: []byte
13| [16][]byte

14| // Element type is a struct type: Person
15| [100]Person

16|
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17| /* Slice types *

18]
19| []bool
20| []inte64

21| // Element type is a map type: map[int]bool
22| [Jmap[int]bool
23| // Element type is a pointer type: *int

24| []*int

25|

26| /* Map types */
27|

28| map[string]lint

29| map[int]bool

30| // Element type is an array type: [6]string
31| map[int16][6]string

32| // Element type is a slice type: []string
33| map[bool][]string

34| // Element type is a pointer type: *int8,
35| // and key type is a struct type.

36| map[struct{x int}]*int8

The sizes (§14) of all slice types are the same. The sizes of all map types are also the same. The size of an
array type depends on its length and the size of its element type. The size of a zero-length array type or an

array type with a zero-size element type is zero.

IContainer Value Literals

Like struct values, container values can also be represented with composite literals, T{. ..}, where T

denotes container type (except the zero values of slice and map types). Here are some examples:

1| // An array value containing four bool values.

2| [4]bool{false, true, true, false}

3]

4| // A slice value which contains three words.

5| [1string{"break", "continue", "fallthrough"}

6]

7| // A map value containing some key-value pairs.

8| map[string]int{"C": 1972, "Python": 1991, "Go": 2009}

Each key-element pair between the braces of a map composite literal is also called an entry.

There are several variants for array and slice composite literals:

1| // The followings slice composite literals

2| // are equivalent to each other.

3| [Istring{"break", "continue", "fallthrough"}

4| []string{@: "break", 1: "continue", 2: "fallthrough"}
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5| []string{2: "fallthrough", 1: "continue", ©: "break"}
6| []string{2: "fallthrough", 0: "break", "continue"}
7]

8| // The followings array composite literals

9| // are equivalent to each other.

10| [4]bool{false, true, true, false}

11| [4]bool{0: false, 1: true, 2: true, 3: false}

12| [4]bool{1: true, true}

13| [4]bool{2: true, 1: true}

14| [...]bool{false, true, true, false}

15| [...]bool{3: false, 1: true, true}

In the last two literals, the ... s mean we want to let compilers deduce the lengths for the corresponding

array values.

From the above examples, we know that element indexes (keys) are optional in array and slice composite
literals. In an array or slice composite literal,

¢ if an index is present, it is not needed to be a typed value of the key type int, but it must be a non-
negative constant representable as a value of type int. And if it is typed, its type must be a basic
integer type.

¢ an element which index is absent uses the previous element's index plus one as its index.

e if the index of the first element is absent, its index is zero.
The keys in a map literal can be absent, they can be non-constants.

1| var a uint = 1

2| var _ = map[uint]int {a : 123} // okay

3]

4| // The following two lines fail to compile,
5| // for "a" is not a constant key/index.

6| var _ = []int{a: 100} // error

7| var _ = [5]int{a: 100} // error

Constant keys in one specific composite literal can't be duplicate (§50).

ILiteral Representations of Zero Values of Container Types

Like structs, the zero value of an array type A can be represented with the composite literal A{}. For
example, the zero value of type [100]int can be denoted as [100]int{}. All elements stored in the

zero value of an array type are zero values of the element type of the array type.

Like pointer types, zero values of all slice and map types are represented with the predeclared nil.

BTW, there are some other kinds of types whose zero values are also represented by nil, including later
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to be introduced function, channel and interface types.

When an array variable is declared without being specified an initial value, memory has been allocated for

the elements of the zero array value. The memory for the elements of a nil slice or map value has not been

allocated yet.

Please note, []T{} represents a blank slice value (with zero elements) of slice type []T, it is different

from []T(nil). The same situation is for map[K]T{} and map[K]T(nil).

Composite Literals Are Unaddressable but Can Be Taken
Addresses

We have learned that struct composite literals can be taken addresses directly (§16) before. Container

composite literals have no exceptions here.

Example:
1| package main
2|
3| import "fmt"
4|
5| func main() {
6 | pm := &map[string]int{"C": 1972, "Go": 2009}
7| ps := &[]string{"break", "continue"}
8| pa := &[...]bool{false, true, true, false}
9] fmt.Printf("%T\n", pm) // *map[string]int
10| fmt.Printf("%T\n", ps) // *[]string
11| fmt.Printf("%T\n", pa) // *[4]bool
12| }

INested Composite Literals Can Be Simplified

If a composite literal nested many other composite literals, then those nested composited literals can

simplified to the form {...}.

For example, the slice value literal

1]
2|
3
4]
5]
6
7]

// A slice value of a type whose element type is
// *[4]byte. The element type is a pointer type
// whose base type is [4]byte. The base type is
// an array type whose element type is "byte".
var heads = []*[4]byte{

&[4]byte{'P', 'N', 'G', ' '},

&[4]byte{'G', 'I', 'F', ' '},
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8 &[4]byte{'3', 'P', 'E',
of }

can be simplified to

1| var heads = []*[4]byte{

2| {IPI INI IGI 1 l}
3| {IGI III IFI 1 l}
4| {IJI IPI IEI IGI}
5[ }

IGI},

The array value literal in the following example

1| type language struct {

2| name string

3] year int

4| }

5]

6| var _ = [...]language{

7| language{"C", 1972},

8| language{"Python", 1991},
9| language{"Go", 2009},

10| }

can be simplified to

1| var _ = [...]language{
2] {"c", 19723},

3] {"Python", 1991},
4] {"Go", 2009},

5| }

And the map value literal in the following example

1| type LangCategory struct {

2| dynamic bool
3| strong bool
4| }

5]

6| // A value of map type whose key type is
7| // a struct type and whose element type
8| // is another map type "map[string]int".

9| var _ = map[LangCategory]map[string]int{

10| LangCategory{true, true}: map[string]int{
11| "Python": 1991,

12| "Erlang": 1986,

13| 3

14 | LangCategory{true, false}: map[string]int{
15| "JavaScript": 1995,
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16| 3

17| LangCategory{false, true}: map[string]int{
18] "Go": 2009,

19| "Rust": 2010,

20| 3

21| LangCategory{false, false}: map[string]int{
22| "c": 1972,

23| +

24| }

can be simplified to

1| var _ = map[LangCategory]map[string]int{
2| {true, true}: {

3| "Python": 1991,

4| "Erlang": 1986,

5] 3

6| {true, false}: {

7| "JavaScript": 1995,
8] 3

9| {false, true}: {

10| "Go": 2009,

11| "Rust": 2010,

12| 3

13| {false, false}: {

14| "C": 1972,

15] 3

16| }

Please notes, in the above several examples, the comma following the last item in each composite literal
can't be omitted. Please read the line break rules in Go (§28) for more information later.

ICompare Container Values

As which has mentioned in the article overview of Go type system (§14), map and slice types are

incomparable types. So map and slice types can't be used as map key types.

Although a slice or map value can't be compared with another slice or map value (or itself), it can be
compared to the bare untyped nil identifier to check whether or not the slice or map value is a zero

value.
Most array types are comparable, except the ones whose element types are incomparable types.

When comparing two array values, each pair of the corresponding elements will be compared. The two

array values are equal only if all of their corresponding elements are equal.

Example:
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1| package main

2|

3| import "fmt"

4]

5| func main() {

6| var a [16]byte

7] var s []int

8] var m map[string]int

9]

10| fmt.Println(a == a) // true

11| fmt.Println(m == nil) // true

12| fmt.Println(s == nil) // true

13| fmt.Println(nil == map[string]int{}) // false
14| fmt.Println(nil == []int{}) // false
15|

16 | // The following lines fail to compile.
17| /*

18| _=m==m

19| _ =8 ==35

20| _ = m == map[string]int(nil)

21| _ = s == []int(nil)

22| var x [16][]int

23| _ =X ==X

24| var y [16]map[int]bool

25| _ =y ==

26| */

27|

ICheck Lengths and Capacities of Container Values

Besides the length property, each container value also has a capacity property. The capacity of an array is
always equal to the length of the array. The capacity of a non-nil map can be viewed as unlimited. So, in
practice, only capacities of slice values are meaningful. The capacity of a slice is always equal to or larger

than the length of the slice. The meaning of slice capacities will be explained in the section after next.

We can use the built-in 1en function to get the length of a container value, and use the built-in cap
function to get the capacity of a container value. Each of the two functions returns an int result. As the

capacity of any map value is unlimited, the built-in cap function doesn't apply to map values.

The length and capacity of an array value can never change. The lengths and capacities of all values of an
array type always equal to the length of the array type. The length and capacity of a slice value may
change at run time. So slices can be viewed as dynamic arrays. Slices are much more flexible than arrays

and are used more popularly than arrays in practice.

Example:
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package main

import "fmt"

func main() {
var a [5]int
fmt.Println(len(a), cap(a)) // 55
var s []int
fmt.Println(len(s), cap(s)) // 0 0
s, s2 := []int{2, 3, 5}, []bool{}
fmt.Println(len(s), cap(s)) // 3 3
fmt.Println(len(s2), cap(s2)) // 0 0
var m map[int]bool
fmt.Println(len(m)) // ©
m, m2 := map[int]bool{1: true, 0: false}, map[int]int{}
fmt.Println(len(m), len(m2)) // 2 ©
¥

The length and capacity of each slice shown in the above specified example value are equal. This is not

true for every slice value. We will use some slices whose respective lengths and capacities are not equal in

the following sections.

IRetrieve and Modify Container Elements

The element associated to key k stored in a container value v is represented with the element indexing

syntax form v[k].

For a use of v[k], assume v is an array or slice,

if k is a constant, then it must satisfy the requirements described above for the indexes in container

composite literals. In addition, if v is an array, the k must be smaller than the length of the array.
if k is a non-constant value, it must be a value of any basic integer type. In addition, it must be
larger than or equal to zero and smaller than len(v), otherwise, a run-time panic will occur.

if v is a nil slice, a run-time panic will occur.

For a use of v[k], assume v is a map, then k must be assignable to values of the element type of the map

type, and

if k is an interface value whose dynamic type is incomparable, a panic will occur at run time.

if v[k] is used as a destination value in an assignment and v is a nil map, a panic will occur at run
time.

if v[k] is used to retrieve the element value corresponding key k in map v, then no panics will
occur, even if v is a nil map. (Assume the evaluation of k will not panic.)

if v[k] is used to retrieve the element value corresponding key k in map v, and the map v doesn't
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contain an entry with key k, v[k] results a zero value of the element type of the corresponding map
type of v. Generally, v[k] is viewed as a single-value expression. However, when v[k] is used as
the only source value expression in an assignment, it can be viewed as a multi-value expression and
result a second optional untyped boolean value, which indicates whether or not the map v contains

an entry with key k.

An example of container element accesses and modifications:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| a := [3]int{-1, 0, 1}

7| s := []bool{true, false}

8] m := map[string]int{"abc": 123, '"xyz": 789}

9| fmt.Println (a[2], s[1], m["abc"]) // retrieve
10| a[2], s[1], m["abc"] = 999, true, 567 // modify
11| fmt.Println (a[2], s[1], m["abc"]) // retrieve
12|

13| n, present := m["hello"]

14 | fmt.Println(n, present, m["hello"]) // 0 false 0
15| n, present = m["abc"]

16 | fmt.Println(n, present, m["abc"]) // 567 true 567
17 | m = nil

18| fmt.Println(m["abc"]) // ©

19|

20| // The two lines fail to compile.

21| /*

22| _ = a[38] // index 3 out of bounds

23| _ = s[-1] // index must be non-negative

24| */

25|

26 | // Each of the following lines can cause a panic.
27 | _ = a[n] // panic: index out of range

28| _ = s[n] // panic: index out of range

29| m["hello"] = 555 // panic: assign to entry in nil map
30| }

IRecall the Internal Structure Definition of Slice Types

To understand slice types and values better and explain slices easier, we need to have an impression on the
internal structure of slice types. From the last article, value parts (§17), we learned that the internal

structure of slice types defined by the standard Go compiler/runtime is like
1| type _slice struct {
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2] elements unsafe.Pointer // referencing underlying elements
3] len int // length

4| cap int // capacity

5] 3

The internal structure definitions used by other compilers/runtimes implementations may be not the exact
same but would be similar. The following explanations are based on the official slice implementation.

The above shown internal structure explains the memory layouts of the direct parts of slice values. The
len field of the direct part of a slice indicates the length of the slice, and the cap field indicates the

capacity of the slice. The following picture depicts one possible memory layout of a slice value.

underlying memroy segment

the direct part of a slice value e = L
Ele:'nents — 0
en 1
cap >
e ]
len-1
S ST S
cap-1

Although the underlying memory segment which hosts the elements of a slice may be very large, the slice
may be only aware of a sub-segment of the memory segment. For example, in the above picture, the slice
is only aware of the middle grey sub-segment of the whole memory segment.

For the slice depicted in the above picture, the elements from index len to index cap (exclusive) don't

belong to the elements of the slice. They are just some redundant element slots for the depicted slice, but
they may be effective elements of other slices or another array.

The next section will explain how to append elements to a base slice and yield a new slice by using the
built-in append function. The result slice of an append function call may share starting elements with
the base slice or not, depending on the capacity (and length) of the base slice and how many elements are
appended.

When the slice is used as the base slice in an append function call,

o if the number of appended elements is larger than the number of the redundant element slots of the
base slice, a new underlying memory segment will be allocated for the result slice, thus the result
slice and the base slice will not share any elements.

e otherwise, no new underlying memory segments will be allocated for the result slice, and the

elements of the base slice also belong to the elements of the result slice. In other words, the two
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slices share some elements and all of their elements are hosted on the same underlying memory

segment.

The section after next will show a picture which describes both of the two possible cases in appending

slice elements.

There are more routes which lead to the elements of two slices are hosted on the same underlying memory
segment. Such as assignments and the below to be introduced subslice operations.

Note, generally, we can't modify the three fields of a slice value individually, except through the reflection
and unsafe (§25) ways. In other words, generally, to modify a slice value, its three fields must be modified
together. Generally, this is achieved by assigning another slice value (of the same slice type) to the slice
which needs to be modified.

IContainer Assignments

If a map is assigned to another map, then the two maps will share all (underlying) elements. Appending
elements into (or deleting elements from) one map will reflect on the other map.

Like map assignments, if a slice is assigned to another slice, they will share all (underlying) elements.
Their respective lengths and capacities equal to each other. However, if the length/capacity of one slice
changes later, the change will not reflect on the other slice.

When an array is assigned to another array, all the elements are copied from the source one to the
destination one. The two arrays don't share any elements.

Example:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6 | mo := map[int]int{@:7, 1:8, 2:9}

7| mi := moO

8] mi[e] = 2

9] fmt.Println(m@, ml1) // map[0:2 1:8 2:9] map[0:2 1:8 2:9]
10|

11| s@ := []int{7, 8, 9}

12| sl := sO

13| s1[0] = 2

14| fmt.Println(s®, s1) // [2 8 9] [2 8 9]
15|

16 | a0 := [...]int{7, 8, 9}

17 | al := a0

18| al[0] = 2
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19| fmt.Println(a®, al1) // [7 8 9] [2 8 9]
20| }

|Append and Delete Container Elements

The syntax of appending a key-element pair (an entry) to a map is the same as the syntax of modifying a

map element. For example, for a non-nil map value m, the following line
mik] = e

put the key-element pair (k, e) into the map m if m doesn't contain an entry with key k, or modify the

element value associated with k if m contains an entry with key k.

There is a built-in delete function which is used to delete an entry from a map. For example, the
following line will delete the entry with key k from the map m. If the map m doesn't contain an entry with

key k, it is a no-op, no panics will occur, even if m is a nil map.
delete(m, k)

An example shows how to append (put) entries to and delete entries from maps:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | m := map[string]int{"Go": 2007}

7| m["C"] = 1972 // append

8| m["Java"] = 1995 // append

9] fmt.Println(m) // map[C:1972 Go0:2007 Java:1995]
10| m["Go"] = 2009 // modify
11| delete(m, "Java") // delete
12| fmt.Println(m) // map[C:1972 G0:2009]
13| }

Please note, before Go 1.12, the entry print order of a map is unspecified.

Array elements can neither be appended nor deleted, though elements of addressable arrays can be
modified.

We can use the built-in append function to append multiple elements into a base slice and result a new

slice. The result new slice contains the elements of the base slice and the appended elements. Please note,
the base slice is not modified by the append function call. Surely, if we expect (and often in practice), we

can assign the result slice to the base slice to modify the base slice.

There is not a built-in way to delete an element from a slice. We must use the append function and the
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subslice feature introduced below together to achieve this goal. Slice element deletions and insertions will
be demoed in the below more slice manipulations section. Here, the following example only shows how to
use the append function.

An example showing how to use the append function:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6| s@ := []int{2, 3, 5}

7| fmt.Println(s@, cap(s0)) // [2 3 5] 3

8| sl := append(s0, 7) // append one element
9| fmt.Println(s1, cap(sl)) // [2 3 5 7] 6

10| s2 := append(sl1, 11, 13) // append two elements
11| fmt.Println(s2, cap(s2)) // [2 3 5 7 11 13] 6
12| s3 := append(s0) // <=> s3 := sO

13| fmt.Println(s3, cap(s3)) // [2 3 5] 3

14 | s4 := append(sO, s0...) // double sO as s4
15| fmt.Println(s4, cap(s4)) // [2 3 5 2 3 5] 6
16|

17| sO[0], s1[0] = 99, 789

18| fmt.Println(s2[0@], s3[0], s4[0]) // 789 99 2
19| }

Note, the built-in append function is a variadic function (§20). It has two parameters, the second one is a

variadic parameter (§20).

Variadic functions will be explained in the article after next. Currently, we only need to know that there
are two manners to pass variadic arguments. In the above example, line 8, line 10 and line 12 use one
manner and line 14 uses the other manner. For the former manner, we can pass zero or more element
values as the variadic arguments. For the latter manner, we must pass a slice as the only variadic argument

and which must be followed by three dots . ... We can learn how to call variadic functions from the the

article after next (820).

In the above example, line 14 is equivalent to

s4 := append(s0, sO[0], sO[1], sO[2])

line 8 is equivalent to
sl := append(sO, []int{7}...)

and line 10 is equivalent to

s2 := append(si, []int{11, 13}...)
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For the three-dot ... manner, the append function doesn't require the variadic argument must be a slice
with the same type as the first slice argument, but their element types must be identical. In other words,
the two argument slices must share the same underlying type (§14).

In the above program,

e the append call at line 8 will allocate a new underlying memory segment for slice s1, for slice s@

doesn't have enough redundant element slots to store the new appended element. The same situation
is for the append call at line 14.

e the append call at line 10 will not allocate a new underlying memory segment for slice s2, for slice

s1 has enough redundant element slots to store the new appended elements.

So, s1 and s2 share some elements, s@ and s3 share all elements, and s4 doesn't share elements with

others. The following picture depicted the statuses of these slices at the end of the above program.

s0 99 53
elements P 3 Wi elements
len (3) 5 len (3)
cap (3) cap (3)
2y 789
3
elements 5 >
len (4) 7 3
cap (6) 11 5
. s | 13 2
elements 2
len (6) B3
cap (6) elements
len (6)
cap (6)

Please note that, when an append call allocate a new underlying memory segment for the result slice, the

capacity of the result slice is compiler dependent. For the standard Go compiler, if the capacity of the base
slice is small, the capacity of the result slice will be at least the double of the base slice, to avoid allocating
underlying memory segments frequently when the result slice is used as the base slices in later possible
append calls.

As mentioned above, we can assign the result slice to the base slice in an append call to append elements

into the base slice. For example,

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| var s = append([]string(nil), "array", "slice")
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7] fmt.Println(s) // [array slice]
8| fmt.Println(cap(s)) // 2
9] s = append(s, "map")
10| fmt.Println(s) // [array slice map]
11| fmt.Println(cap(s)) // 4
12| s = append(s, "channel")
13| fmt.Println(s) // [array slice map channel]
14| fmt.Println(cap(s)) // 4
15] }

Up to now (Go 1.13), the first argument of an append function call can't be an untyped nil.

ICreate Slices and Maps With the Built-in make Function

Besides using composite literals to create map and slice values, we can also use the built-in make function

to create map and slice values. The built-in make function can't be used to create array values.

BTW, the built-in make function can also be used to create channels, which will be explained in the

article channels in Go (§21) later.

Assume M is a map type and n is non-negative integer, we can use the following two forms to create new

maps of type M.

1| make(M, n)
2| make(M)

The first form creates a new empty map which is allocated with enough space to hold at least n entries

without reallocating memory again. The second form only takes one argument, in which case a new empty
map with enough space to hold a small number of entries without reallocating memory again. The small
number is compiler dependent.

Assume S is a slice type, length and capacity are two non-negative integers, length is not larger

than capacity, we can use the following two forms to create new slices of type S.

1] make(S, length, capacity)
2| make(S, length)

The first form creates a new slice with the specified length and capacity. The second form only takes two

arguments, in which case the capacity of the new created slice is the same as its length.

All the elements in the result slice of a make function call are initialized as the zero value (of the slice

element type).

An example on how to use the built-in make function to create maps and slices:
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1| package main

2|

3| import "fmt"

4]

5| func main() {

6| // Make new maps.

7] fmt.Println(make(map[string]int)) // map[]

8] m := make(map[string]int, 3)

9| fmt.Println(m, len(m)) // map[] ©

10| m["Cc"] = 1972
11| m["Go"] = 2009
12| fmt.Println(m, len(m)) // map[C:1972 G0:2009] 2
13|
14| // Make new slices.
15| s := make([]int, 3, 5)
16 | fmt.Println(s, len(s), cap(s)) // [0 0 O] 3 5
17| s = make([]int, 2)
18| fmt.Println(s, len(s), cap(s)) // [0 O] 2 2
19] }

IAllocate Containers With the Built-in new Function

From the article pointers in Go (§15), we learned that we can also call the built-in new function to allocate
a value of any type and get a pointer which references the allocated value. The allocated value is a zero

value of its type. For this reason, it is a nonsense to use new function to create map and slice values.

It is not totally a nonsense to allocate a zero value of an array type with the built-in new function.

However, it is seldom to do this in practice, for it is more convenient to use composite literals to allocate

arrays.
Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | m := *new(map[string]int) // <=> var m map[string]int
7| fmt.Println(m == nil) // true

8| S := *new([]int) // <=> var s []int
9| fmt.Println(s == nil) // true
10| a := *new([5]bool) // <=> var a [5]bool
11| fmt.Println(a == [5]bool{}) // true
12| }
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|Addressability of Container Elements

Following are some facts about the addressabilities of container elements.

e Elements of addressable array values are also addressable. Elements of unaddressable array values
are also unaddressable. The reason is each array value only consists of one direct part.

e Elements of any slice value are always addressable, whether or not that slice value is addressable.
This is because the elements of a slice are stored in the underlying value part of the slice and the
underlying part is always hosted on an allocated memory segment.

e Elements of map values are always unaddressable. Please read this FAQ item (§51) for reasons.

For example:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6| a := [5]int{2, 3, 5, 7}

7] s := make([]bool, 2)

8| pa2, psl := &a[2], &s[1]

9] fmt.Println(*pa2, *psi1) // 5 false
10| a[2], s[1] = 99, true

11| fmt.Println(*pa2, *psl) // 99 true
12| ps® := &[]string{"Go", "C"}[O]

13| fmt.Println(*ps0@) // Go

14|

15| m := map[int]bool{l: true}

16 | _=m

17 | // The following lines fail to compile.
18] /*

19| _ = &[3]int{2, 3, 5}[0]

20| _ = &map[int]bool{l: true}[1]

21| _ = &m[1]

22| */

23| }

Unlike most other unaddressable values, which direct parts can not be modified, the direct part of a map
element values can be modified, but can only be modified (overwritten) as a whole. For most kinds of
element types, this is not a big issue. However, if the element type of map type is an array type or struct

type, things become some counter-intuitive.

From the last article, value parts (§17), we learned that each of struct and array values only consists of one

direct part. So

o if the element type of a map is a struct type, we can not individually modify each field of an element
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(which is a struct) of the map.
o if the element type of a map is an array type, we can not individually modify each element of an
element (which is an array) of the map.

Example:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6 | type T struct{age int}

7] mt := map[string]T{}

8| mt["John"] = T{age: 29} // modify it as a whole
9] ma := map[int][5]int{}

10| ma[l] = [5]int{1: 789} // modify it as a whole
11|

12| // The following two lines fail to compile,
13| // for map elements can be modified partially.
14| /*

15| ma[1][1] = 123 // error

16 | mt["John"].age = 30 // error

17| */

18]

19| // Accesses are okay.

20| fmt.Println(ma[1][1]) // 789

21| fmt.Println(mt["John"].age) // 29

22| }

To make any expected modification work in the above example, the corresponding map element should be
saved in a temporary variable firstly, then the temporary variable is modified as needed, in the end the

corresponding map element is overwritten by the temporary variable. For example,

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | type T struct{age int}

7| mt := map[string]T{}

8| mt["John"] = T{age: 29}

9] ma := map[int][5]int{}

10| ma[1] = [5]int{1: 789}

11|

12| t := mt["John"] // a temporary copy
13| t.age = 30

14 | mt["John"] = t // overwrite it back
15|
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16 | a := ma[l] // a temporary copy

17 a[1] = 123

18| ma[l] = a // overwrite it back

19|

20| fmt.Println(ma[1][1], mt["John"].age) // 123 30
21| }

IDerive Slices From Arrays and Slices

We can derive a new slice from another (base) slice or a base addressable array by using the subslice
syntax forms (Go specification calls them as slice syntax forms). The process is also often called as
reslicing. The elements of the derived slice and the base array or slice are hosted on the same memory
segment. In other words, the derived slice and the base array or slice may share some contiguous elements.

There are two subslice syntax forms (baseContainer is an array or slice):

1| baseContainer[low : high] // two-index form
2| baseContainer[low : high : max] // three-index form

The two-index form is equivalent to

baseContainer[low : high : cap(baseContainer)]

So the two-index form is a special case of the three-index form. The two-index form is used much more
popularly than the three-index form in practice.

Note, the three-index form is only supported since Go 1.2.

In a subslice expression, the low, high and max indexes must satisfy the following relation

requirements.

// two-index form
0 <= low <= high <= cap(baseContainer)

// three-index form
0 <= low <= high <= max <= cap(baseContainer)

Indexes not satisfying these requirements may make the subslice expression fail to compile at compile
time or panic at run time, depending on the base container type kind and whether or not the indexes are
constants.

Note,

e the low and high indexes can be both larger than len(baseContainer), as long as the above
relations are all satisfied. But the two indexes must not be larger than cap(baseContainer).

¢ a subslice expression will not cause a panic if baseContainer is a nil slice and all indexes used in
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the expression are zero. The result slice derived from a nil slice is still a nil slice.

The length of the result derived slice is equal to high - low, and the capacity of the result derived slice
is equal to max - low. The length of a derived slice may be larger than the base container, but the

capacity will never be larger than the base container.

In practice, for simplicity, we often omitted some indexes in subslice syntax forms. The omission rules

dare:

e if the low index is equal to zero, it can be omitted, either for two-index or three-index forms.
e if the high is equal to len(baseContainer), it can be omitted, but only for two-index forms.

e the max can never be omitted in three-index forms.

For example, the following expressions are equivalent.

1| baseContainer[0® : len(baseContainer)]

2| baseContainer[: len(baseContainer)]

3| baseContainer[0 :]

4| baseContainer[:]

5| baseContainer[@ : len(baseContainer) : cap(baseContainer)]
6| baseContainer[: len(baseContainer) : cap(baseContainer)]

An example of using subslice syntax forms:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| a :=[...]int{e, 1, 2, 3, 4, 5, 6}

7| sO := a[:] // <=> s0 := a[0:7:7]

8| sl := sO[:] // <=> sl := sO

9] s2 := s1[1:3] // <=> s2 := a[1:3]

10| s3 := s1[3:] // <=> s3 := s1[3:7]

11| s4 := s0[3:5] // <=> s4 := s0[3:5:7]

12| S5 := s4[:2:2] // <=> sb5 := s0[3:5:5]

13| s6 := append(s4, 77)

14 | s7 := append(s5, 88)

15| s8 := append(s7, 66)

16| s3[1] = 99

17 | fmt.Println(len(s2), cap(s2), s2) // 2 6 [1 2]

18| fmt.Println(len(s3), cap(s3), s3) // 4 4 [3 99 77 6]
19| fmt.Println(len(s4), cap(s4), s4) // 2 4 [3 99]
20| fmt.Println(len(s5), cap(s5), s5) // 2 2 [3 99]
21| fmt.Println(len(s6), cap(s6), s6) // 3 4 [3 99 77]
22| fmt.Println(len(s7), cap(s7), s7) // 3 4 [3 4 88]
23| fmt.Println(len(s8), cap(s8), s8) // 4 4 [3 4 88 66]
24| }
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The following picture depicts the final memory layouts of the array and slice values used in the above

example.
s0 53
elements elements
len (7) len (4)
cap (7) cap (4)
51 54
elements 3 elements
len (7) .HH“““--E;
5 len (2)
cap (7) 5 cap (4)
52 / : 55
3
elements BE elements
len (2 len (2)
(2) 77
cap (B) = cap (2)
elements elements
len (3) k len (3)
cap (4) cap (4)
- / 2
elements E4E
len (4) e
cap (4)

From the picture, we know that the elements of slice s7 and s8 are hosted on a different underlying

memory segment than the other containers. The elements of the other slices are hosted on the same
memory segment hosting the array a.

Please note that, subslice operations may cause kind-of memory leaking. For example, half of the memory
allocated for the return slice of a call to the following function will be wasted unless the returned slice
becomes unreachable (if no other slices share the underlying element memory segment with the returned
slice).

1| func f() []int {

2| s := make([]int, 10, 100)
3| return s[50:60]
4| }

Please note that, in the above function, the lower index (50) is larger than the length (10) of s, which is

allowed.

ICopy Slice Elements With the Built-in copy Function
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We can use the built-in copy function to copy elements from one slice to another, the types of the two

slices are not required to be identical, but their element types must be identical. In other words, the two
argument slices must share the same underlying type. The first parameter of the copy function is the

destination slice and the second one is the source slice. The two parameters can overlap some elements.
copy function returns the number of elements copied, which will be the smaller one of the lengths of the

two parameters.

With the help of the subslice syntax, we can use the copy function to copy elements between two arrays

or between an array and a slice.
An example:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6| type Ta []int

7| type Th []int

8] dest := Ta{1, 2, 3}

9| src := Tb{5, 6, 7, 8, 9}

10| n := copy(dest, src)

11| fmt.Println(n, dest) // 3 [5 6 7]
12| n = copy(dest[1:], dest)

13| fmt.Println(n, dest) // 2 [5 5 6]
14|

15| a := [4]int{} // an array

16 | n = copy(a[:], src)

17 | fmt.Println(n, a) // 4 [6 6 7 8]
18| n = copy(a[:], a[2:])

19| fmt.Println(n, a) // 2 [7 8 7 8]
20| }

In fact, the copy function is not very essential. We can implement it by using the built-in append

function.

1| // Assume element type is T.
2| func Copy(dest, src []T) int {

3| if len(dest) < len(src) {

4| _ = append(dest[:0], src[:len(dest)]...)
5] return len(dest)

6| } else {

7| _ = append(dest[:0], src...)

8| return len(src)

9] }

10| }
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Although the copy function is not an essential function in Go, for many circumstances, it is more

convenient that the just shown way.

From another point of view, the append function can also be viewed as a non-essential function (whereas
copy is viewed as an essential function), for all its uses can be implemented with make and copy

function calls.

Note, as a special case, the built-in copy function can be used to copy bytes from a string to a byte slice

(819).

Up to now (Go 1.13), neither of the two arguments of a copy function call can be an untyped nil value.

IContainer Element Iterations

In Go, keys and elements of a container value can be iterated with the following syntax:

for key, element = range aContainer {
// use key and element

where for and range are two keywords, key and element are called iteration variables. If
aContainer is a slice or an array (or an array pointer, see below), then the type of key must be built-in

type int.

The assignment sign = can be a short variable declaration sign :=, in which case the two iteration
variables are both two new declared variables which are only visible within the for-range code block

body, if aContainer is a slice or an array (or an array pointer), then the type of key is deduced as int.

Like the traditional for loop block, each for-range loop block creates two code blocks, an implicit one

and an explicit one which is formed by using {}. The explicit one is nested in the implicit one.
Like for loop blocks, break and continue statements can also be used in for-range loop blocks,

Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | m := map[string]int{"C": 1972, "C++": 1983, "Go": 2009}
7| for lang, year := range m {

8| fmt.Printf("%v: %v \n", lang, year)

9] }
10|
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a := [...]int{2, 3, 5, 7, 11}
for i, prime := range a {
fmt.Printf("%v: %v \n", i, prime)

}
s := []string{"go", "defer", "goto", "var"}
for i, keyword := range s {
fmt.Printf("%v: %v \n", i, keyword)
3

b

The form for-range code block syntax has several variants:

1|
2|
3
4]
5]
6
7]
8
9]
10|
11|
12|
13|
14|
15|
16|
17
18]
19|
20|
21|
22|
23|
24|
25|
26|
27
28|

Iterating over nil maps or nil slices is allowed. Such iterations are no-ops.

// Ignore the key iteration variable.
for _, element = range aContainer {

//
}
// Ignore the element iteration variable.
for key, _ = range aContainer {
element = aContainer[key]
//
}

// The element iteration variable is omitted.
// This form is equivalent to the last one.
for key = range aContainer {

element = aContainer[key]

//

// Ignore both the key and element iteration variables.

for _, _ = range aContainer {
// This variant is not much useful.

// Both the key and element iteration variables are
// omitted. This form is equivalent to the last one.

for range aContainer {
// This variant is not much useful.

}

Some details about iterations over maps are listed here.

For a map, the entry order in an iteration is not guaranteed to be the same as the next iteration, even

if the map is not modified between the two iterations. By Go specification, the order is unspecified
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(kind-of randomized).

e If a map entry (a key-element pair) which has not yet been reached is removed during an iteration,
then the entry will not iterated in the same iteration for sure.

e If a map entry is created during an iteration, that entry may be iterated during the same iteration, or

not.

If it is promised that there are no other goroutines manipulating a map m, then the following code is

guaranteed to clear all entries stored in the map m:

1| for key := range m {
2| delete(m, key)
3]

Surely, array and slice elements can also be iterated by using the traditional for loop block:

1| for i1 := 0; i < len(anArrayOrSlice); i++ {
2] element := anArrayOrSlice[i]

3] //

4| }

For a for-range loop block
for key, element = range aContainer {...}

there are three important facts.

1. The ranged container is a copy of aContainer . Please note, only the direct part of aContainer is
copied (817). The container copy is anonymous, so there are no ways to modify it.

o If the aContainer is an array, then the modifications made on the array elements during the
iteration will not be reflected to the iteration variables. The reason is that the copy of the array
doesn't share elements with the array.

o If the aContainer is a slice or map, then the modifications made on the slice or map
elements during the iteration will be reflected to the iteration variables. The reason is that the
clone of the slice (or map) shares all elements (entries) with the slice (or map).

2. A key-element pair of the copy of aContainer will be assigned (copied) to the iteration variable
pair at each iteration step, so the modifications made on the direct parts of the iteration variables
will not be reflected to the elements (and keys for maps) stored in aContainer . (For this fact, and
as using for-range loop blocks is the only way to iterate map keys and elements, it is
recommended not to use large-size types as map key and element types, to avoid large copy
burdens.)

3. All key-element pairs will be assigned to the same iteration variable pair.

An example which proves the first and second facts.

1| package main
2|
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3| import "fmt"

4]

5| func main() {

6| type Person struct {
7] name string
8] age int
9] }
10| persons := [2]Person {{"Alice", 28}, {"Bob", 25}}
11| for 1, p := range persons {
12| fmt.Println(i, p)
13|
14| // This modification has no effects on
15| // the iteration, for the ranged array
16 | // 1s a copy of the persons array.
17 | persons[1].name = "Jack"
18]
19| // This modification has not effects on
20| // the persons array, for p is just a
21| // copy of a copy of one persons element.
22| p.age = 31
23| ¥
24| fmt.Println("persons:", &persons)
25| }
The output:

0 {Alice 28}
1 {Bob 25}
persons: &[{Alice 28} {Jack 25}]

If we change the array in the above to a slice, then the modification on the slice during the iteration has

effects on the iteration, but the modification on the iteration variable still has no effects on the slice.

1]
2]
3
4]
5]
6
7]
8]
9]
10|
11 |
12|
13|
14|
15|

// A slice.
persons := []Person {{"Alice", 28}, {"Bob", 25}}
for i, p := range persons {

fmt.Println(i, p)

// Now this modification has effects
// on the iteration.
persons[1].name = "Jack"

// This modification still has not

// any real effects.
p.age = 31
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fmt.Println("persons:", &persons)

The output becomes to:

0 {Alice 28}
1 {Jack 25}
persons: &[{Alice 28} {Jack 25}]

An example to prove the second and third facts.

1| package main

2|

3| import "fmt"

4]

5| func main() {

6|
7]
8|
9]
10|
11|
12|
13|
14|
15|
16|
17
18|
19|
20|
21|
22|
23|
24|
25|
26|
27
28|
29|
30|
31| }

langs := map[struct{ dynamic, strong bool }]map[string]int{
{true, false}: {"JavaScript": 1995},
{false, true}: {"Go": 2009},
{false, false}: {"C": 1972},
}
// The key type and element type of this map
// are both pointer types. Some weird, just
// for education purpose.
mO@ := map[*struct{ dynamic, strong bool }]*map[string]int{}
for category, langInfo := range langs {
mO[&category] = &langInfo
// This following line has no effects on langs.
category.dynamic, category.strong = true, true

}

for category, langInfo := range langs {
fmt.Println(category, langInfo)

}

ml := map[struct{ dynamic, strong bool }]Imap[string]int{}

for category, langInfo := range moO {
ml[ *category] = *langInfo

}

// m0@ and ml both contain only one entry.
fmt.Println(len(m@), len(ml)) // 1 1
fmt.Println(ml) // map[{true true}:map[C:1972]]

As mentioned above, the entry iteration order is randomized, so the order of the first three lines of the

output of the above program may be not same as the following one.

{false true} map[Go:2009]
{false false} map[C:1972]
{true false} map[JavaScript:1995]
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11
map[{true true}:map[Go:2009]]

The cost of a slice or map assignment is small, but the cost of an array assignment is large if the size of the
array type is large. So, generally, it is not a good idea to range over a large array. We can range over a
slice derived from the array, or range over a pointer to the array (see the next section for details).

For an array or slice, if the size of its element type is large, then, generally, it is also not a good idea to use
the second iteration variable to store the iterated element at each loop step. For such arrays and slices, we
should use the one-iteration-variable for-range loop variant or the traditional for loop to iterate their
elements. In the following example, the loop in function fa is much less efficient than the loop in

function fb.

1| type Buffer struct {

2| start, end int

3] data [1024]byte

4| }

5]

6| func fa(buffers []Buffer) int {

7| numUnreads := 0

8| for _, buf := range buffers {

9| numUnreads += buf.end - buf.start
10| }

11| return numUnreads
12| }
13|
14| func fb(buffers []Buffer) int {
15| numUnreads := 0
16 | for 1 := range buffers {
17 | numUnreads += buffers[i].end - buffers[i].start
18| }
19| return numUnreads
20| }

IUse Array Pointers as Arrays

In many scenarios, we can use a pointer to an array as the array.

We can range over a pointer to an array to iterate the elements of the array. For arrays with large lengths,
this way is much more efficient, for copying a pointer is much more efficient than copying a large-size

array. In the following example, the two loop blocks are equivalent and both are efficient.

1| package main
2|
3| import "fmt"
4|
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5| func main() {

6| var a [100]int

7|

8| // Copying a pointer is cheap.
9] for i, n := range &a {

10| fmt.Println(i, n)

11| }

12|

13| // Copying a slice is cheap.
14 | for 1, n := range a[:] {

15| fmt.Println(i, n)

16| }

17| }

If the second iteration in a for-range loop is neither ignored nor omitted, then range over a nil array
pointer will panic. In the following example, each of the first two loop blocks will print five indexes,
however, the last one will produce a panic.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| var p *[5]int // nil

7]

8| for i, _ := range p { // okay
9| fmt.Println(1i)

10| }

11|

12| for 1 := range p { // okay
13| fmt.Println(1i)

14| }

15|

16 | for i, n := range p { // panic
17 | fmt.Println(i, n)

18| }

19| }

Array pointers can also used to index array elements. Indexing array elements through a nil array pointer

produces a panic.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| a := [5]int{2, 3, 5, 7, 11}
7| p := &a
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8| p(6], p[1] = 17, 19

9] fmt.Println(a) // [17 19 5 7 11]
10| p = nil

11| _ = p[O] // panic

12] }

We can also derive slices from array pointers. Deriving slices from a nil array pointer produce a panic.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| pa := &[5]int{2, 3, 5, 7, 11}
7| s := pa[l:3]

8| fmt.Println(s) // [3 5]

9| pa = nil

10| S = pa[0:0] // panic

11| 3}

We can also pass array pointers as the arguments of the built-in 1en and cap functions. Nil array pointer

arguments for the two functions will not produce panics.

1| var pa *[5]int // == nil
2| fmt.Println(len(pa), cap(pa)) // 5 5

IThe memclr Optimization

Assume t0 is a literal presentation of the zero value of type T, and a is an array which element type is T,

then the standard Go compiler will translate the following one-iteration-variable for -range loop block

1] for i := range a {
2] a[i] = to
3| }

to an internal memclr call # , generally which is faster than resetting each element one by one.

The optimization was adopted in the standard Go compiler 1.5.

The optimization also works if the ranged container is a slice. Sadly, it doesn't work if the ranged value is
an array pointer (up to Go 1.12). So if you want to reset an array, don't range its pointer. In particular, it is

recommended to range a slice derived from the array, like this:

1] s := a[:]
2| for i := range s {
3] s[i] = to
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4] }

The reason of why it is not recommended to range over the array directly is it is very possible that other
Go compilers don't make the above optimization, and as above has mentioned, ranging over the array will
make a copy of the array (though the standard Go compiler won't in this optimization).

Calls to the Built-in 1len and cap Functions May Be
Evaluated at Compile Time

If the argument passed to a built-in function len or cap function call is an array or an array pointer
value, then the call is evaluated at compile time and the result of the call is a typed constant with type as
the built-in type int. The result can be bound to named constants.

Example:

1| package main

2|

3| import "fmt"

4]

5| var a [5]int

6| var p *[7]string

7]

8| // N and M are both typed constants.
9] const N = len(a)

10| const M = cap(p)

11|

12| func main() {

13| fmt.Println(N) // 5
14 | fmt.Println(M) // 7
15] }

Modify the Length and Capacity Properties of a Slice
Individually

Above has mentioned, generally, the length and capacity of a slice value can't be modified individually. A
slice value can only be overwritten as a whole by assigning another slice value to it. However, we can
modify the length and capacity of a slice individually by using reflections. Reflection will be explained in
a later article (827) in detail.

Example:

1| package main
2|
3| import (

174



§18. Arrays, Slices and Maps in Go

4] "fmt"

5] "reflect"

6] )

7]

8| func main() {

9| s := make([]int, 2, 6)

10| fmt.Println(len(s), cap(s)) // 2 6
11|
12| reflect.ValueOf(&s).Elem().SetLen(3)
13| fmt.Println(len(s), cap(s)) // 3 6
14|
15| reflect.ValueOf(&s).Elem().SetCap(5)
16 | fmt.Println(len(s), cap(s)) // 3 5
17| }

The second argument passed to the reflect.SetLen function must not be larger than the current
capacity of the argument slice s. The second argument passed to the reflect.SetCap function must not
be smaller than the current length of the argument slice s and larger than the current capacity of the

argument slice s. Otherwise, a panic will occur.

The reflection way is very inefficient, it is slower than a slice assignment.

IMore Slice Manipulations

Go doesn't support more built-in slice operations, such as slice clone, element deletion and insertion. We
must compose the built-in ways to achieve those operations.

In the following examples in the current section, assume s is the talked slice, T is its element type and t@

is a zero value literal representation of T.

|Clone slices

For the latest standard Go compler (version 1.12), the simplest way to clone a slice is:
sClone := append(s[:0:0], s...)
For slices with large lengths (thousands of elements), the above way is more efficient than

sClone := make([]T, len(s))
copy(sClone, s)

The second way has a drawback that if s is a nil slice, the second way results a non-nil clone.

|Delete a segment of slice elements
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Above has mentioned that the elements a slice are stored contiguously in memory and there are no gaps
between any two adjacent elements of the slice. So when a slice element is removed,

o if the element order must be preserved, then each of the subsequent elements followed the removed
elements must be moved forwards.
e if the element order doesn't need to be preserved, then we can move the last elements in the slice to

the removed indexes.

In the following example, assume from and to are two legal indexes, from is not larger than to, and

the to index is exclusive.

1| // way 1 (preserve element orders):
2| s = append(s[:from], s[to:]...)

3]

4| // way 2 (preserve element orders):
5| s = s[:from + copy(s[from:], s[to:])]

6]

7| // Don't preserve element orders:
8| if n := to-from; len(s)-to < n {
9| copy(s[from:to], s[to:])

10| } else {

11| copy(s[from:to], s[len(s)-n:])
12| }

13| s = s[:len(s)-(to-from)]

If the slice elements reference other values, we should reset tail elements (on the just freed-up slots) to
avoid memory leaking.

1| // "len(s)+to-from" is the old slice length.
2| temp := s[len(s):len(s)+to-from]

3| for i := range temp {
4| temp[i] = tO
5| }

As mentioned above, the for-range loop code block will be optimized as a memclr call by the standard

Go compiler.

|Delete one slice element

Deleting one element is similar to, and also simpler than, deleting a segment of elements.
In the following example, assume i the index of the element to be removed and 1i is a legal index.
1| // Way 1 (preserve element orders):

2| s = append(s[:i], s[i+1:]...)
3]
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4| // Way 2 (preserve element orders):

5| s = s[:1 + copy(s[i:], s[i+1:])]

6]

7| // There will be len(s)-i-1 elements being
8| // copied in either of the above two ways.
9]

10| // Don't preserve element orders:

11| s[i] = s[len(s)-1]

12| s = s[:1len(s)-1]

If the slice elements contain pointers, then after the deletion action, we should reset the last element of the
old slice value to avoid memory leaking:

1| s[len(s):len(s)+1][0] = tO

2| // or
3| s[:len(s)+1][len(s)] = tO

|Delete slice elements conditionally

Sometimes, we may need to delete slice elements by some conditions.

1| // Assume T is a small-size type.
2| func DeleteElements(s []T, keep func(T) bool, clear bool) []T {

3| //result := make([]T, 0, len(s))

4| result := s[:0] // without allocating a new slice
5] for _, v := range s {

6| if keep(v) {

7| result = append(result, v)

8] }

9] }

10| if clear { // avoid memory leaking

11| temp := s[len(result):]

12| for 1 := range temp {

13| // tO is a zero value literal of T.
14 | temp[i] = tO

15| }

16| }

17 | return result

18] }

Please note, if T is not a small-size type, then generally we should try to (§34) avoid using T as function
parameter types and using two-iteration-variable for-range block form to iterate slices with element

typesas T.

|Insert all elements of a slice into another slice
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Assume the insertion position is a legal index i and elements is the slice whose elements are to be

inserted.

1| // One-line implementation:

2| s = append(s[:1], append(elements, s[i:]...)...)
3

4| // A more efficient but more verbose way:

5| if cap(s)-len(s) >= len(elements) {

6 | s = s[:1len(s)+len(elements) ]

7| copy(s[itlen(elements):], s[i:])
8| copy(s[i:], elements)

9| } else {

10| x := make([]T, 0, len(elements)+len(s))
11| X = append(x, s[:1i]...)

12| X = append(x, elements...)

13| X = append(x, s[i:]...)

14 | S = X

15| }

16 |

17| // Push:

18| s = append(s, elements...)

19|

20| // Unshift:
21| s = append(elements, s...)

The make call in the above code snippet clear the memory allocated for for slice x, this is actually an

unnecessary operation for this specified use case. Future compiler optimization f might remove the clear

operation.

Insert several individual elements

Inserting several individual elements is similar to inserting all elements of a slice. We can construct a slice
with a slice composite literal with the elements to be inserted, then use the above ways to insert these

elements.

|Special deletions and insertions: push front/back, pop front/back

Assume the pushed or popped element is e and slice s has at least one element.

1| // Pop front (shift):

2] s, e = s[1:], s[0O]

3| // Pop back:

4| s, e = s[:1len(s)-1], s[len(s)-1]
5| // Push front:

6| s = append([]T{e}, s...)
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7| // Push back:
8| s = append(s, e)

|More slice operations

In reality, the needs are varied. For some specific cases, it is possible none of the above ways shown in the
above examples are the most efficient way. And sometimes, the above ways may not satisfy some specific
requirements in practice. So, please learn and apply elastically. This may be the reason why Go doesn't
support the more operations introduced above in the built-in way.

IUse Maps to Simulate Sets

Go doesn't support built-in set types. However, it is easy to use a map type to simulate a set type. In
practice, we often use the map type map[K]struct{} to simulate a set type with element type K. The

size of the map element type struct{} is zero, elements of values of such map types don't occupy

memory space.

Container Related Operations Are Not Synchronized
Internally

Please note that, all container operations are not synchronized internally. Without making using of any
data synchronization technique, it is okay for multiple goroutines to read a container concurrently, but it is
not okay for multiple goroutines to manipulate a container concurrently and at least one goroutine
modifies the container. The latter case will cause data races, even make goroutines panic. We must
synchronize the container operations manually. Please read the articles on data synchronizations (§36) for

details.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com to get more information about these games. Hope you enjoy them.)
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Strings in Go

Like many other programming languages, string is also one important kind of types in Go. This article will
list all the facts of strings.

IThe Internal Structure of String Types

For the standard Go compiler, the internal structure of any string type is declared like:

1| type _string struct {

2| elements *byte // underlying bytes
3] len int // number of bytes
4| }

From the declaration, we know that a string is actually a byte sequence wrapper. In fact, we can really

view a string as an (element-immutable) byte slice.

Note, in Go, byte is a built-in alias of type uint8.

ISome Simple Facts About Strings

We have learned the following facts about strings from previous articles.

e String values can be used as constants (along with boolean and all kinds of numeric values).
e Go supports two styles of string literals (§6), the double-quote style (or interpreted literals) and the

back-quote style (or raw string literals).
e The zero values of string types are blank strings, which can be represented with "" or " in literal.

e Strings can be concatenated with + and += operators.
e String types are all comparable (by using the == and != operators). And like integer and floating-
point values, two values of the same string type can also be compared with >, <, >= and <=

operators. When comparing two strings, their underlying bytes will be compared, one byte by one
byte. If one string is a prefix of the other one and the other one is longer, then the other one will be

viewed as the larger one.

Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | const World = "world"

180



7]
8
9]
10|
11 |
12|
13|
14|
15|
16 |
17|

§819. Strings in Go

var hello = "hello"

// Concatenate strings.

var helloworld = hello + " " + World
helloworld += "I"
fmt.Println(hellowWorld) // hello world!

// Compare strings.
fmt.Println(hello == "hello") // true
fmt.Println(hello > helloWorld) // false

b

More facts about string types and values in Go.

Note,

Like Java, the contents (underlying bytes) of string values are immutable. The lengths of string
values also can't be modified separately. An addressable string value can only be overwritten as a
whole by assigning another string value to it.
The built-in string type has no methods (just like most other built-in types in Go), but we can
o use functions provided in the strings standard package # to do all kinds of string
manipulations.
o call the built-in 1en function to get the length of a string (number of bytes stored in the
string).
o use the element access syntax aString[i] introduced in container element accesses (§18) to

get the ith byte value stored in aString. The expression aString[i] is not addressable. In
other words, value aString[i] can't be modified.

o use the subslice syntax (§18) aString[start:end] to get a substring of aString. Here,

start and end are both indexes of bytes stored in aString.

For the standard Go compiler, the destination string variable and source string value in a string
assignment will share the same underlying byte sequence in memory. The result of a substring
expression aString[start:end] also shares the same underlying byte sequence with the base

string aString in memory.

if aString and the indexes in expressions aString[i] and aString[start:end] are all

constants, then out-of-range constant indexes will make compilations fail. And please note that the

evaluation results of such expressions are always non-constants.

Example:
1| package main
2|
3| import (
4] "fmt"
5] "strings"
6] )
7]
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8| func main() {

9] var hellowWorld = "hello world!"
10|
11| var hello = helloWorld[:5] // substring
12| // 104 is the ASCII code (and Unicode) of char 'h'.
13| fmt.Println(hello[0]) // 104
14| fmt.Printf("%T \n", hello[0]) // uint8
15|
16 | // hello[@] is unaddressable and immutable,
17| // so the following two lines fail to compile.
18] /*
19| hello[0] = 'H' // error
20| fmt.Println(&hello[0]) // error
21| */
22|
23| // The next statement prints: 5 12 true
24| fmt.Println(len(hello), len(helloWorld),
25| strings.HasPrefix(hellowWorld, hello))
26|

IString Encoding and Unicode Code Points

Unicode standard specifies a unique value for each character in all kinds of human languages. But the
basic unit in Unicode is not character, it is code point instead. For most code points, each of them
corresponds to a character, but for a few characters, each of them consists of several code points.

Code points are represented as rune values (§6) in Go. In Go, rune is a built-in alias of type int32.

In applications, there are several encoding methods to represent code points, such as UTF-8 encoding and
UTF-16 encoding. Nowadays, the most popularly used encoding method is UTF-8 encoding. In Go, all
string constants are viewed as UTF-8 encoded. At compile time, illegal UTF-8 encoded string constants
will make compilation fail. However, at run time, Go runtime can't prevent some strings from being
illegally UTF-8 encoded.

For UTF-8 encoding, each code point value may be stored as one or more bytes (up to four bytes). For
example, each English code point (which corresponds to one English character) is stored as one byte,

however each Chinese code point (which corresponds to one Chinese character) is stored as three bytes.

|String Related Conversions

In the article constants and variables (§87), we have learned that integers can be explicitly converted to

strings (but not vice versa).

Here introduces two more string related conversions rules in Go:
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1. astring value can be explicitly converted to a byte slice, and vice versa. A byte slice is a slice whose
underlying type is []byte (a.k.a., [Juint8).
2. astring value can be explicitly converted to a rune slice, and vice versa. A rune slice is a slice whose

underlying type is []rune (a.k.a., []int32).

(Note: the definition of byte/rune slices might change to # a slice whose element type's underlying

type is byte/rune in future official Go documentation).

In a conversion from a rune slice to string, each slice element (a rune value) will be UTF-8 encoded as
from one to four bytes and stored in the result string. If a slice rune element value is outside the range of
valid Unicode code points, then it will be viewed as @xFFFD, the code point for the Unicode replacement

character. @xFFFD will be UTF-8 encoded as three bytes (0xef Oxbf Oxbd).

When a string is converted to a rune slice, the bytes stored in the string will be viewed as successive UTF-
8 encoding byte sequence representations of many Unicode code points. Bad UTF-8 encoding

representations will be converted to a rune value @xFFFD.

When a string is converted to a byte slice, the result byte slice is just a deep copy of the underlying byte
sequence of the string. When a byte slice is converted to a string, the underlying byte sequence of the
result string is also just a deep copy of the byte slice. A memory allocation is needed to store the deep
copy in each of such conversions. The reason why a deep copy is essential is slice elements are mutable
but the bytes stored in strings are immutable, so a byte slice and a string can't share byte elements.

Please note, for conversions between strings and byte slices,

e illegal UTF-8 encoded bytes are allowed and will keep unchanged.
o the standard Go compiler makes some optimizations for some special cases of such conversions, so
that the deep copies are not made. Such cases will be introduced below.

Conversions between byte slices and rune slices are not supported directly in Go, We can use the
following ways to achieve this goal:

e use string values as a hop. This way is convenient but not very efficient, for two deep copies are
needed in the process.
e use the functions in unicode/utf8 # standard package.

e use the Runes function in the bytes standard package # to converta []byte valuetoa []rune

value. There is not a function in this package to convert a rune slice to byte slice.

Example:

1| package main

2|

3| import (

4| "bytes"

5] "unicode/utf8"
6] )
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7]

8| func Runes2Bytes(rs []Jrune) []byte {

9] n :=0

10| for _, r := range rs {

11| n += utf8.RuneLen(r)

12| }

13| n, bs := 0, make([]byte, n)

14| for _, r := range rs {

15| n += utf8.EncodeRune(bs[n:], r)
16| }

17 | return bs
18] }
19|
20| func main() {
21| s := "Color Infection is a fun game."
22| bs := []byte(s) // string -> []byte
23| s = string(bs) // []byte -> string
24| rs := []Jrune(s) // string -> []rune
25| s = string(rs) // []rune -> string
26 | rs = bytes.Runes(bs) // []byte -> []rune
27 | bs = Runes2Bytes(rs) // []rune -> []byte
28| }

Compiler Optimizations for Conversions Between Strings
and Byte Slices

Above has mentioned that the underlying bytes in the conversions between strings and byte slices will be
copied. The standard Go compiler makes some optimizations, which are proven to still work in Go SDK

1.13, for some special scenarios to avoid the duplicate copies. These scenarios include:

e a conversion (from string to byte slice) which follows the range keyword in a for-range loop.

e a conversion (from byte slice to string) which is used as a map key in map element indexing syntax.
¢ a conversion (from byte slice to string) which is used in a comparison.
¢ a conversion (from byte slice to string) which is used in a string concatenation, and at least one of

concatenated string values is a non-blank string constant.

Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | var str = "world"

7| // Here, the []byte(str) conversion will
8| // not copy the underlying bytes of str.
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for i, b := range []byte(str) {
fmt.Println(i, ":", b)

key := []byte{'k', 'e', 'y'}

m := map[string]string{}

// Here, the string(key) conversion will not copy
// the bytes in key. The optimization will be still
// made, even if key is a package-level variable.
m[{string(key)] = "value"
fmt.Println(m[string(key)]) // value

Another example:

1| package main

2|

3| import "fmt"
4| import "testing"

5]

6| var s string
7| var x = []byte{1023: 'x'}
8| var y = []byte{1023: 'y'}

9]

10| func fc() {

11|
12|
13|
14|
15|
16|
17
18] }
19|

// None of the below 4 conversions will
// copy the underlying bytes of x and y.
// Surely, the underlying bytes of x and y will
// be still copied in the string concatenation.
if string(x) !'= string(y) {

s = (" " + string(x) + string(y))[1:]

20| func fd() {

21|
22|
23]
24|
25|
26|
27
28] }
29|

// 0Only the two conversions in the comparison
// will not copy the underlying bytes of x and y.
if string(x) !'= string(y) {
// Please note the difference between the
// following concatenation and the one in fc.
s = string(x) + string(y)

30| func main() {

31|
32|
33| }

fmt.Println(testing.AllocsPerRun(1, fc)) // 1
fmt.Println(testing.AllocsPerRun(1, fd)) // 3
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Ifor -range on Strings

The for-range loop control flow applies to strings. But please note, for-range will iterate the
Unicode code points (as rune values), instead of bytes, in a string. Bad UTF-8 encoding representations

in the string will be interpreted as rune value OXFFFD.

Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| s := "eftran@l"

7] for 1, rn := range s {

8| fmt.Printf("%2v: Ox%x %v \n", i, rn, string(rn))
9| }

10| fmt.Println(len(s))

11| }

The output of the above program:

0: Ox65 e

1: Ox301

3: Ox915 &

6: 0x94d .

9: Ox937 ¥
12: 0x93f
15: Ox61 a
16: Ox3cO m
18: 0x56e7

21
From the output result, we can find that

1. the iteration index value may be not continuous. The reason is the index is the byte index in the
ranged string and one code point may need more than one byte to represent.

2. the first character, e, is composed of two runes (3 bytes total)

3. the second character, &, is composed of four runes (12 bytes total).

&

the English character, a, is composed of one rune (1 byte).
5. the character, m, is composed of one rune (2 bytes).

6. the Chinese character, [Al, is composed of one rune (3 bytes).

Then how to iterate bytes in a string? Do this:

1| package main
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2|

3| import "fmt"

4|

5| func main() {

6| s := "efdran/A"

7] for i := 0; i < len(s); i++ {

8] fmt.Printf("The byte at index %v: O0x%x \n", i, s[i])
9] }

10| }

Surely, we can also make use of the compiler optimization mentioned above to iterate bytes in a string.
For the standard Go compiler, this way is a little more efficient than the above one.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| s := "efdtan/A"

7| // Here, the underlying bytes of s are not copied.
8| for i, b := range []byte(s) {

9| fmt.Printf("The byte at index %v: Ox%x \n", i, b)
10| }

11| }

From the above several examples, we know that 1en(s) will return the number of bytes in string s. The
time complexity of len(s) is 0(1). How to get the number of runes in a string? Using a for-range

loop to iterate and count all runes is a way, and using the RuneCountInString # function in the

unicode/utf8 standard package is another way. The efficiencies of the two ways are almost the same.
The third way is to use len([]rune(s)) to get the count of runes in string s. Since Go SDK 1.11, the

standard Go compiler make an optimization for the third way to avoid an unnecessary deep copy so that it

is as efficient as the former two ways. Please note that the time complexities of these ways are all 0(n).

IMore String Concatenation Methods

Besides using the + operator to concatenate strings, we can also use following ways to concatenate

strings.

e The Sprintf/Sprint/Sprintln functions in the fmt standard package can be used to

concatenate values of any types, including string types.

e Use the Join function in the strings standard package.
e The Buffer type in the bytes standard package (or the built-in copy function) can be used to

build byte slices, which afterwards can be converted to string values.

e Since Go 1.10, the Builder type in the strings standard package can be used to build strings.
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Comparing with bytes.Buffer way, this way avoids making an unnecessary duplicated copy of

underlying bytes for the result string.

The standard Go compiler makes optimizations for string concatenations by using the + operator. So
generally, using + operator to concatenate strings is convenient and efficient if the number of the

concatenated strings is known at compile time.

ISugar: Use Strings as Byte Slices

From the article arrays, slices and maps (§18), we have learned that we can use the built-in copy and
append functions to copy and append slice elements. In fact, as a special case, if the first argument of a

call to either of the two functions is a byte slice, then the second argument can be a string (if the call is an
append call, then the string argument must be followed by three dots . . . ). In other words, a string can

be used as a byte slice for the special case.
Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| hello := []byte("Hello ")

7| world := "world!"

8]

9| // The normal way:

10| // helloWorld := append(hello, []Jbyte(world)...)
11| hellowWorld := append(hello, world...) // sugar way
12| fmt.Println(string(helloworld))

13|

14 | hellowWorld2 := make([]byte, len(hello) + len(world))
15| copy(hellowWorld2, hello)

16 | // The normal way:

17 | // copy(helloWorld2[len(hello):], []byte(world))
18| copy(hellowWorld2[len(hello):], world) // sugar way
19| fmt.Println(string(hellowWorld2))

20| }

|More About String Comparisons

Above has mentioned that comparing two strings is comparing their underlying bytes actually. Generally,

Go compilers will made the following optimizations for string comparisons.

e For == and != comparisons, if the lengths of the compared two strings are not equal, then the two
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strings must be also not equal (no needs to compare their bytes).
o [f their underlying byte sequence pointers of the compared two strings are equal, then the
comparison result is the same as comparing the lengths of the two strings.

So for two equal strings, the time complexity of comparing them depends on whether or not their
underlying byte sequence pointers are equal. If the two equal string values don't share the same underlying
bytes, then the time complexity of comparing the two values is 0(n), where n is the length of the two

strings, otherwise, the time complexity is 0(1) .

As above mentioned, for the standard Go compiler, in a string value assignment, the destination string
value and the source string value will share the same underlying byte sequence in memory. So the cost of

comparing the two strings becomes very small.
Example:

1| package main

2|
3| import (
4] "fmt"
5] "time"
6] )
7]
8| func main() {
9] bs := make([]byte, 1<<26)
10| s@ := string(bs)
11| sl := string(bs)
12| s2 := sl
13|
14 | // s0, s1 and s2 are three equal strings.
15| // The underlying bytes of s0@ is a copy of bs.
16 | // The underlying bytes of sl1 is also a copy of bs.
17 | // The underlying bytes of s0@ and sl1 are two
18| // different copies of bs.
19| // s2 shares the same underlying bytes with si.
20|
21| startTime := time.Now()
22| _ =80 == s1
23| duration := time.Now().Sub(startTime)
24 | fmt.Println("duration for (s@ == s1):", duration)
25|
26 | startTime = time.Now()
27 | _ =81 == 82
28| duration = time.Now().Sub(startTime)
29| fmt.Println("duration for (sl1 == s2):", duration)
30| }
Output:
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duration for (s@ == s1): 10.462075ms
duration for (s1 == s2): 136ns

1ms is 1000000ns! So please try to avoid comparing two long strings if they don't share the same
underlying byte sequence.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)

190


https://go101.org
https://www.tapirgames.com/

§20. Functions in Go

Functions in Go

Function declarations and calls (§9) have been explained before. The current article will touch more

function related concepts and details in Go.

In fact, function is one kind of first-class citizen types in Go. In other words, we can use functions as
values. Although Go is a static language, Go functions are very flexible. The feeling of using Go functions

is much like using many dynamic languages.

There are some built-in functions in Go. These functions are declared in builtin and unsafe standard

code packages. Built-in functions have several differences from custom functions. One difference is that
built-in functions support generic parameters, but custom declared ones don't (up to now, Go 1.13). More
differences will be mentioned below.

IFunction Signatures and Function Types

The literal of a function type is composed of the func keyword and a function signature literal. A
function signature is composed of two type list, one is the input parameter type list, the other is the output
result type lists. Parameter and result names can appear in function type and signature literals, but the

names are not important.

In practice, the func keyword can be presented in signature literals, or not. For this reason, we can think

function type and function signature as the same concept.

Here is a literal of a function type:

func (a int, b string, c string) (x int, y int, z bool)

From the article function declarations and calls (89), we have learned that consecutive parameters and

results of the same type can be declared together. So the above literal is equivalent to
func (a int, b, c string) (x, y int, z bool)

As parameter names and result names are not important in the literals (as long as there are no duplicate

non-blank names), the above ones are equivalent to the following one.

func (x int, y, z string) (a, b int, c bool)

Variable (parameter and result) names can be blank identifier _. The above ones are equivalent to the

following one.

func (_ int, _, _ string) (_, _ int, _ bool)

The parameter names must be either all present or all absent (anonymous). The same rule is for result

mrnrmann Tha rhAacra Aman rra adsrisralant +4 tha FAllAc i~ A An
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names. The above ones are equivalent to the following ones.

func (int, string, string) (int, int, bool) // the standard form
func (a int, b string, c string) (int, int, bool)
func (x int, _ string, z string) (int, int, bool)
func (int, string, string) (x int, y int, z bool)
func (int, string, string) (a int, b int, _ bool)

All of the above function type literals denote the same (non-defined) function type.

