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About	Go	101
I	feel	it	is	hard	to	describe	the	contents	in	this	article	in	the	general	description	manner.	So	this	article	will
use	the	interview	manner	to	make	descriptions	instead.

Hi	Tapir,	when	and	why	did	you	plan	to	write	this	book?

At	about	July	2016,	after	(not	very	intensively)	using	Go	for	two	years,	I	felt	that	Go	is	a	simple	language
and	I	had	mastered	Go	programming.	At	that	time,	I	had	collected	many	details	in	Go	programming.	I
thought	I	can	archive	these	details	into	a	book.	I	thought	it	should	be	an	easy	job.

I	was	wrong.	I	was	overconfident.	In	trying	to	make	explanations	for	some	details,	I	found	I	couldn't
explain	them	clearly.	With	more	and	more	confusions	being	gathered,	I	felt	my	Go	knowledge	was	so
limited	that	I	was	still	a	newbie	Go	programmer.

I	gave	up	writing	that	book.

Gave	up?	Isn't	this	book	almost	finished	now?

It	was	that	book	being	cancelled,	not	the	book	Go	101.	I	eventually	cleared	almost	all	the	confusions	by
reading	many	official	Go	documentation	and	all	kinds	of	Go	articles	on	Internet,	and	by	finding	answers
from	some	Go	forums	and	the	Go	project	issue	tracker.

I	spent	about	one	year	clearing	the	confusions.	During	the	period,	from	time	to	time,	once	I	had	cleared
most	confusions	on	a	topic	and	regained	the	confidence	on	explaining	that	topic,	I	wrote	one	blog	article
for	that	topic.	In	the	end,	I	had	written	about	twenty	Go	articles.	And	I	had	collected	more	Go	details	than
before.	It	was	the	time	to	restart	the	plan	of	writing	a	Go	book.

I	wrote	another	ten	basic	tutorial	articles	and	twenty	more	articles	on	all	kinds	of	other	Go	topics.	So	now
Go	101	has	about	50	articles.

What	were	your	ever	confusions?

Some	of	the	confusions	were	a	few	syntax	and	semantics	design	details,	some	of	them	involved	values	of
certain	kinds	of	types	(mainly	slices,	interfaces	and	channels),	and	a	few	of	them	were	related	to	standard
package	APIs.

What	are	the	causes	of	your	ever	confusions	do	you	think?
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Thinking	Go	is	easy	to	master	is	considered	harmful.	Holding	such	opinion	will	make	you	understand	Go
shallowly	and	prevent	you	from	mastering	Go.

Go	is	a	feature	rich	language.	Its	syntax	set	is	surely	not	large,	but	we	also	can't	say	it	is	small.	Some
syntax	and	semantics	designs	in	Go	are	straightforward,	some	are	a	little	counter-intuitive	or	inconsistent
with	others.	There	are	several	trade-offs	in	Go	syntax	and	semantics	designs.	A	programmer	needs	certain
Go	programming	experiences	to	comprehend	the	trade-offs.

Go	provides	several	first-citizen	non-essential	kinds	of	types.	Some	encapsulations	are	made	in
implementing	these	types	to	hide	the	internal	structures	of	these	types.	On	one	hand,	the	encapsulations
bring	much	convenience	to	Go	programming.	On	the	other	hand,	the	encapsulations	make	some	obstacles
to	understand	the	behaviors	of	values	of	these	types	more	deeply.

Many	official	and	unofficial	Go	tutorials	are	very	simple	and	only	cover	the	general	use	cases	by	ignoring
many	details.	This	may	be	good	to	encourage	new	Go	programmers	to	learn	and	use	Go.	On	the	other
hand,	this	also	makes	many	Go	programmers	overconfident	on	the	extent	of	their	Go	knowledge.

Several	functions	and	types	declared	in	some	standard	packages	are	not	got	detailed	explanations.	This	is
understandable,	for	many	details	are	so	subtle	that	it	is	hard	to	find	proper	wordings	to	explain	them
clearly.	Saying	a	few	accurate	words	is	better	than	says	some	lots	of	words	with	inaccuracies.	But	this
really	leaves	some	confusions	for	the	package	users.

So	do	you	think	simplicity	is	not	a	selling	point	of	Go?

I	think,	at	least,	simplicity	is	not	a	main	selling	point	of	Go.	After	all,	there	are	several	other	languages
simpler	than	Go.	On	the	other	hand,	Go,	as	a	feature	rich	language,	is	also	not	a	complicated	language.	A
new	Go	programmer	with	right	attitudes	can	master	Go	programming	in	one	year.

Then	what	are	the	selling	points	of	Go	do	you	think?

Personally,	I	think	the	fact	that,	as	a	static	language,	Go	is	flexible	as	many	dynamic	script	languages	is
the	main	selling	point	of	Go	language.

Memory	saving,	fast	program	warming-up	and	fast	code	execution	speed	combined	is	another	main	selling
point	of	Go.	Although	this	is	a	common	selling	point	of	many	C	family	languages.	But	for	web
development	area,	seldom	languages	own	the	three	characteristics	at	the	same	time.	In	fact,	this	is	the
reason	why	I	switched	to	Go	from	Java	for	web	development.

Built-in	concurrent	programming	support	is	also	a	selling	point	of	Go,	though	personally	I	don't	think	it	is
the	main	selling	point	of	Go.

Great	code	readability	is	another	important	selling	point	of	Go.	I	feel	readability	is	the	most	important
factor	considered	in	designing	Go.
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Great	cross-platform	support	is	also	a	selling	point	of	Go,	though	this	selling	point	is	not	much	unique
nowadays.

A	stable	core	design	and	development	team	and	an	active	community	together	can	also	be	viewed	as	a
selling	point	of	Go.

What	does	Go	101	do	to	clear	these	confusions?

Go	101	tries	to	clear	many	confusions	by	doing	the	followings.

1.	 Emphasizes	on	basic	concepts	and	terminologies.	Without	understanding	these	basic	concepts	and
terminologies,	it	is	hard	to	fully	understand	many	rules	and	high	level	concepts.

2.	 Adds	the	value	part	terminology	and	use	one	special	article	to	explain	value	parts.	This	article
uncovers	the	underlying	structures	of	some	kinds	of	types,	so	that	Go	programmers	could	understand
Go	values	of	those	types	more	deeply.	I	think	knowing	a	little	possible	underlying	implementations
is	very	helpful	to	clear	some	confusions	about	all	kinds	of	Go	values.

3.	 Explains	memory	blocks	in	detail.	Knowing	the	relations	between	Go	values	and	memory	blocks	is
very	helpful	to	understand	how	a	garbage	collector	works	and	how	to	avoid	memory	leaking.

4.	 Views	interface	values	as	boxes	for	wrapping	non-interface	values.	I	found	thinking	interface	values
as	value	boxes	is	very	helpful	to	clear	many	interface	related	confusions.

5.	 Makes	several	summary	articles	and	special	topic	articles	by	aggregating	many	knowledge	points
and	details,	which	would	save	Go	programmers	much	learning	time.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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An	Introduction	of	Go
Go	is	a	compiled	and	static	typed	programming	language	born	from	Google.	Many	of	the	core	Go	design
and	SDK	development	team	members	have	many	years	of	experience	in	the	field	of	programming
language	research.

Go	has	many	features.	Some	are	unique,	some	are	borrowed	from	other	programming	languages:

built-in	concurrent	programming	support
goroutines	(green	threads)	and	start	new	goroutines	easily.
channels	(based	on	CSP	model)	and	select	mechanisms	to	do	synchronizations	between
goroutines.

the	container	types	map 	and	slice 	are	first-class	citizens.
polymorphism	through	interfaces.
value	boxing	and	reflection	through	interfaces.
pointers.
function	closures.
methods.
deferred	function	calls.
type	embedding.
type	deduction.
memory	safety.
automatic	garbage	collection.
great	cross-platform	compatibility.

Besides	the	above	features,	further	highlights	are:

The	syntax	of	Go	is	deliberately	designed	to	be	simple,	clean,	and	similar	to	other	popular
programming	languages.	This	makes	Go	programming	easy	to	pick	up.
Go	comes	with	a	great	set	of	standard	code	packages	which	provide	all	kinds	of	common
functionalities.	Most	of	the	packages	are	cross-platform.
Go	also	has	an	active	community,	and	there	are	plenty	of	high	quality	third	party	Go	packages	and
projects Ң 	to	import	and	use.

Go	programmers	are	often	called	gophers.

In	fact,	although	Go	is	a	compiled	and	static	typed	programming	language,	Go	also	has	many	features
which	are	usually	only	available	in	dynamic	script	languages.	It	is	hard	to	combine	these	two	kinds	into
one	language,	but	Go	did	it.	In	other	words,	Go	owns	both	the	strictness	of	static	languages	and	the
flexibility	of	dynamic	languages.	I	can't	say	there	are	not	any	compromises	between	the	two,	but	the	effect
of	the	compromises	is	much	weaker	than	the	benefits	of	the	combination	in	Go.

Readability	is	an	important	factor	which	affects	the	design	of	Go	heavily.	It	is	not	hard	for	a	gopher	to
understand	the	Go	code	written	by	other	gophers.
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9

https://github.com/avelino/awesome-go


understand	the	Go	code	written	by	other	gophers.

Currently,	the	most	popular	Go	compiler	is	written	in	Go	and	maintained	by	the	Go	design	team.	Later	we
shall	call	it	the	standard	Go	compiler,	or	gc 	(an	abbreviation	for	Go	compiler,	not	for	garbage	collection
GC).	The	Go	design	team	also	maintains	a	second	Go	compiler,	gccgo .	Nowadays	it's	use	is	less	popular
than	gc ,	but	it	always	serves	as	a	reference,	and	both	compilers	are	in	active	development.	As	of	now	the
Go	team	focuses	on	the	improvement	of	gc .

gc 	is	provided	in	the	official	Go	SDK.	Go	SDK	1.0	was	release	in	March,	2012.	The	version	of	Go	is
consistent	with	the	version	of	Go	SDK.	There	were/are	two	major	versions	released	each	year.

Since	the	release	of	Go	1.0,	the	syntax	of	Go	has	changed	a	little,	but	there	were/are	many	improvements
for	the	tools	in	Go	SDK,	from	version	to	version,	especially	for	gc .	For	example,	noticeable	lags	caused
by	garbage	collecting	is	a	common	criticism	for	languages	with	automatic	memory	management.	But	since
Go	1.8,	improvements	made	for	the	concurrent	garbage	collection	implementation	in	gc 	basically
eliminated	the	lag	problem.

gc 	supports	cross-platform	compilation.	For	example,	we	can	build	a	Windows	executable	on	a	Linux
OS,	and	vice	versa.

Programs	written	in	go	language	mostly	compile	very	fast.	Compilation	time	is	an	important	factor	for	the
happiness	in	development.	Short	build	time	is	one	reason	why	many	programmers	like	programming	with
Go.

Advantages	of	Go	executables	are:

small	memory	footprint
fast	code	execution
short	warm-up	duration	(so	great	deployment	experience)

Some	other	compiled	languages,	such	as	C/C++/Rust	may	also	have	these	three	advantages	(and	they	may
have	their	respective	advantages	compared	to	Go),	but	they	lack	three	important	characteristics	of	Go:

fast	compilation	results	in	happy	local	development	experience	and	short	deployment	iteration
cycles
flexible,	like	dynamic	languages
built-in	concurrent	programming	support

All	the	above	advantages	combined	make	Go	an	outstanding	language	and	a	good	choice	for	many	kinds
of	projects.	Currently,	Go	is	popularly	used	in	network,	system	tools,	database	development	and	block
chain	development	areas.	Lately	more	and	more	embrace	Go	for	building	games,	big	data	and	AI	projects.

Finally,	Go	is	not	perfect	in	all	aspects.	There	are	certain	trade-offs	in	Go	design.	And	the	current	Go	1
really	has	some	shortcomings.	For	example,	Go	doesn't	support	generics	for	custom	types	and	functions
now.	Go	team	members	are	not	against	introducing	custom	generics	into	Go,	they	just	haven't	found	a
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good	solution	yet	which	keeps	Go	clean	and	simple.	Go	2	is	in	planning	now.	Nothing	is	impossible	in	the
future.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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The	Official	Go	SDK
Currently,	the	tools	in	the	official	Go	SDK	are	the	most	used	tools	to	develop	Go	projects.	In	Go	101
article	series,	all	examples	are	compiled	and	verified	with	the	standard	Go	compiler.

This	article	will	introduce	how	to	setup	the	Go	development	environment	and	how	to	run	simple	Go
programs.	Some	tools	of	the	official	Go	SDK	will	also	be	introduced.

Install	Go	SDK

Please	download Ң 	the	official	Go	SDK	and	install	it	according	to	the	instructions	shown	in	the
download	page.

The	version	of	an	official	Go	SDK	release	is	consistent	with	the	highest	Go	language	version	the	release
supports.	For	example,	the	latest	Go	SDK	1.13.x	supports	all	Go	language	versions	from	1.0	to	Go	1.13.

The	path	to	the	bin 	subfolder	in	the	Go	SDK	installation	root	path	must	be	put	in	the	PATH 	environment
variable	to	execute	the	tools	(mainly	the	go 	subcommands)	in	the	SDK	without	inputting	their	full	paths.
If	your	Go	SDK	is	installed	with	an	installer	or	with	a	package	manager,	the	path	to	the	bin 	subfolder
may	have	been	already	set	in	the	PATH 	environment	variable	automatically	for	you.

Earlier	Go	SDK	versions	might	require	GOROOT 	and	GOPATH 	environment	variables	to	be	set.	The	latest
Go	SDK	has	no	such	requirements.	The	default	value	of	the	GOPATH 	environment	variable	is	the	path	to
the	go 	folder	under	the	home	directory	of	the	current	user.	GOPATH 	environment	variable	may	list
multiple	paths.

There	is	a	GOBIN 	environment	variable	which	controls	where	the	binary	files	generated	by	some	go
subcommands,	such	as	the	go	install 	subcommand	(see	below),	will	be	stored.	If	the	environment
variable	is	not	set,	the	go 	command	will	use	the	path	to	bin 	subfolder	in	the	first	path	specified	in	the
GOPATH 	environment	variable	to	store	the	generated	binary	files.	The	path	to	the	folder	for	storing	the
binary	files	should	be	set	in	the	PATH 	environment	variable	to	run	the	binary	files	without	specifying	their
full	paths.

Before	Go	SDK	1.11,	it	is	recommended	to	put	all	custom	Go	packages	into	the	src 	subfolder	of	any	path
specified	in	the	GOPATH 	environment	variable,	in	particular	when	a	Go	project	depends	on	some	third
party	packages.	Packages	will	be	introduced	in	packages	and	imports	(§10)	later.

In	Go	SDK	1.11,	an	experimental	feature,	Go	modules,	is	supported.	The	Go	modules	feature	lets	us	put
our	Go	projects	freely	in	any	folder.	We	can	get	more	module	releated	information	from	this	wiki
page Ң .

Note,	since	Go	SDK	1.13,	the	Go	modules	feature	will	become	as	the	preferred	mode	(to	the	old	GOPATH
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mode).	The	necessity	and	meaningfulenss	of	the	GOPATH 	environment	variable	will	be	weakened	much,
even	be	abolished	eventually.	On	the	other	hand,	the	importance	of	the	GOBIN 	environment	variable	will
be	promoted,	for	there	is	still	a	need	to	store	the	binary	files	produced	by	some	go 	subcommands.

The	Simplest	Go	Program

Let's	write	a	simple	example	and	learn	how	to	run	simple	Go	programs.

The	following	program	is	the	simplest	Go	program.

1| package	main

2|

3| func	main()	{

4| }

The	words	package 	and	func 	are	two	keywords.	The	two	main 	words	are	two	identifiers.	Keywords
and	identifiers	are	introduced	in	a	coming	article	(§5).

The	first	line	package	main 	specifies	the	package	name	(main 	here)	of	the	source	file.

The	second	line	is	a	blank	line	for	better	readability.

The	remaining	code	declares	a	function	which	is	also	called	main .	This	main 	function	in	a	main
package	specifies	the	entry	point	of	a	program.	(Note	that	some	other	user	code	might	be	executed	before
the	main 	function	gets	invoked.)

Run	Go	Programs

The	official	Go	SDK	requires	that	Go	source	code	file	to	have	the	extension	.go .	Here,	we	assume	the
above	source	code	is	saved	in	a	file	named	simplest-go-program.go .

Open	a	terminal	and	change	the	current	directory	to	the	directory	which	contains	the	above	source	file,
then	run

$	go	run	simplest-go-program.go

Nothing	is	output?	Yes,	this	program	outputs	nothing.

If	there	are	some	syntax	errors	in	the	source	code,	then	these	errors	will	be	reported	as	compilation	errors.

Note:	if	multiple	source	files	are	in	the	main 	package	of	a	program,	then	we	should	run	the	program	with
the	following	command

$	go	run	.
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Note,	the	go	run 	command	is	not	recommended	to	compile	and	run	large	Go	projects.	It	is	just	a
convenient	way	to	run	simple	Go	programs,	like	the	ones	in	the	Go	101	articles.	For	large	Go	projects,
please	use	the	commands	go	build 	or	go	install 	to	build	and	create	executable	binary	files	instead.

More	go	Subcommands

The	three	commands,	go	run ,	go	build 	and	go	install ,	only	output	code	syntax	errors	(if	any).
They	don't	(try	to)	output	code	warnings	(a.k.a.,	possible	code	logic	mistakes).	We	can	use	the	go	vet
command	to	check	and	report	such	warnings.

We	can	use	the	go	fmt 	command	to	format	Go	source	code	with	a	consistent	coding	style.

We	can	use	the	go	get 	command	to	get	a	remote	third-party	go	package	to	lcoal.	go	get 	requires	the
corresponding	version	control	tool	must	be	installed.

We	can	use	the	go	test 	command	to	run	tests	and	benchmarks.

We	can	use	the	go	doc 	command	to	view	Go	documentation	in	terminal	windows.

Since	Go	SDK	1.11,	we	can	use	the	go	mod 	command	to	manage	dependencies.

We	can	use	the	go	help	aSubCommand 	command	to	view	the	help	message	for	a	specified	sub
command.

The	go 	command	run	without	any	arguments	shows	the	supported	subcommands.

The	Go	101	article	series	will	not	explain	much	more	on	how	to	use	the	tools	provided	by	the	official	Go
SDK.	Please	read	the	official	documentation Ң 	for	details.

View	Go	Documentation	in	Browsers

We	can	view	all	kinds	of	Go	documentation	at	the	official	Go	website	golang.org Ң .

We	can	also	run	godoc	-http=:9999 	to	start	a	local	clone	of	the	official	website	at	localhost:9999 Ң .

Please	note,

since	Go	SDK	1.13,	the	godoc 	command	has	been	removed	from	Go	SDK Ң .	Please	run	go	get
golang.org/x/tools/cmd/godoc 	to	install	it	separately.	The	latest	godoc 	version	supports
modules	mode.
for	Go	SDK	1.10,	if	the	GOROOT 	environment	variable	is	unset,	we	must	specify	the	goroot 	flag
when	running	the	local	godoc	server,	e.	g.	godoc	-http=:9999	-goroot	path/to/go/sdk .
This	inconvenience	is	caused	by	a	bug	in	Go	SDK	1.10.	This	bug	has	been	fixed	since	Go	SDK
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1.11.
since	Go	SDK	1.12,	the	documentation	"A	Tour	of	Go"	is	not	packaged	in	Go	SDK	any	more.	We
can	run	go	get	golang.org/x/tour;	tour 	to	view	the	documentation	locally.

The	godoc 	command	tries	to	list	the	documentation	of	all	the	packages	under	the	paths	specified	in	the
GOPATH 	environment	variable.	If	you	only	want	to	view	the	documentation	of	the	standard	packages,	you
can	set	the	GOPATH 	environment	variable	to	a	non-exist	path	before	running	godoc ,	for	example,	run
GOPATH=nonexist	godoc	-http=:9999 	on	Linux.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Introduction	to	Source	Code	Elements
Go	is	known	for	its	simple	and	clean	syntax.	This	article	introduces	the	common	source	code	elements	in
programming	through	a	simple	example.	This	will	help	new	gophers	(Go	programmers)	get	a	basic	idea	of
the	usage	of	Go	elements.

Programming	and	Source	Code	Elements

Programming	can	be	viewed	as	manipulating	operations	in	all	kinds	of	ways	to	reach	certain	goals.
Operations	write	data	to	and	read	data	from	hardware	devices	to	complete	tasks.	For	modern	computers,
elemental	operations	are	low-level	CPU	and	GPU	instructions.	Common	hardware	devices	include
memory,	disk,	network	card,	graphics	card,	monitor,	keyboard	and	mouse,	etc.

Programming	by	manipulating	low-level	instructions	directly	is	tedious	and	error-prone.	High-level
programming	languages	make	some	encapsulations	for	low-level	operations,	and	make	some	abstracts	for
data,	to	make	programming	more	intuitive	and	human-friendly.

In	popular	high-level	programming	languages,	operations	are	mainly	achieved	by	calling	functions	and
using	operators.	Most	popular	high-level	programming	languages	support	several	kinds	of	conditional
and	loop	control	flows,	we	can	think	of	them	as	special	operations.	The	syntax	of	these	control	flows	is
close	to	human	language	so	that	the	code	written	by	programmers	is	easy	to	understand.

Data	is	abstracted	as	types	and	values	in	most	high-level	programming	languages.	Types	can	be	viewed	as
value	templates,	and	values	can	be	viewed	as	type	instances.	Most	languages	support	several	built-in
types,	and	also	support	custom	types.	The	type	system	of	a	programming	language	is	the	spirit	of	the
language.

There	may	be	a	large	number	of	values	used	in	programming.	Some	of	them	can	be	represented	with	their
literals	(text	representations)	directly,	but	others	can't.	To	make	programming	flexible	and	less	error-
prone,	many	values	are	named.	Such	values	include	variables	and	named	constants.

Named	functions,	named	values	(including	variables	and	named	constants),	defined	types	and	type	alias
are	called	resources	in	Go	101.	The	names	of	resources	must	be	identifiers	(§5).	Package	names	and
package	import	names	shall	also	be	identifiers.

High-level	programming	code	will	be	translated	to	low-level	CPU	instructions	by	compilers	to	get
executed.	To	help	compilers	parse	high-level	programming	code,	many	words	are	reserved	to	prevent
them	from	being	used	as	identifiers.	Such	words	are	called	keywords	(§5).

Many	modern	high-level	programming	languages	use	packages	to	organize	code.	A	package	must	import
another	package	to	use	the	exported	(public)	resources	in	the	other	package.	Package	names	and	package
import	names	shall	also	be	identifiers.
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Although	the	code	written	in	high-level	programming	languages	is	more	understandable	than	low-level
machine	languages,	we	still	need	some	comments	for	some	code	to	explain	the	logic.	The	example
program	in	the	next	section	contains	many	comments.

A	Simple	Go	Demo	Program

Let's	view	a	short	Go	demo	program	to	know	all	kinds	of	code	elements	in	Go.	Like	some	other
languages,	in	Go,	line	comments	start	with	// ,	and	each	block	comment	is	enclosed	in	a	pair	of	/* 	and
*/ .

Below	is	the	demo	Go	program.	Please	read	the	comments	for	explanations.	More	explanations	are
following	the	program.

1| package	main	//	specify	the	source	file's	package

2|

3| import	"math/rand"	//	import	a	standard	package

4|

5| const	MaxRnd	=	16	//	a	named	constant	declaration

6|

7| //	A	function	declaration

8| /*

9| 	StatRandomNumbers	produces	a	certain	number	of

10| 	non-negative	random	integers	which	are	less	than

11| 	MaxRnd,	then	counts	and	returns	the	numbers	of

12| 	small	and	large	ones	among	the	produced	randoms.

13| 	n	specifies	how	many	randoms	to	be	produced.

14| */

15| func	StatRandomNumbers(n	int)	(int,	int)	{

16| 			//	Declare	two	variables	(both	as	0).

17| 			var	a,	b	int

18| 			//	A	for-loop	control	flow.

19| 			for	i	:=	0;	i	<	n;	i++	{

20| 						//	An	if-else	control	flow.

21| 						if	rand.Intn(MaxRnd)	<	MaxRnd/2	{

22| 									a	=	a	+	1

23| 						}	else	{

24| 									b++	//	same	as:	b	=	b	+	1

25| 						}

26| 			}

27| 			return	a,	b	//	this	function	return	two	results

28| }

29|

30| //	"main"	function	is	the	entry	function	of	a	program.

31| func	main()	{

32| 			var	num	=	100

33| 			//	Call	the	declared	StatRandomNumbers	function.
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34| 			x,	y	:=	StatRandomNumbers(num)

35| 			//	Call	two	built-in	functions	(print	and	println).

36| 			print("Result:	",	x,	"	+	",	y,	"	=	",	num,	"?	")

37| 			println(x+y	==	num)

38| }

Save	above	source	code	to	a	file	named	basic-code-element-demo.go 	and	run	this	program	by:

$	go	run	basic-code-element-demo.go

Result:	46	+	54	=	100?	true

In	the	above	program,	package ,	import ,	const ,	func ,	var ,	for ,	if ,	else ,	and	return 	are	all
keywords.	Most	other	words	in	the	program	are	identifiers.	Please	read	keywords	and	identifiers	(§5)	for
more	information	about	keywords	and	identifiers.

The	four	int 	words	at	line	15	and	line	17	denote	the	built-in	int 	type,	one	of	many	kinds	of	integer
types	in	Go.	The	16 	at	line	5,	0 	at	line	19,	1 	at	line	22	and	100 	at	line	32	are	some	integer	literals.	The
"Result:	" 	at	line	36	is	a	string	literal.	Please	read	basic	types	and	their	value	literals	(§6)	for	more
information	about	above	built-in	basic	types	and	their	value	literals.	Some	other	types	(composite	types)
will	be	introduced	later	in	other	articles.

Line	22	is	an	assignment.	Line	5	declares	a	named	constant,	MaxRnd .	Line	17	and	line	32	declare	three
variables,	with	the	standard	variable	declaration	form.	Variables	i 	at	line	19,	x 	and	y 	at	line	34	are
declared	with	the	short	variable	declaration	form.	We	have	specified	the	type	for	variables	a 	and	b 	as
int .	Go	compiler	will	deduce	that	the	types	of	i ,	num ,	x 	and	y 	are	all	int ,	because	they	are	initialized
with	integer	literals.	Please	read	constants	and	variables	(§7)	for	more	information	about	untyped	values,
type	deduction,	value	assignments,	and	how	to	declare	variables	and	named	constants.

There	are	many	operators	used	in	the	program,	such	as	the	less-than	comparison	operator	< 	at	line	19	and
21,	the	equal-to	operator	== 	at	line	37,	and	the	addition	operator	+ 	at	line	22	and	line	37.	Yes,	+ 	at	line
36	is	not	an	operator,	it	is	one	character	in	a	string	literal.	The	values	involved	in	an	operator	operation	are
called	operands.	Please	read	common	operators	(§8)	for	more	information.	More	operators	will	be
introduced	in	other	articles	later.

At	line	36	and	line	37,	two	built-in	functions,	print 	and	println ,	are	called.	A	custom	function
StatRandomNumbers 	is	declared	from	line	15	to	line	28,	and	is	called	at	line	34.	Line	21	also	calls	a
function,	Intn ,	which	is	a	function	declared	in	the	math/rand 	standard	package.	A	function	call	is	a
function	operation.	The	input	values	used	in	a	function	call	are	called	arguments.	Please	read	function
declarations	and	calls	(§9)	for	more	information.

(Note,	the	built-in	print 	and	println 	functions	are	not	recommended	to	be	used	in	formal	Go
programming.	The	corresponding	functions	in	the	fmt 	standard	packages	should	be	used	instead	in
formal	Go	projects.	In	Go	101,	the	two	functions	are	only	used	in	the	several	starting	articles.)

Line	1	specifies	the	package	name	of	the	current	source	file.	The	main 	entry	function	must	be	declared	in
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a	package	which	is	also	called	main .	Line	3	imports	a	package,	the	math/rand 	standard	code	package.
Its	import	name	is	rand .	The	function	Intn 	declared	in	this	standard	package	is	called	at	line	21.	Please
read	code	packages	and	package	imports	(§10)	for	more	information	about	how	to	organize	code	packages
and	import	packages.

The	article	expressions,	statements	and	simple	statements	(§11)	will	introduce	what	are	expressions	and
statements.	In	particular,	all	kinds	of	simple	statements,	which	are	special	statements,	are	listed.	Some
portions	of	all	kinds	of	control	flows	must	be	simple	statements,	and	some	portions	must	be	expressions.

In	the	StatRandomNumbers 	function	body,	two	control	flows	are	used.	One	is	a	for 	loop	control	flow,
which	nests	the	other	one,	an	if-else 	conditional	control	flow.	Please	read	basic	control	flows	(§12)	for
more	information	about	all	kinds	of	basic	control	flows.	Some	other	special	control	flows	will	be
introduced	in	other	articles	later.

Blank	lines	have	been	used	in	the	above	program	to	improve	the	readability	of	the	code.	And	as	this
program	is	for	code	elements	introduction	purpose,	there	are	many	comments	in	it.	Except	the
documentation	comment	for	the	StatRandomNumbers 	function,	other	comments	are	for	demonstration
purpose	only.	We	should	try	to	make	code	self-explanatory	and	only	use	necessary	comments	in	formal
projects.

About	Line	Breaks

Like	many	other	languages,	Go	also	uses	a	pair	of	braces	({ 	and	} )	to	form	an	explicit	code	block.
However,	in	Go	programming,	coding	style	can't	be	arbitrary.	For	example,	many	of	the	starting	curly
braces	({ )	can't	be	put	on	the	next	line.	If	we	modify	the	StatRandomNumbers 	function	declaration	in
the	above	program	as	the	following,	the	program	will	fail	to	compile.

1| func	StatRandomNumbers(n	int)	(int,	int)

2| {	//	syntax	error

3| 			var	a,	b	int

4| 			for	i	:=	0;	i	<	n;	i++

5| 			{	//	syntax	error

6| 						if	rand.Intn(MaxRnd)	<	MaxRnd/2

7| 						{	//	syntax	error

8| 									a	=	a	+	1

9| 						}	else	{

10| 									b++

11| 						}

12| 			}

13| 			return	a,	b

14| }

Some	programmers	may	not	like	the	line	break	restrictions.	But	the	restrictions	have	two	benefits:
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1.	 they	make	code	compilations	become	faster.
2.	 they	make	the	coding	styles	written	by	different	gophers	look	similar,	so	that	it	is	more	easily	for

gophers	to	read	and	understand	the	code	written	by	other	gophers.

We	can	learn	more	about	line	break	rules	in	a	later	article	(§28).	At	present,	we	should	avoid	putting	a
starting	curly	brace	on	a	new	line.	In	other	words,	generally,	the	first	non-blank	character	of	a	code	line
should	not	be	the	starting	curly	brace	character.	(But,	please	remember,	this	is	not	a	universal	rule.)

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Keywords	and	Identifiers	in	Go
This	article	will	introduce	keywords	and	identifiers	in	Go.

Keywords

Keywords	are	the	special	words	which	help	compilers	understand	and	parse	user	code.

Up	to	now	(Go	1.13),	Go	has	only	25	keywords:

1| break					default						func				interface		select

2| case						defer								go						map								struct

3| chan						else									goto				package				switch

4| const					fallthrough		if						range						type

5| continue		for										import		return					var

They	can	be	categorized	as	four	groups:

const ,	func ,	import ,	package ,	type 	and	var 	are	used	to	declare	all	kinds	of	code	elements	in
Go	programs.
chan ,	interface ,	map 	and	struct 	are	used	as	parts	in	some	composite	type	denotations.
break ,	case ,	continue ,	default ,	else ,	fallthrough ,	for ,	goto ,	if ,	range ,	return ,
select 	and	switch 	are	used	to	control	flow	of	code.
defer 	and	go 	are	also	control	flow	keywords,	but	in	other	specific	manners.	They	modify	function
calls,	which	we'll	talk	about	in	this	article	(§13).

These	keywords	will	be	explained	in	details	in	other	articles.

Identifiers

An	identifier	is	a	token	which	must	be	composed	of	Unicode	letters,	Unicode	digits	(Number	category	Nd
in	Unicode	Standard	8.0)	and	_ 	(underscore),	and	start	with	either	an	Unicode	letter	or	_ .	Here,

Unicode	letters	mean	the	characters	defined	in	the	Letter	categories	Lu,	Ll,	Lt,	Lm,	or	Lo	of	The
Unicode	Standard	8.0 Ң .
Unicode	digits	mean	the	characters	defined	in	the	Number	category	Nd	of	The	Unicode	Standard
8.0.

keywords	can	not	be	used	as	identifiers.

Identifier	_ 	is	a	special	identifier,	it	is	called	blank	identifier.

Later	we	will	learn	that	all	names	of	types,	variables,	constants,	labels,	package	names	and	package	import
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Later	we	will	learn	that	all	names	of	types,	variables,	constants,	labels,	package	names	and	package	import
names	must	be	identifiers.

An	identifier	starting	with	an	Unicode	upper	case	letter Ң 	is	called	an	exported	identifier.	The	word
exported	can	be	interpreted	as	public	in	many	other	languages.	The	identifiers	which	don't	start	with	an
Unicode	upper	case	letter	are	called	non-exported	identifiers.	The	word	non-exported	can	be	interpreted	as
private	in	many	other	languages.	Currently	(Go	1.13),	eastern	characters	are	viewed	as	non-exported
letters.	Sometimes,	non-exported	identifiers	are	also	called	unexported	identifiers.

Here	are	some	legal	exported	identifiers:

1| Player_9

2| DoSomething

3| VERSION

4| Ĝo

5| Π

Here	are	some	legal	non-exported	identifiers:

1| _

2| _status

3| memStat

4| book

5| π

6| 一个类型

7| 변수

8| エラー

And	here	are	some	tokens	which	are	illegal	to	be	used	as	identifiers:

1| //	Starting	with	a	Unicode	digit.

2| 123

3| 3apples

4|

5| //	Containing	Unicode	characters	not

6| //	satisfying	the	requirements.

7| a.b

8| *ptr

9| $name

10| a@b.c

11|

12| //	These	are	keywords.

13| type

14| range

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,
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Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Basic	Types	and	Basic	Value	Literals
Types	can	be	viewed	as	value	templates,	and	values	can	be	viewed	as	type	instances.	This	article	will
introduce	the	built-in	basic	types	and	their	value	literals	in	Go.	Composite	types	will	not	get	introduced	in
this	article.

Built-in	Basic	Types	in	Go

Go	supports	following	built-in	basic	types:

one	boolean	built-in	boolean	type:	bool .
11	built-in	integer	numeric	types:	int8 ,	uint8 ,	int16 ,	uint16 ,	int32 ,	uint32 ,	int64 ,
uint64 ,	int ,	uint ,	and	uintptr .
two	built-in	floating-point	numeric	types:	float32 	and	float64 .
two	built-in	complex	numeric	types:	complex64 	and	complex128 .
one	built-in	string	type:	string .

Each	of	the	17	built-in	basic	types	belongs	to	one	different	kind	of	type	in	Go.	We	can	use	the	above	built-
in	types	in	code	without	importing	any	packages,	though	all	the	names	of	these	types	are	non-exported
identifiers.

15	of	the	17	built-in	basic	types	are	numeric	types.	Numeric	types	include	integer	types,	floating-point
types	and	complex	types.

Go	also	support	two	built-in	type	aliases,

byte 	is	a	built-in	alias	of	uint8 .	We	can	view	byte 	and	uint8 	as	the	same	type.
rune 	is	a	built-in	alias	of	int32 .	We	can	view	rune 	and	int32 	as	the	same	type.

The	integer	types	whose	names	starting	with	an	u 	are	unsigned	types.	Values	of	unsigned	types	are
always	non-negative.	The	number	in	the	name	of	a	type	means	how	many	binary	bits	a	value	of	the	type
will	occupy	in	memory	at	run	time.	For	example,	every	value	of	the	uint8 	occupies	8	bits	in	memory.	So
the	largest	uint8 	value	is	255 	(28-1),	the	largest	int8 	value	is	127 	(27-1),	and	the	smallest	int8 	value
is	-128 	(-27).

If	a	value	occupies	N	bits	in	memory,	we	say	the	size	of	the	value	is	N	bits.	The	sizes	of	all	values	of	a
type	are	always	the	same,	so	value	sizes	are	often	called	as	type	sizes.

We	often	measure	the	size	of	a	value	based	on	the	number	of	bytes	it	occupies	in	memory.	One	byte
contains	8	bits.	So	the	size	of	the	uint32 	type	is	four	bytes.

The	size	of	uintptr ,	int 	and	uint 	values	n	memory	are	implementation-specific.	Generally,	The	size

§6.	Basic	Types	and	Basic	Value	Literals

24



of	int 	and	uint 	values	are	4	on	32-bit	architectures,	and	8	on	64-bit	architectures.	The	size	of	uintptr
value	must	be	large	enough	to	store	the	uninterpreted	bits	of	any	memory	address.

The	real	and	imaginary	parts	of	a	complex64 	value	are	both	float32 	values,	and	the	real	and	imaginary
parts	of	a	complex128 	value	are	both	float64 	values.

In	memory,	all	floating-point	numeric	values	in	Go	are	stored	in	IEEE-754	format Ң .

A	boolean	value	represents	a	truth.	There	are	only	two	possible	boolean	values	in	memory,	they	are
denoted	by	the	two	predeclared	named	constants,	false 	and	true .	Name	constants	will	be	introduced	in
the	next	article	(§7).

In	logic,	a	string	value	denotes	a	piece	of	text.	In	memory,	a	string	value	stores	a	sequence	of	bytes,	which
is	the	UTF-8	encoding	representation	of	the	piece	of	text	denoted	by	the	string	value.	We	can	learn	more
facts	on	strings	from	the	article	strings	in	Go	(§19)	later.

Although	there	is	only	one	built-in	type	for	each	of	boolean	and	string	types,	we	can	define	custom
boolean	and	string	types	for	the	built-in	boolean	and	string	types.	So	there	can	be	many	boolean	and	string
types.	The	same	is	for	any	kinds	of	numeric	types.	The	following	are	some	type	declaration	examples.	In
these	declarations,	the	word	type 	is	a	keyword.

1| /*	Some	type	definition	declarations	*/

2|

3| //	status	and	bool	are	two	different	types.

4| type	status	bool

5| //	MyString	and	string	are	two	different	types.

6| type	MyString	string

7| //	Id	and	uint64	are	two	different	types.

8| type	Id	uint64

9| //	real	and	float32	are	two	different	types.

10| type	real	float32

11|

12| /*	Some	type	alias	declarations	*/

13|

14| //	boolean	and	bool	denote	the	same	type.

15| type	boolean	=	bool

16| //	Text	and	string	denote	the	same	type.

17| type	Text	=	string

18| //	U8,	uint8	and	byte	denote	the	same	type.

19| type	U8	=	uint8

20| //	char,	rune	and	int32	denote	the	same	type.

21| type	char	=	rune

We	can	call	the	custom	real 	type	defined	above	and	the	built-in	float32 	type	both	as	float32	types.
Note,	the	second	float32	word	in	the	last	sentence	is	a	general	reference,	whereas	the	first	one	is	a
specified	reference.	Similarly,	MyString 	and	string 	are	both	string	types,	status 	and	bool 	are	both
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bool	types,	etc.

We	can	learn	more	on	custom	types	in	the	article	Go	type	system	overview	(§14)	later.

Zero	Values

Each	type	has	a	zero	value.	The	zero	value	of	a	type	can	be	viewed	as	the	default	value	of	the	type.

The	zero	value	of	a	boolean	type	is	false.
The	zero	value	of	a	numeric	type	is	zero,	though	zeros	of	different	numeric	types	may	have	different
sizes	in	memory.
The	zero	value	of	a	string	type	is	an	empty	string.

Basic	Value	Literals

A	literal	of	a	value	is	a	text	representation	of	the	value	in	code.	A	value	may	have	many	literals.	The
literals	denoting	values	of	basic	types	are	called	basic	value	literals.