Each parameter list must be enclosed in a () in a literal, even if the parameter list is blank. If a result list
of a function type is blank, then it can be omitted from literal of the function type. When a result list has
most one result, then the result list doesn't need to be enclosed in a () if the literal of the result list

contains no result names.

// The following three function types are identical.
func () (x int)

func () (int)

func () int

// The following two function types are identical.

func (a int, b string) ()
func (a int, b string)

|Variadic parameters and variadic function types

The last parameter of a function can be a variadic parameter. Each function can have at most one variadic

parameter. The type of a variadic parameter is always a slice type. To indicate the last parameter is

variadic, just prefix three dots . .. to the element type of its (slice) type in its declaration. Example:
func (values ...int64) (sum int64)
func (sep string, tokens ...string) string

A function type with variadic parameter can be called a variadic function type. A variadic function type

and a non-variadic function type are absolutely not identical.

Some variadic functions examples will be shown in a below section.

|Function types are incomparable types

It has been mentioned (§14) several times in Go 101 that function types are incomparable types. But like

map and slice values, function values can compare with the untyped bare nil identifier. (Function values

will be explained in the last section of the current article.)

As function types are incomparable types, they can't be used as the key types of map types.
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|Function Prototypes

A function prototype is composed of a function name and a function type (or signature). Its literal is
composed of the func keyword, a function name and the literal of a function signature literal.

A function prototype literal example:

func Double(n int) (result int)

In other words, a function prototype is a function declaration without the body portion. A function
declaration is composed of a function prototype and a function body.

Variadic Function Declarations and Variadic Function
Calls

General function declarations and calls have been explained in function declarations and calls (§9). Here
introduces how to declare and call variadic functions.

|Variadic function declarations

Variadic function declarations are similar to general function declarations. The difference is that the last
parameter of a variadic function must be variadic parameter. Note, the variadic parameter of a variadic
function will be treated as a slice within the body of the variadic function.

1| // Sum and return the input numbers.
2| func Sum(values ...int64) (sum int64) {

3] // The type of values is []int64.

4| sum = 0

5] for _, v := range values {

6| sum += v

7] }

8| return

9| }

10|

11| // An inefficient string concatenation function.
12| func Concat(sep string, tokens ...string) string {
13| // The type of tokens is []string.
14| ro:=""
15| for i, t := range tokens {
16| if 1 1= 0 {
17 | r += sep
18| }
19| r+= t
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20| }
21| return r
22| }

From the above two variadic function declarations, we can find that if a variadic parameter is declared

with type portion as .. .T, then the type of the parameter is []T actually.

In fact, the Print, Println and Printf functions in the fmt standard package are all variadic

functions.
1| func Print(a ...interface{}) (n int, err error)
2| func Printf(format string, a ...interface{}) (n int, err error)
3| func Println(a ...interface{}) (n int, err error)

The variadic parameter types of the three functions are all []interface{}, which element type

interface{} is an interface types. Interface types and values will be explained interfaces in Go (§23)

later.

|Variadic function calls

There are two manners to pass arguments to a variadic parameter of type []T:

1. pass a slice value as the only argument. The slice must be assignable to values of type []T, and the
slice must be followed by three dots . ... The passed slice is called as a variadic argument.

2. pass zero or more arguments which are assignable to values of type T. These arguments will be
copied (or converted) as the elements of a new allocated slice value of type []T, then the new

allocated slice will be passed to the variadic parameter.
Note, the two manners can't be mixed in the same variadic function call.

An example program which uses some variadic function calls:

1| package main

2|

3| import "fmt"

4|

5| func Sum(values ...int64) (sum int64) {
6 | sum = 0

7| for _, v := range values {
8| sum += v

9] }

10| return

11| }

12|

13| func main() {

14 | a0 := Sum()
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15| al := Sum(2)

16 | a3 := Sum(2, 3, 5)

17| // The above three lines are equivalent to
18| // the following three respective lines.
19| bo := Sum([]int64{}...) // <=> Sum(nil...)
20| b1l := Sum([]int64{2}...)

21| b3 := Sum([]int64{2, 3, 5}...)

22| fmt.Println(a®, al, a3) // 0 2 10

23| fmt.Println(bo, b1, b3) // 0 2 10

24| }

Another example:

1| package main

2|

3| import "fmt"

4|

5| func Concat(sep string, tokens ...string) (r string) {
6 | for i, t := range tokens {

7] if 1 1= 0 {

8| r += sep

9] }

10| r += t

11| }

12| return

13| }

14|

15| func main() {

16 | tokens := []string{"Go", "C", "Rust"}
17 | // manner 1

18| langsA := Concat(",", tokens...)

19| // manner 2

20| langsB := Concat(",", "Go", "C","Rust")
21| fmt.Println(langsA == langsB) // true
22| }

The following example doesn't compile, for the two variadic function call manners are mixed.

1| package main

2|

3| // See above examples for the full declarations
4| // of the following two functions.

5| func Sum(values ...int64) (sum int64)

6| func Concat(sep string, tokens ...string) string
7]

8| func main() {

9| // The following two lines both fail

10| // to compile, for the same error:
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11| // too many arguments in call.

12| _ = sum(2, []int64{3, 5}...)

13| _ = Concat(",", "Go", []string{"C", "Rust"}...)
14| }

IMore About Function Declarations and Calls

|Functions whose names can be duplicate

Generally, the names of the functions declared in the same code package can't be duplicate. But there are

two exceptions.

1. One exception is each code package can declare several functions with the same name init and the

same type func () (810).

2. The other exception is multiple functions can be declared with names as the blank identifier _, in

which cases, the declared functions can never be called.

|Some function calls are evaluated at compile time

Most function calls are evaluated at run time. But calls to the functions of the unsafe standard package
are always evaluated at compile time. Calls to some other built-in functions, such as 1en and cap, may

be evaluated at either compile time or run time (§46), depending on the passed arguments. The results of

the function calls evaluated at compile time can be assigned to constants.

|All function arguments are passed by copy

Let's repeat it again, like all value assignments in Go, all function arguments are passed by copy in Go.

When a value is copied, only its direct part is copied (§17) (a.k.a., a shallow copy).

|Function declarations without bodies

We can implement a function in Go assembly # . Go assembly source files are stored in *.a files. A
function implemented in Go assembly is still needed to be declared in a *.go file, but the only the

prototype of the function is needed to be present. The body portion of the declaration of the function must

be omitted in the *.go file.

|Some functions with results are not required to return
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If a function has return results, then the last statement in its declaration body must be a terminating
statement # . Other than return terminating statement, there are some other kinds of terminating

statements. So a function body is not required to contain a return statement. For example,

1| func fa() int {

2] a:

3] goto a

4| }

5]

6| func fb() bool {
7| for{}

8| }

| The results of some function calls can't be discarded

The return results of a custom function call can be all discarded together. The return results of calls to
built-in functions, except recover and copy, can't be discarded, though they can be ignored by
assigning them to some blank identifiers. Function calls whose results can't be discarded can't be used as
deferred function calls or goroutine calls.

|Use function calls as expressions

A call to a function with single return result can always be used as a single value. For example, it can be
nested in another function call as an argument, and can also be used as a single value to appear in any
other expressions and statements.

If the return results of a call to a multi-result function are not discarded, then the call can only be used as a

multi-value expression in two scenarios.

1. The call can be used in an assignment as source values. But the call can't mix with other source
values in the assignment.
2. The call can be nested in another function call as arguments. But the call can't mix with other

arguments.

An example:

1| package main

2|

3| func HalfAndNegative(n int) (int, int) {
4| return n/2, -n

5| }

6]

7| func AddSub(a, b int) (int, int) {

8| return a+b, a-b
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9| 3
10|
11| func Dummy(values ...int) {}
12|
13| func main() {
14| // These lines compile okay.
15| AddSub(HalfAndNegative(6))
16| AddSub (AddSub(AddSub(7, 5)))
17 | AddSub (AddSub(HalfAndNegative(6)))
18| Dummy (HalfAndNegative(6))
19| _, _ = AddSub(7, 5)
20|
21| // The following lines fail to compile.
22| /*
23] _, _, _ = 6, AddSub(7, 5)
24| Dummy (AddSub(7, 5), 9)
25| Dummy (AddSub(7, 5), HalfAndNegative(6))
26| */
27|

Note, for the standard Go compiler, some built-in functions break the universality (§49) of the just

described rules above.

IFunction Values

As mentioned above, function types are one kind of types in Go. A value of a function type is called a
function value. The zero values of function types are represented with the predeclared nil.

When we declare a custom function, we also declared an immutable function value actually. The function
value is identified by the function name. The type of the function value is represented as the literal by

omitting the function name from the function prototype literal.

Note, built-in functions can't be used as values. init functions also can't be used as values.

Any function value can be invoked just like a declared function. It is fatal error to call a nil function to
start a new goroutine. The fatal error is not recoverable and will make the whole program crash. For other

situations, calls to nil function values will produce recoverable panics, including deferred function calls.

From the article value parts (§17), we know that non-nil function values are multi-part values. After one
function value is assigned to another, the two functions share the same underlying parts(s). In other words,
the two functions represent the same internal function object. The effects of invoking two functions are the

same.
An example:

1| package main
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3| import "fmt"

4]

5| func Double(n int) int {

6

71}
8]

return n + n

9| func Apply(n int, f func(int) int) int {

10|
11] }
12|

return f(n) // the type of f is "func(int) int"

13| func main() {

14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25| }

fmt.Printf("%T\n", Double) // func(int) int
// Double = nil // error: Double is immutable.

var f func(n int) int // default value is nil.

f = Double

g := Apply // let compile deduce the type of g
fmt.Printf("%T\n", g) // func(int, func(int) int) int

fmt.Println(f(9)) // 18
fmt.Println(g(6, Double)) // 12
fmt.Println(Apply(6, f)) // 12

In the above example, g(6, Double) and Apply(6, f) are equivalent.

In practice, we often assign anonymous functions to function variables, so that we can call the anonymous

functions multiple times.

1| package main

2|

3| import "fmt"

4]

5| func main() {

6]
7]
8]
9]
10|
11|
12|
13|
14|
15|
16|
17
18]

// This function returns a function (a closure).
isMultipleOfX := func (x int) func(int) bool {
return func(n int) bool {
return n%x ==

}
}
var isMultipleOf3 = isMultipleOfX(3)
var isMultipleOf5 = isMultipleOfX(5)

fmt.Println(isMultipleOf3(6)) // true
fmt.Println(isMultiple0f3(8)) // false
fmt.Println(isMultipleOf5(10)) // true
fmt.Println(isMultipleOf5(12)) // false
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19|

20| isMultipleOf15 := func(n int) bool {

21| return isMultipleOf3(n) && isMultipleOf5(n)
22| }

23] fmt.Println(isMultiple0f15(32)) // false

24| fmt.Println(isMultiple0f15(60)) // true

25| }

All functions in Go can be viewed as closures. This is why user experiences of all kinds of Go functions
are so uniform and why Go functions are as flexible as dynamic languages.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Channels in Go

Channel is an important built-in feature in Go. It is one of the features that makes Go unique. Along with
another unique feature, goroutine (§13), channel makes concurrent programming convenient, fun and

lowers the difficulties of concurrent programming.

Channel mainly acts as a concurrency synchronization (813) technique. This article will list all the channel
related concepts, syntax and rules. To understand channels better, the internal structure of channels and
some implementation details by the standard Go compiler/runtime are also simply described.

The information in this article may be slightly challenging for new gophers. Some parts of this article may
need to be read several times to be fully understood.

IChannel Introduction

One suggestion (made by Rob Pike) for concurrent programming is don't (let computations)
communicate by sharing memory, (let them) share memory by communicating (through channels).

(We can view each computation as a goroutine in Go programming.)

Communicating by sharing memory and sharing memory by communicating are two programming
manners in concurrent programming. When goroutines communicate by sharing memory, we use
traditional concurrency synchronization techniques, such as mutex locks, to protect the shared memory to
prevent data races. We can use channels to implement sharing memory by communicating.

Go provides a unique concurrency synchronization technique, channel. Channels make goroutines share
memory by communicating. We can view a channel as an internal FIFO (first in, first out) queue within a
program. Some goroutines send values to the queue (the channel) and some other goroutines receive

values from the queue.

Along with transferring values (through channels), the ownership of some values may also be transferred
between goroutines. When a goroutine sends a value to a channel, we can view the goroutine releases the
ownership of some values. When a goroutine receives a value from a channel, we can view the goroutine

acquires the ownerships of some values.
Surely, there may be also not any ownership transferred along with channel communications.

The values (whose ownerships are transferred) are often referenced (but are not required to be referenced)
by the transferred value. Please note, here, when we talk about ownership, we mean the ownership from
the logic view. Unlike Rust language, Go doesn't ensure value ownership from the syntax level. Go
channels can help programmers write data races free code easily, but Go channels can't prevent

programmers from writing bad concurrent code from the syntax level.

Although Go also supports traditional concurrency synchronization techniques. only channel is first-class
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citizen in Go. Channel is one kind of types in Go, so we can use channels without importing any packages.
On the other hand, those traditional concurrency synchronization techniques are provided in the sync and

sync/atomic standard packages.

Honestly, each concurrency synchronization technique has its own best use scenarios. But channel has a
wider application range and has more variety in using (837). One problem of channels is, the experience of

programming with channels is so enjoyable and fun that programmers often even prefer to use channels
for the scenarios which channels are not best for.

IChannel Types and Values

Like array, slice and map, each channel type has an element type. A channel can only transfer values of
the element type of the channel.

Channel types can be bi-directional or single-directional. Assume T is an arbitrary type,

e chan T denotes a bidirectional channel type. Compilers allow both receiving values from and
sending values to bidirectional channels.

e chan<- T denotes a send-only channel type. Compilers don't allow receiving values from send-
only channels.

e <-chan T denotes a receive-only channel type. Compilers don't allow sending values to receive-

only channels.

T is called the element type of these channel types.

Values of bidirectional channel type chan T can be implicitly converted to both send-only type chan<-
T and receive-only type <-chan T, but not vice versa (even if explicitly). Values of send-only type
chan<- T can't be converted to receive-only type <-chan T, and vice versa. Note that the <- signs in

channel type literals are modifiers.

Each channel value has a capacity, which will be explained in the section after next. A channel value with
a zero capacity is called unbuffered channel and a channel value with a non-zero capacity is called
buffered channel.

The zero values of channel types are represented with the predeclared identifier nil. A non-nil channel
value must be created by using the built-in make function. For example, make(chan int, 10) will
create a channel whose element type is int. The second argument of the make function call specifies the

capacity of the new created channel. The second parameter is optional and its default value is zero.

|Channel Value Comparisons

All channel types are comparable types.
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From the article value parts (§17), we know that non-nil channel values are multi-part values. If one

channel value is assigned to another, the two channels share the same underlying part(s). In other words,

those two channels represent the same internal channel object. The result of comparing them is true.

IChannel Operations

There are five channel specified operations. Assume the channel is ch, their syntax and function calls of

these operations are listed here.

1. Close the channel by using the following function call

close(ch)

where close is a built-in function. The argument of a close function call must be a channel value,

and the channel ch must not be a receive-only channel.

. Send a value, v, to the channel by using the following syntax

ch <- v

where v must be a value which is assignable to the element type of channel ch, and the channel ch

must not be a receive-only channel. Note that here <- is a channel-send operator.

. Receive a value from the channel by using the following syntax
<-ch

A channel receive operation always returns at least one result, which is a value of the element type
of the channel, and the channel ch must not be a send-only channel. Note that here <- is a channel-

receive operator. Yes, its representation is the same as a channel-send operator.

For most scenarios, a channel receive operation is viewed as a single-value expression. However,
when a channel operation is used as the only source value expression in an assignment, it can result
a second optional untyped boolean value and become a multi-value expression. The untyped boolean
value indicates whether or not the first result is sent before the channel is closed. (Below we will

learn that we can receive unlimited number of values from a closed channel.)

Two channel receive operations which are used as source values in assignments:

v = <-ch
v, sentBeforeClosed = <-ch

4. Query the value buffer capacity of the channel by using the following function call

cap(ch)
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where cap is a built-in function which has ever been introduced in containers in Go (§18). The

return result of a cap function call is an int value.

5. Query the current number of values in the value buffer (or the length) of the channel by using the
following function call

len(ch)

where len is a built-in function which also has ever been introduced before. The return value of a
len function call is an int value. The result length is number of elements which have already been

sent successfully to the queried channel but haven't been received (taken out) yet.

Most basic operations in Go are not synchronized. In other words, they are not concurrency-safe. These
operations include value assignments, argument passing and container element manipulations, etc.
However, all the just introduced channel operations are already synchronized, so no further
synchronizations are needed to safely perform these operations, except the case of concurrent send and
close operations on the channel. The exception case should be avoided in code design, for it is a bad
design. (The reason will be explained below.)

Like most other operations in Go, channel value assignments are not synchronized. Similarly, assigning
the received value to another value is also not synchronized, though any channel receive operation is
synchronized.

If the queried channel is a nil channel, both of the built-in cap and len functions return zero. The two

query operations are so simple that they will not get further explanations later. In fact, the two operations
are seldom used in practice.

Channel send, receive and close operations will be explained in detail in the next section.

IDetailed Explanations for Channel Operations

To make the explanations for channel operations simple and clear, in the remaining of this article,

channels will be classified into three categories:

1. nil channels.
2. non-nil but closed channels.

3. not-closed non-nil channels.

The following table simply summarizes the behaviors for all kinds of operations applying on nil, closed
and not-closed non-nil channels.

Operation A Nil Channel|A Closed Channel{A Not-Closed Non-Nil Channel

Close panic panic succeed to close (©)

Send Value To | block for ever panic block or succeed to send ®

Receive Value From| block for ever | never block (® | block or succeed to receive ()
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For the five cases shown without superscripts, the behaviors are very clear.

e Closing a nil or an already closed channel produces a panic in the current goroutine.

¢ Sending a value to a closed channel also produces a panic in the current goroutine.

e Sending a value to or receiving a value from a nil channel makes the current goroutine enter and stay
in blocking state for ever.

The following will make more explanations for the four cases shown with superscripts (A, B, C and D).

To better understand channel types and values, and to make some explanations easier, looking in the raw
internal structures of internal channel objects is very helpful.

We can think of each channel consisting of three queues (all can be viewed as FIFO queues) internally:

1. the receiving goroutine queue. The queue is a linked list without size limitation. Goroutines in this
queue are all in blocking state and waiting to receive values from that channel.

2. the sending goroutine queue. The queue is also a linked list without size limitation. Goroutines in
this queue are all in blocking state and waiting to send values to that channel. The value (or the
address of the value, depending on compiler implementation) each goroutine is trying to send is also
stored in the queue along with that goroutine.

3. the value buffer queue. This is a circular queue. Its size is equal to the capacity of the channel. The
types of the values stored in this buffer queue are all the element type of that channel. If the current
number of values stored in the value buffer queue of the channel reaches the capacity of the channel,
the channel is called in full status. If no values are stored in the value buffer queue of the channel
currently, the channel is called in empty status. For a zero-capacity (unbuffered) channel, it is always
in both full and empty status.

Each channel internally holds a mutex lock which is used to avoid data races in all kinds of operations.

Channel operation case A: when a goroutine Gr tries to receive a value from a not-closed non-nil

channel, the goroutine Gr will acquire the lock associated with the channel firstly, then do the following

steps until one condition is satisfied.

1. If the value buffer queue of the channel is not empty, in which case the receiving goroutine queue of
the channel must be empty, the goroutine Gr will receive (by unshifting) a value from the value
buffer queue. If the sending goroutine queue of the channel is also not empty, a sending goroutine
will be unshifted out of the sending goroutine queue and resumed to running state again. The value
the just unshifted sending goroutine trying to send will be pushed into the value buffer queue of the
channel. The receiving goroutine Gr continues running. For this scenario, the channel receive
operation is called a non-blocking operation.

2. Otherwise (the value buffer queue of the channel is empty), if the sending goroutine queue of the
channel is not empty, in which case the channel must be an unbuffered channel, the receiving
goroutine Gr will unshift a sending goroutine from the sending goroutine queue of the channel and

receive the value the just unshifted sending goroutine trying to send. The just unshifted sending
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goroutine will get unblocked and resumed to running state again. The receiving goroutine Gr
continues running. For this scenario, the channel receive operation is called a non-blocking
operation.

3. If value buffer queue and the sending goroutine queue of the channel are both empty, the goroutine
Gr will be pushed into the receiving goroutine queue of the channel and enter (and stay in) blocking
state. It may be resumed to running state when another goroutine sends a value to the channel later.
For this scenario, the channel receive operation is called a blocking operation.

Channel rule case B: when a goroutine Gs tries to send a value to a not-closed non-nil channel, the
goroutine Gs will acquire the lock associated with the channel firstly, then do the following steps until one

step condition is satisfied.

1. If the receiving goroutine queue of the channel is not empty, in which case the value buffer queue of
the channel must be empty, the sending goroutine Gs will unshift a receiving goroutine from the
receiving goroutine queue of the channel and send the value to the just unshifted receiving
goroutine. The just unshifted receiving goroutine will get unblocked and resumed to running state
again. The sending goroutine Gs continues running. For this scenario, the channel send operation is
called a non-blocking operation.

2. Otherwise (the receiving goroutine queue is empty), if the value buffer queue of the channel is not
full, in which case the sending goroutine queue must be also empty, the value the sending goroutine
Gs trying to send will be pushed into the value buffer queue, and the sending goroutine Gs
continues running. For this scenario, the channel send operation is called a non-blocking operation.

3. If the receiving goroutine queue is empty and the value buffer queue of the channel is already full,
the sending goroutine Gs will be pushed into the sending goroutine queue of the channel and enter
(and stay in) blocking state. It may be resumed to running state when another goroutine receives a
value from the channel later. For this scenario, the channel send operation is called a blocking
operation.

Above has mentioned, once a non-nil channel is closed, sending a value to the channel will produce a
runtime panic in the current goroutine. Note, sending data to a closed channel is viewed as a non-blocking

operation.

Channel operation case C: when a goroutine tries to close a not-closed non-nil channel, once the
goroutine has acquired the lock of the channel, both of the following two steps will be performed by the

following order.

1. If the receiving goroutine queue of the channel is not empty, in which case the value buffer of the
channel must be empty, all the goroutines in the receiving goroutine queue of the channel will be
unshifted one by one, each of them will receive a zero value of the element type of the channel and
be resumed to running state.

2. If the sending goroutine queue of the channel is not empty, all the goroutines in the sending
goroutine queue of the channel will be unshifted one by one and each of them will produce a panic

for sending on a closed channel. This is the reason why we should avoid concurrent send and close
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operations on the same channel. In fact, data races happen in concurrent send and close operations.

Note: after a channel is closed, the values which have been already pushed into the value buffer of the
channel are still there. Please read the closely following explanations for case D for details.

Channel operation case D: after a non-nil channel is closed, channel receive operations on the channel
will never block. The values in the value buffer of the channel can still be received. The accompanying

second optional bool return values are still true. Once all the values in the value buffer are taken out and
received, infinite zero values of the element type of the channel will be received by any of the following
receive operations on the channel. As mentioned above, the optional second return result of a channel
receive operation is an untyped boolean value which indicates whether or not the first result (the received
value) is sent before the channel is closed. If the second return result is false, then the first return result

(the received value) must be a zero value of the element type of the channel.

Knowing what are blocking and non-blocking channel send or receive operations is important to
understand the mechanism of select control flow blocks which will be introduced in a later section.

In the above explanations, if a goroutine is unshifted out of a queue (either the sending or the receiving
goroutine queue) of a channel, and the goroutine was blocked for being pushed into the queue at a
select control flow code block, then the goroutine will be resumed to running state at step 9 of the

select control flow code block execution. It may be dequeued from the corresponding goroutine queue

of several channels involved in the select control flow code block.

According to the explanations listed above, we can get some facts about the internal queues of a channel.

o [f the channel is closed, both of its sending goroutine queue and receiving goroutine queue must be
empty, but its value buffer queue may not be empty.

e At any time, if the value buffer is not empty, then its receiving goroutine queue must be empty.

e At any time, if the value buffer is not full, then its sending goroutine queue must be empty.

o [f the channel is buffered, then at any time, one of its sending goroutine queue and receiving
goroutine queue must be empty.

o [f the channel is unbuffered, then at any time, generally one of its sending goroutine queue and the
receiving goroutine queue must be empty, but with an exception that a goroutine may be pushed into

both of the two queues when executing a select control flow code block.

|Some Channel Use Examples

Let's view some examples which use channels to enhance the understanding by reading the last section.

A simple request/response example. The two goroutines in this example talk to each other through an

unbuffered channel.

1| package main
2|

207



§21. Channels in Go

3| import (
4] "fmt"
5] "time"
6] )
7]
8| func main() {
9] c := make(chan int) // an unbuffered channel
10| go func(ch chan<- int, x int) {
11| time.Sleep(time.Second)
12| // <-ch // fails to compile
13| // Send the value and block until the result is received.
14| ch <- x*x // 9 is sent
15| 3(c, 3)
16 | done := make(chan struct{})
17| go func(ch <-chan int) {
18| // Block until 9 1is received.
19| n := <-ch
20| fmt.Println(n) // 9
21| // ch <- 123 // fails to compile
22| time.Sleep(time.Second)
23| done <- struct{}{}
24| 1(c)
25| // Block here until a value is received by
26| // the channel "done".
27| <-done
28| fmt.Println("bye")
29| }
The output:
9
bye

A demo of using a buffered channel. This program is not a concurrent one, it just shows how to use

buffered channels.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | c := make(chan int, 2) // a buffered channel
7| c <- 3

8| c <-5

9] close(c)

10| fmt.Println(len(c), cap(c)) // 2 2
11| X, ok := <-c

12| fmt.Println(x, ok) // 3 true
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13| fmt.Println(len(c), cap(c)) // 1 2
14| X, ok = <-c

15| fmt.Println(x, ok) // 5 true

16| fmt.Println(len(c), cap(c)) // 0 2
17| X, ok = <-c

18| fmt.Println(x, ok) // 0 false

19| X, ok = <-c

20| fmt.Println(x, ok) // 0 false

21| fmt.Println(len(c), cap(c)) // 0 2
22| close(c) // panic!

23| // The send will also panic if the above
24| // close call is removed.

25| c<-7

26|

A never-ending football game.

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func main() {

9] var ball = make(chan string)

10| kickBall := func(playerName string) {
11| for {

12| fmt.Println(<-ball, "kicked the ball.")
13| time.Sleep(time.Second)
14 | ball <- playerName
15| }
16| }
17 | go kickBall('"John")
18| go kickBall("Alice")
19| go kickBall("Bob")
20| go kickBall("Emily")
21| ball <- "referee" // kick off
22| var ¢ chan bool // nil
23| <-C // blocking here for ever
24| }

Please read channel use cases (§37) for more channel use examples.

IChannel Element Values Are Transferred by Copy

When a value is transferred from one goroutine to another goroutine, the value will be copied at least one
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time. If the transferred value ever stayed in the value buffer of a channel, then two copies will happen in
the transfer process. One copy happens when the value is copied from the sender goroutine into the value
buffer, the other happens when the value is copied from the value buffer to the receiver goroutine. Like
value assignments and function argument passing, when a value is transferred, only its direct part is copied

(817).

For the standard Go compiler, the size of channel element types must be smaller than 65536. However,

generally, we shouldn't create channels with large-size element types, to avoid too large copy cost in the
process of transferring values between goroutines. So if the passed value size is too large, it is best to use a
pointer element type instead, to avoid a large value copy cost.

IAbout Channel and Goroutine Garbage Collections

Note, a channel is referenced by all the goroutines in either the sending or the receiving goroutine queue of
the channel, so if neither of the queues of the channel is empty, the channel will not be garbage collected
for sure. On the other hand, if a goroutine is blocked and stays in either the sending or the receiving
goroutine queue of a channel, then the goroutine will also not be garbage collected for sure, even if the
channel is referenced only by this goroutine. In fact, a goroutine can be only garbage collected when it has
already exited.

Channel Send and Receive Operations Are Simple
Statements

Channel send operations and receive operations are simple statements (§11). A channel receive operation

can be always used as a single-value expression. Simple statements and expressions can be used at certain
portions of basic control flow blocks (§12).

An example in which channel send and receive operations appear as simple statements in two for control
flow blocks.

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func main() {

9| fibonacci := func() chan uint64 {
10| c := make(chan uint64)

11| go func() {

12| var X, y uinté4 = 0, 1

13| for ; y < (1 <<63); ¢c <-y {// here

210



§21. Channels in Go

14 | X, Y =Y, Xty

15| }

16 | close(c)

17] 10)

18| return c

19] }

20| c := fibonacci()

21| for x, ok := <-c; ok; x, ok = <-c { // here
22| time.Sleep(time.Second)
23| fmt.Println(x)

24| }

25| }

Ifor -range on Channels

The for-range control flow code block applies to channels. The loop will try to iteratively receive the

values sent to a channel, until the channel is closed and its value buffer queue becomes blank. Unlike the
for-range syntax on arrays, slices and maps, most one iteration variable, which is used to store the

received values, is allowed to be present in the for-range syntax on channels.

1| for v = range aChannel {
2| // use v

3]}

is equivalent to

1| for {

2| v, ok = <-aChannel
3] if tok {

4| break

5] }

6| // use v

7}

Surely, here the aChannel value must not be a send-only channel. If it is a nil channel, the loop will

block there for ever.

For example, the second for loop block in the example shown in the last section can be simplified to

1] for x := range c {

2| time.Sleep(time.Second)
3| fmt.Println(x)

4| }

|se1ect -case Control Flow Code Blocks
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There is a select-case code block syntax which is specially designed for channels. The syntax is much

like the switch-case block syntax. For example, there can be multiple case branches and at most one

default branch in the select-case code block. But there are also some obvious differences between

them.

No expressions and statements are allowed to follow the select keyword (before {).
No fallthrough statements are allowed to be used in case branches.
Each statement following a case keyword in a select-case code block must be either a channel

receive operation or a channel send operation statement. A channel receive operation can appear as
the source value of a simple assignment statement. Later, a channel operation following a case
keyword will be called a case operation.

In case of there are some non-blocking case operations, Go runtime will randomly select one of
them to execute, then continue to execute the corresponding case branch.

In case of all the case operations in a select-case code block are blocking operations, the
default branch will be selected to execute if the default branch is present. If the default
branch is absent, the current goroutine will be pushed into the corresponding sending goroutine
queue or receiving goroutine queue of every channel involved in all case operations, then enter

blocking state.

By the rules, a select-case code block without any branches, select{}, will make the current

goroutine stay in blocking state forever.

The following program will enter the default branch for sure.

1]
2]
3
4]
5]
6
7]
8]
9]
10|
11 |
12|
13|

package main

import "fmt"

func main() {
var ¢ chan struct{} // nil

select {
case <-C: // blocking operation
case ¢ <- struct{}{}: // blocking operation
default:

fmt.Println("Go here.")

}

An example showing how to use try-send and try-receive:

1]
2|
3
4]
5]

package main

import "fmt"

func main() {
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6| c := make(chan string, 2)

7] trySend := func(v string) {

8] select {

9] case Cc <- V:

10| default: // go here if c¢ is full.
11] }

12| }

13| tryReceive := func() string {

14| select {

15| case v := <-Cc: return v

16 | default: return "-" // go here if c is empty
17] ¥

18] ¥

19| trySend("Hello!") // succeed to send
20| trySend("Hi!") // succeed to send
21| // Fail to send, but will not block.
22| trySend("Bye!")

23| // The following two lines will

24| // both succeed to receive.

25| fmt.Println(tryReceive()) // Hello!
26 | fmt.Println(tryReceive()) // Hi!

27| // The following line fails to receive.
28| fmt.Println(tryReceive()) // -

29| }

The following example has 50% possibility to panic. Both of the two case operations are non-blocking in

this example.

1| package main

2|

3| func main() {

4| c := make(chan struct{})

5] close(c)

6| select {

7| case ¢ <- struct{}{}:

8| // Panic if the first case is selected.
9] case <-C:

10| }

11| }

IThe Implementation of the Select Mechanism

The select mechanism in Go is an important and unique feature. Here the steps of the select mechanism

implementation by the official Go runtime # are listed.

There are several steps to execute a select-case block:
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evaluate all involved channel expressions and value expressions to be potentially sent in case
operations, from top to bottom and left to right. Destination values for receive operations (as source
values) in assignments needn't to be evaluated at this time.

randomize the branch orders for polling in step 5. The default branch is always put at the last
position in the result order. Channels may be duplicate in the case operations.

sort all involved channels in the case operations to avoid deadlock (with other goroutines) in the
next step. No duplicate channels stay in the first N channels of the sorted result, where N is the
number of involved channels in the case operations. Below, the channel lock order is a concept for
the first N channels in the sorted result.

lock (a.k.a., acquire the locks of) all involved channels by the channel lock order produced in last
step.

poll each branch in the select block by the randomized order produced in step 2:

1. if this is a case branch and the corresponding channel operation is a send-value-to-closed-
channel operation, unlock all channels by the inverse channel lock order and make the current
goroutine panic. Go to step 12.

2. if thisis a case branch and the corresponding channel operation is non-blocking, perform the
channel operation and unlock all channels by the inverse channel lock order, then execute the
corresponding case branch body. The channel operation may wake up another goroutine in
blocking state. Go to step 12.

3. if this is the default branch, then unlock all channels by the inverse channel lock order and
execute the default branch body. Go to step 12.

(Up to here, the default branch is absent and all case operations are blocking operations.)

push (enqueue) the current goroutine (along with the information of the corresponding case
branch) into the receiving or sending goroutine queue of the involved channel in each case
operation. The current goroutine may be pushed into the queues of a channel for multiple times, for
the involved channels in multiple cases may be the same one.

make the current goroutine enter blocking state and unlock all channels by the inverse channel lock
order.

8. wait in blocking state until other channel operations wake up the current goroutine, ...

10.
11.

the current goroutine is waken up by another channel operation in another goroutine. The other
operation may be a channel close operation or a channel send/receive operation. If it is a channel
send/receive operation, there must be a case channel receive/send operation (in the current being
explained select-case block) cooperating with it (by transferring a value). In the cooperation, the
current goroutine will be dequeued from the receiving/sending goroutine queue of the channel.
lock all involved channels by the channel lock order.
dequeue the current goroutine from the receiving goroutine queue or sending goroutine queue of the
involved channel in each case operation,

1. if the current goroutine is waken up by a channel close operation, go to step 5.

2. if the current goroutine is waken up by a channel send/receive operation, the corresponding

case branch of the cooperating receive/send operation has already been found in the

dequeuing process, so just unlock all channels by the inverse channel lock order and execute
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the corresponding case branch.
12. done.

From the implementation, we know that

e a goroutine may stay in the sending goroutine queues and the receiving goroutine queues of multiple
channels at the same time. It can even stay in the sending goroutine queue and the receiving
goroutine queue of the same channel at the same time.

¢ when a goroutine being blocked at a select-case code block gets resumed later, it will be
removed from all the sending goroutine queues and the receiving goroutine queues of every channels

involved in the channel operations followed case keywords in the select-case code block.

|More

We can find more channel use cases in this article (§37).

Although channels can help us write correct concurrent code easily (§38), like other data synchronization
techniques, channels will not prevent us from writing improper concurrent code (§42).

Channel may be not always the best solution for all use cases for data synchronizations. Please read this
article (8§39) and this article (§40) for more synchronization techniques in Go.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Methods in Go

Go supports some object-orient programming features. Method is one of these features. This article will
introduce method related concepts in Go.

IMethod Declarations

In Go, we can (explicitly) declare a method for type T and *T, where T must satisfy 4 conditions:

1. T must be a defined type (§14);

2. T must be defined in the same package as the method declaration;
3. T must not be a pointer type;
4

. T must not be an interface type. Interface types will be explained in the next article (§23).

Type T and *T are called the receiver type of the respective methods declared for them. Type T is called
the receiver base types of all methods declared for both type T and *T.

Note, we can also declare methods for type aliases (§14) of the T and *T types specified above. The

effect is the same as declaring methods for the T and *T types themselves.

If a method is declared for a type, we can say the type has (or owns) the method.

From the above listed conditions, we will get the conclusions that we can never (explicitly) declare
methods for:

e built-in basic types, such as int and string, for we can't declare methods in the builtin

standard package.
¢ interface types. But an interface type can own methods. Please read the next article (§23) for details.

e non-defined types (§14) except the pointer types with the form *T which are described above.

A method declaration is similar to a function declaration, but it has an extra parameter declaration part.
The extra parameter part can contain one and only one parameter of the receiver type of the method. The
only one parameter is called a receiver parameter of the method declaration. The receiver parameter must

be enclosed in a () and declared between the func keyword and the method name.

Here are some method declaration examples:

1| // Age and int are two distinct types. We
2| // can't declare methods for int and *int,
3| // but can for Age and *Age.

4| type Age int

5| func (age Age) LargerThan(a Age) bool {

6 | return age > a
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7]

8|

9|
10|
11|
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31|
32|
33|
34|
35|
36|
37|
38|
39|
40|

From the above examples, we know that the receiver base types not only can be struct types, but also can

be other kinds of types, such as basic types and container types, as long as the receiver base types satisfy
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}

func (age *Age) Increase() {
*age++

}

// Receiver of custom defined function type.

type FilterFunc func(in int) bool

func (ff FilterFunc) Filte(in int) bool {
return ff(in)

// Receiver of custom defined map type.

type StringSet map[string]struct{}

func (ss StringSet) Has(key string) bool {
_, present := ss[key]
return present

}

func (ss StringSet) Add(key string) {
ss[key] = struct{}{}

}

func (ss StringSet) Remove(key string) {
delete(ss, key)

// Receiver of custom defined struct type.
type Book struct {
pages int
}
func (b Book) Pages() int {
return b.pages
}
func (b *Book) SetPages(pages int) {
b.pages = pages
}

the 4 conditions listed above.

In some other programming languages, the receiver parameter names are always the implicit this, which

is not a recommended identifier for receiver parameter names in Go.

The receiver of type *T is called pointer receiver, non-pointer receivers are called value receivers.

Personally, I don't recommend to view the terminology pointer as an opposite of the terminology value,

because pointer values are just special values. But, I am not against using the pointer receiver and value

receiver terminologies here. The reason will be explained below.
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Method names can be the blank identifier _. A type can have multiple methods with the blank identifier as

name. But such methods can never be called. Only exported methods can be called from other packages.
Method calls will be introduced in a later section.

IEach Method Corresponds to an Implicit Function

For each method declaration, compiler will declare a corresponding implicit function for it. For the last
two methods declared for type Book and type *Book in the last example in the last section, two following

functions are implicitly declared by compiler:

1| func Book.Pages(b Book) int {

2| // The body is the same as the Pages method.

3| return b.pages

4| 3

5]

6| func (*Book).SetPages(b *Book, pages int) {

7| // The body is the same as the SetPages method.
8| b.pages = pages

9| }

In each of the two implicit function declarations, the receiver parameter is removed from its corresponding
method declaration and inserted into the normal parameter list as the first one. The function bodies of the
two implicitly declared functions is the same as their corresponding method explicit bodies.

The implicit function names, Book . Pages and ( *Book) .SetPages, are both of the form
TypeDenotation.MethodName. As identifiers in Go can't contain the period special characters, the two
implicit function names are not legal identifiers, so the two functions can't be declared explicitly. They can

only be declared by compilers implicitly, but they can be called in user code:

1| package main

2|

3| import "fmt"

4|

5| type Book struct {

6| pages int

7}

8| func (b Book) Pages() int {
9] return b.pages

10| }

11| func (b *Book) SetPages(pages int) {
12| b.pages = pages

13| }

14|

15| func main() {

16 | var book Book

218



§22. Methods in Go

17| // Call the two implicit declared functions.
18| (*Book) .SetPages(&book, 123)

19| fmt.Println(Book.Pages(book)) // 123

20| }

In fact, compilers not only declare the two implicit functions, they also rewrite the two corresponding
explicit declared methods to let the two methods call the two implicit functions in the method bodies (at
least, we can think this happens), just like the following code shows:

1| func (b Book) Pages() int {

2| return Book.pages(b)

3| }

4| func (b *Book) SetPages(pages int) {
5] (*Book) .SetPages(b, pages)

6| }

IImplicit Methods With Pointer Receivers

For each method declared for value receiver type T, a corresponding method with the same name will be
implicitly declared by compiler for type *T. By the example above, the Pages method is declared for
type Book, so compilers will implicitly declare a method with the same name Pages for type *Book.
The same method name contains one line of code, which is a call to the implicit function Book .Pages

introduced above.

1| func (b *Book) Pages() int {
2| return Book.Pages(*b)
3| }

This is why I don't reject the use the value receiver terminology (as the opposite of the pointer receiver
terminology). After all, when we expliclty declare a method for a non-pointer type, in fact two methods
are declared, the explicit one is for the non-pointer type and the implicit one is for the corresponding
pointer type.

As mentioned at the last section, for each declared method, compilers will also declare a corresponding
implicit function for it. So for the implicitly declared method, the following implicit function is declared

by compiler.

1] func (*Book).Pages(b *Book) int {
2| return Book.Pages(*b)
3| }

In other words, for each explicitly declared method with a value receiver, two implicit functions and one

implicit method will also be declared at the same time.
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|Method Prototypes and Method Sets

A method prototype can be viewed as a function prototype (§20) without the func keyword. We can view

each method declaration is composed of the func keyword, a receiver parameter declaration, a method

prototype and a method (function) body.
For example, the method prototypes of the Pages and SetPages methods shown above are

1| Pages() int
2| SetPages(pages int)

Each type has a method set. The method set of a non-interface type is composed of all the method
prototypes of the methods declared, either explicitly or implicitly, for the type, except the ones whose
names are the blank identifier _. Interface types will be explained in the next article (§23).

For example, the method sets of the Book type shown in the previous sections is
1| Pages() int
and the method set of the *Book type is

1| Pages() int
2| SetPages(pages int)

The order of the method prototypes in a method set is not important for the method set.

For a method set, if every method prototype in it is also in another method set, then we say the former
method set is a subset of the latter one, and the latter one is a superset of the former one. If two method
sets are subsets (or supersets) of each other, then we say the two method sets are identical.

Given a type T, assume it is neither a pointer type nor an interface type, for the reason mentioned in the
last section, the method set of a type T is always a subset of the method set of type *T. For example, the

method set of the Book type shown above is a subset of the method set of the *Book type.

Please note, non-exported method names, which start with lower-case letters, from different
packages will be always viewed as two different method names, even if the two method names are
the same in literal.

Method sets play an important role in the polymorphism feature of Go. About polymorphism, please read
the next article (§23) (interfaces in Go) for details.

The method sets of the following types are always blank:

e built-in basic types.
¢ defined pointer types.

e pointer types whose base types are interface or pointer types.
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¢ undefined array, slice, map, function and channel types.

IMethod Values and Method Calls

Methods are special functions in fact. Methods are often called member functions. When a type owns a
method, each value of the type will own an immutable member of function type. The member name is the
same as the method name and the type of the member is the same as the function declared with the form of
the method declaration but without the receiver part.

A method call is just a call to such a member function. For a value v, its method m can be represented

with the selector form v.m, which is a function value.

An example containing some method calls:

1| package main

2|

3| import "fmt"

4|

5| type Book struct {

6| pages int

71}

8]

9| func (b Book) Pages() int {

10| return b.pages

11| }

12|

13| func (b *Book) SetPages(pages int) {

14 | b.pages = pages

15] }

16|

17| func main() {

18| var book Book

19|

20| fmt.Printf("%T \n", book.Pages) // func() int
21| fmt.Printf("%T \n", (&book).SetPages) // func(int)
22| // &book has an implicit method.

23| fmt.Printf("%T \n", (&book).Pages) // func() int
24|

25| // Call the three methods.

26 | (&book) .SetPages(123)

27 | book.SetPages(123) // equivalent to the last line
28| fmt.Println(book.Pages()) // 123

29| fmt.Println((&book).Pages()) // 123

30| }

(Different from C language, there is not the -> operator in Go to call methods with pointer receivers, so
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(&book ) ->SetPages(123) is illegal in Go.)

Wait! Why does the line book.SetPages(123) in the above example compile okay? After all, the
method SetPages is not declared for the Book type. One one hand, this can be viewed as a syntactic

sugar to make programming convenient. This sugar only works for addressable value receivers. Compiler

will automatically take the address of the addressable value book when it is passed as the receiver
argument of a SetPages method call. On the other hand, we should also think
aBookExpression.SetPages is always a legal selector (from the syntax view), even if the expression

aBookExpression is evaluated as an unaddressable Book value, for which case, the selector

aBookExpression.SetPages is invalid (but legal).

As above just mentioned, when a method is declared for a type, each value of the type will own a member
function. Zero values are not exceptions, whether or not the zero values of the types are represented by

nil.
Example:
1| package main
2|
3| type StringSet map[string]struct{}
4| func (ss StringSet) Has(key string) bool {
5] // Never panic here, even if ss is nil.
6| _, present := ss[key]
7| return present
8| }
9]
10| type Age int
11| func (age *Age) IsNil() bool {
12| return age == nil
13| }
14| func (age *Age) Increase() {
15| *age++ // If age is a nil pointer, then
16 | // dereferencing it will panic.
17| }
18]
19| func main() {
20| _ = (StringSet(nil)).Has // will not panic
21| _ = ((*Age)(nil)).IsNil // will not panic
22| _ = ((*Age)(nil)).Increase // will not panic
23|
24 | _ = (StringSet(nil)).Has("key") // will not panic
25| _ = ((*Age)(nil)).IsNil() // will not panic
26|
27 | // This following line will panic. But the
28| // panic is not caused by invoking the method.
29| // It is caused by the nil pointer dereference
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30| // within the method body.
31| ((*Age)(nil)).Increase()
32| }

IReceiver Arguments Are Passed by Copy

Same as general function arguments, the receiver arguments are also passed by copy. So, the
modifications on the direct part (§17) of a receiver argument in a method call will not be reflected to the
outside of the method.

An example:

1| package main

2|

3| import "fmt"

4]

5| type Book struct {

6| pages int

7}

8]

9| func (b Book) SetPages(pages int) {
10| b.pages = pages

11| }

12|

13| func main() {

14 | var b Book

15| b.SetPages(123)

16 | fmt.Println(b.pages) // 0
17| }

Another example:

1| package main

2|

3| import "fmt"

4|

5| type Book struct {

6| pages int

7}

8]

9| type Books []Book

10|

11| func (books Books) Modify() {

12| // Modifications on the underlying part of
13| // the receiver will be reflected to outside
14 | // of the method.

15| books[0].pages = 500
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16| // Modifications on the direct part of the
17| // receiver will not be reflected to outside
18| // of the method.

19| books = append(books, Book{789})

20| }

21|

22| func main() {

23| var books = Books{{123}, {456}}

24| books.Modify()

25| fmt.Println(books) // [{500} {456}]

26| }

Some off topic, if the two lines in the orders of the above Modify method are exchanged, then both of the

modifications will not be reflected to outside of the method body.

1| func (books Books) Modify() {

2| books = append(books, Book{789})

3| books[0].pages = 500

4| }

5]

6| func main() {

7| var books = Books{{123}, {456}}

8] books.Modify/()

9| fmt.Println(books) // [{123} {456}]
10| }

The reason here is that the append call will allocate a new memory block to store the elements of the

copy of the passed slice receiver argument. The allocation will not reflect to the passed slice receiver

argument itself.

To make both of the modifications be reflected to outside of the method body, the receiver of the method

must be a pointer one.

1| func (books *Books) Modify() {

2| *books = append(*books, Book{789})

3| (*books)[0].pages = 500

4| }

5]

6| func main() {

7] var books = Books{{123}, {456}}

8] books.Modify()

9] fmt.Println(books) // [{500} {456} {789}]
10| }

Should a Method Be Declared With Pointer Receiver or
Value Receiver?
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Firstly, from the last section, we know that sometimes we must declare methods with pointer receivers.

In fact, we can always declare methods with pointer receivers without any logic problems. It is just a
matter of program performance that sometimes it is better to declare methods with value receivers.

For the cases value receivers and pointer receivers are both acceptable, here are some factors needed to be
considered to make decisions.

e Too many pointer copies may cause heavier workload for garbage collector.

o [f the size of a value receiver type is large, then the receiver argument copy cost may be not
negligible. Pointer types are all small-size (§34) types.

e Declaring methods of both value receivers and pointer receivers for the same base type is more
likely to cause data races if the declared methods are called concurrently in multiple goroutines.

e Values of the types in the sync standard package should not be copied, so defining methods with
value receivers for struct types which embedding (8§24) the types in the sync standard package is

problematic.

If it is hard to make a decision whether a method should use a pointer receiver or a value receiver, then
just choose the pointer receiver way.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Interfaces in Go

Interface types are one special kind of types in Go. Interface kind plays several important roles in Go.
Firstly, interface types make Go support value boxing. Consequently, through value boxing, reflection and
polymorphism get supported.

The remaining of this article will explain the functionalities of interfaces in detail. Some interface related
details will also be shown.

IWhat Are Interface Types?

An interface type specifies a collection of method prototypes (§22). In other words, each interface type

defines a method set (§22). In fact, we can view an interface type as a method set. For any of the method
prototype specified in an interface type, its name can't be the blank identifier _.

We also often say that each interface type specifies a behavior set (represented by the method set specified
by that interface type).

Some examples of interface types:

1| // This is a non-defined interface type.
2| interface {

3| About () string

4| }

5]

6| // ReadWriter is a defined interface type.
7| type ReadwWriter interface {

8| Read(buf []byte) (n int, err error)
9] Write(buf []byte) (n int, err error)
10| }

11|

12| // Runnable is an alias of a non-defined interface type.
13| type Runnable = interface {

14| Run()

15] }

Please note that the error result type in the method prototypes specified by the ReadwWriter interface

type is a built-in interface type # . It is defined as

1| type error interface {
2| Error() string

3]}

In particular, an interface type without specifying any method prototype is called a blank interface type.
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Here are some blank interface types examples:

1| // A non-defined blank interface type.

2| interface{}

3]

4| // Type I is a defined blank interface type.
5| type I interface{}

IThe Method Set of a Type

Each type has a method set (§22) associated with it.

e For a non-interface type, its method set is the prototype collection of all the methods (either explicit
or implicit ones) declared (§22) for it.

e For an interface type, its method set is the method prototype collection it specifies.
For convenience, the method set of a type is often also called the method set of any value of the type.

Two non-defined interface types are identical if their method sets are identical. Please note, non-exported
method names, which start with lower-case letters, from different packages will be always viewed as two
different method names, even if the two method names are the same in literal.

IWhat Are Implementations?

If the method set of an arbitrary type T, T may be an interface type or not, is a super set of the method set

of an interface type I, then we say type T implements interface I.

Implementations are all implicit in Go. The implementation relations are not needed to be specified for
compilers in code explicitly. There is not an implements keyword in Go. Go compilers will check the

implementation relations automatically as needed.

An interface type always implements itself. Two interface types with the same method set implement each
other.

For example, in the following example, the method sets of struct pointer type *Book, integer type MyInt
and pointer type *MyInt all contain the method prototype About() string, so they all implement the

above mentioned interface type interface {About() string}.

1| type Book struct {

2| name string

3| // more other fields ...
4| }

5]

6| func (book *Book) About() string {
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7| return "Book: " + book.name

8| }

9]

10| type MyInt int

11|

12| func (MyInt) About() string {

13| return "I'm a custom integer value"
14| }

Note, as any method set is a super set of a blank method set, so any type implements any blank
interface type. This is an important fact in Go.

The implicit implementation design makes it possible to let concrete types defined in other library
packages, such as standard packages, passively implement some interface types declared in user packages.
For example, if we declare an interface type as the following one, then the type DB and type Tx declared

in the database/sqgl standard package # will both implement the interface type automatically, for they

both have the three corresponding methods specified in the interface.

1| import "database/sql"

2|

3]

4|

5| type DatabaseStorer interface {

6| Exec(query string, args ...interface{}) (sql.Result, error)
7| Prepare(query string) (*sql.Stmt, error)

8| Query(query string, args ...interface{}) (*sql.Rows, error)
9| }

IValue Boxing

We can view each interface value as a box to encapsulate a non-interface value. To box/encapsulate a non-
interface value into an interface value, the type of the non-interface value must implement the type of the

interface value.

In Go, if a type T implements an interface type I, then any value of type T can be implicitly converted to
type I.In other words, any value of type T is assignable (§7) to (modifiable) values of type I. Whena T

value is converted (assigned) to an I value,

e if type T is a non-interface type, then a copy of the T value is boxed (or encapsulated) into the result
(or destination) I value. The time complexity of the copy is 0(n), where n is the size of copied T
value.

e if type T is also an interface type, then a copy of the value boxed in the T value is boxed (or
encapsulated) into the result (or destination) I value. The standard Go compiler makes an

optimization here, so the time complexity of the copy is 0(1), instead of 0(n).
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The type information of the boxed value is also stored in the result (or destination) interface value. (This
will be further explained below.)

When a value is boxed in an interface value, the value is called the dynamic value of the interface value.
The type of the dynamic value is called the dynamic type of the interface value.

The direct part of the dynamic value of an interface value is immutable, though we can replace the

dynamic value of an interface value with another dynamic value.

In Go, the zero values of any interface type are represented by the predeclared nil identifier. Nothing is
boxed in a nil interface value. Assigning an untyped nil to an interface value will clear the dynamic

value boxed in the interface value.

(Note, the zero values of many non-interface types in Go are also represented by nil in Go. Non-
interface nil values can also be boxed in interface values. An interface value boxing a nil non-interface

value still boxes something, so it is not a nil interface value.)

As any type implements any blank interface types, so any non-interface value can be boxed in (or assigned
to) a blank interface value. For this reason, blank interface types can be viewed as the any type in many

other languages.

When an untyped value (except untyped nil values) is assigned to a blank interface value, the untyped
value will be first converted to its default type. (In other words, we can think the untyped value is deduced
as a value of its default type).

Let's view an example which demonstrates some assignments with interface values as the destinations.

1| package main

2|

3| import "fmt"

4|

5| type Aboutable interface {

6| About () string

7|}

8|

9| // Type *Book implements Aboutable.
10| type Book struct {

11| name string

12| }

13| func (book *Book) About() string {

14 | return "Book: " + book.name

15| }

16|

17| func main() {

18| // A *Book value is boxed into an

19| // interface value of type Aboutable.
20| var a Aboutable = &Book{"Go 101"}
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21| fmt.Println(a) // &{Go 101}

22|

23| // 1 is a blank interface value.

24| var i interface{} = &Book{"Rust 101"}
25| fmt.Println(i) // &{Rust 101}

26 |

27 | // Aboutable implements interface{}.
28| i=a

29| fmt.Println(i) // &{Go 1061}

30| }

Please note, the prototype of the fmt.Println function used many times in previous articles is
func Println(a ...interface{}) (n int, err error)
This is why a fmt .Println function calls can take arguments of any types.

The following is another example which shows how a blank interface value is used to box values of any
non-interface type.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | var i interface{}

7] i = []int{1, 2, 3}

8] fmt.Println(i) // [1 2 3]

9] i = map[string]int{"Go": 2012}
10| fmt.Println(i) // map[Go:2012]
11| i = true
12| fmt.Println(i) // true
13| i=1
14 | fmt.Println(i) // 1
15| i = "abc"

16 | fmt.Println(i) // abc

17|

18| // Clear the boxed value in interface value i.
19| i=nil

20| fmt.Println(i) // <nil>

21| }

Go compilers will build a global table which contains the information of each type at compile time. The
information includes what kind (§14) a type is, what methods and fields a type owns, what the element
type of a container type is, type sizes, etc. The global table will be loaded into memory when a program

starts.

At run time, when a non-interface value is boxed into an interface value, the Go runtime (at least for the
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standard Go runtime) will analyze and build the implementation information for the type pair of the two
values, and store the implementation information in the interface value. The implementation information
for each non-interface type and interface type pair will only be built most once and cached in a global map
for execution efficiency consideration. The number of entries of the global map never decreases. In fact, a

non-nil interface value just uses an internal pointer field which references a cached implementation

information entry (§17).

The implementation information for each (interface type, dynamic type) pair includes two pieces of

information;

1. the information of the dynamic type (a non-interface type)
2. and a method table (a slice) which stores all the corresponding methods specified by the interface
type and declared for the non-interface type (the dynamic type).

The two pieces of information are essential for implementing two important features in Go.

1. The dynamic type information is the key to implement reflection in Go.
2. The method table information is the key to implement polymorphism (polymorphism will be
explained in the next section).

IPolymorphism

Polymorphism is one key functionality provided by interfaces, and it is an important feature of Go.

When a non-interface value t of a type T is boxed in an interface value i of type I, calling a method
specified by the interface type I on the interface value i will call the corresponding method declared for
the non-interface type T on the non-interface value t actually. In other words, calling the method of an

interface value will call the corresponding method of the dynamic value of the interface value
actually. For example, calling method i.m will call method t.m actually. With different dynamic values

of different dynamic types boxed into the interface value, the interface value behaves differently. This is

called polymorphism.

When method i.m is called, the method table in the implementation information stored in i will be
looked up to find and call the corresponding method t.m. The method table is a slice and the lookup is

just a slice element indexing, so no much time is consumed.

(Note, calling methods on a nil interface value will panic at run time, for there are no available declared

methods can be called.)

An example:
1| package main

2|
3| import "fmt"

231



4]
5]
6
7]
8
9]
10|
11 |
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22|
23]
24|
25|
26|
27|
28|
29|
30|
31
32|
33|
34
35
36|
37|
38|
39|
40|
41|
42|
43|
44|
45|
46|
47|
48|
49|
50 |
51|

type Filter interface {
About () string
Process([]int) []int
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// UniqueFilter is used to remove duplicate numbers.

type UniqueFilter struct{}

func (UniqueFilter) About() string {
return "remove duplicate numbers"

b

func (UniqueFilter) Process(inputs []int) []int {
outs := make([]int, O, len(inputs))

pusheds := make(map[int

1bool)

for _, n := range inputs {

if !pusheds[n] {
pusheds[n] = true

outs = append(outs, n)

3

return outs

// MultipleFilter is used to keep only
// the numbers which are multiples of
// the MultipleFilter as an int value.

type MultipleFilter int

func (mf MultipleFilter) About() string {
return fmt.Sprintf("keep multiples of %v'", mf)

}

func (mf MultipleFilter) Process(inputs []int) []int {
var outs = make([]int, 0, len(inputs))
for _, n := range inputs {

if n % int(mf) == 0

{

outs = append(outs, n)

}

return outs

// With the help of polymorphism, only one
// "filterAndPrint" function is needed.
func filterAndPrint(fltr Filter,

// Call the methods of

"fltr"

unfiltered []int) []int {
will call the

// methods of the value boxed in "fltr" actually.
filtered := fltr.Process(unfiltered)
fmt.Println(fltr.About() + ":\n\t", filtered)

return filtered
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52| }
53]
54| func main() {
55| numbers := []int{12, 7, 21, 12, 12, 26, 25, 21, 30}
56 | fmt.Println("before filtering:\n\t", numbers)
57|
58| // Three non-interface values are boxed into
59| // three Filter interface slice element values.
60 | filters := []Filter{
61 | UniqueFilter{},
62| MultipleFilter(2),
63| MultipleFilter(3),
64| ¥
65|
66 | // Each slice element will be assigned to the
67 | // local variable "fltr" (of interface type
68| // Filter) one by one. The value boxed in each
69 | // element will also be copied into "fltr".
70| for _, fltr := range filters {
71| numbers = filterAndPrint(fltr, numbers)
72| ¥
73|

The output:

before filtering:
[12 7 21 12 12 26 25 21 30]
remove duplicate numbers:
[12 7 21 26 25 30]
keep multiples of 2:
[12 26 30]
keep multiples of 3:
[12 30]

In the above example, polymorphism makes it unnecessary to write one filterAndPrint function for

each filter types.

Besides the above benefit, polymorphism also makes it possible for the developers of a library code
package to declare an exported interface type and declare a function (or method) which has a parameter of
the interface type, so that a user of the package can declare a type, which implements the interface type, in
user code and pass arguments of the user type to calls to the function (or method). The developers of the
code package don't need to care about how the user type is declared, as long as the user type satisfies the

behaviors specified by the interface type declared in the library code package.

In fact, polymorphism is not an essential feature for a language. There are alternative ways to achieve the

same job, such as callback functions. But the polymorphism way is cleaner and more elegant.
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|Reflection

The dynamic type information stored in an interface value can be used to inspect the dynamic value of the
interface value and manipulate the values referenced by the dynamic value. This is called reflection in
programming.

Currently (Go 1.13), Go doesn't support generic for custom functions and types. Reflection partially
remedies the inconveniences caused by the lack of generics.

This article will not explain the functionalities provided by the reflect standard package # . Please

read reflections in Go (§27) to get how to use this package. Below will only introduce the built-in

reflection functionalities in Go. In Go, built-in reflections are achieved with type assertions and type-

switch control flow code blocks.

|Type assertion

There are four kinds of interface value involved value conversion cases in Go:

1. convert a non-interface value to an interface value, where the type of the non-interface value must
implement the type of the interface value.

2. convert an interface value to an interface value, where the type of the source interface value must
implement the type of the destination interface value.

3. convert an interface value to a non-interface value, where the type of the non-interface value must
implement the type of the interface value.

4. convert an interface value to an interface value, where the type of the source interface value may or
may not implement the type of the destination interface value.

Above has explained the first two kinds of cases. The two both require the source value type must

implement the destination interface type. The convertibility for the first two are verified at compile time.

Here will explain the later two kinds of cases. The convertibility for the later two are verified at run time,

by using a syntax called type assertion. In fact, the syntax also applies to the second kind of conversions.

The form of a type assertion expression is i.(T), where i is an interface value and T is a type name or a

type literal. Type T must be

e either an arbitrary non-interface type,

e or an arbitrary interface type.

In a type assertion i.(T), i is called the asserted value and T is called the asserted type. A type assertion

might succeed or fail.

e In case of T is a non-interface type, if the dynamic type of i exists and is identical to T, then the
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assertion will succeed, otherwise, the assertion will fail. When the assertion succeeds, the evaluation
result of the assertion is a copy of the dynamic value of i. We can view assertions of this case as
value unboxing attempt.

e In case of T is an interface type, if the dynamic type of the i exists and implements T, then the
assertion will succeed, otherwise, the assertion will fail. When the assertion succeeds, a copy of the
dynamic value of i will be boxed into a T value and the T value will be used as the evaluation

result of the assertion.
When a type assertion fails, its evaluation result is a zero value of the asserted type.

By the rules described above, if the asserted value in a type assertion is a nil interface value, then the
assertion will always fail.

For most scenarios, a type assertion is used as a single-value expression. However, when a type assertion
is used as the only source value expression in an assignment, it can result in a second optional untyped
boolean value and be viewed as a multi-value expression. The second optional untyped boolean value
indicates whether or not the type assertion succeeds.

Note, if a type assertion fails and the type assertion is used as a single-value expression (the second
optional bool result is absent), then a panic will occur.

An example which shows how to use type assertions (asserted types are non-interface types):

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| // Compiler will deduce the type of 123 as int.
7| var x interface{} = 123

8]

9] // Case 1:

10| n, ok := x.(int)

11| fmt.Println(n, ok) // 123 true
12| n = x.(int)
13| fmt.Println(n) // 123
14|
15| // Case 2:
16 | a, ok := x.(float64)
17 | fmt.Println(a, ok) // 0 false
18|
19| // Case 3:
20| a = x.(float64) // will panic
21| }

Another example which shows how to use type assertions (asserted types are interface types):
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1| package main

2|

3| import "fmt"

4|

5| type Writer interface {

6| Write(buf []byte) (int, error)

7}

8]

9| type DummyWriter struct{}

10| func (DummyWriter) Write(buf []byte) (int, error) {

11| return len(buf), nil

12]

13|

14| func main() {

15| var x interface{} = DummyWriter{}
16 | var y interface{} = "abc"

17 | // Now the dynamic type of y is "string".
18| var w Writer

19| var ok bool

20|

21| // Type DummyWriter implements both
22| // Writer and interface{}.

23| w, ok = Xx.(Writer)

24| fmt.Println(w, ok) // {} true

25| X, ok = w.(interface{})

26 | fmt.Println(x, ok) // {} true

27|

28| // The dynamic type of y is "string",
29| // which doesn't implement Writer.
30| w, ok = y.(Writer)

31| fmt.Println(w, ok) // <nil> false
32| w = y.(Writer) // will panic
33|

In fact, for an interface value i with dynamic type as T, the method call i.m(...) is equivalent to the

method call i.(T).m(...).

type-switch control flow block

The type-switch code block syntax may be the weirdest syntax in Go. It can be viewed as the enhanced
version of type assertion. A type-switch code block is some similar with a switch-case control flow
code block. It looks like:

1| switch aSimpleStatement; v := x.(type) {
2| case TypeA:
3]
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4| case TypeB, TypeC:

5]

6| case nil:
7]

8| default:
9|

10| }

The aSimpleStatement; portion is optional in a type-switch code block. aSimpleStatement must
be a simple statement (§11). x must be an interface value and it is called the asserted value. v is called the

assertion result, it must be present in a short variable declaration form.

Each case keyword in a type-switch block can be followed by a nil identifier and several type

names or type literals. None of such items can be duplicate in the same type-switch code block.

If the type denoted by a type name or type literal following a case keyword in a type-switch code

block is not an interface type, then it must implement the interface type of the asserted value.
Here is an example in which a type-switch control flow code block is used.

1| package main

2|

3| import "fmt"

4]

5| func main() {

6| values := []interface{}{

7| 456, "abc", true, 0.33, int32(789),

8| [1int{1, 2, 3}, map[int]bool{}, nil,

9] }

10| for _, X := range values {

11| // Here, v 1is declared once, but it denotes
12| // different variables in different branches.
13| switch v := x.(type) {

14 | case []int: // a type literal

15| // The type of v is "[]int" in this branch.
16 | fmt.Println("int slice:", v)

17 | case string: // one type name

18| // The type of v is "string" in this branch.
19| fmt.Println("string:", v)

20| case int, float64, int32: // multiple type names
21| // The type of v is "interface{}",

22| // the same as x in this branch.

23| fmt.Println("number:", v)

24 | case nil:

25| // The type of v is "interface{}",

26 | // the same as x in this branch.

27 | fmt.Println(v)

28| default:
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29| // The type of v is "interface{}",
30| // the same as x in this branch.
31| fmt.Println("others:", v)
32| }
33| // Note, each variable denoted by v in the
34| // last three branches is a copy of x.
35| }
36| }
The output:

number: 456
string: abc
others: true
number: 0.33
number: 789

int slice: [1 2 3]
others: map[]
<nil>

The above example is equivalent to the following in logic:

1| package main

2|
3| import "fmt"
4|
5| func main() {
6 | values := []interface{}{
7| 456, "abc", true, 0.33, int32(789),
8| [1int{1, 2, 3}, map[int]bool{}, nil,
9] }
10| for _, X := range values {
11| if v, ok := x.([]int); ok {
12| fmt.Println("int slice:", v)
13| } else if v, ok := x.(string); ok {
14 | fmt.Println("string:", v)
15| } else if x == nil {
16 | V 1= X
17 | fmt.Println(v)
18| } else {
19| _, isInt := x.(int)
20| _, 1sFloat64 := x.(float64)
21| _, 1isInt32 := x.(int32)
22| if isInt || isFloat64 || isInt32 {
23| V = X
24 | fmt.Println("number:", v)
25| } else {
26 | V = X
27 | fmt.Println("others:", v)
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28| }
29| }
30| }

31| }

type-switch code blocks are similar with switch-case code blocks in some aspects.

e Like switch-case blocks, in a type-switch code block, there can be most one default
branch.

e Like switch-case blocks, in a type-switch code block, if the default branch is present, it can
be the last branch, the first branch, or a middle branch.

e Like switch-case blocks, a type-switch code block may not contain any branches, it will be

viewed as a no-op.

But, unlike switch-case code blocks, fallthrough statements can't be used within branch blocks of a

type-switch code block.

IMore About Interfaces in Go

|Interface type embedding

An interface type can embed a type name which denotes another interface type. The final effect is the
same as unfolding the method prototypes specified by the embedded interface type into the definition
body of the embedding interface type. For example, in the following example, the respective method sets
specified by interface types Ic, Id and Ie are identical.

1| type Ia interface {

2] fa()

3| }

4|

5| type Ib = interface {
6| fb()

7|}

8|

9| type Ic interface {
10| fa()

11| fb()

12| }

13|

14| type Id = interface {
15| Ia // embed Ia

16 | Ib // embed Ib

17| }

18|
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19| type Ie interface {

20| Ia // embed Ia
21| fb()
22| }

Before Go 1.14, two interface types can't embed each other if they both specify a method prototype with
the same name, and they also can't be embeded at the same time in the same third interface type, even if
the two method prototypes are identical. For example, the following interface type declartions are all
illegal.

1| type Ix interface {

2| Ia

3| Ic

4l

5]

6| type Iy = interface {
7| Ib

8| Ic

9| }

10|

11| type Iz interface {
12| Ic

13| fa()

14| }

Since Go 1.14 # , the limit demonstrated in the above example will be removed # . The method set
specified by any of the interface types declared in the above exmaple is the same as Ic.

An interface type can't embed itself or any other interface types that embeds the interface type,

recursively.

|Interface values involved comparisons

There are two cases of interface values involved comparisons:

1. comparisons between a non-interface value and an interface value.

2. comparisons between two interface values.

For the first case, the type of the non-interface value must implement the type (assume it is I) of the
interface value, so the non-interface value can be converted to (boxed into) an interface value of I. This

means a comparison between a non-interface value and an interface value can be translated to a
comparison between two interface values. So below only comparisons between two interface values will

be explained.

Comparing two interface values is comparing their respective dynamic types and dynamic values actually.
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The steps of comparing two interface values (with the == operator):

if one of the two interface values is a nil interface value, then the comparison result is whether or not
the other interface value is also a nil interface value.
if the dynamic types of the two interface values are two different types, then the comparison result is
false.
for the case of the dynamic types of the two interface values are the same type,

o if the same dynamic type is an incomparable type (§48), a panic will occur.

o otherwise, the comparison result is the result of comparing the dynamic values of the two

interface values.

In short, two interface values are equal only if one of the following conditions is satisfied.

1.
2.

They are both nil interface values.
Their dynamic types are identical and comparable, and their dynamic values are equal to each other.

By the rules, two interface values which dynamic values are both nil may be not equal. An example:

1]
2|
3]
4]
5]
6]
7]
8]
9]
10|
11|
12|
13|
14|
15|
16|
17
18]
19|
20|
21|
22|
23|
24|
25|
26|
27
28|
29|

package main
import "fmt"

func main() {
var a, b, c interface{} = "abc", 123, "a"+"b"+"c"
// A case of step 2.
fmt.Println(a == b) // false
// A case of step 3.
fmt.Println(a == c) // true

var x *int = nil

var y *bool = nil

var ix, iy interface{} = x, y
var i interface{} = nil

// A case of step 2.
fmt.Println(ix == iy) // false
// A case of step 1.
fmt.Println(ix == i) // false
// A case of step 1.
fmt.Println(iy == i) // false

// []int is an incomparable type
var s []int = nil

i=-s

// A case of step 1.
fmt.Println(i == nil) // false

// A case of step 3.
fmt.Println(i == i) // will panic
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30| }

| The internal structure of interface values

For the official Go compiler/runtime, blank interface values and non-blank interface values are
represented with two different internal structures. Please read value parts (§17) for details.

Pointer dynamic value vs. non-pointer dynamic value

The official Go compiler/runtime makes an optimization which makes that boxing pointer values into

interface values is more efficient than boxing non-pointer values. For small size values (§34), the

efficiency differences are small, but for large size values, the differences may be not small. For the same
optimization, type assertions with a pointer type are also more efficient than type assertions with the base
type of the pointer type if the base type is a large size type.

So please try to avoid boxing large size values, box their pointers instead.

Values of []T can't be directly converted to []I, even if type T
implements interface type I.

For example, sometimes, we may need to converta [ ]string value to []interface{} type. Unlike

some other languages, there is no direct ways to make the conversion. We must make the conversion
manually in a loop:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | words := []string{

7] "Go", "is", "a", "high",

8| "efficient", "language.",

9| }

10|

11| // The prototype of fmt.Println function is

12| // func Println(a ...interface{}) (n int, err error).
13| // So words... can't be passed to it as the argument.
14 |

15| // fmt.Println(words...) // not compile

16 |

17 | // Convert the []string value to []interface{}.

18| iw := make([]interface{}, 0, len(words))

19| for _, w := range words {
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20| iw = append(iw, w)

21| }

22| fmt.Println(iw...) // compiles okay
23| }

Each method specified in an interface type corresponds to an implicit
function

For each method with name m in the method set defined by an interface type I, compilers will implicitly
declare a function named I.m, which has one more input parameter, of type I, than method m. The extra
parameter is the first input parameter of function I.m. Assume i is an interface value of I, then the

method call i.m(...) is equivalent to the function call I.m(i, ...).

An example:

1| package main

2|

3| import "fmt"

4|

5| type I interface {

6 | m(int)bool

7|}

8|

9| type T string

10| func (t T) m(n int) bool {

11| return len(t) > n

12| }

13|

14| func main() {

15| var i I = T("gopher™")

16 | fmt.Println(i.m(5)) // true
17 | fmt.Println(I.m(i, 5)) // true
18| fmt.Println(interface{m(int)bool}.m(i, 5)) // true
19|

20| // The following lines compile okay,

21| // but will panic at run time.

22| I(nil).m(5)

23| I.m(nil, 5)

24 | interface {m(int) bool}.m(nil, 5)

25| }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com #  to get more information about these games. Hope you enjoy them.)
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Type Embedding

From the article structs in Go (§16), we know that a struct type can have many fields. Each field is
composed of one field name and one field type. In fact, sometimes, a struct field can be composed of one
field type name only. The way to declare struct fields is called type embedding.

This article will explain the purpose of type embedding and all kinds of details in type embedding.

IWhat Does Type Embedding Look Like?

Here is an example demonstrating type embedding:

1| package main

2|

3| import "net/http"

4|

5| func main() {

6 | type P = *bool

7] type M = map[int]int

8| var x struct {

9] string // a defined non-pointer type
10| error // a defined interface type
11| *int // a non-defined pointer type
12| B // an alias of a non-defined pointer type
13| M // an alias of a non-defined type
14|
15| http.Header // a defined map type
16| }

17 | x.string = "Go"

18| X.error = nil

19| X.int = new(int)

20| X.P = new(bool)

21| X.M = make(M)

22| X.Header = http.Header{}
23| }

In the above example, six types are embedded in the struct type. Each type embedding forms an embedded
field.

Embedded fields are also called as anonymous fields. However, each embedded field has a name specified
implicitly. The unqualified # type name of an embedded field acts as the name of the field. For example,

the names of the six embedded fields in the above examples are string, error, int, P, M, and

Header, respectively.
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IWhich Types Can be Embedded?

The current Go specification (version 1.13) says &

An embedded field must be specified as a type name T or as a pointer to a non-interface type name *T, and T itself may not

be a pointer type.

The above description is accurate before Go 1.9. However, with the introduction of type aliases in Go 1.9,
the description becomes a little outdated and inaccurate # . For example, the description doesn't include

the case of the P field in the example in the last section.

Here, the article tries to provide more accurate descriptions.

e A type name T can be embedded as an embedded field unless T denotes a defined pointer type or a
pointer type which base type is either a pointer or an interface type.
e A pointer type *T, where T is a type name denoting the base type of the pointer type, can be

embedded as an embedded field unless type name T denotes a pointer or interface type.

The following lists some example types which can and can't be embedded:

1| type Encoder interface {Encode([]byte) []byte}
2| type Person struct {name string; age int}

3| type Alias = struct {name string; age int}

4| type AliasPtr = *struct {name string; age int}
5| type IntPtr *int

6| type AliasPP = *IntPtr

7]

8| // These types and aliases can be embedded.

9| Encoder

10| Person

11| *Person

12| Alias

13| *Alias

14| AliasPtr

15| int

16| *int

17|

18| // These types and aliases can't be embedded.

19| AliasPP // base type is a pointer type
20| *Encoder // base type is an interface type
21| *AliasPtr // base type is a pointer type
22| IntPtr // defined pointer type

23| *IntPtr // base type is a pointer type
24| *chan int // base type is a non-defined type

25| struct {age int} // non-defined non-pointer type
26| map[string]int // non-defined non-pointer type
27| []int64 // non-defined non-pointer type

245


https://golang.org/ref/spec#Struct_types
https://github.com/golang/go/issues/22005

824. Type Embedding

28| func() // non-defined non-pointer type

No two fields are allowed to have the same name in a struct, there are no exceptions for anonymous struct
fields. By the embedded field naming rules, a non-defined pointer type can't be embedded along with its
base type in the same struct type. For example, int and *int can't be embedded in the same struct type.

A struct type can't embed itself or its aliases, recursively.

Generally, it is only meaningful to embed types who have fields or methods (the following sections will
explain why), though some types without any field and method can also be embedded.

IWhat Is the Meaningfulness of Type Embedding?

The main purpose of type embedding is to extend the functionalities of the embedded types into the
embedding type, so that we don't need to re-implement the functionalities of the embedded types for the
embedding type.

Many other object-oriented programming languages use inheritance to achieve the same goal of type
embedding. Both mechanisms have their own benefits and drawbacks § . Here, this article will not
discuss which one is better. We should just know Go chose the type embedding mechanism, and there is a
big difference between the two:

e If atype T inherits another type, then type T obtains the abilities of the other type. At the same time,
each value of type T can also be viewed as a value of the other type.
e [fatype T embeds another type, then type other type becomes a part of type T, and type T obtains

the abilities of the other type, but none values of type T can be viewed as values of the other type.

Here is an example to show how an embedding type extends the functionalities of the embedded type.

1| package main

2|

3| import "fmt"

4|

5| type Person struct {

6| Name string

7| Age int

8| }

9| func (p Person) PrintName() {
10| fmt.Println("Name:", p.Name)
11| }

12| func (p *Person) SetAge(age int) {
13| p.Age = age

14| }

15|

16| type Singer struct {
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17 | Person // extends Person by embedding it
18| works []string

19| }

20|

21| func main() {

22| var gaga = Singer{Person: Person{"Gaga'", 30}}
23] gaga.PrintName() // Name: Gaga

24| gaga.Name = "Lady Gaga"

25| (&gaga) .SetAge(31)

26| (&gaga) .PrintName() // Name: Lady Gaga
27 | fmt.Println(gaga.Age) // 31

28| }

From the above example, it looks that, after embedding type Person, the type Singer obtains all
methods and fields of type Person, and type *Singer obtains all methods of type *Person. Are the

conclusions right? The following sections will answer this question.
Please note that, a Singer value is not a Person value, the following code doesn't compile:

1| var gaga = Singer{}
2| var _ Person = gaga

Does the Embedding Type Obtain the Fields and Methods
of the Embedded Types?

Let's list all the fields and methods of type Singer and the methods of type *Singer used in the last

example by using the reflection functionalities (§27) provided in the reflect standard package.

1| package main

2|

3| import (

4] "fmt"

5] "reflect"

6] )

7]

8| ... // the types declared in the last example

9]

10| func main() {
11| t := reflect.TypeOf(Singer{}) // the Singer type
12| fmt.Println(t, "has", t.NumField(), "fields:")
13| for i := 0; 1 < t.NumField(); i++ {
14| fmt.Print(" field#", i, ": ", t.Field(i).Name, "\n")
15| }
16 | fmt.Println(t, "has", t.NumMethod(), "methods:")
17 | for 1 := 0; 1 < t.NumMethod(); i++ {
18| fmt.Print(" method#", i, ": ", t.Method(i).Name, "\n")
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19] }
20|
21| pt := reflect.TypeOf(&Singer{}) // the *Singer type
22| fmt.Println(pt, "has", pt.NumMethod(), "methods:")
23] for i := 0; i < pt.NumMethod(); i++ {
24| fmt.Print(" method#", i, ": ", pt.Method(i).Name, "\n")
25| }
26| }
The result:

main.Singer has 2 fields:
field#0: Person

field#1: works
main.Singer has 1 methods:
method#0: PrintName
*main.Singer has 2 methods:
method#0: PrintName
method#1: SetAge

From the result, we know that the type Singer really owns a PrintName method, and the type *Singer
really owns two methods, PrintName and SetAge. But the type Singer doesn't own a Name field. Then
why is the selector expression gaga.Name legal for a Singer value gaga? Please read the next section

to get the reason.

IShorthands of Selectors

From the articles structs in Go (§16) and methods in Go (§22), we have learned that, for a value x, x.y is

called a selector, where y is either a field name or a method name. If y is a field name, then x must be a

struct value or a struct pointer value. A selector is an expression, which represents a value. If the selector
x.y denotes a field, it may also has its own fields (if x.y is a struct value) and methods. Such as x.y.z,

where z can also be either a field name or a method name.

In Go, (without considering selector colliding and shadowing explained in a later section), if a middle
name in a selector corresponds to an embedded field, then that name can be omitted from the selector.

This is why embedded fields are also called anonymous fields.

For example:

1| package main

2|

3| type A struct {
4| X int

5| }

6| func (a A) MethodA() {}
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7]
8| type B struct {
9| A
10] }
11| type C struct {
12| B
13] }
14|
15| func main() {
16 | var ¢ C
17|
18| // The following 4 lines are equivalent.
19| _ = Cc.B.A.x
20| _ = c.B.x
21| _ = C.A.X
22| _ =c.x // x 1s called a promoted field of type C
23|
24| // The following 4 lines are equivalent.
25| c.B.A.MethodA()
26 | c.B.MethodA()
27| c.A.MethodA()
28| c.MethodA()
29| }

This is why the expression gaga.Name is legal in the example in the last section. For it is just the

shorthand of gaga.Person.Name. Name is called a promoted field of type Singer.

As any embedding type must be a struct type, and the article structs in Go (§16) has mentioned that the
field of an addressable struct value can be selected through the pointers of the struct value, so the

following code is also legal in Go.

1] func main() {

2] var ¢ C
3] pc = &c
4|
5] // The following 4 lines are equivalent.
6| fmt.Println(pc.B.A.Xx)
7| fmt.Println(pc.B.x)
8| fmt.Println(pc.A.x)
9] fmt.Println(pc.x)
10|
11| // The following 4 lines are equivalent.
12| pc.B.A.MethodA()
13| pc.B.MethodA()
14 | pc.A.MethodA()
15| pc.MethodA()
16| }
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Similarly, the selector gaga.PrintName can be viewed as a shorthand of gaga.Person.PrintName.
But, it is also okay if we think it is not a shorthand. After all, the type Singer really has a PrintName

method, though the method is declared implicitly (please read the section after next for details). For the
similar reason, the selector (&gaga).PrintName and (&gaga).SetAge can also be viewed as, or not

as, shorthands of (&gaga.Person).PrintName and (&gaga.Person).SetAge.

Note, we can also use the selector gaga.SetAge, only if gaga is an addressable value of type Singer.

It is just syntactical sugar of (&gaga) .SetAge. Please read method calls (§22) for details.

In the above examples, c.B.A.x is called the full form of selectors c.x, c.B.x and c.A.x. Similarly,
c.B.A.MethodA is called the full form of selectors c¢.MethodA, c.B.MethodA and c.A.MethodA.

If every middle name in the full form of a selector corresponds to an embedded field, then the number of
middle names in the selector is called the depth of the selector. For example, the depth of the selector
c.MethodA used in an above example is 2, for the full form of the selector is ¢c.B.A.MethodA.

ISelector Shadowing and Colliding

For a value x (we should always assume it is addressable, even if it is not), it is possible that many of its
full-form selectors have the same last item y and every middle name of these selectors represents an

embedded field. For such cases,

e only the full-form selector with the shallowest depth (assume it is the only one) can be shortened as
x.Yy. In other words, x.y denotes the full-form selector with the shallowest depth. Other full-form

selectors are shadowed by the one with the shallowest depth.
o if there are more than one full-form selectors with the shallowest depth, then none of those full-form
selectors can be shortened as x.y. We say those full-form selectors with the shallowest depth are

colliding with each other.

If a method selector is shadowed by another method selector, and the two corresponding method

signatures are identical, we say the first method is overridden by the other one.
For example, assume A, B and C are three defined types (§14).

1| type A struct {

2| x string

3| }

4| func (A) y(int) bool {
5] return false

6| }

7]

8| type B struct {

9| y bool

10| }
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11| func (B) x(string) {}

12|

13| type C struct {
14| B

15| }

The following code doesn't compile. The reason is the depths of the selectors vi1.A.x and v1.B.x are
equal, so the two selectors collide with each other and neither of them can be shortened to v1.x. The

same situation is for the selectors v1.A.y and v1.B.y.

1| var v1 struct {
2] A

3| B

4| }

5]

6| func f1() {

7| _ = vl.x

8| _ =vl.y

9] }

The following code compiles okay. The selector v2.C.B.x is shadowed by v2.A.x, so the selector
v2.X is a shortened form of v2.A.x actually. For the same reason, the selector v2.y is a shortened form

of v2.A.y, notof v2.C.B.y.

1| var v2 struct {

2] A

3] (o

4| 3

5]

6| func f2() {

7| fmt.Printf("%T \n", v2.x) // string

8| fmt.Printf("%T \n", v2.y) // func(int) bool
9| }

One detail which is unusual but should be noted is that two unexported fields (or methods) from two
differnt packages are always viewed as two different identifiers, even if their names are identical. So they

will not never collide with or shadow each other when their owner types are embedded in the same struct

type.

For example, a program comprising two packages as the following shows will compile and run okay. But

if all the m() occurrences are replaced with M(), then the program will fail to compile for A.M and B.M

collide, so c.M is not a valid selector.

1| package foo // x.y/foo
2|

3| import "fmt"

4|
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5| type A struct {

6| n int

73

8]

9| func (a A) m() {
10| fmt.Println("A", a.n)
11] }

12|

13| type I interface {
14| m()

15| }

16|

17| func Bar(i I) {
18] i.m()

19| }

1| package main

2|

3| import "fmt"

4| import "x.y/foo"

5]

6| type B struct {

7| n bool

8| }

9]

10| func (b B) m() {

11| fmt.Println("B", b.n)
12| }

13|

14| type C struct{

15| foo.A

16| B

17| }

18]

19| func main() {

20| var ¢ C

21| c.m() // B false
22| foo.Bar(c) // A0

23| }

IImplicit Methods for Embedding Types

As mentioned above, both of type Singer and type *Singer have a PrintName method each, and the
type *Singer also has a SetAge method. However, we never explicitly declare these methods for the

two types. Where do these methods come from?
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In fact, assume a struct type S embeds a type T and the embedding is legal,

o for each method of the embedded type T, if the selectors to that method neither collide with nor are
shadowed by other selectors, then compilers will implicitly declare a corresponding method with the
same prototype for the embedding struct type S. And consequently, compilers will also implicitly
declare a corresponding method (822) for the pointer type *S.

e for each method of the pointer type *T, if the selectors to that method neither collide with nor are
shadowed by other selectors, then compilers will implicitly declare a corresponding method with the
same prototype for the pointer type *S.

The above facts still hold true even if *T is not embeddable (a.k.a, T is a pointer or interface type), in

which cases, the method set of *T is blank.
Simply speaking,

e type struct{T} and type *struct{T} both obtain all the methods of the type denoted by T.
e type *struct{T}, type struct{*T}, and type *struct{*T} obtains all the methods of type *T.

The following methods are implicitly declared by compilers for type Singer and type *Singer.

1| func (s Singer) PrintName() {

2| s.Person.PrintName()

3| }

4|

5| func (s *Singer) PrintName() {

6| (*s).Person.PrintName()

71}

8]

9| func (s *Singer) SetAge(age int) {
10| // <=> (&((*s).Person)).SetAge(age)
11| (&s.Person) .SetAge(age)

12| }

The implicit methods can also be called promoted methods.

From the article methods in Go (§22), we know that we can't explicitly declare methods for non-defined

struct types and non-defined pointer types whose base types are non-defined struct types. But through type

embedding, such non-defined types can also own methods.

Here is another example to show which implicit methods are declared.

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| type F func(int) bool
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7| func (f F) Validate(n int) bool {

8| return f(n)

9| }

10| func (f *F) Modify(f2 F) {
11| *f = f2

12| }

13|

14| type B bool
15| func (b B) IsTrue() bool {

16 | return bool(b)
171 }
18| func (pb *B) Invert() {
19| *pb = !*pb
20| }
21|
22| type I interface {
23| Load()
24| Save()
25| }
26|
27| func PrintTypeMethods(t reflect.Type) {
28| fmt.Println(t, "has", t.NumMethod(), "methods:")
29| for i := 0; i < t.NumMethod(); i++ {
30| fmt.Print(" method#", i, ": ",
31| t.Method(i).Name, "\n")
32| }
33| }
34|
35| func main() {
36 | var s struct {
37| F
38| *B
39| I
40 | }
41 |
42| PrintTypeMethods(reflect.TypeOf(s))
43| fmt.Println()
44| PrintTypeMethods(reflect.TypeOf(&s))
45| }
The result:

struct { main.F; *main.B; main.I } has 5 methods:
method#0: Invert

method#1: IsTrue

method#2: Load

method#3: Save

method#4: Validate
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*struct { main.F; *main.B; main.I } has 6 methods:
method#0:
method#1:
method#2:
method#3:
method#4:
method#5:

Invert
IsTrue
Load
Modify
Save
Validate
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If a struct type embeds a type which implements an interface type (the embedded type may be the
interface type itself), then generally the struct type also implements the interface type, exception there is a
method specified by the interface type shadowed by or colliding other methods or fields. For example, in
the above example program, both the embedding struct type and the pointer type whose base type is the
embedding struct type implement the interface type I.

Please note, a type will only obtain the methods of the types it embeds directly or indirectly. In other
words, the method set of a type is composed of the methods declared directly (either explicitly or
implicitly) for the type and the method set of the type's underlying type. For example, in the following
code,

o the type Age has no methods, for it doesn't embed any types.

o the type X has two methods, Is0dd and Double. Is0dd is obtained by embedding the type
MyInt.

e the type Y has no methods, for its embedded the type Age has not methods.

o the type Z has only one method, Is0dd, which is obtained by embedding the type MyInt. It doesn't
obtain the method Double from the type X, for it doesn't embed the type X.

1| type MyInt int
2| func (mi MyInt) IsOdd() bool {

3| return mi%2 == 1

4|

5]

6| type Age MyInt

7|

8| type X struct {

9] MyInt

10| }

11| func (x X) Double() MyInt {
12| return x.MyInt + Xx.MyInt
13| }

14 |

15| type Y struct {

16| Age

7] 3

18|

19| type Z X
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|Interface Types Embed Interface Types

Not only can struct types embed other types, but also can interface types. But interface types can only
embed interface types. Please read interfaces in Go (§23) for details.

IAn Interesting Type Embedding Example

In the end, let's view an interesting example. The example program will dead loop and stack overflow. If
you have understood the above content and polymorphism (§23) and type embedding, it is easy to
understand why it will dead loop.

1| package main

2|

3| type I interface {
4] m()

5| }

6]

7| type T struct {

8] I

9| }

10|

11| func main() {

12| var t T

13| var i = &t

14| t.I = i

15| i.m() // will call t.m(), then call i.m() again,
16| }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Type-Unsafe Pointers

We have learned Go pointers from the article pointers in Go (§15). From that article, we know that,
comparing to C pointers, there are many restrictions made for Go pointers. For example, Go pointers can't
participate arithmetic operations, and for two arbitrary pointer types, it is very possible that their values
can't be converted to each other.

The pointers explained in that article are called type-safe pointers actually. Although the restrictions on
type-safe pointers really make us be able to write safe Go code with ease, they also make some obstacles

to write efficient code for some scenarios.

In fact, Go also supports type-unsafe pointers, which are pointers without the restrictions made for safe
pointers. Type-unsafe pointers are also called unsafe pointers in Go. Go unsafe pointers are much like C
pointers, they are powerful, and also dangerous. For some cases, we can write more efficient code with the
help of unsafe pointers. On the other hand, by using unsafe pointers, it is easy to write bad code which is
too subtle to detect in time.

Another big risk of using unsafe pointers comes from the fact that the unsafe mechanism is not protected
by the Go 1 compatibility guidelines # . Code depending on unsafe pointers works today could break
since a later Go version.

If you really desire the code efficient improvements by using unsafe pointers for any reason, you should
not only know the above mentioned risks, but also follow the instructions written in the official Go
documentation and clearly understand the effect of each unsafe pointer use, so that you can write safe Go
code with unsafe pointers.

IAbout the unsafe Standard Package

Go provides a special kind of types (§14) for unsafe pointers. We must import the unsafe standard

package # to use unsafe pointers. The unsafe.Pointer type is defined as

type Pointer *ArbitraryType

Surely, it is not a usual type definition. Here the ArbitraryType just hints that a unsafe.Pointer
value can be converted to any safe pointer values in Go (and vice versa). In other words,
unsafe.Pointer is like the void* in C language.

Go unsafe pointers mean the types whose underlying types are unsafe.Pointer.
The zero values of unsafe pointers are also represented with the predeclared identifier nil.

The unsafe standard package also provides three functions.
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Note,
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func Alignof(variable ArbitraryType) uintptr, which is used to get the address
alignment of a value. Please notes, the aligns for struct-field values and non-field values of the same
type may be different, though for the standard Go compiler, they are always the same. For the gccgo
compiler, they may be different.

func Offsetof(selector ArbitraryType) uintptr, which is used to get the address offset
of a field in a struct value. The offset is relative to the address of the struct value. The return results
should be always the same for the same corresponding field of values of the same struct type in the
same program.

func Sizeof(variable ArbitraryType) uintptr, which is used to get the size of a value
(a.k.a., the size of the type of the value). The return results should be always the same for all values
of the same type in the same program.

the types of the return results of the three functions are all uintptr. Below we will learn that
uintptr values can be converted to unsafe pointers (and vice versa).

although the return results of calls of any of the three functions are consistent in the same program,
they might be different crossing operating systems, crossing architectures, crossing compilers, and
crossing compiler versions.

calls to the three functions are always evaluated at compile time. The evaluation results are typed
constants with type uintptr.

the argument passed to a call to the unsafe.0ffsetof function must the struct field selector form
value.field. The selector may denote an embedded field, but the field must be reachable without

implicit pointer indirections.

An example of using the three functions.

1]
2]
3
4]
5]
6
7]
8]
9]
10|
11|
12|
13|
14|
15|
16|
17|
18|

package main

import "fmt"
import "unsafe"

func main() {
var x struct {
a inté4
b bool
c string
}
const M, N = unsafe.Sizeof(x.c), unsafe.Sizeof(x)
fmt.Println(M, N) // 16 32

fmt.Println(unsafe.Alignof(x.a)) // 8

fmt.Println(unsafe.Alignof(x.b)) // 1
fmt.Println(unsafe.Alignof(x.c)) // 8
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fmt.Println(unsafe.O0ffsetof(x.a)) // 0
fmt.Println(unsafe.O0ffsetof(x.b)) // 8
fmt.Println(unsafe.Offsetof(x.c)) // 16

3

An example which demostrates the last note mentioned above.

1|
2]
3]
4]
5]
6|
7]
8]
9]
10|
11 |
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31
32|
33|
34|
35|

Please note, the print results shown in the comments are for the standard Go compiler version 1.13 on

package main

import "fmt"
import "unsafe"

func main() {
type T struct {

c string

}

type S struct {
b bool

}

var x struct {
a int64
*S
T

}

fmt.Println(unsafe.Offsetof(x.a)) // 0

fmt.Println(unsafe.O0ffsetof(x.S)) // 8
fmt.Println(unsafe.Offsetof(x.T)) // 16

// This line compiles, for c can be reached
// without implicit pointer indirections.
fmt.Println(unsafe.Offsetof(x.c)) // 16

// This line doesn't compile, for b must be
// reached with the implicit pointer field S.
//fmt.Println(unsafe.0ffsetof(x.b)) // error

// This line compiles. However, it prints
// the offset of field b in the value x.S.
fmt.Println(unsafe.O0ffsetof(x.S.b)) // 0O

}

Linux AMDG64 architecture.

The three functions provided in the unsafe package don't look much dangerous. The signatures of these

functions are very impossible to be changed in future Go 1 versions # . Rob Pike even ever made a
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proposal to move the three functions to elsewhere # . Most of the unsafty of the unsafe package comes

from unsafe pointers. They are as dangerous as C pointers, what is Go safe pointers always try to avoid.

|Unsafe Pointers Related Conversion Rules

Currently (Go 1.13), Go compilers allow the following explicit conversions.

e A safe pointer can be explicitly converted to an unsafe pointer, and vice versa.
e An uintptr value can be explicitly converted to an unsafe pointer, and vice versa. But please note, a
nil unsafe.Pointer shouldn't be converted to uintptr and back with arithmetic.

By using these conversions, we can convert a safe pointer value to an arbitrary safe pointer type.

However, although these conversions are all legal at compile time, not all of them are valid (safe) at run
time. These conversions defeat the memory safety the whole Go type system (except the unsafe part) tries
to maintain. We must follow the instructions listed in a later section below to write valid Go code with

unsafe pointers.

ISome Facts in Go We Should Know

Before introducing the valid unsafe pointer use patterns, we need to know some facts in Go.

|Fact 1: unsafe pointers are pointers and uintptr values are integers

Each of non-nil safe and unsafe pointers references another value. However uintptr values don't reference
any values, they are just plain integers, though often each of them stores an integer which can be used to
represent a memory address.

Go is a language supporting automatic garbage collection. When a Go program is running, Go runtime

will check which memory blocks are not used by any value any more and collect the memory (§43)

allocated for these unused blocks, from time to time. Pointers play an important role in the check process.
If a memory block is unreachable from (referenced by) any values still in using, then Go runtime thinks it

is an unused value and it can be safely garbage collected.
As uintptr values are integers, they can participate arithmetic operations.

The example in the next subsection shows the differences between pointers and uintptr values.

|Fact 2: unused memory blocks may be collected at any time
At run time, the garbage collector may run at an uncertain time, and each garbage collection process may
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last an uncertain duration. So when a memory block becomes unused, it may be collected at an uncertain
time (843).

For example:

1| import "unsafe"

2|

3| // Assume createInt will not be inlined.
4| func createInt() *int {

5] return new(int)

6| }

7]

8| func foo() {

9| po@, y, z := createInt(), createInt(), createInt()
10| var pl = unsafe.Pointer(y)

11| var p2 = uintptr(unsafe.Pointer(z))

12|

13| // At the time, even if the address of the int
14 | // value referenced by z is still stored in p2,
15| // the int value has already become unused, so
16 | // garbage collector can collect the memory
17| // allocated for it now. On the other hand, the
18| // int values referenced by p0® and pl are still
19| // 1in using.
20|
21| // uintptr can participate arithmetic operations.
22| p2 += 2; p2--; p2--
23]
24| *po = 1 // okay
25| *(*int)(p1l) = 2 // okay
26 | *(*int) (unsafe.Pointer(p2))) = 3 // dangerous!
27| }

In the above example, the fact that value p2 is still in using can't guarantee that the memory block ever
hosting the int value referenced by z has not been garbage collected yet. In other words, when *(*T)
(unsafe.Pointer(p2))) = 3 is executed, the memory block may be collected, or not. It is dangerous
to dereference the address stored in value p2 to an int value, for it is possible that the memory block has

been already reallocated for another value (even for another program).

|Fact 3: the addresses of some values might change at run time

Please read the article memory blocks (8§43) for details (see the end of the hyperlinked section). Here, we

should just know that when the size of the stack of a goroutine changes, the memory blocks allocated on
the stack will be moved. In other words, the addresses of the values hosted on these memory blocks will

change.
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Fact 4: we can use a runtime.KeepAlive function call to mark a
value as still in using (reachable) before the call

To mark a value and the value parts referenced by it still reachable, we should pass a value which
references the value as the argument of a runtime.KeepAlive function call. A pointer to the value is

often used as such an argument.

For example, by appending a runtime.KeepAlive(&z) call to the example in the last subsection, *

(*T) (unsafe.Pointer(p2))) = 3 can be executed safely now.

1| func foo() {

2| poO, y, z := createInt(), createInt(), createInt()
3| var pl = unsafe.Pointer(y)

4| var p2 = uintptr(unsafe.Pointer(z))

5]

6| p2 += 2; p2--; p2--

7]

8] *po = 1

9| *(*int)(p1) = 2
10| *(*int) (unsafe.Pointer(p2))) = 3 // safe now!
11|
12| runtime.KeepAlive(&z) // This line k
13| }

Fact 5: the reachable range of a value at run time may be not as large
as it looks in code

In the following example, the fact value t is still in using can't guarantee that the values referenced by

value t.y are still in using.

1| type T struct {

2] X int

3] y *[1<<23]byte

4| }

5]

6| func bar() {

7| t = T{y: new([1<<23]byte)}

8| p := uintptr(unsafe.Pointer(&t.y[0]))

9]

10| ... // use T.x and T.y

11|

12| // A smart compiler can detect that the value
13| // t.y will never be used again and think the
14 | // memory block hosting t.y can be collected now.
15|
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16 | // Using *(*byte)(unsafe.Pointer(p))) is

17 | // dangerous here.

18|

19| // Continue using value t, but only use its x field.
20| println(t.x)

21| }

Fact 6: *unsafe.Pointer is a general safe pointer type

Yes, *unsafe.Pointer is a safe pointer type. Its base type is unsafe.Pointer. As it is a safe pointer,

according the conversion rules listed above, it can be converted to unsafe.Pointer type, and vice versa.

For example:

1| package main

2|

3| import "unsafe"

4|

5| func main() {

6| X := 123 // of type int

7| p := unsafe.Pointer(&x) // of type unsafe.Pointer
8| pp := &p // of type *unsafe.Pointer
9] p = unsafe.Pointer(pp)
10| pp = (*unsafe.Pointer)(p)
11| }

IHow to Use Unsafe Pointers Correctly?

The unsafe standard package documentation lists six unsafe pointer use patterns ! . Following will

introduce and explain them one by one.

Pattern 1: convert a *T1 value to unsafe Pointer, then convert the
unsafe pointer value to *T2.

As mentioned above, by using the unsafe pointer conversion rules above, we can convert a value of *T1
to type *T2, where T1 and T2 are two arbitrary types. However, we should only do such conversions if

the size of T1 is no larger than T2, and only if the conversions are meaningful.
As a result, we can also achieve the conversions between type T1 and T2 by using this pattern.

One example is the math.Float64bits function, which converts a float64 value to an uint64 value,

without changing any bit in the float64 value. The math.Float64bits function does reverse
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conversions.

1| func Float64bits(f float64) uint64 {

2| return *(*uint64)(unsafe.Pointer (&f))
3| }

4|

5| func Float64frombits(b uint64) float64 {
6| return *(*float64)(unsafe.Pointer(&b))
7|}

Please note, the return result of the math.Float64bits(aFloat64) function call is different from the

result of the explicit conversion uint64(aFloat64).

In the following example, we use this pattern to convert a [ JMyString slice to type []string, and vice
versa. The result slice and the original slice share the underlying elements. Such conversions are
impossible through safe ways,

1| package main

2|

3| import (

4] "fmt"

5] "unsafe"

6] )

7]

8| func main() {

9] type MyString string

10| ms := []MyString{"C", "C++", "Go"}

11| fmt.Printf("%s\n", ms) // [C C++ GO]

12| // ss := ([]string)(ms) // compiling error
13| ss := *(*[]string) (unsafe.Pointer(&ms))
14 | ss[1] = "Rust"

15| fmt.Printf("%s\n", ms) // [C Rust GoO]

16 | // ms = []MyString(ss) // compiling error
17 | ms = *(*[]MyString) (unsafe.Pointer(&ss))
18] }

Pattern 2: convert unsafe pointer to uintptr, then use the uintptr
value.

This pattern is not very useful. Usually, we print the result uintptr values to check the memory addresses

stored in them. However, there are other less verbose ways to this job. So this pattern is not much useful.

Example:

1| package main
2|
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3| import "fmt"
4| import "unsafe"

5]

6| func main() {

7] type T struct{a int}

8| var t T

9] fmt.Println(&t) // &{0}

10| println(&t) // 0xc6233120a8

11| // The next line print: c6233120a8

12| fmt.Printf("%x\n", uintptr(unsafe.Pointer(&t)))
13| }

The outputted addresses might be different for each run.

Pattern 3: convert unsafe pointer to uintptr, do arithmetic operations
with the uintptr value, then convert it back

For example:

1| package main

2|

3| import "fmt"

4| import "unsafe"

5]

6| type T struct {

7| X bool

8] y [3]int16

9| }

10|

11| const N = unsafe.Offsetof(T{}.y)

12| const M = unsafe.Sizeof([3]int16{}[0])

13|

14| func main() {

15| t := T{y: [3]int16{123, 456, 789}}

16 | p := unsafe.Pointer(&t)

17 | // "uintptr(p)+N+M+M" is the address of t.y[2].
18| ty2 := (*int16) (unsafe.Pointer (uintptr(p)+N+M+M))
19| fmt.Println(*ty2) // 789

20| }

Please note, in this specified example, the conversion unsafe.Pointer (uintptr(p) + N + M + M)

shouldn't be split into two lines, like the following code shows. Please read the comments in the code for

the reason.

1] func main() {
2| t := T{y: [3]int16{123, 456, 789}}
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3] p := unsafe.Pointer(&t)

4| // ty2 := (*int16) (unsafe.Pointer (uintptr(p)+N+M+M))
5] addr := uintptr(p) + N+ M + M

6| // Now the t value becomes unused, its memory may be
7] // garbage collected at this time. So the following
8| // use of the address of t.y[2] may become invalid
9] // and dangerous!

10| // Another potential danger is, if some operations
11| // make the stack grow or shrink here, then the

12| // address of t might change, so that the address
13| // saved in addr will become invalid (fact 3),

14| // though this danger doesn't exist for this

15| // specified example.

16 | ty2 := (*int16)(unsafe.Pointer(addr))

17| fmt.Println(*ty2)

18] }

Such bugs are very subtle and hard to detect, which is why the uses of unsafe pointers are dangerous.

If we do want to split that conversion line into two lines, we should call the runtime.KeepAlive
function and pass the unsafe pointer p (or any other value which is also referencing value t.y[2]) as the

argument, after the split two lines. Like this

1| func main() {

2] t := T{y: [3]int16{123, 456, 789}}

3| p := unsafe.Pointer(t)

4| addr := uintptr(p) + N+ M + M

5] ty2 := (*int16)(unsafe.Pointer(addr))

6| // This following line ensures the memory of
7| // the value t will not get garbage collected
8| // currently for sure.

9] runtime.KeepAlive(p)

10| fmt.Println(*ty2)

11| }

However, I don't recommend to use the runtime.KeepAlive trick for this use pattern, for the potential

another danger mentioned above. If is possible that the stack grows when the runtime allocates memory

for the variable ty2, so that the address of t changes and the value stored in addr becomes invalid,
which directly leads to the value of ty2 is also invalid. But honestly speaking, this potential danger

doesn't exist here if the code compiles with the standard Go compiler. In the implementation of the

standard Go compiler, a runtime.KeepAlive call will makes its argument and the values referenced by

the argument be allocated on heap and memory blocks allocated on heap will be never moved.

Another detail which should be also noted is that, it is not recommended to store the end boundary of a
memory block in a pointer (either safe or unsafe one). Doing this will prevent another memory block
which closely follows the former memory block from being garbage collected. Please read this FAQ item
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(851) to get more explanations.

Pattern 4: convert unsafe pointers to uintptr values as arguments of
syscall.Syscall calls.

From the explanations for the last pattern, we know that the following function is dangerous.

1| // Assume this function will not inlined.
2| func DoSomething(addr uintptr) {
3| // read or write values at the passed address ...

4| }

The reason why the above function is dangerous is that the function itself can't guarantee the memory
block at the passed argument address is not garbage collected yet. If the memory block is collected or is
reallocated for other values, then the operations made in the function body are dangerous.

However, the prototype of the Syscall function in the syscall standard package is as

func Syscall(trap, al, a2, a3 uintptr) (rl1, r2 uintptr, err Errno)

How does this function guarantee that the memory blocks at the passed addresses a1, a2 and a3 are still
not garbage collected yet within the function internal? The function can't guarantee this. In fact, compilers
will make the guarantee. It is the privilege of calls to syscall.Syscall alike functions.

We can think that, compilers will automatically insert some instructions for each of the unsafe pointer
arguments who are converted to uintptr, like the third argument in the following syscall.Syscall

call, to prevent the memory block referenced by that argument from being garbage collected or moved.

The following call is safe:

1| syscall.Syscall(SYS_READ, uintptr(fd),
2| uintptr(unsafe.Pointer(p)), uintptr(n))

But the following call is dangerous:

1] u := uintptr(unsafe.Pointer(p))

2| // At this time, the value referenced by p might

3| // have become unused and been collected already,

4| // or the address of the value has changed.

5| syscall.Syscall(SYS_READ, uintptr(fd), u, uintptr(n))

Again, never use this pattern when calling other functions.

Pattern 5: convert the uintptr result of reflect.value.Pointer or
reflect.Value.UnsafeAddr method call to unsafe pointer
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The methods Pointer and UnsafeAddr of the Value type in the reflect standard package both
return a result of type uintptr instead of unsafe.Pointer. This is a deliberate design, which is to
avoid converting the results of calls (to the two methods) to any safe pointer types without importing the
unsafe standard package.

The design requires the return result of a call to either of the two methods must be converted to an unsafe
pointer immediately after making the call. Otherwise, there will be small time window in which the
memory block allocated at the address stored in the result might lose all references and be garbage
collected.

For example, the following call is safe.

p := (*int)(unsafe.Pointer(reflect.ValueOf(new(int)).Pointer()))

On the other hand, the following call is dangerous.

1] u := reflect.ValueOf(new(int)).Pointer()

2| // At this moment, the memory block at the address
3| // stored in u might have been collected already.
4| p := (*int)(unsafe.Pointer(u))

Note: this pattern also applies to the syscall.Proc.Call # and syscall.LazyProc.Call # methods on
Windows.

Pattern 6: convert a reflect.SliceHeader.Data or
reflect.StringHeader .Data field to unsafe pointer, and the
inverse.

For the same reason mentioned for the last subsection, the Data fields of the struct type SliceHeader
and StringHeader inthe reflect standard package are declared with type uintptr instead of

unsafe.Pointer.

We convert a pointer to a string to a *reflect.StringHeader pointer value, so that we can manipulate
the internal of the string. The same, we can convert a pointer to a slice toa *reflect.SliceHeader

pointer value, so that we can manipulate the internal of the slice.
An example of using reflect.StringHeader :

1| package main

2|

3| import "fmt"

4| import "unsafe"
5| import "reflect"
6]

7| func main() {
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8] a := [...]byte{'G"', 'o', '1', 'a', 'n', 'g'}

9| s := "Java"

10| hdr := (*reflect.StringHeader) (unsafe.Pointer(&s))
11| hdr.Data = uintptr(unsafe.Pointer(&a))

12| hdr.Len = len(a)

13| fmt.Println(s) // Golang

14| // Now s and a share the same byte sequence, which
15| // makes the bytes in the string s become mutable.
16| a[2], a[3], a[4], a[5] = 'o', 'g', '1l', 'e'

17| fmt.Println(s) // Google

18] }

An example of using reflect.SliceHeader:

1| package main

2|

3| import (

4] "fmt"

5] "unsafe"

6 | "reflect"

7] "runtime"

8] )

9]

10| func main() {

11| a := [6]byte{'G', 'Oo', '1', 'O', '1'}
12| bs := []byte("Golang")

13| hdr := (*reflect.SliceHeader)(unsafe.Pointer(&bs))
14 | hdr.Data = uintptr(unsafe.Pointer(&a))
15| runtime.KeepAlive(&a) // needed!

16 | hdr.Len = 2

17 | hdr.Cap = len(a)

18| fmt.Printf("%s\n", bs) // Go

19| bs = bs[:cap(bs)]

20| fmt.Printf("%s\n", bs) // Golol

21| }

Note, a runtime.KeepAlive call is needed in this example, otherwise, the slice might reference an

invalid underlying byte sequence.

In general, we should only get a *reflect.StringHeader pointer value from an actual (already
existed) string, or get a *reflect.SliceHeader pointer value from an actual (already existed) slice. We
shouldn't do the contrary, such as creating a string from a StringHeader, or creating a slice from a

SliceHeader . For example, the following code is dangerous.
1| var hdr reflect.StringHeader

2| hdr.Data = uintptr(unsafe.Pointer(new([5]byte)))
3| // Now the just allocated byte array has lose all
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4| // references and it can be garbage collected now.
5| hdr.Len = 5
6| s := *(*string)(unsafe.Pointer(&hdr)) // dangerous!

The following is an example which shows how to convert a string to to a byte slice, by using the unsafe
way. Different from the safe conversion from a string to to a byte slice, the unsafe way doesn't allocate a

new underlying byte sequence for the result slice in each conversion.

1| package main

2|

3| import (

4] "fmt"

5] "unsafe"

6 | "reflect"

7] "runtime"

8| "strings"

9] )

10|

11| func String2ByteSlice(str string) (bs []byte) {
12| strHdr := (*reflect.StringHeader)(unsafe.Pointer(&str))
13| sliceHdr := (*reflect.SliceHeader)(unsafe.Pointer(&bs))
14| sliceHdr.Data = strHdr.Data

15| sliceHdr.Len = strHdr.Len

16 | sliceHdr.Cap = strHdr.Len

17 | // This KeepAlive line is essential to make the
18| // String2ByteSlice function be always valid
19| // when it is used in other custom packages.
20| runtime.KeepAlive(&str)

21| return

22| }

23]

24| func main() {

25| str := strings.Join([]string{"Go", "land"}, "")
26 | s := String2ByteSlice(str)

27 | fmt.Printf("%s\n", s) // Goland

28| s[5] = 'g'

29| fmt.Println(str) // Golang

30| }

The docs #  of the SliceHeader and StringHeader types in the reflect standard package are
similar. The docs says the representations of the two struct types may change in a later release. So the
above example may become invalid even if the unsafe rules keep unchanged. Fortunately, the current two
available Go compilers (the standard Go compiler and the gccgo compiler) both recognize the

representations of the two types declared in the reflect standard package.

It is also possible to convert a byte slice to a string by using a similar way. However, currently (Go 1.13),

there is a simpler but more efficient (and more unsafe) way to convert a byte slice to a string.
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1| func ByteSlice2String(bs []byte) string {
2| return *(*string)(unsafe.Pointer(&bs))

3] }

This is the implementation adopted by the String method of the Builder type supported since Go 1.10

in the strings standard package. It makes use of the first pattern introduced above.

In fact, in practice, to avoid the danger caused by missing runtime.KeepAlive calls, it is more
recommended to define our own custom SliceHeader and StringHeader struct types which hold

Data fileds of the unsafe.Pointer type instead of the uintptr type. For example,

1| type SliceHeader struct {

2] Data unsafe.Pointer

3] Len int

4| Cap int

5] }

6]

7| type StringHeader struct {

8| Data unsafe.Pointer

9] Len int

10| }

11|

12| func String2ByteSlice(str string) (bs []byte) {
13| strHdr := (*StringHeader)(unsafe.Pointer(&str))
14 | sliceHdr := (*SliceHeader)(unsafe.Pointer(&bs))
15| sliceHdr.Data = strHdr.Data

16 | sliceHdr.Len = strHdr.Len

17 | sliceHdr.Cap = strHdr.Len

18]

19| // The KeepAlive call is inessential now.
20| //runtime.KeepAlive (&str)

21| return

22| }

Matthew Dempsky has made a proposal which suggests # adding the two custom SliceHeader and
StringHeader types to the unsafe standard package.

|Final Words

From the above content, we know that, for some cases, the unsafe mechanism can help us write more
efficient Go code. However, it is very easy to introduce some subtle bugs which have very low
possibilities to produce when using the unsafe mechanism. A program with these bugs may run well for a
long time, but suddenly behave abnormally and even crash at a later time. Such bugs are very hard to
detect and debug.
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We should only use the unsafe mechanism when we have to, and we must use it with extreme care. In
particular, we should follow the instructions described above.

And again, we should aware that the unsafe mechanism introduced above may change and even become
invalid totally in later Go versions, though no evidences this will happen soon. If the unsafe mechanism
rules change, the above introduced valid unsafe pointer use patterns may become invalid. So please keep it
easy to switch back to the safe implementations for you code depending on the unsafe mechanism.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com !  to get more information about these games. Hope you enjoy them.)
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Built-in Generics

Currently (Go 1.13), Go doesn't support user-defined generic types, and only supports generics for first-
class citizen composite types. We can use composite types to create infinite custom types by using all
kinds of first-class citizen types in Go.

This article will show type composition examples and explain how to read these composited types.

IType Composition Examples

Type compositions in Go are designed very intuitive and easy to interpret. It is hardly to get lost in
understanding Go composite types, even if for some very complex ones. The following will list several

type composition examples, from simpler ones to more complex ones.
Let's view an simple composite type literal.

1| [3][4]int

When interpreting a composite type, we should look at it from left to right. The [3] on the left in the
above type literal indicates that this type is an array type. The whole right part following the [4]int is

another array type, which is the element type of the first array type. The element type of the element type
(an array type) of the first array type is built-in type int. The first array type can be viewed as a two-

dimensional array type.

An example on using this two-dimensional array type.

1| package main

2|
3| import (
4] "fmt"
5] )
6]
7] func main() {
8| matrix := [3][4]int{
9] {1, o, 0, 1},
10| {0, 1, 0, 1},
11| {0, o, 1, 1},
12| }
13|
14 | matrix[1][1] = 3
15| a := matrix[1] // type of a is [4]int
16 | fmt.Println(a) // [0 3 0 1]
17| }
Similarlv
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Similarly,

[1[1string is a slice type whose element type is another slice type []string.

**bool is a pointer type whose base type is another pointer type *bool.

chan chan int is a channel type whose element type is another channel type chan int.
map[int]map[int]string is a map type whose element type is another map type
map[int]string. The key types of the two map types are both int.

func(int32) func(int32) is a function type whose only return result type is another function

type func(int32). The two function types both have only one input parameter with type int32.

Let's view another type.

1]

chan *[16]byte

The chan keyword at the left most indicates this type is a channel type. The whole right part *[16]byte,

which is a pointer type, denotes the element type of this channel type. The base type of the pointer type is

[16]byte, which is an array type. The element type of the array type is byte.

An example on using this channel type.

1]
2]
3]
4]
5]
6]
7]
8]
9]
10|
11|
12|
13|
14|
15|
16|
17]
18]
19|
20|
21|
22|
23|
24|
25|
26|
27

package main

import (
llfmt 1]
"time"
"crypto/rand"
)

func main() {
c := make(chan *[16]byte)

go func() {
// Use two arrays to avoid data races.
var dataA, dataB = new([16]byte), new([16]byte)

for {
_, err := rand.Read(dataA[:])
if err '= nil {
close(c)
} else {

c <- dataA
dataA, dataB = dataB, dataA

b
+0)

for data := range c {
fmt.Println((*data)[:])
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28| time.Sleep(time.Second / 2)
29| }
30| }

Similarly, type map[string][]func(int) int is a map type. The key type of this map type is
string. The remaining right part []func(int) int denotes the element type of the map type. The []

indicates the element type is a slice type, whose element type is a function type func(int) int.

An example on using the just explained map type.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| addone := func(x int) int {return x + 1}

7] square := func(x int) int {return x * x}

8] double := func(x int) int {return x + X}

9|

10| transforms := map[string][]func(int) int {
11| "inc, inc, inc": {addone, addone, addone},
12| "sqr, inc,dbl": {square, addone, double},
13| "dbl, sqr,sqr": {double, double, square},
14| }

15|

16 | for _, n := range []int{2, 3, 5, 7} {

17 | fmt.Println(">>>", n)

18| for name, transfers := range transforms {
19| result :=n

20| for _, xfer := range transfers {

21| result = xfer(result)

22| }

23| fmt.Printf (" %v: %v \n", name, result)
24 | 1

25| }

26| }

Below is a type which looks some complex.

1| [Imap[struct {

2| a int

3| b struct {

4| x string

5] y bool

6] }

7| }linterface {

8| Build([]Jbyte, struct {x string; y bool}) error
9| Update(dt float64)
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10| Destroy()
11| }

Let's read it from left to right. The starting [] at the left most indicates this type is a slice type. The
following map keyword shows the element type of the slice type is a map type. The struct type denoted by
the struct literal enclosed in the [] following the map keyword is the key type of the map type. The
element type of the map type is an interface type which specifies three methods. The key type, a struct
type, has two fields, one field a is of int type, and the other field b is of another struct type struct {x

string; y bool}.

Please note that the second struct type is also used as one parameter type of one method specified by the
just mentioned interface type.

To get a better readability, we often decompose such a type into multiple type declarations. The type alias
T declared in the following code and the just explained type above denote the identical type.

1| type B = struct {

2| X string

3] y bool

4| }

5]

6| type K = struct {

7] a int

8] b B

9] }

10|

11| type E = interface {
12| Build([]byte, B) error
13| Update(dt float64)
14 | Destroy()

15| }

16|

17| type T = []map[K]E

The Current Status of the Built-in Generic Functionalities
in Go

Besides the built-in generics for composite types, there are several built-in functions which also support

generics. Such as the built-in 1en function can be used to get the length of values of arrays, slices, maps,
strings and channels. Generally, the functions in the unsafe standard package are also viewed as built-in

functions.

The fact that currently Go doesn't support generics for custom types and functions really brings some

inconveniences in Go programming sometimes. For example, the types of the arguments and results of

276



§26. Built-in Generics

most functions in the math standard package are float64. When we want to use these functions on
values of other kinds of numeric types, we must first convert the values to float64 values as arguments,
and we must convert the float64 results back to the original numeric types, which is not only

inconvenient, but also is not efficient.

Luckily, many kinds of Go projects don't need custom general types and functions. And the shortcomings
caused by lacking of custom generics can be partially remedied by the reflection functionalities provided
in Go (at run time) and code generating (at compile time).

IThe Future of Generics in Go

Go language design and development team wouldn't mind supporting generics feature in Go # , it is just
that they haven't found a generics solution # which will keep Go simple and clean yet. So, it is (very)
possible that Go 2 will support custom generics. Currently, there is a page for Go 2 draft designs f ,
including a generics design draft. The draft is still in the early phase so the final implementation would be
much different.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Reflections in Go

Go is a static language with well reflection support. The remaining of this article will explain the
reflection functionalities provided in the reflect standard package.

It is very helpful to read the overview of Go type system (§14) and interfaces in Go (§23) articles before

reading the remaining of the current article.

IOverView of Go Reflection

From the last article (§26), we know that currently Go lacks of generic support for custom types and
functions. Go reflection brings many dynamic functionalities to Go programming, which makes up for the
lacking of custom generic problem to some extent (though the reflection way is less efficient than real
generic from the CPU consuming view). Many standard code packages, such as the fmt and encoding

packages, heavily rely on the reflection functionalities heavily.

We can inspect Go values through the values of the Type and Value types defined in the reflect
standard package. The remaining of this article will show some examples on how to use values of the two
types.

One of the Go reflection design goals is any non-reflection operation should be also possible to be applied
through the reflection ways. For all kinds of reasons, this goal is not 100 percent achieved currently (Go
1.13). However, most non-reflection operations can be applied through the reflection ways now. On the
other hand, through the reflection ways, we can do some operations which are impossible to be achieved
through non-reflection ways. The operations which can't and can only be achieved through the reflection
ways will be mentioned in the following sections.

IThe reflect.Type Type and Values

In Go, we can create a reflect.Type value from an arbitrary non-interface value by calling the
reflect.TypeOf function. The result reflect.Type value represents the type of the non-interface
value. Surely, we can also pass an interface value to a reflect.TypeOf function call, but the call will
return a reflect.Type value which represents the dynamic type of the interface value. In fact, the
reflect.TypeOf function has only one parameter of type interface{} and always returns a
reflect.Type value which represents the dynamic type of the only interface parameter. Then how to get
a reflect.Type value which represents an interface type? We must use indirect ways which will be

introduced below to achieve this goal.

The reflect.Type type is an interface type. It specifies several methods . We can call these methods

to inspect the information of the type represented by a reflect.Type receiver value. Some of these
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methods apply for all kinds of types # , some of them are one kind or several kinds specific. Please read
the documentation of each method for details. Calling one of the methods through an improper
reflect.Type receiver value will produce a panic.

An example:

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| func main() {

7] type A = [16]int16

8| var ¢ <-chan map[A][]byte

9| tc := reflect.TypeOf(c)

10| fmt.Println(tc.Kind()) // chan

11| fmt.Println(tc.ChanDir()) // <-chan

12| tm := tc.Elem()

13| ta, tb := tm.Key(), tm.Elem()

14 | // The next line prints: map array slice
15| fmt.Println(tm.Kind(), ta.Kind(), tb.Kind())
16 | tx, ty := ta.Elem(), tb.Elem()

17|

18| // byte is an alias of uint8

19| fmt.Println(tx.Kind(), ty.Kind()) // intl16 uint8
20| fmt.Println(tx.Bits(), ty.Bits()) // 16 8
21| fmt.Println(tx.ConvertibleTo(ty)) // true
22| fmt.Println(tb.ConvertibleTo(ta)) // false
23|

24| // Slice and map types are incomparable.
25| fmt.Println(tb.Comparable()) // false

26 | fmt.Println(tm.Comparable()) // false

27 | fmt.Println(ta.Comparable()) // true

28| fmt.Println(tc.Comparable()) // true

29| }

There are 26 kinds of types # in Go.

In the above example, we use the method Elem to get the element types of some container types (a
channel type, a map type, a slice type and an array type). In fact, we can also use this method to get the

base type of a pointer type. For example,

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| type T []interface{m()}
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7| func (T) m() {}

8]

9| func main() {

10| tp := reflect.TypeOf(new(interface{}))

11| tt := reflect.TypeOf(T{})

12| fmt.Println(tp.Kind(), tt.Kind()) // ptr slice
13|

14| // Get two interface Types indirectly.

15| ti, tim := tp.Elem(), tt.Elem()

16| // The next line prints: interface interface
17| fmt.Println(ti.Kind(), tim.Kind())

18|

19| fmt.Println(tt.Implements(tim)) // true

20| fmt.Println(tp.Implements(tim)) // false
21| fmt.Println(tim.Implements(tim)) // true

22|

23| // All types implement any blank interface type.
24| fmt.Println(tp.Implements(ti)) // true

25| fmt.Println(tt.Implements(ti)) // true

26 | fmt.Println(tim.Implements(ti)) // true

27 | fmt.Println(ti.Implements(ti)) // true

28| }

We can get all of the field types (of a struct type) and the method information of a type through reflection.
We can also get the parameter and result type information of a function type through reflection.

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| type F func(string, int) bool

7| func (f F) Validate(s string) bool {

8| return f(s, 32)

9| }

10|

11| func main() {

12| var x struct {

13| N int

14| fF

15| }

16 | tx := reflect.TypeOf(x)

17 | fmt.Println(tx.Kind()) // struct

18| fmt.Println(tx.NumField()) // 2

19| fmt.Println(tx.Field(1).Name) // f

20| tf := tx.Field(1).Type

21| fmt.Println(tf.Kind()) // func
22| fmt.Println(tf.IsVariadic()) // false
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23| fmt.Println(tf.NumIn(), tf.NumOut()) // 2 1

24| fmt.Println(tf.NumMethod()) // 1

25| fmt.Println(tf.Method(0).Name) // Validate
26 | ts, ti, tb := tf.In(0), tf.In(1), tf.out(O@)

27| // The next line prints: string int bool

28| fmt.Println(ts.Kind(), ti.Kind(), tb.Kind())

29| }

Note, the reflect.Type.NumMethod only returns the number of exported methods (including implicitly

declared ones) of a type.
Note,

1. the reflect.Type.NumMethod only returns the number of exported methods (including implicitly

declared ones) of a type. We are unable to get the information of a non-exported method by using
the reflect.Type.MethodByName method.

2. Although a reflect.Type.NumField method call returns the number of all fields (including non-
exported ones) of a struct type, it is not a good idea ! to use the reflect.Type.FieldByName

method to get the information of a non-exported field.

We can inspect struct field tags through reflection # . The types of struct field tags are
reflect.StructTag, which has two methods, Get and Lookup. An example of inspecting struct field

tags:

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| type T struct {

7] X int "max:"99" min:"@""

8| Y bool “optional:"yes"®

9| }

10|

11| func main() {

12| t := reflect.TypeOf(T{})

13| X, y := t.Field(0).Tag, t.Field(1).Tag

14 | fmt.Println(reflect.TypeOf(x)) // reflect.StructTag
15|

16 | tag, present := y.Lookup("default")

17 | fmt.Println(len(tag), present) // 0 false
18| fmt.Println(y.Lookup("optional")) // yes true
19|

20| fmt.Println(x.Get("max"), x.Get("min")) // 99 O
21| }

Beside the reflect.TypeOf function, we can also use some other functions in the reflect standard
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package to create reflect.Type values which represent some non-defined composite types.

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| func main() {

7] ta := reflect.ArrayOf(5, reflect.TypeOf(123))
8| fmt.Println(ta) // [5]int

9| tc := reflect.ChanOf(reflect.SendDir, ta)

10| fmt.Println(tc) // chan<- [5]int

11| tp := reflect.PtrTo(ta)

12| fmt.Println(tp) // *[5]int

13| ts := reflect.SliceOf(tp)

14| fmt.Println(ts) // []*[5]int

15| tm := reflect.MapOf(ta, tc)

16| fmt.Println(tm) // map[[5]int]chan<- [5]int

17 | tf := reflect.FuncOf([]reflect.Type{ta},

18| [Jreflect.Type{tp, tc}, false)

19| fmt.Println(tf) // func([5]int) (*[5]int, chan<- [5]int)
20| tt := reflect.StructOf([]Jreflect.StructField{
21| {Name: "Age", Type: reflect.TypeOf("abc")},
22| 1)

23| fmt.Println(tt) // struct { Age string }
24| fmt.Println(tt.NumField()) // 1

25| }

There are more reflect.Type methods which are not used in above examples, please read the reflect

package documentation for their usages.

Note, up to now (Go 1.13), there are no ways to create interface types through reflection. This is a known
limitation of Go reflection.

Another limitation is, although we can create a struct type embedding other types as anonymous fields
through reflection, the struct type may or may not obtain the methods of the embedded types, and creating
a struct type with anonymous fields even might panic at run time. In other words, the behavior of creating

struct types with anonymous fields is partially compiler dependent.

The third limitation is we can't declare new types through reflection.

IThe reflect.Value Type and Values

Similarly, we can create a reflect.Value value from an arbitrary non-interface value by calling the
reflect.VvalueOf function. The result reflect.Value value represents the non-interface value. Same

as the reflect.TypeOf function, the reflect.ValueOf function also has only one parameter of type
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interface{}. When an interface argument is passed to a reflect.ValueOf function call, the call will
return a reflect.Value value which represents the dynamic value of the interface argument. To get a
reflect.Vvalue value which represents an interface value, we must use indirect ways which will be

introduced below to achieve this goal.

The value represented by a reflect.Value value v is often called the underlying value of v.

There are plenty of methods #  declared for the reflect.Vvalue type. We can call these methods to

inspect the information of (and manipulate) the underlying value of a reflect.Value receiver value.
Some of these methods apply for all kinds of values, some of them are one kind or several kinds specific.
Please read the reflect standard package documentation for details. Calling a kind-specific method with

an improper reflect.Value receiver value will produce a panic.

The CanSet method of a reflect.Value value returns whether or not the underlying value of the
reflect.Vvalue value is modifiable (can be assigned to). If the Go value is modifiable, we can call the
Set method of the corresponding reflect.Value value to modify the Go value. Note, the

reflect.Vvalue values returned directly by reflect.VvalueOf function calls are always read-only.

An example:

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| func main() {

7| n := 123

8| p := &n

9| vp := reflect.ValueOf(p)

10| fmt.Println(vp.CanSet(), vp.CanAddr()) // false false
11| vn := vp.Elem() // get the value referenced by vp
12| fmt.Println(vn.CanSet(), vn.CanAddr()) // true true
13| vn.Set(reflect.ValueOf(789)) // <=> vn.SetInt(789)
14 | fmt.Println(n) // 789

15] }

Non-exported fields of struct values can't be modified through reflections.