Boolean	value	literals

Go	specification	doesn't	define	boolean	literals.	However,	in	general	programming,	we	can	view	the	two
predeclared	identifiers,	false 	and	true ,	as	boolean	literals.	But	we	should	know	that	the	two	are	not
literals	in	the	strict	sense.

As	mentioned	above,	zero	values	of	boolean	types	are	denoted	with	the	predeclared	false 	constant.

Integer	value	literals

There	are	three	integer	value	literal	forms,	the	decimal	(base	10)	form,	the	octal	(base	8)	form,	the	hex
(base	16)	form	and	the	binary	form	(base	2).	For	example,	the	following	three	integer	literals	all	denote
15 	in	decimal.

0xF	//	the	hex	form	(starts	with	a	"0x"	or	"0X")

0XF

017	//	the	octal	form	(starts	with	a	"0",	"0o"	or	"0O")

0o17

0O17

0b1111	//	the	binary	form	(starts	with	a	"0b"	or	"0B")

0B1111
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15	//	the	decimal	form	(starts	without	a	"0")

(Note:	the	binary	form	and	the	octal	from	starting	with	0o 	or	0O 	are	supported	since	Go	1.13.)

The	following	program	will	print	two	true 	texts.

1| package	main

2|

3| func	main()	{

4| 			println(15	==	017)	//	true

5| 			println(15	==	0xF)	//	true

6| }

Note,	the	two	== 	are	the	equal-to	comparison	operator,	which	will	be	introduced	in	common	operators
(§8).

Generally,	zero	values	of	integer	types	are	denoted	as	0 	in	literal,	though	there	are	many	other	legal
literals	for	integer	zero	values,	such	as	00 	and	0x0 .	In	fact,	the	zero	value	literals	introduced	in	the
current	article	for	other	kinds	of	numeric	types	can	also	represent	the	zero	value	of	any	integer	type.

Floating-point	value	literals

A	floating-point	value	literal	can	contain	a	decimal	integer	part,	a	decimal	point,	a	decimal	fractional	part,
and	an	integer	exponent	part.	Example	(xEn 	is	equivalent	to	x 	is	multiplied	by	10n ,	and	xE-n 	is
equivalent	to	x 	is	divided	by	10n ):

1.23

01.23	//	==	1.23

.23

1.

//	A	"e"	or	"E"	starts	the	exponent	part	(10-based).

1.23e2		//	==	123.0

123E2			//	==	12300.0

123.E+2	//	==	12300.0

1e-1				//	==	0.1

.1e0				//	==	0.1

0010e-2	//	==	0.1

0e+5				//	==	0.0

Since	Go	1.13,	Go	also	supports	another	floating	point	literal	form,	hexadecimal	floating	point	literal
form.

Same	as	hex	integer	literals,	a	hexadecimal	floating	point	literal	also	must	start	with	0x 	or	0X .
Different	from	hex	integer	literals,	letter	p 	or	P ,	which	is	followed	by	a	2-based	exponent,	can
appear	in	a	hexadecimal	floating	point	literal.
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Letter	e 	and	E 	can't	appear	in	hexadecimal	floating	point	literals.

The	followings	are	some	valid	hexadecimal	floating	point	literals	(yPn 	is	equivalent	to	y 	is	multiplied	by
2n ,	and	yP-n 	is	equivalent	to	y 	is	divided	by	2n ):

0x1p-2					//	==	0.25

0x2.p10				//	==	2048.0

0x1.Fp+0			//	==	1.9375

0X.8p-0				//	==	0.5

0X1FFFP-16	//	==	0.1249847412109375

However,	the	following	ones	are	invalid:

0x.p1				//	mantissa	has	no	digits

1p-2					//	p	exponent	requires	hexadecimal	mantissa

0x1.5e-2	//	hexadecimal	mantissa	requires	p	exponent

Note:	the	following	literal	is	valid,	but	it	is	not	a	floating	point	literal.	It	is	a	subtraction	arithmetic
expression	actually.	The	e 	in	it	means	14 	in	decimal.	0x15e 	is	a	hex	interger	literal,	- 	is	the	subtraction
operator,	and	2 	is	a	decimal	interger	literal.	(Arithmetic	operators	will	be	introduced	in	the	article
common	operators	(§8).)

0x15e-2	//	==	0x15e	-	2	//	a	subtraction	expression

The	standard	literals	for	zero	value	of	floating-point	types	are	0.0 ,	though	there	are	many	other	legal
literals,	such	as	0. ,	.0 ,	0e0 ,	0x0p0 ,	etc.	In	fact,	the	zero	value	literals	introduced	in	the	current	article
for	other	kinds	of	numeric	types	can	also	represent	the	zero	value	of	any	floating-point	type.

Imaginary	value	literals

An	imaginary	literal	consists	of	a	floating-point	or	integer	literal	and	a	lower-case	letter	i .	Examples:

1.23i

1.i

.23i

123i

0123i			//	==	123i

1.23E2i	//	==	123i

1e-1i

(Note:	before	Go	1.13,	if	the	part	before	the	lower-case	letter	i 	in	an	imaginary	literal	is	an	integer	literal,
then	it	must	be	presented	as	the	decimal	form.)

Imaginary	literals	are	used	to	represent	the	imaginary	parts	of	complex	values.	Here	are	some	literals	to
denote	complex	values:
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1	+	2i							//	==	1.0	+	2.0i

1.	-	.1i					//	==	1.0	+	-0.1i

1.23i	-	7.89	//	==	-7.89	+	1.23i

1.23i								//	==	0.0	+	1.23i

The	standard	literals	for	zero	values	of	complex	types	are	0.0+0.0i ,	though	there	are	many	other	legal
literals,	such	as	0i ,	.0i ,	0+0i ,	etc.	In	fact,	the	zero	value	literals	introduced	in	the	current	article	for
other	kinds	of	numeric	types	can	also	represent	the	zero	value	of	any	complex	type.

Use	_ 	in	numeric	literals	for	better	readability

Since	Go	1.13,	underscores	_ 	can	appear	in	integer,	floating-point	and	maginary	literals	as	digit	separators
to	enhance	code	readability.	But	please	note,	in	a	numeric	literal,

any	_ 	is	not	allowed	to	be	used	as	the	first	or	the	last	character	of	the	literal,
the	two	sides	of	any	_ 	must	be	either	literal	prefixs	(such	as	0X )	or	legal	digit	characters.

Some	valid	and	invalid	numeric	literals	which	contain	underscores:

//	Valid	ones:

6_9										//	==	69

0_33_77_22			//	==	0337722

0x_Bad_Face		//	==	0xBadFace

0X_1F_FFP-16	//	==	0X1FFFP-16

0b1011_0111	+	0xA_B.Fp2i

//	Invalid	ones:

_69								//	_	can't	appear	as	the	first	character

69_								//	_	can't	appear	as	the	last	character

6__9							//	one	side	of	_	is	a	illegal	character

0_xBadFace	//	"x"	is	not	a	legal	octal	digit

1_.5							//	"."	is	not	a	legal	octal	digit

1._5							//	"."	is	not	a	legal	octal	digit

Rune	value	literals

Rune	types,	including	custom	defined	rune	types	and	the	built-in	rune 	type	(a.k.a.,	int32 	type),	are
special	integer	types,	so	all	rune	values	can	be	denoted	by	the	integer	literals	introduced	above.	On	the
other	hand,	many	values	of	all	kinds	of	integer	types	can	also	be	represented	by	rune	literals	introduced
below	in	the	current	subsection.

A	rune	value	is	intended	to	store	a	Unicode	code	point.	Generally,	we	can	view	a	code	point	as	a	Unicode
character,	but	we	should	know	that	some	Unicode	characters	are	composed	of	more	than	one	code	points
each.
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A	rune	literal	is	expressed	as	one	or	more	characters	enclosed	in	a	pair	of	quotes.	The	enclosed	characters
denote	one	Unicode	code	point	value.	There	are	some	minor	variants	of	the	rune	literal	form.	The	most
popular	form	of	rune	literals	is	just	to	enclose	the	characters	denoted	by	rune	values	between	two	single
quotes.	For	example

'a'	//	an	English	character

'π'

'众'	//	a	Chinese	character

The	following	rune	literal	variants	are	equivalent	to	'a' 	(the	Unicode	value	of	character	a 	is	97).

//	141	is	the	octal	representation	of	decimal	number	97.

'\141'

//	61	is	the	hex	representation	of	decimal	number	97.

'\x61'

'\u0061'

'\U00000061'

Please	note,	\ 	must	be	followed	by	exactly	three	octal	digits	to	represent	a	byte	value,	\x 	must	be
followed	by	exactly	two	hex	digits	to	represent	a	byte	value,	\u 	must	be	followed	by	exactly	four	hex
digits	to	represent	a	rune	value,	and	\U 	must	be	followed	by	exactly	eight	hex	digits	to	represent	a	rune
value.	Each	such	octal	or	hex	digit	sequence	must	represent	a	legal	Unicode	code	point,	otherwise,	it	fails
to	compile.

The	following	program	will	print	7	true 	texts.

1| package	main

2|

3| func	main()	{

4| 			println('a'	==	97)

5| 			println('a'	==	'\141')

6| 			println('a'	==	'\x61')

7| 			println('a'	==	'\u0061')

8| 			println('a'	==	'\U00000061')

9| 			println(0x61	==	'\x61')

10| 			println('\u4f17'	==	'众')

11| }

In	fact,	the	four	variant	rune	literal	forms	just	mentioned	are	rarely	used	for	rune	values	in	practice.	They
are	occasionally	used	in	interpreted	string	literals	(see	the	next	subsection	for	details).

If	a	rune	literal	is	composed	by	two	characters	(not	including	the	two	quotes),	the	first	one	is	the	character
\ 	and	the	second	one	is	not	a	digital	character,	x ,	u 	and	U ,	then	the	two	successive	characters	will	be
escaped	as	one	special	character.	The	possible	character	pairs	to	be	escaped	are:

\a			(Unicode	value	0x07)	alert	or	bell

\b			(Unicode	value	0x08)	backspace
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\f			(Unicode	value	0x0C)	form	feed

\n			(Unicode	value	0x0A)	line	feed	or	newline

\r			(Unicode	value	0x0D)	carriage	return

\t			(Unicode	value	0x09)	horizontal	tab

\v			(Unicode	value	0x0b)	vertical	tab

\\			(Unicode	value	0x5c)	backslash

\'			(Unicode	value	0x27)	single	quote

\n 	is	the	most	used	escape	character	pair.

An	example:

1| 				println('\n')	//	10

2| 				println('\r')	//	13

3| 				println('\'')	//	39

4|

5| 				println('\n'	==	10)					//	true

6| 				println('\n'	==	'\x0A')	//	true

There	are	many	literals	which	can	denote	the	zero	values	of	rune	types,	such	as	'\000' ,	'\x00' ,
'\u0000' ,	etc.	In	fact,	we	can	also	use	any	numeric	literal	introduced	above	to	represent	the	values	of
rune	types,	such	as	0 ,	0x0 ,	0.0 ,	0e0 ,	0i ,	etc.

String	value	literals

String	values	in	Go	are	UTF-8	encoded.	In	fact,	all	Go	source	files	must	be	UTF-8	encoding	compatible.

There	are	two	forms	of	string	value	literals,	interpreted	string	literal	(double	quote	form)	and	raw	string
literal	(backquote	form).	For	example,	the	following	two	string	literals	are	equivalent:

//	The	interpreted	form.

"Hello\nworld!\n\"你好世界\""

//	The	raw	form.

`Hello

world!

"你好世界"`

In	the	above	interpreted	string	literal,	each	\n 	character	pair	will	be	escaped	as	one	newline	character,	and
each	\" 	character	pair	will	be	escaped	as	one	double	quote	character.	Most	of	such	escape	character	pairs
are	the	same	as	the	escape	character	pairs	used	in	rune	literals	introduced	above,	except	that	\" 	is	only
legal	in	interpreted	string	literals	and	\` 	is	only	legal	in	rune	literals.

The	character	sequence	of	\ ,	\x ,	\u 	and	\U 	followed	by	several	octal	or	hex	digits	introduced	in	the	last
section	can	also	be	used	in	interpreted	string	literals.
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//	The	following	interpreted	string	literals	are	equivalent.

"\141\142\143"

"\x61\x62\x63"

"abc"

//	The	following	interpreted	string	literals	are	equivalent.

"\u4f17\xe4\xba\xba"

						//	The	Unicode	of	众	is	4f17,	which	is

						//	UTF-8	encoded	as	three	bytes:	e4	bc	97.

"\xe4\xbc\x97\u4eba"

						//	The	Unicode	of	人	is	4eba,	which	is

						//	UTF-8	encoded	as	three	bytes:	e4	ba	ba.

"\xe4\xbc\x97\xe4\xba\xba"

"众人"

Please	note	that	each	English	character	(code	point)	is	represented	with	one	byte,	but	each	Chinese
character	(code	point)	is	represented	with	three	bytes.

In	a	raw	string	literal,	no	character	sequences	will	be	escaped.	The	backquote	character	is	not	allowed	to
appear	in	a	raw	string	literal.	To	get	better	cross-platform	compatibility,	carriage	return	characters
(Unicode	code	point	0x0D )	inside	raw	string	literals	will	be	discarded.

Zero	values	of	string	types	can	be	denoted	as	"" 	or	`` 	in	literal.

Representability	of	Basic	Numeric	Value	Literals

A	numeric	literal	can	be	used	to	represent	as	an	integer	value	only	if	it	needn't	be	rounded.	For	example,
1.23e2 	can	represent	as	values	of	any	basic	integer	types,	but	1.23 	can't	represent	as	values	of	any	basic
integer	types.	Rounding	is	allowed	when	using	a	numeric	literal	to	represent	a	non-integer	basic	numeric
values.

Each	basic	numeric	type	has	a	representable	value	range.	So,	if	a	literal	overflows	the	value	range	of	a
type,	then	the	literal	is	not	representable	as	values	of	the	type.

Some	examples:
The	Literal Types	Which	Values	the	Literal	Can	Represent

256 All	basic	numeric	types	except	int8	and	uint8	types.
255 All	basic	numeric	types	except	int8	types.
-123 All	basic	numeric	types	except	the	unsigned	ones.
123

All	basic	numeric	types.
123.000

1.23e2

'a'

1.0+0i

1.23

All	basic	floating-point	and	complex	numeric	types.0x10000000000000000
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0x10000000000000000

(16	zeros)
All	basic	floating-point	and	complex	numeric	types.

3.5e38
All	basic	floating-point	and	complex	numeric	types	except	float32	and
complex64	types.

1+2i All	basic	complex	numeric	types.
2e+308 None	basic	types.

Notes:

Because	no	values	of	the	basic	integer	types	provided	in	Go	can	hold	0x10000000000000000 ,	so
the	literal	is	not	representable	as	values	of	any	basic	integer	types.
The	maximum	IEEE-754	float32	value	which	can	be	represented	accurately	is
3.40282346638528859811704183484516925440e+38 ,	so	3.5e38 	is	not	representable	as
values	of	any	float32	and	complex64	types.
The	max	IEEE-754	float64	value	which	can	be	represented	accurately	is
1.797693134862315708145274237317043567981e+308 ,	so	2e+308 	is	not	representable	as
values	of	any	float64 	and	complex128 	types.
In	the	end,	please	note,	although	0x10000000000000000 	can	represent	values	of	float32	types,
however	it	can't	represent	any	float32	values	accurately	in	memory.	In	other	words,	it	will	be
rounded	to	the	closest	float32	value	which	can	be	represented	accurately	in	memory	when	it	is	used
as	values	of	float32	types.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Constants	and	Variables
This	article	will	introduce	constant	and	variable	declarations	in	Go.	The	concept	of	untyped	values	and
explicit	conversions	will	also	be	introduced.

The	literals	introduced	in	the	last	article	(§6)	are	all	called	unnamed	constants	(or	literal	constants),	except
false 	and	true ,	which	are	two	predeclared	(built-in)	named	constants.	Custom	named	constant
declarations	will	be	introduced	below	in	this	article.

Untyped	Values	and	Typed	Values

In	Go,	some	values	are	untyped.	An	untyped	value	means	the	type	of	the	value	has	not	been	confirmed
yet.	On	the	contrary,	the	type	of	a	typed	value	is	determined.

For	most	untyped	values,	each	of	them	has	one	default	type.	The	predeclared	nil 	is	the	only	untyped
value	which	has	no	default	type.	We	will	learn	more	about	nil 	in	other	Go	101	articles	later.

All	literal	constants	(unnamed	constants)	are	untyped	values.	In	fact,	in	Go,	most	untyped	values	are	literal
constants	and	named	constants	(which	will	be	introduced	below	in	the	current	article).	The	other	untyped
values	include	the	just	mentioned	nil 	and	some	boolean	results	returned	by	some	operations	which	will
be	introduced	in	other	articles	later.

The	default	type	of	a	literal	constant	is	determined	by	its	literal	form.

The	default	type	of	a	string	literal	is	string .
The	default	type	of	a	boolean	literal	is	bool .
The	default	type	of	an	integer	literal	is	int .
The	default	type	of	a	rune	literal	is	rune 	(a.k.a.,	int32 ).
The	default	type	of	a	floating-point	literal	is	float64 .
If	a	literal	contains	an	imaginary	part,	then	its	default	type	is	complex128 .

Explicit	Conversions	of	Untyped	Constants

Like	many	other	languages,	Go	also	supports	value	conversions.	We	can	use	the	form	T(v) 	to	convert	a
value	v 	to	the	type	denoted	by	T 	(or	simply	speaking,	type	T ).	If	the	conversion	T(v) 	is	legal,	Go
compilers	view	T(v) 	as	a	typed	value	of	type	T .	Surely,	for	a	certain	type	T ,	to	make	the	conversion
T(v) 	legal,	the	value	v 	can't	be	arbitrary.

The	following	mentioned	rules	apply	for	both	the	literal	constants	introduced	in	the	last	article	and	the
untyped	named	constants	which	will	be	introduced	soon.
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For	an	untyped	constant	value	v ,	there	are	two	scenarios	where	T(v) 	is	legal.

1.	 v 	(or	the	literal	denoted	by	v )	is	representable	(§6)	as	a	value	of	a	basic	type	T .	The	result	value	is
a	typed	constant	of	type	T .

2.	 The	default	type	of	v 	is	an	integer	type	(int 	or	rune )	and	T 	is	a	string	type.	The	result	of	T(v) 	is
a	string	of	type	T 	and	contains	the	UTF-8	representation	of	the	integer	as	a	Unicode	code	point.
Integer	values	outside	the	range	of	valid	Unicode	code	points	result	strings	represented	by
"\uFFFD" 	(a.k.a.,	"\xef\xbf\xbd" ).	0xFFFD 	is	the	code	point	for	the	Unicode	replacement
character.	The	result	string	of	a	conversion	from	an	integer	always	contains	one	and	only	one	rune.
(Note,	such	conversions	from	arbitrary	integer	values	might	be	disallowed	since	a	future	Go
version Ң .)

In	fact,	the	second	scenario	doesn't	require	v 	to	be	a	constant.	If	v 	is	a	constant,	then	the	result	of	the
conversion	is	also	a	constant,	otherwise,	the	result	is	not	a	constant.

For	example,	the	following	conversions	are	all	legal.

//	Rounding	happens	in	the	following	3	lines.

complex128(1	+	-1e-1000i)		//	1.0+0.0i

float32(0.49999999)								//	0.5

float32(17000000000000000)

//	No	rounding	in	the	these	lines.

float32(123)

uint(1.0)

int8(-123)

int16(6+0i)

complex128(789)

string(65)										//	"A"

string('A')									//	"A"

string('\u68ee')				//	"森"

string(-1)										//	"\uFFFD"

string(0xFFFD)						//	"\uFFFD"

string(0x2FFFFFFFF)	//	"\uFFFD"

And	the	following	conversions	are	all	illegal.

//	1.23	is	not	representable	as	a	value	of	int.

int(1.23)

//	-1	is	not	representable	as	a	value	of	uint8.

uint8(-1)

//	1+2i	is	not	representable	as	a	value	of	float64.

float64(1+2i)

//	Constant	-1e+1000	overflows	float64.

float64(-1e1000)

//	Constant	0x10000000000000000	overflows	int.
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int(0x10000000000000000)

//	The	default	type	of	65.0	is	float64,

//	which	is	not	an	integer	type.

string(65.0)

//	The	default	type	of	66+0i	is	complex128,

//	which	is	not	an	integer	type.

string(66+0i)

From	the	above	examples,	we	know	that	an	untyped	constant,	(for	example	-1e1000 	and
0x10000000000000000 ),	may	even	not	be	able	to	represent	as	a	value	of	its	default	type.

Please	note,	sometimes,	the	form	of	explicit	conversions	must	be	written	as	(T)(v) 	to	avoid	ambiguities.
Such	situations	often	happen	in	case	of	T 	is	not	an	identifier.

We	will	learn	more	explicit	conversion	rules	later	in	other	Go	101	articles.

Introduction	of	Type	Deductions	in	Go

Go	supports	type	deduction.	In	other	words,	in	many	circumstances,	programmers	don't	need	to	explicitly
specify	the	types	of	some	values	in	code.	Go	compilers	will	deduce	the	types	for	these	values	by	context.

Type	deduction	is	also	often	called	type	inference.

In	Go	code,	if	a	place	needs	a	value	of	a	certain	type	and	an	untyped	value	(often	a	constant)	is
representable	as	a	value	of	the	certain	type,	then	the	untyped	value	can	be	used	in	the	place.	Go	compilers
will	view	the	untyped	value	as	a	typed	value	of	the	certain	type.	Such	places	include	an	operand	in	an
operator	operation,	an	argument	in	a	function	call,	a	destination	value	or	a	source	value	in	an	assignment,
etc.

Some	circumstances	have	no	requirements	on	the	types	of	the	used	values.	If	an	untyped	value	is	used	in
such	a	circumstance,	Go	compilers	will	treat	the	untyped	value	as	a	typed	value	of	its	default	type.

The	two	type	deduction	cases	can	be	viewed	as	implicit	conversions.

The	below	constant	and	variable	declaration	sections	will	show	some	type	deduction	cases.	More	type
deduction	rules	and	cases	will	be	introduced	in	other	articles.

Constant	Declarations

Unnamed	constants	are	all	boolean,	numeric	and	string	values.	Like	unnamed	constants,	named	constants
can	also	be	only	boolean,	numeric	and	string	values.	The	keyword	const 	is	used	to	declare	named
constants.	The	following	program	contains	some	constant	declarations.
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1| package	main

2|

3| //	Declare	two	individual	constants.	Yes,

4| //	non-ASCII	letters	can	be	used	in	identifiers.

5| const	π	=	3.1416

6| const	Pi	=	π	//	equivalent	to:	Pi	==	3.1416

7|

8| //	Declare	multiple	constants	in	a	group.

9| const	(

10| 			No									=	!Yes

11| 			Yes								=	true

12| 			MaxDegrees	=	360

13| 			Unit							=	"radian"

14| )

15|

16| func	main()	{

17| 			//	Declare	multiple	constants	in	one	line.

18| 			const	TwoPi,	HalfPi,	Unit2	=	π	*	2,	π	*	0.5,	"degree"

19| }

Go	specification	calls	each	of	the	lines	containing	a	= 	symbol	in	the	above	constant	declaration	group	as	a
constant	specification.

In	the	above	example,	the	* 	symbol	is	the	multiplication	operator	and	the	! 	symbol	is	the	boolean-not
operator.	Operators	will	be	introduced	in	the	next	article,	common	operators	(§8).

The	= 	symbol	means	"bind"	instead	of	"assign".	We	should	interpret	each	constant	specification	as	a
declared	identifier	is	bound	to	a	corresponding	basic	value	literal.	Please	read	the	last	section	in	the	current
article	for	more	explanations.

In	the	above	example,	the	name	constants	π 	and	Pi 	are	both	bound	to	the	literal	3.1416 .	The	two	named
constants	may	be	used	at	many	places	in	code.	Without	constant	declarations,	the	literal	3.1416 	would	be
populated	at	those	places.	If	we	want	to	change	the	literal	to	3.14 	later,	many	places	need	to	be	modified.
With	the	help	of	constant	declarations,	the	literal	3.1416 	will	only	appear	in	one	constant	declaration,	so
only	one	place	needs	to	be	modified.	This	is	the	main	purpose	of	constant	declarations.

Later,	we	use	the	terminology	non-constant	values	to	denote	the	values	who	are	not	constants.	The	to	be
introduced	variables	below,	all	belong	to	one	kind	of	non-constant	values.

Please	note	that,	constants	can	be	declared	both	at	package	level	(out	of	any	function	body)	and	in	function
bodies.	The	constants	declared	in	function	bodies	are	called	local	constants.	The	variables	declared	out	of
any	function	body	are	called	package-level	constants.	We	also	often	call	package-level	constants	as	global
constants.

The	declaration	orders	of	two	package-level	constants	are	not	important.	In	the	above	example,	the
declaration	orders	of	No 	and	Yes 	can	be	exchanged.
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All	constants	declared	in	the	last	example	are	untyped.	The	default	type	of	a	named	untyped	constant	is	the
same	as	the	literal	bound	to	it.

Typed	named	constants

We	can	declare	typed	constants,	typed	constants	are	all	named.	In	the	following	example,	all	the	four
declared	constants	are	typed	values.	The	types	of	X 	and	Y 	are	both	float32 	and	the	types	of	A 	and	B
are	both	int64 .

1| const	X	float32	=	3.14

2|

3| const	(

4| 			A,	B	int64			=	-3,	5

5| 			Y				float32	=	2.718

6| )

If	multiple	typed	constants	are	declared	in	the	same	constant	specification,	then	their	types	must	be	the
same,	just	as	the	constants	A 	and	B 	in	the	above	example.

We	can	also	use	explicit	conversions	to	provide	enough	information	for	Go	compilers	to	deduce	the	types
of	typed	named	constants.	The	above	code	snippet	is	equivalent	to	the	following	one,	in	which	X ,	Y ,	A
and	B 	are	all	typed	constants.

1| const	X	=	float32(3.14)

2|

3| const	(

4| 			A,	B	=	int64(-3),	int64(5)

5| 			Y				=	float32(2.718)

6| )

If	a	basic	value	literal	is	bound	to	a	typed	constant,	the	basic	value	literal	must	be	representable	as	a	value
of	the	type	of	the	constant.	The	following	typed	constant	declarations	are	invalid.

1| //	error:	256	overflows	uint8

2| const	a	uint8	=	256

3| //	error:	256	overflows	uint8

4| const	b	=	uint8(255)	+	uint8(1)

5| //	error:	128	overflows	int8

6| const	c	=	int8(-128)	/	int8(-1)

7| //	error:	-1	overflows	uint

8| const	MaxUint_a	=	uint(^0)

9| //	error:	-1	overflows	uint

10| const	MaxUint_b	uint	=	^0

In	the	above	and	following	examples	^ 	is	bitwise-not	operator.
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The	following	typed	constant	declaration	is	valid	on	64-bit	OSes,	but	invalid	on	32-bit	OSes.	For	each
uint 	value	has	only	32	bits	on	32-bit	OSes.	(1	<<	64)	-	1 	is	not	representable	as	32-bit	values.	(Here,
<< 	is	bitwise-left-shift	operator.)

1| const	MaxUint	uint	=	(1	<<	64)	-	1

Then	how	to	declare	a	typed	uint 	constant	and	bind	the	largest	uint 	value	to	it?	Use	the	following	way
instead.

1| const	MaxUint	=	^uint(0)

Similarly,	we	can	declare	a	typed	int 	constant	and	bind	the	largest	int 	value	to	it.	(Here,	>> 	is	bitwise-
right-shift	operator.)

1| const	MaxInt	=	int(^uint(0)	>>	1)

A	similar	method	can	be	used	to	get	the	number	of	bits	of	a	native	word,	and	check	the	current	OS	is	32-
bit	or	64-bit.

1| //	NativeWordBits	is	64	or	32.

2| const	NativeWordBits	=	32	<<	(^uint(0)	>>	63)

3| const	Is64bitOS	=	^uint(0)	>>	63	!=	0

4| const	Is32bitOS	=	^uint(0)	>>	32	==	0

Here,	!= 	and	== 	are	not-equal-to	and	equal-to	operators.

Autocomplete	in	constant	declarations

In	a	group-style	constant	declaration,	except	the	first	constant	specification,	other	constant	specifications
can	be	incomplete.	An	incomplete	constant	specification	doesn't	contain	the	= 	symbol.	Compilers	will
autocomplete	the	incomplete	lines	for	us	by	copying	the	missing	part	from	the	first	preceding	complete
constant	specification.	For	example,	at	compile	time,	compilers	will	automatically	complete	the	following
code

1| const	(

2| 			X	float32	=	3.14

3| 			Y											//	here	must	be	one	identifier

4| 			Z											//	here	must	be	one	identifier

5|

6| 			A,	B	=	"Go",	"language"

7| 			C,	_

8| 			//	In	the	above	line,	the	blank	identifier

9| 			//	is	required	to	be	present.

10| )

as
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1| const	(

2| 			X	float32	=	3.14

3| 			Y	float32	=	3.14

4| 			Z	float32	=	3.14

5|

6| 			A,	B	=	"Go",	"language"

7| 			C,	_	=	"Go",	"language"

8| )

iota 	in	constant	declarations

The	autocomplete	feature	plus	the	iota 	constant	generator	feature	brings	much	convenience	to	Go
programming.	iota 	is	a	predeclared	constant	which	can	only	be	used	in	other	constant	declarations.	It	is
declared	as

1| const	iota	=	0

But	the	value	of	an	iota 	in	code	may	be	not	always	0 .	When	the	predeclared	iota 	constant	is	used	in	a
custom	constant	declaration,	at	compile	time,	within	the	custom	constant	declaration,	its	value	will	be
reset	to	0 	at	the	first	constant	specification	of	each	group	of	constants	and	will	increase	1 	constant
specification	by	constant	specification.	In	other	words,	in	the	nth	constant	specification	of	a	constant
declaration,	the	value	of	iota 	is	n	(starting	from	zero).	So	iota 	is	only	useful	in	group-style	constant
declarations.

Here	is	an	example	using	both	the	autocomplete	and	the	iota 	constant	generator	features.	Please	read	the
comments	to	get	what	will	happen	at	compile	time.	The	+ 	symbol	in	this	example	is	the	addition	operator.

1| package	main

2|

3| func	main()	{

4| 			const	(

5| 						k	=	3	//	now,	iota	==	0

6|

7| 						m	float32	=	iota	+	.5	//	m	float32	=	1	+	.5

8| 						n																					//	n	float32	=	2	+	.5

9|

10| 						p	=	9													//	now,	iota	==	3

11| 						q	=	iota	*	2						//	q	=	4	*	2

12| 						_																	//	_	=	5	*	2

13| 						r																	//	r	=	6	*	2

14| 						s,	t	=	iota,	iota	//	s,	t	=	7,	7

15| 						u,	v														//	u,	v	=	8,	8

16| 						_,	w														//	_,	w	=	9,	9

17| 			)

18|
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19| 			const	x	=	iota	//	x	=	0

20| 			const	(

21| 						y	=	iota	//	y	=	0

22| 						z								//	z	=	1

23| 			)

24|

25| 			println(m)													//	+1.500000e+000

26| 			println(n)													//	+2.500000e+000

27| 			println(q,	r)										//	8	12

28| 			println(s,	t,	u,	v,	w)	//	7	7	8	8	9

29| 			println(x,	y,	z)							//	0	0	1

30| }

The	above	example	is	just	to	demo	the	rules	of	the	iota 	constant	generator	feature.	Surely,	in	practice,
we	should	use	it	in	more	meaningful	ways.	For	example,

1| const	(

2| 			Failed	=	iota	-	1	//	==	-1

3| 			Unknown											//	==	0

4| 			Succeeded									//	==	1

5| )

6|

7| const	(

8| 			Readable	=	1	<<	iota	//	==	1

9| 			Writable													//	==	2

10| 			Executable											//	==	4

11| )

Here,	the	- 	symbol	is	the	subtraction	operator,	and	the	<< 	symbol	is	the	left-shift	operator.	Both	of	these
operators	will	be	introduced	in	the	next	article.

Variables,	Variable	Declarations	and	Value	Assignments

Variables	are	named	values.	Variables	are	stored	in	memory	at	run	time.	The	value	represented	by	a
variable	can	be	modified	at	run	time.

All	variables	are	typed	values.	When	declaring	a	variable,	there	must	be	sufficient	information	provided
for	compilers	to	deduce	the	type	of	the	variable.

The	variables	declared	within	function	bodies	are	called	local	variables.	The	variables	declared	out	of	any
function	body	are	called	package-level	variables.	We	also	often	call	package-level	variables	as	global
variables.

There	are	two	basic	variable	declaration	forms,	the	standard	one	and	the	short	one.	The	short	form	can
only	be	used	to	declare	local	variables.
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Standard	variable	declaration	forms

Each	standard	declaration	starts	with	the	var 	keyword,	which	is	followed	by	the	declared	variable	name.
Variable	names	must	be	identifiers	(§5).

The	following	are	some	full	standard	declaration	forms.	In	these	declarations,	the	types	and	initial	values
of	the	declared	variables	are	all	specified.

1| var	lang,	website	string	=	"Go",	"https://golang.org"

2| var	compiled,	dynamic	bool	=	true,	false

3| var	announceYear	int	=	2009

As	we	have	found,	multiple	variables	can	be	declared	together	in	one	variable	declaration.	Please	note,
there	can	be	just	one	type	specified	in	a	variable	declaration.	So	the	types	of	the	multiple	variables
declared	in	the	same	declaration	line	must	be	identical.

Full	standard	variable	declaration	forms	are	seldom	used	in	practice,	since	they	are	verbose.	In	practice,
the	two	standard	variable	declaration	variant	forms	introduced	below	are	used	more	often.	In	the	two
variants,	either	the	types	or	the	initial	values	of	the	declared	variables	are	absent.

The	following	are	some	standard	variable	declarations	without	specifying	variable	types.	Compilers	will
deduce	the	types	of	the	declared	variables	as	the	types	(or	default	types)	of	their	respective	initial	values.
The	following	declarations	are	equivalent	to	the	above	ones	in	fact.	Please	note,	in	the	following
declarations,	the	types	of	the	multiple	variables	declared	in	the	same	declaration	line	can	be	different.

1| //	The	types	of	the	lang	and	dynamic	variables

2| //	will	be	deduced	as	built-in	types	"string"

3| //	and	"bool"	by	compilers,	respectively.

4| var	lang,	dynamic	=	"Go",	false

5|

6| //	The	types	of	the	compiled	and	announceYear

7| //	variables	will	be	deduced	as	built-in

8| //	types	"bool"	and	"int",	respectively.

9| var	compiled,	announceYear	=	true,	2009

10|

11| //	The	types	of	the	website	variable	will	be

12| //	deduced	as	the	built-in	type	"string".

13| var	website	=	"https://golang.org"

The	type	deductions	in	the	above	example	can	be	viewed	as	implicit	conversions.

The	following	are	some	standard	declarations	without	specifying	variable	initial	values.	In	these
declarations,	all	declared	variables	are	initialized	as	the	zero	values	of	their	respective	types.

1| //	Both	are	initialized	as	blank	strings.

2| var	lang,	website	string

3| //	Both	are	initialized	as	false.
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4| var	interpreted,	dynamic	bool

5| //	n	is	initialized	as	0.

6| var	n	int

Multiple	variables	can	be	grouped	into	one	standard	form	declaration	by	using	() .	For	example:

1| var	(

2| 			lang,	bornYear,	compiled					=	"Go",	2007,	true

3| 			announceAt,	releaseAt				int	=	2009,	2012

4| 			createdBy,	website							string

5| )

The	above	example	is	formatted	by	using	the	go	fmt 	command	in	the	official	Go	SDK.	In	the	above
example,	each	of	the	three	lines	are	enclosed	in	() 	this	is	known	as	variable	specification.

Generally,	declaring	related	variables	together	will	make	code	more	readable.

Pure	value	assignments

In	the	above	variable	declarations,	the	sign	= 	means	assignment.	Once	a	variable	is	declared,	we	can
modify	its	value	by	using	pure	value	assignments.	Like	variable	declarations,	multiple	values	can	be
assigned	in	a	pure	assignment.

The	expression	items	at	the	left	of	= 	symbol	in	a	pure	assignment	are	called	destination	or	target	values.
They	must	be	addressable	values,	map	index	expressions,	or	the	blank	identifier.	Value	addresses	and
maps	will	be	introduced	in	later	articles.

Constants	are	immutable,	so	a	constant	can't	show	up	at	the	left	side	of	a	pure	assignment	as	a	destination
value,	it	can	only	appear	at	the	right	side	as	a	source	value.	Variables	can	be	used	as	both	source	values
and	destination	values,	so	they	can	appear	at	both	sides	of	pure	value	assignments.

Blank	identifiers	can	also	appear	at	the	left	side	of	pure	value	assignments	as	destination	values,	in	which
case,	it	means	we	ignore	the	destination	values.	Blank	identifiers	can't	be	used	as	source	values	in
assignments.

Example:

1| const	N	=	123

2| var	x	int

3| var	y,	z	float32

4|

5| N	=	9	//	error:	constant	N	is	not	modifiable

6| y	=	N	//	ok:	N	is	deduced	as	a	float32	value

7| x	=	y	//	error:	type	mismatch

8| x	=	N	//	ok:	N	is	deduced	as	an	int	value

9| y	=	x	//	error:	type	mismatch
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10| z	=	y	//	ok

11| _	=	y	//	ok

12|

13| x,	y	=	y,	x	//	error:	type	mismatch

14| x,	y	=	int(y),	float32(x)	//	ok

15| z,	y	=	y,	z															//	ok

16| _,	y	=	y,	z															//	ok

17| z,	_	=	y,	z															//	ok

18| _,	_	=	y,	z															//	ok

19| x,	y	=	69,	1.23											//	ok

The	code	at	last	line	in	the	above	example	uses	explicit	conversions	to	make	the	corresponding	destination
and	source	values	matched.	The	explicit	conversion	rules	for	non-constant	numeric	values	are	introduced
below.

Go	doesn't	support	assignment	chain.	For	example,	the	following	code	is	illegal.

1| var	a,	b	int

2| a	=	b	=	123	//	syntax	error

Short	variable	declaration	forms

We	can	also	use	short	variable	declaration	forms	to	declare	variables.	Short	variable	declarations	can	only
be	used	to	declare	local	variables.	Let's	view	an	example	which	uses	some	short	variable	declarations.

1| package	main

2|

3| func	main()	{

4| 			//	Both	lang	and	year	are	newly	declared.

5| 			lang,	year	:=	"Go	language",	2007

6|

7| 			//	Only	createdBy	is	a	new	declared	variable.

8| 			//	The	year	variable	has	already	been

9| 			//	declared	before,	so	here	its	value	is	just

10| 			//	modified,	or	we	can	say	it	is	redeclared.

11| 			year,	createdBy	:=	2009,	"Google	Research"

12|

13| 			//	This	is	a	pure	assignment.

14| 			lang,	year	=	"Go",	2012

15|

16| 			print(lang,	"	is	created	by	",	createdBy)

17| 			println(",	and	released	at	year",	year)

18| }

Each	short	variable	declaration	must	declare	at	least	one	new	variable.

There	are	several	differences	between	short	and	standard	variable	declarations.
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1.	 In	the	short	declaration	form,	the	var 	keyword	and	variable	types	must	be	omitted.
2.	 The	assignment	sign	must	be	:= 	instead	of	= .
3.	 In	the	short	variable	declaration,	old	variables	and	new	variables	can	mix	at	the	left	of	:= .	But	there

must	be	at	least	one	new	variable	at	the	left.

Please	note,	comparing	to	pure	assignments,	there	is	a	limit	for	short	variable	declarations.	In	a	short
variable	declaration,	all	items	at	the	left	of	the	:= 	sign	must	pure	identifiers.	This	means	some	other
items	which	can	be	assigned	to,	which	will	be	introduced	in	other	articles,	can't	appear	at	the	left	of	:= .
These	items	include	qualified	identifiers,	container	elements,	pointer	dereferences	and	struct	field
selectors.	Pure	assignments	have	no	such	limit.