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| func main() {

7| var s struct {

8| X interface{} // an exported field
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9]
10 |
11 |
12|
13|
14|
15|
16 |
17|
18|
19|
20 |
21|
22|
23|
24|
25| }

From the above two examples, we can learn that there are two ways to get a reflect.Value value

whose underlying value is referenced by the underlying value (a pointer value) of another
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y interface{} // a non-exported field
}
vp := reflect.ValueOf(&s)
// If vp represents a pointer. the following
// line is equivalent to "vs := vp.Elem()".
vs := reflect.Indirect(vp)
// vx and vy both represent interface values.
VX, vy := vs.Field(0), vs.Field(1)
fmt.Println(vx.CanSet(), vx.CanAddr()) // true true
// vy 1s addressable but not modifiable.
fmt.Println(vy.CanSet(), vy.CanAddr()) // false true
vb := reflect.VvalueOf(123)
vXx.Set(vb) // okay, for vx is modifiable
// vy.Set(vb) // will panic, for vy is unmodifiable
fmt.Println(s) // {123 <nil>}
fmt.Println(vx.IsNil(), vy.IsNil()) // false true

reflect.Value value.

1. One way is by calling the E1em method of a reflect.Value value which represents the pointer

value.

2. The other way is to pass a reflect.Value value which represents the pointer value to a
reflect.Indirect function call. (If the argument passed to a reflect.Indirect function call

doesn't represent a pointer value, then the call returns a copy of the argument.)

Note, the reflect.Value.Elem method can be also used to get a reflect.Value value which

represents the dynamic value of an interface value. For example,

1| package main

2]

3| import "fmt"
4| import "reflect"

5]

6| func main() {

7]
8]
9]
10|
11|
12|
13|
14|
15|
16| }

var z = 123

var y = &z

var x interface{} = vy

v := reflect.ValueOf (&x)

vxX := v.Elem()
vy := vx.Elem()
vz := vy.Elem()

vz.Set(reflect.ValueOf(789))
fmt.Println(z) // 789
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The reflect standard package also declares some reflect.Value related functions. Each of these

functions corresponds to a built-in function or a non-reflection functionality, The following example

demonstrates how to bind a custom generic function to different function values.

1]

2|

3|

4

5]

6]

7]

8|

9]
10|
11|
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|

package main

import "fmt"
import "reflect"

func InvertSlice(args []reflect.Value) (result []reflect.Value) {
inSlice, n := args[0], args[0].Len()
outSlice := reflect.MakeSlice(inSlice.Type(), 0, n)
for 1 := n-1; 1 >= 0; i-- {
element := inSlice.Index(1)
outSlice = reflect.Append(outSlice, element)

b

return [Jreflect.Value{outSlice}

func Bind(p interface{}, f func ([]Jreflect.Value) []Jreflect.Value) {
// invert represents a function value.
invert := reflect.ValueOf(p).Elem()
invert.Set(reflect.MakeFunc(invert.Type(), f))

func main() {
var invertInts func([]int) []int
Bind(&invertInts, InvertSlice)
fmt.Println(invertInts([]int{2, 3, 5})) // [5 3 2]

var invertStrs func([]string) []string
Bind(&invertStrs, InvertSlice)
fmt.Println(invertStrs([]string{"Go", "C"})) // [C Go]

}

If the underlying value of a reflect.Value is a function value, then we can call the Call method of the

reflect.Value to call the underlying function.

1]
2|
3
4]
5]
6
7]
8]
9]
10|

package main

import "fmt"
import "reflect"

type T struct {

A, b int

func (t T) AddSubThenScale(n int) (int, int) {
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11| return n * (t.A + t.b), n * (t.A - t.b)

12] }

13|

14| func main() {

15| t := T{5, 2}

16| vt := reflect.ValueOf(t)

17| vm := vt.MethodByName("AddSubThenScale")

18| results := vm.Call([]reflect.Value{reflect.ValueOf(3)})
19| fmt.Println(results[0].Int(), results[1].Int()) // 21 9
20|

21| neg := func(x int) int {

22| return -x

23| ¥

24| vf := reflect.ValueOf(neg)

25| fmt.Println(vf.Call(results[:1])[0].Int()) // -21

26 | fmt.Println(vf.Call([]Jreflect.Value{

27| vt.FieldByName("A"), // panic on changing to "b"

28| }[0].Int()) // -5

29| }

Please note that, non-exported fields shouldn't be used as arguments of reflection calls. If the line
vt.FieldByName("A") in the above example is replaced with vt .FieldByName("b"), a panic will

occur.
A reflection example for map values.

1| package main

2|

3| import "fmt"

4| import "reflect"

5]

6| func main() {

7| valueOf := reflect.ValueOf

8| m := map[string]int{"Unix": 1973, "Windows": 1985}
9] v := valueOf(m)

10| // A zero second Value argument means to delete an entry.
11| v.SetMapIndex(valueOf("Windows"), reflect.Value{})
12| v.SetMapIndex(valueOf("Linux"), valueOf(1991))

13| for 1 := v.MapRange(); i.Next(); {

14| fmt.Println(i.Key(), "\t:", i.Value())

15| }

16| }

Please note that, the MapRange method is supported since Go 1.12.

A reflection example for channel values.

1| package main
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3| import "fmt"
4| import "reflect"

5]

6| func main() {

7|
8|
9|
10|
11|
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22| }

c := make(chan string, 2)

vc := reflect.ValueOf(c)
vc.Send(reflect.valueOf("C"))

succeeded := vc.TrySend(reflect.ValueOf("Go"))
fmt.Println(succeeded) // true

succeeded = vc.TrySend(reflect.ValueOf("C++"))
fmt.Println(succeeded) // false
fmt.Println(vc.Len(), vc.Cap()) // 2 2

vs, succeeded := vc.TryRecv()
fmt.Println(vs.String(), succeeded) // C true
vs, sentBeforeClosed := vc.Recv()
fmt.Println(vs.String(), sentBeforeClosed) // Go false
vs, succeeded = vc.TryRecv()
fmt.Println(vs.String()) // <invalid Value>
fmt.Println(succeeded) // false

The TrySend and TryRecv methods correspond to one-case-one-default select control flow code
blocks (821).

We can use the reflect.Select function to simulate a select code block with dynamic number of

case branches at run time.

1| package main

2|

3| import "fmt"
4| import "reflect"

5]

6| func main() {

7]

8]

9]
10|
11|
12|
13|
14|
15|
16|
17
18]
19|
20|

c := make(chan int, 1)

vc := reflect.ValueOf(c)

succeeded := vc.TrySend(reflect.Value0Of(123))
fmt.Println(succeeded, vc.Len(), vc.Cap()) // true 1 1

vSend, vZero := reflect.ValueOf(789), reflect.Value{}
branches := []reflect.SelectCase{
{Dir: reflect.SelectDefault, Chan: vZero, Send: vZero},
{Dir: reflect.SelectRecv, Chan: vc, Send: vZero},
{Dir: reflect.SelectSend, Chan: vc, Send: vSend},

}
selIndex, VRecv, sentBeforeClosed := reflect.Select(branches)
fmt.Println(selIndex) // 1

fmt.Println(sentBeforeClosed) // true
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21| fmt.Println(vRecv.Int()) // 123

22| vc.Close()

23| // Remove the send case branch this time,

24| // for it may cause panic.

25| selIndex, _, sentBeforeClosed = reflect.Select(branches[:2])
26| fmt.Println(selIndex, sentBeforeClosed) // 1 false

27| }

The respective underlying values of some reflect.Value values may be nothing. For example, zero

reflect.Value values.

1| package main

2|

3| import "reflect"
4| import "fmt"

5]

6| func main() {

7] var z reflect.Value // a zero Value value

8] fmt.Println(z) // <invalid reflect.Value>

9| v := reflect.ValueOf((*int)(nil)).Elem()

10| fmt.Println(v) // <invalid reflect.Value>

11| fmt.Println(v == z) // true

12| var i = reflect.ValueOf([]interface{}{nil}).Index(0)
13| fmt.Println(1i) // <nil>

14 | fmt.Println(i.Elem() == z) // true

15| fmt.Println(i.Elem()) // <invalid reflect.Value>
16]

For a Go value, we can use the reflect.ValueOf function to create a reflect.Value value
representing the Go value, through the help of interface{}. The inverse process in similar, we can call
the Interface method of a reflect.Value value to get an interface{} value, then type assert on
the interface{} value to the Go value represented by (a.k.a., the underlying value of ) the

reflect.Value value.

1| package main

2|

3| import "reflect"
4| import "fmt"

5]

6| func main() {

7| vx := reflect.ValueOf(123)

8| vy := reflect.ValueOf("abc")

9] vz := reflect.ValueOf([]bool{false, true})
10|

11| x := vx.Interface().(int)

12| y := vy.Interface().(string)

13| z := vz.Interface().([]bool)
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14| fmt.Println(x, y, z) // 123 abc [false true]
15| }

Since Go 1.13, we can use the method reflect.Value.IsZero to check whether or not the underlying

value of a reflect.Value value is a zero value.

There are more reflect.Value related functions and methods which are not used in above examples,
please read the reflect package documentation for their usages. In addition, please note that there are
some reflection (§50) related details (§50) mentioned in Go details 101 (850).

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Line Break Rules in Go

If you have written go code much, you should have known that we can't use arbitrary code styles in Go
programming. Specifically speaking, we can't break a code line at an arbitrary space character position.
The remaining of this article will list the detailed line break rules in Go.

ISemicolon Insertion Rules

One rule we often obey in practice is, we should not put the a starting curly brace ({) of any explicit code

block on a new line. For example, the following for loop code block fails to compile.

1] for 1 :=5; 1> 0; i--
2] { // unexpected newline, expecting { after for clause
3] ¥

To make it compiles okay, the starting curly brace mustn't be put on a new line, like the following:

1] for 1 :=5; 1> 0; i-- {
2] 3

However, there are some exceptions for the rule mentioned above. For example, the following bare for

loop block compiles okay.

1] for

2| {

3| // do something ...
4| }

Then, what are the fundamental rules to do line breaks in Go programming? Before answering this

question, we should know a fact that the formal Go grammar uses semicolons ; as terminators of code

lines. However, we seldom use semicolons in our Go code. Why? The reason is most semicolons are
optional and can be omitted. Go compilers will insert the omitted semicolons for us automatically in

compiling.
For example, the ten semicolons in the following program are all optional.

1| package main;

2|

3| import "fmt";
4|

5| func main() {
6 | var (

7| i int;
8| sum int;
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9| );

10| for i < 6 {

11| sum += i;

12| i++;

13| 1

14| fmt.Println(sum);
15| };

Assume the above program is stored in a file named semicolons.go, we canrun go fmt
semicolons.go to remove all the unnecessary semicolons from that file. Compilers will insert the

removed semicolons back (in memory) automatically in compiling the source code.

What are the semicolons insertion rules in Go? Let's read the semicolon rules listed in Go
specification f .

non

The formal grammar uses semicolons ";" as terminators in a number of productions. Go programs

may omit most of these semicolons using the following two rules:

1. When the input is broken into tokens, a semicolon is automatically inserted into the token
stream immediately after a line's final token if that token is
o an identifier (§5)
o an integer, floating-point, imaginary, rune, or string literal (§6)
o one of the keywords break, continue, fallthrough, or return
o one of the operators and punctuation ++, --, ), ], or }
2. To allow complex statements to occupy a single line, a semicolon may be omitted before a
closing ) or }.

For the scenarios listed in the first rule, surely, we can also insert the semicolons manually, just like the

semicolons in the last code example. In other words, these semicolons are optional in programming.

The second rule means the last semicolon in a multi-item declaration before the closing sign ) and the last
semicolon within a code block or a (struct or interface) type declaration before the closing sign } are

optional. If the last semicolon is absent, compilers will automatically insert it back.

The second rule lets us be able to write the following valid code.

1| import (_ "math"; "fmt")

2| var (a int; b string)

3| const (M = iota; N)

4| type (MyInt int; T struct{x bool; y int32})
5| type I interface{mi(int) int; m2() string}
6| func f() {print("a"); panic(nil)}

Compilers will automatically insert the omitted senicolons for us, as the following code shows.
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1| var (a int; b string;);

2| const (M = iota; N;);

3| type (MyInt int; T struct{x bool; y int32;};);
4| type I interface{mi(int) int; m2() string;};
5| func f() {print("a"); panic(nil);};

Compilers will not insert semicolons for any other scenarios. We must insert the semicolons manually as
needed for other scenarios. For example, the first semicolon at each line in the last code example are all
required. The semicolons in the following example are also required.

1| var a = 1; var b = true
2| at+; b = !b
3| print(a); print(b)

From the two rules, we know that a semicolon will never be inserted just after the for keyword. This is

why the bare for loop example shown above is valid.

One consequence of the semicolon insertion rules is that the self increment and self decrement operations

must appear as statements. They can't be used as expressions. For example, the following code is invalid.

1| func f() {

2] a =0

3| // The following two lines both fail to compile.

4| println(a++) // unexpected ++, expecting comma or )
5] println(a--) // unexpected --, expecting comma or )
6] }

The reason why the above code is invalid is compilers will view it as

1| func () {

2| a := 0;

3| println(a++;);
4| println(a--;);
5| }

Another consequence of the semicolon insertion rules is we can't break a line before the dot . in a

selector. We can only break a line after the dot, as the following code shows

1] anObject.

2| MethodA() .
3| MethodB() .
4| MethodC()

whereas the following code fails to compile.

1] anObject
2| .MethodA()
3| .MethodB()
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4 .Methodc()

Compilers will insert a semicolon at the end of each line in the modified version, so the above code is
equivalent to the following code which is obviously invalid.

1] anObject;

2] .MethodA();
3] .MethodB();
4] .MethodC();

The semicolon insertion rules make us write cleaner code. They also make it is possible to write some

valid but a little weird code. For example,

1| package main

2|

3| import "fmt"

4|

5| func alwaysFalse() bool {return false}
6]

7| func main() {

8| for

9] i:=0

10| i<®6

11| it+ {

12| // use i ...

13| }

14|

15| if x := alwaysFalse()

16 | Ix {

17 | // do something

18| }

19|

20| switch alwaysFalse()

21| {

22| case true: fmt.Println("true")
23| case false: fmt.Println("false")
24| }

25| }

All the three control flow blocks are valid. Compilers will insert a semicolon at the end of each of line 9,
10, 15 and 20.

Please note, the switch-case block in the above example will print a true instead of a false. It is

different from

1] switch alwaysFalse() {
2| case true: fmt.Println("true")
3| case false: fmt.Println("false")
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4] 3

If we use the go fmt commend to format the former one, a semicolon will be appended automatically

after the alwaysFalse() call, so it will become to

1] switch alwaysFalse();

2| {

3] case true: fmt.Println("true")
4| case false: fmt.Println("false")
5] }

The modified version is equivalent to the following one.

1] switch alwaysFalse(); true {

2| case true: fmt.Println("true")
3| case false: fmt.Println("false")
4| }

That is why it will print a true.
It is a good habit to run go fmt and go vet often for your code.

For a rare case. the semicolon insertion rules also make some code look valid but invalid actually. For

example, the following code snippet fails to compile.

1| func f(x int) {

2| switch x {

3| case 1:

4| {

5] goto A

6| A: // compiles okay
7| }

8| case 2:

9] goto B

10| B: // syntax error: missing statement after label
11| case 0:

12| goto C

13| C: // compiles okay
14| }

15| }

The compilation error message indicates that there must be a statement following a label declaration. But

it looks none label in the above two examples is followed by a statement. Why is only the B: label

declaration invalid? The reason is, by the second semicolon insertion rule mentioned above, compilers will

insert a semicolon before each of the } characters following the A: and C: label declarations. As the

following code shows.
1| func f(x int) {
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2] switch x {

3| case 1:

4] {

5] goto A

6| A:

7] ;} // a semicolon is inserted here
8] case 2:

9| goto B

10| B: // syntax error: missing statement after label
11| case 0:

12| goto C

13| C:

14| ;} // a semicolon is inserted here
15] }

A solo semicolon represents a blank statement (§11) actually, which is why the A: and C: label
declarations are both valid. On the other hand, the B: label declaration is followed by case 0:, which is

not a statement, so the B: label declaration is invalid.

We can manually insert a semicolon (a blank statement) at the end of each of the B: label declaration to

make it compile okay.

IComma (, ) Will Not Be Inserted Automatically

In some syntax forms containing multiple alike items, commas are used as separators, such as composite
literals, function argument lists, function parameter lists and function result lists. In such a syntax form,
the last item can always be followed by a comma. If the following comma is the last effective character in
its respective code line, then the comma is required, otherwise, it is optional. Compilers will not insert

commas automatically for any cases.

For example, the following code snippet is valid.

1| func fi(a int, b string,) (x bool, y int,) {

2| return true, 789

3| }

4| var f2 func (a int, b string) (x bool, y int)

5| var f3 func (a int, b string, // the last comma is required

6| ) (x bool, y int, // the last comma is required
71 )

8| var _ = []int{2, 3, 5, 7, 9,} // the last comma is optional
9| var _ = []int{2, 3, 5, 7, 9, // the last comma is required
10| }

11| var _ = []int{2, 3, 5, 7, 9}

12| var _, _ = f1(123, "Go",) // the last comma is optional

13| var _, _ = f1(123, "Go", // the last comma is required

14| )
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15| var _, _ = f1(123, "Go")

However, the following code snippet is invalid, for compilers will insert a semicolon for each line in the

code, except the second line. There are three lines which will cause unexpected newline syntax errors.

1| func fi(a int, b string,) (x bool, y int // error

2] ) {

3] return true, 789

4| }

5| var _ = []int{2, 3, 5, 7 // error: unexpected newline
6| }

7| var _, _ = f1(123, "Go" // error: unexpected newline
8] )

IFinal Words

At the end, let's describe the line break rules in Go according to the above explanations.

In Go, a line break is okay (will not affect code behavior) if:

¢ it happens immediately after a keyword other than break, continue and return, or
after any of the three keywords they are not followed by labels or return results;

e it happens immediately after a semicolon, whether the semicolon is inserted explicitly or
implicitly;

e it doesn't lead to an implicit semicolon will be inserted.

Like some other design details in Go, there are both praises and criticisms for the semicolon insertion

rules. Some programmers don't like the rules, for they think the rules limit the freedom of code styles.

Praisers think the rules make code compile faster, and make the code written by different programmers

look similar, so that it is easy to understand the code written by each other.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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More about Deferred Function Calls

Deferred function calls have been introduced before (§13). Due to the limited Go knowledge at that time,

some more details and use cases of deferred functions calls are not touched in that article. These details
and use cases will be touched in the remaining of this article.

Calls to Many Built-in Functions With Return Results
Can't Be Deferred

In Go, the result values of a call to custom functions can be all absent (discarded). However, for built-in
functions with non-blank return result lists, the result values of their calls mustn't be absent (§49) (at least

for the standard Go compiler 1.13), except the calls to the built-in copy and recover functions. On the

other hand, we have learned that the result values of a deferred function call must be discarded, so the calls
to many built-in functions can't be deferred.

Fortunately, the needs to defer built-in function calls (with non-blank return result lists) are rare in
practice. As far as I know, only the calls to the built-in append function may needed to be deferred

sometimes. For this case, we can defer a call to an anonymous function which wraps the append call.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| s := []string{"a", "b", "c", "d"}
7| defer fmt.Println(s) // [a x y d]
8| // defer append(s[:1], "x", "y") // error
9] defer func() {

10| _ = append(s[:1], "x", "y")
11| 10)

12| }

IThe Evaluation Moment of Deferred Function Values

The called function (value) in a deferred function call is evaluated when the call is pushed into the

deferred call stack of the current goroutine. For example, the following program will print false.

1| package main

2|

3| import "fmt"

4|

5| func main() {
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6 | var f = func () {

7] fmt.Println(false)
8] }

9] defer f()

10| f = func () {

11| fmt.Println(true)
12| }

13] }

The called function in a deferred function call may be a nil function value. For such a case, the panic will
occur when the call to the nil function is invoked, instead of when the call is pushed into the deferred call
stack of the current goroutine. An example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| defer fmt.Println("reachable")

7| var f func() // f is nil by default

8| defer f() // panic here

9| // The following lines are also reachable.
10| fmt.Println("also reachable")
11| f = func() {} // useless to avoid panicking
12| }

The arguments of a deferred function call are also evaluated before (§13) the deferred call is pushed into

the deferred call stack of the current goroutine.

IDeferred Calls Make Code Cleaner and Less Bug Prone

Example:

1| import "os"

2|

3| func withoutDefers(filepath string, head, body []byte) error {
4| f, err := os.Open(filepath)
5] if err '= nil {

6 | return err

7] }

8]

9] _, err = f.Seek(16, 0)

10| if err !'= nil {

11| f.Close()

12| return err

13| }

14 |
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15| _, err = f.Write(head)
16| if err !'= nil {

17| f.Close()

18| return err

19] }

20|

21| _, err = f.Write(body)
22| if err != nil {

23| f.Close()

24| return err

25| }

26|

27| err = f.Sync()

28| f.Close()

29| return err

30| }

31|

32| func withDefers(filepath string, head, body []byte) error {
33| f, err := os.Open(filepath)
34| if err !'= nil {

35| return err

36| }

37| defer f.Close()

38|

39| _, err = f.Seek(16, 0)
40| if err '= nil {

41| return err

42| }

43|

44| _, err = f.Write(head)
45| if err '= nil {

46 | return err

47 | }

48|

49| _, err = f.Write(body)
50| if err !'= nil {

51| return err

52| }

53|

54| return f.Sync()

55| }

Which one looks cleaner? Apparently, the one with the deferred calls, though a little. And it is less bug

prone, for there are so many f.Close() calls in the function without deferred calls that it has a higher

possibility to miss one of them.

The following is another example to show deferred calls can make code less bug prone. If the

doSomething calls panic in the following example, the function f2 will exit by leaving the Mutex
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unlocked. So the function f1 is less bug prone.

1| var m sync.Mutex

2|

3| func f1() {

4] m.Lock()

5] defer m.Unlock()
6| doSomething()
7|}

8|

9| func f2() {

10| m.Lock()

11| doSomething()
12| m.Unlock()
13| }

IPerformance Losses Caused by Deferring Function Calls

It is not always good to use deferred function calls. For the official Go compiler, before version 1.13,
deferred function calls will cause a few performance losses at run time. Since Go SDK 1.13, some
common defer use cases have got optimized much, so that generally we don't need to care about the
performance loss problem caused by deferred calls.

IKind-of Resource Leaking by Deferring Function Calls

A very large deferred call stack may also consume much memory, and the unexecuted deferred calls may
prevent some resources from being released in time. For example, if there are many files needed to be
handled in a call to the following function, then a large number of file handlers will be not get released

before the function exits.

1] func writeManyFiles(files []File) error {

2| for _, file := range files {

3| f, err := os.0Open(file.path)
4| if err '= nil {

5] return err

6] }

7| defer f.Close()

8]

9| _, err = f.WriteString(file.content)
10| if err '= nil {

11| return err

12| }

13|

14 | err = f.Sync()

15| if err '= nil {
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16 | return err
17| }

18] }

19|

20| return nil

21| }

For such cases, we can use an anonymous function to enclose the deferred calls so that the deferred

function calls will get executed earlier. For example, the above function can be rewritten and improved as

1| func writeManyFiles(files []File) error {

2] for _, file := range files {

3| if err := func() error {

4| f, err := os.0Open(file.path)

5] if err !'= nil {

6| return err

7| }

8| // The close method will be called at
9| // the end of the current loop step.
10| defer f.Close()

11|

12| _, err = f.WriteString(file.content)
13| if err '= nil {

14 | return err

15| }

16 |

17 | return f.Sync()

18| }(); err '= nil {

19| return err

20| }

21| }

22|

23| return nil

24| }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Some Panic/Recover Use Cases

Panic and recover have been introduced before (§13). The following of the current article will introduce

some (good and bad) panic/recover use cases.

IUse Case 1: Avoid Panics Crashing Programs

This should be the most popular use case of panic/recover. The use case is used commonly in concurrent

programs, especially client-server programs.

An example:
1| package main
2|
3| import "errors"
4| import "log"
5| import "net"
6]
7| func main() {
8| listener, err := net.Listen("tcp", ":12345")
9] if err !'= nil {
10| log.Fatalln(err)
11| }
12| for {
13| conn, err := listener.Accept()
14 | if err '= nil {
15| log.Println(err)
16| }
17 | // Handle each client connection
18| // in a new goroutine.
19| go ClientHandler (conn)
20 | }
21| }
22|
23| func ClientHandler(c net.Conn) {
24| defer func() {
25| if v := recover(); v != nil {
26 | log.Println("capture a panic:", v)
27 | log.Println("avoid crashing the program")
28| }
29| c.Close()
30| 10)
31| panic(errors.New("just a demo.")) // a demo-purpose panic
32| }
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will not crash down for the panics created in each client handler goroutine.

If we don't recover the potential panic in each client handler goroutine, the potential panic will crash the

program.

IUse Case 2: Automatically Restart a Crashed Goroutine

When a panic is detected in a goroutine, we can create a new goroutine for it. An example:

1|

2|

3

4]

5]

6

7]

8

9]
10|
11|
12|
13|
14|
15|
16|
17
18]
19|
20|
21|
22|
23]
24|
25|
26|
27
28|
29|
30|
31|
32|
33|
34|

package main

import "log"
import "time"

func shouldNotExit() {
for {
// Simulate a workload.
time.Sleep(time.Second)

// Simulate an unexpected panic.
if time.Now().UnixNano() & 0x3 == 0 {
panic("unexpected situation")

func NeverExit(name string, f func()) {
defer func() {
if v := recover(); v != nil {
// A panic is detected.
log.Println(name, "is crashed. Restart it now.")
go NeverExit(name, f) // restart

b
+0)
()

func main() {
log.SetFlags(0)
go NeverExit("job#A", shouldNotExit)
go NeverExit("job#B", shouldNotExit)
select{} // block here for ever

}

|Use Case 3: Use panic/recover Calls to Simulate Long
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IJump Statements

Sometimes, we can use panic/recover as a way to simulate crossing-function long jump statements and
crossing-function returns, though generally this way is not recommended to use. This way does harm for
both code readability and execution efficiency. The only benefit is sometimes it can make code look less

verbose.

In the following example, once a panic is created in an inner function, the execution will jump to the

deferred call.

1| package main
2|
3| import "fmt"
4|
5| func main() {
6 | n := func () (result int) ({
7| defer func() {
8] if v := recover(); v != nil {
9] if n, ok := v.(int); ok {
10| result n
11| }
12| }
13| 10)
14|
15| func () {
16 | func () {
17 | func () {
18| // ...
19| panic(123) // panic on succeeded
20 | 310)
21| // ...
22| 10)

23| 10
24| Y

25| return 0O

26 | 10)

27 | fmt.Println(n) // 123
28| }

Use Case 4: Use panic/recover Calls to Reduce Error
Checks

An example:

1| func doSomething() (err error) {

304



§30. Some Panic/Recover Use Cases

2] defer func() {
3] err = recover()
4| 10)

5]

6| doStep1()

7| doStep2()

8| doStep3()

9] doStep4()

10| doStep5()

11|

12| return

13| }

14|

15| // In reality, the prototypes of the doStepN functions
16| // might be different. For each of them,

17| // * panic with nil for success and no needs to continue.
18| // * panic with error for failure and no needs to contine.
19| // * not panic for continuing.

20| func doStepN() {

21| Ca

22| if err !'= nil {

23| panic(err)

24| }

25| A

26 | if done {

27 | panic(nil)

28| }

29| }

The above code is less verbose than the following one.

1| func doSomething() (err error) {

2| shouldContinue, err := doStepil()
3| if !shouldContinue {

4| return err

5] }

6| shouldContinue, err = doStep2()
7| if !shouldContinue {

8| return err

9] }

10| shouldContinue, err = doStep3()
11| if !shouldContinue {

12| return err

13| }

14 | shouldContinue, err = doStep4()
15| if !shouldContinue {

16 | return err

17| }
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18| shouldContinue, err = doStep5()
19| if IshouldContinue {

20| return err

21| }

22|

23| return

24| }

25|

26| // If err is not nil, then shouldContinue must be true.
27| // If shouldContinue is true, err might be nil or non-nil.
28| func doStepN() (shouldContinue bool, err error) {

29|

30| if err != nil {

31| return false, err
32| }

33| e

34| if done {

35| return false, nil
36| }

37| return true, nil

38| }

However, usually, this panic/recover use pattern is not recommended to use. It is less Go-idiomatic and

less efficient.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Explain Panic/Recover Mechanism in Detail

Panic and recover mechanism has been introduced before (§13), and several panic/recover use cases are
shown in the last article (§30). This current article will explain panic/recover mechanism in detail. Exiting
phases of function calls will also be explained detailedly.

IExiting Phases of Function Calls

In Go, a function call may undergo an exiting phase before it fully exits. In the exiting phase, the deferred
function calls pushed into the defer-call stack in executing the function call will be executed (in the
inverse pushing order). When all of the deferred calls fully exit, the exiting phase ends and the function

call also fully exits.
Exiting phases might also be called returning phases elsewhere.
A funciton call may enter its exiting phase (or exit directly) through three ways:

1. after the call returns normally.
2. when a panic occurs in the call.
3. after the runtime.Goexit function is called and fully exits in the call.

For example, in the following code snippet,

e a call to the function 0 or f1 will enter its existing phase after it returns normally.
e a call to the function f2 will enter its exiting phase after the divided-by-zero panic happens.

e a call to the function 3 will enter its exiting phase after the runtime.Goexit function call fully

exits.
1| import (
2] "fmt"
3] "runtime"
4| )
5]
6| func fO() int {
7| var x = 1
8| defer fmt.Println("exits normally:", Xx)
9| X++
10| return x
11| }
12|
13| func f1() {
14 | var x = 1
15| defer fmt.Println("exits normally:", Xx)
16 | X++
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17]

18|

19| func f2() {

20| var x, y =1, 0

21| defer fmt.Println("exits for panicking:", x)
22| X =x /y // will panic

23] X++ // unreachable

241 }

25|

26| func f3() int {

27 | X =1

28| defer fmt.Println("exits for Goexiting:", X)
29| X++

30| runtime.Goexit ()

31| return x+x // unreachable

32| }

IAssosiating Panics and Goexit Signals of Function Calls

When a panic occurs directly in a function call, we say the (unrecovered) panic starts associating with the
function call. Similarly, when the runtime.Goexit function is called in a function call, we say a Goexit
signal starts associating with the function call after the the runtime.Goexit call fully exits. A panic and
a Goexit signal are independent of each other. As explained in the last section, associating either a panic or

a Goexit signal with a funciton call will make the function call enter its exiting phase immediately.

We have learned that panics can be recovered (§13). However, there are no ways to cancel a Goexit signal.

At any give time, a function call may associate with at most one unrecovered panic. If a call is associating
with an unrecovered panic, then

o the call will associate with no panics when the unrecovered panic is recovered.
e when a new panic occurs in the function call, the new one will replace the old one to be the

associating unrecovered panic of the function call.

For example, in the following program, the recovered panic is panic 3, which is the last panic associating
with the main function call.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | defer func() {

7| fmt.Println(recover()) // 3
8| 10)

9|
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10| defer panic(3) // will replace panic 2
11| defer panic(2) // will replace panic 1
12| defer panic(1) // will replace panic ©
13| panic(0)

14] }

As Goexit signals can't be cancelled, arguing whether a function call may associate with at most one or

more than one Goexit signal is unecessary.

Although it is unusual, there might be multiple unrecovered panics coexisting in a goroutine at a time.
Each one associates with one non-exited function call in the call stack of the goroutine. When a nested call
still associating with an unrecovered panic fully exits, the unrecovered panic will spread to the nesting call
(the caller of the nested call). The effect is the same as a panic occurs directly in the nesting call. That
says,

e if there was an old unrecovered panic associating with the nesting call before, the old one will be
replaced by the spread one. For this case, the nesting call has already entered its exiting phase for
sure, so the next deferred function call in the defer-call stack will be invoked.

e if there was not an unrecovered panic associating with the nesting call before, the spread one will
associates with the the nesting call. For this case, the nesting call might has entered its exiting phase
or not. If it hasn't, it will enter its exiting phase immediately.

So, when a goroutine finishes to exit, there may be at most one unrecovered panic in the goroutine. If a
goroutine exits with an unrecovered panic, the whole program crashes. The information of the
unrecovered panic will be reported when the program crashes.

When a function is invoked, there is neither a panic nor Goexit signals associating with its call initially, no
matter whether its caller (the nesting call) has entered exiting phase or not. Surely, panics might occur or
the runtime.Goexit function might be called later in the process of executing the call, so panics and

Goexit signals might associate with the call later.

The following example program will crash if it runs, because the panic 2 is still not recovered when the

new goroutine exits.

1| package main

2|

3| func main() {

4| // The new goroutine.

5] go func() {

6| // The anonymous deferred call.

7| // When it fully exits, the panic 2 will spread
8| // to the entry function call of the new
9| // goroutine, and replace the panic 0. The
10| // panic 2 will never be recovered.
11| defer func() {
12| // As explained in the last example,
13| // panic 2 will replace panic 1.
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14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31|
32|
33|
34|
35|

The output (when the above program is compiled with the standad Go compiler v1.13):

pan

defer

831. Explain Panic/Recover Mechanism in Detail

panic(2)

// When the anonymous function call fully
// exits, panic 1 will spread to (and
// associate with) the nesting anonymous
// deferred call.
func () {

panic(1)

//
//
//
//
//
//
//

10)

10
panic(0)

10)

select{}
}

ic: 0
panic: 1
panic: 2

Once the panic 1 occurs, there will
be two unrecovered panics coexisting
in the new goroutine. One (panic 0)
associates with the entry function
call of the new goroutine, the other
(panic 1) accosiates with the
current anonymous function call.

goroutine 5 [running]:

The format of the output is not perfect, it is prone to make some people think that the panic 0 is the final

unrecovered panic, whereas the final unrecovered panic is panic 2 actually.

Similarly, when a nested call fully exits and it is associating with a Goexit signal, then the Goexit signal

will also spread to (and associate with) the nesting call. This will make the nesting call enter (if it hasn't

entered) its exiting phase immediately.

The above has mentioned that a panic and a Goexit signal are independent of each other. In other words,
an unrecovered panic should not cancel a Goexit signal, and a Goexit signal should not shadow an
unrecovered panic or be cancelled. However, both of the current official Go compiler (gc, v1.13) and

gccgo (v8.0) don't implement this rule correctly. For example, the following program should crash but it

doesn't if it is compiled with the current versions of gc and gccgo.

1]
2]

package main

3| import "runtime"
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4|

5| func main() {

6 | c := make(chan struct{})

7] go func() {

8| defer close(c)

9] // The Goexit signal shadows the
10| // "bye" panic, but it should not.
11| defer runtime.Goexit()
12| panic("bye")
13| 10
14 | <-C
15| }

The following is another example neither gc nor gccgo compiles it correctly. The example program should

exit quickly in running, but in fact it never exit if it is compiled with the current versions of gc and gccgo.

1| package main

2|

3| import "runtime"

4|

5| func f() {

6| defer func() {

7| recover ()

8] 10)

9] defer panic("will cancel Goexit but should not")
10| runtime.Goexit ()

11| }

12|
13| func main() {
14 | c := make(chan struct{})
15| go func() {
16 | defer close(c)
17| ()
18| for {
19| runtime.Gosched()
20 | }
21| 10)
22| <-C
23| }

The problems in the current versions of gc and gccgo will be @ fixed later .

|Some recover Calls Are No-Ops

The builtin recover funciton must be called at proper places to take effect. Otherwise, the calls are no-

ops. For example, none of the recover calls in the following exmaple recover the bye panic.
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1| package main

2|

3| func main() {

4| defer func() {

5] defer func() {

6| recover() // no-op
7] 10)

8] 10)

9| defer func() {

10| func() {

11| recover() // no-op
12| 10)

13| 10)

14| func() {

15| defer func() {

16 | recover() // no-op
17| 10

18| 10

19| func() {

20| defer recover() // no-op
21| 10)

22| func() {

23| recover() // no-op
24| 10)

25| recover () // no-op
26 | defer recover() // no-op
27 | panic("bye")

28| }

We have already known that the following recover call takes effect.

1| package main

2|

3| func main() {

4| defer func() {

5] recover() // take effect
6| 10)

7|

8| panic("bye")

9| }

Then why don't those recover calls in the first example in the current section take effect? Let's read the

current verson of Go specification §# :

The return value of recover is nil if any of the following conditions holds:

e panic's argument was nil;

¢ the goroutine is not panicking;
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e recover was not called directly by a deferred function.

There is an example (§30) showing the first condition case in the last article.

Most of the recover calls in the first example in the current section satisfy either the second or the third
conditions mentioned in Go specification, except the first one. Yes, the current descriptions are not precise
yet. It is still being improved # now.

In fact, the current Go specification also doesn't explain well why the second recover call, which is

expected to recover panic 1, in the following example doesn't take effect.

1| // This program exits without panic 1 being recovered.
2| package main

3]
4| func demo() {
5] defer func() {
6 | defer func() {
7| recover() // this one recovers panic 2
8] 10)
9]
10| defer recover() // no-op
11|
12| panic(2)
13| 10)
14 | panic(1)
15] }
16|
17| func main() {
18| demo()
19| }

What Go specification doesn't mention is that, at any given time, only the newest unrecovered panic in a

goroutine is recoverable. In other words, each recover call is viewed as an attempt to recover the newest
unrecovered panic in the currrent goroutine. This is why the second recover call in the above example is

a no-op.

OK, now, let's try to make an explanation on which recover calls will take effect:

A recover call takes effect only if the direct caller of the recover call is a deferred call and the

direct caller of the deferred call associates with the newest unrecovered panic in the current

goroutine. An effective recover call disassociates the newest unrecovered panic from its
associating function call, and returns the value passed to the panic call which produced the

newest unrecovered panic.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
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from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Code Blocks and Identifier Scopes

This article will explain the code blocks and identifier scopes in Go.

(Please note, the definitions of code block hierarchies in this article are a little different from Go

specification.)

ICode Blocks

In a Go project, there are four kinds of code blocks (also called blocks later):

the universe block contains all project source code.

each package has a package block containing all source code, excluding the package import
declarations in that package.

each file has a file block containing all the source code, including the package import declarations,
in that file.

generally, a pair of braces {} encloses a local block. However, some local blocks aren't enclosed
within {3}, such blocks are called implicit local blocks. The local blocks enclosed in {} are called

explicit local blocks. The {} in composite literals and type definitions don't form local blocks.

Some keywords in all kinds of control flows are followed by some implicit code blocks.

e An if, switch or for keyword is followed by two nested local blocks. One is implicit, the other

is explicit. The explicit one is nested in the implicit one. If such a keyword is followed by a short
variable declaration, then the variables are declared in the implicit block.

An else keyword is followed by one explicit or implicit block, which is nested in the implicit block
following its if counterpart keyword. If the else keyword is followed by another if keyword,
then the code block following the else keyword can be implicit, otherwise, the code block must be
explicit.

An select keyword is followed by one explicit block.

Each case and default keyword is followed by one implicit block, which is nested in the explicit

block following its corresponding switch or select keyword.

The local blocks which aren't nested in any other local blocks are called top-level (or package-level) local

blocks. Top-level local blocks are all function bodies.

Note, the input parameters and output results of a function are viewed as being declared in explicit body

code block of the function, even if their declarations stay out of the pair of braces enclosing the function
body block.

Code block hierarchies:
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e package blocks are nested in the universe block.
e file blocks are also directly nested in the universe block, instead of package blocks. (This
explanation is different from Go specification and the go/* standard packages.)

e each top-level local block is nested in both a package block and a file block. (This explanation is
also different from Go specification and the go/* standard packages.)

¢ anon-top local block must be nested in another local block.
(The differences to Go specification are to make the below explanations for identifier shadowing simpler.)

Here is a picture shows the block hierarchies in a program:

the universe block

file block (square.qo) file block (sleep.go)
import "math" import "time"
func IsSqrin float64) bool { const N = time.Second
sqr := int(math.Sqrt(n))
return sgr * sgr == int(n) func sleep() {
1 time.Sleep(N)
}
package block (lib)
file block {(main.go) file block {util.go)
import "fmt" import "lib"
var ¢ = makelchan int) func searchin int) {
fori:=0:;i<n;i++ {
func main() { if lib.IsSgr(floate4(i)) {
go search(1000) C<-i
lib.Sleepl()
forsgr:=rangec { }
fmt.Printin(sqr) 1
}
} closelc)
}
package block {main)

Code blocks are mainly used to explain allowed declaration positions and scopes of source code element
identifiers.

ISource Code Element Declaration Places

There are six kinds of source code elements which can be declared:

e package imports.

defined types and type alias.
¢ named constants.

variables.
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e functions.
e labels.

Labels are used in the break, continue, and goto statements.

A declaration binds a non-blank identifier to a source code element (constant, type, variable, function,
label, or package). In other words, in the declaration, the declared source code element is named as the
non-blank identifier. After the declaration, we can use the non-blank identifier to represent the declared
source code element.

The following table shows which code blocks all kinds of source code elements can be directly declared

in:
the universe block|package blocksffile blocks|local blocks
predeclared (built-in elements) 1) Yes

package imports Yes
defined types and type alias (non-builtin) Yes Yes Yes
named constants (non-builtin) Yes Yes Yes
variables (non-builtin) ® Yes Yes Yes

functions (non-builtin) Yes Yes
labels Yes

() predeclared elements are documented in builtin standard package & .

(2) excluding struct field variables.
So,

e package imports can never be declared in package blocks and local blocks.

¢ functions can never be declared in local blocks. (Anonymous functions can be enclosed in local
blocks but they are not declarations.)

e labels can only be declared in local blocks.

Please note,

o if the innermost containing blocks of two code element declarations are the same one, then the
names (identifiers) of the two code elements can't be identical.

¢ the name (identifier) of a package-level code element declared in a package must not be identical to
any package import name declared in any source file in the package.

o if the innermost containing function body blocks of two label declarations are the same one, then the
names (identifiers) of the two labels can't be identical.

¢ the references of a label must be within the innermost function body block containing the declaration
of the label.

e some special portions in the implicit local blocks in all kinds of control flows have special
requirements. Generally, no code elements are allowed to be directly declared in such implicit local
blocks, except some short variable declarations.

o Each if, switch or for keyword can be closely followed by a short variable declaration.
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o Each case keyword in a select control flow can be closely followed by a short variable

declaration.
(BTW, the go/* standard packages think file code blocks can only contain package import declarations.)

The source code elements declared in package blocks but outside of any local blocks are called package-
level source code elements. Package-level source code elements can be named constants, variables,
functions, defined types, or type aliases.

IScopes of Declared Source Code Elements

The scope of a declared identifier means the identifiable range of the identifier (or visible range).

Without considering identifier shadowing which will be explained in the last section of the current article,
the scope definitions f  for the identifiers of all kinds of source code elements are listed below.

e The scope of a predeclared/built-in identifier is the universe block.

e The scope of the identifier of a package import is the file block containing the package import
declaration.

e The scope of an identifier denoting a constant, type, variable, or function (but not method) declared
at package level is the package block.

e The scope of an identifier denoting a method receiver, function parameter, or result variable is the
corresponding function body (a local block).

e The scope of the identifier of a constant or variable declared inside a function begins at the end of
the specification of the constant or variable (or the end of the declaration for a short declared
variable) and ends at the end of the innermost containing block.

e The scope of the identifier of a defined type (§14) declared inside a function begins at the identifier
in the specification of the type ends at the end of the innermost containing block.

e The scope of the identifier of a type alias (§14) declared inside a local block begins at the end of the
declaration of the type and ends at the end of the innermost containing block.

e The scope of a label is the body of the innermost function body block containing the label

declaration but excludes all the bodies of anonymous functions nested in the containing function.
Blank identifiers have no scopes.

(Note, the predeclared iota is only visible in constant declarations.)

You may have noticed the minor difference of identifier scope definitions between local type definitions
and local variables, local constants and local type aliases. The difference means a defined type may be

able to reference itself in its declaration. Here is an example to show the difference.
1| package main

2|
3| func main() {
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4| // var v int = v // error: v is undefined
5] // const C int = C // error: C is undefined
6| /*

7] type T = struct {

8| *T // error: T uses <T>
9] X []T // error: T uses <T>
10| }

11| */

12|

13| // Following type definitions are all valid.
14 | type T struct {

15| *T

16| x []T

17| }

18| type A [5]*A

19| type S []S

20| type M map[int]M

21| type F func(F) F

22| type Ch chan Ch

23| type P *P

24|

25| /] ...

26 | var s = make(S, 3)

27 | s[O0] = s

28| s = s[o][o][e][e][e][e][e][0]
29|

30| var m = M{}

31| m[1] = m

32| m=m[3][2][2][2][2][21][2] 1]
33|

34| var p P

35] p = &p

36' p = ***********************p
37' ***********************p = p
38| }

And the scope difference between package-level and local declarations:

1| package main

2|

3| // Here the two identifiers at each line are the

4| // same one. The right ones are both not the

5| // predeclared identifiers. Instead, they are

6| // same as respective left one. So the two

7| // lines both fail to compile.

8| /*

9| const iota = iota // error: constant definition loop
10| var true = true // error: typechecking loop
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11| */

12|

13| var a = b // can reference variables declared later
14| var b = 123

15|

16| func main() {

17| // The identifiers at the right side in the
18] // next two lines are the predeclared ones.
19| const iota = iota // ok

20| var true = true // ok

21| _ = true

22|

23| // The following lines fail to compile, for
24| // c references a later declared variable d.
25| /*

26 | var ¢ = d

27| var d = 123

28| _=2cC

29| */

30|

IIdentifier Shadowing

Ignoring labels, an identifier declared in an outer code block can be shadowed by the same identifier
declared in code blocks nested (directly or indirectly) in the outer code block.

Labels can’t be shadowed.
If an identifier is shadowed, its scope will exclude the scopes of its shadowing identifiers.

Below is an interesting example. The code contains 6 declared variables named x. A x declared in a

deeper block shadows the xs declared in shallower blocks.

1| package main

2|

3| import "fmt"

4|

5| var po, pl, p2, p3, p4, p5 *int
6| var x = 9999 // X#0

7]

8| func main() {

9| po = &x

10| var x = 888 // x#1

11| pl = &x

12| for x := 70; x < 77; x++ { // X#2
13| p2 = &x

14 | X 1= X - 70 // // X#3
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15| p3 = &X

16| if x 1= x - 3; x>0 { // x#4
17 | p4 = &x

18] X 1= -X // X#5

19| p5 = &x

20| }

21| }

22|

23] // 9999 888 77 6 3 -3

24| fmt.Println(*p0, *pl, *p2, *p3, *p4, *p5)
25| }

Another example: the following program prints Sheep Goat instead of Sheep Sheep. Please read the

comments for explanations.

1| package main

2|

3| import "fmt"

4]

5| var f = func(b bool) {

6| fmt.Print("Goat")

73

8]

9| func main() {

10| var f = func(b bool) {

11| fmt.Print("Sheep")

12| if b {

13| fmt.Print(" ")

14| f(!'b) // The f is the package-level f.
15| }

16| }

17 | f(true) // The f is the local f.
18| }

If we remove the var keyword in the local f declaration, or modify the above program as the following

shown, then it will print Sheep Sheep.

1] func main() {

2| var f func(b bool)

3| f = func(b bool) {

4| fmt.Print("Sheep")

5] if b {

6| fmt.Print(" ")

7| f(!b) // The f is also the local f now.
8] }

9] }

10| f(true)

11| }
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For some circumstances, when identifiers are shadowed by variables declared with short variable

declarations, some new gophers may get confused about whether a variable in a short variable declaration

is redeclared or newly declared. The following example (which has bugs) shows the famous trap in Go.

Almost every gopher has ever fallen into the trap in the early days of using Go.

1| package main

2|

3| import "fmt"
4| import "strconv"

5]

6| func parseInt(s string) (int, error) {

7| n, err := strconv.Atoi(s)
8] if err != nil {
9| // Some new gophers may think err is an
10| // already declared variable in the following
11| // short variable declaration. However, both
12| // b and err are new declareds here in fact.
13| // The new declared err variable shadows the
14| // err variable declared above.
15| b, err := strconv.ParseBool(s)
16 | if err !'= nil {
17 | return 0, err
18] 3
19|
20| // If execution goes here, some new gophers
21| // might expect a nil error will be returned.
22| // But in fact, the outer non-nil error will
23| // be returned instead, for the scope of the
24| // inner err variable ends at the end of the
25| // outer if-clause.
26| if b {
27 | n =1
28| }
29| }
30| return n, err
31| }
32|
33| func main() {
34| fmt.Println(parseInt("TRUE"))
35| }

The output:

1 strconv.Atoi: parsing "TRUE": invalid syntax

Go only has 25 keywords (§5). Keywords can't be used as identifiers. Many familiar words in Go are not

keywords, such as int, bool, string, len, cap, nil, etc. They are just predeclared (built-in)

identifiers. These predeclared identifiers are declared in the universe block, so custom defined identifiers
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can shadow them. Here is a weird example in which many predeclared identifiers are shadowed. Its

compiles and runs okay.

1| package main

2|

3| import (
4] "fmt"
5] )

6]

7| // Shadows the built-in function identifier "len".
8| const len = 3

9| // Shadows the built-in const identifier "true".
10| var true = 0

11| // Shadows the built-in variable identifier "nil".
12| type nil struct {}

13| // Shadows the built-in type identifier "int".

14| func int(){}

15|
16| func main() {
17| fmt.Println("a weird program")
18| var output = fmt.Println
19|
20| // Shadows the package import "fmt".
21| var fmt = [len]nil{{}, {3}, {3}}
22| // Sorry, "len" is a constant.
23| // var n = len(fmt)
24| // Use the built-in cap function instead, :(
25| var n = cap(fmt)
26 |
27 | // The "for" keyword is followed by one
28| // implicit local code block and one explicit
29| // local code block. The iteration variable
30| // "true" shadows the package-level variable
31| // "true" declared above.
32| for true := 0; true < n; true++ {
33| // Shadows the built-in const "false".
34| var false = fmt[true]
35| // The new declared "true" variable
36 | // shadows the iteration variable "true".
37| var true = true+l
38| // Sorry, "fmt" is an array, not a package.
39| // fmt.Println(true, false)
40 | output(true, false)
41| }
42| }
The output:
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a weird program
1 {}
2 {}
3 {3

Yes, this example is extreme. It contains many bad practices. Identifier shadowing is useful, but please
don't abuse it.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Expression Evaluation Orders

This article will explain expression (§11) evaluation orders in all kinds of scenarios.

An Expression Is Evaluated After the Expressions It
Depends On

This is easy to comprehend. An apparent example is an expression is evaluated later than its sub-
expressions. For example, in a function call f(x, y[n]),

e f() is evaluated later than its depended expressions, including f, x and y[n].

e the evaluation of the expression y[n] is later than the evaluations of n and vy.

Please read program resource initialization order (§10) for another example on package-level variable

initialization orders.

IInitialization Order of Package-Level Variables

When a package is loaded at run time, Go runtime will try to initialize uninitialized package-level
variables which have no dependencies on uninitialized variables, by their declaration order. The process
might be applied (looped) several times, until no variables are initialized in such a process. For a
successfully compiled Go program, there should be no uninitialized variables after all such processes end.

Package-level variables appearing as blank identifers are treated like any other variables in the

initialization process.

For example, the following program should print yzxw.

1. In the first run of above described process, y and z are the only two uninitialized variables which

have no dependencies on uninitialized variables, so they are initialized by their declaration order.

2. In the second run of above described process, x is the only uninitialized variable which has no

dependencies on uninitialized variables, so it is initialized.

3. In the third run of above described process, w is the only uninitialized variable which has no

dependencies on uninitialized variables, so it is initialized.

1| package main

2|

3| var (

4] _ = f("w", x)
5] x = f("x", z)
61y =f("y")
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7] z = f("z")
8| )

9|

10| func f(s string, deps ...int) int {
11| print(s)
12| return 0
13| }

14|

15| func main() {
16| f("\n")
17| }

(Note, Before Go SDK 1.13, the standard Go compiler doesn't implement the rule correctly f . If the
above program is compiled with the standard Go compiler version 1.12, it will print zxwy .)

Multiple variables on the left-hand side of a variable declaration initialized by single multi-valued
expression on the right-hand side are initialized together. For example, for a package-level variable
declaration var x, y = f(), variables x and y will be initialized together. In other words, no other

variables will be initialized between them.

If hidden dependencies exists between variables, the initialization order between those variables is
unspecified. In the following example (copied from Go specification),

e the variable a will be initialized after b for sure,
e but whether x is initialized before b, between b and a, or after a, is not specified.
¢ and the moment at which function sideEffect() is called (before or after x is initialized) is also

not specified.

1| // x has a hidden dependency on a and b
2| var x = I(T{}).ab()
3| // Assume sideEffect is unrelated to x, a, or b.

4| var _ = sideEffect()
5] var a = b

6| var b = 42

7]

8| type I interface { ab() []int }
9| type T struct{}
10| func (T) ab() []int { return []int{a, b} }

|The Usual Order

For the evaluations within a function body, Go specification says

..., when evaluating the operands of an expression, assignment, or return statement, all function
calls, method calls, and (channel) communication operations are evaluated in lexical left-to-right

order.
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The just described order is called the usual order.

Please note that an explicit value conversion T(Vv) is not a function call.

For example, in an expression []int{x, fa(), fb(), y}, assume x and y are two variables, fa and
fb are two functions, then the call fa() is guaranteed to be evaluated (executed) before fb( ). However,

the following the evaluation orders are unspecified in Go specification:

¢ the evaluation order of x (or y) and fa() (or fb()).

¢ the evaluation order of x, y, fa and fb.

Another example, the following assignment, is demoed in Go specification.
yl[z.f()], ok = g(h(a, b), 1()+x[3()], <-c), k()
where

e c is a channel expression and will be evaluated to a channel value.
e g, h, i, j and k are function expressions.

e f is a method of expression z.

Also considering the rule mentioned in the last section, compilers should guarantee the following
evaluation orders at run time.

e The function calls, method calls and channel communication operations happen in the order
z.f()>h() »1() - 3() > <-c—-g() - k().

e h() is evaluated after the evaluations of expressions h, a and b.

e y[] is evaluated after the evaluation of z.f().

e z.f() is evaluated after the evaluation of expression z.

e Xx[] is evaluated after the evaluation of j().

However, the following orders (and more others) are not specified.

e The evaluation order of y, z, g, h, a, b, x, i, j, c and k.

e The evaluation order of y[], x[] and <-c.

By the usual order, we know the following declared variables x, m and n (also demoed in Go

specification) will be initialized with ambiguous values.

1] a:=1

2] f := func() int { a++; return a }

3]

4| // x may be [1, 2] or [2, 2]: evaluation order
5] // between a and f() is not specified.

6 | x := [lint{a, f()}

7]
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8| // m may be {2: 1} or {2: 2}: evaluation order
9] // between the two map element assignments is
10| // not specified.
11| m := map[int]int{a: 1, a: 2}
12|
13| // n may be {2: 3} or {3: 3}: evaluation order
14| // between the key and the value is unspecified.
15| n := map[int]int{a: f()}

Evaluation and Assignment Orders in Assignment
Statements

Beside the above introduced rules, Go specification specifies more on the expression evaluation order the

order of individual assignments in an assignment statement:

The assignment proceeds in two phases. First, the operands of index expressions and pointer
indirection (including implicit pointer indirection in selectors) on the left and the expressions on
the right are all evaluated in the usual order. Second, the assignments are carried out in left-to-
right order.

Later, we may call the first phase as evaluation phase and the second phase as carry-out phase.

Go specification doesn't specify clearly whether or not the assignments carried-out during the second
phase may affect the expression evaluation results got in the first phase, which ever caused some #
disputes f . So, here, this article will explain more on the evaluation orders in value assignments.

Firstly, let's clarify that the assignments carried-out during the second phase don't affect the expression
evaluation results got at the end of the first phase.

To make the following explanations convenient, we assume that the container (slice or map) value of an
index destination expression in an assignment is always addressable. If it is not, we can think the container
value has already been saved in and replaced by a temporary addressable container value before carrying
out the second phase.

At the time of the end of the evaluation phase and just before the carry-out phase starts, each destination
expression on the left of an assignment has been evaluated as its elementary form. Different destination

expressions have different elementary forms.

e [f a destination expression is a blank identifier, then its elementary form is still a blank identifier.

e [f a destination expression is a container (array, slice or map) index expression c[k], then its
elementary form is (*cAddr)[k], where cAddr is a pointer pointing to c.

e For other cases, the destination expression must result an addressable value, then its elementary form

is a dereference to the address of the destination expression evaluation result.

Assume a and b are two addressable variables of the same type, the following assignment
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will be executed like the following steps:

1| // The evaluation phase:

5| // The elementary form: *PO, *P1 = RO, R1

2| PO := &a; P1 := &b

3] RO :=b; R1 := a

4]

6]

7| // The carry-out phase:
8| *PO = RO

9| *P1 = R1

Here is another example, in which x[@] instead of x[1] is modified.

1]
2]
3
4]

X []int{O, O}
i:=0
i, x[i] =1, 2

fmt.Println(x) // [2 0]

The decomposed execution steps for the line 3 shown below are like:

T2 := i

The elementary form: *PO, (*P1)[T2] = RO, R1

1| // The evaluation phase:
2| PO := &i; P1 := &Xx;

3] RO :=1; R1 := 2

4| // Now, T2 == 0

5]

6| //

7]

8| // The carry-out phase:
9| *PO = RO

10| (*P1)[T2] = R1

An example which is a little more complex.

1| package main

2|

3| import "fmt"

4]

5| func main() {

6
7]
8]
9]
10|
11 |
12|
13| }

m := map[string]
s := []int{1, 1,
n := 2

p := &n

s, m["Go"], *p,

fmt.Println(m, s
fmt.Println(olds

int{"Go": 0}
1}; olds := s

s[n] = []lint{2, 2, 2}, s[1], m["Go"], 5
, n) // map[Go:1] [2 2 2] O
) // [1 1 5]
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The decomposed execution steps for the line 10 shown below are like:

1| // The evaluation phase:

2| PO := &s; PM1 := &m; K1 := "Go"; P2 := p; PS3 := &s; T3 := 2
3] RO := []int{2, 2, 2}; R1 := s[1]; R2 := m["Go"]; R3 :=5

4| // now, R1 == 1, R2 ==

5]

6| // The elementary form:

71 /7 *PO, (*PM1)[K1], *P2, (*PS3)[T3] = RO, R1, R2, R3
8]

9| // The carry-out phase:
10| *PO@ = RO

11| (*PM1)[K1] = R1
12| *P2 = R2
13| (*PS3)[T3] = R3

The following example rotates all elements in a slice for one index.

1] x := []int{2, 3, 5, 7, 11}

2] t = x[0]

3] var i int

4| for i, x[i] = range x {}

5] x[1i] = t

6| fmt.Println(x) // [3 5 7 11 2]

Another example:

1] x = []int{123}
2| X, X[0] = nil, 456 // will not panic
3] X, X[0] = []int{123}, 789 // will panic

Although it is legal, it is not recommended to use complex multi-value assignments in Go, for their
readabilities are not good and they have negative effects on both compilation speed and execution

performance.

As mentioned above, not all orders are specified in Go specification for value assignments, so some bad

written code may produce different results. In the following example, the expression order of x+1 and

f(&x) is not specified. So the example may print 100 99 or 1 99.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | f := func (p *int) int {
7| *p = 99

8| return *p

9] }
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10|

11 | X =0

12| y, z := x+1, f(&x)
13| fmt.Println(y, z)
14| }

The following is another example which will print ambiguous results. It may print 1 7 2,1 8 2 or1 9

2, depending on different compiler implementations.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | X,y =0, 7

7] f := func() int {
8| X++

9| y++

10| return x

11| }

12| fmt.Println(f(), vy, T())
13| }

Expression Evaluation Orders in switch-case Code
Blocks

The expression evaluation order in a switch-case code block has been described before (§12). Here just

shows an example. Simply speaking, before a branch code block is entered, the case expressions will be

evaluated and compared with the switch expression one by one, until a comparison results true.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| f := func(n int) int {

7| fmt.Printf("f(%v) is called.\n", n)
8| return n

9| }

10|

11| switch x := f(3); x + f(4) {
12| default:

13| case f(5):

14 | case f(6), f(7), f(8):

15| case f(9), f(10):

16| }
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17| }

At run time, the () calls will be evaluated by the order from top to bottom and from left to right, until a

comparison results true. So f(8), f(9) and f(10) will be not evaluated in this example.

The output:

f(3) is called.
f(4) is called.
f(5) is called.
f(6) is called.
f(7) is called.

Expression Evaluation Orders in select-case Code
Blocks

When executing a select-case code block, before entering a branch code block, all the channel
operands of receive operations and the operands of send statements involved in the select-case code

block are evaluated exactly once, in source order (from top to bottom, from left to right).

Note, the target expression being assigned to by a receive case operation will only be evaluated if that

receive operation is selected later.

In the following example, the expression *fptr("aaa") will never get evaluated, for its corresponding

receive operation <-fchan("bbb", nil) will not be selected.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| c := make(chan int, 1)

7| cC <-0

8| fchan := func(info string, c chan int) chan int {

9] fmt.Println(info)

10| return c

11| }

12| fptr := func(info string) *int {

13| fmt.Println(info)

14 | return new(int)

15| }

16|

17 | select {

18| case *fptr("aaa") = <-fchan("bbb", nil): // blocking
19| case *fptr("ccc") = <-fchan("ddd", c): // non-blocking
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20| case fchan("eee", nil) <- *fptr("fff"): // blocking
21| case fchan("ggg", nil) <- *fptr("hhh"): // blocking
22| 3}

23| }

The output of the above program:

bbb
ddd
2EE
fff

999
hhh

CCC

Note that the expression *fptr("ccc") is the last evaluated expression in the above example. It is

evaluated after its corresponding receive operation <-fchan("ddd", c) is selected.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Go Value Copy Costs

Value copying happens frequently in Go programming. Values assignments, argument passing and
channel value send operations are all value copying involved. This article will talk about the copy costs of
values of all kinds of types.

IValue Sizes

The size of a value means how many bytes the direct part (§17) of the value will occupy in memory. The
indirect underlying parts of a value don't contribute to the size of the value.

In Go, if the types of two values belong to the same kind (§14), and the type kind is not string kind,
interface kind, array kind and struct kind, then the sizes of the two value are always equal.

In fact, for the standard Go compiler/runtime, the sizes of two string values are also always equal. The

same relation is for the sizes of two interface values.

Up to present (Go SDK 1.13), for the standard Go compiler (and gccgo), values of a specified type always
have the same value size. So, often, we call the size of a value as the size of the type of the value.

The size of an array type depends on the element type size and the length of the array type. The array type
size is the product of the size of the array element type and the array length.

The size of a struct type depends on all of the sizes and the order of its fields. For there may be some
padding bytes (8§44) being inserted between two adjacent struct fields to guarantee certain memory address
alignment requirements of these fields, so the size of a struct type must be not smaller than (and often
larger than) the sum of the respective type sizes of its fields.

The following table lists the value sizes of all kinds of types (for the standard Go compiler version 1.13).
In the table, one word means one native word, which is 4 bytes on 32bits architectures and 8 bytes on

64bits architectures.

Kind of Types Value Size Required # by Go Specification f
bool 1 byte not specified
int8, uint8 (byte) 1 byte 1 byte
int16, uint16 2 bytes 2 bytes
int32 (rune),
uint32,(ﬂoatl)32 4 bytes 4 bytes
int64, uint64,
float64, 8 bytes 8 bytes
complex64
complex128 16 bytes 16 bytes
int. uint 1 word architecture dependent, 4 bytes on 32bits
’ architectures and 8 bytes on 64bits architectures
Thw~a AmArr~ h 4+~ ~tmra tha st armantad Kican AF A
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pointer value
string 2 words not specified
pointer 1 word not specified
slice 3 words not specified
map 1 word not specified
channel 1 word not specified
function 1 word not specified
interface 2 words not specified

struct (the sum of sizes of all fields) + | a struct type has size zero if it contains no fields

(number of padding (§44) bytes) that have a size greater than zero
array (element value size) * (array  |an array type has size zero if its element type has
length) zero size

IValue Copy Costs

Generally speaking, the cost to copy a value is proportional to the size of the value. However, value sizes
are not the only factor determining value copy costs. Different CPU architectures may specially optimize
value copying for values with specific sizes.

In practice, we can view values with sizes which are not larger than four native words as small-size values.

The costs of copying small-size values are small.

For the standard Go compiler, except values of large-size struct and array types, other types in Go are all
small-size types.

To avoid large value copy costs in argument passing and channel value send and receive operations, we
should try to avoid using large-size struct and array types as function and method parameter types
(including method receiver types) and channel element types. We can use pointer types whose base types
are large-size types instead for such scenarios.

One the other hand, we should also consider the fact that too many pointers will increase the pressure of
garbage collectors at run time. So whether large-size struct and array types or their corresponding pointer

types should be used relies on specific circumstances.

Generally, in practice, we seldom use pointer types whose base types are slice types, map types, channel
maps, function types, string types and interface types. The costs of copying values of these assumed base

types are very small.

We should also try to avoid using the two-iteration-variable forms to iterate array and slice elements if the
element types are large-size types, for each element value will be copied to the second iteration variable in

the iteration process.
The following is an example which benchmarks different ways to iterate slice elements.

1| package main
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1| package main

2|

3| import "testing"

4]

5| type S struct{a, b, ¢, d, e int64}

6| var sX = make([]S, 1000)
7| var sY = make([]S, 1000)
8| var sz = make([]S, 1000)

9| var sumX, sumY, sumZ int64

10|

11| func Benchmark_Loop(b *testing.B) {

12| for 1 := 0; 1 < b.N; i++ {

13| sumX = 0

14| for j = 0; j < len(sX); j++ {

15| sumX += sX[j].a

16| ¥

17] ¥

18]

19|

20| func Benchmark_Range_OnelIterVar(b *testing.B) {
21| for 1 := 0; 1 < b.N; i++ {

22| sumZ = 0

23| for j := range sY {

24| sumZ += sY[j].a

25| ¥

26| ¥

27|

28|

29| func Benchmark_Range_TwoIterVar(b *testing.B) {
30| for 1 := 0; 1 < b.N; i++ {

31| sumy = 0
32| for _, v := range sY {
33| sumy += v.a

34| }

35| }

36|

Run the benchmarks in the directory of the test file, we will get a result similar to:

Benchmark_Loop-4 500000 3228 ns/op
Benchmark_Range_OnelterVar-4 500000 3203 ns/op
Benchmark_Range_TwoIterVars-4 200000 6616 ns/op

We can find that the efficiency of the two-iteration-variable form is much lower than the other two. But
please note that, some compilers might make special optimizations to remove the performance differences

between these forms. The above benchmark result is for the standard Go compiler 1.13.
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from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Bounds Check Elimination

Go is a memory safe language. In array/slice element indexing and subslice operations, Go runtime will
check whether or not the involved indexes are out of range. If an index is out of range, a panic will be
produced to prevent the invalid index from doing harm. This is called bounds check. Bounds checks make
our code run safely, on the other hand, they also make our code run a little slower.