About	the	terminology	"assignment"

Later,	when	the	word	"assignment"	is	mentioned,	it	means	a	pure	assignment,	a	short	variable	declaration,
or	a	variable	specification	with	initial	values	in	a	standard	variable	declaration.

We	say	x 	is	assignable	to	y 	if	y	=	x 	is	a	legal	statement	(compiles	okay).	Assume	the	type	of	y 	is	Ty ,
sometimes,	for	description	convenience,	we	can	also	say	x 	is	assignable	to	type	Ty .

Generally,	if	x 	is	assignable	to	y ,	then	y 	should	be	mutable,	and	the	types	of	x 	and	y 	are	identical	or	x
can	be	implicitly	converted	to	the	type	of	y .	Surely,	y 	can	also	be	the	blank	identifier	_ .

Each	local	declared	variable	must	be	used	at	least	once	effectively

Please	note,	the	standard	Go	compiler	and	gccgo	both	don't	allow	local	variables	declared	but	not	used.
Package-level	variables	have	no	such	limit.

If	a	local	variable	is	only	ever	used	as	destination	values,	it	will	also	be	viewed	as	unused.

For	example,	in	the	following	program,	r 	is	only	used	as	destination.

1| package	main

2|

3| //	Some	package-level	variables.

4| var	x,	y,	z	=	123,	true,	"foo"

5|

6| func	main()	{

7| 			var	q,	r	=	789,	false

8| 			r,	s	:=	true,	"bar"

9| 			r	=	y	//	r	is	unused.

10| 			x	=	q	//	q	is	used.

11| }
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Compiling	the	above	program	will	result	to	the	following	compilation	errors	(assume	the	source	file	is
name	example-unused.go ):

./example-unused.go:6:6:	r	declared	and	not	used

./example-unused.go:7:16:	s	declared	and	not	used

The	fix	is	easy,	we	can	assign	r 	and	s 	to	blank	identifiers	to	avoid	compilation	errors.

1| package	main

2|

3| var	x,	y,	z	=	123,	true,	"foo"

4|

5| func	main()	{

6| 			var	q,	r	=	789,	false

7| 			r,	s	:=	true,	"bar"

8| 			r	=	y

9| 			x	=	q

10|

11| 			_,	_	=	r,	s	//	make	r	and	s	used.

12| }

Generally,	the	above	fix	is	not	recommended	to	be	used	in	production	code.	It	should	be	used	in
development/debug	phase	only.	It	is	not	a	good	habit	to	leave	unused	local	variables	in	code,	for	unused
local	variables	have	negative	effects	on	both	code	readability	and	program	execution	performance.

Dependency	relations	of	package-Level	variables	affect	their
initialization	order

For	the	following	example,

1| var	x,	y	=	a+1,	5									//	8	5

2| var	a,	b,	c	=	b+1,	c+1,	y	//	7	6	5

the	initialization	order	of	the	package-level	variables	are	y	=	5 ,	c	=	y ,	b	=	c+1 ,	a	=	b+1 ,	and	x	=
a+1 .

Here,	the	+ 	symbol	is	the	addition	operator,	which	will	be	introduced	in	the	next	article.

Package-level	variables	can't	be	depended	circularly	in	their	declaration.	The	following	code	fails	to
compile.

1| var	x,	y	=	y,	x

Value	Addressability

§7.	Constants	and	Variables

46



In	Go,	some	values	are	addressable	(there	is	an	address	to	find	them).	All	variables	are	addressable	and	all
constants	are	unaddressable.	We	can	learn	more	about	addresses	and	pointers	from	the	article	pointers	in
Go	(§15)	and	learn	other	addressable	and	unaddressable	values	from	other	articles	later.

Explicit	Conversions	on	Non-Constant	Numeric	Values

In	Go,	two	typed	values	of	two	different	basic	types	can't	be	assigned	to	each	other.	In	other	words,	the
types	of	the	destination	and	source	values	in	an	assignment	must	be	identical	if	the	two	values	are	both
basic	values.	If	the	type	of	the	source	basic	value	is	not	same	as	the	type	of	the	destination	basic	value,
then	the	source	value	must	be	explicitly	converted	to	the	type	of	the	destination	value.

As	mentioned	above,	non-constant	integer	values	can	be	converted	to	strings.	Here	we	introduce	two	more
legal	non-constant	numeric	values	related	conversion	cases.

Non-constant	floating-point	and	integer	values	can	be	explicitly	converted	to	any	other	floating-
point	and	integer	types.
Non-constant	complex	values	can	be	explicitly	converted	to	any	other	complex	types.

Unlike	constant	number	conversions,	overflows	are	allowed	in	non-constant	number	conversions.	And
when	converting	a	non-constant	floating-point	value	to	an	integer,	rounding	is	also	allowed.	If	a	non-
constant	floating-point	value	doesn't	overflow	an	integer	type	the	fraction	part	of	the	floating-point	value
will	be	discarded	(towards	zero)	when	it	is	converted	to	the	integer	type.

In	the	following	example,	the	intended	implicit	conversions	at	line	7	and	line	18	both	don't	work.	The
explicit	conversions	at	line	5	and	line	16	are	also	not	allowed.

1| const	a	=	-1.23

2| //	The	type	of	b	is	deduced	as	float64.

3| var	b	=	a

4| //	error:	constant	1.23	truncated	to	integer.

5| var	x	=	int32(a)

6| //	error:	cannot	assign	float64	to	int32.

7| var	y	int32	=	b

8| //	okay:	z	==	-1,	and	the	type	of	z	is	int32.

9| //							The	fraction	part	of	b	is	discarded.

10| var	z	=	int32(b)

11|

12| const	k	int16	=	255

13| //	The	type	of	n	is	deduced	as	int16.

14| var	n	=	k

15| //	error:	constant	256	overflows	uint8.

16| var	f	=	uint8(k	+	1)

17| //	error:	cannot	assign	int16	to	uint8.

18| var	g	uint8	=	n	+	1

19| //	okay:	h	==	0,	and	the	type	of	h	is	uint8.

20| //							n+1	overflows	uint8	and	is	truncated.
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21| var	h	=	uint8(n	+	1)

22|

We	can	think	that	the	type	deductions	happen	at	line	3	and	line	14	are	two	implicit	conversions,	where	a
and	k 	are	both	converted	to	their	respective	default	type.	More	implicit	conversion	rules	will	be
introduced	in	other	articles	later.

Scopes	of	Variables	and	Named	Constants

In	Go,	we	can	use	a	pair	of	{ 	and	} 	to	form	a	code	block.	A	code	block	can	nest	other	code	blocks.	A
variable	or	a	named	constant	declared	in	an	inner	code	block	will	shadow	the	variables	and	constants
declared	with	the	same	name	in	outer	code	blocks.	For	examples,	the	following	program	declares	three
distinct	variables,	all	of	them	are	called	x .	An	inner	x 	shadows	an	outer	one.

1| package	main

2|

3| const	y	=	789

4| var	x	int	=	123

5|

6| func	main()	{

7| 			//	The	x	variable	shadows	the	above	declared

8| 			//	package-level	variable	x.

9| 			var	x	=	true

10|

11| 			//	A	nested	code	block.

12| 			{

13| 						//	Here,	the	left	x	and	y	are	both

14| 						//	new	declared	variable.	The	right

15| 						//	ones	are	declared	in	outer	blocks.

16| 						x,	y	:=	x,	y

17|

18| 						//	In	this	code	block,	the	just	new

19| 						//	declared	x	and	y	shadow	the	outer

20| 						//	declared	same-name	identifiers.

21| 						x,	z	:=	!x,	y/10	//	only	z	is	new	declared

22| 						y	/=	100

23| 						println(x,	y,	z)	//	false	7	78

24| 			}

25| 			println(x)	//	true

26| 			println(z)	//	error:	z	is	undefined.

27| }

The	scope	(visibility	range	in	code)	of	a	package-level	variable	(or	a	named	constant)	is	the	whole	package
of	the	variable	(or	the	named	constant)	is	declared	in.	The	scope	of	a	local	variable	(or	a	named	constant)
begins	at	the	end	of	its	declaration	and	ends	at	the	end	of	its	innermost	containing	code	block.	This	is	why
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the	last	line	in	the	main 	function	of	the	above	example	doesn't	compile.

Code	blocks	and	identifier	scopes	will	be	explained	in	detail	in	blocks	and	scopes	(§32)	later.

More	About	Constant	Declarations

The	value	denoted	by	an	untyped	constant	can	overflow	its	default
type

For	example,	the	following	code	compiles	okay.

1| //	3	untyped	named	constants.	Their	bound

2| //	values	all	overflow	their	respective

3| //	default	types.	This	is	allowed.

4| const	n	=	1	<<	64										//	overflows	int

5| const	r	=	'a'	+	0x7FFFFFFF	//	overflows	rune

6| const	x	=	2e+308											//	overflows	float64

7|

8| func	main()	{

9| 			_	=	n	>>	2

10| 			_	=	r	-	0x7FFFFFFF

11| 			_	=	x	/	2

12| }

But	the	the	following	code	does't	compile,	for	the	constants	are	all	typed.

1| //	3	typed	named	constants.	Their	bound

2| //	values	are	not	allowed	to	overflow	their

3| //	respective	default	types.	The	3	lines

4| //	all	fail	to	compile.

5| const	n	int	=	1	<<	64											//	overflows	int

6| const	r	rune	=	'a'	+	0x7FFFFFFF	//	overflows	rune

7| const	x	float64	=	2e+308								//	overflows	float64

Each	named	constant	identifier	will	be	replaced	with	its	bound	literal
value	at	compile	time

Constant	declarations	can	be	viewed	as	enhanced	#define 	macros	in	C.	A	constant	declaration	defines	a
named	constant	which	represents	a	literal.	All	the	occurrences	of	a	named	constant	will	be	replaced	with
the	literal	it	represents	at	compile	time.

If	the	two	operands	of	an	operator	operation	are	both	constants,	then	the	operation	will	be	evaluated	at
compile	time.	Please	read	the	next	article	common	operators	(§8)	for	details.
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For	example,	at	compile	time,	the	following	code

1| package	main

2|

3| const	X	=	3

4| const	Y	=	X	+	X

5| var	a	=	X

6|

7| func	main()	{

8| 			b	:=	Y

9| 			println(a,	b,	X,	Y)

10| }

will	be	viewed	as

1| package	main

2|

3| var	a	=	3

4|

5| func	main()	{

6| 			b	:=	6

7| 			println(a,	b,	3,	6)

8| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Common	Operators
Operator	operations	are	the	operations	using	all	kinds	of	operators.	This	article	will	introduce	common
operators	in	Go.	More	operators	will	be	introduced	in	other	articles	later.

About	Some	Descriptions	in	Operator	Explanations

This	article	will	only	introduce	arithmetic	operators,	bitwise	operators,	comparison	operators,	boolean
operators	and	string	concatenation	operator.	These	operators	are	either	binary	operators	or	unary	operators.
A	binary	operator	operation	takes	two	operands	and	a	unary	operator	operation	takes	only	one	operand.

All	the	operator	operations	introduced	in	this	articles	each	returns	one	result.

This	article	doesn't	pursue	the	accuracy	of	some	descriptions.	For	example,	when	it	says	that	a	binary
operator	requires	the	types	of	its	two	operands	must	be	the	same,	what	it	means	is:

if	both	of	the	two	operands	are	typed	values,	then	their	types	must	be	the	same	one,	or	one	operand
can	be	implicitly	converted	to	the	type	of	the	other.
if	only	one	of	the	two	operands	is	typed,	then	the	other	(untyped)	operand	must	be	representable	as	a
value	of	the	typed	of	the	typed	operand,	or	the	values	of	the	default	type	of	the	other	(untyped)
operand	can	be	implicitly	converted	to	the	typed	of	the	typed	operand.
if	both	of	the	two	operands	are	untyped	values,	then	they	must	be	both	boolean	values,	both	string
values	or	both	basic	numeric	values.

Similarly,	when	it	says	an	operator,	either	a	binary	operator	or	a	unary	operator,	requires	the	type	of	one	of
its	operands	must	be	of	a	certain	type,	what	it	means	is:

if	the	operand	is	typed,	then	its	type	must	be,	or	can	be	implicitly	converted	to,	that	certain	type.
if	the	operand	is	untyped,	then	the	untyped	value	must	be	representable	as	a	value	of	that	certain
type,	or	the	values	of	the	default	type	of	the	operand	can	be	implicitly	converted	to	that	certain	type.

Constant	Expressions

Before	introducing	all	kinds	of	operators,	we	should	know	what	are	constant	expressions	and	a	fact	in	the
evaluations	of	constant	expressions.	Expressions	will	get	explained	in	a	later	article	expressions	and
statements	(§11).	At	present,	we	just	should	know	that	most	of	the	operations	mentioned	the	current	article
are	expressions.

If	all	the	operands	involved	in	an	expression	are	constants,	then	this	expression	is	called	a	constant
expression.	All	constant	expressions	are	evaluated	at	compile	time.	The	evaluation	result	of	a	constant
expression	is	still	a	constant.

Only	if	one	operand	in	an	expression	is	not	a	constant,	the	expression	is	called	a	non-constant	expression.
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Only	if	one	operand	in	an	expression	is	not	a	constant,	the	expression	is	called	a	non-constant	expression.

Arithmetic	Operators

Go	supports	five	basic	binary	arithmetic	operators:

Operator Name Requirements	for	the	Two	Operands
+ addition

The	two	operands	must	be	both	values	of	the	same	basic	numeric	type.
- subtraction
* multiplication
/ division
% remainder The	two	operands	must	be	both	values	of	the	same	basic	integer	type.

The	five	operators	are	also	often	called	sum,	difference,	product,	quotient	and	modulo	operators,
respectively.	Go	101	will	not	explain	how	these	operator	operations	work	in	detail.

Go	supports	six	bitwise	binary	arithmetic	operators:

Operator Name Requirements	for	the	Two	Operands	and	Mechanism	Explanations

& bitwise	and The	two	operands	must	be	both	values	of	the	same	integer	type.

Mechanism	explanations	(a	value	with	the	subscript	2 	is	the	binary	literal
form	of	the	value):

11002	&	10102 	results	10002
11002	|	10102 	results	11102
11002	^	10102 	results	01102
11002	&^	10102 	results	01002

| bitwise	or

^ bitwise	xor

&^ bitwise	clear

<< bitwise	left	shift
The	left	operand	must	be	an	integer	and	the	right	operand	must	be	also	an
integer	(if	it	is	a	constant,	then	it	must	be	non-negative),	their	types	are	not
required	to	be	identical.	(Note,	before	Go	1.13,	the	right	operand	must	be	an
unsigned	integer	or	an	untyped	(§7)	integer	constant	which	is	representable
as	an	uint 	value.)

A	negative	right	operand	(must	be	a	non-constant)	will	cause	a	panic	at	run
time.

Mechanism	explanations:

11002	<<	3 	results	11000002
11002	>>	3 	results	12

If	the	left	operand	of	a	bitwise-right-shift	operation	is	(or	is	viewed	as)	a
signed	integer,	then	the	sign	bit	(the	highest	bit)	in	the	left	operand	will	be
always	kept	in	the	result	value.	For	example.	if	the	left	operand	is	an	int8
value	-128 ,	or	100000002 	in	the	binary	literal	form,	then	100000002	>>
1 	results	110000002 ,	a.k.a.,	-64 .

>> bitwise	right	shift
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1 	results	110000002 ,	a.k.a.,	-64 .

Go	also	supports	three	unary	arithmetic	operators:

Operator Name Explanations
+ positive +n 	is	equivalent	to	0	+	n .
- negative -n 	is	equivalent	to	0	-	n .

^ bitwise	complement
(bitwise	not)

^n 	is	equivalent	to	m	^	n ,	where	m 	is	a	value	all	of	which	bits	are	1.	For
example,	if	the	type	of	n 	is	int8 ,	then	m 	is	-1 ,	and	if	the	type	of	n 	is
uint8 ,	then	m 	is	0xFF .

Note,

in	many	other	languages,	bitwise-complement	operator	is	denoted	as	~ .
like	many	other	languages,	the	addition	binary	operator	+ 	can	also	be	used	as	string	concatenation
operator,	which	will	be	introduced	below.
like	C	and	C++	languages,	the	multiplication	binary	operator	* 	can	also	be	used	as	pointer
dereference	operator,	and	the	bitwise-and	operator	& 	can	also	be	used	as	pointer	address	operator.
Please	read	pointers	in	Go	(§15)	for	details	later.
unlike	Java	language,	Go	supports	unsigned	integer	types,	so	the	unsigned	shift	operator	>>>
doesn't	exist	in	Go.
there	is	no	power	operator	in	Go,	please	use	Pow 	function	in	the	math 	standard	package	instead.
Code	package	and	package	import	will	be	introduced	in	the	next	article	packages	and	imports	(§10).
the	bitwise-clear	operator	&^ 	is	a	unique	operator	in	Go.	m	&^	n 	is	equivalent	to	m	&	(^n) .

Example:

1| func	main()	{

2| 			var	(

3| 						a,	b	float32	=	12.0,	3.14

4| 						c,	d	int16			=	15,	-6

5| 						e			uint8			=	7

6| 			)

7|

8| 			//	The	ones	compile	okay.

9| 			_	=	12	+	'A'	//	two	numeric	untyped	operands

10| 			_	=	12	-	a			//	one	untyped	and	one	typed	operand

11| 			_	=	a	*	b				//	two	typed	operands

12| 			_	=	c	%	d

13| 			_,	_	=	c	+	int16(e),	uint8(c)	+	e

14| 			_,	_,	_,	_	=	a	/	b,	c	/	d,	-100	/	-9,	1.23	/	1.2

15| 			_,	_,	_,	_	=	c	|	d,	c	&	d,	c	^	d,	c	&^	d

16| 			_,	_,	_,	_	=	d	<<	e,	123	>>	e,	e	>>	3,	0xF	<<	0

17| 			_,	_,	_,	_	=	-b,	+c,	^e,	^-1

18|

19| 			//	The	following	ones	fail	to	compile.

20| 			_	=	a	%	b			//	error:	a	and	b	are	not	integers
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21| 			_	=	a	|	b			//	error:	a	and	b	are	not	integers

22| 			_	=	c	+	e			//	error:	type	mismatching

23| 			_	=	b	>>	5		//	error:	b	is	not	an	integer

24| 			_	=	c	>>	-5	//	error:	-5	is	not	representable	as	uint

25|

26| 			_	=	e	<<	uint(c)	//	compiles	ok

27| 			_	=	e	<<	c							//	only	compiles	ok	since	Go	1.13

28| 			_	=	e	<<	-c						//	only	compiles	ok	since	Go	1.13,

29| 																				//	will	cause	a	panic	at	run	time.

30| 			_	=	e	<<	-1						//	error:	right	operand	is	negative

31| }

About	the	results	of	arithmetic	operator	operations

Except	bitwise	shift	operations,	the	result	of	a	binary	arithmetic	operator	operation

is	a	typed	value	of	the	same	type	of	the	two	operands	if	the	two	operands	are	both	typed	values	of
the	same	type.
is	a	typed	value	of	the	same	type	of	the	typed	operand	if	only	one	of	the	two	operands	is	a	typed
value.	In	the	computation,	the	other	(untyped)	value	will	be	deduced	as	a	value	of	the	type	of	the
typed	operand.	In	other	words,	the	untyped	operand	will	be	implicitly	converted	to	the	type	of	the
typed	operand.
is	still	an	untyped	value	if	both	of	the	two	operands	are	untyped.	The	default	type	of	the	result	value
is	one	of	the	two	default	types	and	it	is	the	one	appears	latter	in	this	list:	int ,	rune ,	float64 ,
complex128 .	For	example,	if	the	default	type	of	one	untyped	operand	is	int ,	and	the	other	one	is
rune ,	then	the	default	type	of	the	result	untyped	value	is	rune .

The	rules	for	the	result	of	a	bitwise	shift	operator	operation	is	a	little	complicated.	Firstly,	the	result	value
is	always	an	integer	value.	Whether	it	is	typed	or	untyped	depends	on	specific	scenarios.

If	the	left	operand	is	a	typed	value	(an	integer	value),	then	the	type	of	the	result	is	the	same	as	the
type	of	the	left	operand.
If	the	left	operand	is	an	untyped	value	and	the	right	operand	is	a	constant,	then	the	left	operand	will
be	always	treated	as	an	integer	value,	if	its	default	type	is	not	an	integer	type,	it	must	be
representable	as	an	untyped	integer	and	its	default	type	will	be	viewed	as	int .	For	such	cases,	the
result	is	also	an	untyped	value	and	the	default	type	of	the	result	is	the	same	as	the	left	operand.
If	the	left	operand	is	an	untyped	value	and	the	right	operand	is	a	non-constant	integer,	then	the	left
operand	will	be	first	converted	to	the	type	it	would	assume	if	the	bitwise	shift	operator	operation
were	replaced	by	its	left	operand	alone.	The	result	is	a	typed	value	whose	type	is	the	assumed	type.

Example:

1| func	main()	{

2| 			//	Three	untyped	values.	Their	default
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3| 			//	types	are:	int,	rune(int32),	complex64.

4| 			const	X,	Y,	Z	=	2,	'A',	3i

5|

6| 			var	a,	b	int	=	X,	Y	//	two	typed	values.

7|

8| 			//	The	type	of	d	is	the	default	type	of	Y:	rune.

9| 			d	:=	X	+	Y

10| 			//	The	type	of	e	is	the	type	of	a:	int.

11| 			e	:=	Y	-	a

12| 			//	The	type	of	f	is	the	types	of	a	and	b:	int.

13| 			f	:=	a	*	b

14| 			//	The	type	of	g	is	Z's	default	type:	complex64.

15| 			g	:=	Z	*	Y

16|

17| 			//	Output:	2	65	(+0.000000e+000+3.000000e+000i)

18| 			println(X,	Y,	Z)

19| 			//	Output:	67	63	130	(+0.000000e+000+1.950000e+002i)

20| 			println(d,	e,	f,	g)

21| }

Another	example	(bitwise	shift	operations):

1| const	N	=	2

2| //	A	is	an	untyped	value	(default	type	as	int).

3| const	A	=	3.0	<<	N	//	A	==	6

4| //	B	is	typed	value	(type	is	int8).

5| const	B	=	int8(3.0)	<<	N	//	B	==	6

6|

7| var	m	=	uint(32)

8| //	The	following	three	lines	are	equivalent	to

9| //	each	other.	In	the	following	twol	lines,	the

10| //	types	of	the	two	"1"	are	both	deduced	as

11| //	int64,	instead	of	int.

12| var	x	int64	=	1	<<	m

13| var	y	=	int64(1	<<	m)

14| var	z	=	int64(1)	<<	m

15|

16| //	The	following	line	fails	to	compile.

17| /*

18| var	_	=	1.23	<<	m	//	error:	shift	of	type	float64

19| */

The	last	rule	for	bitwise	shift	operator	operation	is	to	avoid	the	cases	that	some	bitwise	shift	operations
return	different	results	on	different	architectures	but	the	differences	will	not	be	detected	in	time.	For
example,	if	the	operand	1 	is	deduced	as	int 	instead	of	int64 ,	the	bitwise	operation	at	line	13	(or	line
12)	will	return	different	results	between	32-bit	architectures	(0 )	and	64-bit	architectures	(0x100000000 ),
which	may	produce	some	bugs	hard	to	detect.
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One	interesting	consequence	of	the	last	rule	for	bitwise	shift	operator	operation	is	shown	in	the	following
code	snippet:

1| const	n	=	uint(2)

2| var	m	=	uint(2)

3|

4| //	The	following	two	lines	compile	okay.

5| var	_	float64	=	1	<<	n

6| var	_	=	float64(1	<<	n)

7|

8| //	The	following	two	lines	fail	to	compile.

9| var	_	float64	=	1	<<	m

10| var	_	=	float64(1	<<	m)

The	reason	of	the	last	two	lines	failing	to	compile	is	they	are	both	equivalent	to	the	followings	two	line:

1| var	_	=	float64(1)	<<	m

2| var	_	=	1.0	<<	m	//	error:	shift	of	type	float64

About	overflows

Overflows	are	not	allowed	for	typed	constant	values	but	are	allowed	for	non-constant	and	untyped
constant	values,	either	the	values	are	intermediate	or	final	results.	Overflows	will	be	truncated	(or	wrapped
around)	for	non-constant	values,	but	overflows	(for	default	types)	on	untyped	constant	value	will	not	be
truncated	(or	wrapped	around).

Example:

1| //	Results	are	non-constants.

2| var	a,	b	uint8	=	255,	1

3| //	Compiles	ok,	higher	overflowed	bits	are	truncated.

4| var	c	=	a	+	b		//	c	==	0

5| //	Compiles	ok,	higher	overflowed	bits	are	truncated.

6| var	d	=	a	<<	b	//	d	==	254

7|

8| //	Results	are	untyped	constants.

9| const	X	=	0x1FFFFFFFF	*	0x1FFFFFFFF	//	overflows	int

10| const	R	=	'a'	+	0x7FFFFFFF										//	overflows	rune

11| //	The	above	two	lines	both	compile	ok,	though	the

12| //	two	untyped	value	X	and	R	both	overflow	their

13| //	respective	default	types.

14|

15| //	Operation	results	or	conversion	results	are

16| //	typed	values.	These	lines	all	fail	to	compile.

17| var	e	=	X	//	error:	untyped	constant	X	overflows	int

18| var	h	=	R	//	error:	constant	2147483744	overflows	rune

19| const	Y	=	128	-	int8(1)		//	error:	128	overflows	int8
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20| const	Z	=	uint8(255)	+	1	//	error:	256	overflow	uint8

About	integer	division	and	remainder	operations

Assume	x 	and	y 	are	two	operands	of	the	same	integer	type,	the	integer	quotient	q 	(=	x	/	y )	and
remainder	r 	(=	x	%	y )	satisfy	x	==	q*y	+	r ,	where	|r|	<	|y| .	If	r 	is	not	zero,	its	sign	is	the	same
as	x 	(the	dividend).	The	result	of	x	/	y 	is	truncated	towards	zero.

If	the	divisor	y 	is	a	constant,	it	must	not	be	zero.	If	the	divisor	is	zero	at	run	time	and	it	is	an	integer,	a
run-time	panic	occurs.	Panics	are	like	exceptions	in	some	other	languages.	We	can	learn	more	about
panics	in	this	article	(§13).

Example:

1| println(	5/3,			5%3)		//	1	2

2| println(	5/-3,		5%-3)	//	-1	2

3| println(-5/3,		-5%3)		//	-1	-2

4| println(-5/-3,	-5%-3)	//	1	-2

5|

6| println(5.0	/	3.0)					//	1.666667

7| println((1-1i)/(1+1i))	//	-1i

8|

9| var	a,	b	=	1.0,	0.0

10| println(a/b,	b/b)	//	+Inf	NaN

11|

12| _	=	int(a)/int(b)	//	compiles	okay	but	panics	at	run	time.

13|

14| //	The	following	two	lines	fail	to	compile.

15| println(1.0/0.0)	//	error:	division	by	zero

16| println(0.0/0.0)	//	error:	division	by	zero

Using	op= 	for	binary	arithmetic	operators

For	a	binary	arithmetic	operator	op ,	x	=	x	op	y 	can	be	shortened	to	x	op=	y .	In	the	short	form,	x
will	be	only	evaluated	once.

Example:

1| var	a,	b	int8	=	3,	5

2| a	+=	b

3| println(a)	//	8

4| a	*=	a

5| println(a)	//	64

6| a	/=	b

7| println(a)	//	12
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8| a	%=	b

9| println(a)	//	2

10| b	<<=	uint(a)

11| println(b)	//	20

The	increment	++ 	and	decrement	-- 	operators

Like	many	other	popular	languages,	Go	also	supports	the	increment	++ 	and	decrement	-- 	operators.
However,	operations	using	the	two	operators	don't	return	any	results,	so	such	operations	can	not	be	used	as
expressions	(§11).	The	only	operand	involved	in	such	an	operation	must	be	a	numeric	value,	the	numeric
value	must	not	be	a	constant,	and	the	++ 	or	-- 	operator	must	follow	the	operand.

Example:

1| package	main

2|

3| func	main()	{

4| 			a,	b,	c	:=	12,	1.2,	1+2i

5| 			a++	//	ok.	<=>	a	+=	1	<=>	a	=	a	+	1

6| 			b--	//	ok.	<=>	b	-=	1	<=>	b	=	b	-	1

7| 			c++	//	ok

8|

9| 			//	The	following	lines	fail	to	compile.

10| 			/*

11| 			_	=	a++

12| 			_	=	b--

13| 			_	=	c++

14| 			++a

15| 			--b

16| 			++c

17| 			*/

18| }

String	Concatenation	Operator

As	mentioned	above,	the	addition	operator	can	also	be	used	as	string	concatenation.
Operator Name Requirements	for	the	Two	Operands

+ string	concatenation The	two	operands	must	be	both	values	of	the	same	string	type.

The	op= 	form	also	applies	for	the	string	concatenation	operator.

Example:

1| println("Go"	+	"lang")	//	Golang

2| var	a	=	"Go"

§8.	Common	Operators

58



3| a	+=	"lang"

4| println(a)	//	Golang

If	one	of	the	two	operands	of	a	string	concatenation	operation	is	a	typed	string,	then	the	type	of	the	result
string	is	the	same	as	the	type	of	the	typed	string.	If	both	of	the	two	operands	are	untyped	(constant)	strings,
the	result	is	also	an	untyped	string	value.

Boolean	Operators

Go	supports	two	boolean	binary	operators	and	one	boolean	unary	operator:

Operator Name Requirements	for	Operand(s)
&& boolean	and	(binary)

The	two	operands	must	be	both	values	of	the	same	boolean	type.|| boolean	or	(binary)
! boolean	not	(unary) The	type	of	the	only	operand	must	be	a	boolean	type.

We	can	use	the	!= 	operator	introduced	in	the	next	sub-section	as	the	boolean	xor	operator.

Mechanism	explanations:

//	x				y							x	&&	y			x	||	y			!x						!y

true				true				true					true					false			false

true				false			false				true					false			true

false			true				false				true					true				false

false			false			false				false				true				true

If	one	of	the	two	operands	is	a	typed	boolean,	then	the	type	of	the	result	boolean	is	the	same	as	the	type	of
the	typed	boolean.	If	both	of	the	two	operands	are	untyped	booleans,	the	result	is	also	an	untyped	boolean
value.

Comparison	Operators

Go	supports	six	comparison	binary	operators:

Operator Name Requirements	for	the	Two	Operands

== equal	to
Generally,	the	types	of	its	two	operands	must	be	the	same.	For	detailed
rules,	please	read	comparison	rules	in	Go	(§48).!= not	equal	to

< less	than
The	two	operands	must	be	both	values	of	the	same	integer	type,	floating-
point	type	or	string	type.

<= less	than	or	equal	to
> larger	than
>= larger	than	or	equal	to

The	type	of	the	result	of	any	comparison	operation	is	always	an	untyped	boolean	value.	If	both	of	the	two
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operands	of	a	comparison	operation	are	constant,	the	result	is	also	a	constant	(boolean)	value.

Later,	if	we	say	two	values	are	comparable,	we	mean	they	can	be	compared	with	the	== 	and	!= 	operators.
We	will	learn	that	values	of	which	types	are	not	comparable	later.	Values	of	basic	types	are	all
comparable.

Please	note	that,	not	all	real	numbers	can	be	accurately	represented	in	memory,	so	comparing	two	floating-
point	(or	complex)	values	may	be	not	reliable.	We	should	check	whether	or	not	the	absolution	of	the
difference	of	two	floating-point	values	is	smaller	than	a	small	threshold	to	judge	whether	or	not	the	two
floating-point	values	are	equal.

Operator	Precedence

The	following	is	the	operator	precedence	in	Go.	Top	ones	have	higher	precedence.	The	operators	in	the
same	line	have	the	same	precedence.	Like	many	other	languages,	() 	can	be	used	to	promote	precedence.

1| *			/			%			<<		>>		&			&^

2| +			-			|			^

3| ==		!=		<			<=		>			>=

4| &&

5| ||

One	obvious	difference	to	some	other	popular	languages	is	that	the	precedence	of	<< 	and	>> 	is	higher
than	+ 	and	- 	in	Go.

More	About	Constant	Expressions

The	following	declared	variable	will	be	initialized	as	2.2 	instead	of	2.7 .	The	reason	is	the	precedence	of
the	division	operation	is	higher	than	the	addition	operation,	and	in	the	division	operation,	both	3 	and	2
are	viewed	as	integers.	The	evaluation	result	of	3/2 	is	1 .

1| var	x	=	1.2	+	3/2

The	two	named	constants	declared	in	the	following	program	are	not	equal.	In	the	first	declaration,	both	3
and	2 	are	viewed	as	integers,	however,	they	are	both	viewed	as	floating-point	numbers	in	the	second
declaration.

1| package	main

2|

3| const	x	=	3/2*0.1

4| const	y	=	0.1*3/2

5|

6| func	main()	{
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7| 			println(x)	//	+1.000000e-001

8| 			println(y)	//	+1.500000e-001

9| }

More	Operators

Same	as	C/C++,	there	are	two	pointer	related	operators,	* 	and	& .	Yes	the	same	operator	symbols	as	the
multiplication	and	bitwise-and	operators.	& 	is	used	to	take	the	address	of	an	addressable	value,	and	* 	is
used	to	dereference	a	pointer	value.	Unlike	C/C++,	in	Go,	values	of	pointer	types	don't	support	arithmetic
operations.	For	more	details,	please	read	pointers	in	Go	(§15)	later.

There	are	some	other	operators	in	Go.	They	will	be	introduced	and	explained	in	other	Go	101	articles.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Function	Declarations	and	Function	Calls
Except	the	operator	operations	introduced	in	the	last	article,	function	operations	are	another	kind	of
popular	operations	in	programming.	Function	operations	are	often	called	function	calls.	This	article	will
introduce	how	to	declare	functions	and	call	functions.

Function	Declarations

Let's	view	a	function	declaration.

1| func	SquaresOfSumAndDiff(a	int64,	b	int64)	(s	int64,	d	int64)	{

2| 			x,	y	:=	a	+	b,	a	-	b

3| 			s	=	x	*	x

4| 			d	=	y	*	y

5| 			return	//	<=>	return	s,	d

6| }

We	can	find	that,	a	function	declaration	is	composed	of	several	portions.	From	left	to	right,

1.	 the	first	portion	is	the	func 	keyword.
2.	 the	next	portion	is	the	function	name,	which	must	be	an	identifier.	Here	the	function	name	is

SquareOfSumAndDiff .
3.	 the	third	portion	is	the	input	parameter	declaration	list,	which	is	enclosed	in	a	pair	of	() .
4.	 the	fourth	portion	is	the	output	(or	return)	result	declaration	list.	Go	functions	can	return	multiple

results.	For	this	specified	example,	the	result	definition	list	is	also	enclosed	in	a	pair	of	() .
However,	for	some	cases,	() 	in	result	definition	lists	are	optional	(see	below	for	details).

5.	 the	last	portion	is	the	function	body,	which	is	enclosed	in	a	pair	of	{} .	In	a	function	body,	the
return 	keyword	is	used	to	end	the	normal	forward	execution	flow	and	enter	the	exiting	phase	(see
the	section	after	next)	of	a	call	of	the	function.

In	the	above	example,	each	parameter	and	result	declaration	is	composed	of	a	name	and	a	type	(the	type
follows	the	name).	We	can	view	parameter	and	result	declarations	as	standard	variable	declarations
without	the	var 	keywords.	The	above	declared	function	has	two	parameters,	a 	and	b ,	and	has	two
results,	s 	and	d .	All	the	types	of	the	parameters	and	results	are	int64 .	Parameters	and	results	are	treated
as	local	variables	within	their	corresponding	function	bodies.

The	names	in	the	result	declaration	list	of	a	function	declaration	can/must	be	present	or	absent	all	together.
Either	case	is	used	common	in	practice.	If	a	result	is	defined	with	a	name,	then	the	result	is	called	a	named
result,	otherwise,	it	is	called	an	anonymous	result.

When	all	the	results	in	a	function	declaration	are	anonymous,	then,	within	the	corresponding	function
body,	the	return 	keyword	must	be	followed	by	a	sequence	of	return	values,	each	of	them	corresponds	to
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a	result	declaration	of	the	function	declaration.	For	example,	the	following	function	declaration	is
equivalent	to	the	above	one.

1| func	SquaresOfSumAndDiff(a	int64,	b	int64)	(int64,	int64)	{

2| 			return	(a+b)	*	(a+b),	(a-b)	*	(a-b)

3| }

In	fact,	if	all	the	parameters	are	never	used	within	the	corresponding	function	body,	the	names	in	the
parameter	declaration	list	of	a	function	declaration	can	be	also	be	omitted	all	together.	However,
anonymous	parameters	are	rarely	used	in	practice.

Although	it	looks	the	parameter	and	result	variables	are	declared	outside	of	the	body	of	a	function
declaration,	they	are	viewed	as	general	local	variables	within	the	function	body.	The	difference	is	that
local	variables	with	non-blank	names	declared	within	a	function	body	must	be	ever	used	in	the	function
body.	Non-blank	names	of	top-level	local	variables,	parameters	and	results	in	a	function	declaration	can't
be	duplicated.

Go	doesn't	support	default	parameter	values.	The	initial	value	of	each	result	is	the	zero	value	of	its	type.
For	example,	the	following	function	will	always	print	(and	return)	0	false .

1| func	f()	(x	int,	y	bool)	{

2| 			println(x,	y)	//	0	false

3| 			return

4| }

If	the	types	of	some	successive	parameters	or	results	in	a	function	declaration	are	the	same	one,	then	the
types	of	the	former	parameters	or	results	can	be	absent.	For	example,	the	above	two	function	declarations
with	the	name	SquaresOfSumAndDiff 	are	equivalent	to

1| func	SquaresOfSumAndDiff(a,	b	int64)	(s,	d	int64)	{

2| 			return	(a+b)	*	(a+b),	(a-b)	*	(a-b)

3| 			//	The	above	line	is	equivalent

4| 			//	to	the	following	line.

5| 			/*

6| 			s	=	(a+b)	*	(a+b);	d	=	(a-b)	*	(a-b);	return

7| 			*/

8| }

Please	note,	even	if	both	the	two	results	are	named,	the	return 	keyword	can	be	followed	with	return
values.

If	the	result	declaration	list	in	a	function	declaration	only	contains	one	anonymous	result	declaration,	then
the	result	declaration	list	doesn't	need	to	be	enclosed	in	a	() .	If	the	function	declaration	has	no	return
results,	then	the	result	declaration	list	portion	can	be	omitted	totally.	The	parameter	declaration	list	portion
can	never	be	omitted,	even	if	the	number	of	parameters	of	the	declared	function	is	zero.

Here	are	more	function	declaration	examples.
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1| func	CompareLower4bits(m,	n	uint32)	(r	bool)	{

2| 			r	=	m&0xF	>	n&0xF

3| 			return

4| 			//	The	above	two	lines	is	equivalent	to

5| 			//	the	following	line.

6| 			/*

7| 			return	m&0xF	>	n&0xF

8| 			*/

9| }

10|

11| //	This	function	has	no	parameters.

12| func	VersionString()	string	{

13| 			return	"go1.0"

14| }

15|

16| //	This	function	has	no	results.	And	all	of

17| //	its	parameters	are	anonymous,	for	we

18| //	don't	care	about	them.

19| func	doNothing(string,	int)	{

20| }

One	fact	we	have	learned	from	the	earlier	articles	in	Go	101	is	that	the	main 	entry	function	in	each	Go
program	is	declared	without	parameters	and	results.

Please	note	that,	functions	must	be	directly	declared	at	package	level.	In	other	words,	a	function	can't	be
declared	within	the	body	of	another	function.	In	a	later	section,	we	will	learn	that	we	can	define
anonymous	functions	in	bodies	of	other	functions.	But	anonymous	functions	are	not	function	declarations.

Function	Calls

A	declared	function	can	be	called	through	its	name	plus	an	argument	list.	The	argument	list	must	be
enclosed	in	a	() .	Each	single-value	argument	corresponds	to	a	parameter	declaration.

The	type	of	an	argument	is	not	required	to	be	identical	with	the	corresponding	parameter	type.	The	only
requirement	for	the	argument	is	it	must	be	assignable	(§7)	(a.k.a.,	implicitly	convertible)	to	the
corresponding	parameter	type.

The	following	is	a	full	example	to	show	how	to	call	some	declared	functions.

1| package	main

2|

3| func	SquaresOfSumAndDiff(a	int64,	b	int64)	(int64,	int64)	{

4| 			return	(a+b)	*	(a+b),	(a-b)	*	(a-b)

5| }

6|

7| func	CompareLower4bits(m,	n	uint32)	(r	bool)	{

§9.	Function	Declarations	and	Function	Calls

64



8| 			r	=	m&0xF	>	n&0xF

9| 			return

10| }

11|

12| //	Initialize	a	package-level	variable

13| //	with	a	function	call.

14| var	v	=	VersionString()

15|

16| func	main()	{

17| 			println(v)	//	v1.0

18| 			x,	y	:=	SquaresOfSumAndDiff(3,	6)

19| 			println(x,	y)	//	81	9

20| 			b	:=	CompareLower4bits(uint32(x),	uint32(y))

21| 			println(b)	//	false

22| 			//	"Go"	is	deduced	as	a	string,

23| 			//	and	1	is	deduced	as	an	int32.

24| 			doNothing("Go",	1)

25| }

26|

27| func	VersionString()	string	{

28| 			return	"v1.0"

29| }

30|

31| func	doNothing(string,	int32)	{

32| }

From	the	above	example,	we	can	learn	that	a	function	can	be	either	declared	before	or	after	any	of	its	calls.

Function	calls	can	be	deferred	or	invoked	in	new	goroutines	(green	threads)	in	Go.	Please	read	a	later
article	(§13)	for	details.

Exiting	Phase	of	a	Function	Call

In	Go,	a	function	call	may	undergo	an	exiting	phase.	The	exiting	phase	of	a	function	call	starts	when	the
called	function	is	returned.	In	other	words,	when	a	function	call	is	returned,	it	is	possible	that	it	hasn't
exited	yet.	We	will	learn	what	is	the	exiting	phase	of	a	function	call	in	the	article	mentioned	at	the	end	of
the	last	seciton.

More	detailed	explanations	for	exiting	phases	of	function	calls	can	be	found	in	this	article	(§31).

Anonymous	Functions

Go	supports	anonymous	functions.	The	definition	of	an	anonymous	function	is	almost	the	same	as	a
function	declaration,	except	there	is	no	function	name	portion	in	the	anonymous	function	definition.
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An	anonymous	function	can	be	called	right	after	it	is	defined.	Example:

1| package	main

2|

3| func	main()	{

4| 			//	This	anonymous	function	has	no	parameters

5| 			//	but	has	two	results.

6| 			x,	y	:=	func()	(int,	int)	{

7| 						println("This	function	has	no	parameters.")

8| 						return	3,	4

9| 			}()	//	Call	it.	No	arguments	are	needed.

10|

11| 			//	The	following	anonymous	function	have	no	results.

12|

13| 			func(a,	b	int)	{

14| 						//	The	following	line	prints:	a*a	+	b*b	=	25

15| 						println("a*a	+	b*b	=",	a*a	+	b*b)

16| 			}(x,	y)	//	pass	argument	x	and	y	to	parameter	a	and	b.

17|

18| 			func(x	int)	{

19| 						//	The	parameter	x	shadows	the	outer	x.

20| 						//	The	following	line	prints:	x*x	+	y*y	=	32

21| 						println("x*x	+	y*y	=",	x*x	+	y*y)

22| 			}(y)	//	pass	argument	y	to	parameter	x.

23|

24| 			func()	{

25| 						//	The	following	line	prints:	x*x	+	y*y	=	25

26| 						println("x*x	+	y*y	=",	x*x	+	y*y)

27| 			}()	//	no	arguments	are	needed.

28| }

Please	note	that,	the	last	anonymous	function	is	in	the	scope	of	the	x 	and	y 	variables	declared	above,	it
can	use	the	two	variables	directly.	Such	functions	are	called	closures.	In	fact,	all	custom	functions	in	Go
can	be	viewed	as	closures.	This	is	why	Go	functions	are	as	flexible	as	many	dynamic	languages.

Later,	we	will	learn	that	an	anonymous	function	can	be	assigned	to	a	function	value	and	can	be	called	at
any	time.

Built-in	Functions

There	are	some	built-in	functions	in	Go,	for	example,	the	println 	and	print 	functions.	We	can	call
these	functions	without	importing	any	packages.

We	can	use	the	built-in	real 	and	imag 	functions	to	get	the	real	and	imaginary	parts	of	a	complex	value.
We	can	use	the	built-in	complex 	function	to	produce	a	complex	value.	Please	note,	if	any	of	the
arguments	of	a	call	to	any	of	the	two	functions	are	all	constants,	then	the	call	will	be	evaluated	at	compile
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time,	and	the	result	value	of	the	call	is	also	a	constant.	In	particular,	if	any	of	the	arguments	is	an	untyped
constant,	then	the	result	value	is	also	an	untyped	constant.	The	call	is	viewed	as	a	constant	expression.

Example:

1| //	c	is	a	untyped	complex	constant.

2| const	c	=	complex(1.6,	3.3)

3|

4| //	The	results	of	real(c)	and	imag(c)	are	both

5| //	untyped	floating-point	values.	They	are	both

6| //	deduced	as	values	of	type	float32	below.

7| var	a,	b	float32	=	real(c),	imag(c)

8|

9| //	d	is	deduced	as	a	typed	value	of	type	complex64.

10| //	The	results	of	real(d)	and	imag(d)	are	both

11| //	typed	values	of	type	float32.

12| var	d	=	complex(a,	b)

13|

14| //	e	is	deduced	as	a	typed	value	of	type	complex128.

15| //	The	results	of	real(e)	and	imag(e)	are	both

16| //	typed	values	of	type	float64.

17| var	e	=	c

More	built-in	functions	will	be	introduced	in	other	Go	101	articles	later.

More	About	Functions

There	are	more	about	function	related	concepts	and	details	which	are	not	touched	in	the	current	article.	We
can	learn	those	concepts	and	details	in	the	article	function	types	and	values	(§20)	later.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Code	Packages	and	Package	Imports
Like	many	modern	programming	languages,	Go	code	is	also	organized	as	code	packages.	To	use	the
exported	resources	(functions,	types,	variables	and	named	constants,	etc)	in	a	specified	package,	the
package	must	first	be	imported,	except	the	builtin 	standard	code	package.	This	article	will	explain	code
packages	and	package	imports	in	Go.

Introduction	of	Package	Import

Let's	view	a	small	program	which	imports	a	standard	code	package.	(Assume	the	source	code	of	this
program	is	stored	in	a	file	named	simple-import-demo.go .)

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			fmt.Println("Go	has",	25,	"keywords.")

7| }

Some	explanations:

The	first	line	specifies	the	name	of	the	package	containing	the	source	file	simple-import-
demo.go .	The	main 	entry	function	of	a	program	must	be	put	in	a	package	named	main .
The	third	line	imports	the	fmt 	standard	package	by	using	the	import 	is	a	keyword.	The	identifier
fmt 	is	the	package	name.	It	is	also	used	as	the	import	name	of,	and	represents,	this	standard
package	in	the	scope	of	containing	source	file.	(Import	names	will	be	explained	a	below	section.)
There	are	many	format	functions	declared	in	this	standard	package	for	other	packages	to	use.	The
Println 	function	is	one	of	them.	It	will	print	the	string	representations	of	an	arbitrary	number	of
arguments	to	the	standard	output.
The	sixth	line	calls	the	Println 	function.	Note	that	the	function	name	is	prefixed	with	a	fmt. 	in
the	call,	where	fmt 	is	the	name	of	the	package	which	contains	the	called	function.	The	form
aImportName.AnExportedIdentifier 	is	called	a	qualified	identifier Ң .
AnExportedIdentifier 	is	called	an	unqualified	identifier.
A	fmt.Println 	function	call	has	no	requirements	for	its	arguments,	so	in	this	program,	its	three
arguments	will	be	deduced	as	values	of	their	respective	default	types,	string ,	int 	and	string .
For	each	fmt.Println 	call,	a	space	character	is	inserted	between	each	two	consecutive	string
representations	and	a	newline	character	is	printed	at	the	end.

Running	this	program,	you	will	get	the	following	output:

$	go	run	simple-import-demo.go
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Go	has	25	keywords.

Please	note,	only	exported	resources	in	a	package	can	be	used	in	the	source	file	which	imports	the
package.	Exported	resources	are	the	resources	whose	names	are	exported	identifiers	(§5).	For	example,	the
first	character	of	the	identifier	Println 	is	an	upper	case	letter	(so	the	Println 	function	is	exported),
which	is	why	the	Println 	function	declared	in	the	fmt 	standard	package	can	be	used	in	the	above
example	program.

The	built-in	functions,	print 	and	println ,	have	similar	functionalities	as	the	corresponding	functions
in	the	fmt 	standard	package.	Built-in	functions	can	be	used	without	importing	any	packages.

Note,	the	two	built-in	functions,	print 	and	println ,	are	not	recommended	to	be	used	in	the	production
environment,	for	they	are	not	guaranteed	to	stay	in	the	future	Go	versions.

All	standard	packages	are	listed	here Ң .	We	can	also	run	a	local	server	(§3)	to	view	Go	documentation.

A	package	import	is	also	called	an	import	declaration	formally	in	Go.	An	import	declaration	is	only	visible
to	the	source	file	which	contains	the	import	declaration.	It	is	not	visible	to	other	source	files	in	the	same
package.

Let's	view	another	example:

1| package	main

2|

3| import	"fmt"

4| import	"math/rand"

5|

6| func	main()	{

7| 			fmt.Printf("Next	random	number	is	%v.\n",	rand.Uint32())

8| }

This	example	imports	one	more	standard	package,	the	math/rand 	package,	which	is	a	sub-package	of	the
math 	standard	package.	This	package	provides	some	functions	to	produce	pseudo-random	numbers.

Some	explanations:

In	this	example,	the	package	name	rand 	is	used	as	the	import	name	of	the	imported	math/rand
standard	package.	A	rand.Uint32() 	call	will	return	a	random	uint32 	integer	number.
Printf 	is	another	commonly	used	function	in	the	fmt 	standard	package.	A	call	to	the	Printf
function	must	take	at	least	one	argument.	The	first	argument	of	a	Printf 	function	call	must	be	a
string 	value,	which	specifies	the	format	of	the	printed	result.	The	%v 	in	the	first	argument	is
called	a	format	verb,	it	will	be	replaced	with	the	string	representation	of	the	second	argument.	As	we
have	learned	in	the	article	basic	types	and	their	literals	(§6),	the	\n 	in	a	double-quoted	string	literal
will	be	escaped	as	a	newline	character.

The	above	program	will	always	output:
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Next	pseudo-random	number	is	always	2596996162.

If	we	expect	the	above	program	to	produce	a	different	random	number	at	each	run,	we	should	set	a
different	seed	by	calling	the	rand.Seed 	function	when	the	program	just	starts.

If	multiple	packages	are	imported	into	a	source	file,	we	can	group	them	in	one	import	declaration	by
enclosing	them	in	a	() .

Example:

1| package	main

2|

3| //	Multiple	packages	can	be	imported	together.

4| import	(

5| 			"fmt"

6| 			"math/rand"

7| 			"time"

8| )

9|

10| func	main()	{

11| 				//	Set	the	random	seed.

12| 			rand.Seed(time.Now().UnixNano())

13| 			fmt.Printf("Next	random	number	is	%v.\n",	rand.Uint32())

14| }

Some	explanations:

this	example	imports	one	more	package,	the	time 	standard	package,	which	provides	many	time
related	utilities.
function	time.Now() 	returns	the	current	time,	as	a	value	of	type	time.Time .
UnixNano 	is	a	method	of	the	time.Time 	type.	The	method	call	aTime.UnixNano() 	returns	the
number	of	nanoseconds	elapsed	since	January	1,	1970	UTC	to	the	time	denoted	by	aTime .	The
return	result	is	a	value	of	type	int64 ,	which	is	the	parameter	type	of	the	rand.Seed 	function.
Methods	are	special	functions.	We	can	learn	methods	in	the	article	methods	in	Go	(§22)	for	details
later.

More	About	fmt.Printf	Format	Verbs

As	the	above	has	mentioned,	if	there	is	one	format	verb	in	the	first	argument	of	a	fmt.Printf 	call,	it	will
be	replaced	with	the	string	representation	of	the	second	argument.	In	fact,	there	can	be	multiple	format
verbs	in	the	first	string 	argument.	The	second	format	verb	will	be	replaced	with	the	string
representation	of	the	third	argument,	and	so	on.

In	Go	101,	only	the	following	listed	format	verbs	will	be	used.
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%v ,	which	will	be	replaced	with	the	general	string	representation	of	the	corresponding	argument.
%T ,	which	will	be	replaced	with	the	type	name	or	type	literal	of	the	corresponding	argument.
%x ,	which	will	be	replaced	with	the	hex	string	representation	of	the	corresponding	argument.	Note,
the	hex	string	representations	for	values	of	some	kinds	of	types	are	not	defined.	Generally,	the
corresponding	arguments	of	%x 	should	be	integers,	integer	arrays	or	integer	slices	(arrays	and	slices
will	be	explained	in	a	later	article).
%s ,	which	will	be	replaced	with	the	string	representation	of	the	corresponding	argument.	The
corresponding	argument	should	be	a	string	or	byte	slice.
Format	verb	%% 	represents	a	percent	sign.

An	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			a,	b	:=	123,	"Go"

7| 			fmt.Printf("a	==	%v	==	0x%x,	b	==	%s\n",	a,	a,	b)

8| 			fmt.Printf("type	of	a:	%T,	type	of	b:	%T\n",	a,	b)

9| 			fmt.Printf("1%%	50%%	99%%\n")

10| }

Output:

a	==	123	==	0x7b,	b	==	Go

type	of	a:	int,	type	of	b:	string

1%	50%	99%

For	more	Printf 	format	verbs,	please	read	the	online	fmt 	package	documentation Ң ,	or	view	the	same
documentation	by	running	a	local	documentation	server.	We	can	also	run	go	doc	fmt 	to	view	the
documentation	of	the	fmt 	standard	package,	and	run	go	doc	fmt.Printf 	to	view	the	documentation	of
the	fmt.Printf 	function,	in	a	terminal.

Package	Folder,	Package	Import	Path	and	Package
Dependencies

A	code	package	may	consist	of	several	source	files.	These	source	files	are	located	in	the	same	folder.	The
source	files	in	a	folder	(not	including	subfolders)	must	belong	to	the	same	package.	So,	a	folder
corresponds	to	a	code	package,	and	vice	versa.	The	folder	containing	the	source	files	of	a	code	package	is
called	the	folder	of	the	package.

For	the	official	Go	SDK,	a	package	whose	import	path	containing	an	internal 	folder	name	is	viewed	as
a	special	package.	It	can	only	be	imported	by	the	packages	rooted	as	the	direct	parent	directory	of	the
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internal 	folder.	For	example,	package	.../a/b/c/internal/d/e/f 	and	.../a/b/c/internal
can	only	be	imported	by	the	packages	whose	import	paths	have	a	.../a/b/c 	prefix.

Depending	on	different	scenarios,	a	folder	with	name	vendor 	might	be	also	viewed	as	a	special	package
folder.	The	following	paragraphs	will	explain	when	this	happens.

In	Go	SDK	1.11,	a	modules	feature	was	introduced.	A	module	can	be	viewed	as	a	collection	of	packages
which	have	a	common	root	(a	package	tree).	Each	module	is	associated	with	an	root	import	path	and	a
semantic	version Ң .	The	major	version	should	be	contained	in	the	root	import	path,	execpt	the	v0 	or	v1
major	versions.	Modules	with	different	root	import	paths	are	viewed	as	different	modules.

Go	SDK	1.11	also	introduced	a	GO111MODULE 	environment	variable.	Its	value	can	be	auto ,	on 	and
off .	Up	to	now	(Go	SDK	v1.13),	its	default	value	is	auto .	By	context,	different	SDK	versions	interpret
auto 	as	either	on 	or	off 	by	different	rules.	Please	check	the	official	wiki Ң 	for	details.

If	a	package	is	contained	within	a	GOPATH/src 	directory,	and	the	modules	feature	is	off,	then	its	import
path	is	the	relative	path	to	either	the	GOPATH/src 	directory	or	the	closest	vendor 	folder	which
containing	the	package.

For	example,	when	the	modules	feature	is	off,	then	for	the	following	hierarchical	directory	structure,

the	import	paths	of	the	two	foo 	packages	are	both	w/foo .
the	import	paths	of	the	x ,	y 	and	z 	packages	are	x ,	x/y 	and	x/z ,	respectively.

Note,

when	the	file	y.go 	imports	a	package	with	import	path	as	w/foo ,	the	imported	package	is	the
package	with	folder	GOPATH/src/x/y/vendor/w/foo .
when	the	x.go 	or	z.go 	file	imports	a	package	with	import	path	w/foo ,	the	imported	package	is
the	package	with	folder	GOPATH/src/x/vendor/w/foo .

_	GOPATH

		|_	src

					|_	x

								|_	vendor

								|		|_	w

								|					|_	foo

								|								|_	foo.go				//	package	foo

								|_	y

								|		|_	vendor

								|		|		|_	w

								|		|					|_	foo

								|		|								|_	foo.go	//	package	foo

								|		|_	y.go												//	package	y

								|_	z

								|		|_	z.go												//	package	z
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								|_	x.go															//	package	x

When	the	modules	feature	is	on,	the	root	import	path	of	a	module	is	often	(but	not	required	to	be)
specified	in	a	go.mod 	file	which	is	directly	contained	in	the	root	package	folder	of	the	module.	We	often
use	the	root	import	path	to	identify	the	module.	The	root	import	path	is	the	common	prefix	of	all	packages
in	the	module.

Only	the	vendor 	folder	directly	under	the	root	path	of	a	module	is	viewed	as	a	special	folder.

For	example,	when	the	modules	feature	is	on,	then	in	the	module	identified	with	example.com/mypkg
shown	blow,

the	import	path	of	the	first	foo 	package	is	w/foo .	The	MyProject/vendor 	folder	is	viewed	as	a
special	folder.
the	import	path	of	the	other	foo 	package	isexample.com/mypkg/x/y/vendor/w/foo .	Note,	the
MyProject/x/y/vendor 	folder	is	viewed	as	a	normal	package	folder.
the	import	paths	of	the	x ,	y 	and	z 	packages	are	example.com/mypkg/x ,
example.com/mypkg/x/y 	and	example.com/mypkg/x/z ,	respectively.

Note,	when	the	x.go ,	y.go 	or	z.go 	files	import	a	package	with	import	path	w/foo ,	the	imported
package	is	always	the	package	with	folder	MyProject/vendor/w/foo .

_	MyProject

					|_	go.mod																//	module	example.com/mypkg

					|_	vendor

					|		|_	w

					|					|_	foo

					|								|_	foo.go							//	package	foo

					|_	x

								|_	y

								|		|_	vendor

								|		|		|_	w

								|		|					|_	foo

								|		|								|_	foo.go	//	package	foo

								|		|_	y.go												//	package	y

								|_	z

								|		|_	z.go												//	package	z

								|_	x.go															//	package	x

When	one	source	file	in	a	package	imports	another	package,	we	say	the	importing	package	depends	on	the
imported	package.

Go	doesn't	support	circular	package	dependencies.	If	package	a 	depends	on	package	b 	and	package	b
depends	on	package	c ,	then	source	files	in	package	c 	can't	import	package	a 	and	b ,	and	source	files	in
package	b 	can't	import	package	a .
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Surely,	source	files	in	a	package	can't,	and	don't	need	to,	import	the	package	itself.

Similar	to	package	dependencies,	a	module	might	also	depend	on	some	other	modules.	The	direct	module
dependecies	and	their	versions	are	often	specified	in	the	go.mod 	file	of	the	module.	Circular	module
dependencies	are	supported,	though	such	scenarios	are	rare	in	practice.

Later,	we	will	call	the	packages	named	with	main 	and	containing	main 	entry	functions	as	program
packages	(or	command	packages),	and	call	other	packages	as	library	packages.	Each	Go	program
should	contain	one	and	only	one	program	package.

The	name	of	the	folder	of	a	package	is	not	required	to	be	the	same	as	the	package	name.	However,	for	a
library	package,	it	will	make	package	users	confused	if	the	name	of	the	package	is	different	from	the	name
of	the	folder	of	the	package.	The	cause	of	the	confusion	is	that	the	default	import	path	of	a	package	is	the
name	of	the	package	but	what	is	contained	in	the	import	path	of	the	package	is	the	folder	name	of	the
package.	So	please	try	to	make	the	two	names	identical	for	each	library	package.

On	the	other	hand,	it	is	recommended	to	give	each	program	package	folder	a	meaningful	name	other	than
its	package	name,	main .

The	init	Functions

There	can	be	multiple	functions	named	as	init 	declared	in	a	package,	even	in	a	source	code	file.	The
functions	named	as	init 	must	have	not	any	input	parameters	and	return	results.

Note,	at	the	top	package-level	block,	the	init 	identifier	can	only	be	used	in	function	declarations.	We
can't	declare	package-level	variable/constants/types	which	names	are	init .

At	run	time,	each	init 	function	will	be	(sequentially)	invoked	once	and	only	once	(before	invoking	the
main 	entry	function).	So	the	meaning	of	the	init 	functions	are	much	like	the	static	initializer	blocks	in
Java.

Here	is	a	simple	example	which	contains	two	init 	functions:

1| package	main

2|

3| import	"fmt"

4|

5| func	init()	{

6| 			fmt.Println("hi,",	bob)

7| }

8|

9| func	main()	{

10| 			fmt.Println("bye")

11| }

12|
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13| func	init()	{

14| 			fmt.Println("hello,",	smith)

15| }

16|

17| func	titledName(who	string)	string	{

18| 			return	"Mr.	"	+	who

19| }

20|

21| var	bob,	smith	=	titledName("Bob"),	titledName("Smith")

The	output	of	this	program:

hi,	Mr.	Bob

hello,	Mr.	Smith

bye

Resource	Initialization	Order

At	run	time,	a	package	will	be	loaded	after	all	its	dependency	packages.	Each	package	will	be	loaded	once
and	only	once.

All	init 	functions	in	all	involved	packages	in	a	program	will	be	invoked	sequentially.	An	init 	function
in	an	importing	package	will	be	invoked	after	all	the	init 	functions	declared	in	the	dependency	packages
of	the	importing	package	for	sure.	All	init 	functions	will	be	invoked	before	invoking	the	main 	entry
function.

The	invocation	order	of	the	init 	functions	in	the	same	source	file	is	from	top	to	bottom.	Go	specification
recommends,	but	doesn't	require,	to	invoke	the	init 	functions	in	different	source	files	of	the	same
package	by	the	alphabetical	order	of	filenames	of	their	containing	source	files.	So	it	is	not	a	good	idea	to
have	dependency	relations	between	two	init 	functions	in	two	different	source	files.

All	package-level	variables	declared	in	a	package	are	initialized	before	any	init 	function	declared	in	the
same	package	is	invoked.

Go	runtime	will	try	to	initialize	package-level	variables	in	a	package	by	their	declaration	order,	but	a
package-level	variable	will	be	initialized	after	all	of	its	depended	variables	for	sure.	For	example,	in	the
following	code	snippet,	the	initializations	the	four	package-level	variables	happen	in	the	order	y ,	z ,	x ,
and	w .

1| func	f()	int	{

2| 			return	z	+	y

3| }

4|

5| func	g()	int	{

6| 			return	y/2
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7| }

8|

9| var	(

10| 			w							=	x

11| 			x,	y,	z	=	f(),	123,	g()

12| )

About	more	detailed	rule	of	the	initialization	order	of	package-level	variables,	please	read	the	article
expression	evaluation	order	(§33).

Full	Package	Import	Forms

In	fact,	the	full	form	of	an	import	declaration	is

import	importname	"path/to/package"

where	importname 	is	optional,	its	default	value	is	the	name	(not	the	folder	name)	of	the	imported
package.

In	fact,	in	the	above	used	import	declarations,	the	importname 	portions	are	all	omitted,	for	they	are
identical	to	the	respective	package	names.	These	import	declarations	are	equivalent	to	the	following	ones:

import	fmt	"fmt"								//	<=>	import	"fmt"

import	rand	"math/rand"	//	<=>	import	"math/rand"

import	time	"time"						//	<=>	import	"time"

If	the	importname 	portion	presents	in	an	import	declaration,	then	the	prefix	tokens	used	in	qualified
identifiers	must	be	importname 	instead	of	the	name	of	the	imported	package.

The	full	import	declaration	form	is	not	used	widely.	However,	sometimes	we	must	use	it.	For	example,	if	a
source	file	imports	two	packages	with	the	same	name,	to	avoid	making	compiler	confused,	we	must	use
the	full	import	form	to	set	a	custom	importname 	for	at	least	one	package	in	the	two.

Here	is	an	example	of	using	full	import	declaration	forms.

1| package	main

2|

3| import	(

4| 			format	"fmt"

5| 			random	"math/rand"

6| 			"time"

7| )

8|

9| func	main()	{

10| 			random.Seed(time.Now().UnixNano())

11| 			format.Print("A	random	number:	",	random.Uint32(),	"\n")
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12|

13| 			//	The	following	two	lines	fail	to	compile,

14| 			//	for	"rand"	is	not	identified.

15| 			/*

16| 			rand.Seed(time.Now().UnixNano())

17| 			fmt.Print("A	random	number:	",	rand.Uint32(),	"\n")

18| 			*/

19| }

Some	explanations:

we	must	use	format 	and	random 	as	the	prefix	token	in	qualified	identifiers,	instead	of	the	real
package	names	fmt 	and	rand .
Print 	is	another	function	in	the	fmt 	standard	package.	Like	Println 	function	calls,	a	Print
function	call	can	take	an	arbitrary	number	of	arguments.	It	will	print	the	string	representations	of	the
passed	arguments,	one	by	one.	If	two	consecutive	arguments	are	both	not	string	values,	then	a	space
character	will	be	automatically	inserted	between	them	in	the	print	result.

The	importname 	in	the	full	form	import	declaration	can	be	a	dot	(. ).	Such	imports	are	called	dot
imports.	To	use	the	exported	elements	in	the	packages	being	dot	imported,	the	prefix	part	in	qualified
identifiers	must	be	omitted.

Example:

1| package	main

2|

3| import	(

4| 			.	"fmt"

5| 			.	"time"

6| )

7|

8| func	main()	{

9| 			Println("Current	time:",	Now())

10| }

In	the	above	example,	Println 	instead	of	fmt.Println ,	and	Now 	instead	of	time.Now 	must	be	used.

Generally,	dot	imports	are	not	recommended	to	be	used	in	formal	projects.

The	importname 	in	the	full	form	import	declaration	can	be	the	blank	identifier	(_ ).	Such	imports	are
called	anonymous	imports	(some	articles	elsewhere	also	call	them	blank	imports).	The	importing	source
files	can't	use	the	exported	resources	in	anonymously	imported	packages.	The	purpose	of	anonymous
imports	is	to	initialize	the	imported	packages	(each	of	init 	functions	in	the	anonymously	imported
packages	will	be	called	once).

In	the	following	example,	all	init 	functions	declared	in	the	net/http/pprof 	standard	package Ң 	will
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be	called	before	the	main 	entry	function	is	called.

1| package	main

2|

3| import	_	"net/http/pprof"

4|

5| func	main()	{

6| 			...	//	do	somethings

7| }

Each	Non-Anonymous	Import	Must	Be	Used	at	Least	Once

Except	anonymous	imports,	other	imports	must	be	used	at	least	once.	For	example,	the	following	example
fails	to	compile.

1| package	main

2|

3| import	(

4| 			"net/http"	//	error:	imported	and	not	used

5| 			.	"time"			//	error:	imported	and	not	used

6| )

7|

8| import	(

9| 			format	"fmt"		//	okay:	it	is	used	once	below

10| 			_	"math/rand"	//	okay:	it	is	not	required	to	be	used

11| )

12|

13| func	main()	{

14| 			format.Println()	//	use	the	imported	"fmt"	package

15| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Expressions,	Statements	and	Simple	Statements
This	article	will	introduce	expressions	and	statements	in	Go.

Simply	speaking,	an	expression	represents	a	value	and	a	statement	represents	an	operation.	However,	in
fact,	some	special	expressions	may	be	composed	of	and	represent	several	values,	and	some	statements
may	be	composed	of	several	sub	operations/statements.	By	context,	some	statements	can	be	also	viewed	as
expressions.

Simple	statements	are	some	special	statements.	In	Go,	some	portions	of	all	kinds	of	control	flows	must	be
simple	statements,	and	some	portions	must	be	expressions.	Control	flows	will	be	introduced	in	the	next	Go
101	article.

This	article	will	not	make	accurate	definitions	for	expressions	and	statements.	It	is	hard	to	achieve	this.
This	article	will	only	list	some	expression	and	statement	cases.	Not	all	kinds	of	expressions	and	statements
will	be	covered	in	this	article,	but	all	kinds	of	simple	statements	will	be	listed.

Some	Expression	Cases

Most	expressions	in	Go	are	single-value	expressions.	Each	of	them	represents	one	value.	Other
expressions	represent	multiple	values	and	they	are	named	multi-value	expressions.

In	the	scope	of	this	document,	when	an	expression	is	mentioned,	we	mean	it	is	a	single-value	expression,
unless	otherwise	specified.

Value	literals,	variables,	and	named	constants	are	all	single-value	expressions,	also	called	elementary
expressions.

Operations	(without	the	assignment	parts)	using	the	operators	introduced	in	the	article	common	operators
(§8)	are	all	single-value	expressions.

If	a	function	returns	at	least	one	result,	then	its	calls	(without	the	assignment	parts)	are	expressions.	In
particular,	if	a	function	returns	more	than	one	results,	then	its	calls	belong	to	multi-value	expressions.
Calls	to	functions	without	results	are	not	expressions.

Methods	can	be	viewed	as	special	functions.	So	the	aforementioned	function	cases	also	apply	to	methods.
Methods	will	be	explained	in	detail	in	the	article	method	in	Go	(§22)	later.

In	fact,	later	we	will	learn	that	custom	functions,	including	methods,	are	all	function	values,	so	they	are
also	(single-value)	expressions.	We	will	learn	more	about	function	types	and	values	(§20)	later.

Channel	receive	operations	(without	the	assignment	parts)	are	also	expressions.	Channel	operations	will	be
explained	in	the	article	channels	in	Go	(§21)	later.

Some	expressions	in	Go,	including	channel	receive	operations,	may	have	optional	results	in	Go.	Such
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Some	expressions	in	Go,	including	channel	receive	operations,	may	have	optional	results	in	Go.	Such
expressions	can	present	as	both	single-value	and	multi-value	expressions,	depending	on	different	contexts.
We	can	learn	such	expressions	in	other	Go	101	articles	later.

Simple	Statement	Cases

There	are	six	kinds	of	simple	statements.

1.	 short	variable	declaration	forms
2.	 pure	value	assignments	(not	mixing	with	variable	declarations),	including	x	op=	y 	operations.
3.	 function/method	calls	and	channel	receive	operations.	As	mentioned	in	the	last	section,	these	simple

statements	can	also	be	used	as	expressions.
4.	 channel	send	operations.
5.	 nothing	(a.k.a.,	blank	statements).	We	will	learn	some	uses	of	blank	statements	in	the	next	article.
6.	 x++ 	and	x-- .

Again,	channel	receive	and	sent	operations	will	be	introduced	in	the	article	channels	in	Go	(§21).

Note,	x++ 	and	x-- 	can't	be	used	as	expressions.	And	Go	doesn't	support	the	++x 	and	--x 	syntax	forms.

Some	Non-Simple	Statement	Cases

An	incomplete	non-simple	statements	list:

standard	variable	declaration	forms.	Yes,	short	variable	declarations	are	simple	statements,	but
standard	ones	are	not.
named	constant	declarations.
custom	type	declarations.
package	import	declarations.
explicit	code	blocks.	An	explicit	code	block	starts	with	a	{ 	and	ends	with	a	} .	A	code	block	may
contain	many	sub-statements.
function	declarations.	A	function	declaration	may	contain	many	sub-statements.
control	flows	and	code	execution	jumps.	Please	read	the	next	article	(§12)	for	details.
return 	lines	in	function	declarations.
deferred	function	calls	and	goroutine	creations.	The	two	will	be	introduced	in	the	article	after	next
(§13).

Examples	of	Expressions	and	Statements

1| //	Some	non-simple	statements.

2| import	"time"
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3| var	a	=	123

4| const	B	=	"Go"

5| type	Choice	bool

6| func	f()	int	{

7| 			for	a	<	10	{

8| 						break

9| 			}

10|

11| 			//	This	is	an	explicit	code	block.

12| 			{

13| 						//	...

14| 			}

15| 			return	567

16| }

17|

18| //	Some	simple	statements:

19| c	:=	make(chan	bool)	//	channels	will	be	explained	later

20| a	=	789

21| a	+=	5

22| a	=	f()	//	here	f()	is	used	as	an	expression

23| a++

24| a--

25| c	<-	true	//	a	channel	send	operation

26| z	:=	<-c		//	a	channel	receive	operation	used	as	the

27| 										//	source	value	in	an	assignment	statement.

28|

29| //	Some	expressions:

30| 123

31| true

32| B

33| B	+	"	language"

34| a	-	789

35| a	>	0	//	an	untyped	boolean	value

36| f					//	a	function	value	of	type	"func	()"

37|

38| //	The	following	ones	can	be	used	as	both

39| //	simple	statemetns	and	expressions.

40| f()

41| <-c	//	a	channel	receive	operation

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Basic	Control	Flows
The	control	flow	code	blocks	in	Go	are	much	like	other	popular	programming	languages,	but	there	are
also	many	differences.	This	article	will	show	these	similarities	and	differences.

An	Introduction	of	Control	Flows	in	Go

There	are	three	kinds	of	basic	control	flow	code	blocks	in	Go:

if-else 	two-way	conditional	execution	block.
for 	loop	block.
switch-case 	multi-way	conditional	execution	block.

There	are	also	some	control	flow	code	blocks	which	are	related	to	some	certain	kinds	of	types	in	Go.

for-range 	loop	block	for	container	(§18)	types.
type-switch 	multi-way	conditional	execution	block	for	interface	(§23)	types.
select-case 	block	for	channel	(§21)	types.

Like	many	other	popular	languages,	Go	also	supports	break ,	continue 	and	goto 	code	execution	jump
statements.	Besides	these,	there	is	a	special	code	jump	statement	in	Go,	fallthrough .

Among	the	six	kinds	of	control	flow	blocks,	except	the	if-else 	control	flow,	the	other	five	are	called
breakable	control	flow	blocks.	We	can	use	break 	statements	to	make	executions	jump	out	of	breakable
control	flow	blocks.

for 	and	for-range 	loop	blocks	are	called	loop	control	flow	blocks.	We	can	use	continue 	statements
to	end	a	loop	step	in	advance	in	a	loop	control	flow	block,	i.e.	continue	to	the	next	iteration	of	the	loop.

Please	note,	each	of	the	above	mentioned	control	flow	blocks	is	a	statement,	and	it	may	contain	many
other	sub-statements.

Above	mentioned	control	flow	statements	are	all	the	ones	in	narrow	sense.	The	mechanisms	introduced	in
the	next	article,	goroutines,	deferred	function	calls	and	panic/recover	(§13),	and	the	concurrency
synchronization	techniques	introduced	in	the	later	article	concurrency	synchronization	overview	(§36)	can
be	viewed	as	control	flow	statements	in	broad	sense.

Only	the	basic	control	flow	code	blocks	and	code	jump	statements	will	be	explained	in	the	current	article,
other	ones	will	be	explained	in	many	other	Go	101	articles	later.

if-else	Control	Flow	Blocks
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The	full	form	of	a	if-else 	code	block	is	like

1| if	InitSimpleStatement;	Condition	{

2| 			//	do	something

3| }	else	{

4| 			//	do	something

5| }

if 	and	else 	are	keywords.	Like	many	other	programming	languages,	the	else 	branch	is	optional.

The	InitSimpleStatement 	portion	is	also	optional.	It	must	be	a	simple	statement	(§11)	if	it	is	present.
If	it	is	absent,	we	can	view	it	as	a	blank	statement	(one	kind	of	simple	statements).	In	practice,
InitSimpleStatement 	is	often	a	short	variable	declaration	or	a	pure	assignment.	A	Condition 	must
be	an	expression	(§11)	which	results	to	a	boolean	value.	The	Condition 	portion	can	be	enclosed	in	a	pair
of	() 	or	not,	but	it	can't	be	enclosed	together	with	the	InitSimpleStatement 	portion.

If	the	InitSimpleStatement 	in	a	if-else 	block	is	present,	it	will	be	executed	before	executing	other
statements	in	the	if-else 	block.	If	the	InitSimpleStatement 	is	absent,	then	the	semicolon	following
it	is	optional.

Each	if-else 	control	flow	forms	one	implicit	code	block,	one	if 	branch	explicit	code	block	and	one
optional	else 	branch	code	block.	The	two	branch	code	blocks	are	both	nested	in	the	implicit	code	block.
Upon	execution,	if	Condition 	expression	results	true ,	then	the	if 	branch	block	will	get	executed,
otherwise,	the	else 	branch	block	will	get	executed.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"math/rand"

6| 			"time"

7| )

8|

9| func	main()	{

10| 			rand.Seed(time.Now().UnixNano())

11|

12| 			if	n	:=	rand.Int();	n%2	==	0	{

13| 						fmt.Println(n,	"is	an	even	number.")

14| 			}	else	{

15| 						fmt.Println(n,	"is	an	odd	number.")

16| 			}

17|

18| 			n	:=	rand.Int()	%	2	//	this	n	is	not	the	above	n.

19| 			if	n	%	2	==	0	{
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20| 						fmt.Println("An	even	number.")

21| 			}

22|

23| 			if	;	n	%	2	!=	0	{

24| 						fmt.Println("An	odd	number.")

25| 			}

26| }

If	the	InitSimpleStatement 	in	a	if-else 	code	block	is	a	short	variable	declaration,	then	the	declared
variables	will	be	viewed	as	being	declared	in	the	top	nesting	implicit	code	block	of	the	if-else 	code
block.

An	else 	branch	code	block	can	be	implicit	if	the	corresponding	else 	is	followed	by	another	if-else
code	block,	otherwise,	it	must	be	explicit.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			if	h	:=	time.Now().Hour();	h	<	12	{

10| 						fmt.Println("Now	is	AM	time.")

11| 			}	else	if	h	>	19	{

12| 						fmt.Println("Now	is	evening	time.")

13| 			}	else	{

14| 						fmt.Println("Now	is	afternoon	time.")

15| 						h	:=	h	//	the	right	one	is	declared	above

16| 						//	The	just	new	declared	"h"	variable

17| 						//	shadows	the	above	same-name	one.

18| 						_	=	h

19| 			}

20|

21| 			//	h	is	not	visible	here.

22| }

for	Loop	Control	Flow	Blocks

The	full	form	of	a	for 	loop	block	is:

1| for	InitSimpleStatement;	Condition;	PostSimpleStatement	{

2| 			//	do	something
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3| }

for 	is	a	keyword.	The	InitSimpleStatement 	and	PostSimpleStatement 	portions	must	be	both
simple	statements,	and	the	PostSimpleStatement 	portion	must	not	be	a	short	variable	declaration.
Condition 	must	be	an	expression	which	result	is	a	boolean	value.	The	three	portions	are	all	optional.

Unlike	many	other	programming	languages,	the	just	mentioned	three	parts	following	the	for 	keyword
can't	be	enclosed	in	a	pair	of	() .

Each	for 	control	flow	forms	at	least	two	code	blocks,	one	is	implicit	and	one	is	explicit.	The	explicit	one
is	nested	in	the	implicit	one.

The	InitSimpleStatement 	in	a	for 	loop	block	will	be	executed	(only	once)	before	executing	other
statements	in	the	for 	loop	block.

The	Condition 	expression	will	be	evaluated	at	each	loop	step.	If	the	evaluation	result	is	false ,	then	the
loop	will	end.	Otherwise	the	body	(a.k.a.,	the	explicit	code	block)	of	the	loop	will	get	executed.