Since Go SDK 1.7, the standard Go compiler has used a new compiler backend, which based on SSA
(static single-assignment form). SSA helps Go compilers effectively use optimizations like BCE [
(bounds check elimination) and CSE #  (common subexpression elimination). BCE can avoid some
unnecessary bounds checks, and CSE can avoid some duplicate calculations, so that the standard Go
compiler can generate more efficient programs. Sometimes the improvement effects of these optimizations

are obvious.
This article will list some examples to show how BCE works with the standard Go compiler 1.7+.
For Go SDK 1.7+, we can run go build -gcflags="-d=ssa/check_bce/debug=1" to show which code lines

still need bounds checks.

IExample 1

1| // examplel.go
2| package main

3]

4| func fi1(s []int) {

5] _ = s[0] // line 5: bounds check
6 | _ = s[1] // line 6: bounds check
7| _ = s[2] // line 7: bounds check
8| }

9]

10| func f2(s []int) {

11| _ = s[2] // line 11: bounds check

12| _ = s[1] // line 12: bounds check eliminated!
13| _ = s[0] // line 13: bounds check eliminated!
14| }

15|

16| func f3(s []int, index int) {

17 | _ = s[index] // line 17: bounds check

18| _ = s[index] // line 18: bounds check eliminated!
19| }

20|

21| func f4(a [5]int) {

22| _ = a[4] // line 22: bounds check eliminated!
23| }
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24|
25| func main() {}

$ go build -gcflags="-d=ssa/check_bce/debug=1" examplel.go
./examplel.go:5: Found IsInBounds
./examplel.go:6: Found IsInBounds
./examplel.go:7: Found IsInBounds
./examplel.go:11: Found IsInBounds
./examplel.go:17: Found IsInBounds

We can see that there are no needs to do bounds checks for line 12 and line 13 in function f2, for the

bounds check at line 11 ensures that the indexes in line 12 and line 13 will not be out of range.

But in function f1, bounds checks must be performed for all three lines. The bounds check at line 5 can't

ensure line 6 and line 7 are safe, and the bounds check at line 6 can't ensure line 7 is safe.

For function f3, the compiler knows the second s[index] is absolutely safe if the first s[index] is

safe.

The compiler also correctly thinks the only line (line 22) in function f4 is safe.

IExample 2

1| // example2.go
2| package main

3]

4| func f5(s []int) {

5] for 1 := range s {
6| _ = s[i]

7| _ = s[i:len(s)]
8] _ = s[:i+1]

9] }

10| }

11|

12| func f6(s []int) {
13| for 1 := 0; i < len(s); i++ {
14| _ = s[i]

15| _ = s[i:len(s)]
16| _ = s[:i+1]

17| }

18] }

19|

20| func f7(s []int) {
21| for 1 := len(s) - 1; i >= 0; i-- {
22| _ = s[1i]

23| _ = s[i:len(s)]
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24| }

25| }

26|

27| func f8(s []int, index int) {

28| if index >= 0 && index < len(s) {
29| _ = s[index]

30| _ = s[index:len(s)]

31| }

32| }

33|

34| func f9(s []int) {

35| if len(s) > 2 {

36| s _, _ =s[0], s[1], s[2]
37] ¥

38|

39|

40| func main() {}

$ go build -gcflags="-d=ssa/check_bce/debug=1" example2.go

Cool! The standard compiler removes all bound checks in this program.

Note: before Go SDK version 1.11, the standard compiler is not smart enough to detect line 22 is safe.

IExample 3

1| // example3.go
2| package main

3]

4| import "math/rand"

5]

6| func fa() {

7] s := []int{e, 1, 2, 3, 4, 5, 6}

8| index := rand.Intn(7)

9] _ = s[:index] // line 9: bounds check

10| _ = s[index:] // line 10: bounds check eliminated!
11| }

12|

13| func fb(s []int, i int) {

14 | _ = s[:i] // line 14: bounds check

15| _ = s[i:] // line 15: bounds check, not smart enough?
16| }

17|

18| func fc() {

19| s := []int{e, 1, 2, 3, 4, 5, 6}

20| s = s[:4]

21| i := rand.Intn(7)
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22| = s[:1] // line 22: bounds check

23| = s[i:] // line 23: bounds check, not smart enough?
24| }

25|

26| func main() {}

$ go build -gcflags="-d=ssa/check_bce/debug=1" example3.go
./example3.go:9: Found IsSliceInBounds
./example3.go:14: Found IsSliceInBounds
./example3.go:15: Found IsSliceInBounds
./example3.go:22: Found IsSliceInBounds
./example3.go:23: Found IsSliceInBounds

Oh, so many places still need to do bounds check!

But wait, why does the standard Go compiler think line 10 is safe but line 15 and line 23 are not? Is the
compiler still not smart enough?

In fact, the compiler is right here! Why? The reason is the start index in a subslice expression may be
larger than the length of the base slice. Let's view a simple example:

1| package main

2|

3| func main() {

4| sO := make([]int, 5, 10) // len(s@) == 5, cap(s0) == 10
5]

6| index := 8

7]

8| // In Go, for the subslice syntax s[a:b],

9] // the relations 0 <= a <= b <= cap(s) must
10| // be ensured to avoid panicking.

11|

12| _ = sO[:index]

13| // The above line is safe can't ensure the

14 | // following line is also safe. In fact, the
15| // following line will panic, for the starting
16 | // index is larger than the end index.

17 | _ = sO[index:] // panic

18] }

So the conclusion that if s[:index] is safe then s[index: ] is also safe is only right when len(s) is
equal to cap(s) . This is why the code lines in function fb and fc of example 3 still need to do bounds

checks.

Standard Go compiler successfully detects 1len(s) is equal to cap(s) in function fa. Great work! Go

team!
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IExample 4

1| // example4.go
2| package main

3

4| import "math/rand"

5]

6| func fb2(s []int, index int) {

7| _ = s[index:] // line 7: bounds check

8| _ = s[:index] // line 8: bounds check eliminated!
9|

10|

11| func fc2() {

12| s := []int{®, 1, 2, 3, 4, 5, 6}

13| s = s[:4]

14| index := rand.Intn(7)

15| _ = s[index:] // line 15 bounds check

16 | _ = s[:index] // line 16: bounds check eliminated!
17]

18]

19| func main() {}

$ go build -gcflags="-d=ssa/check_bce/debug=1" example4.go
./example4.go:7:7: Found IsSliceInBounds
./example4.go:15:7: Found IsSliceInBounds

In this example, The standard Go compiler successfully concludes

e line 8 is also safe if line 7 is safe in function fb2.

e line 16 is also safe if line 15 is safe in function fc2.

Note: the standard Go compiler in Go SDK earlier than version 1.9 fails to detect line 8 doesn't need
bounds check.

IExample 5

The current version of the standard Go compiler is not smart enough to eliminate all unnecessary bounds
checks. Sometimes, we can make some hints to help the compiler eliminate some unnecessary bounds

checks.

1| // example5.go
2| package main

3]
4| func fd(is []int, bs []byte) {
5] if len(is) >= 256 {
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6 | for _, n := range bs {

7| _ = 1is[n] // line 7: bounds check
8] }

9] }

10| }

11|

12| func fd2(is []int, bs []byte) {

13| if len(is) >= 256 {

14| is = is[:256] // line 14: a hint

15| for _, n := range bs {

16 | _ = 1is[n] // line 16: BCEed!

17| }

18| }

19| }

20|

21| func fe(isa []int, isb []int) {

22| if len(isa) > OXFFF {

23| for _, n := range isb {

24| _ = isa[n & OxFFF] // line 24: bounds check
25| }

26| }

27| }

28|

29| func fe2(isa []int, isb []int) {

30| if len(isa) > OXFFF {

31| isa = isa[:0xFFF+1] // line 31: a hint
32| for _, n := range isb {

33| _ = isa[n & OxFFF] // line 33: BCEed!
34| }

35| }

36| }

37|

38| func main() {}
$ go build -gcflags="-d=ssa/check_bce/debug=1" example5.go

./example5.go:7: Found IsInBounds
./example5.go:24: Found IsInBounds

I Summary

There are more BCE optimizations made by the standard Go compiler. They might be not as abvious as

the above listed ones, So this article will not show them all.

Although the BCE feature in the standard Go compiler is still not perfect, it really does well for many
common cases. It is no doubt that standard Go compiler will do better in later versions so that it is possible

the hints made in the above 5th example will become unnecessary. Thank Go team for adding this
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wonderful feature!

|References:

1. Bounds Check Elimination &
2. Utilizing the Go 1.7 SSA Compiler

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Concurrency Synchronization Overview

This article will explain what are synchronizations and list the synchronization techniques supported by
Go.

IWhat Are Concurrency Synchronizations?

Concurrency synchronizations means how to control concurrent computations (a.k.a., goroutines in Go)

e to avoid data races between them,
¢ to avoid them consuming CPU resources when they have nothing to do.

IWhat Synchronization Techniques Does Go Support?

The article channels in Go (§21) has shown that we can use channels to do synchronizations. Besides
using channels, Go also supports several other common synchronization techniques, such as mutex and
atomic operations. Please read the following articles to get how to do synchronizations with all kinds of
techniques in Go:

e Channel Use Cases (837)

e How to Gracefully Close Channels (§38)
e Concurrency Synchronization Techniques Provided in the sync Standard Package (§39)
e Atomic Operations Provided in the sync/atomic Standard Package (8§40)

We can also do synchronizations by making use of network and file IO. But such techniques are very
inefficient within a single program process. Generally, they are used for inter-process and distributed

synchronizations. Go 101 will not cover such techniques.

To understand these synchronization techniques better, it is recommended to know the memory order

guarantees in Go (841).

The data synchronization techniques in Go will not prevent programmers from writing improper

concurrent code (842). However these techniques can help programmers write correct concurrent code

easily. And the unique channel related features make concurrent programming flexible and enjoyable.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Channel Use Cases

Before reading this article, please read the article channels in Go (§21), which explains channel types and
values in detail. New gophers may need to read that article and the current one several times to master Go

channel programming.
The remaining of this article will show many channel use cases. I hope this article will convince you that

e asynchronous and concurrency programming with Go channels is easy and enjoyable.
e the channel synchronization technique has a wider range of uses and has more variations than the
synchronization solutions used in some other languages, such as the actor model # and the

async/await pattern ff .

Please note that the intention of this article is to show as many channel use cases as possible. We should
know that channel is not the only concurrency synchronization technique supported in Go, and for some
cases, the channel way may not be the best solution. Please read atomic operations (§40) and some other
synchronization techniques (§39) for more concurrency synchronization techniques in Go.

IUse Channels as Futures/Promises

Futures and promises are used in many other popular languages. They are often associated with requests
and responses.

|Return receive-only channels as results

In the following example, the values of two arguments of the sumSquares function call are requested

concurrently. Each of the two channel receive operations will block until a send operation performs on the

corresponding channel. It takes about three seconds instead of six seconds to return the final result.

1| package main

2|

3| import (

4] "time"

5] "math/rand"

6| "fmt"

71 )

8]

9| func longTimeRequest() <-chan int32 {
10| r := make(chan int32)

11|

12| go func() {

13| // Simulate a workload.
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14 | time.Sleep(time.Second * 3)
15| r <- rand.Int31n(100)

16| 10)

17|

18| return r

19] }

20|

21| func sumSquares(a, b int32) int32 {
22| return a*a + b*b

23| }

24|

25| func main() {

26 | rand.Seed(time.Now().UnixNano())
27|

28| a, b := longTimeRequest(), longTimeRequest()
29| fmt.Println(sumSquares(<-a, <-b))
30| }

Pass send-only channels as arguments

Same as the last example, in the following example, the values of two arguments of the sumSquares
function call are requested concurrently. Different to the last example, the longTimeRequest function

takes a send-only channel as parameter instead of returning a receive-only channel result.

1| package main

2|

3| import (

4] "time"

5] "math/rand"

6| "fmt"

71 )

8]

9| func longTimeRequest(r chan<- int32) {
10| // Simulate a workload.

11| time.Sleep(time.Second * 3)

12| r <- rand.Int31n(100)

13| }

14|

15| func sumSquares(a, b int32) int32 {
16 | return a*a + b*b

17| }

18|

19| func main() {

20| rand.Seed(time.Now().UnixNano())
21|

22| ra, rb := make(chan int32), make(chan int32)
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23| go longTimeRequest(ra)

24 | go longTimeRequest(rb)

25|

26 | fmt.Println(sumSquares(<-ra, <-rb))
27|

In fact, for the above-specified example, we don't need two channels to transfer results. Using one channel

is okay.
1]
2|
3| // The channel can be buffered or not.
4| results := make(chan int32, 2)
5] go longTimeRequest(results)
6 | go longTimeRequest(results)
7|
8] fmt.Println(sumSquares(<-results, <-results))
9| }

This is kind of data aggregation which will be introduced specially below.

| The first response wins

This is the enhancement of the using-only-one-channel variant in the last example.

Sometimes, a piece of data can be received from several sources to avoid high latencies. For a lot of
factors, the response durations of these sources may vary much. Even for a specified source, its response
durations are also not constant. To make the response duration as short as possible, we can send a request
to every source in a separated goroutine. Only the first response will be used, other slower ones will be
discarded.

Note, if there are N sources, the capacity of the communication channel must be at least N-1, to avoid the

goroutines corresponding the discarded responses being blocked for ever.

1| package main

2|

3| import (

4| "fmt"

5] "time"

6 | "math/rand"

70 )

8|

9| func source(c chan<- int32) {

10| ra, rb := rand.Int31(), rand.Intn(3) + 1
11| // Sleep 1s/2s/3s.

12| time.Sleep(time.Duration(rb) * time.Second)
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13| C <- ra

14] }

15|

16| func main() {

17| rand.Seed(time.Now().UnixNano())
18|

19| startTime := time.Now()

20| // ¢ must be a buffered channel.
21| c := make(chan int32, 5)

22| for i := 0; 1 < cap(c); i++ {

23| go source(c)

24| ¥

25| // 0Only the first response will be used.
26 | rnd := <- ¢

27 | fmt.Println(time.Since(startTime))
28| fmt.Println(rnd)

29| }

There are some other ways to implement the first-response-win use case, by using the select mechanism
and a buffered channel whose capacity is one. Other ways will be introduced below.

More request-response variants

The parameter and result channels can be buffered so that the response sides won't need to wait for the
request sides to take out the transferred values.

Sometimes, a request is not guaranteed to be responded back a valid value. For all kinds of reasons, an
error may be returned instead. For such cases, we can use a struct type like struct{v T; err error}

or a blank interface type as the channel element type.

Sometimes, for some reasons, the response may need a much longer time than the expected to arrive, or

will never arrive. We can use the timeout mechanism introduced below to handle such circumstances.

Sometimes, a sequence of values may be returned from the response side, this is kind of the data flow

mechanism mentioned later below.

IUse Channels for Notifications

Notifications can be viewed as special requests/responses in which the responded values are not important.

Generally, we use the blank struct type struct{} as the element types of the notification channels, for

the size of type struct{} is zero, hence values of struct{} doesn't consume memory.

|1-To-1 notification by sending a value to a channel
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If there are no values to be received from a channel, then the next receive operation on the channel will
block until another goroutine sends a value to the channel. So we can send a value to a channel to notify
another goroutine which is waiting to receive a value from the same channel.

In the following example, the channel done is used as a signal channel to do notifications.

1| package main

2|

3| import (

4| "crypto/rand"

5] "fmt"

6 | "os"

7| "sort"

8] )

9]

10| func main() {

11| values := make([]byte, 32 * 1024 * 1024)
12| if _, err := rand.Read(values); err != nil {
13| fmt.Println(err)

14| 0s.Exit(1)

15| }

16|

17 | done := make(chan struct{}) // can be buffered or not
18]
19| // The sorting goroutine
20| go func() {
21| sort.Slice(values, func(i, j int) bool {
22| return values[i] < values[j]
23| 1)
24| // Notify sorting is done.
25| done <- struct{}{}
26| 10)
27|
28| // do some other things ...
29|
30| <- done // waiting here for notification
31| fmt.Println(values[0], values[len(values)-1])
32| }

|1-To-1 notification by receiving a value from a channel

If the value buffer queue of a channel is full (the buffer queue of an unbuffered channel is always full), a
send operation on the channel will block until another goroutine receives a value from the channel. So we
can receive a value from a channel to notify another goroutine which is waiting to send a value to the same

channel. Generally, the channel should be an unbuffered channel.
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This notification way is used much less common than the way introduced in the last example.

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func main() {

9| done := make(chan struct{})

10| // The capacity of the signal channel can
11| // also be one. If this is true, then a
12| // value must be sent to the channel before
13| // creating the following goroutine.
14 |

15| go func() {

16| fmt.Print("Hello")

17| // Simulate a workload.

18| time.Sleep(time.Second * 2)

19|

20| // Receive a value from the done

21| // channel, to unblock the second

22| // send in main goroutine.

23| <- done

24| 10

25|

26 | // Blocked here, wait for a notification.
27 | done <- struct{}{}

28| fmt.Println(" world!")

29| }

In fact, there are no fundamental differences between receiving or sending values to make notifications.

They can both be summarized as the fasters are notified by the slowers.

|N-To-1 and 1-To-N notifications

By extending the above two use cases a little, it is easy to do N-To-1 and 1-To-N notifications.

1| package main

2|

3| import "log"

4| import "time"

5]

6| type T = struct{}

7]

8| func worker(id int, ready <-chan T, done chan<- T) {
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9| <-ready // block here and wait a notification
10| log.Print("wWorker#", id, " starts.")

11| // Simulate a workload.

12| time.Sleep(time.Second * time.Duration(id+1))
13| log.Print("Worker#", id, " job done.")
14| // Notify the main goroutine (N-to-1),
15| done <- T{}

16| }

17|

18| func main() {

19| log.SetFlags(0)

20|

21| ready, done := make(chan T), make(chan T)
22| go worker (0, ready, done)

23| go worker (1, ready, done)

24| go worker(2, ready, done)

25|

26 | // Simulate an initialization phase.

27 | time.Sleep(time.Second * 3 / 2)

28| // 1-to-N notifications.

29| ready <- T{}; ready <- T{}; ready <- T{}
30| // Being N-to-1 notified.

31| <-done; <-done; <-done

32| }

In fact, the ways to do 1-to-N and N-to-1 notifications introduced in this sub-section are not used

commonly in practice. In practice, we often use sync.wWaitGroup to do N-to-1 notifications, and we do

1-to-N notifications by close channels. Please read the next sub-section for details.

|Br0adcast (1-To-N) notifications by closing a channel

The way to do 1-to-N notifications shown in the last sub-section is seldom used in practice, for there is a
better way. By making using of the feature that infinite values can be received from a closed channel, we

can close a channel to broadcast notifications.

By the example in the last sub-section, we can replace the three channel send operations ready <-

struct{}{} in the last example with one channel close operation close(ready) to do an 1-to-N

notifications.
1]
2| close(ready) // broadcast notifications
3]

Surely, we can also close a channel to do a 1-to-1 notification. In fact, this is the most used notification

way in Go.
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The feature that infinite values can be received from a closed channel will be utilized in many other use
cases introduced below.

Timer: scheduled notification

It is easy to use channels to implement one-time timers.
A custom one-time timer implementation:

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func AfterDuration(d time.Duration) <- chan struct{} {
9| c := make(chan struct{}, 1)
10| go func() {

11| time.Sleep(d)

12| C <- struct{}{}

13| 10)

14| return c

15] }

16|

17| func main() {

18] fmt.Println("Hi!")

19| <- AfterDuration(time.Second)
20| fmt.Println("Hello!")

21| <- AfterDuration(time.Second)
22| fmt.Println("Bye!")

23| }

In fact, the After function in the time standard package provides the same functionality, with a much

more efficient implementation. We should use that function instead to make the code look clean.

Please note, <-time.After(abDuration) will make the current goroutine enter blocking state, but a

time.Sleep(aburation) function call will not.

The use of <-time.After(aDuration) is often used in the timeout mechanism which will be

introduced below.

|Use Channels as Mutex Locks

One of the above examples has mentioned that one-capacity buffered channels can be used as one-time
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binary semaphore # . In fact, such channels can also be used as multi-time binary semaphores, a.k.a.,
mutex locks, though such mutex locks are not efficient as the mutexes provided in the sync standard

package.
There are two manners to use one-capacity buffered channels as mutex locks.

1. Lock through a send, unlock through a receive.
2. Lock through a receive, unlock through a send.

The following is a lock-through-send example.

1| package main

2|
3| import "fmt"
4|
5| func main() {
6| // The capacity must be one.
7| mutex := make(chan struct{}, 1)
8]
9] counter := 0
10| increase := func() {
11| mutex <- struct{}{} // lock
12| counter++
13| <-mutex // unlock
14| }
15|
16 | increasel000 := func(done chan<- struct{}) {
17 | for 1 := 0; 1 < 1000; i++ {
18| increase()
19| }
20| done <- struct{}{}
21| }
22|
23| done := make(chan struct{})
24| go increasel000(done)
25| go increasel000(done)
26 | <-done; <-done
27 | fmt.Println(counter) // 2000
28| }

The following is a lock-through-receive example. It just shows the modified part based on the above lock-

through-send example.

1]

2| func main() {

3| mutex := make(chan struct{}, 1)

4| mutex <- struct{}{} // this line is needed.
5]
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6 | counter := 0

7| increase := func() {

8| <-mutex // lock

9] counter++

10| mutex <- struct{}{} // unlock
11| }

12|

IUse Channels as Counting Semaphores

Buffered channels can be used as counting semaphores ! . Counting semaphores can be viewed as multi-
owner locks. If the capacity of a channel is N, then it can be viewed as a lock which can have most N

owners at any time. Binary semaphores (mutexes) are special counting semaphores, each of binary

semaphores can have at most one owner at any time.
Counting semaphores are often used to enforce a maximum number of concurrent requests.

Like using channels as mutexes, there are also two manners to acquire one piece of ownership of a channel

semaphore.

1. Acquire ownership through a send, release through a receive.
2. Acquire ownership through a receive, release through a send.

An example of acquiring ownership through receiving values from a channel.

1| package main

2|

3| import (

4| "log"

5] "time"

6| "math/rand"
70 )

8|

9| type Seat int
10| type Bar chan Seat

11|

12| func (bar Bar) ServeCustomer(c int) {

13| log.Print("customer#", c, " enters the bar")

14 | seat := <- bar // need a seat to drink

15| log.Print("++ customer#", c, " drinks at seat#", seat)

16 | time.Sleep(time.Second * time.Duration(2 + rand.Intn(6)))
17 | log.Print("-- customer#", c, " frees seat#", seat)

18| bar <- seat // free seat and leave the bar

19| }

20|

21| func main() {

355


https://en.wikipedia.org/wiki/Semaphore_(programming)

22|
23|
24|
25|
26|
27|
28|
29|
30|
31
32|
33|
34
35|
36|
37|
38|
39| }

In the above example, only the customers each of whom get a seat can drink. So there will be most ten
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rand.Seed(time.Now().UnixNano())

// the bar has 10 seats.

bar24x7 := make(Bar, 10)

// Place seats in an bar.

for seatId := 0; seatId < cap(bar24x7); seatId++ {
// None of the sends will block.
bar24x7 <- Seat(seatId)

}
for customerId := 0; ; customerId++ {
time.Sleep(time.Second)
go bar24x7.ServeCustomer (customerId)
}

// sleeping != blocking
for {time.Sleep(time.Second)}

customers are drinking at any given time.

The last for loop in the main function is to avoid the program exiting. There is a better way, which will

be introduced below, to do the job.

In the above example, although there will be most ten customers are drinking at any given time, there may
be more than ten customers are served at the bar at the same time. Some customers are waiting for free
seats. Although each customer goroutine consumes much fewer resources than a system thread, the total

resources consumed by a large number of goroutines are not negligible. So it is best to create a customer

goroutine only if there is an available seat.

1]
2|

// same code as the above example

3| func (bar Bar) ServeCustomerAtSeat(c int, seat Seat) {

4]
5]
6
7]
8] }
9]

log.Print("customer#", c, " drinks at seat#", seat)

time.Sleep(time.Second * time.Duration(2 + rand.Intn(6)))

log.Print("<- customer#", c, " frees seat#", seat)
bar <- seat // free seat and leave the bar

10| func main() {

11|
12|
13|
14|
15|
16|
17

rand.Seed(time.Now().UnixNano())
bar24x7 := make(Bar, 10)

for seatId := 0; seatld < cap(bar24x7); seatId++ {
bar24x7 <- Seat(seatId)
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18| for customerId := 0; ; customerId++ {

19| time.Sleep(time.Second)

20| // Need a seat to serve next customer.

21| seat := <- bar24x7

22| go bar24x7.ServeCustomerAtSeat(customerId, seat)
23| }

24| for {time.Sleep(time.Second)}

25| }

There will be at most about ten live customer goroutines coexisting in the above-optimized version.

The manner of acquiring ownership through sending is simpler comparatively. There is no step of placing
seats.

1| package main

2|

3| import (

4| "log"

5] "time"

6 | "math/rand"
71 )

8]

9| type Customer struct{id int}
10| type Bar chan Customer

11|

12| func (bar Bar) ServeCustomer(c Customer) {

13| log.Print("++ customer#", c.id, " starts drinking")
14 | time.Sleep(time.Second * time.Duration(3 + rand.Intn(16)))
15| log.Print("-- customer#", c.id, " leaves the bar")
16 | <- bar // leaves the bar and save a space

17| }

18]

19| func main() {

20| rand.Seed(time.Now().UnixNano())

21|

22| // The bar can serve most 10 customers

23| // at the same time.

24| bar24x7 := make(Bar, 10)

25| for customerId := 0; ; customerId++ {

26 | time.Sleep(time.Second * 2)

27 | customer := Customer{customerId}

28| // Wait to enter the bar.

29| bar24x7 <- customer

30| go bar24x7.ServeCustomer (customer)

31| }

32| for {time.Sleep(time.Second)}

33| }
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IDialogue (Ping-Pong)

Two goroutines can dialogue through a channel. The following is an example which will print a series of

Fibonacci numbers.

1| package main
2|

3| import "fmt"
4| import "time"
5| import "os"

6]

7| type Ball uint64

8]

9| func Play(playerName string, table chan Ball) {
10| var lastValue Ball = 1

11| for {

12| ball := <- table // get the ball
13| fmt.Println(playerName, ball)

14| ball += lastValue

15| if ball < lastValue { // overflow
16 | 0S.Exit(0)

17| }

18| lastValue = ball

19| table <- ball // bat back the ball
20| time.Sleep(time.Second)

21| }

22| }

23|

24| func main() {

25| table := make(chan Ball)

26 | go func() {

27 | table <- 1 // throw ball on table
28| 10)

29| go Play("A:", table)

30| Play("B:", table)

31| }

IChannel Encapsulated in Channel

Sometimes, we can use a channel type as the element type of another channel type. In the following
example, chan chan<- int is a channel type which element type is a send-only channel type chan<-

int.

1| package main
2|
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3| import "fmt"

4|

5| var counter = func (n int) chan<- chan<- int {
6| requests := make(chan chan<- int)
7] go func() {

8| for request := range requests {
9] if request == nil {

10| n++ // increase

11| } else {

12| request <- n // take out
13| }

14| }

15| 10)

16|

17 | // Implicitly converted to chan<- (chan<- int)
18| return requests

19] }(0)

20|

21| func main() {

22| increasel000 := func(done chan<- struct{}) {
23| for i := 0; i < 1000; i++ {

24| counter <- nil

25| }

26 | done <- struct{}{}

27| }

28|

29| done := make(chan struct{})

30| go increasel000(done)

31| go increasel000(done)

32| <-done; <-done

33|

34| request := make(chan int, 1)

35| counter <- request

36 | fmt.Println(<-request) // 2000

37| }

Although here the encapsulation implementation may be not the most efficient way for the above-

specified example, the use case may be useful for some other scenarios.

ICheck Lengths and Capacities of Channels

We can use the built-in functions len and cap to check the length and capacity of a channel. However,
we seldom do this in practice. The reason for we seldom use the 1len function to check the length of a
channel is the length of the channel may have changed after the 1en function call returns. The reason for
we seldom use the cap function to check the capacity of a channel is the capacity of the channel is often

known or not important.
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However, there do have some scenarios we need to use the two functions. For example, sometimes, we

want to receive all the values buffered in a non-closed channel ¢ which no ones will send values to any

more, then we can use the following code to receive remaining values.

1| // Assume the current goroutine is the only
2| // goroutine tries to receive values from
3| // the channel c at present.

4| for len(c) > 0 {

5] value := <-c
6| // use value
71}

We can also use the try-receive mechanism introduced below to do the same job. The efficiencies of the
two ways are almost the same. The advantage of the try-receive mechanism is the current goroutine is not

required to be the only receiving goroutine.

Sometimes, a goroutine may want to write some values to a buffered channel c until it is full without

entering blocking state at the end, and the goroutine is the only sender of the channel, then we can use the
following code to do this job.

1| for len(c) < cap(c) {
2| c <- aValue

3]}

Surely, we can also use the try-send mechanism introduced below to do the same job.

IBlock the Current Goroutine Forever

The select mechanism is a unique feature in Go. It brings many patterns and tricks for concurrent
programming. About the code execution rules of the select mechanism, please read the article channels in
Go (821).

We can use a blank select block select{} to block the current goroutine for ever. This is the simplest
use case of the select mechanism. In fact, some uses of for {time.Sleep(time.Second)} in some

above examples can be replaced with select{}.

Generally, select{} is used to prevent the main goroutine from exiting, for if the main goroutine exits,

the whole program will also exit.

An example:

1| package main

2|

3| import "runtime"
4|
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5| func DoSomething() {

6 | for {
7] // do something ...
8]
9] runtime.Gosched() // avoid being greedy
10| }
11] }
12|
13| func main() {
14| go DoSomething()
15| go DoSomething()
16 | select{}
171 }

By the way, there are some other ways (§46) to make a goroutine stay in blocking state for ever. But the
select{} way is the simplest one.

ITry-Send and Try-Receive

A select block with one default branch and only one case branch is called a try-send or try-receive
channel operation, depending on whether the channel operation following the case keyword is a channel

send or receive operation.

o If the operation following the case keyword is a send operation, then the select block is called as
try-send operation. If the send operation would block, then the default branch will get executed
(fail to send), otherwise, the send succeeds and the only case branch will get executed.

o [f the operation following the case keyword is a receive operation, then the select block is called
as try-receive operation. If the receive operation would block, then the default branch will get
executed (fail to receive), otherwise, the receive succeeds and the only case branch will get

executed.
Try-send and try-receive operations never block.

The standard Go compiler makes special optimizations for try-send and try-receive select blocks, their

execution efficiencies are much higher than multi-case select blocks.

The following is an example which shows how try-send and try-receive work.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | type Book struct{id int}

7| bookshelf := make(chan Book, 3)
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8]

9] for i := 0; i < cap(bookshelf) * 2; i++ {

10| select {

11| case bookshelf <- Book{id: i}:

12| fmt.Println("succeeded to put book", 1)
13| default:

14| fmt.Println("failed to put book")

15] }

16| }

17|

18| for i := 0; i < cap(bookshelf) * 2; i++ {

19| select {

20| case book := <-bookshelf:

21| fmt.Println("succeeded to get book", book.id)
22| default:

23| fmt.Println("failed to get book")

24| }

25| }

26| }

The output of the above program:

succeed to put book 0
succeed to put book 1
succeed to put book 2
failed to put book
failed to put book
failed to put book
succeed to get book 0
succeed to get book 1
succeed to get book 2
failed to get book
failed to get book
failed to get book

The following sub-sections will show more try-send and try-receive use cases.

|Check if a channel is closed without blocking the current goroutine

Assume it is guaranteed that no values were ever (and will be) sent to a channel, we can use the following
code to (concurrently and safely) check whether or not the channel is already closed without blocking the

current goroutine, where T the element type of the corresponding channel type.

1| func IsClosed(c chan T) bool {

2| select {
3| case <-C:
4| return true
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5] default:

6| }

7| return false
8| }

The way to check if a channel is closed is used popularly in Go concurrent programming to check whether
or not a notification has arrived. The notification will be sent by closing the channel in another goroutine.

|Peak/burst limiting

We can implement peak limiting by combining use channels as counting semaphores and try-send/try-

receive. Peak-limit (or burst-limit) is often used to limit the number of concurrent requests without

blocking any requests.

The following is a modified version of the last example in the use channels as counting semaphores

section.
1| ...
2] // Can serve most 10 customers at the same time
3] bar24x7 := make(Bar, 10)
4| for customerId := 0; ; customerId++ {
5] time.Sleep(time.Second)
6| customer := Consumer{customerId}
7| select {
8| case bar24x7 <- customer: // try to enter the bar
9| go bar24x7.ServeConsumer (customer)
10| default:
11| log.Print("customer#", customerId, " goes elsewhere")
12| }
13| }
14|

|Another way to implement the first-response-wins use case

As mentioned above, we can use the select mechanism (try-send) with a buffered channel which capacity

is one (at least) to implement the first-response-wins use case. For example,

1| package main

2|

3| import (

4| "fmt"

5] "math/rand"
6| "time"

7| )

8|
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9| func source(c chan<- int32) {

10| ra, rb := rand.Int31(), rand.Intn(3)+1

11| // Sleep 1s, 2s or 3s.

12| time.Sleep(time.Duration(rb) * time.Second)
13| select {

14| case ¢ <- ra:

15| default:

16| }

17| }

18]

19| func main() {

20| rand.Seed(time.Now().UnixNano())

21|

22| // The capacity should be at least 1.

23| c := make(chan int32, 1)

24| for 1 (= 0; 1< 5; i+t+ {

25| go source(c)

26| }

27 | rnd := <-c // only the first response is used
28| fmt.Println(rnd)

29| }

Please note, the capacity of the channel used in the above example must be at least one, so that the first
send won't be missed if the receiver/request side has not gotten ready in time.

|The third way to implement the first-response-wins use case

For a first-response-wins use case, if the number of sources is small, for example, two or three, we can use

a select code block to receive the source responses at the same time. For example,

1| package main

2|

3| import (

4] "fmt"

5] "math/rand"

6| "time"

71 )

8]

9| func source() <-chan int32 {

10| // ¢ must be a buffered channel.

11| c := make(chan int32, 1)

12| go func() {

13| ra, rb := rand.Int31(), rand.Intn(3)+1
14 | time.Sleep(time.Duration(rb) * time.Second)
15| C <- ra

16| 10)

17 | return c
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18] }

19|

20| func main() {

21| rand.Seed(time.Now().UnixNano())
22|

23] var rnd int32

24| // Blocking here until one source responses.
25| select{

26 | case rnd = <-source():

27 | case rnd = <-source():

28| case rnd = <-source():

29| ¥

30| fmt.Println(rnd)

31| }

Note: if the channel used in the above example is an unbuffered channel, then there will two goroutines
hanging for ever after the select code block is executed. This is a memory leak case (845).

The two ways introduced in the current and the last sub-sections can also be used to do N-to-1

notifications.

Timeout

In some request-response scenarios, for all kinds of reasons, a request may need a long time to response,
sometimes even will never response. For such cases, we should return an error message to the client side
by using a timeout solution. Such a timeout solution can be implemented with the select mechanism.

The following code shows how to make a request with a timeout.

1| func requestWithTimeout(timeout time.Duration) (int, error) {

2| c := make(chan int)
3| // May need a long time to get the response.
4| go doRequest(c)
5]
6 | select {
7| case data := <-c:
8| return data, nil
9| case <-time.After(timeout):
10| return 0, errors.New("timeout")
11| }
12| }
| Ticker

We can use the try-send mechanism to implement a ticker.
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1| package main
2|

3| import "fmt"
4| import "time"

5]

6| func Tick(d time.Duration) <-chan struct{} {
7] // The capacity of c is best set as one.
8| c := make(chan struct{}, 1)
9| go func() {

10| for {

11| time.Sleep(d)

12| select {

13| case c <- struct{}{}:
14 | default:

15| }

16| }

17| 10)

18| return c

19| }

20|

21| func main() {

22| t := time.Now()

23| for range Tick(time.Second) {
24| fmt.Println(time.Since(t))
25| }

26| }

In fact, there is a Tick function in the time standard package provides the same functionality, with a
much more efficient implementation. We should use that function instead to make code look clean and run

efficiently.
|Rate Limiting

One of above section has shown how to use try-send to do peak limiting. We can also use try-send to do
rate limiting (with the help of a ticker). In practice, rate-limit is often to avoid quota exceeding and

resource exhaustion.

The following shows such an example borrowed from the official Go wiki # . In this example, the

number of handled requests in any one-minute duration will not exceed 200.

1| package main

2|

3| import "fmt"

4| import "time"

5]

6| type Request interface{}
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7]
8|
9|
10 |
11 |
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31
32|
33|
34|
35|
36|
37|
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func handle(r Request) {fmt.Println(r.(int))}

const RateLimitPeriod = time.Minute
const RateLimit = 200 // most 200 requests in one minute

func handleRequests(requests <-chan Request) {

guotas := make(chan time.Time, RatelLimit)
go func() {
tick := time.NewTicker (RateLimitPeriod / RatelLimit)

defer tick.Stop()
for t := range tick.C {

select {
case quotas <- t:
default:
}
}
10)
for r := range requests {
<-quotas

go handle(r)

func main() {
requests := make(chan Request)
go handleRequests(requests)
// time.Sleep(time.Minute)
for 1 := 0; ; i++ {requests <- i}

3

In practice, we often use rate-limit and peak/burst-limit together.

| Switches

From the article channels in Go (§21), we have learned that sending a value to or receiving a value from a

nil channel are both blocking operations. By making use of this fact, we can change the involved channels

in the case operations of a select code block to affect the branch selection in the select code block.

The following is another ping-pong example which is implemented by using the select mechanism. In this

example, one of the two channel variables involved in the select block is nil. The case branch

corresponding the nil channel will not get selected for sure. We can think such case branches are in off

status. At the end of each loop step, the on/off statuses of the two case branches are switched.

1]

package main

367



§37. Channel Use Cases

2|

3| import "fmt"

4| import "time"

5| import "os"

6]

7| type Ball uint8

8| func Play(playerName string, table chan Ball, serve bool) {

9] var receive, send chan Ball

10| if serve {

11| receive, send = nil, table
12| } else {

13| receive, send = table, nil
14| }

15| var lastValue Ball = 1

16 | for {

17 | select {

18| case send <- lastValue:

19| case value := <- receive:

20| fmt.Println(playerName, value)
21| value += lastValue

22| if value < lastValue { // overflow
23| 0S.Exit(0)

24| }

25| lastValue = value

26 | }

27 | // Switch on/off.

28| receive, send = send, receive
29| time.Sleep(time.Second)

30| }

31| }

32|

33| func main() {

34| table := make(chan Ball)

35| go Play("A:", table, false)

36 | Play("B:", table, true)

37| }

The following is another (non-concurrent) example which is much simpler and also demoes the switch

effect. This example will print 1212. .. when running. It has not much usefulness in practice. It is shown

here just for learning purpose.

1| package main
2|

3| import "fmt"
4| import "time"

5]
6| func main() {
7| for ¢ := make(chan struct{}, 1); true; {
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8] select {

9] case ¢ <- struct{}{}:
10| fmt.Print("1")

11| case <-c:

12| fmt.Print("2")

13| }

14| time.Sleep(time.Second)
15] }

16| }

|Control code execution possibility weights

We can duplicate a case branch in a select code block to increase the execution possibility weigh of
the corresponding code.

Example:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6 | foo, bar := make(chan struct{}), make(chan struct{})
7| close(foo); close(bar) // for demo purpose
8| X, y := 0.0, 0.0

9| f = func(){x++}

10| g := func(){y++}

11| for 1 := 0; i < 100000; i++ {

12| select {

13| case <-foo: f()

14 | case <-foo: f()

15| case <-bar: g()

16| }

17| }

18| fmt.Println(x/y) // about 2

19| }

The possibility of the f function being called is about the double of the g function being called.

|Select from dynamic number of cases

Although the number of branches in a select block is fixed, we can use the functionalities provided in
the reflect standard package to construct a select block at run time. The dynamically created select
block can have an arbitrary number of case branches. But please note, the reflection way is less efficient

than the fixed way.
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The reflect standard package also provides TrySend and TryRecv functions to implement one-case-

plus-default select blocks.

|Data Flow Manipulations

This section will introduce some data flow manipulation use cases by using channels.

Generally, a data flow application consists of many modules. Different modules do different jobs. Each
module may own one or several workers (goroutines), which concurrently do the same job specified for
that module. Here is a list of some module job examples in practice:

e data generation/collecting/loading.
e data serving/saving.

e data calculation/analysis.

e data validation/filtering.

e data aggregation/division

e data composition/decomposition.

e data duplication/proliferation.

A worker in a module may receive data from several other modules as inputs and send data to serve other
modules as outputs. In other words, a module can be both a data consumer and a data producer. A module
which only sends data to some other modules but never receives data from other modules is called a
producer-only module. A module which only receives data from some other modules but never sends data
to other modules is called a consumer-only module.

Many modules together form a data flow system.

The following will show some data flow module worker implementations. These implementations are for
explanation purpose, so they are very simple and they may be not efficient.

|Data generation/collecting/loading

There are all kinds of producer-only modules. A producer-only module worker may produce a data stream

¢ by loading a file, reading a database, or crawling the web.

e by collecting all kinds of metrics from a software system or all kinds of hardware.
e by generating random numbers.

e etc.

Here, we use a random number generator as an example. The generator function returns one result but
takes no parameters.

1| import (
2| "crypto/rand"
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"encoding/binary"

6| func RandomGenerator() <-chan uint64 {

7|
8|
9|
10|
11|
12|
13|
14 |
15|
16|
17|
18|
19| }

c := make(chan uint64)
go func() {
rnds := make([]byte, 8)
for {
_, err rand.Read(rnds)
if err != nil {
close(c)

¥
C <- binary.BigEndian.Uint64(rnds)

b
10)

return c

In fact, the random number generator is a multi-return future/promise.

A data producer may close the output stream channel at any time to end data generating.

|Data aggregation

A data aggregation module worker aggregates several data streams of the same data type into one stream.

Assume the data type is int64, then the following function will aggregate an arbitrary number of data

streams into one.

1| func Aggregator(inputs ...<-chan uint64) <-chan uint64 {
2| out := make(chan uint64)

3| for _, in := range inputs {

4| in := in // this line is essential

5] go func() {

6 | for {

7| out <- <-in // <=> out <- (<-1in)
8] }

9] 310)

10| }

11| return out

12| }

A better implementation should consider whether or not an input stream has been closed. (Also valid for

the following other module worker implementations.)

1| func Aggregator(inputs ...<-chan uint64) <-chan uint64 {

2|
3

output := make(chan uint64)
var wg sync.WaitGroup
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4| for _, in := range inputs {
5] wg.Add (1)

6| in := in // this line is essential
7] go func() {

8| for {

9] x, ok := <-in

10| if ok {

11| output <- x

12| } else {

13| wg.Done()

14| }

15| }

16| 10)

17| }

18| go func() {

19| wg.Wait()

20| close(output)

21| 10)

22| return output

23| }

If the number of aggregated data streams is very small (two or three), we can use select block to

aggregate these data streams.

1| // Assume the number of input stream is two.

2] .

3| output := make(chan uint64)

4| go func() {

5] inA, inB := inputs[0], inputs[1]
6| for {

7| select {

8| case v := <- inA: output <- v
9] case v := <- inB: output <- v
10| }
11] }
12| }
13|

|Data division

A data division module worker does the opposite of a data aggregation module worker. It is easy to

implement a division worker, but in practice, division workers are not very useful and seldom used.

1| func Divisor(input <-chan uint64, outputs ...chan<- uint64) {
2| for _, out := range outputs {

3| out := out // this line is essential

4| go func() {
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5] for {

6| out <- <-input // <=> out <- (<-input)
7] }

8] 10)

of 3
10| }

Data composition

A data composition worker merges several pieces of data from different input data streams into one piece
of data.

The following is a composition worker example, in which two uint64 values from one stream and one
uint64 value from another stream compose one new uint64 value. Surely, these stream channel

element types are different generally in practice.

1| func Composer(inA, inB <-chan uint64) <-chan uint64 {

2| output := make(chan uint64)

3| go func() {

4| for {

5] al, b, a2 := <-inA, <-inB, <-inA
6 | output <- a1l A b & a2

7| }

8| 10)

9] return output

10| }

|Data decomposition

Data decomposition is the inverse process of data composition. A decomposition worker function
implementation takes one input data stream parameter and returns several data stream results. No

examples will be shown for data decomposition here.

|Data duplication/proliferation
Data duplication (proliferation) can be viewed as special data decompositions. One piece of data will be
duplicated and each of the duplicated data will be sent to different output data streams.

An example:

1| func Duplicator(in <-chan uint64) (<-chan uint64, <-chan uint64) {
2| outA, outB := make(chan uint64), make(chan uint64)
3] go func() {
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4| for {

5] X 1= <-in
6| OUtA <- X
7] outB <- X
8] }

9] 10

10| return outA, outB
11] 3

|Data calculation/analysis

The functionalities of data calculation and analysis modules vary and each is very specific. Generally, a
worker function of such modules transforms each piece of input data into another piece of output data.

For simple demo purpose, here shows a worker example which inverts every bit of each transferred
uint64 value.

1| func Calculator(in <-chan uint64, out chan uint64) (<-chan uint64) {
2] if out == nil {

3| out = make(chan uint64)
4| }

5] go func() {

6 | for {

7| X 1= <-in

8| out <- Ax

9| }

10| 10)

11| return out

12| }

|Data validation/filtering

A data validation or filtering module discards some transferred data in a stream. For example, the

following worker function discards all non-prime numbers.

1| import "math/big"

2|

3| func Filter(input <-chan uint64, output chan uint64) <-chan uint64 {
4| if output == nil {

5] output = make(chan uint64)
6] }

7] go func() {

8| bigInt := big.NewInt(0)

9] for {

10| X := <-input
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11| bigInt.SetUint64(x)

12| if bigInt.ProbablyPrime(1) {
13| output <- x

14| }

15| }

16| 10)

17| return output

18| }

Data serving/saving

Generally, a data serving or saving module is the last or final output module in a data flow system. Here
just provides a simple worker which prints each piece of data received from the input stream.

1| import "fmt"

2|

3| func Printer(input <-chan uint64) {
4| for {

5] X, ok := <-input
6| if ok {

7] fmt.Println(x)
8| } else {

9] return

10| ¥

11] 3

12] }

|Data flow system assembling

Now, let's use the above module worker functions to assemble several data flow systems. Assembling a
data flow system is just to create some workers of different modules, and specify the input streams for

every worker.

Data flow system example 1 (a linear pipeline):

1| package main

2|

3| ... // the worker functions declared above.
4|

5| func main() {

6 | Printer(

7| Filter(

8| Calculator(

9| RandomGenerator (),

10| ),
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11|
12| )
13| }

),

The above data flow system is depicted in the following diagram.

Random
Number
Generator

) caesr [

Calculator Filter

Printer

Data flow system example 2 (a directed acyclic graph pipeline):

1| package main

2|

3] // the worker functions declared above.

4]

5| func main() {

6 | filterA := Filter(RandomGenerator(), nil)

7| filterB := Filter(RandomGenerator(), nil)

8| filterC := Filter(RandomGenerator(), nil)

9] filter := Aggregator(filterA, filterB, filterC)
10| calculatorA := Calculator(filter, nil)

11| calculatorB := Calculator(filter, nil)

12| calculator := Aggregator(calculatorA, calculatorB)
13| Printer(calculator)

14| }

The above data flow system is depicted in the following diagram.

Random
Number
Generator

=L f———1

Filter A

Aggregator

Random
Number
Generator

—

Filter B Calculator &

Calculator B

Y

Random
Number
Generator

—  Filter C Aggregator

=l

Printer

More complex data flow topology may be arbitrary graphs. For example, a data flow system may have

multiple final outputs. But data flow systems with cyclic-graph topology are seldom used in reality.

From the above two examples, we can find that it is very easy and intuitive to build data flow systems

with channels.

From the last example, we can find that, with the help of aggregators, it is easy to implement fan-in and

fan-out for the number of workers for a specified module.

In fact, we can use a simple channel to replace the role of an aggregator. For example, the following

example replaces the two aggregators with two channels.
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1| package main

2|

3| ... // the worker functions declared above.
4]

5| func main() {

6| cl := make(chan uint64, 100)

7] Filter (RandomGenerator(), c1) // filterA
8| Filter(RandomGenerator(), c1) // filterB
9| Filter (RandomGenerator(), cl1l) // filterC
10| c2 := make(chan uint64, 100)

11| Calculator(cl, c2) // calculatorA

12| Calculator(cl, c2) // calculatorB

13| Printer(c2)

14| }

The modified data flow system is depicted in the following diagram.

Random
Number —®™ Filter A
Generator

Random
Number —™ Filter B
Generator

Random l

Number — Filter C Printer
Generator

Calculator & Calculator B

The above explanations for data flow systems don't consider much on how to close data streams. Please
read this article (§38) for explanations on how to gracefully close channels.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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838. How to Gracefully Close Channels

How to Gracefully Close Channels

Several days ago, I wrote an article which explains the channel rules in Go (8§21). That article got many
votes on reddit # and HN @ , but there are also some criticisms on Go channel design details.

I collected some criticisms on the following designs and rules of Go channels:

1. no easy and universal ways to check whether or not a channel is closed without modifying the status
of the channel.

2. closing a closed channel will panic, so it is dangerous to close a channel if the closers don't know
whether or not the channel is closed.

3. sending values to a closed channel will panic, so it is dangerous to send values to a channel if the
senders don't know whether or not the channel is closed.

The criticisms look reasonable (in fact not). Yes, there is really not a built-in function to check whether or
not a channel has been closed.

There is indeed a simple method to check whether or not a channel is closed if you can make sure no
values were (and will be) ever sent to the channel. The method has been shown in the last article (§37).
Here, for a better coherence, the method is listed in the following example again.

1| package main

2|

3| import "fmt"

4|

5| type T int

6]

7] func IsClosed(ch <-chan T) bool {
8| select {

9] case <-ch:

10| return true

11| default:

12| }

13|

14 | return false

15] }

16|

17| func main() {

18| c := make(chan T)

19| fmt.Println(IsClosed(c)) // false
20| close(c)

21| fmt.Println(IsClosed(c)) // true
22| }

As above mentioned, this is not a universal way to check whether a channel is closed.
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In fact, even if there is a simple built-in closed function to check whether or not a channel has been
closed, its usefulness would be very limited, just like the built-in 1en function for checking the current
number of values stored in the value buffer of a channel. The reason is the status of the checked channel
may have changed just after a call to such functions returns, so that the returned value has already not been
able to reflect the latest status of the just checked channel. Although it is okay to stop sending values to a
channel ch if the call closed(ch) returns true, it is not safe to close the channel or continue sending

values to the channel if the call closed(ch) returns false.

IThe Channel Closing Principle

One general principle of using Go channels is don't close a channel from the receiver side and don't
close a channel if the channel has multiple concurrent senders. In other words, we should only close a
channel in a sender goroutine if the sender is the only sender of the channel.

(Below, we will call the above principle as channel closing principle.)

Surely, this is not a universal principle to close channels. The universal principle is don't close (or send
values to) closed channels. If we can guarantee that no goroutines will close and send values to a non-
closed non-nil channel any more, then a goroutine can close the channel safely. However, making such
guarantees by a receiver or by one of many senders of a channel usually needs much effort, and often
makes code complicated. On the contrary, it is much easy to hold the channel closing principle
mentioned above.

ISolutions Which Close Channels Rudely

If you would close a channel from the receiver side or in one of the multiple senders of the channel
anyway, then you can use the recover mechanism (§13) to prevent the possible panic from crashing your

program. Here is an example (assume the channel element type is T).

1| func SafeClose(ch chan T) (justClosed bool) {

2| defer func() {

3| if recover() '= nil {

4| // The return result can be altered
5] // in a defer function call.

6| justClosed = false

7] }

8] 10)

9]

10| // assume ch !'= nil here.

11| close(ch) // panic if ch is closed

12| return true // <=> justClosed = true; return
13| }
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This solution obviously breaks the channel closing principle.

The same idea can be used for sending values to a potential closed channel.

1| func SafeSend(ch chan T, value T) (closed bool) {

2] defer func() {

3] if recover() != nil {

4| closed = true

5] }

6] 10

7]

8] ch <- value // panic if ch is closed

9| return false // <=> closed = false; return
10| }

Not only does the rude solution break the channel closing principle, and data races might happen in the
process.

ISolutions Which Close Channels Politely

Many people prefer using sync.0nce to close channels:

1| type MyChannel struct {

2| ( chan T

3| once sync.Once

4| 3

5]

6| func NewMyChannel() *MyChannel {
7| return &MyChannel{C: make(chan T)}
8| }

9|

10| func (mc *MyChannel) SafeClose() {
11| mc.once.Do(func() {

12| close(mc.C)

13| 1)

14| }

Surely, we can also use sync.Mutex to avoid closing a channel multiple times:

1| type MyChannel struct {

2| (o chan T

3| closed bool

4| mutex sync.Mutex

5| }

6]

7| func NewMyChannel() *MyChannel {

8| return &MyChannel{C: make(chan T)}
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9] 3

10|

11| func (mc *MyChannel) SafeClose() {
12| mc.mutex.Lock()

13| defer mc.mutex.Unlock()

14| if !mc.closed {

15| close(mc.C)

16| mc.closed = true

17] 3

18]

19|

20| func (mc *MyChannel) IsClosed() bool {
21| mc.mutex.Lock()

22| defer mc.mutex.Unlock()

23| return mc.closed

24| 3}

These ways may be polite, but they may not avoid data races. Currently, Go specification doesn't
guarantee that there are no data races happening when a channel close and a channel send operations are
executed concurrently. If a SafeClose function is called concurrently with a channel send operation to

the same channel, data races might happen (though such data races generally don't much harm).

ISolutions Which Close Channels Gracefully

One drawback of the above SafeSend function is that its calls can't be used as send operations which
follow the case keyword in select blocks. The other drawback of the above SafeSend and
SafeClose functions is that many people, including me, would think the above solutions by using
panic/recover and sync package are not graceful. Following, some pure-channel solutions without

using panic/recover and sync package will be introduced, for all kinds of situations.

(In the following examples, sync.WaitGroup is used to make the examples complete. It may be not

always essential to use it in real practice.)

1. M receivers, one sender, the sender says "no more sends" by closing
the data channel

This is the simplest situation, just let the sender close the data channel when it doesn't want to send more.

1| package main

2|

3| import (

4] "time"

5] "math/rand"
6 | "sync"
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7] "log"
8] )
9]
10| func main() {
11| rand.Seed(time.Now().UnixNano())
12| log.SetFlags(0)
13|
14| // ...
15| const Max = 100000
16| const NumReceivers = 100
17|
18| wgReceivers := sync.WaitGroup{}
19| wgReceivers.Add(NumReceivers)
20|
21| // ...
22| dataCh := make(chan int)
23]
24| // the sender
25| go func() {
26 | for {
27| if value := rand.Intn(Max); value == 0 {
28| // The only sender can close the
29| // channel at any time safely.
30| close(datacCh)
31| return
32| } else {
33| dataCh <- value
34| }
35| }
36| 10)
37|
38| // receivers
39| for 1 := 0; i < NumReceivers; i++ {
40 | go func() {
41| defer wgReceivers.Done()
42|
43| // Receive values until dataCh is
44 | // closed and the value buffer queue
45 | // of dataCh becomes empty.
46 | for value := range dataCh {
47 | log.Println(value)
48| }
49 | 10)
50| }
51|
52| wgReceivers.Wait()
53| }

382



§38. How to Gracefully Close Channels

2. One receiver, N senders, the only receiver says "please stop sending
more" by closing an additional signal channel

This is a situation a little more complicated than the above one. We can't let the receiver close the data
channel to stop data transferring, for doing this will break the channel closing principle. But we can let
the receiver close an additional signal channel to notify senders to stop sending values.

1| package main

2|

3| import (

4| "time"

5] "math/rand"

6| "sync"

7] "log"

8] )

9]

10| func main() {

11| rand.Seed(time.Now().UnixNano())

12| log.SetFlags(0)

13|

14| // ...

15| const Max = 100000

16| const NumSenders = 1000

17|

18| wgReceivers := sync.WaitGroup{}

19| wgReceivers.Add(1)

20|

21| /7 ...

22| dataCh := make(chan int)

23| stopCh := make(chan struct{})

24| // stopCh is an additional signal channel.
25| // Its sender is the receiver of channel
26 | // dataCh, and its receivers are the

27 | // senders of channel datacCh.

28|

29| // senders

30| for 1 := 0; 1 < NumSenders; i++ {

31| go func() {

32| for {

33| // The try-receive operation is to try
34| // to exit the goroutine as early as
35| // possible. For this specified example,
36 | // it is not essential.

37| select {

38| case <- stopCh:

39| return
40 | default:
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41| }

42|

43| // Even if stopCh is closed, the first
44 | // branch in the second select may be
45 | // still not selected for some loops if
46 | // the send to dataCh is also unblocked.
47 | // But this is acceptable for this

48 | // example, so the first select block
49| // above can be omitted.

50| select {

51| case <- stopCh:

52| return

53| case dataCh <- rand.Intn(Max):

54| }

55| }

56| 10)

57| }

58|

59| // the receiver

60 | go func() {

61 | defer wgReceivers.Done()

62|

63| for value := range dataCh {

64 | if value == Max-1 {

65 | // The receiver of channel dataCh is
66 | // also the sender of stopCh. It is

67 | // safe to close the stop channel here.
68| close(stopCh)

69 | return

70| }

71|

72| log.Println(value)

73| }

74| 10)

75|

76| /] ..

77| wgReceivers.Wait()

78| }

As mentioned in the comments, for the additional signal channel, its sender is the receiver of the data
channel. The additional signal channel is closed by its only sender, which holds the channel closing

principle.

In this example, the channel dataCh is never closed. Yes, channels don't have to be closed. A channel

will be eventually garbage collected if no goroutines reference it any more, whether it is closed or not. So

the gracefulness of closing a channel here is not to close the channel.
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3. M receivers, N senders, any one of them says "let's end the game"
by notifying a moderator to close an additional signal channel

This is a the most complicated situation. We can't let any of the receivers and the senders close the data
channel. And we can't let any of the receivers close an additional signal channel to notify all senders and
receivers to exit the game. Doing either will break the channel closing principle. However, we can
introduce a moderator role to close the additional signal channel. One trick in the following example is
how to use a try-send operation to notify the moderator to close the additional signal channel.

1| package main

2|

3| import (

4| "time"

5] "math/rand"

6| "sync"

7] "log"

8] "strconv"

9] )

10|

11| func main() {

12| rand.Seed(time.Now().UnixNano())

13| log.SetFlags(0)

14|

15| /7 ...

16 | const Max = 100000

17 | const NumReceivers = 10

18| const NumSenders = 1000

19|

20| wgReceivers := sync.WaitGroup{}

21| wgReceivers.Add(NumReceivers)

22|

23| /7 ...

24 | dataCh := make(chan int)

25| stopCh := make(chan struct{})

26 | // stopCh is an additional signal channel.
27 | // Its sender is the moderator goroutine shown
28| // below, and its receivers are all senders
29| // and receivers of dataCh.

30| toStop := make(chan string, 1)

31| // The channel toStop is used to notify the
32| // moderator to close the additional signal
33| // channel (stopCh). Its senders are any senders
34| // and receivers of dataCh, and its receiver is
35| // the moderator goroutine shown below.

36 | // It must be a buffered channel.

37|

38| var stoppedBy string
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40|
41|
42|
43|
44|
45|
46|
47|
48|
49|
50|
51|
52|
53]
54|
55|
56|
57
58|
59|
60|
61|
62|
63|
64|
65|
66|
67|
68|
69|
70|
71|
72|
73]
74|
75|
76|
77|
78|
79|
80|
81|
82|
83|
84|
85|
86|

// moderator
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go func() {
stoppedBy = <-toStop
close(stopCh)

30)

// senders
for i := 0;

1 < NumSenders; i++ {

go func(id string) {

for {

value := rand.Intn(Max)

if

//
//
//
//
//
//

value == 0 {

// Here, the try-send operation 1is
// to notify the moderator to close
// the additional signal channel.
select {

case toStop <- "sender#" + id:
default:

}

return

The try-receive operation here is to
try to exit the sender goroutine as
early as possible. Try-receive and
try-send select blocks are specially
optimized by the standard Go
compiler, so they are very efficient.

select {
case <- stopCh:

return

default:

}

//
//
//
//
//
//
//

Even if stopCh is closed, the first
branch in this select block might be
still not selected for some loops
(and for ever in theory) if the send
to dataCh is also non-blocking. If
this is unacceptable, then the above
try-receive operation is essential.

select {
case <- stopCh:

return

case dataCh <- value:

}
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91|
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93]

94|

95|
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104 |
105|
106 |
107 |
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
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}(strconv.Itoa(1i))

// receivers
:= 0; 1 < NumReceivers; i++ {
go func(id string) {

defer wgReceivers.Done()

for {

// Same as the sender goroutine, the
// try-receive operation here is to
// try to exit the receiver goroutine
// as early as possible.
select {
case <- stopCh:

return
default:

3

// Even if stopCh is closed, the first

// branch in this select block might be
// still not selected for some loops

// (and forever in theory) if the receive
// from dataCh is also non-blocking. If
// this is not acceptable, then the above
// try-receive operation is essential.

select {

case <- stopCh:
return

case value := <-dataCh:
if value == Max-1 {

// Here, the same trick is

// used to notify the moderator
// to close the additional

// signal channel.

select {

case toStop <- "receiver#" + 1id:
default:

}

return

log.Println(value)

}(strconv.Itoa(1i))
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135| /] ..

136 | wgReceivers.Wait()

137 log.Println("stopped by", stoppedBy)
138}

In this example, the channel closing principle is still held.

Please note that the buffer size (capacity) of channel toStop is one. This is to avoid the first notification

is missed when it is sent before the moderator goroutine gets ready to receive notification from toStop.

We can also set the capacity of the toStop channel as the sum number of senders and receivers, then we

don't need a try-send select block to notify the moderator.

1 ...

2| toStop := make(chan string, NumReceivers + NumSenders)
3]

4| value := rand.Intn(Max)

5] if value == 0 {

6| toStop <- "sender#" + id

7| return

8] ¥

9| ...

10| if value == Max-1 {

11| toStop <- "receiver#" + id
12| return

13] ¥

14|

4. A variant of the "M receivers, one sender" situation: the close
request is made by a third-party goroutine

Sometimes, it is needed that the close signal must be made by a third-party goroutine. For such cases, we

can use an extra signal chanel to notify the sender to close the data channel. For example,

1| package main

2|

3| import (

4] "time"

5] "math/rand"

6 | "sync"

7] "log"

8] )

9]

10| func main() {

11| rand.Seed(time.Now().UnixNano())
12| log.SetFlags(0)
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13|

14| /] ...

15| const Max = 100000

16| const NumReceivers = 100

17| const NumThirdParties = 15

18]

19| wgReceivers := sync.WaitGroup{}
20| wgReceivers.Add(NumReceivers)
21|

22| /] ...

23| dataCh := make(chan int)

24| closing := make(chan struct{}) // signal channel
25| closed := make(chan struct{})
26|

27| // The stop function can be called
28| // multiple times safely.

29| stop := func() {

30| select {

31| case closing<-struct{}{}:
32| <-closed

33| case <-closed:

34| }

35| }

36|

37| // some third-party goroutines
38| for 1 := 0; i1 < NumThirdParties; i++ {
39| go func() {

40 | r := 1 + rand.Intn(3)

41| time.Sleep(time.Duration(r) * time.Second)
42| stop()

43| 10)

44| }

45|

46 | // the sender

47 | go func() {

48| defer func() {

49| close(closed)

50| close(dataCh)

51| 10)

52|

53| for {

54| select{

55| case <-closing: return

56 | default:

57| }

58|

59| select{

60 | case <-closing: return
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61| case dataCh <- rand.Intn(Max):
62| 3}
63| }

64| 10

65|

66 | // receivers

67 | for i := @; i < NumReceivers; i++ {
68| go func() {

69 | defer wgReceivers.Done()

70|

71| for value := range dataCh {
72| log.Println(value)

73| }

74| 10)
75| }

76 |
77| wgReceivers.Wait()
78| }

The idea used in the stop function is learned from a comment ! made by Roger Peppe.

5. A variant of the "N sender" situation: the data channel must be
closed to tell receivers that data sending is over

In the solutions for the above N-sender situations, to hold the channel closing principle, we avoid closing
the data channels. However, sometimes, it is required that the data channels must be closed in the end to
let receivers know data sending is over. For such cases, we can translate a N-sender situation to a one-
sender situation by using a middle channel. The middle channel has only one sender, so that we can close

it instead of closing the original data channel.

1| package main

2|

3| import (

4] "time"

5] "math/rand"

6| "sync"

7] "log"

8| "strconv"

9] )

10|

11| func main() {

12| rand.Seed(time.Now().UnixNano())
13| log.SetFlags(0)

14|

15| /] ..

16 | const Max = 1000000
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17|
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19|
20|
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40|
41|
42|
43|
44|
45|
46|
47|
48|
49|
50|
51|
52|
53|
54|
55|
56|
57|
58|
59|
60|
61|
62|
63|
64|
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const NumReceivers = 10
const NumSenders = 1000
const NumThirdParties =

15

wgReceivers := sync.WaitGroup{}

wgReceivers.Add(NumReceivers)

/] ..

dataCh := make(chan int) // will never be closed
middleCh := make(chan int) // will be closed
closing := make(chan string) // signal channel
closed := make(chan struct{})

var stoppedBy string

// The stop function can be called

// multiple times safel
stop := func(by string)
select {
case closing <- by:
<-closed
case <-closed:

3

// the middle layer
go func() {
exit := func(v int,
close(closed)
if needSend {
dataCh <- v

}
close(datacCh)

for {
select {
case stoppedBy =
exit (o0, false)
return

case Vv := <- middleCh:

select {

y.
{

needSend bool) {

<-closing:

case stoppedBy = <-closing:

exit(v, tru
return
case dataCh <-

}

e)

V.
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65| }

66 | 0)

67 |

68| // some third-party goroutines
69| for i := 0; i < NumThirdParties; i++ {
70| go func(id string) {

71| r := 1 + rand.Intn(3)

72| time.Sleep(time.Duration(r) * time.Second)
73| stop("3rd-party#" + id)

74| }(strconv.Itoa(i))

75| }

76|

77 | // senders

78| for i := 0; 1 < NumSenders; i++ {
79| go func(id string) {

80| for {

81| value := rand.Intn(Max)
82| if value == 0 {

83| stop("sender#" + id)
84 | return

85| }

86 |

87 | select {

88| case <- closed:

89| return

90 | default:

91| }

92|

93| select {

94 | case <- closed:

95| return

96 | case middleCh <- value:
97| }

98| }

99| }(strconv.Itoa(i))

100 | }

101 |

102 | // receivers

103 | for range [NumReceivers]struct{}{} {
104 | go func() {

105 defer wgReceivers.Done()
106 |

107 | for value := range dataCh {
108 | log.Println(value)

109| }

110] 310)

111] %}

112
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113  // ...