The	PostSimpleStatement 	will	be	executed	at	the	end	of	each	loop	step.

A	for 	loop	example.	The	example	will	print	the	integers	from	0 	to	9 .

1| for	i	:=	0;	i	<	10;	i++	{

2| 			fmt.Println(i)

3| }

If	the	InitSimpleStatement 	and	PostSimpleStatement 	portions	are	both	absent	(just	view	them	as
blank	statements),	their	nearby	two	semicolons	can	be	omitted.	The	form	is	called	as	condition-only	for
loop	form.	It	is	the	same	as	the	while 	loop	in	other	languages.

1| var	i	=	0

2| for	;	i	<	10;	{

3| 			fmt.Println(i)

4| 			i++

5| }

6| for	i	<	20	{

7| 			fmt.Println(i)

8| 			i++

9| }

If	the	Condition 	portion	is	absent,	compilers	will	view	it	as	true .

1| for	i	:=	0;	;	i++	{	//	<=>	for	i	:=	0;	true;	i++	{

2| 			fmt.Println(i)

3| 			if	i	>=	10	{

4| 						//	"break"	statement	will	be	explained	below.

5| 						break
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6| 			}

7| }

8|

9| //	The	following	4	endless	loops	are

10| //	equivalent	to	each	other.

11| for	;	true;	{

12| }

13| for	true	{

14| }

15| for	;	;	{

16| }

17| for	{

18| }

If	the	InitSimpleStatement 	in	a	for 	block	is	a	short	variable	declaration	statement,	then	the	declared
variables	will	be	viewed	as	being	declared	in	the	top	nesting	implicit	code	block	of	the	for 	block.	For
example,	the	following	code	snippet	prints	012 	instead	of	0 .

1| for	i	:=	0;	i	<	3;	i++	{

2| 			fmt.Print(i)

3| 			//	The	left	i	is	a	new	declared	variable,

4| 			//	and	the	right	i	is	the	loop	variable.

5| 			i	:=	i

6| 			//	The	new	declared	variable	is	modified,	but

7| 			//	the	old	one	(the	loop	variable)	is	not	yet.

8| 			i	=	10

9| 			_	=	i

10| }

A	break 	statement	can	be	used	to	make	execution	jump	out	of	the	for 	loop	control	flow	block	in
advance,	if	the	for 	loop	control	flow	block	is	the	innermost	breakable	control	flow	block	containing	the
break 	statement.

1| i	:=	0

2| for	{

3| 			if	i	>=	10	{

4| 						break

5| 			}

6| 			i++

7| 			fmt.Println(i)

8| }

A	continue 	statement	can	be	used	to	end	the	current	loop	step	in	advance	(PostSimpleStatement
will	still	get	executed),	if	the	for 	loop	control	flow	block	is	the	innermost	loop	control	flow	block
containing	the	continue 	statement.	For	example,	the	following	code	snippet	will	print	13579 .

1| for	i	:=	0;	i	<	10;	i++	{
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2| 			if	i	%	2	==	0	{

3| 						continue

4| 			}

5| 			fmt.Print(i)

6| }

switch-case	Control	Flow	Blocks

switch-case 	control	flow	block	is	one	kind	of	conditional	execution	control	flow	blocks.

The	full	form	a	switch-case 	block	is

1| switch	InitSimpleStatement;	CompareOperand0	{

2| case	CompareOperandList1:

3| 			//	do	something

4| case	CompareOperandList2:

5| 			//	do	something

6| ...

7| case	CompareOperandListN:

8| 			//	do	something

9| default:

10| 			//	do	something

11| }

In	the	full	form,

switch ,	case 	and	default 	are	three	keywords.
The	InitSimpleStatement 	portion	must	be	a	simple	statement.	The	CompareOperand0 	portion
is	an	expression	which	is	viewed	as	a	typed	value	(if	it	is	an	untyped	value,	then	it	is	viewed	as	a
type	value	of	its	default	type),	hence	it	can't	be	an	untyped	nil .	CompareOperand0 	is	called	as
switch	expression	in	Go	specification.
Each	of	the	CompareOperandListX 	(X 	may	represent	from	1 	to	N )	portions	must	be	a	comma
separated	expression	list.	Each	of	these	expressions	shall	be	comparable	with	CompareOperand0 .
Each	of	these	expressions	is	called	as	a	case	expression	in	Go	specification.	If	a	case	expression	is
an	untyped	value,	then	it	must	be	implicitly	convertible	to	the	type	of	the	switch	expression	in	the
same	switch-case 	control	flow.	If	the	conversion	is	impossible	to	achieve,	compilation	fails.

Each	case	CompareOperandListX: 	or	default: 	opens	(and	is	followed	by)	an	implicit	code	block.
The	implicit	code	block	and	that	case	CompareOperandListX: 	or	default: 	forms	a	branch.	Each
such	branch	is	optional	to	be	present.	We	call	an	implicit	code	block	in	such	a	branch	as	a	branch	code
block	later.

There	can	be	at	most	one	default 	branch	in	a	switch-case 	control	flow	block.

Besides	the	branch	code	blocks,	each	switch-case 	control	flow	forms	two	code	blocks,	one	is	implicit
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and	one	is	explicit.	The	explicit	one	is	nested	in	the	implicit	one.	All	the	branch	code	blocks	are	nested	in
the	explicit	one	(and	nested	in	the	implicit	one	indirectly).

switch-case 	control	flow	blocks	are	breakable,	so	break 	statements	can	also	be	used	in	any	branch
code	block	in	a	switch-case 	control	flow	block	to	make	execution	jump	out	of	the	switch-case
control	flow	block	in	advance.

The	InitSimpleStatement 	in	a	for 	loop	block	will	be	executed	(only	once)	before	executing	other
statements	in	the	for 	loop	block.

The	InitSimpleStatement 	will	get	executed	firstly	when	a	switch-case 	control	flow	gets	executed,
then	the	switch	CompareOperand0 	expression	will	be	evaluated	and	only	evaluated	once.	The	evaluation
result	is	always	a	typed	value.	The	evaluation	result	will	be	compared	(by	using	the	== 	operator)	with	the
evaluation	result	of	each	case	expression	in	the	CompareOperandListX 	expression	lists,	from	top	to
down	and	from	left	to	right.	If	a	case	expression	is	found	to	be	equal	to	CompareOperand0 ,	the
comparison	process	stops	and	the	corresponding	branch	code	block	of	the	expression	will	be	executed.	If
none	case	expressions	are	found	to	be	equal	to	CompareOperand0 ,	the	default	branch	code	block	(if	it	is
present)	will	get	executed.

A	switch-case 	control	flow	example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"math/rand"

6| 			"time"

7| )

8|

9| func	main()	{

10| 			rand.Seed(time.Now().UnixNano())

11| 			switch	n	:=	rand.Intn(100);	n%9	{

12| 			case	0:

13| 						fmt.Println(n,	"is	a	multiple	of	9.")

14|

15| 						//	Different	from	many	other	languages,

16| 						//	in	Go,	the	execution	will	automatically

17| 						//	jumps	out	of	the	switch-case	block	at

18| 						//	the	end	of	each	branch	block.

19| 						//	No	"break"	statement	is	needed	here.

20| 			case	1,	2,	3:

21| 						fmt.Println(n,	"mod	9	is	1,	2	or	3.")

22| 						//	hHre,	this	"break"	statement	is	nonsense.

23| 						break

24| 			case	4,	5,	6:

25| 						fmt.Println(n,	"mod	9	is	4,	5	or	6.")
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26| 			//	case	6,	7,	8:

27| 						//	The	above	case	line	might	fail	to	compile,

28| 						//	for	6	is	duplicate	with	the	6	in	the	last

29| 						//	case.	The	behavior	is	compiler	dependent.

30| 			default:

31| 						fmt.Println(n,	"mod	9	is	7	or	8.")

32| 			}

33| }

The	rand.Intn 	function	returns	a	non-negative	int 	random	value	which	is	smaller	than	the	specified
argument.

Note,	if	any	two	case	expressions	in	a	switch-case 	control	flow	can	be	detected	to	be	equal	at	compile
time,	then	a	compiler	may	reject	the	latter	one.	For	example,	the	standard	Go	compiler	thinks	the	case
6,	7,	8 	line	in	the	above	example	is	invalid	if	that	line	is	not	commented	out.	But	other	compilers	may
think	that	line	is	okay.	In	fact,	the	current	standard	Go	compiler	(version	1.13)	allows	duplicate	boolean
case	expressions Ң ,	and	gccgo	(v8.2)	allows	both	duplicate	boolean	and	string	case	expressions.

As	the	comments	in	the	above	example	describes,	unlike	many	other	languages,	in	Go,	at	the	end	of	each
branch	code	block,	the	execution	will	automatically	break	out	of	the	corresponding	switch-case 	control
block.	Then	how	to	let	the	execution	slip	into	the	next	branch	code	block?	Go	provides	a	fallthrough
keyword	to	do	this	task.	For	example,	in	the	following	example,	every	branch	code	block	will	get
executed,	by	their	orders,	from	top	to	down.

1| rand.Seed(time.Now().UnixNano())

2| switch	n	:=	rand.Intn(100)	%	5;	n	{

3| case	0,	1,	2,	3,	4:

4| 			fmt.Println("n	=",	n)

5| 			//	The	"fallthrough"	statement	makes	the

6| 			//	execution	slip	into	the	next	branch.

7| 			fallthrough

8| case	5,	6,	7,	8:

9| 			//	A	new	declared	variable	also	called	"n",

10| 			//	it	is	only	visible	in	the	currrent

11| 			//	branch	code	block.

12| 			n	:=	99

13| 			fmt.Println("n	=",	n)	//	99

14| 			fallthrough

15| default:

16| 			//	This	"n"	is	the	switch	expression	"n".

17| 			fmt.Println("n	=",	n)

18| }

Please	note,

a	fallthrough 	statement	must	be	the	final	statement	in	a	branch.
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a	fallthrough 	statement	can't	show	up	in	the	final	branch	in	a	switch-case 	control	flow	block.

For	example,	the	following	fallthrough 	uses	are	all	illegal.

1| switch	n	:=	rand.Intn(100)	%	5;	n	{

2| case	0,	1,	2,	3,	4:

3| 			fmt.Println("n	=",	n)

4| 			//	The	if-block,	not	the	fallthrough	statement,

5| 			//	is	the	final	statement	in	this	branch.

6| 			if	true	{

7| 						fallthrough	//	error:	not	the	final	statement

8| 			}

9| case	5,	6,	7,	8:

10| 			n	:=	99

11| 			fallthrough	//	error:	not	the	final	statement

12| 			_	=	n

13| default:

14| 			fmt.Println(n)

15| 			fallthrough	//	error:	show	up	in	the	final	branch

16| }

The	InitSimpleStatement 	and	CompareOperand0 	portions	in	a	switch-case 	control	flow	are	both
optional.	If	the	CompareOperand0 	portion	is	absent,	it	will	be	viewed	as	true ,	a	typed	value	of	the
built-in	type	bool .	If	the	InitSimpleStatement 	portion	is	absent,	the	semicolon	following	it	can	be
omitted.

And	as	above	has	mentioned,	all	branches	are	optional.	So	the	following	code	blocks	are	all	legal,	all	of
them	can	be	viewed	as	no-ops.

1| switch	n	:=	5;	n	{

2| }

3|

4| switch	5	{

5| }

6|

7| switch	_	=	5;	{

8| }

9|

10| switch	{

11| }

For	the	latter	two	switch-case 	control	flow	blocks	in	the	last	example,	as	above	has	mentioned,	each	of
the	absent	CompareOperand0 	portions	is	viewed	as	a	typed	value	true 	of	the	built-in	type	bool .	So	the
following	code	snippet	will	print	hello .

1| switch	{

2| case	true:	fmt.Println("hello")
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3| default:	fmt.Println("bye")

4| }

Another	obvious	difference	from	many	other	languages	is	the	order	of	the	default 	branch	in	a	switch-
case 	control	flow	block	can	be	arbitrary.	For	example,	the	following	three	switch-case 	control	flow
blocks	are	equivalent	to	each	other.

1| switch	n	:=	rand.Intn(3);	n	{

2| case	0:	fmt.Println("n	==	0")

3| case	1:	fmt.Println("n	==	1")

4| default:	fmt.Println("n	==	2")

5| }

6|

7| switch	n	:=	rand.Intn(3);	n	{

8| default:	fmt.Println("n	==	2")

9| case	0:	fmt.Println("n	==	0")

10| case	1:	fmt.Println("n	==	1")

11| }

12|

13| switch	n	:=	rand.Intn(3);	n	{

14| case	0:	fmt.Println("n	==	0")

15| default:	fmt.Println("n	==	2")

16| case	1:	fmt.Println("n	==	1")

17| }

goto	Statement	and	Label	Declaration

Like	many	other	languages,	Go	also	supports	goto 	statement.	A	goto 	keyword	must	be	followed	by	a
label	to	form	a	statement.	A	label	is	declared	with	the	form	LabelName: ,	where	LabelName 	must	be	an
identifier.	A	label	which	name	is	not	the	blank	identifier	must	be	used	at	least	once.

A	goto 	statement	will	make	the	execution	jump	to	the	next	statement	following	the	declaration	of	the
label	used	in	the	goto 	statement.	So	a	label	declaration	must	be	followed	by	one	statement.

A	label	must	be	declared	within	a	function	body.	A	use	of	a	label	can	appear	before	or	after	the	declaration
of	the	label.	But	a	label	is	not	visible	(and	can't	appear)	outside	the	innermost	code	block	the	label	is
declared	in.

The	following	example	uses	a	goto 	statement	and	a	label	to	implement	a	loop	control	flow.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			i	:=	0
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7|

8| Next:	//	here,	a	label	is	declared.

9| 			fmt.Println(i)

10| 			i++

11| 			if	i	<	5	{

12| 						goto	Next	//	execution	jumps

13| 			}

14| }

As	mentioned	above,	a	label	is	not	visible	(and	can't	appear)	outside	the	innermost	code	block	the	label	is
declared	in.	So	the	following	example	fails	to	compile.

1| package	main

2|

3| func	main()	{

4| goto	Label1	//	error

5| 			{

6| 						Label1:

7| 						goto	Label2	//	error

8| 			}

9| 			{

10| 						Label2:

11| 			}

12| }

Note	that,	if	a	label	is	declared	within	the	scope	of	a	variable,	then	the	uses	of	the	label	can't	appear	before
the	declaration	of	the	variable.	Identifier	scopes	will	be	explained	in	the	article	blocks	and	scopes	in	Go
(§32)	later.

The	following	example	also	fails	to	compile.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			i	:=	0

7| Next:

8| 			if	i	>=	5	{

9| 						//	error:	jumps	over	declaration	of	k

10| 						goto	Exit

11| 			}

12|

13| 			k	:=	i	+	i

14| 			fmt.Println(k)

15| 			i++

16| 			goto	Next

17|
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18| //	This	label	is	declared	in	the	scope	of	k,

19| //	but	its	use	is	outside	of	the	scope	of	k.

20| Exit:

21| }

The	just	mentioned	rule	may	change	later Ң .	Currently,	to	make	the	above	code	compile	okay,	we	must
adjust	the	scope	of	the	variable	k .	There	are	two	ways	to	fix	the	problem	in	the	last	example.

One	way	is	to	shrink	the	scope	of	the	variable	k .

1| func	main()	{

2| 			i	:=	0

3| Next:

4| 			if	i	>=	5	{

5| 						goto	Exit

6| 			}

7| 			//	Create	an	explicit	code	block	to

8| 			//	shrink	the	scope	of	k.

9| 			{

10| 						k	:=	i	+	i

11| 						fmt.Println(k)

12| 			}

13| 			i++

14| 			goto	Next

15| Exit:

16| }

The	other	way	is	to	enlarge	the	scope	of	the	variable	k .

1| func	main()	{

2| 			var	k	int	//	move	the	declaration	of	k	here.

3| 			i	:=	0

4| Next:

5| 			if	i	>=	5	{

6| 						goto	Exit

7| 			}

8|

9| 			k	=	i	+	i

10| 			fmt.Println(k)

11| 			i++

12| 			goto	Next

13| Exit:

14| }

break	and	continue	Statements	With	Labels

A	goto 	statement	must	contain	a	label.	A	break 	or	continue 	statement	can	also	contain	a	label,	but	the
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label	is	optional.	Generally,	break 	containing	labels	are	used	in	nested	breakable	control	flow	blocks	and
continue 	statements	containing	labels	are	used	in	nested	loop	control	flow	blocks.

If	a	break 	statement	contains	a	label,	the	label	must	be	declared	just	before	a	breakable	control	flow
block	which	contains	the	break 	statement.	We	can	view	the	label	name	as	the	name	of	the	breakable
control	flow	block.	The	break 	statement	will	make	execution	jump	out	of	the	breakable	control	flow
block,	even	if	the	breakable	control	flow	block	is	not	the	innermost	breakable	control	flow	block
containing	break 	statement.

If	a	continue 	statement	contains	a	label,	the	label	must	be	declared	just	before	a	loop	control	flow	block
which	contains	the	continue 	statement.	We	can	view	the	label	name	as	the	name	of	the	loop	control
flow	block.	The	continue 	statement	will	end	the	current	loop	step	of	the	loop	control	flow	block	in
advance,	even	if	the	loop	control	flow	block	is	not	the	innermost	loop	control	flow	block	containing	the
continue 	statement.

The	following	is	an	example	of	using	break 	and	continue 	statements	with	labels.

1| package	main

2|

3| import	"fmt"

4|

5| func	FindSmallestPrimeLargerThan(n	int)	int	{

6| Outer:

7| 			for	n++;	;	n++{

8| 						for	i	:=	2;	;	i++	{

9| 									switch	{

10| 									case	i	*	i	>	n:

11| 												break	Outer

12| 									case	n	%	i	==	0:

13| 												continue	Outer

14| 									}

15| 						}

16| 			}

17| 			return	n

18| }

19|

20| func	main()	{

21| 			for	i	:=	90;	i	<	100;	i++	{

22| 						n	:=	FindSmallestPrimeLargerThan(i)

23| 						fmt.Print("The	smallest	prime	number	larger	than	")

24| 						fmt.Println(i,	"is",	n)

25| 			}

26| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently

§12.	Basic	Control	Flows

94



from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,
Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit

tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Goroutines,	Deferred	Function	Calls	and
Panic/Recover
This	article	will	introduce	goroutines	and	deferred	function	calls.	Goroutine	and	deferred	function	call	are
two	unique	features	in	Go.	This	article	also	explains	panic	and	recover	mechanism.	Not	all	knowledge
relating	to	these	features	is	covered	in	this	article,	more	will	be	introduced	in	future	articles.

Goroutines

Modern	CPUs	often	have	multiple	cores,	and	some	CPU	cores	support	hyper-threading.	In	other	words,
modern	CPUs	can	process	multiple	instruction	pipelines	simultaneously.	To	fully	use	the	power	of	modern
CPUs,	we	need	to	do	concurrent	programming	in	coding	our	programs.

Concurrent	computing	is	a	form	of	computing	in	which	several	computations	are	executed	during
overlapping	time	periods.	The	following	picture	depicts	two	concurrent	computing	cases.	In	the	picture,	A
and	B	represent	two	separate	computations.	The	second	case	is	also	called	parallel	computing,	which	is
special	concurrent	computing.	In	the	first	case,	A	and	B	are	only	in	parallel	during	a	small	piece	of	time.

Concurrent	computing	may	happen	in	a	program,	a	computer,	or	a	network.	In	Go	101,	we	only	talk	about
program-scope	concurrent	computing.	Goroutine	is	the	Go	way	to	create	concurrent	computations	in	Go
programming.

Goroutines	are	also	often	called	green	threads.	Green	threads	are	maintained	and	scheduled	by	the
language	runtime	instead	of	the	operating	systems.	The	cost	of	memory	consumption	and	context
switching,	of	a	goroutine	is	much	lesser	than	an	OS	thread.	So,	it	is	not	a	problem	for	a	Go	program	to
maintain	tens	of	thousands	goroutines	at	the	same	time,	as	long	as	the	system	memory	is	sufficient.

Go	doesn't	support	the	creation	of	system	threads	in	user	code.	So,	using	goroutines	is	the	only	way	to	do
(program	scope)	concurrent	programming	in	Go.

Each	Go	program	starts	with	only	one	goroutine,	we	call	it	the	main	goroutine.	A	goroutine	can	create	new
goroutines.	It	is	super	easy	to	create	a	new	goroutine	in	Go,	just	use	the	keyword	go 	followed	by	a
function	call.	The	function	call	will	then	be	executed	in	a	newly	created	goroutine.	The	new	created
goroutine	will	exit	alongside	the	exit	of	the	called	function.

All	the	result	values	of	a	goroutine	function	call	(if	the	called	function	returns	values)	must	be	discarded	in
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the	function	call	statement.	The	following	is	an	example	which	creates	two	new	goroutines	in	the	main
goroutine.	In	the	example,	time.Duration 	is	a	custom	type	defined	in	the	time 	standard	package.	Its
underlying	type	is	the	built-in	type	int64 .	Underlying	types	will	be	explained	in	the	next	article	(§14).

1| package	main

2|

3| import	(

4| 			"log"

5| 			"math/rand"

6| 			"time"

7| )

8|

9| func	SayGreetings(greeting	string,	times	int)	{

10| 			for	i	:=	0;	i	<	times;	i++	{

11| 						log.Println(greeting)

12| 						d	:=	time.Second	*	time.Duration(rand.Intn(5))	/	2

13| 						time.Sleep(d)	//	sleep	for	0	to	2.5	seconds

14| 			}

15| }

16|

17| func	main()	{

18| 			rand.Seed(time.Now().UnixNano())

19| 			log.SetFlags(0)

20| 			go	SayGreetings("hi!",	10)

21| 			go	SayGreetings("hello!",	10)

22| 			time.Sleep(2	*	time.Second)

23| }

Quite	easy.	Right?	We	do	concurrent	programming	now!	The	above	program	may	have	three	user-created
goroutines	running	simultaneously	at	its	peak	during	run	time.	Let's	run	it.	One	possible	output	result:

hi!

hello!

hello!

hello!

hello!

hi!

When	the	main	goroutine	exits,	the	whole	program	also	exits,	even	if	there	are	still	some	other	goroutines
which	have	not	existed	yet.

Unlike	previous	articles,	this	program	uses	the	Println 	function	in	the	log 	standard	package	instead	of
the	corresponding	function	in	the	fmt 	standard	package.	The	reason	is	the	print	functions	in	the	log
standard	package	are	synchronized	(the	next	section	will	explain	what	are	synchronizations),	so	the	texts
printed	by	the	two	goroutines	will	not	be	messed	up	in	one	line	(though	the	chance	of	the	printed	texts
being	messed	up	by	using	the	print	functions	in	the	fmt 	standard	package	is	very	small	for	this	specific
program).
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Concurrency	Synchronization

Concurrent	computations	may	share	resources,	generally	memory	resource.	There	are	some	circumstances
may	happen	in	a	concurrent	computing.

In	the	same	period	of	one	computation	is	writing	data	to	a	memory	segment,	another	computation	is
reading	data	from	the	same	memory	segment.	Then	the	integrity	of	the	data	read	by	the	other
computation	might	be	not	preserved.
In	the	same	period	of	one	computation	is	writing	data	to	a	memory	segment,	another	computation	is
also	writing	data	to	the	same	memory	segment.	Then	the	integrity	of	the	data	stored	at	the	memory
segment	might	be	not	preserved.

These	circumstances	are	called	data	races.	One	of	the	duties	in	concurrent	programming	is	to	control
resource	sharing	among	concurrent	computations,	so	that	data	races	will	never	happen.	The	ways	to
implement	this	duty	are	called	concurrency	synchronizations,	or	data	synchronizations,	which	will	be
introduced	one	by	one	in	later	Go	101	articles.

Other	duties	in	concurrent	programming	include

determine	how	many	computations	are	needed.
determine	when	to	start,	block,	unblock	and	end	a	computation.
determine	how	to	distribute	workload	among	concurrent	computations.

The	program	shown	in	the	last	section	is	not	perfect.	The	two	new	goroutines	are	intended	to	print	ten
greetings	each.	However,	the	main	goroutine	will	exit	in	two	seconds,	so	many	greetings	don't	have	a
chance	to	get	printed.	How	to	let	the	main	goroutine	know	when	the	two	new	goroutines	have	both
finished	their	tasks?	We	must	use	something	called	concurrency	synchronization	techniques.

Go	supports	several	concurrency	synchronization	techniques	(§36).	Among	them,	the	channel	technique
(§21)	is	the	most	unique	and	popularly	used	one.	However,	for	simplicity	purpose,	here	we	will	use
another	technique,	the	WaitGroup 	type	in	the	sync 	standard	package,	to	synchronize	the	executions
between	the	two	new	goroutines	and	the	main	goroutine.

The	WaitGroup 	type	has	three	methods	(special	functions,	will	be	explained	later):	Add ,	Done 	and
Wait .	This	type	will	be	explained	in	detail	later	in	another	article.	Here	we	can	simply	think

the	Add 	method	is	used	to	register	the	number	of	new	tasks.
the	Done 	method	is	used	to	notify	that	a	task	is	finished.
and	the	Wait 	method	makes	the	caller	goroutine	become	blocking	until	all	registered	tasks	are
finished.

Example:

1| package	main

2|
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3| import	(

4| 			"log"

5| 			"math/rand"

6| 			"time"

7| 			"sync"

8| )

9|

10| var	wg	sync.WaitGroup

11|

12| func	SayGreetings(greeting	string,	times	int)	{

13| 			for	i	:=	0;	i	<	times;	i++	{

14| 						log.Println(greeting)

15| 						d	:=	time.Second	*	time.Duration(rand.Intn(5))	/	2

16| 						time.Sleep(d)

17| 			}

18| 			//	Notify	a	task	is	finished.

19| 			wg.Done()	//	<=>	wg.Add(-1)

20| }

21|

22| func	main()	{

23| 			rand.Seed(time.Now().UnixNano())

24| 			log.SetFlags(0)

25| 			wg.Add(2)	//	register	two	tasks.

26| 			go	SayGreetings("hi!",	10)

27| 			go	SayGreetings("hello!",	10)

28| 			wg.Wait()	//	block	until	all	tasks	are	finished.

29| }

Run	it,	we	can	find	that,	before	the	program	exits,	each	of	the	two	new	goroutines	prints	ten	greetings.

Goroutine	States

The	last	example	shows	that	a	live	goroutine	may	stay	in	(and	switch	between)	two	states,	running	and
blocking.	In	that	example,	the	main	goroutine	enters	the	blocking	state	when	the	wg.Wait 	method	is
called,	and	enter	running	state	again	when	the	other	two	goroutines	both	finish	their	respective	tasks.

The	following	picture	depicts	a	possible	lifecycle	of	a	goroutine.

Note,	a	goroutine	in	sleeping	(by	calling	time.Sleep 	function)	or	waiting	the	response	of	a	system	call
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or	a	network	connection	is	viewed	as	staying	in	running	state.

When	a	new	goroutine	is	created,	it	will	enter	running	state	automatically.	Goroutines	can	only	exit	from
running	state,	and	never	from	blocking	state.	If,	for	any	reason,	a	goroutine	stays	in	blocking	state	forever,
then	it	will	never	exit.	Such	cases,	except	some	rare	ones,	should	be	avoided	in	concurrent	programming.

A	blocking	goroutine	can	only	be	unblocked	by	an	operation	made	in	another	goroutine.	If	all	goroutines
in	a	Go	program	are	in	blocking	state,	then	all	of	them	will	stay	in	blocking	state	forever.	This	can	be
viewed	as	an	overall	deadlock.	When	this	happens	in	a	program,	the	standard	Go	runtime	will	try	to	crash
the	program.

The	following	program	will	crash,	after	two	seconds:

1| package	main

2|

3| import	(

4| 			"sync"

5| 			"time"

6| )

7|

8| var	wg	sync.WaitGroup

9|

10| func	main()	{

11| 			wg.Add(1)

12| 			go	func()	{

13| 						time.Sleep(time.Second	*	2)

14| 						wg.Wait()

15| 			}()

16| 			wg.Wait()

17| }

The	output:

fatal	error:	all	goroutines	are	asleep	-	deadlock!

...

Later,	we	will	learn	more	operations	which	will	make	goroutines	enter	blocking	state.

Goroutine	Schedule

Not	all	goroutines	in	running	state	are	being	executed	at	a	given	time.	At	any	given	time,	the	maximum
number	of	goroutines	being	executed	will	not	exceed	the	number	of	the	logical	CPUs	available	for	the
current	program.	We	can	call	the	runtime.NumCPU Ң 	function	to	get	the	number	of	logical	CPUs
available	for	the	current	program.	Each	logical	CPU	can	only	execute	one	goroutine	at	any	given	time.	Go
runtime	must	frequently	switch	execution	contexts	between	goroutines	to	let	each	running	goroutine	have
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a	chance	to	execute.	This	is	similar	to	how	operating	systems	switch	execution	contexts	between	OS
threads.

The	following	picture	depicts	a	more	detailed	possible	lifecycle	for	a	goroutine.	In	the	picture,	the	running
state	is	divided	into	several	more	sub-states.	A	goroutine	in	the	queuing	sub-state	is	waiting	to	be
executed.	A	goroutine	in	the	executing	sub-state	may	enter	the	queuing	sub-state	again	when	it	has	been
executed	for	a	while	(a	very	small	piece	of	time).

Please	note,	for	simplicity,	the	sub-states	shown	in	the	above	picture	will	be	not	mentioned	in	other
articles	in	Go	101.	And	again,	in	Go	101,	the	sleeping	and	system	calling	sub-states	are	not	viewed	as	sub-
states	of	the	blocking	state.

The	standard	Go	runtime	adopts	the	M-P-G	model Ң 	to	do	the	goroutine	schedule	job,	where	M
represents	OS	threads,	P	represents	logical/virtual	processors	(not	logical	CPUs)	and	G	represents
goroutines.	Most	schedule	work	is	made	by	logical	processors	(Ps),	which	act	as	brokers	by	attaching
goroutines	(Gs)	to	OS	threads	(Ms).	Each	OS	thread	can	only	be	attached	to	at	most	one	goroutine	at	any
given	time,	and	each	goroutine	can	only	be	attached	to	at	most	one	OS	thread	at	any	given	time.	A
goroutine	can	only	get	executed	when	it	is	attached	to	an	OS	thread.	A	goroutine	which	has	been	executed
for	a	while	will	try	to	detach	itself	from	the	corresponding	OS	thread,	so	that	other	running	goroutines	can
have	a	chance	to	get	attached	and	executed.

At	runtime.	we	can	call	the	runtime.GOMAXPROCS Ң 	function	to	get	and	set	the	number	of	logical
processors	(Ps).	For	the	standard	Go	runtime,	before	Go	1.5,	the	default	initial	value	of	this	number	is	1 ,
but	since	Go	1.5,	the	default	initial	value	of	this	number	is	equal	to	the	number	of	logical	CPUs	available
for	the	current	running	program.	The	default	initial	value	(the	number	of	logical	CPUs)	is	the	best	choice
for	most	programs.	But	for	some	file	IO	heavy	programs,	a	GOMAXPROCS 	value	larger	than
runtime.NumCPU() 	may	be	helpful.

The	default	initial	value	of	runtime.GOMAXPROCS 	can	also	be	set	through	the	GOMAXPROCS 	environment
variable.

At	any	time,	the	number	of	goroutines	in	the	executing	sub-state	is	no	more	than	the	smaller	one	of
runtime.NumCPU 	and	runtime.GOMAXPROCS .
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Deferred	Function	Calls

A	deferred	function	call	is	a	function	call	which	follows	a	defer 	keyword.	Like	goroutine	function	calls,
all	the	result	values	of	the	function	call	(if	the	called	function	returns	values)	must	be	discarded	in	the
function	call	statement.

When	a	function	call	is	deferred,	it	is	not	executed	immediately.	It	will	be	pushed	into	a	defer-call	stack
maintained	by	its	caller	goroutine.	After	a	function	call	fc(...) 	returns	and	enters	its	exiting	phase	(§9),
all	the	deferred	function	calls	pushed	in	the	function	call	(fc... )	(which	has	not	exited	yet)	will	be
executed,	by	their	inverse	order	being	pushed	into	the	defer-call	stack.	Once	all	these	deferred	calls	are
executed,	the	function	call	fc(...) 	exits.

Here	is	a	simple	example	to	show	how	to	use	deferred	function	calls.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			defer	fmt.Println("The	third	line.")

7| 			defer	fmt.Println("The	second	line.")

8| 			fmt.Println("The	first	line.")

9| }

The	output:

The	first	line.

The	second	line.

The	third	line.

In	fact,	each	goroutine	maintains	two	call	stacks,	the	normal-call	stack	and	defer-call	stack.

For	two	adjacent	function	calls	in	the	normal-call	stack	of	a	goroutine,	the	later	pushed	one	is	called
by	the	earlier	pushed	one.	The	earliest	function	call	in	the	normal-call	stack	is	the	entry	call	of	the
goroutine.
The	function	calls	in	the	defer-call	stack	have	no	calling	relations.

Here	is	another	example	which	is	a	little	more	complex.	The	example	will	print	0 	to	9 ,	each	per	line,	by
their	natural	order.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			defer	fmt.Println("9")
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7| 			fmt.Println("0")

8| 			defer	fmt.Println("8")

9| 			fmt.Println("1")

10| 			if	false	{

11| 						defer	fmt.Println("not	reachable")

12| 			}

13| 			defer	func()	{

14| 						defer	fmt.Println("7")

15| 						fmt.Println("3")

16| 						defer	func()	{

17| 									fmt.Println("5")

18| 									fmt.Println("6")

19| 						}()

20| 						fmt.Println("4")

21| 			}()

22| 			fmt.Println("2")

23| 			return

24| 			defer	fmt.Println("not	reachable")

25| }

Deferred	Function	Calls	Can	Modify	the	Named	Return
Results	of	Nesting	Functions

For	example,

1| package	main

2|

3| import	"fmt"

4|

5| func	Triple(n	int)	(r	int)	{

6| 			defer	func()	{

7| 						r	+=	n	//	modify	the	return	value

8| 			}()

9|

10| 			return	n	+	n	//	<=>	r	=	n	+	n;	return

11| }

12|

13| func	main()	{

14| 			fmt.Println(Triple(5))	//	15

15| }

The	Necessary	and	Benefits	of	the	Deferred	Function
Feature
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In	the	above	examples,	the	deferred	function	calls	are	not	absolutely	necessary.	However,	the	deferred
function	call	feature	is	a	necessary	feature	for	the	panic	and	recover	mechanism	which	will	be	introduced
below.

Deferred	function	calls	can	also	help	us	write	more	clean	and	robust	code.	We	can	read	more	code
examples	by	using	deferred	function	calls	and	learn	more	details	on	deferred	function	calls	in	the	article
more	about	deferred	functions	(§29)	later.

The	Evaluation	Moment	of	the	Arguments	of	Deferred	and
Goroutine	Function	Calls

The	arguments	of	a	deferred	function	call	or	a	goroutine	function	call	are	all	evaluated	at	the	moment
when	the	function	call	is	invoked.

For	a	deferred	function	call,	the	invocation	moment	is	the	moment	when	it	is	pushed	into	the	defer-
call	stack	of	its	caller	goroutine.
For	a	goroutine	function	call,	the	invocation	moment	is	the	moment	when	the	corresponding
goroutine	is	created.

The	expressions	enclosed	within	the	body	of	an	anonymous	function	call,	whether	the	call	is	a	general	call
or	a	deferred/goroutine	call,	will	not	be	evaluated	at	the	moment	when	the	anonymous	function	call	is
invoked.

Here	is	an	example.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			func()	{

7| 						for	i	:=	0;	i	<	3;	i++	{

8| 									defer	fmt.Println("a:",	i)

9| 						}

10| 			}()

11| 			fmt.Println()

12| 			func()	{

13| 						for	i	:=	0;	i	<	3;	i++	{

14| 									defer	func()	{

15| 												fmt.Println("b:",	i)

16| 									}()

17| 						}

18| 			}()

19| }
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Run	it.	The	output:

a:	2

a:	1

a:	0

b:	3

b:	3

b:	3

The	first	loop	prints	i 	as	2 ,	1 	and	0 	as	a	sequence.	The	second	loop	always	prints	i 	as	3 ,	for	when	the
three	fmt.Println 	calls	in	the	deferred	anonymous	calls	are	invoked,	the	value	of	the	loop	variable	i
becomes	3 .

To	make	the	second	loop	print	the	same	result	as	the	first	one,	we	can	modify	the	second	loop	as

1| 						for	i	:=	0;	i	<	3;	i++	{

2| 									defer	func(i	int)	{

3| 												//	The	"i"	is	the	input	parameter.

4| 												fmt.Println("b:",	i)

5| 									}(i)

6| 						}

or

1| 						for	i	:=	0;	i	<	3;	i++	{

2| 									i	:=	i

3| 									defer	func()	{

4| 												//	The	"i"	is	not	the	loop	variable.

5| 												fmt.Println("b:",	i)

6| 									}()

7| 						}

The	same	argument	valuation	moment	rules	are	for	goroutine	function	calls.	The	following	program	will
output	123	789 .

1| package	main

2|

3| import	"fmt"

4| import	"time"

5|

6| func	main()	{

7| 			var	a	=	123

8| 			go	func(x	int)	{

9| 						time.Sleep(time.Second)

10| 						fmt.Println(x,	a)	//	123	789

11| 			}(a)

12|
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13| 			a	=	789

14|

15| 			time.Sleep(2	*	time.Second)

16| }

By	the	way,	it	is	not	a	good	idea	to	do	synchronizations	by	using	time.Sleep 	calls	in	formal	projects.	If
the	program	runs	on	a	computer	which	CPUs	are	occupied	by	many	other	programs	running	on	the
computer,	the	newly	created	goroutine	may	never	get	a	chance	to	execute	before	the	program	exits.	We
should	use	the	concurrency	synchronization	techniques	introduced	in	the	article	concurrency
synchronization	overview	(§36)	to	do	synchronizations	in	formal	projects.

Panic	and	Recover

Go	doesn't	support	exception	throwing	and	catching,	instead	explicit	error	handling	is	preferred	to	use	in
Go	programming.	In	fact,	Go	supports	an	exception	throw/catch	alike	mechanism.	The	mechanism	is
called	panic/recover.

We	can	call	the	built-in	panic 	function	to	create	a	panic	to	make	the	current	goroutine	enter	panicking
status.	The	panic	is	only	alive	within	the	current	goroutine.

Panicking	is	another	way	to	make	a	function	return.	Once	a	panic	is	produced	in	a	function	call,	the
function	call	returns	immediately	and	enters	its	exiting	phase.	The	deferred	function	calls	pushed	in	the
defer-call	stack	will	get	executed,	by	their	inverse	order	being	pushed.

By	calling	the	built-in	recover 	function	in	a	deferred	call,	an	alive	panic	in	the	current	goroutine	can	be
removed	so	that	the	current	goroutine	will	enter	normal	calm	status	again.

If	a	panicking	goroutine	exits	without	being	recovered,	it	will	make	the	whole	program	crash.

The	built-in	panic 	and	recover 	functions	are	declared	as

1| func	panic(v	interface{})

2| func	recover()	interface{}

Interface	types	and	values	will	be	explained	in	the	article	interfaces	in	Go	(§23)	later.	Here,	we	just	need
to	know	that	the	blank	interface	type	interface{} 	can	be	viewed	as	the	any 	type	or	the	Object 	type	in
many	other	languages.	In	other	words,	we	can	pass	a	value	of	any	type	to	a	panic 	function	call.

The	value	returned	by	a	recover 	function	call	is	the	value	a	panic 	function	call	consumed.

The	example	below	shows	how	to	create	a	panic	and	how	to	recover	from	it.

1| package	main

2|

3| import	"fmt"
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4|

5| func	main()	{

6| 			defer	func()	{

7| 						fmt.Println("exit	normally.")

8| 			}()

9| 			fmt.Println("hi!")

10| 			defer	func()	{

11| 						v	:=	recover()

12| 						fmt.Println("recovered:",	v)

13| 			}()

14| 			panic("bye!")