114 | wgReceivers.Wait()

115| log.Println("stopped by", stoppedBy)
116}

More situations?

There should be more situation variants, but the above shown ones are the most common and basic ones.
By using channels (and other concurrent programming techniques) cleverly, I believe a solution holding
the channel closing principle for each situation variant can always be found.

IConclusion

There are no situations which will force you to break the channel closing principle. If you encounter such
a situation, please rethink your design and rewrite you code.

Programming with Go channels is like making art.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com @ to get more information about these games. Hope you enjoy them.)
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Concurrency Synchronization Techniques
Provided in the sync Standard Package

The channel use cases (§37) article introduces many use cases in which channels are used to do data
synchronizations among goroutines. In fact, channels are not the only synchronization techniques provided
in Go. There are some other synchronization techniques supported by Go. For some specified
circumstances, using the synchronization techniques other than channel are more efficient and readable

than using channels. Below will introduce the synchronization techniques provided in the sync standard

package.

The sync standard package provides several types which can be used to do synchronizations for some

specialized circumstances and guarantee some specialized memory orders. For the specialized
circumstances, these techniques are more efficient, and look cleaner, than the channel ways.

(Please note, to avoid abnormal behaviors, it is best never to copy the values of the types in the sync

standard package.)

IThe sync.WaitGroup Type

Each sync.waitGroup value maintains a counter internally. The initial value of the counter is zero.
The *WaitGroup type has three methods # : Add(delta int), Done() and Wait().
For an addressable WaitGroup value wg,

e we can call the wg.Add(delta) method to change the counter value maintained by wg.
e the method call wg.Done( ) is totally equivalent to the method call wg.Add(-1).
e if acall wg.Add(delta) (or wg.Done( ) ) modifies the counter maintained by wg to negative,

panic will happen.
e when a goroutine calls wg.wait(),
o if the counter maintained by wg is already zero, then the call wg.Wait () can be viewed as a
no-op.
o otherwise (the counter is positive), the goroutine will enter blocking state. It will enter running
state again (a.k.a., the call wg.wWait() returns) when another goroutine modifies the counter

to zero, generally by calling wg.Done( ).

Please note that wg.Add(delta), wg.Done() and wg.Wait() are shorthands of (&wg).Add(delta),
(&wg) .Done() and (&wg) .wWait(), respectively.

Generally, a WaitGroup value is used for the scenario that one goroutine waits until all of several other

goroutines finish their respective jobs. An example:
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1| package main

2|

3| import (

4] "log"

5] "math/rand"

6| "sync"

7] "time"

8] )

9]

10| func main() {

11| rand.Seed(time.Now().UnixNano())
12|

13| const N = 5

14| var values [N]int32

15|

16 | var wg sync.WaitGroup

17 | wg.Add(N)

18| for 1 := 0; 1 < N; i++ {

19| i:=1

20| go func() {

21| values[i] = 50 + rand.Int31n(50)
22| log.Println("Done:", 1)

23| wg.Done() // <=> wg.Add(-1)
24| 10

25| }

26|

27| wg.Wait()

28| // All elements are guaranteed to be
29| // initialized now.

30| log.Println("values:", values)
31| }

In the above example, the main goroutine waits until all other N goroutines have populated their

respective element value in values array. Here is one possible output result:

Done:
Done:
Done:
Done:
Done:
values: [71 89 50 62 60]

N © W KL b

We can split the only Add method call in the above example into multiple ones.

1]

2| var wg sync.WaitGroup

3| for 1 := 0; 1 < N; i++ {

4| wg.Add(1) // will be invoked N times

395



§39. Concurrency Synchronization Techniques Provided in the sync Standard Package

5] i:=1

6 | go func() {

7] values[i] = 50 + rand.Int31n(50)
8] wg.Done()

9] 10)

10| }

11|

The Wait method can be called in multiple goroutines. When the counter becomes zero, all of them will

be notified, in a broadcast way.

1| func main() {

2] rand.Seed(time.Now().UnixNano())

3]

4| const N = 5

5] var values [N]int32

6]

7] var wgA, wgB sync.WaitGroup

8] wgA.Add(N)

9| wgB.Add (1)

10|

11| for 1 := 0; 1 < N; i++ {

12| i:=1

13| go func() {

14 | wgB.Wait() // wait a notification
15| log.Printf("values[%Vv]=%v \n", i, values[i])
16 | wgA.Done()

17| 10)

18| }

19|

20| // The loop is guaranteed to finish before
21| // any above wg.Wait calls returns.

22| for 1 := 0; 1 < N; i++ {

23| values[i] = 50 + rand.Int31n(50)

24| }

25| // Make a broadcast notification.

26 | wgB.Done()

27 | wgA.Wait()

28| }

A WaitGroup value can be reused after one call to its Wait method returns. But please note that each
Add method call with a positive delta that occurs when the counter is zero must happen before any wait

call starts, otherwise, data races may happen.

| The sync.once Type
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A *sync.Once value has a Do(f func()) method, which takes a solo parameter with type func().

For an addressable Once value o, the method call o.Do( ), which is a shorthand of (&o).Do(), can be
concurrently executed multiple times, in multiple goroutines. The arguments of these 0.Do( ) calls should

(but are not required to) be the same function value.

Among these o.Do method calls, only exact one argument function will be invoked. The invoked
argument function is guaranteed to exit before any o.Do method call returns. In other words, the code in

the invoked argument function is guaranteed to be executed before any o.Do method call returns.

Generally, a Once value is used to ensure that a piece of code will be executed exactly once in concurrent

programming.
An example:

1| package main

2|

3| import (

4| "log"

5] "sync"

6] )

7]

8| func main() {

9] log.SetFlags(0)

10|

11| X =0

12| doSomething := func() {
13| X++

14 | log.Println("Hello")
15| }

16|
17 | var wg sync.WaitGroup
18| var once sync.Once
19| for 1 (= 0; 1< 5; i++ {
20| wg.Add(1)
21| go func() {
22| defer wg.Done()
23| once.Do(doSomething)
24 | log.Println("world!")
25| 10)
26 | }
27|
28| wg.Wait()
29| log.Println("x =", x) // x =1
30| }

In the above example, Hello will be printed once, but world! will be printed five times. And Hello is
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guaranteed to be printed before all five world!.

IThe sync.Mutex and sync.RWMutex Types

Both of the *sync.Mutex and *sync.RwWMutex types implement the sync.lLocker interface # . So

they both have two methods, Lock and Unlock, to prevent multiple data users from using a piece of data

concurrently.

Besides the Lock and Unlock methods, the *RwWMutex type has two other methods, RLock and
RUnlock, to avoid some data users (either writers or readers) and one data writer using a piece of data at

the same time but allow some data readers to access the piece of data at the same time.

(Note, here the terminologies data reader and data writer should not be interpreted from literal. They are
just used for explanation purpose. A data reader might modify data and a data writer might only read
data.)

A Mutex value is often called a mutual exclusion lock. A zero Mutex value is an unlocked mutex. A
Mutex value can only be locked when it is in unlocked status. In other words, once an addressable Mutex
value m is locked successfully (a.k.a., a m.Lock() method call returns), a new attempt by a goroutine to
lock the Mutex value will make the goroutine enter blocking state, until the Mutex value is unlocked

(through a later m.Unlock( ) call).

Please note that m.Lock() and m.Unlock() are shorthands of (&m).Lock() and (&m).Unlock(),

respectively.
An example of using sync.Mutex:

1| package main

2|

3| import (

4] "fmt"

5] "runtime"

6| "sync"

71 )

8]

9| type Counter struct {
10| m sync.Mutex

11| n uint64

12| }

13|

14| func (c *Counter) Value() uint64 {
15| c.m.Lock()

16 | defer c.m.Unlock()
17 | return c.n

18] }
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19|

20| func (c *Counter) Increase(delta uint64) {
21| c.m.Lock()

22| c.n += delta

23] c.m.Unlock()

24| }

25|

26| func main() {

27| var c Counter

28| for i := 0; 1 < 100; i++ {

29| go func() {

30| for k := 0; k < 100; k++ {
31| c.Increase(1)

32| }

33| 10)

34| }

35|

36 | // The loop is just for demo purpose.
37| for c.value() < 10000 {

38| runtime.Gosched()

39| }

40 | fmt.Println(c.Value()) // 10000
41| }

In the above example, a Counter value uses a Mutex field to guarantee that the n field of the Counter

value will be never used by multiple goroutines at the same time.

A RwMutex value is often called a reader+writer mutual exclusion lock. For an addressable RWMutex
value m, data writers can acquire the write lock of m through m.Lock() method calls, and data readers
can acquire the read lock of m through m.RLock () method calls. Method calls m.Unlock() and

m.RUnlock() are used to release the write and read locks of m.

Please note that m.Lock(), m.Unlock(), m.RLock() and m.RUnlock() are shorthands of
(&m).Lock(), (&m).Unlock(), (&m).RLock() and (&m).RUnlock(), respectively.

For an addressable RwMutex value m, the following rules exist.

e A data writer can acquire the write lock of m only if neither of the read lock and write lock of m is
not held by others. In other words, the write lock of m can only be held by most one writer at any
given time, and the read lock and write lock of m can't be held at the same time.

e When the write lock of m is held by a data writer, any newer attempts to acquire the write lock or the
read lock will be blocked until the initial write lock is released.

e When the read lock of m is held by a data reader, any newer attempts to acquire the write lock will
be blocked. However, newer attempts to acquire the read lock will succeed unless the attempts are
performed after a blocked attempt to acquire the write lock (see the next rule for details). In other

words, the read lock can be held by multiple readers at the same time.
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e Assume the read lock of the value m is held by some data readers now, to avoid recursive read
locking, any newer attempts to acquire the read lock after the a being blocked attempt to acquire the
write lock will be blocked.

e Assume the write lock of the value m is held by a data writer now, for the official standard Go
compiler, to avoid recursive write locking, the attempts to acquire the read lock before releasing the
write lock will succeed for sure once the write lock is released, even if some of the attempts are
made after some still being blocked another attempt to acquire the write lock.

The last two rules are to ensure both readers and writers have chances to acquire locks.

Please note, locks are bound to goroutines. In other words, a lock acquirer might be not the holder of the
lock it acquired. In other words, a lock doesn't know which goroutine acquired it, and any goroutine can
release a lock which in acquired status.

The type of the m field of the Counter type in the last example can be changed to sync.RwWMutex, as the

following code shows, to get a better performance.

1| ...

2| type Counter struct {
3| //m sync.Mutex

4| m sync.RWMutex

5] n uint64

6| }

7|

8| func (c *Counter) Value() uint64 {
9| //c.m.Lock()

10| //defer c.m.Unlock()
11| c.m.RLock()

12| defer c.m.RUnlock()
13| return c.n

14| }

15|

By the last two rules mentioned above, the following program is very possible to output abdc.

1| package main

2|

3| import (

4] "fmt"

5] "time"

6| "sync"

71 )

8]

9| func main() {
10| var m sync.RWMutex
11| go func() {
12| m.RLock ()

400



839. Concurrency Synchronization Techniques Provided in the sync Standard Package

13| fmt.Print("a")

14 | time.Sleep(time.Second)

15| m.RUnlock()

16| 30

17| go func() {

18| time.Sleep(time.Second * 1 / 4)
19| m.Lock()

20| fmt.Print("b")

21| time.Sleep(time.Second)

22| m.Unlock()

23| 10

24| go func() {

25| time.Sleep(time.Second * 2 / 4)
26 | m.Lock()

27 | fmt.Print("c")

28| m.Unlock()

29| 10

30| go func () {

31| time.Sleep(time.Second * 3 / 4)
32| m.RLock ()

33| fmt.Print("d")

34| m.RUnlock()

35| 10)

36 | time.Sleep(time.Second * 3)

37| fmt.Println()

38| }

Please note, the above example is only for explanation purpose. It uses time.Sleep calls to do

concurrency synchronizations, which is a bad practice for production code (§42).

sync.Mutex and sync.RWMutex values can also be used to make notifications, though there are many

other better ways to do the same job. Here is an example which makes a notification by using a

sync.Mutex value.

1| package main

2|

3| import (

4| "fmt"

5] "sync"

6| "time"

71 )

8|

9| func main() {

10| var m sync.Mutex

11| m.Lock()

12| go func() {

13| time.Sleep(time.Second)
14| fmt.Println("Hi")
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15| m.Unlock() // make a notification
16| 10)

17| m.Lock() // wait to be notified

18| fmt.Println("Bye")

19| }

In the above example, the text Hi is guaranteed to be printed before the text Bye. About the memory

order guarantees made by sync.Mutex and sync.RWMutex values, please read memory order

guarantees in Go (§41).

IThe sync.Cond Type

The sync.Cond type provides an efficient way to do notifications among goroutines.

Each sync.Cond value holds a sync.Locker field with name L. The field value is often a value of type

*sync.Mutex or *sync.RwWMutex.
The *sync.Cond type has three methods f , Wait(), Signal() and Broadcast().

Each sync.Cond value also maintains a FIFO (first in first out) waiting goroutine queue. For an

addressable sync.Cond value c,

e c.Wait() must be called when c.L is locked, otherwise, a c.Wait () will cause panic. A
c.Wait() call will
1. first push the current caller goroutine into the waiting goroutine queue maintained by c,
2. thencall c.L.Unlock() to unhold/release the lock c.L.

3. then make the current caller goroutine enter blocking state.

(The caller goroutine will be unblocked by another goroutine through calling c¢.Signal() or

c.Broadcast() later.)

Once the caller goroutine is unblocked and enters running state again, c.L.Lock() will be
called (in the resumed c.Wait () call) to try to acquire and hold the lock c.L again, The
c.Wait() call will exit after the c.L.Lock() call returns.
e a c.Signal() call will unblock the first goroutine in (and remove it from) the waiting goroutine
queue maintained by c, if the queue is not empty.
e a c.Broadcast() call will unblock all the goroutines in (and remove them from) the waiting

goroutine queue maintained by c, if the queue is not empty.

Please note that c.wWait(), c.Signal() and c.Broadcast() are shorthands of (&c).wWait(),
(&c).Signal() and (&c).Broadcast (), respectively.
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c.Signal() and c.Broadcast() are often used to notify the status of a condition is changed,

Generally, c.Wait() should be called in a loop of checking whether or not a condition has got satisfied.

In an idiomatic sync.Cond use case, generally, one goroutine waits for changes of a certain condition,

and some other goroutines change the condition and send notifications. Here is an example:

1| package main

2|

3| import (

4| "fmt"

5] "math/rand"

6| "sync"

7] "time"

8] )

9]

10| func main() {

11| rand.Seed(time.Now().UnixNano())

12|

13| const N = 10

14| var values [N]string

15|

16 | cond := sync.NewCond(&sync.Mutex{})

17| cond.L.Lock()

18]

19| for 1 := 0; 1 < N; i++ {

20| d := time.Second * time.Duration(rand.Intn(10)) / 10
21| go func(i int) {

22| time.Sleep(d) // simulate a workload
23|

24| // Changes must be made when

25| // cond.L is locked.

26 | cond.L.Lock()

27 | values[i] = string('a' + 1)

28|

29| // Notify when cond.L lock is acquired.
30| cond.Broadcast()

31| cond.L.Unlock()

32|

33| // '"cond.Broadcast()" can also be put
34| // here, when cond.L lock is released.
35| //cond.Broadcast()

36| (1)

37| }

38|

39| // This function must be called when

40 | // cond.L is locked.

41| checkCondition := func() bool {

42| fmt.Println(values)
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43| for 1 := 0; 1 < N; i++ {
44| if values[i] == "" {
45 | return false

46 | }

47 | }

48 | return true

49| }

50| for !checkCondition() {

51| // Must be called when cond.L is locked.
52| cond.wWait()

53| }

54| cond.L.Unlock()

55| }

One possible output:

[ 1

[ f 1

[ f 1

[ f h ]

[ bc f h ]

[a b cC f h j]

[a b cC fghij]
[abc efghiij]
[abcdefghiij]

For there is only one goroutine (the main goroutine) waiting to be unblocked in this example, the
cond.Broadcast () call can be replaced with cond.Signal(). As the comments suggest,

cond.Broadcast() and cond.Signal() are not required to be called when cond. L is locked.

To avoid data races, each of the ten parts of the user defined condition should only be modified when
cond. L is locked. The checkCondition function and the cond.Wait method should be also called

when cond. L is locked.

In fact, for the above specified example, the cond.L field can also be a *sync.RwWMutex value, and each
of the ten parts of the user defined condition can be modified when the read lock of cond.L is held, just

as the following code shows:

1] .

2] cond := sync.NewCond(&sync.RWMutex{})

3] cond.L.Lock()

4|

5] for 1 := 0; 1 < N; i++ {

6 | d := time.Second * time.Duration(rand.Intn(10)) / 10
7| go func(i int) {

8| time.Sleep(d)

9| cond.L.(*sync.RWMutex).RLock()
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10| values[i] = string('a' + 1)

11| cond.L.(*sync.RWMutex).RUnlock()
12| cond.Signal()

13| 3(1)

14| }

15|

In the above example, the sync.RWMutex value is used unusually. Its read lock is held by some
goroutines which modify array elements, and its write lock is used by the main goroutine to read array

elements.

The user defined condition monitored by a Cond value can be a void. For such cases, the Cond value is

used for notifications purely. For example, the following program will print abc or bac.

1| package main

2|

3| import (

4] "fmt"

5] "sync"

6] )

7]

8| func main() {

9] wg := sync.WaitGroup{}
10| wg.Add (1)

11| cond := sync.NewCond(&sync.Mutex{})
12| cond.L.Lock()

13| go func() {

14 | cond.L.Lock()

15| go func() {

16 | cond.L.Lock()

17 | cond.Broadcast()
18| cond.L.Unlock()
19| 10)

20| cond.Wait()

21| fmt.Print("a")

22| cond.L.Unlock()

23| wg.Done()

24| 10)

25| cond.Wait()

26| fmt.Print("b")

27 | cond.L.Unlock()

28| wg.Wait()

29| fmt.Println("c")

30| }

If it needs, multiple sync.Cond values can share the same sync.Locker. However, such cases are rare

in practice.
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(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com @ to get more information about these games. Hope you enjoy them.)
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Atomic Operations Provided in The
sync/atomic Standard Package

Atomic operations are more primitive than other synchronization techniques. They are lockless and
generally implemented directly at hardware level. In fact, they are often used in implementing other
synchronization techniques.

Please note, many examples below are not concurrent programs. They are just for demonstration and

explanation purposes, to show how to use the atomic functions provided in the sync/atomic standard

package.

|0verview of Atomic Operations Provided in Go

The sync/atomic standard package provides the following five atomic functions for an integer type T,

where T must be any of int32, int64, uint32, uint64 and uintptr.

1| func AddT(addr *T, delta T)(new T)

2| func LoadT(addr *T) (val T)

3| func StoreT(addr *T, val T)

4| func SwapT(addr *T, new T) (old T)

5| func CompareAndSwapT(addr *T, old, new T) (swapped bool)

For example, the following five functions are provided for type int32.

1| func AddInt32(addr *int32, delta int32)(new int32)

2| func LoadInt32(addr *int32) (val int32)

3| func StoreInt32(addr *int32, val int32)

4| func SwapInt32(addr *int32, new int32) (old int32)

5| func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)

The following four atomic functions are provided for (safe) pointer types. As Go 1 doesn't support custom

generic now, these functions are implemented through the unsafe pointer type (§25) unsafe.Pointer

(the Go counterpart of C void*).

1| func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)

2| func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)

3| func SwapPointer(addr *unsafe.Pointer, new T) (old unsafe.Pointer)
4| func CompareAndSwapPointer (addr *unsafe.Pointer,

5] old, new unsafe.Pointer) (swapped bool)

There is not an AddPointer function for pointers, as Go pointers don't support arithmetic operations.

The sync/atomic standard package also provides a type Value. Its corresponding pointer type *Value
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has two methods, Load and Store. A Value value can be used to atomically load and store values of

any type.

1| func (v *Value) Load() (x interface{})
2| func (v *Value) Store(x interface{})

The remaining of this article shows some examples on how to use the atomic operations provided in Go.

IAtomic Operations for Integers

The following example shows how to do the add atomic operation on an int32 value by using the
AddInt32 function. In this example, 1000 new concurrent goroutines are created by the main goroutine.
Each of the new created goroutine increases the integer n by one. Atomic operations guarantee that there

are no data races among these goroutines. In the end, 1000 is guaranteed to be printed.

1| package main

2|

3| import (

4] "fmt"

5] "sync"

6| "sync/atomic"

70 )

8|

9| func main() {

10| var n int32

11| var wg sync.WaitGroup

12| for 1 := 0; 1 < 1000; i++ {
13| wg.Add (1)
14 | go func() {
15| atomic.AddInt32(&n, 1)
16 | wg.Done()
17| 10)
18| }
19| wg.Wait()
20|
21| fmt.Println(atomic.LoadInt32(&n)) // 1000
22| }

The StoreT and LoadT atomic functions are often used to implement the setter and getter methods of

(the corresponding pointer type of) a type if the values of the type need to be used concurrently. For

example,

1| type Page struct {
2| views uint32

3] }
4]
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5| func (page *Page) SetViews(n uint32) {

6| atomic.StoreUint32(&page.views, n)
7|}

8]

9| func (page *Page) Views() uint32 {

10| return atomic.LoadUint32(&page.views)
11| }

For a signed integer type T (int32 or int64 ), the second argument for a call to the AddT function can
be a negative value, to do an atomic decrease operation. But how to do atomic decrease operations for
values of an unsigned type T, such as uint32, uint64 and uintptr ? There are two circumstances for

the second unsigned arguments.

1. For an unsigned variable v of type T, -v is legal in Go. So we can just pass -v as the second
argument of an AddT call.
2. For a positive constant integer ¢, -c is illegal to be used as the second argument of an AddT call

(where T denotes an unsigned integer type). We can used AT(c-1) as the second argument instead.
This AT(v-1) trick also works for an unsigned variable v, but AT(v-1) is less efficient than T(-v).

In the trick AT(c-1), if c is a typed value and its type is exactly T, then the form can shortened as A(c-
1).

Example:

1| package main

2|

3| import (

4] "fmt"

5] "sync/atomic"

6] )

7]

8| func main() {

9] var (

10| n uinté64 = 97
11| m uint64 = 1
12| k int =2
13| )

14 | const (

15| a =3
16| b uinté64 = 4
17| c uint32 = 5
18| d int =6
19| )

20|

21| show := fmt.Println
22| atomic.AddUint64(&n, -m)
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23| show(n) // 96 (97 - 1)

24| atomic.Adduint64(&n, -uint64(k))

25| show(n) // 94 (95 - 2)

26 | atomic.AdduUint64(&n, Auint64(a - 1))
27| show(n) // 91 (94 - 3)

28| atomic.Adduint64(&n, A(b - 1))

29| show(n) // 87 (91 - 4)

30| atomic.AddUint64(&n, Auint64(c - 1))
31| show(n) // 82 (87 - 5)

32| atomic.AddUint64(&n, Auint64(d - 1))
33| show(n) // 76 (82 - 6)

34| X := b; atomic.AddUint64(&n, -X)

35| show(n) // 72 (76 - 4)

36| atomic.Adduint64(&n, A(m - 1))

37| show(n) // 71 (72 - 1)

38| atomic.AddUint64(&n, Auint64(k - 1))
39| show(n) // 69 (71 - 2)

40| }

A SwapT function call is like a StoreT function call, but returns the old value.

A CompareAndSwapT function call only applies the store operation when the current value matches the
passed old value. The bool return result of the CompareAndSwapT function call indicates whether or not

the store operation is applied.
Example:

1| package main

2|

3| import (

4] "fmt"

5] "sync/atomic"

6] )

7]

8| func main() {

9] var n int64 = 123

10| var old = atomic.SwapInt64(&n, 789)
11| fmt.Println(n, old) // 789 123
12| swapped := atomic.CompareAndSwapInt64(&n, 123, 456)
13| fmt.Println(swapped) // false
14 | fmt.Println(n) // 789
15| swapped = atomic.CompareAndSwapInt64(&n, 789, 456)
16 | fmt.Println(swapped) // true
17 | fmt.Println(n) // 456
18] }

Please note, up to now (Go 1.13), atomic operations for 64-bit words, a.k.a., int64 and uint64 values,

require the 64-bit words must be 8-byte aligned in memory. Please read memory layout (844) for details.
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IAtomic Operations for Pointers

Above has mentioned that there are four functions provided in the sync/atomic standard package to do

atomic pointer operations, with the help of unsafe pointers.

From the article type-unsafe pointers (§25), we learn that, in Go, values of any pointer type can be

explicitly converted to unsafe.Pointer, and vice versa. So values of *unsafe.Pointer type can also

be explicitly converted to unsafe.Pointer, and vice versa.

The following example is not a concurrent program. It just shows how to do atomic pointer operations. In
this example, T can be an arbitrary type.

1| package main

2|

3| import (

4] "fmt"

5] "sync/atomic"
6| "unsafe"

7| )

8|

9| type T struct {a, b, c int}
10| var pT *T

11|

12| func main() {

13| var unsafePPT = (*unsafe.Pointer)(unsafe.Pointer (&pT))
14 | var ta, tb T

15| // store

16 | atomic.StorePointer(

17 | unsafePPT, unsafe.Pointer(&ta))

18| // load

19| pal := (*T)(atomic.LoadPointer (unsafePPT))
20| fmt.Println(pal == &ta) // true

21| // swap

22| pa2 := atomic.SwapPointer (

23| unsafePPT, unsafe.Pointer(&thb))

24 | fmt.Println((*T)(pa2) == &ta) // true
25| // compare and swap

26 | b := atomic.CompareAndSwapPointer (

27 | unsafePPT, pa2, unsafe.Pointer(&tb))
28| fmt.Println(b) // false

29| b = atomic.CompareAndSwapPointer (

30| unsafePPT, unsafe.Pointer(&tb), pa2)
31| fmt.Println(b) // true

32| }

Yes, it is quite verbose to use the pointer atomic functions. In fact, not only are the uses verbose, they are
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also not protected by the Go 1 compatibility guidelines # , for these uses require to import the unsafe

standard package.

Personally, I think the possibility is small that the legal pointer value atomic operations used in the above
example will become illegal later. Even if they become illegal later, the go fix command in the official
Go SDK should fix them with a later alternative new legal way. But, this is just my opinion, which is not

authoritative.

If you do worry about the future legality of the pointer atomic operations used in the above example, you
can use the atomic operations introduced in the next section for pointers, though the to be introduced
operations are less efficient than the ones introduced in the current section.

IAtomic Operations for Values of Arbitrary Types

The Value type provided in the sync/atomic standard package can be used to atomically load and store

values of any type.

Type *Value has two methods, Load and Store. Add and Swap methods are not available for type

*Value.

The input parameter type and output result type of the Load and Store methods are both interface{}.
So a call of the Store can take a value of any type. But for an addressable Value value v, once the
v.Store() (ashorthand of (&v).Store()) call has ever been called, then the subsequent v.Store()
calls must also take argument values of the same concrete type as the argument of the first v.Store()

call, otherwise, panic will occur. A nil interface argument will also make the v.Store() call panic.

Example:

1| package main

2|

3| import (

4] "fmt"

5] "sync/atomic"

6] )

7]

8| func main() {

9] type T struct {a, b, c int}
10| var ta = T{1, 2, 3}

11| var v atomic.Value

12| v.Store(ta)

13| var tb = v.Load().(T)

14| fmt.Println(tb) // {1 2 3}
15| fmt.Println(ta == tb) // true
16|

17 | v.Store("hello") // will panic
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18] }
In fact, we can also use the atomic pointer functions explained in the last section to do atomic operations

for values of any type, with one more level indirection. Both ways have their respective advantages and
disadvantages. Which way should be used depends on the requirements in practice.

Memory Order Guarantee Made by Atomic Operations in
Go

For easy using, Go atomic operations provided in the sync/atomic standard package are designed
without any relations to memory ordering. At least the official documentation doesn't specify any memory
order guarantees made by the sync/atomic standard package. Please read Go memory model (841) for

details.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com @ to get more information about these games. Hope you enjoy them.)
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Memory Order Guarantees in Go

|Ab0ut Memory Ordering

Many compilers (at compile time) and CPU processors (at run time) often make some optimizations by
adjusting the instruction orders, so that the instruction execution orders may differ from the orders
presented in code. Instruction ordering is also often called memory ordering & .

Surely, instruction reordering can't be arbitrary. The basic requirement for a reordering inside a specified
goroutine is the reordering must not be detectable by the goroutine itself if the goroutine doesn't share data
with other goroutines. In other words, from the perspective of such a goroutine, it can think its instruction
execution order is always the same as the order specified by code, even if instruction reordering really
happens inside it.

However, if some goroutines share some data, then instruction reordering happens inside one of these
goroutine may be observed by the others goroutines, and affect the behaviors of all these goroutines.
Sharing data between goroutines is common in concurrent programming. If we ignore the results caused
by instruction reordering, the behaviors of our concurrent programs might compiler and CPU dependent,
and often abnormal.

Here is an unprofessional Go program which doesn't consider instruction reordering. the program is

expanded from an example in the official documentation Go 1 memory model # .

1| package main

2|

3| import "log"

4| import "runtime"
5]

6| var a string

7| var done bool

8]

9| func setup() {

10| a = "hello, world"
11| done = true

12| if done {

13| log.Println(len(a)) // always 12 once printed
14| }

15| }

16|

17| func main() {

18| go setup()

19|

20| for !done {

21| runtime.Gosched()
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22| }
23| log.Println(a) // expected to print: hello, world
24| }

The behavior of this program is very possible as we expect, a hello, world text will be printed.
However, the behavior of this program is compiler and CPU dependent. If the program is compiled with a
different compiler, or with a later compiler version, or it runs on a different architecture, the hello,
world text might not be printed, or a text different from hello, world might be printed. The reason is
compilers and CPUs may exchange the execution orders of the first two lines in the setup function, so

the final effect of the setup function may become to

1| func setup() {

2] done = true

3| a = "hello, world"

4| if done {

5] log.Println(len(a))
6] ¥

7

The setup goroutine in the above program is unable to observe the reordering, so the
log.Println(len(a)) line will always print 12 (if this line gets executed before the program exits).
However, the main goroutine may observe the reordering, which is why the printed text might be not
hello, world.

Besides the problem of ignoring memory reordering, there are data races in the program. There are not any
synchronizations made in using the variable a and done. So, the above program is a showcase full of

concurrent programming mistakes. A professional Go programmer should not make these mistakes.

We can use the go build -race command provided in Go SDK to build a program, then we can run the

outputted executable to check whether or not there are data races in the program.

IGo Memory Model

Sometimes, we need to ensure that the execution of some code lines in a goroutine must happen before (or
after) the execution of some code lines in another goroutine (from the view of either of the two
goroutines), to keep the correctness of a program. Instruction reordering may cause some troubles for such

circumstances. How should we do to prevent certain possible instruction reordering?

Different CPU architectures provide different fence instructions to prevent different kinds of instruction
reordering. Some programming languages provide corresponding functions to insert these fence
instructions in code. However, understanding and correctly using the fence instructions raises the bar of

concurrent programming.

The design philosophy of Go is to use as fewer features as possible to support as more use cases as
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possible, at the same time to ensure a good enough overall code execution efficiency. So Go built-in and
standard packages don't provide direct ways to use the CPU fence instructions. In fact, CPU fence
instructions are used in implementing all kinds of synchronization techniques supported in Go. So, we

should use these synchronization techniques to ensure expected code execution orders.

The remaining of the current article will list some guaranteed (and non-guaranteed) code execution orders
in Go, which are mentioned or not mentioned in Go 1 memory model # and other official Go

documentation.

In the following descriptions, if we say event A is guaranteed to happen before event B, it means any of
the goroutines involved in the two events will observe that any of the statements presented before event A
in source code will be executed before any of the statements presented after event B in source code. For

other irrelevant goroutines, the observed orders may be different from the just described.

The creation of a goroutine happens before the execution of the
goroutine

In the following function, the assignment x, y = 123, 789 will be executed before the call
fmt.Println(x), and the call fmt.Println(x) will be executed before the call fmt.Println(y).

1| var x, y int
2| func f1() {

3| X, y = 123, 789

4| go func() {

5] fmt.Println(x)

6| go func() {

7| fmt.Println(y)
8| 10)

9| 10)

10| }

However, the execution orders of the three in the following function are not deterministic. There are data
races in this function.

1] var x, y int
2| func f2() {

3| go func() {

4| // Might print ©, 123, or some others.
5] fmt.Println(x)

6] 10)

7| go func() {

8| // Might print ©, 789, or some others.
9| fmt.Println(y)

10| 10)

11| X, y = 123, 789
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12| }

|Channel operations related order guarantees

Go 1 memory model lists the following three channel related order guarantees.

1. The nth successful send to a channel happens before the nth successful receive from that channel
completes, no matter that channel is buffered or unbuffered.

2. The nth successful receive from a channel with capacity m happens before the (n+m)th successful
send to that channel completes. In particular, if that channel is unbuffered (m == @), the nth
successful receive from that channel happens before the nth successful send on that channel
completes.

3. The closing of a channel happens before a receive completes if the receive returns a zero value
because the channel is closed.

In fact, the completion of the nth successful send to a channel and the completion of the nth successful

receive from the same channel are the same event.

Here is an example show some guaranteed code execution orders in using an unbuffered channel.

1| func f3() {

2| var a, b int

3] var ¢ = make(chan bool)

4|

5] go func() {

6| a=1

7| c <- true

8| if b '= 1 { // impossible

9| panic("b != 1") // will never happen
10| }

11| 10)

12|

13| go func() {

14| b =1

15| <-C

16 | if a '= 1 { // impossible

17 | panic("a != 1") // will never happen
18| }

19| 310)

20| }

Here, for the two new created goroutines, the following orders are guaranteed:

¢ the execution of the assignment b = 1 absolutely ends before the evaluation of the condition b !=

iL

¢ the execution of the assignment a = 1 absolutely ends before the evaluation of the condition a !=
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So the two calls to panic in the above example will never get executed. However, the panic calls in the

following example may get executed.

1| func f4() {

2] var a, b, x, y int

3] c := make(chan bool)

4|

5] go func() {

6| a=1

7| c <- true

8] x =1

9| 10)

10|

11| go func() {

12| b =1

13| <-C

14 | y =1

15] 10)

16|

17 | // Many data races are in this goroutine.
18| // Don't write code as such.
19| go func() {
20| if x == 1 {
21| if a !'= 1 { // possible
22| panic("a != 1") // may happen
23| }
24| if b '= 1 { // possible
25| panic("b != 1") // may happen
26 | }
27 | }
28|
29| if y == 1 {
30| if a !'= 1 { // possible
31| panic("a != 1") // may happen
32| }
33| if b '= 1 { // possible
34| panic("b != 1") // may happen
35| }
36| }

37] +0)
38| }

Here, for the third goroutine, which is irrelevant to the operations on channel c. It will not be guaranteed
to observe the orders observed by the first two new created goroutines. So, any of the four panic calls

may get executed.
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In fact, most compiler implementations do guarantee the four panic calls in the above example will never

get executed, however, the Go official documentation never makes such guarantees. So the code in the
above example is not cross-compiler or cross-compiler-version compatible. We should stick to the Go
official documentation to write professional Go code.

Here is an example using a buffered channel.

1| func f5() {

2| var k, 1, m, n, x, y int
3| c := make(chan bool, 2)
4]

5] go func() {

6| k =1

7| c <- true

8] 1 =1

9| c <- true

10| m=1

11| c <- true

12| n =1

13| 10)

14|

15| go func() {

16 | X =1

17 | <-C

18| y =1

19| 10)

20| }

The following orders are guaranteed:

I
=

e the execution of k = 1 ends before the execution of y

I
=

e the execution of x 1 ends before the execution of n

However, the execution of x = 1 is not guaranteed to happen before the executionof 1 = 1 and m = 1,

and the execution of 1 = 1 and m = 1 is not guaranteed to happen before the execution of y = 1.

The following is an example on channel closing. In this example, the execution of k = 1 is guaranteed to

end before the execution of y = 1, but not guaranteed to end before the execution of x = 1,

1| func f6() {

2| var k, X, y int

3| c := make(chan bool, 1)
4|

5] go func() {

6 | c <- true

7] k =1

8| close(c)
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9] 10)

10|

11| go func() {
12| <-C

13| x =1
14| <-c

15| y =1
16| 30

171 }

Mutex related order guarantees

The followings are the mutex related order guarantees in Go.

1. For an addressable value m of type Mutex or RwWMutex in the sync standard package, the nth
successful m.Unlock() method call happens before the (n+1)th m.Lock() method call returns.

2. For an addressable value rw of type RwMutex, if its nth rw.Lock() method call has returned, then
its successful nth rw.Unlock() method call happens before the return of any rw.RLock() method
call which is guaranteed to happen after the nth rw.Lock() method call returns.

3. For an addressable value rw of type RwMutex, if its nth rw.RLock() method call has returned,
then its mth successful rw.RUnlock() method call, where m <= n, happens before the return of
any rw.Lock() method call which is guaranteed to happen after the nth rw.RLock() method call

returns.

In the following example, the following orders are guaranteed:

e the execution of a = 1 ends before the executionof b = 1.
e the execution of m = 1 ends before the executionof n = 1.
e the execution of x = 1 ends before the executionof y = 1.

1] func fab() {

2| var a, b int
3| var 1 sync.Mutex // or sync.RWMutex
4|

5] 1.Lock()

6| go func() {
7| 1.Lock()
8] b =1

9| 1.Unlock()
10| 310)

11| go func() {
12| a=1

13| 1.Unlock()
14| 10)

15| }
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16|

17| func fmn() {

18| var m, n int
19| var 1 sync.RWMutex
20|

21| 1.RLock()

22| go func() {
23] 1.Lock()
24| n=1

25| 1.Unlock()
26| 10

27 | go func() {
28| m=1

29| 1.RUnlock()
30| 10

31|

32|

33| func fxy() {

34| var x, y int
35| var 1 sync.RWMutex
36|

37| 1.Lock()

38| go func() {
39| 1.RLock()
40 | y =1

41| 1.RUNnlock()
42| 10

43| go func() {
44| x =1

45 | 1.Unlock()
46 | 10

47| }

Note, in the following code, by the official Go documentation, the execution of p = 1 is not guaranteed

to end before the execution of g = 1, though most compilers do make such guarantees.

1| var p, g int
2| func fpqg() {

3| var 1 sync.Mutex
4| 9 = il

5] 1.Lock()

6 | 1.Unlock()

7| g=1

8| }

|Order guarantees made by sync.WaitGroup values
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At a given time, assume the counter maintained by an addressable sync.WaitGroup value wg is not
zero. If there is a group of wg.Add(n) method calls invoked after the given time, and we can make sure
that only the last returned call among the group of calls will modify the counter maintained by wg to zero,
then each of the group of calls is guaranteed to happen before the return of a wg.wWait method call which

is invoked after the given time.

Note, wg.Done() is equivalent to wg.Add(-1).

Please read the explanations for the sync.WaitGroup type (§39) to get how to use sync.waitGroup

values.

|Order guarantees made by sync.once values

Please read the explanations for the sync.Once type (§39) to get the order guarantees made by

sync.Once values and how to use sync.Once values.

|Order guarantees made by sync.cond values

It is some hard to make a clear description for the order guarantees made by sync.Cond values. Please

read the explanations for the sync.Cond type (839) to get how to use sync.Cond values.

|At0mic operations related order guarantees

None of Go's official documentation mentions what memory order guarantees are made by the atomic
synchronization technique. However, in the implementation of the standard Go compiler, there are exactly
some memory order guarantees made by atomic operations. The standard packages rely extensively on the

guarantees provided by atomic operations.
The following program always prints 1, if it is compiled with the standard Go compiler 1.13.

1| package main

2|

3| import "fmt"

4| import "sync/atomic"
5| import "runtime"

6]

7| func main() {

8| var a, b int32 = 0, ©

9]

10| go func() {

11| atomic.StoreInt32(&a, 1)
12| atomic.StoreInt32(&b, 1)
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13] 10

14|

15| for {

16| if n := atomic.LoadInt32(&b); n == 1 {
17| // The following line always prints 1.
18| fmt.Println(atomic.LoadInt32(&a))
19| break

20| }

21| runtime.Gosched()

22| 3

23|

Here, the main goroutine will always observe that the modification of a ends before the modification of
b. However, the guarantees made by atomic operations are never written down in the Go specification and
any other official Go documentation. If you want to write cross-compiler and cross-compiler-version
compatible Go code, the safe advice is, don't rely on atomic to guarantee memory orderings in general
Go programming. There is an issue #  on how these guarantees should be written down. But, up to now
(Go 1.13), the decision has not been made yet.

Please read this article (§40) to get how to do atomic operations.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com i to get more information about these games. Hope you enjoy them.)
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Common Concurrent Programming Mistakes

Go is a language supporting built-in concurrent programming. By using the go keyword to create

goroutines (light weight threads) and by using (837) channels (§21) and other concurrency (§40)

synchronization techniques (§39) provided in Go, concurrent programming becomes easy, flexible and
enjoyable.

One the other hand, Go doesn't prevent Go programmers from making some concurrent programming
mistakes which are caused by either carelessnesses or lacking of experiences. The remaining of the current
article will show some common mistakes in Go concurrent programming, to help Go programmers avoid

making such mistakes.

INo Synchronizations When Synchronizations Are Needed

Code lines might be not executed by their appearance order (§41).

There are two mistakes in the following program.

e First, the read of b in the main goroutine and the write of b in the new goroutine might cause data

races.
e Second, the condition b == true can't ensure that a !'= nil in the main goroutine. Compilers

and CPUs may make optimizations by reordering instructions (§41) in the new goroutine, so the

assignment of b may happen before the assignment of a at run time, which makes that slice a is

still nil when the elements of a are modified in the main goroutine.

1| package main

2|

3| import (

4] "time"

5] "runtime"

6] )

7]

8| func main() {

9] var a []int // nil
10| var b bool // false
11|
12| // a new goroutine
13| go func () {

14 | a = make([]int, 3)
15| b = true // write b
16| 310)

17|

18| for 'b { // read b
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19| time.Sleep(time.Second)

20| runtime.Gosched()

21| }

22| a[0], a[1], a[2] = 06, 1, 2 // might panic
23| }

The above program may run well on one computer, but may panic on another one, or it runs well when it
is compiled by one compiler, but panics when another compiler is used.

We should use channels or the synchronization techniques provided in the sync standard package to

ensure the memory orders. For example,

1| package main

2|

3| func main() {

4| var a []int = nil

5] c := make(chan struct{})
6]

7| go func () {

8| a = make([]int, 3)

9| C <- struct{}{}
10| 10)
11|
12| <-C
13| // The next line will not panic for sure.
14 | a[0], a[1], a[2] =0, 1, 2
15] }

IUse time.Sleep Calls to Do Synchronizations

Let's view a simple example.

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func main() {

9| var x = 123

10|

11| go func() {

12| X = 789 // write Xx
13| 10)

14|

15| time.Sleep(time.Second)
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16| fmt.Println(x) // read x
17| }

We expect this program to print 789. In fact, it really prints 789, almost always, in running. But is it a
program with good synchronization? No! The reason is Go runtime doesn't guarantee the write of x
happens before the read of x for sure. Under certain conditions, such as most CPU resources are
consumed by some other computation-intensive programs running on the same OS, the write of x might
happen after the read of x. This is why we should never use time.Sleep calls to do synchronizations in

formal projects.
Let's view another example.

1| package main

2|

3| import (

4| "fmt"

5] "time"

6] )

7]

8] var x = 0

9]

10| func main() {

11| var num = 123
12| var p = &num
13|
14 | c := make(chan int)
15|
16 | go func() {
17 | cC <- *p + X
18| 10)
19|
20| time.Sleep(time.Second)
21| num = 789
22| fmt.Println(<-c)
23| }

What do you expect the program will output? 123, or 7897? In fact, the output is compiler dependent. For
the standard Go compiler 1.13, it is very possible the program will output 123. But in theory, it might

output 789, or another unexpected number.

Now, let's change ¢ <- *p + x to ¢ <- *p and run the program again, you will find the output

becomes to 789 (for the standard Go compiler 1.13). Again, the output is compiler dependent.

Yes, there are data races in the above program. The expression *p might be evaluated before, after, or
when the assignment num = 789 is processed. The time.Sleep call can't guarantee the evaluation of

*p happens before the assignment is processed.
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For this specified example, we should store the value to be sent in a temporary value before creating the

new goroutine and send the temporary value instead in the new goroutine to remove the data races.

1| ...

2] tmp := *p
3] go func() {
4] c <- tmp
5] 30

6]

ILeave Goroutines Hanging

Hanging goroutines are the goroutines staying in blocking state for ever. There are many reasons leading
goroutines into hanging. For example,

e a goroutine tries to receive a value from a channel which no more other goroutines will send values
to.

e a goroutine tries to send a value to nil channel or to a channel which no more other goroutines will
receive values from.

e a goroutine is dead locked by itself.

e a group of goroutines are dead locked by each other.

e a goroutine is blocked when executing a select code block without default branch, and all the

channel operations following the case keywords in the select code block keep blocking for ever.

Except sometimes we deliberately let the main goroutine in a program hanging to avoid the program
exiting, most other hanging goroutine cases are unexpected. It is hard for Go runtime to judge whether or
not a goroutine in blocking state is hanging or stays in blocking state temporarily, so Go runtime will
never release the resources consumed by a hanging goroutine.

In the first-response-wins (§37) channel use case, if the capacity of the channel which is used a future is

not large enough, some slower response goroutines will hang when trying to send a result to the future
channel. For example, if the following function is called, there will be 4 goroutines stay in blocking state

for ever.

1] func request() int {

2| c := make(chan int)

3| for 1 (= 0; 1< 5; i++ {

4] i:=1

5] go func() {

6 | c <- i // 4 goroutines will hang here.
7] 10)

8] }

9| return <-c
10| }
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To avoid the four goroutines hanging, the capacity of channel ¢ must be at least 4.

In the second way to implement the first-response-wins (§37) channel use case, if the channel which is

used as a future/promise is an unbuffered channel, like the following code shows, it is possible that the

channel receiver will miss all responses and hang.

1| func request() int {

2] c := make(chan int)

3| for i := 0; 1 <5; i++ {
4] i=i

5] go func() {

6 | select {

7| case Cc <- 1:

8| default:

9] }

10| 10)

11| }

12| return <-c // might hang here
13| }

The reason why the receiver goroutine might hang is that if the five try-send operations all happen before
the receive operation <-c is ready, then all the five try-send operations will fail to send values so that the

caller goroutine will never receive a value.

Changing the channel ¢ as a buffered channel will guarantee at least one of the five try-send operations

succeed so that the caller goroutine will never hang in the above function.

ICopy Values of the Types in the sync Standard Package

In practice, values of the types (except the Locker interface values) in the sync standard package should

never be copied. We should only copy pointers of such values.

The following is bad concurrent programming example. In this example, when the Counter.Value
method is called, a Counter receiver value will be copied. As a field of the receiver value, the respective
Mutex field of the Counter receiver value will also be copied. The copy is not synchronized, so the
copied Mutex value might be corrupted. Even if it is not corrupted, what it protects is the use of the

copied field n, which is meaningless generally.

1| import "sync"

2|

3| type Counter struct {
4| sync.Mutex

5] n int64

6| }

7]
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8| // This method is okay.
9| func (c *Counter) Increase(d int64) (r int64) {

10| c.Lock()
11| c.n +=d
12| r =-c.n
13| c.Unlock()
14| return

15[ }

16|

17| // The method is bad. When it is called,
18| // the Counter receiver value will be copied.
19| func (c Counter) Value() (r int64) {

20| c.Lock()
21| r =c.n
22| c.Unlock()
23| return

24|

We should change the receiver type of the Value method to the pointer type *Counter to avoid copying

sync.Mutex values.

The go vet command provided in the official Go SDK will report potential bad value copies.

ICall the sync.WaitGroup.Add Method at Wrong Places

Each sync.WaitGroup value maintains a counter internally, The initial value of the counter is zero. If
the counter of a WaitGroup value is zero, a call to the Wwait method of the WwaitGroup value will not

block, otherwise, the call blocks until the counter value becomes zero.

To make the uses of WaitGroup value meaningful, when the counter of a WaitGroup value is zero, the
next call to the Add method of the WaitGroup value must happen before the next call to the Wait

method of the WaitGroup value.

For example, in the following program, the Add method is called at an improper place, which makes that
the final printed number is not always 100. In fact, the final printed number of the program may be an
arbitrary number in the range [0, 100). The reason is none of the Add method calls are guaranteed to
happen before the Wait method call, which causes none of the Done method calls are guaranteed to

happen before the Wait method call returns.

1| package main

2|

3| import (

4] "fmt"

5| "SynC"

6 | "sync/atomic"
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71 )
8]
9| func main() {
10| var wg sync.WaitGroup
11| var x int32 = 0
12| for i := 0; 1 < 100; i++ {
13| go func() {
14| wg.Add(1)
15| atomic.AddInt32(&x, 1)
16| wg.Done()
17] 10
18] ¥
19|
20| fmt.Println("wait ...")
21| wg.Wait()
22| fmt.Println(atomic.LoadInt32(&x))
23|

To make the program behave as expected, we should move the Add method calls out of the new

goroutines created in the for loop, as the following code shown.

1| ...

2| for 1 := 0; 1 < 100; i++ {
3] wg.Add (1)

4| go func() {

5] atomic.AddInt32(&x, 1)
6| wg.Done()

7| 10)

8| }

9|

IUse Channels as Futures/Promises Improperly

From the article channel use cases (§37), we know that some functions will return channels as futures

(837). Assume fa and fb are two such functions, then the following call uses future arguments

improperly.

1| doSomethingWithFutureArguments(<-fa(), <-fb())

In the above code line, the generations of the two arguments are processed sequentially, instead of
concurrently.

We should modify it as the following to process them concurrently.

1] ca, cb := fa(), fb()
2| doSomethingWithFutureArguments(<-ca, <-cb)
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|Close Channels Not From the Last Active Sender Goroutine

A common mistake made by Go programmers is closing a channel when there are still some other
goroutines will potentially send values to the channel later. When such a potential send (to the closed
channel) really happens, a panic might occur.

This mistake was ever made in some famous Go projects, such as this bug # and this bug # in the
kubernetes project.

Please read this article (§38) for explanations on how to safely and gracefully close channels.

Do 64-bit Atomic Operations on Values Which Are Not
Guaranteed to Be 8-byte Aligned

Up to now (Go 1.13), the address of the value involved in a 64-bit atomic operation is required to be 8-
byte aligned. Failure to do so may make the current goroutine panic. For the standard Go compiler, such
failure can only happen on 32-bit architectures ! . Please read memory layouts (§44) to get how to

guarantee the addresses of 64-bit word 8-byte aligned on 32-bit OSes.

Not Pay Attention to Too Many Resources Are Consumed
by Calls to the time.After Function

The After function in the time standard package returns a channel for delay notification (§37). The
function is convenient, however each of its calls will create a new value of the time.Timer type. The
new created Timer value will keep alive in the duration specified by the passed argument to the After
function. If the function is called many times in a certain period, there will be many alive Timer values

accumulated so that much memory and computation is consumed.

For example, if the following longRunning function is called and there are millions of messages coming
in one minute, then there will be millions of Timer values alive in a certain small period (several

seconds), even if most of these Timer values have already become useless.

1| import (

2] "fmt"

3] "time"
4| )

5]

6| // The function will return if a message

7| // arrival interval is larger than one minute.
8| func longRunning(messages <-chan string) {

9| for {
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10| select {

11| case <-time.After(time.Minute):
12| return

13| case msg := <-messages:

14| fmt.Println(msg)

15] }

16| }

17] }

To avoid too many Timer values being created in the above code, we should use (and reuse) a single

Timer value to do the same job.

1| func longRunning(messages <-chan string) {

2] timer := time.NewTimer (time.Minute)

3] defer timer.Stop()

4]

5] for {

6 | select {

7| case <-timer.C: // expires (timeout)
8] return

9| case msg := <-messages:

10| fmt.Println(msg)

11|

12| // This "if" block is important.
13| if !timer.Stop() {

14 | <-timer.C

15] 3

16| }

17|

18| // Reset to reuse.

19| timer.Reset(time.Minute)

20| }

21| }

Note, the if code block is used to discard/drain a possible timer notification which is sent in the small

period when executing the second branch code block.

IUse time.Timer Values Incorrectly

An idiomatic use example of time.Timer values has been shown in the last section. Some explanations:

e the Stop method of a *Timer value returns false if the corresponding Timer value has already
expired or been stopped. If the Stop method returns false, and we know the Timer value has not
been stopped yet, then the Timer value must have already expired.

e after a Timer value is stopped, its C channel field can only contain most one timeout notification.
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¢ we should take out the timeout notification, if it hasn't been taken out, from a timeout Timer value
after the Timer value is stopped and before resetting and reusing the Timer value. This is the

meaningfulness of the if code block in the example in the last section.

The Reset method of a *Timer value must be called when the corresponding Timer value has already
expired or been stopped, otherwise, a data race may occur between the Reset call and a possible

notification send to the C channel field of the Timer value.

If the first case branch of the select block is selected, it means the Timer value has already expired,

so we don't need to stop it, for the sent notification has already been taken out. However, we must stop the
timer in the second branch to check whether or not a timeout notification exists. If it does exist, we should
drain it before reusing the timer, otherwise, the notification will be fired immediately in the next loop step.

For example, the following program is very possible to exit in about one second, instead of ten seconds.
And more importantly, the program is not data race free.

1| package main

2|

3| import (

4] "fmt"

5] "time"

6] )

7]

8| func main() {

9] start := time.Now()

10| timer := time.NewTimer (time.Second/2)
11| select {
12| case <-timer.C:
13| default:
14 | // Most likely go here.
15| time.Sleep(time.Second)
16| }
17 | // Potential data race in the next line.
18| timer.Reset(time.Second * 10)
19| <-timer.C
20| fmt.Println(time.Since(start)) // about 1s
21| }

A time.Timer value can be leaved in non-stopping status when it is not used any more, but it is

recommended to stop it in the end.

It is bug prone and not recommended to use a time.Timer value concurrently among multiple

goroutines.

We should not rely on the return value of a Reset method call. The return result of the Reset method

exists just for compatibility purpose.
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(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Memory Blocks

Go is a language which supports automatic memory management, such as automatic memory allocation
and automatic garbage collection. So Go programmers can do programming without handling the
underlying verbose memory management. This ont only brings much convenience and saves Go

programmers lots of time, but also helps Go programmers avoid many careless bugs.

Although knowing the underlying memory management implementation details is not necessary for Go
programmers to write Go code, understanding some concepts and being aware of some facts in the
memory management implementation by the standard Go compiler and runtime is very helpful for Go
programmers to write high quality Go code.

This article will explain some concepts and list some facts of the implementation of memory block
allocation and garbage collection by the standard Go compiler and runtime. Other aspects, such as

memory apply and memory release in memory management, will not be touched in this article.

IMemory Blocks

A memory block is a continuous memory segment to host value parts (§17) at run time. Different memory
blocks may have different sizes, to host different value parts. One memory block may host multiple value
parts at the same time, but each value part can only be hosted within one memory block, no matter how
large the size of that value part is. In other words, for any value part, it never crosses memory blocks.

There are many reasons when one memory block may host multiple value parts. Some of them:

e a struct value often have several fields. So when a memory block is allocated for a struct value, the
memory block will also host (the direct parts of) these field values.

e an array values often have many elements. So when a memory block is allocated for a array value,
the memory block will also host (the direct parts of) the array element values.

¢ the underlying element sequences of two slices may be hosted on the same memory block, the two

element sequences even can overlap with each other.

A Value References the Memory Blocks Which Host Its
Value Parts

We have known that a value part can reference another value part. Here, we extend the reference

definition by saying a memory block is referenced by all the value parts it hosts. So if a value part v is
referenced by another value part, then the other value will also reference the memory block hosting v,

indirectly.
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|When Will Memory Blocks Be Allocated?

In Go, memory blocks may be allocated but not limited at following situations:

¢ explicitly call the new and make built-in functions. A new call will always allocate exact one
memory block. A make call will allocate more than one memory blocks to host the direct part and
underlying part(s) of the created slice, map or channel value.

e create maps, slices and anonymous functions with corresponding literals. More than one memory
blocks may be allocated in each of the processes.

e declare variables.

e assign non-interface values to interface values (when the non-interface value is not a pointer value).

e concatenate non-constant strings.

e convert strings to byte or rune slices, and vice versa, except some special compiler optimization
cases (8§19).

e convert integers to strings.

e call the built-in append function (when the capacity of the base slice is not large enough).

¢ add a new key-element entry pair into a map (when the underlying hash table needs to be resized).

IWhere Will Memory Blocks Be Allocated On?

For every Go program compiled by the official standard Go compiler, at run time, each goroutine will
maintain a stack, which is a memory segment. It acts as a memory pool for some memory blocks to be
allocated from/on. The initial stack size of each goroutine is small (about 2k bytes on 64-bit systems). The
stack size will grow and shrink as needed in goroutine running.

(Please note, for the standard Go compiler, there is a limit of stack size each goroutine can have. For
standard Go compiler 1.11, the default maximum stack size is 1 GB on 64-bit systems, and 250 MB on 32-
bit systems. We can call the SetMaxStack function in the runtime/debug standard package to change

the size.)

Memory blocks can be allocated on stacks. Memory blocks allocated on the stack of a goroutine can only
be used (referenced) in the goroutine internally. They are goroutine localized resources. They are not safe
to be referenced crossing goroutines. A goroutine can access or modify the value parts hosted on a

memory block allocated on the stack of the goroutine without using any data synchronization techniques.

Heap is a singleton in each program. It is a virtual concept. If a memory block is not allocated on any
goroutine stack, then we say the memory block is allocated on heap. Value parts hosted on memory blocks
allocated on heap can be used by multiple goroutines. In other words, they can be used concurrently. Their

uses should be synchronized when needed.

Heap is a conservative place to allocate memory blocks on. If compilers detect a memory block will be

referenced crossing goroutines or can't easily confirm whether or not the memory block is safe to be put
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on the stack of a goroutine, then the memory block will be allocated on heap at run time. This means some
values can be safely allocated on stacks may be also allocated on heap.

In fact, stacks are not essential for Go programs. Go compiler/runtime can allocate all memory block on
heap. Supporting stacks is just to make Go programs run more efficiently:

e allocating memory blocks on stacks is much faster than on heap.
¢ memory blocks allocated on a stack don't need to be garbage collected.
e stack memory blocks are more CPU cache friendly than heap ones.

If a memory block is allocated somewhere, we can also say the value parts hosted on the memory block
are allocated on the same place.

If some value parts of a local variable declared in a function is allocated on heap, we can say the value
parts (and the variable) escape to heap. By using the official Go SDK, we can run go build -gcflags
-m to check which local values (value parts) will escape to heap at run time. As mentioned above, the
current escape analyzer in the standard Go compiler is still not perfect, many local value parts can be
allocated on stacks safely will still escape to heap.

An active value part allocated on heap still in use must be referenced by at least one value part allocated
on a stack. If a value escaping to heap is a declared local variable, and assume its type is T, Go runtime
will create (a memory block for) an implicit pointer of type *T on the stack of the current goroutine. The
value of the pointer stores the address of the memory block allocated for the variable on heap (a.k.a., the
address of the local variable of type T). Go compiler will also replace all uses of the variable with the
dereferences of the pointer value at compile time. The *T pointer value on stack may be marked as dead
since a later time, so the reference relation from it to the T value on heap will disappear. The reference
relation from the *T value on stack to the T value on heap plays an important role in the garbage

collection process which will be described below.

Similarly, we can view each package-level variable is allocated on heap, and the variable is referenced by
an implicit pointer which is allocated on a global memory zone. In fact, the implicit pointer references the
direct part of the package-level variable, and the direct part of the variable references some other value

parts.

A memory block allocated on heap may be referenced by multiple value parts allocated on different stacks

at the same time.
Some facts:

o if a field of a struct value escapes to heap, then the whole struct value will also escape to heap.

o if an element of an array value escapes to heap, then the whole array value will also escape to heap.

¢ if an element of a slice value escapes to heap, then all the elements of the slice will also escape to
heap.

o if a value (part) v is referenced by a value (part) which escapes to heap, then the value (part) v will

also escape to heap.
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A memory block created by calling new function may be allocated on heap or stacks. This is different to

C++.

When the size of a goroutine stack changes, a new memory segment will be allocated for the stack. So the
memory blocks allocated on the stack will very likely be moved, or their addresses will change.
Consequently, the pointers, which must be also allocated on the stack, referencing these memory blocks
also need to be modified accordingly.

IWhen Can a Memory Block Be Collected?

Memory blocks allocated for direct parts of package-level variables will never be collected.

The stack of a goroutine will be collected as a whole when the goroutine exits. So there is no need to
collect the memory blocks allocated on stacks, individually, one by one. Stacks are not collected by the
garbage collector.

For a memory block allocated on heap, it can be safely collected only if it is no longer referenced (either
directly or indirectly) by all the value parts allocated on goroutine stacks and the global memory zone. We
call such memory blocks as unused memory blocks. Unused memory blocks on heap will be collected by
the garbage collector.

Here is an example to show when some memory blocks can be collected:

1| package main

2|

3| var p *int

4|

5| func main() {

6| done := make(chan bool)

7| // "done" will be used in main and the following
8| // new goroutine, so it will be allocated on heap.
9]

10| go func() {

11| X, Yy, z := 123, 456, 789

12| _ =2z // z can be allocated on stack safely.
13| p = &x // For x and y are both ever referenced
14 | p =&y // by the global p, so they will be both
15| // allocated on heap.

16|

17 | // Now, x is not referenced by anyone, so

18| // its memory block can be collected now.

19|

20| p = nil

21| // Now, y is als not referenced by anyone,

22| // so its memory block can be collected now.
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23|

24| done <- true

25| 10)

26 |

27| <-done

28| // Now the above goroutine exits, the done channel
29| // is not used any more, a smart compiler may
30| // think it can be collected now.

31|

32| //

33| }

Sometimes, smart compilers, such as the standard Go compiler, may make some optimizations so that

some references are removed earlier than we expect. Here is such an example.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | // Assume the length of the slice is so large

7] // that its elements must be allocated on heap.
8] bs := make([]byte, 1 << 31)

9]
10| // A smart compiler can detect that the
11| // underlying part of the slice bs will never be
12| // used later, so that the underlying part of the
13| // slice bs can be garbage collected safely now.
14|
15| fmt.Println(len(bs))
16| }

Please read value parts (§17) to learn the internal structures of slice values.

By the way, sometimes, we may hope the slice bs is guaranteed to not being garbage collected until
fmt.Println is called, then we can use a runtime.KeepAlive function call to tell garbage collectors

that the slice bs and the value parts referenced by it are still in use.

For example,

1| package main

2|

3| import "fmt"

4| import "runtime"

5]

6| func main() {

7| bs := make([]int, 1000000)
8]
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9] fmt.Println(len(bs))

10|

11| // A runtime.KeepAlive(bs) call is also
12| // okay for this specified example.

13| runtime.KeepAlive(&bs)

14] }

runtime.KeepAlive function calls are often needed if unsafe pointers (§25) are involved.

IHow Are Unused Memory Blocks Detected?

The current standard Go compiler (version 1.13) uses a concurrent, tri-color, mark-sweep garbage
collector. Here this article will only make a simple explanation for the algorithm.

A garbage collection (GC) process is divided into two phases, the mark phase and the sweep phase. In the
mark phase, the collector (a group of goroutines actually) uses the tri-color algorithm to analyze which
memory blocks are unused.

The following quote is token from a Go blog article # , in which an objects is either value parts or
memory blocks.

At the start of a GC cycle all objects are white. The GC visits all roots, which are objects directly accessible by the application
such as globals and things on the stack, and colors these grey. The GC then chooses a grey object, blackens it, and then scans
it for pointers to other objects. When this scan finds a pointer to a white object, it turns that object grey. This process repeats

until there are no more grey objects. At this point, white objects are known to be unreachable and can be reused.

About why the algorithm uses three colors instead of two colors, please search "write barrier golang" for
details. Here only provides two references: eliminate STW stack re-scanning #  and mbarrier.go & .

In the sweep phase, the marked unused memory blocks will be collected.

The GC algorithm is a non-compacting one, so it will not move memory blocks to rearrange them.

IWhen Will an Unused Memory Block Be Collected?

Unused heap memory blocks are viewed as garbage by Go runtime and will be collected to reuse or
release memory. The garbage collector is not always running. It will start when a threshold is satisfied. So
an unused memory block may be not collected immediately when it becomes unused. Instead, it will be
collected eventually. Currently (Go 1.13), the threshold is controlled by GOGC environment variable & :

The GOGC variable sets the initial garbage collection target percentage. A collection is triggered when the ratio of freshly
allocated data to live data remaining after the previous collection reaches this percentage. The default is GOGC=100. Setting

GOGC=off disables the garbage collector entirely.

The value of this environment variable determines the frequency of garbage collecting, and it can be
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modified at run time by calling runtime/debug.SetGCPercent #  function. Smaller values lead to more

frequent garbage collections. A negative percentage disables automatical garbage collection.
A garbage collection process can also be started manually by calling the runtime.GC §  function.

An unused memory block may not be released to OS immediately after it is collected, so that it can be
reused for new some value parts. Don't worry, the official Go runtime is much less memory greedy than

most Java runtimes.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Memory Layouts

This articles will introduce type alignment and size guarantees in Go. It is essential to know the guarantees
to estimate the sizes of struct types and properly use the 64-bit functions in sync/atomic standard

package.

Go is a C family language, so many concepts talked in this article are shared with C language.

IType Alignment Guarantees in Go

Type alignment guarantees are also called value address alignment guarantees. If the alignment guarantee
of a type T is N, then the address of every value of type T must be a multiple of N at run time. We can

also say the addresses of addressable values of type T are guaranteed to be N-byte aligned.

In fact, each type has two alignment guarantees, one is for when it is used as field types of other (struct)
types, the other is for other cases (when it is used for a variable declaration, array element type, etc). We
call the former one the field alignment guarantee of that type, and call the latter one the general alignment
guarantee of that type.

For a type T, we can call unsafe.Alignof(t) to get its general alignment guarantee, where t is a non-
field value of type T, and call unsafe.Alignof(x.t) to get its field alignment guarantee, where X is a

struct value and t is a field value of type T.
Calls to the functions in the unsafe standard code packages are always evaluated at compile time.

At run time, for a value t of type T, we can call reflect.TypeOf(t).Align() to get the general
alignment guarantee of type T, and call reflect.TypeOf(t).FieldAlign() to get the field alignment
guarantee of type T.

For the current standard Go compiler (version 1.13), the field alignment guarantee and the general

alignment guarantee of a type are always equal. For gccgo compiler, the statement is false.

Go specification only mentions a little on type alignment guarantees ff :

The following minimal alignment properties are guaranteed:

1. For a variable x of any type: unsafe.Alignof(x) is at least 1.
2. For a variable x of struct type: unsafe.Alignof(x) is the largest of all the values unsafe.Alignof(x.f) for each field
f of x, but at least 1.

3. For a variable x of array type: unsafe.Alignof(x) is the same as the alignment of a variable of the array's element type.

So Go specification doesn't specify the exact alignment guarantees for any types. It just specifies some

minimal requirements.
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For the same compiler, the exact type alignment guarantees may be different between different
architectures and between different compiler versions. For the current version (1.13) of the standard Go
compiler, the alignment guarantees are listed here.

type alignment guarantee
bool, byte, uint8, int8 1

uinti6, inti6 2

uint32, int32 4

float32, complex64 4

arrays depend on element types
structs depend on field types
other types size of a native word

Here, the size of a native word (or machine word) is 4-byte on 32-bit architectures and 8-byte on 64-bit

architectures.

This means, for the current version of the standard Go compiler, the alignment guarantees of other types
may be either 4 or 8, depends on different build target architectures. This is also true for gccgo.

Generally, we don't need to care about the value address alignments in Go programming, except that we
want to optimizing memory consumption, or write portable programs which using the 64-bit functions

from sync/atomic package. Please read the following two sections for details.

IType Sizes and Structure Padding

Go specification only makes following type size guarantees f :

type size in bytes

byte, uint8, int8 1

uint16, inti16 2

uint32, int32, float32 4

uint64, inté64 8

float64, complex64 8

complex128 16

uint, int implementation-specific,
generally 4 on 32-bit
architectures, and 8 on
64-bit architectures.

uintptr implementation-specific,
large enough to store
the uninterpreted bits
of a pointer value.

Go specification doesn't make value size guarantees for other kinds of types. The full list of sizes of
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different types settled by the standard Go compiler are listed in value copy costs (§34).

The standard Go compiler (and gccgo) will ensure the size of values of a type is a multiple of the
alignment guarantee of the type.

To satisfy type alignment guarantees mentioned in the previous section, Go compilers may pad some bytes
between fields of struct values. This makes the value size of a struct type may be not a simple sum of the
sizes of all fields of the type.

The following is an example showing how bytes are padded between struct fields. We have already
learned that

e the alignment guarantee and size of the built-in type int8 are both one byte.

e the alignment guarantee and size of the built-in type int16 are both two bytes.

o the size of the built-in type int64 is 8 bytes, the alignment guarantee of type int64 is 4 bytes on
32-bit architectures and 8 bytes on 64-bit architectures.

¢ the alignment guarantees of the types T1 and T2 are their respective largest field alignment
guarantees, a.k.a., the alignment guarantee of the int64 field. So their alignment guarantees are

both 4 bytes on 32-bit architectures and 8 bytes on 64-bit architectures.
e the sizes of the types T1 and T2 must be multiples of their respective alignment guarantees, a.k.a.,

4N bytes on 32-bit architectures and 8N bytes on 64-bit architectures.

1| type T1 struct {

2| a int8

3]

4| // 0On 64-bit architectures, to make field b
5] // 8-byte aligned, 7 bytes need to be padded
6| // here. On 32-bit architectures, to make

7| // field b 4-byte aligned, 3 bytes need to be
8| // padded here.

9]

10| b int64

11| c inti16

12|

13| // To make the size of type T1 be a multiple
14 | // of the alignment guarantee of T1, on 64-bit
15| // architectures, 6 bytes need to be padded
16 | // here, and on 32-bit architectures, 2 bytes
17 | // need to be padded here.

18] }

19| // The size of T1 is 24 (=1 + 7 + 8 + 2 + 6)
20| // bytes on 64-bit architectures and is 16
21| // (=1 + 3 + 8 + 2 + 2) on 32-bit architectures.

22|
23| type T2 struct {
24 | a ints8
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25|

26 | // To make field c 2-byte aligned, one byte
27 | // needs to be padded here on both 64-bit
28| // and 32-bit architectures.

29|

30| c inti16

31|

32| // On 64-bit architectures, to make field b
33| // 8-byte aligned, 4 bytes need to be padded
34| // here. On 32-bit architectures, field b is
35| // already 4-byte aligned, so no bytes need
36| // to be padded here.

37|

38| b int64

39| }

40| // The size of T2 is 16 (=1 + 1 + 2 + 4 + 8)
41| // bytes on 64-bit architectures, and is 12
42| // (=1 + 1 + 2 + 8) on 32-bit architectures.

Although T1 and T2 have the same field set, their sizes are different.

One interesting fact for the standard Go compiler is that sometimes zero sized fields may affect structure
padding. Please read this question in the unofficial Go FAQ (§51) for details.

The Alignment Requirement for 64-bit Word Atomic
Operations

64-bit words mean values of types whose underlying types are int64 or uint64.

The article atomic operations (§40) mentions a fact that 64-bit atomic operations on a 64-bit word require

the address of the 64-bit word must be 8-byte aligned. This is not a problem for the current 64-bit
architectures supported by the standard Go compiler, because 64-bit words on these 64-bit architectures

are always 8-byte aligned.

However, on 32-bit architectures, the alignment guarantee made by the standard Go compiler for 64-bit
words is only 4 bytes. 64-bit atomic operations on a 64-bit word which is not 8-byte aligned will panic at

runtime. Worse, on very old CPU architectures, 64-bit atomic functions are not supported.

At the end of the sync/atomic _documentation # , it mentions:

On x86-32, the 64-bit functions use instructions unavailable before the Pentium MMX.

On non-Linux ARM, the 64-bit functions use instructions unavailable before the ARMv6k core.

On both ARM and x86-32, it is the caller's responsibility to arrange for 64-bit alignment of 64-bit words accessed atomically.

445


https://golang.org/pkg/sync/atomic/#pkg-note-BUG

844. Memory Layouts

The first word in a variable or in an allocated struct, array, or slice can be relied upon to be 64-bit aligned.

So, things are not very bad for two reasons.

1. The very old CPU architectures are not mainstream architectures nowadays. If a program needs to
do synchronization for 64-bit words on these architectures, there are other synchronization

techniques (839) to rescue.
2. On other not-very-old 32-bit architectures, there are some ways to ensure some 64-bit words are
relied upon to be 64-bit aligned.

The ways are described as the first (64-bit) word in a variable or in an allocated struct, array, or slice
can be relied upon to be 64-bit aligned. What does the word allocated mean? We can think an allocated
value as a declared variable, a value returned the built-in make function, or the value referenced by a
value returned by the built-in new function. If a slice value derives from an allocated array and the first
element of the slice is the first element of the array, then the slice value can also be viewed as an allocated

value.

The description of which 64-bit words can be relied upon to be 64-bit aligned on 32-bit architectures is
some conservative. There are more 64-bit words which can be relied upon to be 8-byte aligned. In fact, if
the first element of an array or slice which element type is a 64-bit word type can be relied upon to be 64-
bit aligned, then all elements in the array/slice can also be accessed atomically. It is just some subtle and
verbose to make a simple clear description to include all the 64-bit words can be relied upon to be 64-bit
aligned on 32-bit architectures, so the official documentation just makes a conservative description.

Here is an example which lists some 64-bit words which are safe or unsafe to be accessed atomically on
both 64-bit and 32-bit architectures.

1| type (

2] Tl struct {

3] vV uint64

4| }

5]

6| T2 struct {

7] _ inti16

8| X T1

9] y *T1

10| }

11|

12| T3 struct {
13| _ inti16

14| x [6]int64
15| y *[6]int64
16| }

171 )

18|

19| var a int64 // a 1is safe
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20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31
32|
33|
34|
35|
36|
37|
38|
39|
40|
41|
42|
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var b T1 // b.v is safe
var ¢ [6]int64 // c[0] is safe

var d T2 // d.x.v is unsafe
var e T3 // e.x[0] is unsafe

func () {
var f inte64 // f 1is safe
var g = []int64{5: 0} // g[0] is safe

e.x[:] // h[0] is unsafe

var h

// Here, d.y.v and e.y[0] are both safe,
// for *d.y and *e.y are both allocated.
d.y = new(T1)

e.y = &[6]int64{}
—7 —7 — = fI gl h

// In fact, all elements in ¢, g and e.y.v are
// safe to be accessed atomically, though Go
// official documentation never makes the guarantees.

If a 64-bit word field (generally the first one) of a struct type will be accessed atomically in code, we

should always use allocated values of the struct type to guarantee the atomically accessed fields always

can be relied upon to be 8-byte aligned on 32-bit architectures. When this struct type is used as the type of

a field of another struct type, we should arrange the field as the first field of the other struct type, and

always use allocated values of the other struct type.

Sometimes, if we can't make sure whether or not a 64-bit word can be accessed atomically, we can use a

value of type [15]byte to determine the address for the 64-bit word at run time. For example,

1]
2]
3
4]
5]
6
7]
8]
9]
10|
11 |
12|
13|
14|
15|

package mylib

import (
"unsafe"
"sync/atomic"

type Counter struct {
x [15]byte // instead of "x uint64"

func (c *Counter) XxAddr() *uint64 {
// The return must be 8-byte aligned.
return (*uint64) (unsafe.Pointer(
uintptr(unsafe.Pointer(&c.x)) + 8 -
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16| uintptr(unsafe.Pointer(&c.x))%8))
17| }

18]

19| func (c *Counter) Add(delta uint64) {
20| p := c.xAddr()

21| atomic.AddUint64(p, delta)

22| }

23]

24| func (c *Counter) Value() uint64 {

25| return atomic.LoadUint64(c.xAddr())
26| }

By using this solution, the Counter type can be embedded in other user types freely and safely, even on

32-bit architectures. The drawback of this solution is there are seven bytes being wasted for every value of
Counter type and it uses unsafe pointers. The sync standard package uses a [3]uint32 value to do

this trick instead # . This trick assumes that the alignment guarantee of the uint32 type is a multiple of 4
bytes. The assumption is true for both the standard Go compiler and gccgo compiler. However, it might be
false for another third-party Go compiler §# .

Russ Cox has proposed that the addresses of 64-bit words should always be 8-byte aligned # , on either
64-bit or 32-bit architectures, to make Go programming simpler. Currently (Go 1.13), this proposal hasn't

been adopted yet.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Memory Leaking Scenarios

When programming in a language supporting auto garbage collection, generally we don't need care about
memory leaking problems, for the runtime will collect unused memory regularly. However, we do need to
be aware of some special scenarios which may cause kind-of or real memory leaking. The remaining of

the current article will list several such scenarios.

IKind-of Memory Leaking Caused by Substrings

Go specification doesn't specify whether or not the result string and base string involved in a substring

expression should share the same underlying memory block (§43) to host the underlying byte sequences
(819) of the two strings. The standard Go compiler/runtime does let them share the same underlying
memory block. This is a good design, which is both memory and CPU consuming wise. But it may cause

kind-of memory leaking sometimes.

For example, after the demo function in the following example is called, there will be about 1M bytes

memory leaking (kind of), until the package-level variable s@ is modified again elsewhere.

1| var sO string // a package-level variable
2|

3| // A demo purpose function.

4| func f(sl1 string) {

5] SO = s1[:50]

6| // Now, sO@ shares the same underlying memory block
7| // with s1. Although s1 is not alive now, but sO
8| // is still alive, so the memory block they share
9| // couldn't be collected, though there are only 50
10| // bytes used in the block and all other bytes in
11| // the block become unavailable.

12| }

13|

14| func demo() {

15| s := createStringwWithLengthOnHeap(1 << 20) // 1M bytes
16| f(s)

17| }

To avoid this kind-of memory leaking, we can convert the substring to a [ Jbyte value then convert the

[ Jbyte value back to string.

1| func f(sl1 string) {
2| sO@ = string([]byte(s1[:50]))
3| }

The drawback of the above way to avoid the kind-of memory leaking is there are two 50-byte duplicates
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which happen in the conversion process, one of them is unnecessary.

We can make use of one of the optimizations (§19) made by the standard Go compiler to avoid the
unnecessary duplicate, with a small extra cost of one byte memory wasting.

1| func f(s1 string) {
2] s@ = (" " + s1[:50])[1:]
3| 3

The disadvantage of the above way is the compiler optimization may become invalid later, and the

optimization may be not available from other compilers.

The third way to avoid the kind-of memory leaking is to utilize the strings.Builder supported since
Go 1.10.

1| import "strings"

2|

3| func f(s1 string) {

4| var b strings.Builder
5] b.Grow(50)

6| b.WriteString(si1[:50])
7| s@ = b.String()

8| }

The disadvantage of the third way is it is a little verbose (by comparing to the first two ways). A good
news is, since Go 1.12, we can call the Repeat function with the count argument as 1 in the strings

standard package to clone a string. Since Go 1.12, the underlying implementation of strings.Repeat

will make use of strings.Builder, to avoid one unnecessary duplicate.

IKind-of Memory Leaking Caused by Subslices

Similarly to substrings, subslices may also cause kind-of memory leaking. In the following code, after the
g function is called, most memory occupied by the memory block hosting the elements of s1 will be lost

(if no more values reference the memory block).

1] var s0 []int

2|

3| func g(s1 []int) {

4| // Assume the length of s1 is much larger than 30.
5] sO@ = si[len(s1)-30:]

6| }

If we want to avoid the kind-of memory leaking, we must duplicate the 30 elements for s@, so that the

aliveness of s@ will not prevent the memory block hosting the elements of s1 from being collected.

1| func g(s1 []int) {
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2| sO@ = append([]int(nil), si[len(s1)-30:]...)
3| // Now, the memory block hosting the elements
4| // of s1 can be collected if no other values
5] // are referencing the memory block.

6| }

Kind-of Memory Leaking Caused by Not Resetting Pointers
in Lost Slice Elements

In the following code, after the h function is called, the memory block allocated for the first and the last

elements of slice s will get lost.

1| func h() []*int {

2] s = []*int{new(int), new(int), new(int), new(int)}
3] // do something with s ...

4]

5] return s[1:3:3]

6] }

As long as the returned slice is still alive, it will prevent any elements of s from being collected, which in
consequence prevents the two memory blocks allocated for the two int values referenced by the first and

the last elements of s from being collected.

If we want to avoid such kind-of memory leaking, we must reset the pointers stored in the lost elements.

1| func h() []*int {

2| s := []*int{new(int), new(int), new(int), new(int)}
3| // do something with s ...

4|

5] // Reset pointer values.

6| s[0], s[len(s)-1] = nil, nil

7| return s[1:3:3]

8| }

We often need to reset the pointers for some old slice elements in slice element deletion operations (§18).

|Real Memory Leaking Caused by Hanging Goroutines

Sometimes, some goroutines in a Go program may stay in blocking state for ever. Such goroutines are
called hanging goroutines. Go runtime will not kill hanging goroutines, so the resources allocated for (and

the memory blocks referenced by) the hanging goroutines will never get garbage collected.

There are two reasons why Go runtime will not kill hanging goroutines. One is that sometimes it is hard

for Go runtime to judge whether or not a blocking goroutine will be blocked for ever. The other is
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sometimes we deliberately make a goroutine hanging. For example, sometimes we may let the main

goroutine of a Go program hang to avoid the program exiting.

We should avoid hanging goroutines which are caused by some logic mistakes in code design.

Real Memory Leaking Caused by Not Stopping
time.Ticker Values Which Are Not Used Any More

When a time.Timer value is not used any more, it will be garbage collected after some time. But this is

not true for a time.Ticker value. We should stop a time.Ticker value when it is not used any more.

Real Memory Leaking Caused by Using Finalizers
Improperly

Setting a finalizer for a value which is a member of a cyclic reference group may prevent all memory

blocks allocated for the cyclic reference group from being collected # . This is real memory leaking, not
kind of.

For example, after the following function is called and exits, the memory blocks allocated for x and y are

not guaranteed to be garbage collected in future garbage collecting.

1| func memoryLeaking() {

2| type T struct {

3] v [1<<20]int

4] t *T

5] }

6]

7| var finalizer = func(t *T) {

8| fmt.Println("finalizer called")

9] }

10|

11| var x, y T

12|

13| // The SetFinalizer call makes x escape to heap.
14 | runtime.SetFinalizer (&x, finalizer)

15|

16 | // The following line forms a cyclic reference
17 | // group with two members, x and y.

18| // This causes x and y are not collectable.
19| x.t, y.t = &y, & // y also escapes to heap.
20| }

So, please avoid setting finalizers for values in a cyclic reference group.
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By the way, we shouldn't use finalizers as object destructors (§51).

IKind-of Resource Leaking by Deferring Function Calls

Please read this article (§29) for details.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Some Simple Summaries

Index

Types whose values may have indirect underlying parts.

Types which values can be used as arguments of built-in len function (and cap, close, delete,

make functions).

Comparison of built-in container types.

Types which values can be represented with composite literals (T{...}).

Value sizes of all kinds of types.

Types which zero values can be represented with nil.

Types we can implement methods for.

Types which can be embedded in struct types.
Functions whose calls will/may be evaluated at compile time.
Values that can't be taken addresses.

Types which don't support comparisons.
Which code elements are allowed to be declared but not used.

Named source code elements which can be declared together within ().
Named source code elements which can be declared both inside functions and outside any functions.

Expressions which evaluation results may contain optional additional values.

Ways to block the current goroutine forever by using the channel mechanism.
Ways to concatenate strings.

Optimizations made by the standard Go compiler.
Run-time panic and crash cases.

ITypes whose values may have indirect underlying parts

Types whose values may have indirect underlying parts:

string types
function types
slice types
map types
channel types

interface types

The answer is based on the implementation of the standard Go compiler/runtime. In fact, whether or not

function values may have indirect underlying parts is hardly to prove, and string values and interface

values should be viewed as values without indirect underlying parts in logic. Please read value parts (§17)

for details.
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Types which values can be used as arguments of built-in
len function (and cap, close, delete, make functions)

len |cap|close|deletejmake
string Yes
arra
(and array ;ointer) Yes|Yes
slice Yes|Yes Yes
map Yes Yes | Yes
channel Yes|Yes| Yes Yes

Values of above types can also be ranged over in for-range loops.

Types which values can be used as arguments of built-in function 1en can be called container types in

broad sense.

IComparison of built-in container types

Can New Elements| Are Elements of | Are Elements of Will Element Mai'{;/::ues
Type Be Added into Values Values Accesses Modify Underlying
Values? Replaceable? | Addressable? Value Lengths? Parts
string No No No No Yes™)
array No Yes® Yes® No No
slice No® Yes Yes No Yes
map Yes Yes No No Yes
channel Yes@ No No Yes Yes

(@) For the standard Go compiler/runtime.

(2) For addressable array values only.

() Generally, a slice value are modified by assigned another slice value to it by overwriting it. Here, such
cases are not viewed as "add new elements". In fact, slice lengths can also be modified separately by
calling the reflect.SetLen function. Increase the length of a slice by this way is kind of adding new
elements into the slice. But the reflect.SetLen function is slow, so it is rarely used.

(4) For buffered channels which are still not full.

Types which values can be represented with composite
literals (T{...})

Values of the following four kinds of types can be represented with composite literals:

Type (T)|Is T{} a Zero Value of T?

X7 ~~

- —a
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suruct Yes
array Yes
. No
slice (zero value is nil)
No
map (zero value is nil)

IValue sizes of all kinds of types

Please read value copy cost (§34) for details.

ITypes which zero values can be represented with nil

The zero values of the following types can be represented with nil.

Type (T)(Size of T(nil)
pointer 1 word
slice 3 words
map 1 word
channel 1 word
function 1 word
interface 2 words

The above listed sizes are for the standard Go compiler. One word means 4 bytes on 32-bit architectures
and 8 bytes on 64-bit architectures. and the indirect underlying parts (§17) of a value don't contribute to

the size of the value.

The size of a zero value of a type is the same as any other values of the same type.

ITypes we can implement methods for

Please read methods in Go (§22) for details.

|Types which can be embedded in struct types

Please read which types can be embedded (§24) for details.

|Functions whose calls will/may be evaluated at compile time

If a function call is evaluated at compile time, its return results must be constants.

[ I I
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Function Return Type Are Calls Always Evaluated at Compile Time?
unsafe.Sizeof
unsafe.Alignof uintptr Yes, always.
unsafe.Offsetof
Not always.
len From Go specification § :
int e the expression len(s) is constant if s is a string constant.
e the expressions len(s) and cap(s) are constants if the
type of s is an array or pointer to an array and the expression
cap s does not contain channel receives or (non-constant)
function calls.
real The result is an Not always.
untyped value. Its
default typeis  |[From Go spec § : the expressions real(s) and imag(s) are
imag float64. constants if s is a complex constant.
The result is an Not always.
complex untyped value. Its
P default type is From Go spec ! : the expression complex(sr, si) is constant
complex128. [if both sr and si are numeric constants.

IAddressable and unaddressable values

Please read this FAQ item (§51) to get which values are addressable or unaddressable.

ITypes which don't support comparisons

Please read this FAQ item (§51) to get which values are addressable or unaddressable.

Which code elements are allowed to be declared but not

used
Allowed to Be Declared but Not Used?
import No
type Yes
variable Yes for package-level variables.
No for local variables (for the standard compiler).
constant| Yes
function Yes
label No
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Named source code elements which can be declared
together within ()

Following source code elements (of the same kind) can be declared together within () :

e import

e type
e variable

e constant

Functions can't be declared together within (). Also labels.

Named source code elements which can be declared both
inside functions and outside any functions

Following named source code elements can be declared both inside functions and outside any functions:

e type
e variable

e constant
Imports must be declared before declarations of other elements (and after the package clause).

Functions can only be declared outside any functions. Anonymous functions can be defined inside other
function bodies, but such definitions are not function declarations.

Labels must be declared inside functions.

Expressions which evaluation results may contain optional
additional values

The evaluation results of the following expressions may contain optional additional values:

Meaning of The Optional | Will Omitting the Optional
Syntax Value (ok in the syntax Result Affect Program
examples) Behavior?
el?n?gnt e, ok = aMap[key] whether or not the accessed key No
ccess ! is present in the map
channel whether or not the received
value e, ok = <- aChannel value was sent before the No
receive channel was closed
whether or not the dynamic |, , ?(es 1 s .
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type
assertion

(wnen the opuonal DOOI result
is omitted, a panic occurs if
the assertion fails.)

v, ok = anInterface.(T)| type of the interface value
matches the asserted type

Ways to block the current goroutine forever by using the
channel mechanism

Without importing any package, we can use the following ways to make the current goroutine enter (and
stay in) blocking state forever:

1. send a value to a channel which no ones will receive values from

make(chan struct{}) <- struct{}{}
// or
make(chan<- struct{}) <- struct{}{}

2. receive a value from a never-closed channel which no values have been and will be sent to

<-make(chan struct{})

// or

<-make(<-chan struct{})

// or

for range make(<-chan struct{}) {}

3. receive a value from (or send a value to) a nil channel

chan struct{}(nil) <- struct{}{}
// or

<-chan struct{}(nil)

// or

for range chan struct{}(nil) {}

4. use a bare select block

select{}

|Ways to concatenate strings

Please read strings in Go (§19) for details.

|Optimizati0ns made by the standard Go compiler

Please read the Go 101 wiki article #  for this summary.
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|Run-time panic and crash cases

Please read the Go 101 wiki article # for this summary.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com #  to get more information about these games. Hope you enjoy them.)
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nils in Go

nil is a frequently used and important predeclared identifier in Go. It is the literal representation of zero
values of many kinds of types. Many new Go programmers with experiences of some other popular
languages may view nil as the counterpart of null (or NULL) in other languages. This is partly right,

but there are many differences between nil in Go and null (or NULL) in other languages.

The remaining of this article will list all kinds of facts and details related to nil.

Inil Is a Predeclared Identifier in Go

We can use nil without declaring it.

Inil Can Represent Zero Values of Many Types

In Go, nil can represent zero values of the following kinds of types:

e pointer types (including type-unsafe ones).
e map types.

e slice types.

e function types.

e channel types.

e interface types.

IPredeclared nil Has Not a Default Type

Each of other predeclared identifiers in Go has a default type. For example,

e the default types of true and false are both bool type.
e the default type of iota is int.

But the predeclared nil has not a default type, though it has many possible types. In fact, the predeclared
nil is the only untyped value who has not a default type in Go. There must be sufficient information for

compiler to deduce the type of a nil from context.

Example:
1| package main

2|
3| func main() {
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4| // There must be sufficient information for

5] // compiler to deduce the type of a nil value.
6| _ = (*struct{})(nil)

7] _ = []int(nil)

8] _ = map[int]bool(nil)

9| _ = chan string(nil)

10| _ = (func())(nil)

11| _ = interface{}(nil)

12|

13| // This lines are equivalent to the above lines.
14 | var _ *struct{} = nil

15| var _ []int = nil

16 | var _ map[int]bool = nil

17| var _ chan string = nil

18| var _ func() = nil

19| var _ interface{} = nil

20|

21| // This following line doesn't compile.

22| var _ = nil

23| }

IPredeclared nil Is Not a Keyword in Go

The predeclared nil can be shadowed.

Example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| nil := 123

7| fmt.Println(nil) // 123

8]

9] // The following line fails to compile,
10| // for nil represents an int value now
11| // in this scope.
12| var _ map[string]int = nil
13| }

(BTW, null and NULL in many other languages are also not keywords.)

The Sizes of Nil Values With Types of Different Kinds May
Be Different
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The memory layouts of all values of a type are always the same. nil values of the type are not exceptions

(assume the zero values of the type can be represented as nil). The size of a nil value is always the same

as the sizes of non-nil values whose types are the same as the nil value. But nil values of different kinds of
types may have different sizes.

Example:

1| package main

2|

3| import (

4| "fmt"

5] "unsafe"

6] )

7]

8| func main() {

9| var p *struct{} = nil

10| fmt.Println( unsafe.Sizeof( p ) ) // 8
11|

12| var s []int = nil

13| fmt.Println( unsafe.Sizeof( s ) ) // 24
14|

15| var m map[int]bool = nil

16 | fmt.Println( unsafe.Sizeof( m ) ) // 8
17|

18| var ¢ chan string = nil

19| fmt.Println( unsafe.Sizeof( c ) ) // 8
20|

21| var f func() = nil

22| fmt.Println( unsafe.Sizeof( f ) ) // 8
23|

24| var i interface{} = nil

25| fmt.Println( unsafe.Sizeof( i ) ) // 16
26| }

The sizes are compiler and architecture dependent. The above printed results are for 64-bit architectures

and the standard Go compiler. For 32-bit architectures, the printed sizes will be half.

For the standard Go compiler, the sizes of two values of different types of the same kind whose zero

values can be represented as the predeclared nil are always the same. For example, the sizes of all values

of all different slice types are the same.

Two Nil Values of Two Different Types May Be Not
Comparable

For example, the two comparisons in the following example both fail to compile. The reason is, in each
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comparison, neither operand can be implicitly converted to the type of the other.
1| // Compilation failure reason: mismatched types.

2| var _ = (*int)(nil) == (*bool)(nil) // error
3| var _ = (chan int)(nil) == (chan bool)(nil) // error

Please read comparison rules in Go (8§48) to get which two values can be compared with each other. Typed

nil values are not exceptions of the comparison rules.

The code lines in the following example all compile okay.

1| type IntPtr *int
2| // The underlying of type IntPtr is *int.

3| var _ = IntPtr(nil) == (*int)(nil)

4]

5| // Every type in Go implements interface{} type.
6| var _ = (interface{})(nil) == (*int)(nil)

7]

8| // Values of a directional channel type can be
9| // converted to the bidirectional channel type
10| // which has the same element type.

11| var _ = (chan int)(nil) == (chan<- int)(nil)
12| var _ = (chan int)(nil) == (<-chan int)(nil)

ITwo Nil Values of the Same Type May Be Not Comparable

In Go, map, slice and function types don't support comparison. Comparing two values, including nil
values, of an incomparable types is illegal. The following comparisons fail to compile.

1| var _ = ([]int)(nil) == ([]int)(nil)
2| var _ = (map[string]int)(nil) == (map[string]int)(nil)
3| var _ = (func())(nil) == (func())(nil)

But any values of the above mentioned incomparable types can be compared with the bare nil identifier.

1| // The following lines compile okay.

2] var _ = ([]int)(nil) == nil
3| var _ = (map[string]int)(nil) == nil
4| var _ = (func())(nil) == nil

|Two Nil Values May Be Not Equal

If one of the two compared nil values is an interface value and the other is not, assume they are

comparable, then the comparison result is always false. The reason is the non-interface value will be

converted to the type of the interface value (§23) before making the comparison. The converted interface
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value has a concrete dynamic type but the other interface value has not. That is why the comparison result
is always false.

Example:

fmt.Println( (interface{})(nil) == (*int)(nil) ) // false

IRetrieVing Elements From Nil Maps Will Not Panic

Retrieving element from a nil map value will always return a zero element value.
For example:

1| fmt.Println( (map[string]int)(nil)["key"] ) // ©
2| fmt.Println( (map[int]bool)(nil)[123] ) // false
3| fmt.Println( (map[int]*int64)(nil)[123] ) // <nil>

It Is Legal to Range Over Nil Channels, Maps, Slices, and
Array Pointers

The number of loop steps by iterate nil maps and slices is zero.

The number of loop steps by iterate a nil array pointer is the length of its corresponding array type.
(However, if the length of the corresponding array type is not zero, and the second iteration is neither
ignored nor omitted, the iteration will panic at run time.)

Ranging over a nil channel will block the current goroutine for ever.

For example, the following code will print ©®, 1, 2, 3 and 4, then block for ever. Hello, world and

Bye will never be printed.

1| for range []int(nil) {

2| fmt.Println("Hello")

3| }

4|

5| for range map[string]string(nil) {
6 | fmt.Println("world")

7}

8]

9| for i := range (*[5]int)(nil) {
10| fmt.Println(1i)
11| }
12|
13| for range chan bool(nil) { // block here
14 | fmt.Println("Bye")
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15] }

Invoking Methods Through Non-Interface Nil Receiver
Arguments Will Not Panic

Example:

1| package main

2|

3| type Slice []bool

4|

5| func (s Slice) Length() int {

6| return len(s)

7}

8]

9| func (s Slice) Modify(i int, x bool) {

10| s[i] = x // panic if s is nil

11| }

12|

13| func (p *Slice) DoNothing() {

14| }

15|

16| func (p *Slice) Append(x bool) {

17 | *p = append(*p, x) // panic if p is nil

18] }

19|

20| func main() {
21| // The following selectors will not cause panics.
22| _ = ((Slice)(nil)).Length
23] _ = ((Slice)(nil)).Modify
24 | _ = ((*Slice)(nil)).DoNothing
25| _ = ((*Slice)(nil)).Append
26|
27 | // The following two lines will also not panic.
28| _ = ((Slice)(nil)).Length()
29| ((*Slice)(nil)).DoNothing()
30|
31| // The following two lines will panic. But panics
32| // will not be triggered at the time of invoking
33| // the methods. They will be triggered on
34| // dereferencing nil pointers in the method bodies.
35] /*
36| ((Slice)(nil)).Modify(®, true)
37| ((*Slice)(nil)) .Append(true)
38| */
39| }
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1| func (p *Slice) Append(x bool) {

2] if p == nil {

3] *p = []bool{x}
4| return

5] }

6| *p = append(*p, x)
7|}

*new(T) Results a Nil T Value if the Zero Value of Type T
Is Represented With the Predeclared nil Identifier

Example:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6| fmt.Println(*new(*int) == nil) // true
7| fmt.Println(*new([]int) == nil) // true
8| fmt.Println(*new(map[int]bool) == nil) // true
9] fmt.Println(*new(chan string) == nil) // true
10| fmt.Println(*new(func()) == nil) // true
11| fmt.Println(*new(interface{}) == nil) // true
12| }
ISummary

In Go, for simplicity and convenience, nil is designed as an identifier which can be used to represent the

zero values of some kinds of types. It is not a single value. It can represent many values with different

memory layouts.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Value Conversion, Assignment and Comparison
Rules in Go

This article will list all the value comparison, conversion and comparison rules in Go.

IValue Conversion Rules

In Go, if a value v can be explicitly converted to type T, the conversion can be represented as the form
(T)(v). For most cases, in particular T is a type name (an identifier), the form can be simplified to
T(Vv).

One fact we should know is, when it says a value x can be implicitly converted to a type T, then it means

x can also be explicitly converted to type T.

|1. the apparent conversion rule

If two types denote the identical type, then their values can be implicitly converted to either type of the
two.
For example,

e values of type byte and uint8 can be converted to each other.
e values of type rune and int32 can be converted to each other.

e values of type []byte and [Juint8 can be converted to each other.

Nothing more to explain about this rule, whether you think this case involves conversions or not.

|2. underlying type related conversion rules

Given a non-interface value x and a non-interface type T, assume the type of x is Tx,

e if Tx and T share the same underlying type (§14) (ignoring struct tags), then x can be explicitly

converted to T.

o if either Tx or T is a non-defined type (§14) and their underlying types are identical (considering

struct tags), then x can be implicitly converted to T.
e if Tx and T have different underlying types, but both Tx and T are non-defined pointer types and
their base types share the same underlying type (ignoring struct tags), then x can (and must) be

explicitly converted to T.
(Note, the two ignoring struct tags occurrences have taken effect since Go 1.8.)
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An example:

1| package main

2|

3| func main() {

4| // []int, IntSlice and MySlice share
5] // the same underlying type: []int
6| type IntSlice []int

7| type MySlice []int

8]

9| var s = []int{}

10| var is = IntSlice{}

11| var ms = MySlice{}

12| var x struct{n int "foo }

13| var y struct{n int “bar '}

14|

15| // The two implicit conversions both doesn't work.
16| /*

17 | is = ms // error

18| ms = is // error

19| */

20|

21| // Must use explicit conversions here.
22| is = IntSlice(ms)

23| ms = MySlice(is)

24| x = struct{n int “foo }(y)

25| y = struct{n int “bar }(x)

26|

27 | // Implicit conversions are okay here.
28| s = is

29| is = s

30| S = ms

31| ms = s

32| }

Pointer related conversion example:

1| package main

2|

3| func main() {

4] type MyInt int

5] type IntPtr *int

6| type MyIntPtr *MyInt

7]

8| var pi = new(int) // the type of pi is *int
9| // ip and pi have the same underlying type,
10| // and the type of pi is non-defined, so

11| // the implicit conversion works.

469



848. Value Conversion, Assignment and Comparison Rules in Go

12| var ip IntPtr = pi

13|

14 | // var _ *MyInt = pi // can't convert implicitly
15| var _ = (*MyInt)(pi) // ok, must explicitly

16|

17| // Values of *int can't be converted to MyIntPtr
18| // directly, but can indirectly.

19| /*

20| var _ MyIntPtr = pi // can't convert implicitly
21| var _ = MyIntPtr(pi) // can't convert explicitly
22| */

23| var _ MyIntPtr = (*MyInt)(pi) // ok

24| var _ = MyIntPtr((*MyInt)(pi)) // ok

25|

26 | // Values of IntPtr can't be converted to

27 | // MyIntPtr directly, but can indirectly.

28| /*

29| var _ MyIntPtr = ip // can't convert implicitly
30| var _ = MyIntPtr(ip) // can't convert explicitly
31| */

32| var _ MyIntPtr = (*MyInt)((*int)(ip)) // ok

33| var _ = MyIntPtr((*MyInt)((*int)(ip))) // ok

34| }

|3. channel specific conversion rule

Assume Tx is a bidirectional channel type, T is also a channel type (bidirectional or not), if Tx and T
have the identical element type, and either Tx or T is a non-defined type, then x can be implicitly
converted to T.

Example:

1| package main

2|

3| func main() {

4] type C chan string

5] type C1 chan<- string

6| type C2 <-chan string

7]

8| var ca C

9| var cb chan string

10|

11| cb = ca // ok, same underlying type
12| ca = cb // ok, same underlying type
13|

14 | // The 4 lines compile okay for this 3rd rule.
15| var _, _ chan<- string = ca, cb // ok
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16 | var _, _ <-chan string = ca, cb // ok
17| var _ C1 = cb // ok
18| var _ C2 = cb // ok
19|

20| // Values of C can't be converted

21| // to C1 and C2 directly.

22| /*

23| var _ = Cl(ca) // compile error

24| var _ = C2(ca) // compile error

25| */

26|

27| // Values of C can be converted

28| // to C1 and C2 indirectly.

29| var _ = C1((chan<- string)(ca)) // ok
30| var _ = C2((<-chan string)(ca)) // ok
31| var _ C1 = (chan<- string)(ca) // ok
32| var _ C2 = (<-chan string)(ca) // ok
33| }

|4. interface implementation related conversion rules

Given a value x and an interface type I, if the type (or the default type) of x is Tx and Tx implements
I, then x can be implicitly converted to type I.The conversion result is an interface value (of type I),

which boxes

e acopy of x, if Tx is a non-interface type;

¢ a copy of the dynamic value of x, if Tx is an interface type.

Given an interface value x with its dynamic type as T, x can be safely converted to type T through the
type assertion syntax X.(T).
Given an interface value x and an interface type I, if the dynamic type of x implements I, then x can be

safely converted to I through the type assertion syntax x.(I).

Please read interfaces in Go (823) for details and examples.

|5. untyped value conversion rule

An untyped value can be implicitly converted to type T, if the untyped value can represent as values of

type T.
Example:

1| package main

2|
3| func main() {

471



4
5]
6
7]
8]
9
10|
11|
12|
13|
14|
15| }

var _

var
var
var
var
var

var
var
var
var
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[]Jint = nil
map[string]int = nil
chan string = nil
func()() = nil

*bool = nil
interface{} = nil

int = 123.0

float64 = 123
int32 = 1.23e2
int8 = 1 + 01

|6. constants conversion rule

(This rule is some overlapped with the last one.)

Generally, converting a constant still yields a constant as result. (Except converting a constant string to

byte slice or rune slice described in the below 8th rules.)

Given a constant value x and a type T, if x is representable as a value of type T, then x can be explicitly

converted to T. In particular if x is an untyped value, then x can be implicitly converted to T.

Example:

1| package main

2|

3| func main() {

4]
5]
6
7]
8]
9
10|
11 |
12|
13|
14|
15|
16| }

const
const
const

const
const
const
const
const

const
const

I = 123
I1, I2 int8 = OX7F, -0x80
I3, I4 int8 = I, 0.0

F = 0.123456789

F32 float32 = F
F32b float32 = I
F64 float64 = F
F64b = float64(I3) // must be explicitly

C1, C2 complex64 = F, I
I5 = int(C2) // must be explicitly

7. non-constant number conversion rules

Non-constant floating-point and integer values can be explicitly converted to any floating-point and

integer types.
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Non-constant complex values can be explicitly converted to any complex types.
Note,

e Complex non-constant values can't be converted to floating-point and integer types.

o Floating-point and integer non-constant values can't be converted to complex types.

e Data overflow and rounding are allowed in non-constant number conversions. When converting a
floating-point non-constant number to an integer, the fraction is discarded (truncation towards zero).

An example:

1| package main

2|

3| import "fmt"

4]

5| func main() {

6 | var a, b = 1.6, -1.6 // both are float64
7] fmt.Println(int(a), int(b)) // 1 -1

8]

9| var i, j intl6 = Ox7FFF, -0x8000

10| fmt.Println(int8(i), uinti16(j)) // -1 32768
11|

12| var cl complex64 = 1 + 2i

13| var _ = complex128(cl)

14]

|8. string related conversion rules

If the type (or default type) of a value is an integer type, then the value can be explicitly converted to
string types.

A string value can be explicitly converted to a slice type whose underlying type is []byte (a.k.a.,
[Juint8), and vice versa.

A string value can be explicitly converted to a slice type whose underlying type is []rune (a.k.a.,

[1int32), and vice versa.

Please read strings in Go (§19) for details and examples.

|9. unsafe pointers related conversion rules

A pointer value of any type can be explicitly converted to a type whose underlying type is
unsafe.Pointer, and vice versa.
An uintptr value can be explicitly converted to a type whose underlying type is unsafe.Pointer, and

vice versa.

Please read type-unsafe pointers in Go (825) for details and examples.
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|Value Assignment Rules

Assignments can be viewed as implicit conversions. Implicit conversion rules are listed among all

conversion rules in the last section.

Besides these rules, the destination values in assignments must be addressable values, map index
expressions, or the blank identifier.

In an assignment, the source value is copied to the destination value. Precisely speaking, the direct part
(817) of the source value is copied to the destination value.

Note, parameter passing and result returning are both value assignments actually.

IValue Comparison Rules

Go specification states f:

In any comparison, the first operand must be assignable to the type of the second operand, or vice
versa.

So, the comparison rule is much like the assignment rule. In other words, two values are comparable if one
of them can be implicitly converted to the type of the other. Right? Almost, for there is an exception for
the above basic comparison rule.

If one of the two operands in a comparison is an interface value, and the other operand is a non-
interface value of an incomparable type (§14) (which should implement the former operand

interface type), then the comparison is invalid, even if the non-interface value can be implicitly
converted to the interface type.

Note, although values of slice/map/function types don't support comparisons, they can be compared with

untyped nil values (a.k.a., bare nil identifiers).

The above described basic rules don't cover all cases. What about if both of the two operands in a

comparison are untyped (constant) values? The additional rules are simple:

¢ untyped boolean values can be compared with untyped boolean values.
¢ untyped numeric values can be compared with untyped numeric values.

e untyped string values can be compared with untyped string values.
The results of comparing two untyped numeric values obey intuition.
Note, an untyped nil value can't be compared with another untyped nil value.

Any comparison results an untyped boolean value.
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The following example shows some incomparable types related comparisons.

1]
2|
3
4
5]
6
7]
8]
9]
10 |
11|
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31|

package main

// Some variables of incomparable types.

var
var
var
var
var

S

m
f
t
a

[]int
map[int]int
func() ()

struct {x []int}
[5]map[int]int

func main() {
// The following lines fail to compile.

}

/

*

S == s
m==m

f ==

T ==

a ==a

nil == nil

s == interface{}(nil)
m == interface{}(nil)

f == interface{}(nil)

// The following lines compile okay.

s == nil

m == nil

f == nil

123 == interface{}(nil)
true == interface{}(nil)
"abc" == interface{}(nil)

|How Are Two Values Compared?

Assume two values are comparable, and they have the same type T. (If they have different types, one of

them must be implicitly convertible to the type of the other. Here we don't consider the cases in which

both the two values are untyped.)

1.
2.

If T is a boolean type, then the two values are equal only if they are both true or both false.

If T is an integer type, then the two values are equal only if they have the same representation in

memory.

If T is a floating-point type, then the two values are equal only if any of the following conditions is

satisfied:
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o they are both +Inf.
o they are both -Inf.
o each of them is either -0.0 or +0.0.
o they are both not NaN and they have the same bytes representations in memory.
4. If T is a complex type, then the two values are equal only if their real parts (as floating-point values)
and imaginary parts (as floating-point values) are both equal.
5. If T is a pointer type (either safe or unsafe), then the two values are equal only if the memory
addresses stored in them are equal.
6. If T is a channel type, the two channel values are equal if they both reference the same underlying
internal channel structure value or they are both nil channels.

7. If T is a struct type, then each pair of the corresponding fields of the two struct values will be

compared (§16).
8. If T is an array type, then each pair of the corresponding elements of the two array values will be

compared (§18).
9. If T is an interface type, please read how two interface values are compared (§23).

10. If T is a string type, please read how two string values are compared (§19).

Please note, comparing two interfaces with the same incomparable dynamic type produces a panic. The

following is an example in which some panics will occur in comparisons.

1| package main

2|

3| func main() {

4| type T struct {

5] a interface{}

6| b int

7] }

8| var x interface{} = []int{}
9] var y = T{a: x}

10| var z = [3]T{{a: y}}

11|

12| // Each of the following line can produce a panic.
13| _ = X ==

14 _=y==y

15| _ =S 7=z

16| }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Syntax/Semantics Exceptions in Go

This article will list all kinds of syntax/semantics exceptions in Go. Some of these exceptions are syntactic
sugars to make programming convenient, some are caused built-in generic privileges, some exists for
history reasons, and some exists for other reasons in logic.

INested function calls

The basic rule:

If the number of the return results of a function call is not zero, and the return results can be used
as the whole arguments of another function call, then the former function call can be nested in the
latter function call, the former nested call can't mix up with other arguments of the latter nesting
call.

Sugar:

If a function call returns exactly one result, then the function call can be always be used as a
single-value argument in other function calls, the single-result function call can mix up with other
arguments of the nesting function calls.

Exception:

For the standard Go compiler (but not for gccgo), the basic rule doesn't apply to nesting calls to
built-in print and println functions. Calls to these functions can't nest multi-result function

calls as arguments.

(The above exception will be removed from Go SDK 1.15 8 )

Example:

1| package main

2|

3| import (
4] "fmt"
5] )

6]

7| func fo() float64 {return 1}

8| func f1() (float64, float64) {return 1, 2}
9| func f2(float64, float64) {}

10| func f3(float64, float64, float64) {}

11| func f4()(x, y []int) {return}

12| func f5()(x map[int]int, y int) {return}

13|

14| type I interface {m()(float64, float64)}

15| type T struct{}

16| func (T) m()(float64, float64) {return 1, 2}
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17|

18| func main() {

19| // These lines compile okay.
20| f2(fo(), 123)

21| f2(f1())

22| fmt.Println(f1())

23] _ = complex(f1())

24| _ = complex(T{}.m())

25| F2(I(7{}).m())

26 |

27| // These lines don't compile.
28| /*

29| f3(123, f1())

30| f3(f1(), 123)

31| println(f1())

32| */

33|

34| // The following 3 lines compiles okay
35| // only since Go SDK 1.13.
36| copy(f4())

37| delete(f5())

38| _ = complex(I(T{}).m())

39|

ISelect struct fields

The basic rule:
Pointer values have no fields.
Sugar:
We can select the fields of a struct value through pointers of the struct value.

Example:

1| package main

2|

3| type T struct {
4| X int

5| }

6]

7| func main() {
8| var t T

9| var p = &t
10|
11| p.X *= 2
12| // The above line is a sugar of the following line.
13| (*p).x *= 2
14| }
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IReceiver arguments of method calls

The basic rule:
The methods explicitly declared for type *T are not methods of type T for sure.
Sugar:
Although the methods explicitly defined on type *T are not methods of type T, addressable

values of type T can be used as the receiver arguments of calls to these methods.

Example:

1| package main

2|

3| type T struct {

4| X int

5| }

6]

7| func (pt *T) Double() {

8] pt.x *= 2

9| }

10|
11| func main() {
12| // T{3}.Double() // This line fails to compile.
13|
14 | var t = T{3}
15|
16 | t.Double() // t.x == 6 now
17 | // The above line is a sugar of the following line.
18| (&t).Double() // t.x == 12 now
19| }

ITake addresses of composite literal values

The basic rule:
Literal values are unaddressable and unaddressable values can't be taken addresses.
Sugar:

Although composite literal values are not addressable, they can be taken addresses explicitly.

Please read structs (§16) and containers (§18) for details.

|Selectors on defined one-Level pointers
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The basic rule:
Generally, selectors can't be used on values of defined (§14) pointer types.
Sugar:
If x is a value of a defined one-level pointer type, and selector (*x).f is a legal selector, then

the x.f is also a legal selector, it can be viewed as a shorthand of (*x).f.

Selectors can never be used on values of multi-level pointer types, no matter whether the multi-level
pointer types are defined or not.

Exception of the sugar:
The sugar is only valid if f denotes a struct field, it is not valid if f denotes a method.

Example:

1| package main

2]

3| type T struct {
4| X int

5[ }

6|

7] func (T) y() {
8] }

9]

10| type P *T
11| type PP **T // a multi-level pointer type

12|

13| func main() {

14 | var t T

15| var p P = &t

16 | var pt = &t // type of pt is *T
17 | var ppt = &pt // type of ppt is **T
18| var pp PP = ppt

19| — = pp

20|

21| _ = (*p).x // legal

22| _ = p.X // also legal (for x is a field)
23]

24 | _ = (*p).y // legal

25| // _ =p.y // illegal (for y is a method)
26|

27 | // Following ones are all illegal.
28| /*

29| _ = ppt.x

30| _ = ppt.y

31] — = pp.X

32| _ = pp.y

33| */
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34| }

IThe addressability of a container and its elements

The basic rule:

If a container is addressable, then its elements are also addressable.
Exception:

Elements of a map are always unaddressable, even if the map itself is addressable.
Sugar:

Elements of a slice are always addressable, even if the slice itself is not addressable.

Example:

1| package main

2|
3| func main() {
4| var m = map[string]int{"abc": 123}
5] _ = &m // okay
6]
7] // The exception:
8| // p = &n["abc"] // error: map elements are unaddesable
9]
10| // The sugar:
11| f := func() []int { // return results are unaddressable
12| return []int{0, 1, 2}
13| }
14 | // _ = &f() // error: f() is unaddressable
15| _ = &f()[2] // okay
16| }

IModify unaddressable values

The basic rule:

Unaddressable values can't be modified. In other words, unaddressable values shouldn't appear in

assignments as destination values.
Exception:

Although map element values are unaddressable, they can be modified and appear in assignments
as destination values. (But map elements can't be modified partially, they can only be overwritten
wholly, a.k.a., replaced.)

Example:

1| package main
2|
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3| func main() {

4| type T struct {

5] X int

6] }

7]

8| var mt = map[string]T{"abc": {123}}

9] // Map elements are unaddressable.

10| // _ = &mt["abc"] // error

11| // Partial modification is not allowed.
12| // mt["abc"].x = 456 // error

13| // It is ok to replace a map element as a whole.
14| mt["abc"] = T{x: 789}

15] }

IFunction Parameters

The basic rule:
Each parameter is a value of some type.
Exception:

The first parameters of the built-in make and new functions are types.

IFunction names in one package

The basic rule:
Names of declared functions can't be duplicated in one package.
Exception:

There can be multiple functions declared with names as init (and types as func()).

IFunction calls

The basic rule:
Functions whose names are not the blank identifier can be called in user code.
Exception:

init functions can't be called in user code.

|Functions being used as values

The basic rule:
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Declared functions can be used as function values.

Exception 1:
None of the built-in functions, which declared in the builtin and unsafe standard packages,
can be used as function values.

Exception 2:

init functions can not be used as function values.

Example:

1| package main

2|

3| import "fmt"

4| import "unsafe"

5]

6| func init() {}

7]

8| func main() {

9| // These ones are okay.
10| var _ = main

11| var _ = fmt.Println

12|

13| // These ones fail to compile.
14| var _ = panic

15| var _ = unsafe.Sizeof
16 | var _ = init

17]

IDiscard return values of function calls

The basic rule:
The return values of a function call can be discarded all together.
Exception:
The return values of calls to the built-in functions which are declared in the builtin and
unsafe standard packages, can't be discarded, if the called function has return results.
Exception in exception:

The return values of a call to the built-in copy and recover functions can be all discarded, even

if the two functions have return results.

|Declared variables

The basic rule:

Declared variables are always addressable.

483



849. Syntax/Semantics Exceptions in Go

Exception:

The predeclared nil # wvariable is not addressable.

So, nil is an immutable variable.

IArgument passing

The basic rule:

An argument can be passed to the corresponding function parameter only if the argument is
assignable to the corresponding function parameter type.

Sugar:
If the first slice argument of a copy and append function call is a byte slice, then the second

argument can be a string, whereas a string value is not assignable to the second parameter type
(also a byte slice). (For an append call, assume the second argument is passed with the form

arg....)

Example:

1| package main

2|
3| func main() {
4| var bs = []byte{1, 2, 3}
5] var s = "xyz"
6]
7| copy(bs, s)
8| // The above line is a sugar (and an optimization)
9] // for the following line.
10| copy(bs, []byte(s))
11|
12| bs = append(bs, s...)
13| // The above line is a sugar (and an optimization)
14 | // for the following line.
15| bs = append(bs, []byte(s)...)
16| }
IComparisons

The basic rule:
Map, slice and function types don't support comparison.
Exception:

Map, slice and function values can be compared to the predeclared untyped nil identifier.

Example:
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1| package main

2|

3| func main() {

4] var s1 = []int{1, 2, 3}

5] var s2 = []int{7, 8, 9}

6| //_ = sl1 == s2 // error: slice values can't be compared
7] _ =81 ==nil // ok

8| _ = s2 == nil // ok

9]

10| var ml = map[string]int{}

11| var m2 = ml

12| // _ =ml ==m2 // error: map values can't be compared
13| _ =ml == nil

14 | _ =m2 == nil

15|

16 | var f1 = func(){}

17| var f2 = f1

18| // _ = fl1l == f2 // error: functions can't be compared
19| _ = f1 == nil

20| _ = f2 == nil

21| }

IComparisons 2

The basic rule:
If a value is assignable to the type of another value, then the two values can be compared.
Exception:

The values of a non-interface incomparable type can't be compared to values of an interface type,
even if the non-interface incomparable type implements the interface type (so values of the non-
interface incomparable type are assignable to the interface type).

Please read comparison rules (848) for examples.

IBlank composite literals

The basic rule:

If the values of a type T can be represented with composite literals, then T{} is its zero value.

Exception:

For a map or a slice type T, T{} isn't its zero value. Its zero value is represented with nil.

Example:

1| package main
2|

485



849. Syntax/Semantics Exceptions in Go

3| import "fmt"

4|

5| func main() {

6| // new(T) returns the address of a zero value of type T.
7]

8| type TO struct {

9] X int

10| }

11| fmt.Println( TO{} == *new(TO) ) // true
12| type T1 [5]int

13| fmt.Println( T1{} == *new(T1) ) // true
14|

15| type T2 []int

16| fmt.Println( T2{} == nil ) // false

17| type T3 map[int]int

18| fmt.Println( T3{} == nil ) // false

19| }

IContainer element iterations

The basic rule:

Only container values can be ranged, the iterated values are container elements. The element
key/index will also be returned alongside of each iterated element.

Exception 1:

The iterated values are runes if the ranged containers are strings, instead of the byte elements of
strings.

Exception 2:

The element index (order) will not be returned alongside of each iterated element when iterating
channels.

Sugar:

Array pointers can also be ranged to iterate array elements, though pointers are not containers.

IMethods of built-in types

The basic rule:
Generally, built-in types have no methods.
Exception:

The built-in error type hasa Error() string method.

|Types of values
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The basic rule:
Each value has either a type or a default type.
Exception:

Untyped nil has neither a type nor a default type.

IConstant values

The basic rule:
Constant values never change. Constant can be assigned to variables.

Exception:
Predeclared iota is a built-in constant which is bound with 0, but its value is not constant. Its
value will start from © and increase one constant specification by constant specification in a
constant declaration, though the increments happen at compile time.

Exception 2:
iota can only be used within constant declarations. It can't be assigned to variables in variable

declarations.

Behavior change caused by discarding the optional
evaluation results of expressions

The basic rule:

Whether or not the optional evaluation result of an expression is present will not affect program
behavior.

Exception:

Missing the optional result value in a type assertion will make current goroutine panic if the type
assertion fails.

Example:

1| package main

2|

3| func main() {

4| var ok bool

5]

6 | var m = map[int]int{}

7| _, ok = m[123] // will not panic
8| _ = m[123] // will not panic
9]

10| var ¢ = make(chan int, 2)

11| c <- 123

12| close(c)
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13| _, 0k = <-c // will not panic

14| _ = <-c // will not panic

15|

16| var v interface{} = "abc"

17| _, ok = v.(int) // will not panic
18] _ = v.(int) // will panic!
19] }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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§50. Go Details 101

Go Details 101

Index:

e Code package related details:

o A package can be imported more than once in a source file.
o The comment // import "x.y.z/mypkg" following package mypkg is meaningful for

the standard Go compiler.

e Control flow related details:
o The default branch in switch _and select blocks can be put before all case branches,

after all case branches, or between case branches.

o The numeric constant case expressions in a switch block can't be duplicate, but boolean ones

can.
o The switch expressions in switch block are always evaluated to typed values.

o The default switch expression of a switch block is a typed value true of the predeclared

type bool.
o Sometimes, the open brace { of an explicit code block can be put on the next line.

o Some case branch blocks must be explicit.
o Nested deferred function calls can modify return result values of nesting functions.

o Some recover calls may be no-ops.

o Exit a program with a 0s.Exit function call and exit a goroutine with a runtime.Goexit

function call.
e Operator related details:
o The precedence of the increment operator ++ and the decrement - - is lower than the

dereference operator * and the address-taken operator &, which are lower than the property

selection operator . in selectors.

o The type deduction rule for the left untyped operand of a bit-shift operation depends on

whether or not the right operand is a constant.

e Pointer related details:

o Values of two pointer types with different underlving types can be converted to each other if

the base types of their underlying types share the same underlying type.

o Addresses of different zero-sized values may be equal, or not.

o The base type of a pointer type may be the pointer type itself.

o A detail about selector shorthands.
e (Container related details:

o Sometimes, nested composite literals can be simplified.

o In some scenarios, it is ok to use array pointers as arrays.

o Retrieving elements from nil maps will not panic. The result is a zero element value.

(¢]

Deleting an entry from a nil map will not panic. It is a no-op.

The result slice of an append function call may share some elements with the original slice,

(¢]
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or not.

The length of a subslice may be larger than the base slice the subslice derives from.
Deriving a subslice from a nil slice is ok if all the indexes used in the subslice expression are

zero. The result subslice is also a nil slice.

Ranging over a nil maps or a nil slices is ok, it is a no-op.

Range over a nil array pointer is ok if the second iteration variable is ignored or omitted.
The length and capacity of a slice can be modified separately.

The indexes in slice and array composite literals must be constants and non-negative.

The constant indexes or keys in slice/array/map composite literals can't be duplicate.

Elements of unaddressable arrays are also unaddressable, but elements of unaddressable slices
are always addressable.

It is ok to derive subslices from unaddressable slices, but not ok from unaddressable arrays. It

is ok to take addresses for elements of unaddressable slices, but not ok for elements of

unaddressable arrays.
Putting entries with NaN as keys to a map is like putting the entries in a black hole.
The capacity of the result slice of a conversion from a string to byte/rune slice may be larger

than the length of the result slice.
For aslice s, theloop for i = range s {...} isnot equivalent to the loop for i = 0;

i < len(s); i++ {...}.

e Function and method related details:

o

o

o

A multi-result function call can't mix with other expressions when the call is used as the

sources in an assignment or the arguments of another function call.
Some function calls are evaluated at compile time.

Each method corresponds to an implicit function.

e Interface related details:

o

o

o

Comparing two interface values with the same dynamic incomparable type produces a panic.

Type assertions can be used to convert a value of an interface type to another interface type,

even if the former interface type doesn't implement the latter one.

Whether or not the second optional result of a failed type assertion is present will affect the

behavior of the type assertion.

Two error values returned by two errors.New calls with the same argument are not equal.

e Channel related details:

o

o

Receive-only channels can't be closed.

Sending a value to a closed channel is viewed as a non-blocking operation, and this operation
causes a panic.

e More type and value related details:

o

o

o

o

Types can be declared within function bodies.

For the standard compiler, zero-sized fields in a struct may be treated as one-byvte-sized value.
NaN != NaN, Inf == Inf.

Non-exported method names and struct field names from different packages are viewed as
different names.

e Miscellanies:
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o Parentheses are required in several rare scenarios to make code compile okay.
o Stack overflow is unrecoverable.

o Some expression evaluation orders in Go are compiler implementation dependent.

¢ Standard packages related:
o The results of reflect.DeepEqual(x, y) and x == y may be different.

o The reflect.Value.Bytes() method returns a [ ]byte value, which element type, byte,

might be not the same as the Go slice value represented by the receiver parameter.
o We should use os.IsNotExist(err) instead of err == os.ErrNotExist to check

whether or not a file exists.
o The flag standard package treats boolean command flags differently than number and string

flags.
[Sp|Fp|P]rintf functions support positional arguments.

o

IA package can be imported more than once in a source file.

A Go source file can imports the same package multiple times, but the import names must be different.
These same-package imports reference the same package instance.

For example:

1| package main

2|

3| import "fmt"

4| import "io"

5| import inout "io"

6]

7| func main() {

8| fmt.Println(&inout.EOF == &i0.EOF) // true
9| }

The comment // import "x.y.z/mypkg" following
package mypkg is meaningful for the standard Go
compiler.

For example, when the source files importing this package are compiled by the standard Go compiler, the

import path of the following package must be "x.y.z/mypkg" .

1| package mypkg // import "x.y.z/mypkg"
2|

However, since Go SDK 1.11, the restriction doesn't apply for modules based and vendored packages # .
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The default branch in switch and select blocks can be
put before all case branches, after all case branches, or
between case branches.

For example:

1] switch n := rand.Intn(3); n {
2] case 0: fmt.Println("n == 0")
3] case 1: fmt.Println("n == 1")
4| default: fmt.Println("n == 2")
5] ¥

6]

7] switch n := rand.Intn(3); n {
8] default: fmt.Println("n == 2")
9] case 0: fmt.Println("n == 0")
10| case 1: fmt.Println("n == 1")
11] ¥

12|

13| switch n := rand.Intn(3); n {
14| case 0: fmt.Println("n == Q")
15| default: fmt.Println("n == 2")
16| case 1: fmt.Println("n == 1")
17] 3

18]

19| var x, y chan int

20|

21| select {

22| case <-X:

23| case y <- 1:

24| default:

25| }

26|

27 | select {

28| case <-X:

29| default:

30| case y <- 1:

31| }

32|

33| select {

34| default:

35| case <-X:

36 | case y <- 1:

37] }

The numeric constant case expressions in a switch block
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Ican't be duplicate, but boolean ones can.

For example, the following program fails to compile.

1| package main

2|

3| func main() {

4] switch 123 {

5] case 123:

6 | case 123: // error: duplicate case
7] }

8| }

But the following program compiles okay.

1| package main

2|

3| func main() {

4| switch false {
5] case false:

6| case false:

7] }

8| }

For reasons, please read this issue # . The behavior is compiler dependent. In fact, the standard Go
compiler also doesn't allow duplicate string case expressions, but gccgo allows.

The switch expressions in switch block are always
evaluated to typed values.

For example, the switch expression 123 in the following switch block is viewed as a value of int

instead of an untyped integer. So the following program fails to compile.

1| package main

2|

3| func main() {

4| switch 123 {

5] case int64(123): // error: mismatched types
6 | case uint32(789): // error: mismatched types
7] }

8| }

The default switch expression of a switch block is a typed
value true of the predeclared type bool.
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For example, the following program will print true.

1| package main

2|

3| import "fmt"

4]

5| func main() {

6| switch { // <=> switch true {

7| case true: fmt.Println("true")
8| case false: fmt.Println("false")
9] }

1e| }

Sometimes, the open brace { of an explicit code block can
be put on the next line.

For example:

1| package main

2|

3| func main() {

4| var 1 = 0

5| Outer:

6| for

7| { // okay on the next line
8| switch

9| { // okay on the next line
10| case i == 5:

11| break Outer

12| default:

13| SIEEH

14| }

15| }

16| }

What result will the following program print? true or false? The answer is true. Please read line

break rules in Go (§28) for reasons.

1| package main

2|

3| import "fmt"

4|

5| func False() bool {
6 | return false
71}

8]
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9| func main() {

10| switch False()

11] {

12| case true: fmt.Println("true")
13| case false: fmt.Println("false")
14| 3}

15| }

ISome case branch blocks must be explicit.

For example, the following program fails to compile.

1| func demo(n, m int) (r int) {

2] switch n {

3] case 123:

4| ifm>0 {
5] goto End
6| }

7| r++

8|

9| End: // syntax error: missing statement after label
10| default:

11| r =1

12| }

13| return

14| }

To make it compile okay, the case branch code block should be explicit:

1| func demo(n, m int) (r int) {

2| switch n {

3| case 123: {
4] ifm>0 {
5] goto End
6] }

7| r++

8]

9] End:

10| }

11| default:

12| r =1

13| }

14| return

15| }

Alternatively, we can let a semicolon follow the label End: :
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1| func demo(n, m int) (r int) {

2] switch n {

3] case 123:

4] ifm>0 {
5] goto End
6] }

7| r++

8]

9| End:;

10| default:

11| r =1

12| }

13| return

14| }

Please read line break rules in Go (§28) for reasons.

A nested deferred function calls can modify return result
values of its innermost nesting function.

For example:

1| package main

2|

3| import "fmt"

4|

5| func F() (r int) {

6| defer func() {

7| r = 789

8] 10)

9]

10| return 123 // <=> r = 123; return
11| }

12|

13| func main() {

14 | fmt.Println(F()) // 789
15] }

ISome recover calls may be no-ops.

We should call the recover function at the right places. Please read the right places to call the built-in

recover function (§31) for details.

|Exit a program with a os.Exit function call and exit a
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I goroutine with a runtime.Goexit function call.

We can exit a program from any function by calling the os.Exit function. An os.Exit function call

takes an int code as argument and returns the code to operating system.

An example:

1| // exit-example.go
2| package main

3]

4| import "os"

5| import "time"

6]
7| func main() {
8] go func() {
9| time.Sleep(time.Second)
10| 0s.Exit(1)
11| 10
12| select{}
13| }
Run it:

$ go run a.go
exit status 1
$ echo $?

1

We can make a goroutine exit by calling the runtime.Goexit function. The runtime.Goexit function

has no parameters.
In the following example, the Java word will not be printed.

1| package main

2|

3| import "fmt"

4| import "runtime"

5]

6| func main() {

7| c := make(chan int)

8| go func() {

9| defer func() {c <- 1}()
10| defer fmt.Println("Go")
11| func() {

12| defer fmt.Println("C")
13| runtime.Goexit ()

14| 10)
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15| fmt.Println("Java")
16| 10)

17| <-C

18| }

The precedence of the increment operator ++ and the
decrement - - is lower than the dereference operator * and
the address-taken operator &, which are lower than the
property selection operator . in selectors.