15| 			fmt.Println("unreachable")

16| }

The	output:

hi!

recovered:	bye!

exit	normally.

Here	is	another	example	which	shows	a	panicking	goroutine	exits	without	being	recovered.	So	the	whole
program	crashes.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			fmt.Println("hi!")

10|

11| 			go	func()	{

12| 						time.Sleep(time.Second)

13| 						panic(123)

14| 			}()

15|

16| 			for	{

17| 						time.Sleep(time.Second)

18| 			}

19| }

The	output:

hi!

panic:	123

goroutine	5	[running]:
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...

Go	runtime	will	create	panics	for	some	circumstances,	such	as	dividing	an	integer	by	zero.	For	example,

1| package	main

2|

3| func	main()	{

4| 			a,	b	:=	1,	0

5| 			_	=	a/b

6| }

The	output:

panic:	runtime	error:	integer	divide	by	zero

goroutine	1	[running]:

...

More	runtime	panic	circumstances	will	be	mentioned	in	later	Go	101	articles.

Generally,	panics	are	used	for	logic	errors,	such	as	human	careless	errors.	Logic	errors	are	the	errors
which	should	never	happen	at	run	time.	If	they	are	happen,	there	must	be	bugs	in	the	code.	On	the	other
hand,	non-logic	errors	are	the	errors	which	are	hard	to	absolutely	avoid	at	run	time.	In	other	words,	non-
logic	errors	are	errors	happening	in	reality.	Such	errors	should	not	cause	panics	and	should	be	explicitly
returned	and	handled	properly.

We	can	learn	some	panic/recover	use	cases	(§30)	and	more	about	panic/recover	mechanism	(§31)	later.

Some	Fatal	Errors	Are	Not	Panics	and	They	Are
Unrecoverable

For	the	standard	Go	compiler,	some	fatal	errors,	such	as	stack	overflow	and	out	of	memory	are	not
recoverable.	Once	they	occur,	program	will	crash.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Go	Type	System	Overview
This	article	will	introduce	all	kinds	of	types	in	Go	and	the	concepts	regarding	Go	type	system.	It	is	hard	to
have	a	thorough	understanding	of	Go,	without	knowing	these	fundamental	concepts.

Concept:	Basic	Types

Built-in	basic	types	in	Go	have	been	also	introduced	in	built-in	basic	types	and	basic	value	literals	(§6).
For	completeness	of	the	current	article,	these	built-in	basic	types	are	re-listed	here.

Built-in	string	type:	string .
Built-in	boolean	type:	bool .
Built-in	numeric	types:

int8 ,	uint8 	(byte ),	int16 ,	uint16 ,	int32 	(rune ),	uint32 ,	int64 ,	uint64 ,	int ,
uint ,	uintptr .
float32 ,	float64 .
complex64 ,	complex128 .

Note,	byte 	is	a	built-in	alias	of	uint8 ,	and	rune 	is	a	built-in	alias	of	int32 .	We	can	also	declare
custom	type	aliases	(see	below).

Except	string	types	(§19),	Go	101	article	series	will	not	try	to	explain	more	on	other	basic	types.

Concept:	Composite	Types

Go	supports	the	following	composite	types:

pointer	types	(§15)	-	C	pointer	alike.
struct	types	(§16)	-	C	struct	alike.
function	types	(§20)	-	functions	are	first-class	types	in	Go.
container	types	(§18):

array	types	-	fixed-length	container	types.
slice	type	-	dynamic-length	and	dynamic-capacity	container	types.
map	types	-	maps	are	associative	arrays	(or	dictionaries).	The	standard	Go	compiler
implements	maps	as	hashtables.

channel	types	(§21)	-	channels	are	used	to	synchronize	data	among	goroutines	(the	green	threads	in
Go).
interface	types	(§23)	-	interfaces	play	a	key	role	in	reflection	and	polymorphism.

Non-defined	composite	types	may	be	denoted	as	their	respective	type	literals.	Following	are	some	literal
representation	examples	of	all	kinds	of	non-defined	composite	types	(non-defined	types	will	be	explained
below).
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below).

1| //	Assume	T	is	an	arbitrary	type	and	Tkey	is

2| //	a	type	supporting	comparison	(==	and	!=).

3|

4| *T									//	a	pointer	type

5| [5]T							//	an	array	type

6| []T								//	a	slice	type

7| map[Tkey]T	//	a	map	type

8|

9| //	a	struct	type

10| struct	{

11| 			name	string

12| 			age		int

13| }

14|

15| //	a	function	type

16| func(int)	(bool,	string)

17|

18| //	an	interface	type

19| interface	{

20| 			Method0(string)	int

21| 			Method1()	(int,	bool)

22| }

23|

24| //	some	channel	types

25| chan	T

26| chan<-	T

27| <-chan	T

Comparable	and	incomparable	types	will	be	explained	below.

Fact:	Kinds	of	Types

Each	of	the	above	mentioned	basic	and	composite	types	corresponds	to	one	kind	of	types.	Besides	these
kinds,	the	unsafe	pointer	types	introduced	in	the	unsafe 	standard	package Ң 	also	belong	to	one	kind	of
types	in	Go.	So,	up	to	now	(Go	1.13),	Go	has	26	kinds	of	types.

Syntax:	Type	Definitions

(Type	definition,	or	type	definition	declaration,	initially	called	type	declaration,	was	the	only	type
declaration	way	before	Go	1.9.	Since	Go	1.9,	type	definition	has	become	one	of	two	forms	of	type
declarations.	The	new	form	is	called	type	alias	declaration,	which	will	be	introduced	in	the	next	section.)

In	Go,	we	can	define	new	types	by	using	the	following	form.	In	the	syntax,	type 	is	a	keyword.
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1| //	Define	a	solo	new	type.

2| type	NewTypeName	SourceType

3|

4| //	Define	multiple	new	types	together.

5| type	(

6| 			NewTypeName1	SourceType1

7| 			NewTypeName2	SourceType2

8| )

New	type	names	must	be	identifiers.	But	please	note	that,	type	names	declared	at	package	level	can't	be
init 	(§10).	(This	is	the	same	for	the	following	introduced	type	alias	names.)

The	second	type	declaration	in	the	above	example	includes	two	type	specifications.	If	a	type	declaration
contains	more	than	one	type	specification,	the	type	specifications	must	be	enclosed	within	a	pair	of	() .

Note,

a	new	defined	type	and	its	respective	source	type	in	type	definitions	are	two	distinct	types.
two	types	defined	in	two	type	definitions	are	always	two	distinct	types.
the	new	defined	type	and	the	source	type	will	share	the	same	underlying	type	(see	below	for	what
are	underlying	types),	and	their	values	can	be	converted	to	each	other.
types	can	be	defined	within	function	bodies.

Some	type	definition	examples:

1| //	The	following	new	defined	and	source	types

2| //	are	all	basic	types.

3| type	(

4| 			MyInt	int

5| 			Age			int

6| 			Text		string

7| )

8|

9| //	The	following	new	defined	and	source	types	are

10| //	all	composite	types.

11| type	IntPtr	*int

12| type	Book	struct{author,	title	string;	pages	int}

13| type	Convert	func(in0	int,	in1	bool)(out0	int,	out1	string)

14| type	StringArray	[5]string

15| type	StringSlice	[]string

16|

17| func	f()	{

18| 			//	The	names	of	the	three	defined	types

19| 			//	can	be	only	used	within	the	function.

20| 			type	PersonAge	map[string]int

21| 			type	MessageQueue	chan	string

22| 			type	Reader	interface{Read([]byte)	int}

23| }
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Syntax:	Type	Alias	Declarations

(Type	alias	declaration	is	one	new	kind	of	type	declarations	added	since	Go	1.9.)

As	above	mentioned,	there	are	only	two	built-in	type	aliases	in	Go,	byte 	(alias	of	uint8 )	and	rune
(alias	of	int32 ).	They	are	the	only	two	type	aliases	before	Go	1.9.

Since	Go	1.9,	we	can	declare	custom	type	aliases	by	using	the	following	syntax.	The	syntax	of	alias
declaration	is	much	like	type	definition,	but	please	note	there	is	a	= 	in	each	type	alias	declaration.

1| type	(

2| 			Name	=	string

3| 			Age		=	int

4| )

5|

6| type	table	=	map[string]int

7| type	Table	=	map[Name]Age

Type	alias	names	must	be	identifiers.	Like	type	definitions,	type	aliases	can	also	be	declared	within
function	bodies.

A	type	name	(or	literal)	and	its	aliases	all	denote	an	identical	type.	By	the	above	declarations,	Name 	is	an
alias	of	string ,	so	both	denote	the	same	type.	The	same	applies	to	the	other	three	pairs	of	type	names
and	literals:

Age 	and	int
table 	and	map[string]int
Table 	and	map[Name]Age

In	fact,	the	literals	map[string]int 	and	map[Name]Age 	also	denote	the	same	type.	So,	the	same,
aliases	table 	and	Table 	also	denote	the	same	type.

Note,	although	aliases	table 	and	Table 	denote	the	same	type,	Table 	is	exported	so	it	can	be	used	by
other	packages	but	this	does	not	apply	to	table .

Concept:	Defined	Types	vs.	Non-Defined	Types

A	defined	type	is	a	type	defined	in	a	type	definition.

All	basic	types	are	defined.	A	non-defined	type	must	be	a	composite	type.

In	the	following	example.	type	alias	C 	and	type	literal	[]string 	both	represent	the	same	non-defined
types,	but	type	A 	and	type	alias	B 	both	represent	the	same	defined	type.
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1| type	A	[]string

2| type	B	=	A

3| type	C	=	[]string

Concept:	Named	Types	vs.	Unnamed	Types

Before	Go	1.9,	the	terminology	named	type	is	defined	accurately	in	Go	specification.	A	named	type	was
defined	as	a	type	who	is	represented	by	an	identifier.	Along	with	the	type	alias	feature	introduced	in	Go
1.9,	this	terminology	is	removed	from	Go	specification	as	well,	for	it	may	cause	some	confusions	in
explaining	and	understanding	some	Go	concepts.	For	example,	some	type	names	might	denote	unnamed
types	(such	as	the	alias	C ,	which	is	shown	in	the	last	section,	denotes	an	unnamed	type	[]string ).

To	avoid	causing	such	confusions,	since	Go	1.9,	a	new	terminology	defined	type	is	introduced	to	fulfill
the	blank	by	removing	the	old	named	type	terminology.	However,	this	change	brings	some	embarrassing
situations Ң ,	and	causes	some	inconveniences Ң 	in	explaining	some	concepts Ң .	To	avoid	these	new
problems,	Go	101	articles	try	to	follow	several	principles:

An	alias	will	never	be	called	as	a	type,	though	we	may	say	it	denotes/represents	a	type.
The	terminology	named	type	is	viewed	as	an	exact	equivalence	of	defined	type.	(And	unnamed
type	exactly	means	non-defined	type.)	In	other	words,	when	it	says	"a	type	alias	T 	is	a	named
type",	it	actually	means	the	type	represented	by	the	alias	T 	is	a	named	type.	If	T 	represents	an
unnamed	type,	we	should	never	say	T 	is	a	named	type,	even	if	the	alias	T 	itself	has	a	name.
When	we	mention	a	type	name,	it	might	be	the	name	of	a	defined	type	or	the	name	of	a	type	alias.

Concept:	Underlying	Types

In	Go,	each	type	has	an	underlying	type.	Rules:

for	built-in	types,	the	respective	underlying	types	are	themselves.
for	the	Pointer 	type	defined	in	the	unsafe 	standard	code	package,	its	underlying	type	is	itself.
(At	least	we	can	think	so.	In	fact,	the	underlying	type	of	the	unsafe.Pointer 	type	is	not	well
documented.	We	can	also	think	the	underlying	type	is	*T ,	where	T 	represents	an	arbitrary	type.)
the	underlying	type	of	a	non-defined	type,	which	must	be	a	composite	type,	is	itself.
in	a	type	declaration,	the	newly	declared	type	and	the	source	type	have	the	same	underlying	type.

Examples:

1| //	The	underlying	types	of	the	following	ones	are	both	int.

2| type	(

3| 			MyInt	int

4| 			Age			MyInt

5| )

6|
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7| //	The	following	new	types	have	different	underlying	types.

8| type	(

9| 			IntSlice			[]int			//	underlying	type	is	[]int

10| 			MyIntSlice	[]MyInt	//	underlying	type	is	[]MyInt

11| 			AgeSlice			[]Age			//	underlying	type	is	[]Age

12| )

13|

14| //	The	underlying	types	of	[]Age,	Ages,	and	AgeSlice

15| //	are	all	the	non-defined	type	[]Age.

16| type	Ages	AgeSlice

How	can	an	underlying	type	be	traced	given	a	user	declared	type?	The	rule	is,	when	a	built-in	basic	type	or
a	non-defined	type	is	met,	the	tracing	should	be	stopped.	Take	the	type	declarations	shown	above	as
examples,	let's	trace	their	underlying	types.

MyInt	→	int

Age	→	MyInt	→	int

IntSlice	→	[]int

MyIntSlice	→	[]MyInt	→	[]int

AgeSlice	→	[]Age	→	[]MyInt	→	[]int

Ages	→	AgeSlice	→	[]Age	→	[]MyInt	→	[]int

In	Go,

types	whose	underlying	types	are	bool 	are	called	boolean	types;
types	whose	underlying	types	are	any	of	the	built-in	integer	types	are	called	integer	types;
types	whose	underlying	types	are	either	float32 	or	float64 	are	called	floating-point	types;
types	whose	underlying	types	are	either	complex64 	or	complex128 	are	called	complex	types;
integer,	floating-point	and	complex	types	are	also	called	numeric	types;
types	whose	underlying	types	are	string 	are	called	string	types.

The	concept	of	underlying	type	plays	an	important	role	in	value	conversions,	assignments	and
comparisons	in	Go	(§48).

Concept:	Values

An	instance	of	a	type	is	called	a	value,	of	the	type.	A	type	may	have	many	values,	one	of	them	is	the	zero
value	of	the	type.	Values	of	the	same	type	share	some	common	properties.

Each	type	has	a	zero	value,	which	can	be	viewed	as	the	default	value	of	the	type.	The	predeclared	nil
identifier	can	used	to	represent	zero	values	of	slices,	maps,	functions,	channels,	pointers	(including	type-
unsafe	pointers)	and	interfaces.	For	more	information	on	nil ,	please	read	nil	in	Go	(§47).

There	are	several	kinds	of	value	representation	forms	in	code,	including	literals	(§6),	named	constants
(§7),	variables	(§7)	and	expressions	(§11),	though	the	former	three	can	be	viewed	as	special	cases	of	the
latter	one.
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A	value	can	be	typed	or	untyped	(§7).

All	kinds	of	basic	value	literals	have	been	introduced	in	the	article	basic	types	and	basic	value	literals	(§6).
There	are	two	more	kinds	of	literals	in	Go,	composite	literals	and	function	literals.

Function	literals,	as	the	name	implies,	are	used	to	represent	function	values.	A	function	declaration	(§9)	is
composed	of	a	function	literal	and	an	identifier	(the	function	name).

Composite	literals	are	used	to	represent	values	of	struct	types	and	container	types	(arrays,	slices	and
maps),	Please	read	structs	in	Go	(§16)	and	containers	in	Go	(§18)	for	more	details.

There	are	no	literals	to	represent	values	of	pointers,	channels	and	interfaces.

Concept:	Value	Parts

At	run	time,	many	values	are	stored	somewhere	in	memory.	In	Go,	each	of	such	values	has	a	direct	part.
However,	some	of	them	have	one	or	more	indirect	parts.	Each	value	part	occupies	a	continuous	memory
segment.	The	indirect	underlying	parts	of	a	value	are	referenced	by	its	direct	part	through	pointers	(§15).

The	terminology	value	part	(§17)	is	not	defined	in	Go	specification.	It	is	just	used	in	Go	101	to	make
some	explanations	simpler	and	help	Go	programmers	understand	Go	types	and	values	better.

Concept:	Value	Sizes

When	a	value	is	stored	in	memory,	the	number	of	bytes	occupied	by	the	direct	part	of	the	value	is	called
the	size	of	the	value.	As	all	values	of	the	same	type	have	the	same	value	size,	we	often	call	the	same	value
size	of	a	type	as	the	size	of	the	type.

We	can	use	the	Sizeof 	function	in	the	unsafe 	standard	package	to	get	the	size	of	any	value.

Go	specification	doesn't	specify	value	size	requirements	for	non-numeric	types.	The	requirements	for
value	sizes	of	all	kinds	of	basic	numeric	types	are	listed	in	the	article	basic	types	and	basic	value	literals
(§6).

Concept:	Base	Type	of	a	Pointer	Type

For	a	pointer	type,	assume	its	underlying	type	can	be	denoted	as	*T 	in	literal,	then	T 	is	called	the	base
type	of	the	pointer	type.

More	information	on	pointer	types	and	values	can	be	found	in	the	article	pointers	in	Go	(§15).

Concept:	Fields	of	a	Struct	Type
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A	struct	type	consists	a	collection	of	member	variable	declarations.	Each	of	the	member	variable
declarations	is	called	"field"	of	the	struct	type.	For	example,	the	following	struct	type	Book 	has	three
fields,	author ,	title 	and	pages .

1| struct	{

2| 			author	string

3| 			title		string

4| 			pages		int

5| }

More	information	on	struct	types	and	values	can	be	found	in	the	article	structs	in	Go	(§16).

Concept:	Signature	of	Function	Types

The	signature	of	a	function	type	is	composed	of	the	input	parameter	definition	list	and	the	output	result
definition	list	of	the	function.

The	function	name	and	body	are	not	parts	of	a	function	signature.	Parameter	and	result	types	are	important
for	a	function	signature,	but	parameter	and	result	names	are	not	important.

Please	read	functions	in	Go	(§20)	for	more	details	on	function	types	and	function	values.

Concept:	Method	and	Method	Set	of	a	Type

In	Go,	some	types	can	have	methods	(§22).	Methods	can	also	be	called	member	functions.	The	method	set
of	a	type	is	composed	of	all	the	methods	of	the	type.

Concept:	Dynamic	Type	and	Dynamic	Value	of	an	Interface
Value

Interface	values	are	values	whose	types	are	interface	types.

Each	interface	value	can	box	a	non-interface	value	in	it.	The	value	boxed	in	an	interface	value	is	called	the
dynamic	value	of	the	interface	value.	The	type	of	the	dynamic	value	is	called	the	dynamic	type	of	the
interface	value.	An	interface	value	boxing	nothing	is	a	zero	interface	value.	A	zero	interface	value	has
neither	a	dynamic	value	nor	a	dynamic	type.

An	interface	type	can	specify	zero	or	several	methods,	which	form	the	method	set	of	the	interface	type.

If	the	method	set	of	a	type,	which	is	either	an	interface	type	or	a	non-interface	type,	is	the	super	set	of	the
method	set	of	an	interface	type,	we	say	the	type	implements	(§23)	the	interface	type.

For	more	about	interface	types	and	values,	please	read	interfaces	in	Go	(§23).
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Concept:	Concrete	Value	and	Concrete	Type	of	a	Value

For	a	(typed)	non-interface	value,	its	concrete	value	is	itself	and	its	concrete	type	is	the	type	of	the	value.

A	zero	interface	value	has	neither	concrete	type	nor	concrete	value.	For	a	non-zero	interface	value,	its
concrete	value	is	its	dynamic	value	and	its	concrete	type	is	its	dynamic	type.

Concept:	Container	Types

Arrays,	slices	and	maps	can	be	viewed	as	formal	container	types.

Sometimes,	string	and	channel	types	can	also	be	viewed	as	container	types	informally.

Each	value	of	a	container	type	has	a	length,	either	that	container	type	is	a	formal	one	or	an	informal	one.

More	information	on	formal	container	types	and	values	can	be	found	in	the	article	containers	in	Go	(§18).

Concept:	Key	Type	of	a	Map	Type

If	the	underlying	type	of	a	map	type	can	be	denoted	as	map[Tkey]T ,	then	Tkey 	is	called	the	key	type	of
the	map	type.	Tkey 	must	be	a	comparable	type	(see	below).

Concept:	Element	Type	of	a	Container	Type

The	types	of	the	elements	stored	in	values	of	a	container	type	must	be	identical.	The	identical	type	of	the
elements	is	called	the	element	type	of	the	container	type.

For	an	array	type,	if	its	underlying	type	is	[N]T ,	then	its	element	type	is	T .
For	a	slice	type,	if	its	underlying	type	is	[]T ,	then	its	element	type	is	T .
For	a	map	type,	if	its	underlying	type	is	map[Tkey]T ,	then	its	element	type	is	T .
For	a	channel	type,	if	its	underlying	type	is	chan	T ,	chan<-	T 	or	<-chan	T ,	then	its	element
type	is	T .
The	element	type	of	any	string	type	is	always	byte 	(a.k.a.	uint8 ).

Concept:	Directions	of	Channel	Types

Channel	values	can	be	viewed	as	synchronized	first-in-first-out	(FIFO)	queues.	Channel	types	and	values
have	directions.

A	channel	value	which	is	both	sendable	and	receivable	is	called	a	bidirectional	channel.	Its	type	is
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called	a	bidirectional	channel	type.	The	underlying	types	of	bidirectional	channel	types	are	denoted
as	chan	T 	in	literal.
A	channel	value	which	is	only	sendable	is	called	a	send-only	channel.	Its	type	is	called	a	send-only
channel	type.	Send-only	channel	types	are	denoted	as	chan<-	T 	in	literal.
A	channel	value	which	is	only	receivable	is	called	a	receive-only	channel.	Its	type	is	called	a
receive-only	channel	type.	Receive-only	channel	types	are	denoted	as	<-chan	T 	in	literal.

More	information	on	channel	types	and	values	can	be	found	in	the	article	channels	in	Go	(§21).

Fact:	Types	Which	Support	or	Don't	Support	Comparisons

Currently	(Go	1.13),	Go	doesn't	support	comparisons	(with	the	== 	and	!= 	operators)	between	values	of
the	following	types:

slice	types
map	types
function	types
any	struct	type	with	a	field	whose	type	is	incomparable	and	any	array	type	which	element	type	is
incomparable.

Above	listed	types	are	called	incomparable	types.	All	other	types	are	called	comparable	types.	Compilers
forbid	comparing	two	values	of	incomparable	types.

Note,	incomparable	types	are	also	called	as	incomparable	types	in	many	articles.

The	key	type	of	any	map	type	must	be	a	comparable	type.

We	can	learn	more	about	the	detailed	rules	of	comparisons	from	the	article	value	conversions,	assignments
and	comparisons	in	Go	(§48).

Fact:	Object-Oriented	Programming	in	Go

Go	is	not	a	full-featured	object-oriented	programming	language,	but	Go	really	supports	some	object-
oriented	programming	styles.	Please	read	the	following	listed	articles	for	details:

methods	in	Go	(§22).
implementations	in	Go	(§23).
type	embedding	in	Go	(§24).

Fact:	Generics	in	Go

Up	until	now	(Go	1.13),	the	generic	functionalities	in	Go	are	limited	to	built-in	types	and	functions.
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Custom	generics	are	still	in	draft	phase	now.	Please	read	built-in	generics	in	Go	(§26)	for	details.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Pointers	in	Go
Although	Go	absorbs	many	features	from	all	kinds	of	other	languages,	Go	is	mainly	viewed	as	a	C	family
language.	One	evidence	is	Go	also	supports	pointers.	Go	pointers	and	C	pointers	are	much	similar	in	many
aspects,	but	there	are	also	some	differences	between	Go	pointers	and	C	pointers.	This	article	will	list	all
kinds	of	concepts	and	details	related	to	pointers	in	Go.

Memory	Addresses

A	memory	address	means	an	offset	(number	of	bytes)	from	the	start	point	of	the	whole	memory	managed
by	a	system	(generally,	operating	system).

Generally,	a	memory	address	is	stored	as	an	unsigned	native	(integer)	word.	The	size	of	a	native	word	is	4
(bytes)	on	32-bit	architectures	and	8	(bytes)	on	64-bit	architectures.	So	the	theoretical	maximum	memory
space	size	is	232	bytes,	a.k.a.	4GB	(1GB	==	230	bytes),	on	32-bit	architectures,	and	is	234GB	(16	exabytes)
on	64-bit	architectures.

Memory	addresses	are	often	represented	with	hex	integer	literals,	such	as	0x1234CDEF .

Value	Addresses

The	address	of	a	value	means	the	start	address	of	the	memory	segment	occupied	by	the	direct	part	(§17)	of
the	value.

What	Are	Pointers?

Pointer	is	one	kind	of	type	in	Go.	A	pointer	is	a	value	of	some	pointer	type.	A	pointer	value	can	store	a
memory	address.	In	fact,	we	often	call	a	memory	address	as	a	pointer,	and	vice	versa.

Generally,	the	stored	memory	address	in	a	pointer	is	the	address	of	another	value.	Unlike	C	language,	for
safety	reason,	there	are	some	restrictions	made	for	Go	pointers.	Please	read	the	following	sections	for
details.

Go	Pointer	Types	and	Values

In	Go,	a	non-defined	pointer	type	can	be	represented	with	*T ,	where	T 	can	be	an	arbitrary	type.	Type	T 	is
called	the	base	type	of	pointer	type	*T .

We	can	declare	defined	pointer	types,	but	generally,	it’s	not	recommended	to	use	defined	pointer	types,	for
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non-defined	pointer	types	have	better	readabilities.

If	the	underlying	type	(§14)	of	a	defined	pointer	type	is	*T ,	then	the	base	type	of	the	defined	pointer	type
is	T .

Two	non-defined	pointer	types	with	the	same	base	type	are	the	same	type.

Example:

1| *int		//	A	non-defined	pointer	type	whose	base	type	is	int.

2| **int	//	A	non-defined	pointer	type	whose	base	type	is	*int.

3|

4| //	Ptr	is	a	defined	pointer	type	whose	base	type	is	int.

5| type	Ptr	*int

6| //	PP	is	a	defined	pointer	type	whose	base	type	is	Ptr.

7| type	PP	*Ptr

Zero	values	of	any	pointer	types	are	represented	with	the	predeclared	nil .	No	addresses	are	stored	in	nil
pointer	values.

A	value	of	a	pointer	type	whose	base	type	is	T 	can	only	store	the	addresses	of	values	of	type	T .

About	the	Word	"Reference"

In	Go	101,	the	word	"reference"	indicates	a	relation.	For	example,	if	a	pointer	value	stores	the	address	of
another	value,	then	we	can	say	the	pointer	value	(directly)	references	the	other	value,	and	the	other	value
has	at	least	one	reference.	The	uses	of	the	word	"reference"	in	Go	101	are	consistent	with	Go
specification.

When	a	pointer	value	references	another	value,	we	also	often	say	the	pointer	value	points	to	the	other
value.

How	to	Get	a	Pointer	Value	and	What	Are	Addressable
Values?

There	are	two	ways	to	get	a	non-nil	pointer	value.

1.	 The	built-in	new 	function	can	be	used	to	allocate	memory	for	a	value	of	any	type.	new(T) 	will
allocate	memory	for	a	T 	value	(an	anonymous	variable)	and	return	the	address	of	the	T 	value.	The
allocated	value	is	a	zero	value	of	type	T .	The	returned	address	is	viewed	as	a	pointer	value	of	type
*T .

2.	 We	can	also	take	the	addresses	of	values	which	are	addressable	in	Go.	For	an	addressable	value	t 	of
type	T ,	we	can	use	the	expression	&t 	to	take	the	address	of	t ,	where	& 	is	the	operator	to	take	value
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addresses.	The	type	of	&t 	is	viewed	as	*T .

Generally	speaking,	an	addressable	value	means	a	value	which	is	hosted	at	somewhere	in	memory.
Currently,	we	just	need	to	know	that	all	variables	are	addressable,	whereas	constants,	function	calls	and
explicit	conversion	results	are	all	unaddressable.	When	a	variable	is	declared,	Go	runtime	will	allocate	a
piece	of	memory	for	the	variable.	The	starting	address	of	that	piece	of	memory	is	the	address	of	the
variable.

We	will	learn	other	addressable	and	unaddressable	values	from	other	articles	later.	If	you	have	already
been	familiar	with	Go,	you	can	read	this	summary	(§46)	to	get	the	lists	of	addressable	and	unaddressable
values	in	Go.

The	next	section	will	show	an	example	on	how	to	get	pointer	values.

Pointer	Dereference

Given	a	pointer	value	p 	of	a	pointer	type	whose	base	type	is	T ,	how	can	you	get	the	value	at	the	address
stored	in	the	pointer	(a.k.a.,	the	value	being	referenced	by	the	pointer)?	Just	use	the	expression	*p ,	where
* 	is	called	dereference	operator.	*p 	is	called	the	dereference	of	pointer	p .	Pointer	dereference	is	the
inverse	process	of	address	taking.	The	result	of	*p 	is	a	value	of	type	T 	(the	base	type	of	the	type	of	p ).

Dereferencing	a	nil	pointer	causes	a	runtime	panic.

The	following	program	shows	some	address	taking	and	pointer	dereference	examples:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			p0	:=	new(int)			//	p0	points	to	a	zero	int	value.

7| 			fmt.Println(p0)		//	(a	hex	address	string)

8| 			fmt.Println(*p0)	//	0

9|

10| 			//	x	is	a	copy	of	the	value	at

11| 			//	the	address	stored	in	p0.

12| 			x	:=	*p0

13| 			//	Both	take	the	address	of	x.

14| 			//	x,	*p1	and	*p2	represent	the	same	value.

15| 			p1,	p2	:=	&x,	&x

16| 			fmt.Println(p1	==	p2)	//	true

17| 			fmt.Println(p0	==	p1)	//	false

18| 			p3	:=	&*p0	//	<=>	p3	:=	&(*p0)	<=>	p3	:=	p0

19| 			//	Now,	p3	and	p0	store	the	same	address.

20| 			fmt.Println(p0	==	p3)	//	true

21| 			*p0,	*p1	=	123,	789
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22| 			fmt.Println(*p2,	x,	*p3)	//	789	789	123

23|

24| 			fmt.Printf("%T,	%T	\n",	*p0,	x)	//	int,	int

25| 			fmt.Printf("%T,	%T	\n",	p0,	p1)	//	*int,	*int

26| }

The	following	picture	depicts	the	relations	of	the	values	used	in	the	above	program.

Why	Do	We	Need	Pointers?

Let's	view	an	example	firstly.

1| package	main

2|

3| import	"fmt"

4|

5| func	double(x	int)	{

6| 			x	+=	x

7| }

8|

9| func	main()	{

10| 			var	a	=	3

11| 			double(a)

12| 			fmt.Println(a)	//	3

13| }

The	double 	function	in	the	above	example	is	expected	to	modify	the	input	argument	by	doubling	it.
However,	it	fails.	Why?	Because	all	value	assignments,	including	function	argument	passing,	are	value
copying	in	Go.	What	the	double 	function	modified	is	a	copy	(x )	of	variable	a 	but	not	variable	a .

One	solution	to	fix	the	above	double 	function	is	let	it	return	the	modification	result.	This	solution	doesn't
always	work	for	all	scenarios.	The	following	example	shows	another	solution,	by	using	a	pointer
parameter.

1| package	main

2|

3| import	"fmt"

4|
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5| func	double(x	*int)	{

6| 			*x	+=	*x

7| 			x	=	nil	//	the	line	is	just	for	explanation	purpose

8| }

9|

10| func	main()	{

11| 			var	a	=	3

12| 			double(&a)

13| 			fmt.Println(a)	//	6

14| 			p	:=	&a

15| 			double(p)

16| 			fmt.Println(a,	p	==	nil)	//	12	false

17| }

We	can	find	that,	by	changing	the	parameter	to	a	pointer	type,	the	passed	pointer	argument	&a 	and	its
copy	x 	used	in	the	function	body	both	reference	the	same	value,	so	the	modification	on	*x 	is	equivalent
to	a	modification	on	*p ,	a.k.a.,	variable	a .	In	other	words,	the	modification	in	the	double 	function	body
can	be	reflected	out	of	the	function	now.

Surely,	the	modification	of	the	copy	of	the	passed	pointer	argument	itself	still	can't	be	reflected	on	the
passed	pointer	argument.	After	the	second	double 	function	call,	the	local	pointer	p 	doesn't	get	modified
to	nil .

In	short,	pointers	provide	indirect	ways	to	access	some	values.	Many	languages	do	not	have	the	concept	of
pointers.	However,	pointers	are	just	hidden	under	other	concepts	in	those	languages.

Return	Pointers	of	Local	Variables	Is	Safe	in	Go

Unlike	C	language,	Go	is	a	language	supporting	garbage	collection,	so	return	the	address	of	a	local
variable	is	absolutely	safe	in	Go.

1| func	newInt()	*int	{

2| 			a	:=	3

3| 			return	&a

4| }

Restrictions	on	Pointers	in	Go

For	safety	reasons,	Go	makes	some	restrictions	to	pointers	(comparing	to	pointers	in	C	language).	By
applying	these	restrictions,	Go	keeps	the	benefits	of	pointers,	and	avoids	the	dangerousness	of	pointers	at
the	same	time.

Go	pointer	values	don't	support	arithmetic	operations
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In	Go,	pointers	can't	do	arithmetic	operations.	For	a	pointer	p ,	p++ 	and	p-2 	are	both	illegal.

If	p 	is	a	pointer	to	a	numeric	value,	compilers	will	view	*p++ 	is	a	legal	statement	and	treat	it	as	(*p)++ .
In	other	words,	the	precedence	of	the	address-taken	operator	& 	and	the	pointer	dereference	operator	* 	is
higher	than	the	increment	operator	++ 	and	decrement	operator	-- .

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			a	:=	int64(5)

7| 			p	:=	&a

8|

9| 			//	The	following	two	lines	don't	compile.

10| 			/*

11| 			p++

12| 			p	=	(&a)	+	8

13| 			*/

14|

15| 			*p++

16| 			fmt.Println(*p,	a)			//	6	6

17| 			fmt.Println(p	==	&a)	//	true

18|

19| 			*&a++

20| 			*&*&a++

21| 			**&p++

22| 			*&*p++

23| 			fmt.Println(*p,	a)	//	10	10

24| }

A	pointer	value	can't	be	converted	to	an	arbitrary	pointer	type

In	Go,	a	pointer	value	of	pointer	type	T1 	can	be	directly	and	explicitly	converted	to	another	pointer	type
T2 	only	if	either	of	the	following	two	conditions	is	get	satisfied.

1.	 The	underlying	types	of	type	T1 	and	T2 	are	identical	(ignoring	struct	tags),	in	particular	if	either	T1
and	T2 	is	a	non-defined	(§14)	type	and	their	underlying	types	are	identical	(considering	struct	tags),
then	the	conversion	can	be	implicit.	Struct	types	and	values	will	be	explained	in	the	next	article
(§16).

2.	 Type	T1 	and	T2 	are	both	non-defined	pointer	types	and	the	underlying	types	of	their	base	types	are
identical	(ignoring	struct	tags).
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For	example,	for	the	below	shown	pointer	types:

1| type	MyInt	int64

2| type	Ta				*int64

3| type	Tb				*MyInt

the	following	facts	exist:

1.	 values	of	type	*int64 	can	be	implicitly	converted	to	type	Ta ,	and	vice	versa,	for	their	underlying
types	are	both	*int64 .

2.	 values	of	type	*MyInt 	can	be	implicitly	converted	to	type	Tb ,	and	vice	versa,	for	their	underlying
types	are	both	*MyInt .

3.	 values	of	type	*MyInt 	can	be	explicitly	converted	to	type	*int64 ,	and	vice	versa,	for	they	are	both
non-defined	and	the	underlying	types	of	their	base	types	are	both	int64 .

4.	 values	of	type	Ta 	can't	be	directly	converted	to	type	Tb ,	even	if	explicitly.	However,	by	the	just
listed	first	three	facts,	a	value	pa 	of	type	Ta 	can	be	indirectly	converted	to	type	Tb 	by	nesting	three
explicit	conversions,	Tb((*MyInt)((*int64)(pa))) .

None	values	of	these	pointer	types	can	be	converted	to	type	*uint64 ,	in	any	safe	ways.

A	pointer	value	can't	be	compared	with	values	of	an	arbitrary	pointer
type

In	Go,	pointers	can	be	compared	with	== 	and	!= 	operators.	Two	Go	pointer	values	can	only	be	compared
if	either	of	the	following	three	conditions	are	satisfied.

1.	 The	types	of	the	two	Go	pointers	are	identical.
2.	 One	pointer	value	can	be	implicitly	converted	to	the	pointer	type	of	the	other.	In	other	words,	the

underlying	types	of	the	two	types	must	be	identical	and	either	of	the	two	types	of	the	two	Go
pointers	must	be	an	undefined	type.

3.	 One	and	only	one	of	the	two	pointers	is	represented	with	the	bare	(untyped)	nil 	identifier.

Example:

1| package	main

2|

3| func	main()	{

4| 			type	MyInt	int64

5| 			type	Ta				*int64

6| 			type	Tb				*MyInt

7|

8| 			//	4	nil	pointers	of	different	types.

9| 			var	pa0	Ta

10| 			var	pa1	*int64
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11| 			var	pb0	Tb

12| 			var	pb1	*MyInt

13|

14| 			//	The	following	6	lines	all	compile	okay.

15| 			//	The	comparison	results	are	all	true.

16| 			_	=	pa0	==	pa1

17| 			_	=	pb0	==	pb1

18| 			_	=	pa0	==	nil

19| 			_	=	pa1	==	nil

20| 			_	=	pb0	==	nil

21| 			_	=	pb1	==	nil

22|

23| 			//	None	of	the	following	3	lines	compile	ok.

24| 			/*

25| 			_	=	pa0	==	pb0

26| 			_	=	pa1	==	pb1

27| 			_	=	pa0	==	Tb(nil)

28| 			*/

29| }

A	pointer	value	can't	be	assigned	to	pointer	values	of	other	pointer
types

The	conditions	to	assign	a	pointer	value	to	another	pointer	value	are	the	same	as	the	conditions	to	compare
a	pointer	value	to	another	pointer	value,	which	are	listed	above.

It's	Possible	to	Break	the	Go	Pointer	Restrictions

As	the	start	of	this	article	has	mentioned,	the	mechanisms	(specifically,	the	unsafe.Pointer 	type)
provided	by	the	unsafe 	standard	package	(§25)	can	be	used	to	break	the	restrictions	made	for	pointers	in
Go.	The	unsafe.Pointer 	type	is	like	the	void* 	in	C.	In	general	the	unsafe	ways	are	not	recommended
to	use.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Structs	in	Go
Same	as	C,	Go	also	supports	struct	types.	This	article	will	introduce	the	basic	knowledge	of	struct	types
and	values	in	Go.

Struct	Types	and	Struct	Type	Literals

Each	non-defined	struct	type	literal	starts	with	a	struct 	keyword	which	is	followed	by	a	sequence	of
field	definitions	enclosed	in	a	{} .	Generally,	each	field	definition	is	composed	of	a	name	and	a	type.	The
number	of	fields	of	a	struct	type	can	be	zero.

The	following	is	a	non-defined	struct	type	literal:

1| struct	{

2| 			title		string

3| 			author	string

4| 			pages		int

5| }

The	above	struct	type	has	three	fields.	The	types	of	the	two	fields	title 	and	author 	are	both	string .
The	type	of	the	pages 	field	is	int .

Some	articles	also	call	fields	as	member	variables.

Consecutive	fields	with	the	same	type	can	be	declared	together.

1| struct	{

2| 			title,	author	string

3| 			pages									int

4| }

The	size	of	a	struct	type	is	the	sum	of	the	sizes	of	all	its	field	types	plus	the	number	of	some	padding
bytes.	The	padding	bytes	are	used	to	align	the	memory	addresses	of	some	fields.	We	can	learn	padding
and	memory	address	alignments	in	a	later	article	(§44).

The	size	of	a	zero-field	struct	type	is	zero.

A	tag	can	be	bound	to	a	struct	field	when	the	field	is	declared.	Field	tags	are	optional,	the	default	value	of
each	field	tag	is	a	blank	string.	Here	is	an	example	showing	non-default	field	tags.