For example:

1| package main
2|
3| import "fmt"

4|

5| type T struct {

6| X int

7] y *int

8| }

9]

10| func main() {

11| var t T

12| p := &t.x // <=>p := &(t.x)
13| fmt.Printf("%T\n", p) // *int
14|

15| *pt+ // <=> (*p)++

16| *p-- // <=> (*p)--

17|

18| t.y =p

19| a := *t.y // <=> *(t.y)

20| fmt.Printf("%T\n", a) // int
21| }

The type deduction rule for the left untyped operand of a
bit-shift operation depends on whether or not the right
operand is a constant.

1| package main
2|
3| func main() {

4] }
5]
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6] const M = 2

7| // Compiles okay. 1.0 is deduced as an int value.

8| var _ = 1.0 << M

9]

10| var N = 2

11| // Fails to compile. 1.0 is deduced as a float64 value.
12| var _ = 1.0 << N

Please read this article (§8) for reasons.

Values of two pointer types with different underlying types

can be converted to each other if the base types of their
underlying types share the same underlying type.

An example:

1| package main

2|

3| type MyInt int64
4| type Ta *int64
5| type Tb *MyInt

6]

7| func main() {

8| var a Ta

9| var b Tb

10|

11| // Direct conversion is not allowed.
12| //a = Ta(b) // error

13|

14 | // But indirect conversion is possible.
15| y = (*MyInt)(b)

16 | X = (*int64)(y)

17 | a = x // <=> the next line
18| a = (*inté4)(y) // <=> the next line
19| a = (*int64) ((*MyInt)(b))

20| _=a

21| }

Addresses of different zero-sized values may be equal, or
not.

Whether or not the addresses of two zero-sized values are equal is compiler and compiler version

dependent.
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1| package main

2|

3| import "fmt"

4]

5| func main() {

6| a := struct{}{}

7| b := struct{}{}

8| x = struct{}{}

9| y := struct{}{}

10| m := [10]struct{}{}

11| n := [10]struct{}{}

12| 0 := [10]struct{}{}

13| p := [10]struct{}{}

14|

15| fmt.Println(&x, &y, &0, &p)

16|

17| // For the standard Go compiler (1.13),
18| // X, y, 0 and p escape to heap, but
19| // a, b, m and n are allocated on stack.
20|

21| fmt.Println(&a == &b) // false

22| fmt.Println(&x == &y) // true

23| fmt.Println(&a == &x) // false

24|

25| fmt.Println(&m == &n) // false

26| fmt.Println(&o == &p) // true

27| fmt.Println(&n == &p) // false

28| }

The outputs indicated in the above code are for the standard Go compiler 1.13.

The base type of a pointer type may be the pointer type
itself.

An example:

1| package main

2|
3| func main() {
4| type P *P
5] var p P
6] p = &p
7| p = **************p
8| }
Similarly,
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¢ the element type of a slice type can be the slice type itself,

¢ the element type of a map type can be the map type itself,

¢ the element type of a channel type can be the channel type itself,

¢ and the argument and result types of a function type can be the function type itself.

1| package main

2|

3| func main() {

4| type S []S

5] type M map[string]M

6| type C chan C

7| type F func(F) F

8]

9] s := S{0:nil}

10| s[O0] = s

11| m := M{"Go": nil}

12| m["Go"] = m

13| c := make(C, 3)

14| g == €Cf © & ) €© S0 €
15| var f F

16 | f = func(F)F {return f}
17|

18] _ = s[e][e][e][e][e][e][0][6]
19| _ = m["Go"]["Go"]["Go"]["Go"]
20| <-<-<-C

21| FR(R(F(F))))

22| }

IA detail about selector shorthands.

For a pointer value, which type is either defined or not, if the base type of its (pointer) type is a struct type,
then we can select the fields of the struct value referenced by the pointer value through the pointer value.
However, if the type of the pointer value is a defined type, then we can't select the methods of the struct

value referenced by the pointer value through the pointer value.

1| package main

2|

3| type T struct {

4| X int

5| }

6| func (T) m(){} // T has one method.
7]

8| type P *T // a defined one-level pointer type.
9| type PP *P // a defined two-level pointer type.
10|

11| func main() {
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12| var t T

13| var tp = &t

14| var tpp = &tp

15| var p P = tp

16| var pp PP = &p

17| tp.x = 12 // okay

18| p.x = 34 // okay

19| pp.x = 56 // error: type PP has no field or method x
20| tpp.x = 78 // error: type **T has no field or method x
21|

22| tp.m() // okay. Type *T also has a "m" method.

23| p.m() // error: type P has no field or method m

24| pp.m() // error: type PP has no field or method m
25| tpp.m() // error: type **T has no field or method m
26| }

ISometimes, nested composite literals can be simplified.

Please read nested composite literals can be simplified (§18) for details.

IIn some scenarios, it is ok to use array pointers as arrays.

Please read use array pointers as arrays (§18) for details.

Retrieving elements from nil maps will not panic. The result
is a zero element value.

For example, the Fool and the Foo2 functions are equivalent, but the function Foo2 is much tidier than

the function Foo1l.

1] func Fool(m map[string]int) int {

2] if m !'= nil {

3| return m["foo"]

4| }

5] return 0

6| }

7|

8| func Foo2(m map[string]int) int {
9| return m["foo"]

10| }

Deleting an entry from a nil map will not panic. It is a no-
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|op.

For example, the following program will not panic.

1| package main

2|

3| func main() {

4] var m map[string]int // nil
5] delete(m, "foo")

6] }

The result slice of an append function call may share some
elements with the original slice, or not.

Please read append and delete container elements (§18) for details.

The length of a subslice may be larger than the base slice
the subslice derives from.

For example,

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | s := make([]int, 3, 9)

7| fmt.Println(len(s)) // 3
8| s2 := s[2:7]

9] fmt.Println(len(s2)) // 5
10| }

Please read derive slices from arrays and slices (§18) for details.

Deriving a subslice from a nil slice is ok if all the indexes
used in the subslice expression are zero. The result subslice
is also a nil slice.

For example, the following program will not panic at run time.

1| package main

503



850. Go Details 101

2|

3| import "fmt"

4]

5| func main() {

6| var x []int // nil

7] a = x[:]

8| b := x[0:0]

9] c = x[:0:0]

10| // Print three "true".
11| fmt.Println(a == nil, b == nil, ¢ == nil)
12]

Please read derive slices from arrays and slices (§18) for details.

IRanging over a nil maps or a nil slices is ok, it is a no-op.

For example, the following program compiles okay.

1| package main

2|

3| func main() {

4| var s []int // nil

5] for range s {

6] }

7]

8| var m map[string]int // nil
9| for range m {

10| }

11| 3}

Range over a nil array pointer is ok if the second iteration
variable is ignored or omitted.

For example, the following program will print 01234.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | var a *[5]int // nil
7| for i, _ := range a {
8| fmt.Print(1i)

9] }

10| }
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The length and capacity of a slice can be modified
separately.

We can modify the length and capacity of a slice separately through the reflection way. Please read
modify the length and capacity properties of a slice individually (§18) for details.

The indexes in slice and array composite literals must be
constants and non-negative.

For example, the following code fails to compile.

1| var k = 1

2| // error: index must be non-negative integer constant
3| var x = [2]int{k: 1}

4| // error: index must be non-negative integer constant
5| var y = []int{k: 1}

Note, the keys in map composite literals are not required to be constants.

The constant indexes or keys in slice/array/map composite
literals can't be duplicate.

For example, the following code fails to compile.

1| // error: duplicate index in array literal: 1

2| var a = []bool{0: false, 1: true, 1: true}

3| // error: duplicate index in array literal: 0

4| var b = [...]string{0: "foo", 1: "bar", 0: "foo"}
5| // error: duplicate key "foo" in map literal

6| var ¢ = map[string]int{"foo": 1, "foo": 2}

This feature can be used to assert some conditions at compile time (§52).

Elements of unaddressable arrays are also unaddressable,
but elements of unaddressable slices are always
addressable.

The reason is the elements of an array value and the array will be stored in the same memory block when

the array is stored in memory. But the situation is different for slices (§51).
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An example:

1| package main

2|
3| func main() {
4| // Container composite literals are unaddressable.
5]
6| // It is ok to take slice literal element addresses.
7] _ = &[]int{1}[0] // ok
8| // Cannot take addresses of array literal elements.
9| _ = &[5]int{}[0] // error
10|
11| // It is ok to modify slice literal elements.
12| []int{1,2,3}[1] = 9 // ok
13| // Cannot modify array literal elements.
14 | [3]int{1,2,3}[1] = 9 // error
15] }

It is ok to derive subslices from unaddressable slices, but
not ok from unaddressable arrays.

The reason is the same as the last detail.
An example:

1| package main

2|

3| func main() {

4| // Map elements are unaddressable in Go.

5]

6| // The following lines compile okay. Deriving

7| // slices from unaddressable slices is allowed.
8] _ = []int{6, 7, 8, 9}[1:3]

9] var ms = map[string][]int{"abc": {0, 1, 2, 3}}
10| _ = ms["abc"][1:3]

11|

12| // The following lines fail to compile. Deriving
13| // slices from unaddressable arrays is not allowed.
14| /*

15| _=1[...]int{6, 7, 8, 9}[1:3] // error

16 | var ma = map[string][4]int{"abc": {0, 1, 2, 3}}
17 | _ = ma["abc"][1:3] // error

18] */

19| }

|Putting entries with NaN as keys to a map is like putting the
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Ientries in a black hole.

This reason is NaN != NaN, which is another detail will be described below. Before Go 1.12, the

elements with NaN as keys can only be found out in a for-range loop, Since Go 1.12, the elements with

NaN as keys can also be printed out by fmt.Print alike functions.

1| package main
2|

3| import "fmt"
4| import "math"

5]

6| func main() {

7] var a = math.NaN()

8] fmt.Println(a) // NaN

9]

10| var m = map[float64]int{}

11| m[a] = 123

12| v, present := m[a]

13| fmt.Println(v, present) // 0@ false
14| m[a] = 789

15| v, present = m[a]

16 | fmt.Println(v, present) // 0 false
17|

18| fmt.Println(m) // map[NaN:789 NaN:123]
19| delete(m, a) // no-op

20| fmt.Println(m) // map[NaN:789 NaN:123]
21|

22| for k, v := range m {

23| fmt.Println(k, v)

24| 3

25| // the above loop outputs:

26| // NaN 123

27| // NaN 789

28] }

Please note, before Go 1.12, the two fmt.Println(m) calls both printed map[NaN:<nil> NaN:

<nil>].

The capacity of the result slice of a conversion from a string
to byte/rune slice may be larger than the length of the result
slice.

We should not assume the length and the capacity of the result slice are always equal.
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In the following example, if the last fmt.Println line is removed, the outputs of the two lines before it

print the same value 32, otherwise, one print 32 and one print 8 (for the standard Go compiler 1.13).

1| package main

2|

3| import "fmt"

4]

5| func main() {

6 | s = "a"

7] X = []byte(s) // len(s) == 1
8| fmt.Println(cap([]byte(s))) // 32

9] fmt.Println(cap(x)) // 8

10| fmt.Println(x)

1]

Some buggy code will be written f  if we assume the length and the capacity of the result slice are always

equal.

For aslice s, the loop for i = range s {...} isnot
equivalent to the loop for i = 0; i < len(s); i++

{...}.

The respective final values of the iteration variable i may be different for the two loops.

1| package main

2|

3| import "fmt"

4|

5] var i int

6]

7] func fa(s []int, n int) int {

8| i=n

9] for 1 = 0; i < len(s); i++ {}
10| return i

11| }

12|

13| func fb(s []int, n int) int {

14 | i=n

15| for 1 = range s {}

16 | return i

17| }

18|

19| func main() {

20| s := []int{2, 3, 5, 7, 11, 13}
21| fmt.Println(fa(s, -1), fb(s, -1)) // 6 5
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22| s = nil
23| fmt.Println(fa(s, -1), fb(s, -1)) // 0 -1
24| }

A multi-result function call can't mix with other expressions
when the call is used as the sources in an assignment or the
arguments of another function call.

Please read use function calls as expressions (§20) for details.

ISome function calls are evaluated at compile time.

Please read some function calls are evaluated at compile time (§20) for details.

IEach method corresponds to an implicit function.

Please read each Method Corresponds to an Implicit Function (§22) for details.

Comparing two interface values with the same dynamic
incomparable type produces a panic.

For example:

1| package main
2|
3| func main() {

4| var x interface{} = []int{}
5] _ = X == x // panic
6| }

Type assertions can be used to convert a value of an
interface type to another interface type, even if the former
interface type doesn't implement the latter one.

For example:
1| package main

2|
3| type Foo interface {
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foo()

7| type T int
8| func (T) foo() {}

9]

10| func main() {

11|
12|
13|
14|
15|
16 |
17
18|
19|
20| }

Whether or not the second optional result of a type
assertion is present will affect the behavior of the type

var x interface{} = T(123)

// The following two lines fails to compile, for the
// same reason: interface{} does not implement Foo.
/%

var _ Foo = X // error

var _ = Foo(x) // error

*/

// But the following line compiles and runs okay.
var _ = x.(Foo) // okay

assertion.

If the second optional result presents in a failed type assertion, the type assertion will not produce a panic.

Otherwise, a panic will occur. For example:

1| package main

2|

3| func main() {

4]
5]
6
7]
8]
9]
10|
11 }

Two error values returned by two errors.New calls with

var x interface{} = true

// Assertion fails, but doesn't cause a panic.
_, _ = X.(int)

// Assertion fails, which causes a panic.
_ = X.(int)

the same argument are not equal.

The reason is the errors.New function will copy the input string argument and use a pointer to the

copied string as the dynamic value of the returned error value. Two different calls will produce two

different pointers.
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1| package main

2|

3| import "fmt"

4| import "errors"

5]

6| func main() {

7] notfound := "not found"

8| a, b := errors.New(notfound), errors.New(notfound)
9| fmt.Println(a == b) // false

10| }

IReceive-only channels can't be closed.

For example, the following code fails to compile.

1| package main

2|

3| func main() {

4| }

5]

6| func foo(c <-chan int) {

7| close(c) // error: cannot close receive-only channel

8] }

Sending a value to a closed channel is viewed as a non-
blocking operation, and this operation causes a panic.

For example, in the following program, when the second case branch gets selected, it will produce a

panic at run time.

1| package main

2|

3| func main() {

4| var ¢ = make(chan bool)

5] close(c)

6 | select {

7| case <-C:

8| case ¢ <- true: // panic: send on closed channel
9] default:

10| }

11| }

|Types can be declared within function bodies.
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Types can be declared in function bodies. For example,

1| package main

2|

3| func main() {

4| type T struct{}
5] type S = []int
6] }

For the standard compiler, zero-sized fields in a struct may
be treated as one-byte-sized value.

Please read this FAQ item (851) for details.

|NaN I= NaN, Inf == Inf.

This follows IEEE-754 standard and is consistent with most other programming languages:

1| package main
2|

3| import "fmt"
4| import "math"

5]

6| func main() {

7| var a = math.Sqrt(-1.0)

8| fmt.Println(a) // NaN
9| fmt.Println(a == a) // false
10|

11| var x = 0.0

12| var y = 1.0 / X

13| var z = 2.0 * y

14 | fmt.Println(y, z, y == z) // +Inf +Inf true
15| }

Non-exported method names and struct field names from
different packages are viewed as different names.

For example, if the following types are declared in package foo:

1| package foo

2|
3| type I = interface {
4| about() string

512



850. Go Details 101

5| }

6]

7| type S struct {

8] a string

9] 3

10|

11| func (s S) about() string {
12| return s.a

13| }

and the following types are declared in package bar :

1| package bar

2|
3| type I = interface {
4| about() string
5] }
6]
7| type S struct {
8] a string
9| }
10|
11| func (s S) about() string {
12| return s.a
13| }
then,

o values of the two respective types S from the two packages can't be converted to each other.
¢ the two respective interface types S from the two packages denote two distinct method sets.
e type f00.S doesn't implement the interface type bar.I.

e type bar.S doesn't implement the interface type foo.I.

1| package main

2|

3| import "é&.2/foo"
4| import "é&2/bar"

5]

6| func main() {

7| var x foo.S

8| var y bar.S

9| var _ foo.I = x
10| var _ bar.I =y
11|

12| // The following lines fail to compile.
13| x = f00.S(y)

14 | y = bar.S(x)
15| var _ foo.I =y
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var _ bar.I = x

code compile okay.

For example:

1| package main

2]

3| type T struct{x, y int}

4]

5| func main() {

6
7]
8
9]
10|
11|
12|
13|
14|
15|
16|
17
18]
19|
201 }

// Each of the following three lines makes code
// fail to compile. Some "{}"s confuse compilers.
/%

if T{} == T{123, 789} {}

if T{} == (T{123, 789}) {}

if (T{}) == T{123, 789} {}

var _ = func()(nil) // nil is viewed as a type
*/

// We must add parentheses like the following

// two lines to make code compile okay.

if (T{} == T{123, 789}) {}

if (T{}) == (T7{123, 789}) {}

var _ = (func())(nil) // nil is viewed as a value

IStack overflow is not panic.

For the current main stream Go compilers, stack overflows are fatal errors. Once a stack overflow

happens, the whole program will crash without recovery ways.

1| package main

2|

3| func f() {

4]

5[}
6

()

7| func main() {

8]
9]
10|
11|

defer func() {
recover() // helpless to avoid program crashing

+0)
()
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12| }

the running result:

runtime: goroutine stack exceeds 1000000000-byte limit
fatal error: stack overflow

runtime stack:

About more crash cases, please read this wiki article # .

Some expression evaluation orders in Go are compiler
implementation dependent.

Please read expression evaluation orders in Go (§33) for details.

The results of reflect.DeepEqual(x, y) and x ==y
may be different.

The function call reflect.DeepEqual(x, y) will always return false if the types of its two
arguments are different, whereas x == y may return true even if the types of the two operands are

different.

The second difference is a DeepEqual call with two pointer argument values of the same type returns

whether or not the two respective values referenced by the two pointers are deep equal. So the call might
return true even if the two pointers are not equal.

The third difference is the result of a DeepEqual call may be not correct if the compared two arguments

are in the same cyclic reference chain.

The fourth difference is, the function call reflect.DeepEqual(x, y) is not expected to panic
generally, whereas x == y will panic if the two operands are both interface values and their dynamic

types are identical and incomparable.

An example showing these differences:

1| package main

2|

3| import "fmt"

4| import "reflect"

5]
6| func main() {
7| type Book struct {page int}
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8| x := struct {page int}{123}

9] y := Book{123}

10| fmt.Println(reflect.DeepEqual(x, y)) // false
11| fmt.Println(x == vy) // true
12|

13| z := Book{123}

14| fmt.Println(reflect.DeepEqual(&z, &y)) // true
15| fmt.Println(&z == &y) // false
16|

17| type T struct{p *T}

18] t = &T{&T{nil}}

19| t.p.p = t // form a cyclic reference chain.

20| fmt.Println(reflect.DeepEqual(t, t.p)) // true
21| fmt.Println(t == t.p) // false
22|

23| var f1, f2 func() = nil, func(){}

24| fmt.Println(reflect.DeepEqual(f1, f1)) // true
25| fmt.Println(reflect.DeepEqual(f2, f2)) // false
26|

27 | var a, b interface{} = []int{1, 2}, []int{1, 2}
28| fmt.Println(reflect.DeepEqual(a, b)) // true
29| fmt.Println(a == b) // panic
30| }

Note, if the two arguments of a DeepEqual call are both function values, then the call returns true only

if the two function arguments are both nil and their types are identical.

So, to compare values of a type by using reflect.DeepEqual, a programmer needs to understand the

structure definition of the type well.

The reflect.Value.Bytes() method returns a [ Jbyte
value, which element type, byte, might be not the same as
the Go slice value represented by the receiver parameter.

Assume the underlying type of a defined type MyByte is the predeclared type byte, we know that Go
type system forbids the conversions between []MyByte and []byte values. However, it looks the
implementation of the method Bytes of the reflect.Value type partially violates this restriction

unintentionally, by allowing converting a [ JMyByte value to []byte.

Example:

1| package main
2|

3| import "bytes"
4| import "fmt"
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5| import "reflect"

6]

7| type MyByte byte

8]

9| func main() {

10| var mybs = []MyByte{'a', 'b', 'c'}

11| var bs []byte

12|

13| // bs = []byte(mybs) // this line fails to compile
14 |

15| v := reflect.ValueOf(mybs)

16 | bs = v.Bytes() // okay. Violating Go type system.
17 | fmt.Println(bytes.HasPrefix(bs, []byte{'a', 'b'})) // true
18|

19| bs[1], bs[2] = 'r', 't'

20| fmt.Printf("%s \n", mybs) // art

21| }

But it looks the violation is not harmful. On the contrary, it makes some benefits. For example, with this
violation, we can use the functions in the bytes standard package for the [ ]MyByte values.

Note, the reflect.Value.Bytes() method might be removed later f .

We should use os.IsNotExist(err) instead of err ==
0s.ErrNotExist to check whether or not a file exists.

Using err == o0s.ErrNotExist may miss errors.

1| package main

2|

3| import (

4| "fmt"

5] "os"

6| )

7|

8| func main() {

9] _, err := os.Stat("a-nonexistent-file.abcxyz")
10| fmt.Println(os.IsNotExist(err)) // true
11| fmt.Println(err == os.ErrNotExist) // false
12| }

For projects only support Go 1.13+, errors.Is(err, os.ErrNotExist) is more recommended to be

used to check whether or not a file exists.

1| package main
2|
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3| import (

4| "errors"

5| "fmt"

6| "os"

71)

8]

9| func main() {

10| _, err := os.Stat("a-nonexistent-file.abcxyz")

11| fmt.Println(errors.Is(err, os.ErrNotExist)) // true
12]

The flag standard package treats boolean command flags
differently than integer and string flags.

There are three forms to pass flag options.

1. -flag, for boolean flags only.
2. -flag=x, for any flag.

3. -flag x, for non-boolean flags only.

And please note that, a boolean flag with the first form is viewed as the last flag, all items following it are

viewed as arguments.

1| package main
2|

3| import "fmt"
4| import "flag"

5]

6| var b = flag.Bool("b", true, "a boolean flag")

7| var i = flag.Int("i", 123, "an integer flag")

8| var s = flag.String("s", "hi", "a string flag")

9]

10| func main() {

11| flag.Parse()

12| fmt.Print("b=", *b, ", i=", *i, ", s=", *s, "\n")
13| fmt.Println("arguments:", flag.Args())

14| }

If we run the following program with the below shown flags and arguments
./exampleProgram -b false -i 789 -s bye arg@ argil

the output will be

b=true, i1=123, s=hi
arguments: [false -i 789 -s bye arg0 argl]
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This output is obviously not what we expect.
We should pass the flags and arguments like
./exampleProgram -b=false -i 789 -s bye arg0 argl
or
./exampleProgram -i 789 -s bye -b arg® argl
to get the output we expect:

b=true, i=789, s=bye
arguments: [arg@ argil]

I [Sp|Fp|P]rintf functions support positional arguments.

The following program will print coco.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| // The next line prints: coco

7] fmt.Printf("%[2]v%[1]v%[2]v%[1]Vv", "o", "c")
8| }

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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Go FAQ 101

(This is an unofficial Go FAQ. The official one is here @ __.)

Index:

e compiler and runtime

o

o

o

o

o

What does the compile error message non-name *** on left side of := mean?

What does the compile error message unexpected newline, expecting { after if

clause mean?

What does the compiler error message declared and not used mean?

Does Go runtime maintain the iteration orders for maps?

Will Go compilers do padding to ensure field alignments for struct types?

Why does the final field of a zero-sized type in a struct contribute to the size of the struct
sometimes?

Is new(T) asugarof var t T; (&t)?

What does the runtime error message all goroutines are asleep - deadlock mean?

Are 64-bit integer values guaranteed to be 64-bit aligned so that they can be accessed
atomically?

Are assignments of values atomic operations?

Is every zero value composed of a sequence of zero bytes in memory?

Does the standard Go compiler support function inline?

Can I use finalizers as object destructors?

e standard packages

o

o

o

How to get the number of days of any month by using as few code lines as possible?
What is the difference between the function call time.Sleep(d) and the channel receive

operation <-time.After(d)?

Calls of the TrimLeft and TrimRight functions in the strings and bytes standard

packages often return unexpected results, are there bugs in these function implementations?

What are the differences between the fmt.Print and fmt.Println functions?

Is there any difference between the 1og.Print _and log.Println_functions?

Are fmt.Print, fmt.Println and fmt.Printf functions synchronized?

What are the differences between the built-in print/println functions and the

corresponding print functions in the fmt and log standard packages?

What is the difference between the random numbers produced by the math/rand standard

package and the crypto/rand standard package?

Why isn't there a math.Round function?

e type system

o

o

Which types don't support comparisons?

Why aren't two nil values equal sometimes?
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o Why don't type []1T1 and []T2 share the same underlying type even if the two different types
T1 and T2 share the same underlying type?

o Which values can and which values can't be taken addresses?

o Why are map elements not addressable?

o Why elements of a non-nil slice are always addressable, even if the slice is unaddressable?

o For any non-pointer non-interface defined type T, why is the method set of *T _always a super

set of the method set of T, but not vice versa?

o Which types can we implement methods for?

o How to declare immutable values in Go?
o Why isn't there a built-in set _container type?

o What is byte? What is rune? How to convert [ ]byte and []rune values to strings?

o How to manipulate pointer values atomically?
e others

o

What does iota mean?

o

Why isn't there a built-in closed function to check whether or not a channel is closed?

Is it safe for a function to return pointers of local variables?
What does the word gopher mean in Go community?

o

o

What does the compile error message non-name *** on
left side of := mean?

Up to now (Go 1.13), there is a mandatory rule # for short variable declarations:

All items at the left side of := must be pure identifiers # and at least one of them must be a new

variable name.

This means container elements (x[1] ), struct fields (x. f), pointer dereferences ( *p) and qualified

identifiers (aPackage.Value) can't appear at the left side of :=.

Currently, there is an open issue ! (which was merged with a more related one # ) for this problem. It

looks Go authors want to leave this problem unresolved until Go 2.0.

What does the compile error message unexpected
newline, expecting { ... mean?

In Go, we can't break a code line at an arbitrary position. Please read line break rules in Go (§28) for

details. By the rules, generally, it is not okay to break code lines just before the open brackets.

For example, the following code

1] if true
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2| {

3| }

4|

5| for i := 0; i < 10; i++
6| {

7}

8]

9| var _ = []int
10| {

11| 1, 2, 3
12| }

will be interpreted as

1| if true;

2| {

3| }

4|

5| for 1 := 0; i < 10; i++;
6| {

7|}

8|

9| var _ = []int;
10| {

11| 1, 2, 3,
12| }

Go compilers will report an error for each open bracket {. To avoid these errors, we should rewrite the

above code as the following.

1] if true {

2| }

3]

4| for 1 := 0; 1 < 10; i++ {
5| }

6|

7] var _ =
8| 1, 2,
9| }

What does the compiler error message declared and not
used mean?

For the standard Go compiler, each variable declared in local code blocks must be used as a r-value (right-

hand-side value) for at least once.
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So the following code fails to compile.

1| func f(x bool) {

2| var y = 1 // y declared but not used (as r-values)
3] if x {

4| y = 2 // here y is used as a left-hand-side value
5] }

6| }

IDoes Go runtime maintain the iteration orders for maps?

No. Go 1 specification #  says the iteration order over a map is not specified and is not guaranteed to be
the same from one iteration to the next. For the standard Go compiler, the map iteration orders are some
randomized. If you require a stable iteration order for a map you must maintain the order by yourself.
Please read Go maps in action ! for more information.

However, please note, since Go 1.12, the entry order in the print result of the print functions in standard
packages are always ordered.

Will Go compilers do padding to ensure field alignments for
struct types?

At least for the standard Go compiler and gccgo, the answer is yes. How many bytes will be padded is OS
and compiler dependent. Please read memory layouts (844) for details.

Go Compilers will not rearrange struct fields to minimize struct value sizes. Doing this may cause some
unexpected results. However, programmers can minimize padding by reordering the fields manually.

Why does the final field of a zero-sized type in a struct
contribute to the size of the struct sometimes?

In the current standard Go runtime implementation, if a memory block is referenced by at least one active

pointer, then the memory block will not be viewed as garbage and will not be collected for sure.

All the fields of an addressable struct value can be taken addresses. If the size of the final field in a non-
zero-sized struct value is zero, then taking the address of the final field in the struct value will return an
address which is beyond the allocated memory block for the struct value. The returned address may point
to another allocated memory block which closely follows the one allocated for the non-zero-sized struct
value. As long as the returned address is stored in an active pointer value, the other allocated memory

block will not get garbage collected, which may cause memory leaking.

To avoid the problems, the standard Go compiler will ensure that taking the address of the final field in a
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non-zero-sized struct will never return an address which is beyond the allocated memory block for the
struct. The standard Go compiler implements this by padding some bytes after the final zero-sized field
when needed.

If the types of all fields in a struct type are zero-sized (so the struct is also a zero-sized type), then there is
no need to pad bytes in the struct, for the standard Go compiler treats zero-sized memory blocks specially.

An example:

1| package main

2|

3| import (

4| "unsafe"

5] "Fmt"

6| )

7|

8| func main() {

9| type T1 struct {

10| a struct{}

11| X int64

12| }

13| fmt.Println(unsafe.Sizeof (T1{})) // 8
14 |

15| type T2 struct {

16| X int64

17 | a struct{}

18| }

19| fmt.Println(unsafe.Sizeof (T2{})) // 16
20| }

IIs new(T) asugarof var t T; (&t)?

Generally we can think so, though there would some subtle differences between the two, depending on

compiler implementations. The memory block allocated by new may be either on stack or on heap.

What does the runtime error message all goroutines
are asleep - deadlock mean?

The word asleep is not accurate here, it means in blocking state in fact.

As a blocking goroutine can only be unblocked by another goroutine, if all goroutines in a program enter
blocking state, then all of they will stay in blocking state for ever. This means the program is deadlocked.
A normal running program is never expected to be deadlocked, so the standard Go runtime makes the

program crash and exit.
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Are 64-bit integer values guaranteed to be 64-bit aligned so
that they can be accessed atomically?

The addresses passed to the 64-bit functions in sync/atomic package must be 64-bit aligned, otherwise,

calls to these functions may panic at run time.

For the standard Go compiler and gccgo compiler, on 64-bit architectures, 64-bit integers are guaranteed
to be 64-bit aligned. So they can be always accessed atomically without any problems.

On 32-bit architectures, 64-bit integers are only guaranteed to be 32-bit aligned. So accessing many 64-bit
integers atomically may cause panics. However, there are some ways to guarantee some 64-bit integers to
be relied upon to be 64-bit aligned. Please read memory layouts in Go (844) for details.

IAre assignments of values atomic operations?

No for the standard Go compiler, even if the sizes of the assigned values are native words.

Please read the official question #  for more details.

Is every zero value composed of a sequence of zero bytes in
memory?

For most types, this is true. In fact, this is compiler dependent. For example, for the standard Go compiler,
the statement is wrong for some zero values of string types.

Evidence:

1| package main

2|

3| import (

4| "unsafe"

5] "fmt"

6] )

7]

8| func main() {

9| var sl string
10| fmt.Println(s1 == "") // true
11| fmt.Println(*(*uintptr) (unsafe.Pointer(&s1))) // 0
12| var s2 = "abc"[0:0]
13| fmt.Println(s2 == "") // true
14 | fmt.Println(*(*uintptr) (unsafe.Pointer(&s2))) // 4869856
15| fmt.Println(sl == s2) // true
16| }
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Inversely, for all the architectures the standard Go compiler currently supports, if all bytes in a value are
zero, then the value must be a zero value of its type. However, Go specification doesn't guarantee this. I

have heard of that on some very old processors, nil pointers are not zero in memory.

|Does the standard Go compiler support function inline?

Yes, the standard Go compiler supports function inline. The compiler will inline short leaf functions,
automatically. Leaf functions are the functions which doesn't contain function calls. The specific inline

rules may change from version to version.
Currently (Go SDK 1.13), for the standard Go compiler,

e there is no explicit ways to specify which functions should be inlined in user programs.

e although -gcflags "-1" build option can prevent any functions being inlined, there is no formal
ways to avoid specified functions being inlined in user programs. There are two informal ways (both
of them might become invalid for future standard Go compiler versions):

1. you can add a line //go:noinline directive before a function declaration to avoid the

function being inlined.

funetion-to-avoid-the-funetionbeingtntined: (This way may become invalid later f .)

ICan I use finalizers as object destructors?

In Go programs, we can set a finalizer function for an object by using the runtime.SetFinalizer

function. Generally, the finalizer function will be called before the object is garbage collected. But
finalizers are never intended to be used as destructors of objects. The finalizers set by
runtime.SetFinalizer are not guaranteed to run. So you shouldn't rely on finalizers for your program

correctness.

The main intention of finalizers is for libraries maintainers to make extra efforts to remedy the damage
caused by libraries users don't use the libraries correctly. For example, in a program, if we use the
0s.0pen to open many files but forget to close them after using them, then the program will hold many
file descriptors until the program exits. This is resource leak. To avoid the program holding too many file
descriptors, the maintainers of the os package will set a finalizer on the every created os.File object.
The finalizer will close the file descriptor stored in the os.File object. As above mentioned, the
finalizers are not guaranteed to be called. They are just used to make the extent of resource leak as small

as possible.

Please note, some finalizers will never get called for sure, and sometimes setting finalizers improperly will

prevent some objects from being garbage collected. Please read the runtime.SetFinalizer function

documentation #  to get more details.
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How to get the number of days of any month by using as
few code lines as possible?

Assume the input year is a nature year and the input month is also a nature month (January is 1).
days := time.Date(year, month+1, 0, 0, 0, 0, 0, time.UTC).Day()

For Go time APIs, the usual month range is [1, 12] and the start day of each month is 1. The start time

of a month m in year y is time.Date(y, m, 1, 0, 0, 0, 0, time.UTC).

The arguments passed to time.Date can be outside their usual ranges and will be normalized during the

conversion. For example, January 32 will be converted to February 1.
Here are some time.Date use examples in Go:

1| package main

2|

3| import (

4| "time"

5] "fmt"

6| )

7|

8| func main() {

9] // 2017-02-01 00:00:00 +0000 UTC

10| fmt.Println(time.Date(2017, 1, 32, 0, 0, 0, 0, time.UTC))
11|

12| // 2017-01-31 23:59:59.999999999 +0000 UTC
13| fmt.Println(time.Date(2017, 1, 32, 0, 0, 0, -1, time.UTC))
14|
15| // 2017-01-31 00:00:00 +0000 UTC
16 | fmt.Println(time.Date(2017, 2, 0, 0, 0, 0, 0, time.UTC))
17|
18| // 2016-12-31 00:00:00 +0000 UTC
19| fmt.Println(time.Date(2016, 13, 0, 0, 0, 0, 0, time.UTC))
20|
21| // 2017-02-01 00:00:00 +0000 UTC
22| fmt.Println(time.Date(2016, 13, 32, 0, 0, 0, 0, time.UTC))
23| }

What is the difference between the function call
time.Sleep(d) and the channel receive operation <-
time.After(d)?

The two will both pause the current goroutine execution for a certain duration. The difference is the
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function call time.Sleep(d) will let the current goroutine enter sleeping sub-state, but still stay in

running state (§13), whereas, the channel receive operation <-time.After(d) will let the current

goroutine enter blocking state.

Calls of the TrimLeft and TrimRight functions in the
strings and bytes standard packages often return
unexpected results, are there bugs in these function
implementations?

Aha, maybe there are bugs in the implementations, but none are confirmed now. If the return results are

unexpected, it is more possible that your expectations are not correct.

There are many trim functions in strings and bytes standard packages. These functions can be

categorized into two groups:

1.

Trim, TrimLeft, TrimRight, TrimSpace, TrimFunc, TrimLeftFunc, TrimRightFunc.
These functions will trim all leading or trailing UTF-8-encoded Unicode code points (a.k.a. runes)
which satisfy the specified or implied conditions (TrimSpace implies to trim all kinds of white
spaces). Each of the leading or trailing runes will be checked until one doesn't satisfy the specified
or implied conditions.

TrimPrefix, TrimSuffix. The two functions will trim the specified prefix or suffix substrings (or

subslices) as a whole.

Some ! programmers # misused # the® TrimLeft and TrimRight functions as TrimPrefix and

TrimSuffix functions when they use the trim functions the first time. Certainly, the return results are

very possible not as expected.

Example:
1| package main
2|
3| import (
4] "fmt"
5] "strings"
6] )
7]
8| func main() {
9| var s = "abaay#kzxxbbab"
10| o := fmt.Println
11| o(strings.TrimPrefix(s, "ab")) // aay#fzixxbbab
12| o(strings.TrimSuffix(s, "ab")) // abaay#xzixxbb
13| o(strings.TrimLeft(s, "ab")) // y#xzxxbbab
14 | o(strings.TrimRight(s, "ab")) // abaayfkz#xx
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15| o(strings.Trim(s, "ab")) /] yRRZAXX
16 | o(strings.TrimFunc(s, func(r rune) bool {
17| return r < 128 // trim all ascii chars
18] Y)) // A&z

19] }

What are the differences between the fmt.Print and
fmt.Println functions?

The fmt.Println function will always write a space between two adjacent arguments, whereas the
fmt .Print function will write a space between two adjacent arguments only if both of (the concrete

values of) the two adjacent arguments are not strings.

Another difference is fmt.Println will write a newline character in the end, but the fmt.Print

function will not.

Is there any difference between the 1log.Print and
log.Println functions?

The difference between the log.Print and log.Println functions is the sams as the first difference

between the fmt.Print and fmt.Println functions described in the last question.

Both of the two functions will write a newline character in the end.

Are fmt.Print, fmt.Println and fmt.Printf functions
synchronized?

No, these functions are not synchronized. Please use the corresponding functions in the 1log standard
package instead when synchronizations are needed. You can call 1log.SetFlags(0) to remove the prefix

from each log line.

What are the differences between the built-in
print/println functions and the corresponding print
functions in the fmt and log standard packages?

Besides the difference mentioned in the last question, there are some other differences between the three

sets of functions.
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1. The built-in print/println functions will write to the standard error. The print functions in the
fmt standard package will write to the standard output. The print functions in the 1og standard

package will write to the standard error by default, whereas which can be configured through the
log.SetOutput function.

2. Calls to the built-in print/println functions can't take array and struct arguments.

3. For an argument of a composite type, the built-in print/println functions write the addresses of
the underlying value parts of the argument, whereas the print functions in the fmt and log standard
packages try to write the value literal of the dynamic values of the interface arguments.

4. Currently (Go SDK 1.13), for the standard Go compiler, calls to the built-in print/println

functions will not make the values referenced by the arguments of the calls escape to heap, whereas
the print functions in the fmt and log standard packages will.

5. If an argument has a String() string or Error() string method, the print functions in the
fmt and log standard packages will try to call that method when writing the argument, whereas the
built-in print/println functions will ignore methods of arguments.

6. The built-in print/println functions are not guaranteed to exist in future Go versions.

What is the difference between the random numbers
produced by the math/rand standard package and the
crypto/rand standard package?

The pseudo random numbers produced by the math/rand standard package are deterministic for a given

seed. The produced random numbers are not good for security-sensitive contexts. For cryptographical
security purpose, we should use the pseudo random numbers produced by the crypto/rand standard

package.

IWhy isn't there a math.Round function?

There is a math.Round function, but only since Go 1.10. Two new functions, math.Round and

math.RoundToEven have been added since Go 1.10.

Before Go 1.10, there is a long time in disputing # whether or not the math.Round function should be
added to standard package or not. In the end, the proposal is adopted.

|Which types don't support comparisons?

Following types don't support comparisons:

e map
e slice
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e function
e struct types containing incomparable fields
e array types with incomparable element types

Types which don't support comparisons can't be used as the key type of map types.
Please note,

e although map, slice and function types don't support comparisons, their values can be compared to
the bare nil identifier.

e comparing two interface values (§23) with will panic at run time if the two dynamic types of the two
interface values are identical and incomparable.

On why slice, map and function types don't support comparison, please read this answer ! in the official
Go FAQ.

IWhy aren't two nil values equal sometimes?

(The answer # in the official Go FAQ may also answer this question.)

An interface value can be viewed as a box which is used to encapsulate non-interface values. Only values
whose types implement the type of the interface value can be boxed (encapsulated) into the interface
value. In Go, there are several kinds of types whose zero values are represented as the predeclared
identifier nil. An interface value boxing nothing is a zero interface value, a.k.a, a nil interface value.
However an interface value boxing a nil non-interface value doesn't box nothing, so it is not, and doesn't

equal to, a nil interface value.

When comparing a nil interface value and a nil non-interface value (assume they can be compared), the nil
non-interface value will be converted to the type of the nil interface value before doing the comparison.
The conversion result is an interface value boxing a copy of the non-interface value. The result interface

value doesn't box nothing, so it is not, or doesn't equal to, the nil interface value.

Please read interfaces in Go (823) and nils in Go (847) for detailed explanations.

For example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| var pi *int = nil

7| var pb *bool = nil

8| var x interface{} = pi
9| var y interface{} = pb
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10| var z interface{} = nil

11|

12| fmt.Println(x == vy) // false
13| fmt.Println(x == nil) // false
14| fmt.Println(y == nil) // false
15| fmt.Println(x == 2z) // false
16| fmt.Println(y == 2z) // false
17] }

Why don't type []T1 and []T2 share the same underlying
type even if the two different types T1 and T2 share the
same underlying type?

(It looks the official Go FAQ also added a similar question not long ago.)

In Go, values of a slice type can be converted to another slice type without using the unsafe mechanisms

(825) only if the two slice types share the same underlying type (§14). (This article (§48) lists the full list
of value conversion rules.)

The underlying type of a non-defined composite type is the composite type itself. So even if two different
types T1 and T2 share the same underlying type, type []T1 and []T2 are still different types, so their

underlying types are also different, which means values of one of them can't be converted to the other.

The reasons for the underlying types of []T1 and []T2 are not same are:

e the request of converting values of []T1 and []T2 to each other is not strong in practice.

¢ to make underlying type tracing rule (§14) simpler.

The same reasons are also valid for other composite types. For example, type map[T]T1 and map[T]T2

also don't share the same underlying type even if T1 and T2 share the same underlying type.

It is possible that values of type []T1 can be converted to []T2 by using the unsafe mechanisms, but

generally this is not recommended:

1| package main

2|

3| import (

4] "fmt"

5] "unsafe"

6] )

7]

8| func main() {

9| type MyInt int

10|

11| var a = []int{7, 8, 9}
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12| var b = *(*[]MyInt)(unsafe.Pointer(&a))
13| b[0]= 123

14| fmt.Println(a) // [123 8 9]

15| fmt.Println(b) // [123 8 9]

16| fmt.Printf("%T \n", a) // []int

17| fmt.Printf("%T \n", b) // []Imain.MyInt
18] }

Which values can and which values can't be taken
addresses?

Following values can't be taken addresses:

e bytes in strings
e map elements
e dynamic values of interface values (exposed by type assertions)
e constant values (including named constants and literals)
e package level functions
e methods (used as function values)
e intermediate values
o function calls
o explicit value conversions
o all sorts of operations, excluding pointer dereference operations, but including:
m channel receive operations
m sub-string operations
m sub-slice operations

m addition, subtraction, multiplication, and division, etc.

Please note, there is a syntax sugar, &T{}, in Go. It is a short form of tmp := T{}; (&tmp).
So &T{} is legal doesn't mean the literal T{} is addressable.

Following values can be taken addresses:

e variables

e fields of addressable structs

¢ elements of addressable arrays

e elements of any slices (whether the slices are addressable or not)

e pointer dereference operations

|Why are map elements unaddressable?

The main reason is making map elements addressable means the address of a map element must not be
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changed in its life cycle. This prevents Go compilers using more efficient algorithms to implement map.
For the standard Go compiler, the internal addresses of map elements may be changed at run time.

Why elements of a non-nil slice are always addressable,
even if the slice is unaddressable?

The internal type for slices is a struct like

1| struct {

2] // elements references an element sequence.
3| elements unsafe.Pointer

4| length int

5] capacity int

6] }

Each slice indirectly references an underlying element sequence internally. Although a non-nil slice is not
addressable, its internal element sequence is always allocated somewhere and must be addressable. Taking
addresses of elements of a slice is taking the addresses of elements of the internal element sequence
actually. This is why elements of unaddressable non-nil slices are always addressable.

For any non-pointer non-interface defined type T, why is
the method set of *T always a super set of the method set of
T, but not vice versa?

In Go, for convenience,

e avalue of type T can call methods defined on type *T, but only if the value of T are addressable.
Compilers will take the address of the T value automatically before calling the pointer receiver
methods. For not any values of type T are addressable, not any values of type T are capable of
calling methods defined on type *T. This convenience is just a sugar, not an intrinsic rule.

e avalue of type *T can always call methods defined on type T. This is because it is always legal to

dereference a pointer value. This convenience is not only a sugar, but also an intrinsic rule.

So it is much reasonable that the method set of *T is always a super set of the method set of T, but not

vice versa.

In fact, you can think that, for every method declared on type T, an implicit method with the same name

and the same signature is automatically declared on type *T. Please read methods (§22) for details.

1| func (t T) MethodX(v@ ParamType®, ...) (ResultType®, ...) {
2|
3| }
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4|

5| // An implicit method of *T is automatically defined as

6| func (pt *T) MethodX(v® ParamType®, ...) (ResultType0O, ...) {
7] return (*pt).MethodX(ve, ...)

8| }

Please read this answer # in the official Go FAQ to get more explanations.

IWhich types can we implement methods for?

Please read methods in Go (§22) for details.

IHow to declare immutable values in Go?

There are three immutable value definitions:

1. the values which have no addresses (so they are not addressable).

2. the values which have addresses but are not addressable (their addresses are not allowed to be taken
in syntax).

3. the values which are addressable but their values are not allowed to be modified in syntax.

In Go, up to now (Go 1.13), there are no values satisfy the third definition. In other words, the third
definition is not supported.

Name constant values satisfy the first definition.

Methods and package-level functions can also viewed as declared immutable values. They satisfy the
second definition. String elements (bytes) also satisfy the second definition.

There are no ways to declare other custom immutable named values in Go.

IWhy isn't there a built-in set container type?

Sets are just maps but don't care about element values. In Go, map[Tkey]struct{} is often used as a set

type.

What is byte? What is rune? How to convert [ ]byte and
[ Jrune values to strings?

In Go, byte is an alias of type uint8. In other words, byte and uint8 are the same identical type. The

same relation is for rune and int32.
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A rune often is used to store a Unicode code point.

[Ibyte and []rune values can be explicitly and directly converted to strings, and vice versa.

1| package main

2|

3| import "fmt"

4]

5| func main() {

6 | var s0 = "Go"

7]

8| var bs = []byte(s0)

9| var sl = string(bs)

10|

11| var rs = []rune(s0)

12| var s2 = string(rs)

13|

14| fmt.Println(s@ == s1) // true
15| fmt.Println(s@ == s2) // true
16| }

About more on strings, please read strings in Go (§19).

IHow to manipulate pointer values atomically?

Example:
1| import (
2| "unsafe"
3| "sync/atomic"
4| )
5]
6| type T int // just a demo
7|
8| var p *T
9|
10| func demo(newP *T) {
11| // load
12| var _ = (*T)(atomic.LoadPointer (
13| (*unsafe.Pointer) (unsafe.Pointer(&p)),
14| ))
15|
16 | // store
17 | atomic.StorePointer(
18| (*unsafe.Pointer) (unsafe.Pointer(&p)),
19| unsafe.Pointer(newP),
20| )
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21|

22|

23| // swap

24| var oldP = (*T)(atomic.SwapPointer (

25| (*unsafe.Pointer) (unsafe.Pointer(&p)),
26| unsafe.Pointer(newP),

27] ))

28|

29| // compare and swap

30| var swapped = atomic.CompareAndSwapPointer (
31| (*unsafe.Pointer) (unsafe.Pointer(&p)),
32| unsafe.Pointer(oldP),

33| unsafe.Pointer(newP),

34| )

35]

36 | _ = swapped

37| }

Yes, now it is much verbose to use the pointer atomic functions.

IWhat does iota mean?

Iota is the ninth letter of the Greek alphabet. In Go, iota is used in constant declarations. In each constant

declaration group, its value is N in the Nth constant specification in that constant declaration group.

Why isn't there a built-in closed function to check
whether or not a channel is closed?

The reason is the usefulness of such function is very limited. The return result of a call to such function
may be not able to reflect the latest status of the input channel argument. So it is not a good idea to make

decisions relying on the return result.

If you do need such a function, it would be effortless to write one by yourself. Please read this article

(838) to get how to write closed functions and how to avoid using such a function.

|Is it safe for a function to return pointers of local variables?

Yes, it is absolutely safe in Go.

Go compilers which support stack will do escape analysis. For the standard Go compiler, if the escape
analyzer thinks a memory block will only be used in current function call for sure, it will allocate the

memory block on stack, otherwise, then the memory block will be allocated on heap. Please read memory
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block (843) for more information.

|What does the word gopher mean in Go community?

In Go community, a gopher means a Go programmer. This nickname may be originated from the fact that

Go language adopted a cartoon gopher ! as the mascot. BTW, the cartoon gopher is designed by Renee
French, who is the wife of the (first) Go project leader, Rob Pike.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com ! to get more information about these games. Hope you enjoy them.)
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Index

e How to force package users to use struct composite literals with field names?
e How to make a struct type incomparable?

e Don't use value assignments with expressions interacting with each other.
e How to simulate for i in 0..N in some other languages?

e We should reset the pointers in the element slots which are freed up in all kinds of slice

manipulations to avoid memory leaking if we can't make sure if the freed-up element slots will be
reused later.
e Values of some types in standard packages are not expected to be copied.

e We can use the memclr optimization to reset some contiguous elements in an array or slice.
e How to check if a value has a method without importing the reflect package?

e How to efficiently and perfectly clone a slice?

e We should use the three-index subslice form at some scenarios.

e Use anonymous functions to make some deferred function calls be executed earlier.

e Make sure and show a custom defined type implements a specified interface type.
e Some compile-time assertion tricks.

e How to declare maximum int and uint constants?

e How to detect native word size at compile time?

e How to guarantee that the 64-bit value operated by a 64-bit atomic function call is always 64-bit

aligned on 32-bit architectures?
e Avoid boxing large-size values into interface values.
e Make optimizations by using BCE (bounds check elimination).

How to force package users to use struct composite literals
with field names?

Package developers can put a non-exported zero-size field in a struct type definition, so that compilers will
forbid package users using composite literals with some field items but without field names to create

values of the struct type.

An example:
1| // foo.go
2| package foo
3]
4| type Config struct {
5] _ [0]int
6 | Name string
7| Size int
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8] }

1| // main.go
2| package main

3

4| import "foo"

5]

6| func main() {

7| //_ = foo.Config{[0]int{}, "bar'", 123} // error

8| _ = foo.Config{Name: "bar", Size: 123} // compile ok
9| }

Please try not to place the zero-size non-exported field as the last field in the struct, for doing so might
enlarge the size of the struct type (§51).

IHow to make a struct type incomparable?

Sometimes, we want to avoid a custom struct type being used a map key types, then we can put a field of a
non-exported zero-size incomparable type in a struct type to make the struct type incomparable. For
example:

1| package main

2|

3| type T struct {

4| dummy [0]func()

5] AnotherField int

6| }

7]

8| var x map[T]int // compile error: invalid map key type T
9]
10| func main() {
11| var a, b T
12| _=a ==">b // compile error: invalid operation:
13| }

Don't use value assignments with expressions interacting
with each other.

Currently (Go 1.13), there are some evaluation orders in a multi-value assignment are unspecified

when the expressions involved in the multi-value assignment interact with each other. So try to split a
multi-value assignment into multiple single value assignments if there are, or you can't make sure whether

or not there are, dependencies between the involved expressions.

In fact, in some bad-written single-value assignments, there are also expression evaluation order
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ambiguities. For example, the following program might print [7 © 9], [@ 8 9],or [7 8 9],

depending on compiler implementations.

1| package main

2|

3| import "fmt"

4]

5| var a = &[]int{1, 2, 3}
6| var 1 int

7| func f() int {

8] i=1

9] a = &[]int{7, 8, 9}

10| return 0

1]

12|

13| func main() {

14 | // The evaluation order of "a", "i"
15| // and "f()" is unspecified.
16| (*a)[1] = f()

17| fmt.Println(*a)

18] }

In other words, a function call in a value assignment may the evaluation results of the non-function-call

expressions in the same assignment. Please read evaluation orders in Go (833) for details.

IHow to simulate for i in 0..N in some other languages?

We can range over an array with zero-size element or a nil array pointer to simulate such a loop. For

example:

1| package main

2|

3| import "fmt"

4|

5| func main() {

6| const N = 5

7]

8| for 1 := range [N]struct{}{} {
9] fmt.Println(1i)

10| }

11| for 1 := range [N][0]int{} {
12| fmt.Println(1i)

13| }

14 | for 1 := range (*[N]int)(nil) {
15| fmt.Println(1i)

16| }
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17| }

We should reset the pointers in the element slots which are
freed up in all kinds of slice manipulations to avoid memory
leaking if we can't make sure if the freed-up element slots
will be reused later.

Please read how to delete slice elements (§18) and kind-of memory leaking caused by not resetting
pointers in dead slice elements (8§45) for details.

Values of some types in standard packages are not expected
to be copied.

Values of the bytes.Buffer type, strings.Builder type and the types in the sync standard package

are not recommended to be copied. (They really should not be copied, though it is no problems to copy
them under some specified circumstances.)

The implementation of strings.Builder will detect invalid strings.Builder value copies. Once

such a copy is found, panic will occur. For example:

1| package main

2|

3| import "strings"

4|

5| func main() {

6| var b strings.Builder

7| b.WriteString("hello ")

8| var b2 = b

9] b2.WriteString("world!") // panic here
10| }

Copying values of the types in the sync standard package will be warned by the go vet command
provided in Go SDK.

1| // demo.go
2| package demo

3]

4| import "sync"

5]

6| func f(m sync.Mutex) { // warning
7| m.Lock()

8| defer m.Unlock()

9| // do something ...
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}

$ go vet demo.go
./demo.go:5: f passes lock by value: sync.Mutex

Copying bytes.Buffer values will never be detected at run time nor by the go vet command. Just be

careful not to do this.

We can use the memclr optimization to reset some

contiguous elements in an array or slice.

Please read the memclr optimization (§18) for details.

How to check if a value has a method without importing the

reflect package?

Use the way in the following example. (Assume the prototype of the method needed to be checked is

M(int) string.)

1]
2]
3
4]
5]
6
7]
8]
9]
10|
11|
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|

package main

import "fmt"

type A int

type B int

func (b B) M(x int) string {
return fmt.Sprint(b, ": ", X)

}

func check(v interface{}) bool {

_, has := v.(interface{M(int) string})
return has

}

func main() {
var a A = 123
var b B = 789
fmt.Println(check(a)) // false
fmt.Println(check(b)) // true

}

|How to efficiently and perfectly clone a slice?
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Please read this wiki article # and this wiki article # for details.

We should use the three-index subslice form at some
scenarios.

Assume a package provides a func NewX(...Option) *X function, and the implementation of this
function will merge the input options with some internal default options, then the following

implementation is not recommended.

1| func NewX(opts ...Option) *X {

2| options := append(opts, defaultOpts...)

3| // Use the merged options to build and return a X.
4| // ...

5| }

The reason why the above implementation is not recommended is the append call may modify the
underlying Option sequence of the argument opts. For most scenarios, it is not a problem. But for some

special scenarios, it may cause some unexpected results.

To avoid modifying the underlying Option sequence of the input argument, we should use the following

way instead.

1] func NewX(opts ...Option) *X {

2| opts = append(opts[:len(opts):len(opts)], defaultOpts...)
3| // Use the merged options to build and return a X.

4] // ...

5| }

On the other hand, for the callers of the NewX function, it is not a good idea to think and rely on the NewX

function will not modify the underlying elements of the passed slice arguments, so it is best to pass these

arguments with the three-index subslice form.

Another scenario at which we should use three-index subslice form is mentioned in this wiki article .

One drawback of three-index subslice forms is they are some verbose. In fact, I ever made a proposal &

to make it less verbose, but it was declined.

Use anonymous functions to make some deferred function
calls be executed earlier.

Please read this article (§29) for details.
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Make sure and show a custom defined type implements a
specified interface type.

We can assign a value of the custom defined type to a variable of type of the specified interface type to

make sure the custom type implements the specified interface type, and more importantly, to show the

custom type is intended to implement which interface types. Sometimes, writing docs in runnable code is

much better than in comments.

1| package myreader

2|

3| import "io"

4|

5| type MyReader uintl16

6]

7| func NewMyReader() *MyReader {

8| var mr MyReader

9| return &mr

10| }

11|

12| func (mr *MyReader) Read(data []byte) (int, error) {
13| switch len(data) {

14| default:

15| *mr = MyReader(data[@]) << 8 | MyReader(data[1])
16 | return 2, nil

17 | case 2:

18| *mr = MyReader(data[0@]) << 8 | MyReader(data[1])
19| case 1:

20| *mr = MyReader (data[0])

21| case 0:

22| }

23| return len(data), io.EOF

24| }

25|

26| // Any of the following three lines ensures

27| // type *MyReader implements io.Reader.

28| var _ io.Reader = NewMyReader ()

29| var _ io.Reader = (*MyReader)(nil)

30| func _() {_ = io.Reader(nil).(*MyReader)}

ISome compile-time assertion tricks.

Besides the above one, there are more compile-time assertion tricks.

Several ways to guarantee a constant N is not smaller than another constant M at compile time:
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1| // Any of the following lines can guarantee N >= M

2| func _(x []int) {_ = X[N-M]}

3| func _(){_ = []int{N-M: 0}}

4| func _([N-M]int){}

5| var _ [N-M]int

6| const _ uint = N-M

7| type _ [N-M]int

8]

9| // If M and N are guaranteed to be positive integers.
10| var _ uint = N/M - 1

One more way which is stolen from @lukechampine # . It makes use of the rule that duplicate constant
keys can't appear in the same composite literal (§18).

var _ = map[bool]struct{}{false: struct{}{}, N>=M: struct{}{}}

The above way looks some verbose but it is more general. It can be used to assert any conditions. It can be
less verbose but needs a little more (negligible) memory:

var _ = map[bool]int{false: 0, N>=M: 1}

Similarly, ways to assert two integer constants are equal to each other:

1| var _ [N-M]int; var _ [M-N]int
2| type _ [N-M]int; type _ [M-N]int
3| const _, _ uint = N-M, M-N

4| func _([N-M]int, [M-N]int) {}

5]

6| var _ = map[bool]int{false: 0, M==N: 1}

7]

8| var _ = [1]int{M-N: 0@} // the only valid index is 0
9| var _ = [1]int{}[M-N] // the only valid index is 0
10|

11| var _ [N-M]int = [M-N]int{}
The last line is also inspired by one of Luke Champine's tweets.

Ways of how to assert a constant string is not blank:

1| type _ [len(aStringConstant)-1]int

2| var _ = map[bool]int{false: 0, aStringConstant != "": 1}
3| var _ = aStringConstant[:1]

4| var _ = aStringConstant[0]

5| const _ = 1/len(aStringConstant)

The last line is stolen from Jan Mercl's clever idea f .

Sometimes, to avoid package-level variables consuming too much memory, we can put assertion code in a

function declared with the blank identifier. For example,
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1| func _() {

2] var _ = map[bool]int{false: O, N>=M: 1}
3] var _ [N-M]int
4| }

IHow to declare maximum int and uint constants?

1| const MaxUint = Auint(0)
2| const MaxInt = int(Auint(0) >> 1)

IHow to detect native word size at compile time?

This tip is Go unrelated.

1| const Is64bitArch Auint(Q@) >> 63 == 1
2| const Is32bitArch = Auint(Q@) >> 63 == 0
3| const WordBits = 32 << (Auint(®) >> 63) // 64 or 32

How to guarantee that the 64-bit value operated by a 64-bit
atomic function call is always 64-bit aligned on 32-bit
architectures?

Please read Go value memory layouts (844) for details.

IAvoid boxing large-size values into interface values.

When a non-interface value is assigned to an interface value, a copy of the non-interface value will be
boxed into the interface value. The copy cost depends on the size of the non-interface value. The larger the

size, the higher the copy cost. So please try to avoid boxing large-size values into interface values.

In the following example, the costs of the latter two print calls are much lower than the former two.

1| package main

2|

3| import "fmt"

4|

5| func main() {

6 | var a [1000]int

7]

8| // This cost of the two lines is high.

9| fmt.Println(a) // a is copied
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10| fmt.Printf("Type of a: %T\n", a) // a is copied

11|

12| // The cost of the two lines is low.

13| fmt.Printf("%v\n", a[:])

14| fmt.Println("Type of a:", fmt.Sprintf("%T", &a)[1:])
15[ }

About value sizes of different types, please read value copy costs in Go (§34).

Optimize Go code by making use of BCE (bounds check
elimination).

Please read this article (835) to get what is BCE and how well BCE is supported by the standard Go

compiler now.
Here, another example is provided:

1| package main

2|

3| import (

4| "strings"

5] "testing"

6] )

7]

8| func NumSameBytes_1(x, y string) int {
9| if len(x) > len(y) {

10| X, Y=Y, X

11| }

12| for 1 := 0; i < len(x); i++ {

13| if x[1] '= y[i] {

14 | return i

15| }

16| }

17 | return len(x)

18] }

19|

20| func NumSameBytes_2(x, y string) int {
21| if len(x) > len(y) {

22| X, Y=Y, X

23| }

24 | if len(x) <= len(y) { // more code but more efficient
25| for 1 := 0; i < len(x); i++ {

26 | if x[i] !'= y[i] { // bound check eliminated
27 | return i

28| }

29| }
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30| }

31| return len(x)
32| }

33|

34| var x = strings.Repeat("hello", 100) + " world!"
35| var y = strings.Repeat("hello", 99) + " world!"

36|

37| func BenchmarkNumSameBytes_1(b *testing.B) {
38| for 1 := 0; 1 < b.N; i++ {

39| _ = NumSameBytes_1(x, Yy)

40| }

41| }

42|

43| func BenchmarkNumSameBytes 2(b *testing.B) {
44| for 1 := 0; 1 < b.N; i++ {

45| _ = NumSameBytes_2(x, Yy)

46 | }

47| }

In the above example, function NumSameBytes_2 is more efficient than function NumSameBytes_1. The

benchmark result:

BenchmarkNumSameBytes_1-4 10000000 669 ns/op
BenchmarkNumSameBytes_2-4 20000000 450 ns/op

Please note, there are many small improvements in each main release of the standard Go compiler (gc).
The trick used in the above example doesn't work for Go SDK versions earlier than 1.11. And future gc
versions may become smarter so that the trick will become unnecessary.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org ! to get the latest version of this book. BTW,

Tapir, the author of the book, has developed several fun games. You can visit

tapirgames.com f  to get more information about these games. Hope you enjoy them.)
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More Go Related Topics

Go 101 articles mainly focus on syntax and semantics in Go. There are some other Go related topics which
are not covered in Go 101. The remaining of the current article will make simple introductions to those
topics and provide some web links for readers to dig more into them.

IProfiling, Tests and Benchmarks

We can use go test command in the official SDK to run tests and benchmarks. Test source file names
must end with _test.go. The official Go SDK also supports profiling Go programs. Please read the

following articles for more details.

The testing standard package & .

Using subtests and sub-benchmarks & .

e go test command options & .

Profiling Go programs # .

|gccgo

gecgo B is another Go compiler maintained by the Go core team. It is mainly used to verify the
correctness of the standard Go compiler (gc). We can use the -compiler=gccgo build option in several

official Go SDK commands to use the gccgo compiler instead of the gc compiler. For example, go run -

compiler=gccgo main.go. This option requires the gccgo program is installed. Once the gccgo

program is installed, we can also use the gccgo_command directly to compile Go code .

IGo Assembly

Go functions can be implemented with Go assembly language. Go assembly language is a cross-
architectures (though not 100%) assembly language. Go assembly language is often used to implement

some functions which are critical for Go program execution performances.
For more details, please follow the following links.

e A quick guide to Go's assembler &
e The Design of the Go assembler #

|Cross-Platform Compiling
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The standard Go compiler supports cross-platform compiling. By setting the GOOS and GOARCH
environments before running the go build command, we can build a Windows executable on a Linux

machine, and vice versa. Please read the following articles for details.

e Building windows go programs on linux g .
e The current supported target operating systems and compilation architectures f .

In particular, since Go 1.11, the official Go SDK starts to support WebAssembly as a new kind of
GOARCH. Please read this wiki article f  for details.

|cgo

We can call C code from Go code, and vice versa, through the cgo mechanism. Please follow the
following links for details.

e cgo official documentation
e (C? Go? Cgo! g
e cgoon Gowiki

It is possible to use C++ libraries through cgo by wrapping C++ libraries as C functions.

Please note that using cgo in code may make it is hard to maintain cross-platform compatibility of Go
programs, and the calls between Go and C code are some less efficient than Go-Go and C-C calls.

IBuild Constraints (Tags)

We can use build constraints #  to let compilers build source files selectively. A build constraint is also

called a build tag. A build constraint can appear as a comment line like // +build constraints or

appear as the suffix in the base name of a source file.

ICompiler Directives

The standard Go compiler supports several compiler directives # . A directive appears as a comment line

like //directive args. The most used compiler directive in practice may be the go:generate f

directive.

|System Calls

We can make system calls by call the functions exported by the syscall standard package. Please

beware that, different from other standard packages, the functions in the syscall standard package are
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operating system dependent.

IThe go/* Standard Packages

The go/* standard packages provide functionalities of parsing Go source files, which are very useful to

write custom Go tools. Please read go/types: The Go Type Checker # and package documentation &

for how to use these packages.

IMore Build Modes

The go build command in the official Go SDK supports several build modes. Please run go help

buildmode to show the available build modes or read the explanations for -buildmode option #  instead.

Except the default build mode, the most used build mode may be the plugin build mode. We can use the
functions in the plugin standard package # to load and use the Go plugin files outputted by using the

plugin build mode.

(The Go 101 book is provided as free ebooks. This book is still being improved frequently
from time to time. Please visit go101.org # to get the latest version of this book. BTW,
Tapir, the author of the book, has developed several fun games. You can visit
tapirgames.com #  to get more information about these games. Hope you enjoy them.)
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