1| struct	{

2| 			Title		string	`json:"title"`

3| 			Author	string	`json:"author,omitempty"	myfmt:"Author"`

4| 			Pages		int				`json:"pages,omitempty"`
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5| }

Generally,	the	tag	of	a	struct	field	should	be	a	collection	of	key-value	pairs.	The	values	are	strings.	We	can
use	the	reflection	(§27)	way	to	inspect	field	tag	information.

The	purpose	of	each	field	tag	is	application	dependent.	In	the	above	example,	the	field	tags	can	help	the
functions	in	the	encoding/json 	standard	package	to	determine	the	field	names	in	JSON	texts,	in	the
process	of	encoding	struct	values	into	JSON	texts	or	decoding	JSON	texts	into	struct	values.	The	functions
in	the	encoding/json 	standard	package	will	only	encode	and	decode	the	exported	struct	fields,	which	is
why	the	first	letters	of	the	field	names	in	the	above	example	are	all	upper	cased.

It	is	not	a	good	idea	to	use	field	tags	as	comments.

Raw	string	literals	(`...` )	are	used	more	popular	than	interpreted	string	literals	("..." )	for	field	tags	in
practice.

Unlike	C	language,	Go	structs	don't	support	unions.

All	above	shown	struct	types	are	non-defined	and	anonymous.	In	practice,	defined	struct	types	are	more
popular.

Only	exported	fields	of	struct	types	shown	up	in	a	package	can	be	used	in	other	packages	by	importing	the
package.	We	can	view	non-exported	struct	fields	as	private/protected	member	variables.

The	field	tags	and	the	order	of	the	field	declarations	in	a	struct	type	matter	for	the	identity	of	the	struct
type.	Two	non-defined	struct	types	are	identical	only	if	they	have	the	same	sequence	of	field	declarations.
Two	field	declarations	are	identical	only	if	their	respective	names,	their	respective	types	and	their
respective	tags	are	all	identical.	Please	note,	two	non-exported	struct	field	names	from	different
packages	are	always	viewed	as	two	different	names.

A	struct	type	can't	have	a	field	of	the	struct	type	itself,	neither	directly	nor	recursively.

Struct	Value	Literals	and	Struct	Value	Manipulations

In	Go,	the	form	T{...} ,	where	T 	must	be	a	type	literal	or	a	type	name,	is	called	a	composite	literal	and
is	used	as	the	value	literals	of	some	kinds	of	types,	including	struct	types	and	the	container	types
introduced	later.

Note,	a	type	literal	T{...} 	is	a	typed	value,	its	type	is	T .

Given	a	struct	type	S 	whose	underlying	type	(§14)	is	struct{	x	int;	y	bool} ,	the	zero	value	of	S
can	be	represented	by	the	following	two	variants	of	struct	composite	literal	forms:

1.	 S{0,	false} .	In	this	variant,	no	field	names	are	present	but	all	field	values	must	be	present	by	the
field	declaration	orders.
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2.	 S{x:	0,	y:	false} ,	S{y:	false,	x:	0} ,	S{x:	0} ,	S{y:	false} 	and	S{} .	In	this	variant,
each	field	item	is	optional	and	the	order	of	the	field	items	is	not	important.	The	values	of	the	absent
fields	will	be	set	as	the	zero	values	of	their	respective	types.	But	if	a	field	item	is	present,	it	must	be
presented	with	the	FieldName:	FieldValue 	form.	The	order	of	the	field	items	in	this	form
doesn't	matter.	The	form	S{} 	is	the	most	used	zero	value	representation	of	type	S .

If	S 	is	a	struct	type	imported	from	another	package,	it	is	recommended	to	use	the	second	form,	to	maintain
compatibility.	Consider	the	case	where	the	maintainer	of	the	package	adds	a	new	field	for	type	S ,	this	will
make	the	use	of	first	form	invalid.

Surely,	we	can	also	use	the	struct	composite	literals	to	represent	non-zero	struct	value.

For	a	value	v 	of	type	S ,	we	can	use	v.x 	and	v.y ,	which	are	called	selectors	(or	selector	expressions),	to
represent	the	field	values	of	v .	v 	is	called	the	receiver	of	the	selectors.	Later,	we	call	the	dot	. 	in	a
selector	as	the	property	selection	operator.

An	example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| )

6|

7| type	Book	struct	{

8| 			title,	author	string

9| 			pages									int

10| }

11|

12| func	main()	{

13| 			book	:=	Book{"Go	101",	"Tapir",	256}

14| 			fmt.Println(book)	//	{Go	101	Tapir	256}

15|

16| 			//	Create	a	book	value	with	another	form.

17| 			//	All	of	the	three	fields	are	specified.

18| 			book	=	Book{author:	"Tapir",	pages:	256,	title:	"Go	101"}

19|

20| 			//	None	of	the	fields	are	specified.	The	title	and

21| 			//	author	fields	are	both	"",	pages	field	is	0.

22| 			book	=	Book{}

23|

24| 			//	Only	specify	the	author	field.	The	title	field

25| 			//	is	""	and	the	pages	field	is	0.

26| 			book	=	Book{author:	"Tapir"}

27|

28| 			//	Initialize	a	struct	value	by	using	selectors.

29| 			var	book2	Book	//	<=>	book2	:=	Book{}
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30| 			book2.author	=	"Tapir	Liu"

31| 			book2.pages	=	300

32| 			fmt.Println(book.pages)	//	300

33| }

The	last	, 	in	a	composite	literal	is	optional	if	the	last	item	in	the	literal	and	the	closing	} 	are	at	the	same
line.	Otherwise,	the	last	, 	is	required.	For	more	details,	please	read	line	break	rules	in	Go	(§28).

1| var	_	=	Book	{

2| 			author:	"Tapir",

3| 			pages:	256,

4| 			title:	"Go	101",	//	here,	the	","	must	be	present

5| }

6|

7| //	The	last	","	in	the	following	line	is	optional.

8| var	_	=	Book{author:	"Tapir",	pages:	256,	title:	"Go	101",}

About	Struct	Value	Assignments

When	a	struct	value	is	assigned	to	another	struct	value,	the	effect	is	the	same	as	assigning	each	field	one
by	one.

1| func	f()	{

2| 			book1	:=	Book{pages:	300}

3| 			book2	:=	Book{"Go	101",	"Tapir",	256}

4|

5| 			book2	=	book1

6| 			//	The	above	line	is	equivalent	to	the

7| 			//	following	lines.

8| 			book2.title	=	book1.title

9| 			book2.author	=	book1.author

10| 			book2.pages	=	book1.pages

11| }

Two	struct	values	can	be	assigned	to	each	other	only	if	their	types	are	identical	or	the	types	of	the	two
struct	values	have	an	identical	underlying	type	(considering	field	tags)	and	at	least	one	of	the	two	types	is
an	non-defined	type	(§14).

Struct	Field	Addressability

The	fields	of	an	addressable	struct	are	also	addressable.	The	fields	of	an	unaddressable	struct	are	also
unaddressable.	The	fields	of	unaddressable	structs	can't	be	modified.	All	composite	literals,	including
struct	composite	literals	are	unaddressable.

Example:
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1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			type	Book	struct	{

7| 						Pages	int

8| 			}

9| 			var	book	=	Book{}	//	book	is	addressable

10| 			p	:=	&book.Pages

11| 			*p	=	123

12| 			fmt.Println(book)	//	{123}

13|

14| 			//	The	following	two	lines	fail	to	compile,	for

15| 			//	Book{}	is	unaddressable,	so	is	Book{}.Pages.

16| 			/*

17| 			Book{}.Pages	=	123

18| 			p	=	&(Book{}.Pages)	//	<=>	p	=	&(Book{}.Pages)

19| 			*/

20| }

Note	that	the	precedence	of	the	property	selection	operator	. 	in	a	selector	is	higher	than	the	address-taken
operator	& .

Composite	Literals	Are	Unaddressable	But	Can	Take
Addresses

Generally,	only	addressable	values	can	take	addresses.	But	there	is	a	syntactic	sugar	in	Go,	which	allows
us	to	take	addresses	on	composite	literals.	A	syntactic	sugar	is	an	exception	in	syntax	to	make
programming	convenient.

For	example,

1| package	main

2|

3| func	main()	{

4| 			type	Book	struct	{

5| 						Pages	int

6| 			}

7| 			//	Book{100}	is	unaddressable	but	can

8| 			//	be	taken	address.

9| 			p	:=	&Book{100}	//	<=>	tmp	:=	Book{100};	p	:=	&tmp

10| 			p.Pages	=	200

11| }

§16.	Structs	in	Go

132



In	Selectors,	Struct	Pointers	Can	Be	Used	as	Struct	Values

Unlike	C,	in	Go,	there	is	no	-> 	operator	for	selecting	struct	fields	through	struct	pointers.	In	Go,	the	->
operator	is	represented	by	the	dot	operator	. .

For	example:

1| package	main

2|

3| func	main()	{

4| 			type	Book	struct	{

5| 						pages	int

6| 			}

7| 			book1	:=	&Book{100}	//	book1	is	a	struct	pointer

8| 			book2	:=	new(Book)		//	book2	is	another	struct	pointer

9| 			//	Use	struct	pointers	as	structs.

10| 			book2.pages	=	book1.pages

11| 			//	This	last	line	is	eqivalent	to	the	next	line.

12| 			//	In	other	words,	if	the	receiver	is	a	pointer,

13| 			//	it	will	be	automatic	dereferenced.

14| 			(*book2).pages	=	(*book1).pages

15| }

About	Struct	Value	Comparisons

Most	struct	types	are	comparable	types,	except	the	ones	who	have	fields	of	incomparable	types	(§14).

Two	struct	values	are	comparable	only	if	they	can	be	assigned	to	each	other	and	their	types	are	both
comparable.	In	other	words,	two	struct	values	can	be	compared	with	each	other	only	if	the	(comparable)
types	of	the	two	struct	values	have	an	identical	underlying	type	(considering	field	tags)	and	at	least	one	of
the	two	types	is	non-defined.

When	comparing	two	struct	values	of	the	same	type,	each	pair	of	their	corresponding	fields	will	be
compared.	The	two	struct	values	are	equal	only	if	all	of	their	corresponding	fields	are	equal.

About	Struct	Value	Conversions

Values	of	two	struct	types	S1 	and	S2 	can	be	converted	to	each	other's	types,	if	S1 	and	S2 	share	the
identical	underlying	type	(by	ignoring	field	tags).	In	particular	if	either	S1 	or	S2 	is	a	non-defined	type
(§14)	and	their	underlying	types	are	identical	(considering	field	tags),	then	the	conversions	between	the
values	of	them	can	be	implicit.

Given	struct	types	S0 ,	S1 ,	S2 ,	S3 	and	S4 	in	the	following	code	snippet,
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values	of	type	S0 	can't	be	converted	to	the	other	four	types,	and	vice	versa,	because	the
corresponding	field	names	are	different.
two	values	of	two	different	types	among	S1 ,	S2 ,	S3 	and	S4 	can	be	converted	to	each	other's	type.

In	particular,

values	of	type	S2 	can	be	implicitly	converted	to	type	S3 ,	and	vice	versa.
values	of	type	S2 	can	be	implicitly	converted	to	type	S4 ,	and	vice	versa.

But,

values	of	type	S1 	must	be	explicitly	converted	to	type	S2 ,	and	vice	versa.
values	of	type	S3 	must	be	explicitly	converted	to	type	S4 ,	and	vice	versa.

1| package	main

2|

3| type	S0	struct	{

4| 			y	int	"foo"

5| 			x	bool

6| }

7|

8| //	S1	is	an	alias	of	a	non-defined	type.

9| type	S1	=	struct	{

10| 			x	int	"foo"

11| 			y	bool

12| }

13|

14| //	S2	is	also	an	alias	of	a	non-defined	type.

15| type	S2	=	struct	{

16| 			x	int	"bar"

17| 			y	bool

18| }

19|

20| //	If	field	tags	are	ignored,	the	underlying

21| //	types	of	S3(S4)	and	S1	are	same.	If	field

22| //	tags	are	considered,	the	underlying	types

23| //	of	S3(S4)	and	S1	are	different.

24| type	S3	S2	//	S3	is	a	defined	type

25| type	S4	S3	//	S4	is	a	defined	type

26|

27| var	v0,	v1,	v2,	v3,	v4	=	S0{},	S1{},	S2{},	S3{},	S4{}

28| func	f()	{

29| 			v1	=	S1(v2);	v2	=	S2(v1)

30| 			v1	=	S1(v3);	v3	=	S3(v1)

31| 			v1	=	S1(v4);	v4	=	S4(v1)

32| 			v2	=	v3;	v3	=	v2	//	the	conversions	can	be	implicit

33| 			v2	=	v4;	v4	=	v2	//	the	conversions	can	be	implicit
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34| 			v3	=	S3(v4);	v4	=	S4(v3)

35| }

In	fact,	two	struct	values	can	be	assigned	(or	compared)	to	each	other	only	if	one	of	them	can	be	implicitly
converted	to	the	type	of	the	other.

Anonymous	Struct	Types	Can	Be	Used	in	Field
Declarations

Anonymous	struct	types	are	allowed	to	be	used	as	the	types	of	the	fields	of	another	struct	type.
Anonymous	struct	type	literals	are	also	allowed	to	be	used	in	composite	literals.

An	example:

1| var	aBook	=	struct	{

2| 			//	The	type	of	the	author	field	is

3| 			//	an	anonymous	struct	type.

4| 			author	struct	{

5| 						firstName,	lastName	string

6| 						gender														bool

7| 			}

8| 			title	string

9| 			pages	int

10| }{

11| 			author:	struct	{	//	an	anonymous	struct	type

12| 						firstName,	lastName	string

13| 						gender														bool

14| 			}{

15| 						firstName:	"Mark",

16| 						lastName:	"Twain",

17| 			},

18| 			title:	"The	Million	Pound	Note",

19| 			pages:	96,

20| }

Generally,	for	better	readability,	it	is	not	recommended	to	use	anonymous	struct	type	literals	in	composite
literals.

More	About	Struct	Types

There	are	some	advanced	topics	which	are	related	to	struct	types.	They	will	be	explained	in	type
embedding	(§24)	and	memory	layouts	(§44)	later.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
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from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,
Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit

tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Value	Parts
The	articles	following	the	current	one	will	introduce	more	kinds	of	Go	types.	To	easily	and	deeply
understand	those	articles,	it	is	best	to	read	the	following	content	in	the	current	article	firstly	before	reading
those	articles.

Two	Categories	of	Go	Types

Go	can	be	viewed	as	a	C-family	language,	which	can	be	confirmed	from	the	two	previous	articles	pointers
in	Go	(§15)	and	structs	in	Go	(§16).	The	memory	structures	of	struct	types	and	pointer	types	in	Go	and	C
are	much	alike.

On	the	other	hand,	Go	can	be	also	viewed	as	a	C	language	framework.	This	is	mainly	reflected	from	the
fact	that	Go	supports	several	kinds	of	types	whose	value	memory	structures	are	not	totally	transparent,
whereas	the	main	characteristic	of	C	types	is	the	memory	structures	of	C	values	are	transparent.	Each	C
value	in	memory	occupies	one	memory	block	(§43)	(one	continuous	memory	segment).	However,	a	value
of	some	kinds	of	Go	types	may	often	be	hosted	on	more	than	one	memory	blocks.

Later,	we	call	the	parts	(being	distributed	on	different	memory	blocks)	of	a	value	as	value	parts.	A	value
hosting	on	more	than	one	memory	blocks	is	composed	of	one	direct	value	part	and	several	underlying
indiect	parts	which	are	referenced	(§15)	by	that	direct	value	part.

The	above	paragraphs	describe	two	categories	of	Go	types:
Types	whose	values	each	is	only	hosted	on	one

single	memory	block
Types	whose	values	each	may	be	hosted	on

multiple	memory	blocks

boolean	types
numeric	types
pointer	types

unsafe	pointer	types
struct	types
array	types

slice	types
map	types

channel	types
function	types
interface	types
string	types

The	following	Go	101	articles	will	make	detailed	explanations	for	many	kinds	of	types	listed	in	the	above
table.	The	current	article	is	just	to	make	a	preparation	to	understand	those	explanations	more	easily.

Note,

whether	or	not	interface	and	string	values	may	contain	underlying	parts	is	compiler	dependent.	For
the	standard	Go	compiler	implementation,	interface	and	string	values	may	contain	underlying	parts.
whether	or	not	functions	values	may	contain	underlying	parts	is	hardly,	even	impossible,	to	prove.	In
Go	101,	we	will	view	functions	values	may	contain	underlying	parts.

The	kinds	of	types	in	the	second	category	bring	much	convenience	to	Go	programming	by	encapsulating
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The	kinds	of	types	in	the	second	category	bring	much	convenience	to	Go	programming	by	encapsulating
many	implementation	details.	Different	Go	compilers	may	adopt	different	internal	implementations	for
these	types,	but	the	external	behaviors	of	values	of	these	types	must	satisfy	the	requirements	specified	in
Go	specification.

The	types	in	the	second	category	are	not	very	fundamental	types	for	a	language,	we	can	implement	them
from	scratch	by	using	the	types	from	the	first	category.	However,	by	encapsulating	some	common	or
unique	functionalities	and	supporting	these	types	as	the	first-class	citizens	in	Go,	the	experiences	of	Go
programming	become	enjoyable	and	productive.

On	the	other	hand,	these	encapsulations	adopted	in	implementing	the	types	in	the	second	category	hide
many	internal	definitions	of	these	types.	This	prevents	Go	programmers	from	viewing	the	whole	pictures
of	these	types,	and	sometimes	makes	some	obstacles	to	understand	Go	better.

To	help	gophers	better	understand	the	types	in	the	second	category	and	their	values,	the	following	content
of	this	article	will	introduce	the	internal	structure	definitions	of	these	kinds	of	types.	The	detailed
implementations	of	these	types	will	not	be	explained	here.	The	explanations	in	this	article	are	based	on,
but	not	exactly	the	same	as,	the	implementations	used	by	the	standard	Go	compiler.

Two	Kinds	of	Pointer	Types	in	Go

Before	showing	the	internal	structure	definitions	of	the	kinds	of	types	in	the	second	category,	let's	clarify
more	on	pointers	and	references.

We	have	learned	Go	pointers	(§15)	in	the	article	before	the	last.	The	pointer	types	in	that	article	are	type-
safe	pointer	types.	In	fact,	Go	also	supports	type-unsafe	pointer	types	(§25).	The	unsafe.Pointer 	type
provided	in	the	unsafe 	standard	package	is	like	void* 	in	C	language.

In	most	other	articles	in	Go	101,	if	not	specially	specified,	when	a	pointer	type	is	mentioned,	it	means	a
type-safe	pointer	type.	However,	in	the	following	parts	of	the	current	article,	when	a	pointer	is	mentioned,
it	might	be	either	a	type-safe	pointer	or	a	type-unsafe	pointer.

A	pointer	value	stores	a	memory	address	of	another	value,	unless	the	pointer	value	is	a	nil	pointer.	We	can
say	the	pointer	value	references	(§15)	the	other	value,	or	the	other	value	is	referenced	by	the	pointer	value.
Values	can	also	be	referenced	indirectly.

If	a	struct	value	a 	has	a	pointer	field	b 	which	references	a	value	c ,	then	we	can	say	the	struct	value
a 	also	references	value	c .
If	a	value	x 	references	(either	directly	or	indirectly)	a	value	y ,	and	the	value	y 	references	(either
directly	or	indirectly)	a	value	z ,	then	we	can	also	say	the	value	x 	(indirectly)	references	value	z .

Below,	we	call	a	struct	type	with	fields	of	pointer	types	as	a	pointer	wrapper	type,	and	call	a	type	whose
values	may	contains	(either	directly	or	indirectly)	pointers	a	pointer	holder	type.	Pointer	types	and
pointer	wrapper	types	are	all	pointer	holder	types.	Array	types	with	pointer	holder	element	types	are	also
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pointer	holder	types.	(Array	types	will	be	explained	in	the	next	article.)

(Possible)	Internal	Definitions	of	the	Types	in	the	Second
Category

The	possible	internal	definitions	of	the	types	in	the	second	category	are	shown	below.	If	you	haven't	used
all	kinds	of	Go	types	much,	currently	you	don't	need	to	try	to	comprehend	these	definitions	clearly.
Instead,	it	is	okay	to	just	get	a	rough	impression	on	these	definitions	and	reread	this	article	when	you	get
more	experience	in	Go	programming	later.	Knowing	the	definitions	roughly	is	good	enough	to	help	Go
programmers	understand	the	types	explained	in	the	following	articles.

Internal	definitions	of	map,	channel	and	function	types

The	internal	definitions	of	map,	channel	and	function	types	are	similar:

1| //	map	types

2| type	_map	*hashtableImpl

3|

4| //	channel	types

5| type	_channel	*channelImpl

6|

7| //	function	types

8| type	_function	*functionImpl

So,	internally,	types	of	the	three	kinds	are	just	pointer	types.	In	other	words,	the	direct	parts	of	values	of
these	types	are	pointers	internally.	For	each	non-zero	value	of	these	types,	its	direct	part	(a	pointer)
references	its	indirect	underlying	implementation	part.

BTW,	the	standard	Go	compiler	uses	hashtables	to	implement	maps.

Internal	definition	of	slice	types

The	internal	definition	of	slice	types	is	like:

1| type	_slice	struct	{

2| 			//	referencing	underlying	elements

3| 			elements	unsafe.Pointer

4| 			//	number	of	elements	and	capacity

5| 			len,	cap	int

6| }

So,	internally,	slice	types	are	pointer	wrapper	struct	types.	Each	non-zero	slice	value	has	an	indirect
underlying	part	which	stores	the	element	values	of	the	slice	value.	The	elements 	field	of	the	direct	part
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references	the	indirect	underlying	part	of	the	slice	value.

Internal	definition	of	string	types

Below	is	the	internal	definition	for	string	types:

1| type	_string	struct	{

2| 			elements	*byte	//	referencing	underlying	bytes

3| 			len						int			//	number	of	bytes

4| }

So	string	types	are	also	pointer	wrapper	struct	types	internally.	Each	string	value	has	an	indirect
underlying	part	storing	the	bytes	of	the	string	value,	the	indirect	part	is	referenced	by	the	elements 	field
of	that	string	value.

Internal	definition	of	interface	types

Below	is	the	internal	definition	for	general	interface	types:

1| type	_interface	struct	{

2| 			dynamicType		*_type									//	the	dynamic	type

3| 			dynamicValue	unsafe.Pointer	//	the	dynamic	value

4| }

Internally,	interface	types	are	also	pointer	wrapper	struct	types.	The	internal	definition	of	an	interface	type
has	two	pointer	fields.	Each	non-zero	interface	value	has	two	indirect	underlying	parts	which	store	the
dynamic	type	and	dynamic	value	of	that	interface	value.	The	two	indirect	parts	are	referenced	by	the
dynamicType 	and	dynamicValue 	fields	of	that	interface	value.

In	fact,	for	the	standard	Go	compiler,	the	above	definition	is	only	used	for	blank	interface	types.	Blank
interface	types	are	the	interface	types	which	don't	specify	any	methods.	We	can	learn	more	about
interfaces	in	the	article	interfaces	in	Go	(§23)	later.	For	non-blank	interface	types,	the	definition	like	the
following	one	is	used.

1| type	_interface	struct	{

2| 			dynamicTypeInfo	*struct	{

3| 						dynamicType	*_type							//	the	dynamic	type

4| 						methods					[]*_function	//	method	table

5| 			}

6| 			dynamicValue	unsafe.Pointer	//	the	dynamic	value

7| }

The	methods 	field	of	the	dynamicTypeInfo 	field	of	an	interface	value	stores	the	implemented	methods
of	the	dynamic	type	of	the	interface	value	for	the	(interface)	type	of	the	interface	value.

§17.	Value	Parts

140



Underlying	Value	Parts	Are	Not	Copied	in	Value
Assignments

Now	we	have	learned	that	the	internal	definitions	of	the	types	in	the	second	category	are	pointer	holder
(pointer	or	pointer	wrapper)	types.	Knowing	this	is	very	helpful	to	understand	value	copy	behaviors	in	Go.

In	Go,	each	value	assignment	(including	parameter	passing,	etc)	is	a	shallow	value	copy	if	the	involved
destination	and	source	values	have	the	same	type	(if	their	types	are	different,	we	can	think	that	the	source
value	will	be	implicitly	converted	to	the	destination	type	before	doing	that	assignment).	In	other	words,
only	the	direct	part	of	the	source	value	is	copied	to	the	destination	value	in	an	value	assignment.	If	the
source	value	has	underlying	value	part(s),	then	the	direct	parts	of	the	destination	and	source	values	will
reference	the	same	underlying	value	part(s),	in	other	words,	the	destination	and	source	values	will	share
the	same	underlying	value	part(s).

In	fact,	the	above	descriptions	are	not	100%	correct	in	theory,	for	strings	and	interfaces.	The	official	Go
FAQ Ң 	says	the	underlying	dynamic	value	part	of	an	interface	value	should	be	copied	as	well	when	the
interface	value	is	copied.	However,	as	the	dynamic	value	of	an	interface	value	is	read	only,	the	standard
Go	compiler/runtime	doesn't	copy	the	underlying	dynamic	value	parts	in	copying	interface	values.	This
can	be	viewed	as	a	compiler	optimization.	The	same	situation	is	for	string	values	and	the	same
optimization	(made	by	the	standard	Go	compiler/runtime)	is	made	for	copying	string	values.	So,	for	the
standard	Go	compiler/runtime,	the	descriptions	in	the	last	section	are	100%	correct,	for	values	of	any	type.

Since	an	indirect	underlying	part	may	not	belong	to	any	value	exclusively,	it	doesn't	contribute	to	the	size
returned	by	the	unsafe.Sizeof 	function.

About	the	"Reference	Type"	and	"Reference	Value"
Terminologies

The	word	reference	in	Go	world	is	a	big	mess.	It	brings	many	confusions	to	Go	community.	Some
articles,	including	some	official	ones Ң ,	use	reference	as	qualifiers	of	types	and	values,	or	treat	reference
as	the	opposite	of	value.	This	is	strongly	discouraged	in	Go	101.	I	really	don't	want	to	dispute	on	this
point.	Here	I	just	list	some	absolutely	misuses	of	reference:

only	slice,	map,	channel	and	function	types	are	reference	types	in	Go.	(If	we	do	need	the	reference
type	terminology	in	Go,	then	we	shouldn't	exclude	any	pointer	holder	types	from	reference	types).
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references	are	opposites	of	values.	(If	we	do	need	the	reference	value	terminology	in	Go,	then
please	view	reference	values	as	special	values,	instead	of	opposites	of	values.)
some	parameters	are	passed	by	reference.	(Sorry,	all	parameters	are	passed	by	copy	in	Go.)

I	don't	mean	the	reference	type	or	reference	value	terminologies	are	totally	useless	for	Go,	I	just	think
they	are	not	very	essential,	and	they	bring	many	confusions	in	using	Go.	If	we	do	need	these
terminologies,	I	prefer	to	define	them	as	pointer	holders.	And,	my	personal	opinion	is	it	is	best	to	limit	the
reference	word	to	only	representing	relations	between	values	by	using	it	as	a	verb	or	a	noun,	and	never
use	it	as	an	adjective.	This	will	avoid	many	confusions	in	leaning,	teaching	and	using	Go.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Arrays,	Slices	and	Maps	in	Go
Strictly	speaking,	there	are	three	kinds	of	first-class	citizen	container	types	in	Go,	array,	slice	and	map.
Sometimes,	strings	and	channels	can	also	be	viewed	as	container	types,	but	this	article	will	not	touch	the
two	kinds	of	types.	All	container	types	talked	about	in	the	current	article	are	arrays,	slices	and	maps.

There	are	many	container	related	details	in	Go.	This	article	will	list	them	one	by	one.

Simple	Overview	of	Container	Types	and	Values

Each	value	of	the	three	kinds	of	types	is	used	to	store	a	collection	of	element	values.	The	types	of	all	the
elements	stored	in	a	container	value	are	identical.	The	identical	type	is	called	the	element	type	of	(the
container	type	of)	the	container	value.

Each	element	in	a	container	has	an	associated	key.	An	element	value	can	be	accessed	or	modified	through
its	associated	key.	The	key	types	of	map	types	must	be	comparable	types	(§14).	The	key	types	of	array	and
slice	types	are	all	the	built-in	type	int .	The	keys	of	the	elements	of	an	array	or	slice	are	non-negative
integers	which	mark	the	positions	of	these	elements	in	the	array	or	slice.	The	non-negative	integer	keys	are
often	called	indexes.

Each	container	value	has	a	length	property,	which	indicates	how	many	elements	are	stored	in	that
container.	The	valid	range	of	the	integer	keys	of	an	array	or	slice	value	is	from	zero	(inclusive)	to	the
length	(exclusive)	of	the	array	or	slice.	For	each	value	of	a	map	type,	the	key	values	of	that	map	value	can
be	an	arbitrary	value	of	the	key	type	of	the	map	type.

There	are	also	many	differences	between	the	three	kinds	of	container	types.	Most	of	the	differences
originate	from	the	differences	between	the	value	memory	layouts	of	the	three	kinds	of	types.	From	the	last
article,	value	parts	(§17),	we	learned	that	an	array	value	consists	of	only	one	direct	part,	however	a	slice	or
map	value	may	have	an	underlying	part,	which	is	referenced	by	the	direct	part	of	the	slice	or	map	value.

Elements	of	an	array	or	a	slice	are	both	stored	contiguously	in	a	continuous	memory	segment.	For	an
array,	the	continuous	memory	segment	hosts	the	direct	part	of	the	array.	For	a	slice,	the	continuous
memory	segment	hosts	the	underlying	indirect	part	of	the	slice.	The	map	implementation	of	the	standard
Go	compiler/runtime	adopts	the	hashtable	algorithm.	So	all	elements	of	a	map	are	also	stored	in	an
underlying	continuous	memory	segment,	but	they	may	be	not	contiguous.	There	may	be	many	holes
(gaps)	within	the	continuous	memory	segment.	Another	common	map	implementation	algorithm	is	the
binary	tree	algorithm.	Whatever	algorithm	is	used,	the	keys	associated	with	the	elements	of	a	map	are	also
stored	in	(the	underlying	parts	of)	the	map.

We	can	access	an	element	through	its	key.	The	time	complexities	of	element	accesses	on	all	container
values	are	all	O(1) ,	though,	generally	map	element	accesses	are	several	times	slower	than	array	and	slice
element	accesses.	But	maps	have	two	advantages	over	arrays	and	slices:
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the	key	types	of	maps	can	be	any	comparable	types.
maps	consume	much	less	memory	than	arrays	and	slices	with	a	large	quantity	of	sparse	indexes
(integer	keys).

From	the	last	article,	we	have	learned	that	the	underlying	parts	of	a	value	will	not	get	copied	when	the
value	is	copied.	In	other	words,	if	a	value	has	underlying	parts,	a	copy	of	the	value	will	share	the
underlying	parts	with	the	value.	This	is	the	root	reason	of	many	behavior	differences	between	array	and
slice/map	values.	These	behavior	differences	will	be	introduced	below.

Literal	Representations	of	Non-defined	Container	Types

The	literal	representations	of	the	three	kinds	of	non-defined	container	types:

array	types:	[N]T
slice	types:	[]T
map	types:	map[K]T

where

T 	is	an	arbitrary	type.	It	specifies	the	element	type	of	a	container	type.	Only	values	of	the	specified
element	type	can	be	stored	as	element	values	of	values	of	the	container	type.
N 	must	be	a	non-negative	integer	constant.	It	specifies	the	number	of	elements	stored	in	any	value	of
an	array	type,	and	it	can	be	called	the	length	of	the	array	type.	This	means	the	length	of	an	array	type
is	the	inherent	part	of	the	array	type.	For	example,	[5]int 	and	[8]int 	are	two	distinct	array	types.
K 	is	an	arbitrary	comparable	type.	It	specifies	the	key	type	of	a	map	type.	Most	types	in	Go	are
comparable,	incomparable	types	are	listed	here	(§14).

Here	are	some	container	type	literal	representation	examples:

1| const	Size	=	32

2|

3| type	Person	struct	{

4| 			name	string

5| 			age		int

6| }

7|

8| /*	Array	types	*/

9|

10| [5]string

11| [Size]int

12| //	Element	type	is	a	slice	type:	[]byte

13| [16][]byte

14| //	Element	type	is	a	struct	type:	Person

15| [100]Person

16|
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17| /*	Slice	types	*

18|

19| []bool

20| []int64

21| //	Element	type	is	a	map	type:	map[int]bool

22| []map[int]bool

23| //	Element	type	is	a	pointer	type:	*int

24| []*int

25|

26| /*	Map	types	*/

27|

28| map[string]int

29| map[int]bool

30| //	Element	type	is	an	array	type:	[6]string

31| map[int16][6]string

32| //	Element	type	is	a	slice	type:	[]string

33| map[bool][]string

34| //	Element	type	is	a	pointer	type:	*int8,

35| //	and	key	type	is	a	struct	type.

36| map[struct{x	int}]*int8

The	sizes	(§14)	of	all	slice	types	are	the	same.	The	sizes	of	all	map	types	are	also	the	same.	The	size	of	an
array	type	depends	on	its	length	and	the	size	of	its	element	type.	The	size	of	a	zero-length	array	type	or	an
array	type	with	a	zero-size	element	type	is	zero.

Container	Value	Literals

Like	struct	values,	container	values	can	also	be	represented	with	composite	literals,	T{...} ,	where	T
denotes	container	type	(except	the	zero	values	of	slice	and	map	types).	Here	are	some	examples:

1| //	An	array	value	containing	four	bool	values.

2| [4]bool{false,	true,	true,	false}

3|

4| //	A	slice	value	which	contains	three	words.

5| []string{"break",	"continue",	"fallthrough"}

6|

7| //	A	map	value	containing	some	key-value	pairs.

8| map[string]int{"C":	1972,	"Python":	1991,	"Go":	2009}

Each	key-element	pair	between	the	braces	of	a	map	composite	literal	is	also	called	an	entry.

There	are	several	variants	for	array	and	slice	composite	literals:

1| //	The	followings	slice	composite	literals

2| //	are	equivalent	to	each	other.

3| []string{"break",	"continue",	"fallthrough"}

4| []string{0:	"break",	1:	"continue",	2:	"fallthrough"}
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5| []string{2:	"fallthrough",	1:	"continue",	0:	"break"}

6| []string{2:	"fallthrough",	0:	"break",	"continue"}

7|

8| //	The	followings	array	composite	literals

9| //	are	equivalent	to	each	other.

10| [4]bool{false,	true,	true,	false}

11| [4]bool{0:	false,	1:	true,	2:	true,	3:	false}

12| [4]bool{1:	true,	true}

13| [4]bool{2:	true,	1:	true}

14| [...]bool{false,	true,	true,	false}

15| [...]bool{3:	false,	1:	true,	true}

In	the	last	two	literals,	the	... s	mean	we	want	to	let	compilers	deduce	the	lengths	for	the	corresponding
array	values.

From	the	above	examples,	we	know	that	element	indexes	(keys)	are	optional	in	array	and	slice	composite
literals.	In	an	array	or	slice	composite	literal,

if	an	index	is	present,	it	is	not	needed	to	be	a	typed	value	of	the	key	type	int ,	but	it	must	be	a	non-
negative	constant	representable	as	a	value	of	type	int .	And	if	it	is	typed,	its	type	must	be	a	basic
integer	type.
an	element	which	index	is	absent	uses	the	previous	element's	index	plus	one	as	its	index.
if	the	index	of	the	first	element	is	absent,	its	index	is	zero.

The	keys	in	a	map	literal	can	be	absent,	they	can	be	non-constants.

1| var	a	uint	=	1

2| var	_	=	map[uint]int	{a	:	123}	//	okay

3|

4| //	The	following	two	lines	fail	to	compile,

5| //	for	"a"	is	not	a	constant	key/index.

6| var	_	=	[]int{a:	100}		//	error

7| var	_	=	[5]int{a:	100}	//	error

Constant	keys	in	one	specific	composite	literal	can't	be	duplicate	(§50).

Literal	Representations	of	Zero	Values	of	Container	Types

Like	structs,	the	zero	value	of	an	array	type	A 	can	be	represented	with	the	composite	literal	A{} .	For
example,	the	zero	value	of	type	[100]int 	can	be	denoted	as	[100]int{} .	All	elements	stored	in	the
zero	value	of	an	array	type	are	zero	values	of	the	element	type	of	the	array	type.

Like	pointer	types,	zero	values	of	all	slice	and	map	types	are	represented	with	the	predeclared	nil .

BTW,	there	are	some	other	kinds	of	types	whose	zero	values	are	also	represented	by	nil ,	including	later
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to	be	introduced	function,	channel	and	interface	types.

When	an	array	variable	is	declared	without	being	specified	an	initial	value,	memory	has	been	allocated	for
the	elements	of	the	zero	array	value.	The	memory	for	the	elements	of	a	nil	slice	or	map	value	has	not	been
allocated	yet.

Please	note,	[]T{} 	represents	a	blank	slice	value	(with	zero	elements)	of	slice	type	[]T ,	it	is	different
from	[]T(nil) .	The	same	situation	is	for	map[K]T{} 	and	map[K]T(nil) .

Composite	Literals	Are	Unaddressable	but	Can	Be	Taken
Addresses

We	have	learned	that	struct	composite	literals	can	be	taken	addresses	directly	(§16)	before.	Container
composite	literals	have	no	exceptions	here.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			pm	:=	&map[string]int{"C":	1972,	"Go":	2009}

7| 			ps	:=	&[]string{"break",	"continue"}

8| 			pa	:=	&[...]bool{false,	true,	true,	false}

9| 			fmt.Printf("%T\n",	pm)	//	*map[string]int

10| 			fmt.Printf("%T\n",	ps)	//	*[]string

11| 			fmt.Printf("%T\n",	pa)	//	*[4]bool

12| }

Nested	Composite	Literals	Can	Be	Simplified

If	a	composite	literal	nested	many	other	composite	literals,	then	those	nested	composited	literals	can
simplified	to	the	form	{...} .

For	example,	the	slice	value	literal

1| //	A	slice	value	of	a	type	whose	element	type	is

2| //	*[4]byte.	The	element	type	is	a	pointer	type

3| //	whose	base	type	is	[4]byte.	The	base	type	is

4| //	an	array	type	whose	element	type	is	"byte".

5| var	heads	=	[]*[4]byte{

6| 			&[4]byte{'P',	'N',	'G',	'	'},

7| 			&[4]byte{'G',	'I',	'F',	'	'},
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8| 			&[4]byte{'J',	'P',	'E',	'G'},

9| }

can	be	simplified	to

1| var	heads	=	[]*[4]byte{

2| 			{'P',	'N',	'G',	'	'},

3| 			{'G',	'I',	'F',	'	'},

4| 			{'J',	'P',	'E',	'G'},

5| }

The	array	value	literal	in	the	following	example

1| type	language	struct	{

2| 			name	string

3| 			year	int

4| }

5|

6| var	_	=	[...]language{

7| 			language{"C",	1972},

8| 			language{"Python",	1991},

9| 			language{"Go",	2009},

10| }

can	be	simplified	to

1| var	_	=	[...]language{

2| 			{"C",	1972},

3| 			{"Python",	1991},

4| 			{"Go",	2009},

5| }

And	the	map	value	literal	in	the	following	example

1| type	LangCategory	struct	{

2| 			dynamic	bool

3| 			strong		bool

4| }

5|

6| //	A	value	of	map	type	whose	key	type	is

7| //	a	struct	type	and	whose	element	type

8| //	is	another	map	type	"map[string]int".

9| var	_	=	map[LangCategory]map[string]int{

10| 			LangCategory{true,	true}:	map[string]int{

11| 						"Python":	1991,

12| 						"Erlang":	1986,

13| 			},

14| 			LangCategory{true,	false}:	map[string]int{

15| 						"JavaScript":	1995,
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16| 			},

17| 			LangCategory{false,	true}:	map[string]int{

18| 						"Go":			2009,

19| 						"Rust":	2010,

20| 			},

21| 			LangCategory{false,	false}:	map[string]int{

22| 						"C":	1972,

23| 			},

24| }

can	be	simplified	to

1| var	_	=	map[LangCategory]map[string]int{

2| 			{true,	true}:	{

3| 						"Python":	1991,

4| 						"Erlang":	1986,

5| 			},

6| 			{true,	false}:	{

7| 						"JavaScript":	1995,

8| 			},

9| 			{false,	true}:	{

10| 						"Go":			2009,

11| 						"Rust":	2010,

12| 			},

13| 			{false,	false}:	{

14| 						"C":	1972,

15| 			},

16| }

Please	notes,	in	the	above	several	examples,	the	comma	following	the	last	item	in	each	composite	literal
can't	be	omitted.	Please	read	the	line	break	rules	in	Go	(§28)	for	more	information	later.

Compare	Container	Values

As	which	has	mentioned	in	the	article	overview	of	Go	type	system	(§14),	map	and	slice	types	are
incomparable	types.	So	map	and	slice	types	can't	be	used	as	map	key	types.

Although	a	slice	or	map	value	can't	be	compared	with	another	slice	or	map	value	(or	itself),	it	can	be
compared	to	the	bare	untyped	nil 	identifier	to	check	whether	or	not	the	slice	or	map	value	is	a	zero
value.

Most	array	types	are	comparable,	except	the	ones	whose	element	types	are	incomparable	types.

When	comparing	two	array	values,	each	pair	of	the	corresponding	elements	will	be	compared.	The	two
array	values	are	equal	only	if	all	of	their	corresponding	elements	are	equal.

Example:
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1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	a	[16]byte

7| 			var	s	[]int

8| 			var	m	map[string]int

9|

10| 			fmt.Println(a	==	a)			//	true

11| 			fmt.Println(m	==	nil)	//	true

12| 			fmt.Println(s	==	nil)	//	true

13| 			fmt.Println(nil	==	map[string]int{})	//	false

14| 			fmt.Println(nil	==	[]int{})										//	false

15|

16| 			//	The	following	lines	fail	to	compile.

17| 			/*

18| 			_	=	m	==	m

19| 			_	=	s	==	s

20| 			_	=	m	==	map[string]int(nil)

21| 			_	=	s	==	[]int(nil)

22| 			var	x	[16][]int

23| 			_	=	x	==	x

24| 			var	y	[16]map[int]bool

25| 			_	=	y	==	y

26| 			*/

27| }

Check	Lengths	and	Capacities	of	Container	Values

Besides	the	length	property,	each	container	value	also	has	a	capacity	property.	The	capacity	of	an	array	is
always	equal	to	the	length	of	the	array.	The	capacity	of	a	non-nil	map	can	be	viewed	as	unlimited.	So,	in
practice,	only	capacities	of	slice	values	are	meaningful.	The	capacity	of	a	slice	is	always	equal	to	or	larger
than	the	length	of	the	slice.	The	meaning	of	slice	capacities	will	be	explained	in	the	section	after	next.

We	can	use	the	built-in	len 	function	to	get	the	length	of	a	container	value,	and	use	the	built-in	cap
function	to	get	the	capacity	of	a	container	value.	Each	of	the	two	functions	returns	an	int 	result.	As	the
capacity	of	any	map	value	is	unlimited,	the	built-in	cap 	function	doesn't	apply	to	map	values.

The	length	and	capacity	of	an	array	value	can	never	change.	The	lengths	and	capacities	of	all	values	of	an
array	type	always	equal	to	the	length	of	the	array	type.	The	length	and	capacity	of	a	slice	value	may
change	at	run	time.	So	slices	can	be	viewed	as	dynamic	arrays.	Slices	are	much	more	flexible	than	arrays
and	are	used	more	popularly	than	arrays	in	practice.

Example:
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1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	a	[5]int

7| 			fmt.Println(len(a),	cap(a))	//	5	5

8| 			var	s	[]int

9| 			fmt.Println(len(s),	cap(s))	//	0	0

10| 			s,	s2	:=	[]int{2,	3,	5},	[]bool{}

11| 			fmt.Println(len(s),	cap(s))			//	3	3

12| 			fmt.Println(len(s2),	cap(s2))	//	0	0

13| 			var	m	map[int]bool

14| 			fmt.Println(len(m))	//	0

15| 			m,	m2	:=	map[int]bool{1:	true,	0:	false},	map[int]int{}

16| 			fmt.Println(len(m),	len(m2))	//	2	0

17| }

The	length	and	capacity	of	each	slice	shown	in	the	above	specified	example	value	are	equal.	This	is	not
true	for	every	slice	value.	We	will	use	some	slices	whose	respective	lengths	and	capacities	are	not	equal	in
the	following	sections.

Retrieve	and	Modify	Container	Elements

The	element	associated	to	key	k 	stored	in	a	container	value	v 	is	represented	with	the	element	indexing
syntax	form	v[k] .

For	a	use	of	v[k] ,	assume	v 	is	an	array	or	slice,

if	k 	is	a	constant,	then	it	must	satisfy	the	requirements	described	above	for	the	indexes	in	container
composite	literals.	In	addition,	if	v 	is	an	array,	the	k 	must	be	smaller	than	the	length	of	the	array.
if	k 	is	a	non-constant	value,	it	must	be	a	value	of	any	basic	integer	type.	In	addition,	it	must	be
larger	than	or	equal	to	zero	and	smaller	than	len(v) ,	otherwise,	a	run-time	panic	will	occur.
if	v 	is	a	nil	slice,	a	run-time	panic	will	occur.

For	a	use	of	v[k] ,	assume	v 	is	a	map,	then	k 	must	be	assignable	to	values	of	the	element	type	of	the	map
type,	and

if	k 	is	an	interface	value	whose	dynamic	type	is	incomparable,	a	panic	will	occur	at	run	time.
if	v[k] 	is	used	as	a	destination	value	in	an	assignment	and	v 	is	a	nil	map,	a	panic	will	occur	at	run
time.
if	v[k] 	is	used	to	retrieve	the	element	value	corresponding	key	k 	in	map	v ,	then	no	panics	will
occur,	even	if	v 	is	a	nil	map.	(Assume	the	evaluation	of	k 	will	not	panic.)
if	v[k] 	is	used	to	retrieve	the	element	value	corresponding	key	k 	in	map	v ,	and	the	map	v 	doesn't
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contain	an	entry	with	key	k ,	v[k] 	results	a	zero	value	of	the	element	type	of	the	corresponding	map
type	of	v .	Generally,	v[k] 	is	viewed	as	a	single-value	expression.	However,	when	v[k] 	is	used	as
the	only	source	value	expression	in	an	assignment,	it	can	be	viewed	as	a	multi-value	expression	and
result	a	second	optional	untyped	boolean	value,	which	indicates	whether	or	not	the	map	v 	contains
an	entry	with	key	k .

An	example	of	container	element	accesses	and	modifications:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			a	:=	[3]int{-1,	0,	1}

7| 			s	:=	[]bool{true,	false}

8| 			m	:=	map[string]int{"abc":	123,	"xyz":	789}

9| 			fmt.Println	(a[2],	s[1],	m["abc"])				//	retrieve

10| 			a[2],	s[1],	m["abc"]	=	999,	true,	567	//	modify

11| 			fmt.Println	(a[2],	s[1],	m["abc"])				//	retrieve

12|

13| 			n,	present	:=	m["hello"]

14| 			fmt.Println(n,	present,	m["hello"])	//	0	false	0

15| 			n,	present	=	m["abc"]

16| 			fmt.Println(n,	present,	m["abc"])	//	567	true	567

17| 			m	=	nil

18| 			fmt.Println(m["abc"])	//	0

19|

20| 			//	The	two	lines	fail	to	compile.

21| 			/*

22| 			_	=	a[3]		//	index	3	out	of	bounds

23| 			_	=	s[-1]	//	index	must	be	non-negative

24| 			*/

25|

26| 			//	Each	of	the	following	lines	can	cause	a	panic.

27| 			_	=	a[n]									//	panic:	index	out	of	range

28| 			_	=	s[n]									//	panic:	index	out	of	range

29| 			m["hello"]	=	555	//	panic:	assign	to	entry	in	nil	map

30| }

Recall	the	Internal	Structure	Definition	of	Slice	Types

To	understand	slice	types	and	values	better	and	explain	slices	easier,	we	need	to	have	an	impression	on	the
internal	structure	of	slice	types.	From	the	last	article,	value	parts	(§17),	we	learned	that	the	internal
structure	of	slice	types	defined	by	the	standard	Go	compiler/runtime	is	like

1| type	_slice	struct	{
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2| 			elements	unsafe.Pointer	//	referencing	underlying	elements

3| 			len						int												//	length

4| 			cap						int												//	capacity

5| }

The	internal	structure	definitions	used	by	other	compilers/runtimes	implementations	may	be	not	the	exact
same	but	would	be	similar.	The	following	explanations	are	based	on	the	official	slice	implementation.

The	above	shown	internal	structure	explains	the	memory	layouts	of	the	direct	parts	of	slice	values.	The
len 	field	of	the	direct	part	of	a	slice	indicates	the	length	of	the	slice,	and	the	cap 	field	indicates	the
capacity	of	the	slice.	The	following	picture	depicts	one	possible	memory	layout	of	a	slice	value.

Although	the	underlying	memory	segment	which	hosts	the	elements	of	a	slice	may	be	very	large,	the	slice
may	be	only	aware	of	a	sub-segment	of	the	memory	segment.	For	example,	in	the	above	picture,	the	slice
is	only	aware	of	the	middle	grey	sub-segment	of	the	whole	memory	segment.

For	the	slice	depicted	in	the	above	picture,	the	elements	from	index	len 	to	index	cap 	(exclusive)	don't
belong	to	the	elements	of	the	slice.	They	are	just	some	redundant	element	slots	for	the	depicted	slice,	but
they	may	be	effective	elements	of	other	slices	or	another	array.

The	next	section	will	explain	how	to	append	elements	to	a	base	slice	and	yield	a	new	slice	by	using	the
built-in	append 	function.	The	result	slice	of	an	append 	function	call	may	share	starting	elements	with
the	base	slice	or	not,	depending	on	the	capacity	(and	length)	of	the	base	slice	and	how	many	elements	are
appended.

When	the	slice	is	used	as	the	base	slice	in	an	append 	function	call,

if	the	number	of	appended	elements	is	larger	than	the	number	of	the	redundant	element	slots	of	the
base	slice,	a	new	underlying	memory	segment	will	be	allocated	for	the	result	slice,	thus	the	result
slice	and	the	base	slice	will	not	share	any	elements.
otherwise,	no	new	underlying	memory	segments	will	be	allocated	for	the	result	slice,	and	the
elements	of	the	base	slice	also	belong	to	the	elements	of	the	result	slice.	In	other	words,	the	two
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slices	share	some	elements	and	all	of	their	elements	are	hosted	on	the	same	underlying	memory
segment.

The	section	after	next	will	show	a	picture	which	describes	both	of	the	two	possible	cases	in	appending
slice	elements.

There	are	more	routes	which	lead	to	the	elements	of	two	slices	are	hosted	on	the	same	underlying	memory
segment.	Such	as	assignments	and	the	below	to	be	introduced	subslice	operations.

Note,	generally,	we	can't	modify	the	three	fields	of	a	slice	value	individually,	except	through	the	reflection
and	unsafe	(§25)	ways.	In	other	words,	generally,	to	modify	a	slice	value,	its	three	fields	must	be	modified
together.	Generally,	this	is	achieved	by	assigning	another	slice	value	(of	the	same	slice	type)	to	the	slice
which	needs	to	be	modified.

Container	Assignments

If	a	map	is	assigned	to	another	map,	then	the	two	maps	will	share	all	(underlying)	elements.	Appending
elements	into	(or	deleting	elements	from)	one	map	will	reflect	on	the	other	map.

Like	map	assignments,	if	a	slice	is	assigned	to	another	slice,	they	will	share	all	(underlying)	elements.
Their	respective	lengths	and	capacities	equal	to	each	other.	However,	if	the	length/capacity	of	one	slice
changes	later,	the	change	will	not	reflect	on	the	other	slice.

When	an	array	is	assigned	to	another	array,	all	the	elements	are	copied	from	the	source	one	to	the
destination	one.	The	two	arrays	don't	share	any	elements.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			m0	:=	map[int]int{0:7,	1:8,	2:9}

7| 			m1	:=	m0

8| 			m1[0]	=	2

9| 			fmt.Println(m0,	m1)	//	map[0:2	1:8	2:9]	map[0:2	1:8	2:9]

10|

11| 			s0	:=	[]int{7,	8,	9}

12| 			s1	:=	s0

13| 			s1[0]	=	2

14| 			fmt.Println(s0,	s1)	//	[2	8	9]	[2	8	9]

15|

16| 			a0	:=	[...]int{7,	8,	9}

17| 			a1	:=	a0

18| 			a1[0]	=	2

§18.	Arrays,	Slices	and	Maps	in	Go

154



19| 			fmt.Println(a0,	a1)	//	[7	8	9]	[2	8	9]

20| }

Append	and	Delete	Container	Elements

The	syntax	of	appending	a	key-element	pair	(an	entry)	to	a	map	is	the	same	as	the	syntax	of	modifying	a
map	element.	For	example,	for	a	non-nil	map	value	m ,	the	following	line

m[k]	=	e

put	the	key-element	pair	(k,	e) 	into	the	map	m 	if	m 	doesn't	contain	an	entry	with	key	k ,	or	modify	the
element	value	associated	with	k 	if	m 	contains	an	entry	with	key	k .

There	is	a	built-in	delete 	function	which	is	used	to	delete	an	entry	from	a	map.	For	example,	the
following	line	will	delete	the	entry	with	key	k 	from	the	map	m .	If	the	map	m 	doesn't	contain	an	entry	with
key	k ,	it	is	a	no-op,	no	panics	will	occur,	even	if	m 	is	a	nil	map.

delete(m,	k)

An	example	shows	how	to	append	(put)	entries	to	and	delete	entries	from	maps:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			m	:=	map[string]int{"Go":	2007}

7| 			m["C"]	=	1972					//	append

8| 			m["Java"]	=	1995		//	append

9| 			fmt.Println(m)				//	map[C:1972	Go:2007	Java:1995]

10| 			m["Go"]	=	2009				//	modify

11| 			delete(m,	"Java")	//	delete

12| 			fmt.Println(m)				//	map[C:1972	Go:2009]

13| }

Please	note,	before	Go	1.12,	the	entry	print	order	of	a	map	is	unspecified.

Array	elements	can	neither	be	appended	nor	deleted,	though	elements	of	addressable	arrays	can	be
modified.

We	can	use	the	built-in	append 	function	to	append	multiple	elements	into	a	base	slice	and	result	a	new
slice.	The	result	new	slice	contains	the	elements	of	the	base	slice	and	the	appended	elements.	Please	note,
the	base	slice	is	not	modified	by	the	append 	function	call.	Surely,	if	we	expect	(and	often	in	practice),	we
can	assign	the	result	slice	to	the	base	slice	to	modify	the	base	slice.

There	is	not	a	built-in	way	to	delete	an	element	from	a	slice.	We	must	use	the	append 	function	and	the
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subslice	feature	introduced	below	together	to	achieve	this	goal.	Slice	element	deletions	and	insertions	will
be	demoed	in	the	below	more	slice	manipulations	section.	Here,	the	following	example	only	shows	how	to
use	the	append 	function.

An	example	showing	how	to	use	the	append 	function:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			s0	:=	[]int{2,	3,	5}

7| 			fmt.Println(s0,	cap(s0))	//	[2	3	5]	3

8| 			s1	:=	append(s0,	7)						//	append	one	element

9| 			fmt.Println(s1,	cap(s1))	//	[2	3	5	7]	6

10| 			s2	:=	append(s1,	11,	13)	//	append	two	elements

11| 			fmt.Println(s2,	cap(s2))	//	[2	3	5	7	11	13]	6

12| 			s3	:=	append(s0)									//	<=>	s3	:=	s0

13| 			fmt.Println(s3,	cap(s3))	//	[2	3	5]	3

14| 			s4	:=	append(s0,	s0...)		//	double	s0	as	s4

15| 			fmt.Println(s4,	cap(s4))	//	[2	3	5	2	3	5]	6

16|

17| 			s0[0],	s1[0]	=	99,	789

18| 			fmt.Println(s2[0],	s3[0],	s4[0])	//	789	99	2

19| }

Note,	the	built-in	append 	function	is	a	variadic	function	(§20).	It	has	two	parameters,	the	second	one	is	a
variadic	parameter	(§20).

Variadic	functions	will	be	explained	in	the	article	after	next.	Currently,	we	only	need	to	know	that	there
are	two	manners	to	pass	variadic	arguments.	In	the	above	example,	line	8,	line	10	and	line	12	use	one
manner	and	line	14	uses	the	other	manner.	For	the	former	manner,	we	can	pass	zero	or	more	element
values	as	the	variadic	arguments.	For	the	latter	manner,	we	must	pass	a	slice	as	the	only	variadic	argument
and	which	must	be	followed	by	three	dots	... .	We	can	learn	how	to	call	variadic	functions	from	the	the
article	after	next	(§20).

In	the	above	example,	line	14	is	equivalent	to

			s4	:=	append(s0,	s0[0],	s0[1],	s0[2])

line	8	is	equivalent	to

			s1	:=	append(s0,	[]int{7}...)

and	line	10	is	equivalent	to

			s2	:=	append(s1,	[]int{11,	13}...)
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For	the	three-dot	... 	manner,	the	append 	function	doesn't	require	the	variadic	argument	must	be	a	slice
with	the	same	type	as	the	first	slice	argument,	but	their	element	types	must	be	identical.	In	other	words,
the	two	argument	slices	must	share	the	same	underlying	type	(§14).

In	the	above	program,

the	append 	call	at	line	8	will	allocate	a	new	underlying	memory	segment	for	slice	s1 ,	for	slice	s0
doesn't	have	enough	redundant	element	slots	to	store	the	new	appended	element.	The	same	situation
is	for	the	append 	call	at	line	14.
the	append 	call	at	line	10	will	not	allocate	a	new	underlying	memory	segment	for	slice	s2 ,	for	slice
s1 	has	enough	redundant	element	slots	to	store	the	new	appended	elements.

So,	s1 	and	s2 	share	some	elements,	s0 	and	s3 	share	all	elements,	and	s4 	doesn't	share	elements	with
others.	The	following	picture	depicted	the	statuses	of	these	slices	at	the	end	of	the	above	program.

Please	note	that,	when	an	append 	call	allocate	a	new	underlying	memory	segment	for	the	result	slice,	the
capacity	of	the	result	slice	is	compiler	dependent.	For	the	standard	Go	compiler,	if	the	capacity	of	the	base
slice	is	small,	the	capacity	of	the	result	slice	will	be	at	least	the	double	of	the	base	slice,	to	avoid	allocating
underlying	memory	segments	frequently	when	the	result	slice	is	used	as	the	base	slices	in	later	possible
append 	calls.

As	mentioned	above,	we	can	assign	the	result	slice	to	the	base	slice	in	an	append 	call	to	append	elements
into	the	base	slice.	For	example,

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	s	=	append([]string(nil),	"array",	"slice")
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7| 			fmt.Println(s)						//	[array	slice]

8| 			fmt.Println(cap(s))	//	2

9| 			s	=	append(s,	"map")

10| 			fmt.Println(s)						//	[array	slice	map]

11| 			fmt.Println(cap(s))	//	4

12| 			s	=	append(s,	"channel")

13| 			fmt.Println(s)						//	[array	slice	map	channel]

14| 			fmt.Println(cap(s))	//	4

15| }

Up	to	now	(Go	1.13),	the	first	argument	of	an	append 	function	call	can't	be	an	untyped	nil .

Create	Slices	and	Maps	With	the	Built-in	make	Function

Besides	using	composite	literals	to	create	map	and	slice	values,	we	can	also	use	the	built-in	make 	function
to	create	map	and	slice	values.	The	built-in	make 	function	can't	be	used	to	create	array	values.

BTW,	the	built-in	make 	function	can	also	be	used	to	create	channels,	which	will	be	explained	in	the
article	channels	in	Go	(§21)	later.

Assume	M 	is	a	map	type	and	n 	is	non-negative	integer,	we	can	use	the	following	two	forms	to	create	new
maps	of	type	M .

1| make(M,	n)

2| make(M)

The	first	form	creates	a	new	empty	map	which	is	allocated	with	enough	space	to	hold	at	least	n 	entries
without	reallocating	memory	again.	The	second	form	only	takes	one	argument,	in	which	case	a	new	empty
map	with	enough	space	to	hold	a	small	number	of	entries	without	reallocating	memory	again.	The	small
number	is	compiler	dependent.

Assume	S 	is	a	slice	type,	length 	and	capacity 	are	two	non-negative	integers,	length 	is	not	larger
than	capacity ,	we	can	use	the	following	two	forms	to	create	new	slices	of	type	S .

1| make(S,	length,	capacity)

2| make(S,	length)

The	first	form	creates	a	new	slice	with	the	specified	length	and	capacity.	The	second	form	only	takes	two
arguments,	in	which	case	the	capacity	of	the	new	created	slice	is	the	same	as	its	length.

All	the	elements	in	the	result	slice	of	a	make 	function	call	are	initialized	as	the	zero	value	(of	the	slice
element	type).

An	example	on	how	to	use	the	built-in	make 	function	to	create	maps	and	slices:
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1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			//	Make	new	maps.

7| 			fmt.Println(make(map[string]int))	//	map[]

8| 			m	:=	make(map[string]int,	3)

9| 			fmt.Println(m,	len(m))	//	map[]	0

10| 			m["C"]	=	1972

11| 			m["Go"]	=	2009

12| 			fmt.Println(m,	len(m))	//	map[C:1972	Go:2009]	2

13|

14| 			//	Make	new	slices.

15| 			s	:=	make([]int,	3,	5)

16| 			fmt.Println(s,	len(s),	cap(s))	//	[0	0	0]	3	5

17| 			s	=	make([]int,	2)

18| 			fmt.Println(s,	len(s),	cap(s))	//	[0	0]	2	2

19| }

Allocate	Containers	With	the	Built-in	new	Function

From	the	article	pointers	in	Go	(§15),	we	learned	that	we	can	also	call	the	built-in	new 	function	to	allocate
a	value	of	any	type	and	get	a	pointer	which	references	the	allocated	value.	The	allocated	value	is	a	zero
value	of	its	type.	For	this	reason,	it	is	a	nonsense	to	use	new 	function	to	create	map	and	slice	values.

It	is	not	totally	a	nonsense	to	allocate	a	zero	value	of	an	array	type	with	the	built-in	new 	function.
However,	it	is	seldom	to	do	this	in	practice,	for	it	is	more	convenient	to	use	composite	literals	to	allocate
arrays.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			m	:=	*new(map[string]int)			//	<=>	var	m	map[string]int

7| 			fmt.Println(m	==	nil)							//	true

8| 			s	:=	*new([]int)												//	<=>	var	s	[]int

9| 			fmt.Println(s	==	nil)							//	true

10| 			a	:=	*new([5]bool)										//	<=>	var	a	[5]bool

11| 			fmt.Println(a	==	[5]bool{})	//	true

12| }
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Addressability	of	Container	Elements

Following	are	some	facts	about	the	addressabilities	of	container	elements.

Elements	of	addressable	array	values	are	also	addressable.	Elements	of	unaddressable	array	values
are	also	unaddressable.	The	reason	is	each	array	value	only	consists	of	one	direct	part.
Elements	of	any	slice	value	are	always	addressable,	whether	or	not	that	slice	value	is	addressable.
This	is	because	the	elements	of	a	slice	are	stored	in	the	underlying	value	part	of	the	slice	and	the
underlying	part	is	always	hosted	on	an	allocated	memory	segment.
Elements	of	map	values	are	always	unaddressable.	Please	read	this	FAQ	item	(§51)	for	reasons.

For	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			a	:=	[5]int{2,	3,	5,	7}

7| 			s	:=	make([]bool,	2)

8| 			pa2,	ps1	:=	&a[2],	&s[1]

9| 			fmt.Println(*pa2,	*ps1)	//	5	false

10| 			a[2],	s[1]	=	99,	true

11| 			fmt.Println(*pa2,	*ps1)	//	99	true

12| 			ps0	:=	&[]string{"Go",	"C"}[0]

13| 			fmt.Println(*ps0)	//	Go

14|

15| 			m	:=	map[int]bool{1:	true}

16| 			_	=	m

17| 			//	The	following	lines	fail	to	compile.

18| 			/*

19| 			_	=	&[3]int{2,	3,	5}[0]

20| 			_	=	&map[int]bool{1:	true}[1]

21| 			_	=	&m[1]

22| 			*/

23| }

Unlike	most	other	unaddressable	values,	which	direct	parts	can	not	be	modified,	the	direct	part	of	a	map
element	values	can	be	modified,	but	can	only	be	modified	(overwritten)	as	a	whole.	For	most	kinds	of
element	types,	this	is	not	a	big	issue.	However,	if	the	element	type	of	map	type	is	an	array	type	or	struct
type,	things	become	some	counter-intuitive.

From	the	last	article,	value	parts	(§17),	we	learned	that	each	of	struct	and	array	values	only	consists	of	one
direct	part.	So

if	the	element	type	of	a	map	is	a	struct	type,	we	can	not	individually	modify	each	field	of	an	element
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(which	is	a	struct)	of	the	map.
if	the	element	type	of	a	map	is	an	array	type,	we	can	not	individually	modify	each	element	of	an
element	(which	is	an	array)	of	the	map.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			type	T	struct{age	int}

7| 			mt	:=	map[string]T{}

8| 			mt["John"]	=	T{age:	29}	//	modify	it	as	a	whole

9| 			ma	:=	map[int][5]int{}

10| 			ma[1]	=	[5]int{1:	789}	//	modify	it	as	a	whole

11|

12| 			//	The	following	two	lines	fail	to	compile,

13| 			//	for	map	elements	can	be	modified	partially.

14| 			/*

15| 			ma[1][1]	=	123						//	error

16| 			mt["John"].age	=	30	//	error

17| 			*/

18|

19| 			//	Accesses	are	okay.

20| 			fmt.Println(ma[1][1])							//	789

21| 			fmt.Println(mt["John"].age)	//	29

22| }

To	make	any	expected	modification	work	in	the	above	example,	the	corresponding	map	element	should	be
saved	in	a	temporary	variable	firstly,	then	the	temporary	variable	is	modified	as	needed,	in	the	end	the
corresponding	map	element	is	overwritten	by	the	temporary	variable.	For	example,

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			type	T	struct{age	int}

7| 			mt	:=	map[string]T{}

8| 			mt["John"]	=	T{age:	29}

9| 			ma	:=	map[int][5]int{}

10| 			ma[1]	=	[5]int{1:	789}

11|

12| 			t	:=	mt["John"]	//	a	temporary	copy

13| 			t.age	=	30

14| 			mt["John"]	=	t	//	overwrite	it	back

15|
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16| 			a	:=	ma[1]	//	a	temporary	copy

17| 			a[1]	=	123

18| 			ma[1]	=	a	//	overwrite	it	back

19|

20| 			fmt.Println(ma[1][1],	mt["John"].age)	//	123	30

21| }

Derive	Slices	From	Arrays	and	Slices

We	can	derive	a	new	slice	from	another	(base)	slice	or	a	base	addressable	array	by	using	the	subslice
syntax	forms	(Go	specification	calls	them	as	slice	syntax	forms).	The	process	is	also	often	called	as
reslicing.	The	elements	of	the	derived	slice	and	the	base	array	or	slice	are	hosted	on	the	same	memory
segment.	In	other	words,	the	derived	slice	and	the	base	array	or	slice	may	share	some	contiguous	elements.

There	are	two	subslice	syntax	forms	(baseContainer 	is	an	array	or	slice):

1| baseContainer[low	:	high]							//	two-index	form

2| baseContainer[low	:	high	:	max]	//	three-index	form

The	two-index	form	is	equivalent	to

baseContainer[low	:	high	:	cap(baseContainer)]

So	the	two-index	form	is	a	special	case	of	the	three-index	form.	The	two-index	form	is	used	much	more
popularly	than	the	three-index	form	in	practice.

Note,	the	three-index	form	is	only	supported	since	Go	1.2.

In	a	subslice	expression,	the	low ,	high 	and	max 	indexes	must	satisfy	the	following	relation
requirements.

//	two-index	form

0	<=	low	<=	high	<=	cap(baseContainer)

//	three-index	form

0	<=	low	<=	high	<=	max	<=	cap(baseContainer)

Indexes	not	satisfying	these	requirements	may	make	the	subslice	expression	fail	to	compile	at	compile
time	or	panic	at	run	time,	depending	on	the	base	container	type	kind	and	whether	or	not	the	indexes	are
constants.

Note,

the	low 	and	high 	indexes	can	be	both	larger	than	len(baseContainer) ,	as	long	as	the	above
relations	are	all	satisfied.	But	the	two	indexes	must	not	be	larger	than	cap(baseContainer) .
a	subslice	expression	will	not	cause	a	panic	if	baseContainer 	is	a	nil	slice	and	all	indexes	used	in
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the	expression	are	zero.	The	result	slice	derived	from	a	nil	slice	is	still	a	nil	slice.

The	length	of	the	result	derived	slice	is	equal	to	high	-	low ,	and	the	capacity	of	the	result	derived	slice
is	equal	to	max	-	low .	The	length	of	a	derived	slice	may	be	larger	than	the	base	container,	but	the
capacity	will	never	be	larger	than	the	base	container.

In	practice,	for	simplicity,	we	often	omitted	some	indexes	in	subslice	syntax	forms.	The	omission	rules
are:

if	the	low 	index	is	equal	to	zero,	it	can	be	omitted,	either	for	two-index	or	three-index	forms.
if	the	high 	is	equal	to	len(baseContainer) ,	it	can	be	omitted,	but	only	for	two-index	forms.
the	max 	can	never	be	omitted	in	three-index	forms.

For	example,	the	following	expressions	are	equivalent.

1| baseContainer[0	:	len(baseContainer)]

2| baseContainer[:	len(baseContainer)]

3| baseContainer[0	:]

4| baseContainer[:]

5| baseContainer[0	:	len(baseContainer)	:	cap(baseContainer)]

6| baseContainer[:	len(baseContainer)	:	cap(baseContainer)]

An	example	of	using	subslice	syntax	forms:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			a	:=	[...]int{0,	1,	2,	3,	4,	5,	6}

7| 			s0	:=	a[:]					//	<=>	s0	:=	a[0:7:7]

8| 			s1	:=	s0[:]				//	<=>	s1	:=	s0

9| 			s2	:=	s1[1:3]		//	<=>	s2	:=	a[1:3]

10| 			s3	:=	s1[3:]			//	<=>	s3	:=	s1[3:7]

11| 			s4	:=	s0[3:5]		//	<=>	s4	:=	s0[3:5:7]

12| 			s5	:=	s4[:2:2]	//	<=>	s5	:=	s0[3:5:5]

13| 			s6	:=	append(s4,	77)

14| 			s7	:=	append(s5,	88)

15| 			s8	:=	append(s7,	66)

16| 			s3[1]	=	99

17| 			fmt.Println(len(s2),	cap(s2),	s2)	//	2	6	[1	2]

18| 			fmt.Println(len(s3),	cap(s3),	s3)	//	4	4	[3	99	77	6]

19| 			fmt.Println(len(s4),	cap(s4),	s4)	//	2	4	[3	99]

20| 			fmt.Println(len(s5),	cap(s5),	s5)	//	2	2	[3	99]

21| 			fmt.Println(len(s6),	cap(s6),	s6)	//	3	4	[3	99	77]

22| 			fmt.Println(len(s7),	cap(s7),	s7)	//	3	4	[3	4	88]

23| 			fmt.Println(len(s8),	cap(s8),	s8)	//	4	4	[3	4	88	66]

24| }
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The	following	picture	depicts	the	final	memory	layouts	of	the	array	and	slice	values	used	in	the	above
example.

From	the	picture,	we	know	that	the	elements	of	slice	s7 	and	s8 	are	hosted	on	a	different	underlying
memory	segment	than	the	other	containers.	The	elements	of	the	other	slices	are	hosted	on	the	same
memory	segment	hosting	the	array	a .

Please	note	that,	subslice	operations	may	cause	kind-of	memory	leaking.	For	example,	half	of	the	memory
allocated	for	the	return	slice	of	a	call	to	the	following	function	will	be	wasted	unless	the	returned	slice
becomes	unreachable	(if	no	other	slices	share	the	underlying	element	memory	segment	with	the	returned
slice).

1| func	f()	[]int	{

2| 			s	:=	make([]int,	10,	100)

3| 			return	s[50:60]

4| }

Please	note	that,	in	the	above	function,	the	lower	index	(50 )	is	larger	than	the	length	(10 )	of	s ,	which	is
allowed.

Copy	Slice	Elements	With	the	Built-in	copy	Function
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We	can	use	the	built-in	copy 	function	to	copy	elements	from	one	slice	to	another,	the	types	of	the	two
slices	are	not	required	to	be	identical,	but	their	element	types	must	be	identical.	In	other	words,	the	two
argument	slices	must	share	the	same	underlying	type.	The	first	parameter	of	the	copy 	function	is	the
destination	slice	and	the	second	one	is	the	source	slice.	The	two	parameters	can	overlap	some	elements.
copy 	function	returns	the	number	of	elements	copied,	which	will	be	the	smaller	one	of	the	lengths	of	the
two	parameters.

With	the	help	of	the	subslice	syntax,	we	can	use	the	copy 	function	to	copy	elements	between	two	arrays
or	between	an	array	and	a	slice.

An	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			type	Ta	[]int

7| 			type	Tb	[]int

8| 			dest	:=	Ta{1,	2,	3}

9| 			src	:=	Tb{5,	6,	7,	8,	9}

10| 			n	:=	copy(dest,	src)

11| 			fmt.Println(n,	dest)	//	3	[5	6	7]

12| 			n	=	copy(dest[1:],	dest)

13| 			fmt.Println(n,	dest)	//	2	[5	5	6]

14|

15| 			a	:=	[4]int{}	//	an	array

16| 			n	=	copy(a[:],	src)

17| 			fmt.Println(n,	a)	//	4	[5	6	7	8]

18| 			n	=	copy(a[:],	a[2:])

19| 			fmt.Println(n,	a)	//	2	[7	8	7	8]

20| }

In	fact,	the	copy 	function	is	not	very	essential.	We	can	implement	it	by	using	the	built-in	append
function.

1| //	Assume	element	type	is	T.

2| func	Copy(dest,	src	[]T)	int	{

3| 			if	len(dest)	<	len(src)	{

4| 						_	=	append(dest[:0],	src[:len(dest)]...)

5| 						return	len(dest)

6| 			}	else	{

7| 						_	=	append(dest[:0],	src...)

8| 						return	len(src)

9| 			}

10| }
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Although	the	copy 	function	is	not	an	essential	function	in	Go,	for	many	circumstances,	it	is	more
convenient	that	the	just	shown	way.

From	another	point	of	view,	the	append 	function	can	also	be	viewed	as	a	non-essential	function	(whereas
copy 	is	viewed	as	an	essential	function),	for	all	its	uses	can	be	implemented	with	make 	and	copy
function	calls.

Note,	as	a	special	case,	the	built-in	copy 	function	can	be	used	to	copy	bytes	from	a	string	to	a	byte	slice
(§19).

Up	to	now	(Go	1.13),	neither	of	the	two	arguments	of	a	copy 	function	call	can	be	an	untyped	nil 	value.

Container	Element	Iterations

In	Go,	keys	and	elements	of	a	container	value	can	be	iterated	with	the	following	syntax:

for	key,	element	=	range	aContainer	{

			//	use	key	and	element	...

}

where	for 	and	range 	are	two	keywords,	key 	and	element 	are	called	iteration	variables.	If
aContainer 	is	a	slice	or	an	array	(or	an	array	pointer,	see	below),	then	the	type	of	key 	must	be	built-in
type	int .

The	assignment	sign	= 	can	be	a	short	variable	declaration	sign	:= ,	in	which	case	the	two	iteration
variables	are	both	two	new	declared	variables	which	are	only	visible	within	the	for-range 	code	block
body,	if	aContainer 	is	a	slice	or	an	array	(or	an	array	pointer),	then	the	type	of	key 	is	deduced	as	int .

Like	the	traditional	for 	loop	block,	each	for-range 	loop	block	creates	two	code	blocks,	an	implicit	one
and	an	explicit	one	which	is	formed	by	using	{} .	The	explicit	one	is	nested	in	the	implicit	one.

Like	for 	loop	blocks,	break 	and	continue 	statements	can	also	be	used	in	for-range 	loop	blocks,

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			m	:=	map[string]int{"C":	1972,	"C++":	1983,	"Go":	2009}

7| 			for	lang,	year	:=	range	m	{

8| 						fmt.Printf("%v:	%v	\n",	lang,	year)

9| 			}

10|
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11| 			a	:=	[...]int{2,	3,	5,	7,	11}

12| 			for	i,	prime	:=	range	a	{

13| 						fmt.Printf("%v:	%v	\n",	i,	prime)

14| 			}

15|

16| 			s	:=	[]string{"go",	"defer",	"goto",	"var"}

17| 			for	i,	keyword	:=	range	s	{

18| 						fmt.Printf("%v:	%v	\n",	i,	keyword)

19| 			}

20| }

The	form	for-range 	code	block	syntax	has	several	variants:

1| //	Ignore	the	key	iteration	variable.

2| for	_,	element	=	range	aContainer	{

3| 			//	...

4| }

5|

6| //	Ignore	the	element	iteration	variable.

7| for	key,	_	=	range	aContainer	{

8| 			element	=	aContainer[key]

9| 			//	...

10| }

11|

12| //	The	element	iteration	variable	is	omitted.

13| //	This	form	is	equivalent	to	the	last	one.

14| for	key	=	range	aContainer	{

15| 			element	=	aContainer[key]

16| 			//	...

17| }

18|

19| //	Ignore	both	the	key	and	element	iteration	variables.

20| for	_,	_	=	range	aContainer	{

21| 			//	This	variant	is	not	much	useful.

22| }

23|

24| //	Both	the	key	and	element	iteration	variables	are

25| //	omitted.	This	form	is	equivalent	to	the	last	one.

26| for	range	aContainer	{

27| 			//	This	variant	is	not	much	useful.

28| }

Iterating	over	nil	maps	or	nil	slices	is	allowed.	Such	iterations	are	no-ops.

Some	details	about	iterations	over	maps	are	listed	here.

For	a	map,	the	entry	order	in	an	iteration	is	not	guaranteed	to	be	the	same	as	the	next	iteration,	even
if	the	map	is	not	modified	between	the	two	iterations.	By	Go	specification,	the	order	is	unspecified
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(kind-of	randomized).
If	a	map	entry	(a	key-element	pair)	which	has	not	yet	been	reached	is	removed	during	an	iteration,
then	the	entry	will	not	iterated	in	the	same	iteration	for	sure.
If	a	map	entry	is	created	during	an	iteration,	that	entry	may	be	iterated	during	the	same	iteration,	or
not.

If	it	is	promised	that	there	are	no	other	goroutines	manipulating	a	map	m ,	then	the	following	code	is
guaranteed	to	clear	all	entries	stored	in	the	map	m :

1| for	key	:=	range	m	{

2| 			delete(m,	key)

3| }

Surely,	array	and	slice	elements	can	also	be	iterated	by	using	the	traditional	for 	loop	block:

1| for	i	:=	0;	i	<	len(anArrayOrSlice);	i++	{

2| 			element	:=	anArrayOrSlice[i]

3| 			//	...

4| }

For	a	for-range 	loop	block

for	key,	element	=	range	aContainer	{...}

there	are	three	important	facts.

1.	 The	ranged	container	is	a	copy	of	aContainer .	Please	note,	only	the	direct	part	of	aContainer 	is
copied	(§17).	The	container	copy	is	anonymous,	so	there	are	no	ways	to	modify	it.

If	the	aContainer 	is	an	array,	then	the	modifications	made	on	the	array	elements	during	the
iteration	will	not	be	reflected	to	the	iteration	variables.	The	reason	is	that	the	copy	of	the	array
doesn't	share	elements	with	the	array.
If	the	aContainer 	is	a	slice	or	map,	then	the	modifications	made	on	the	slice	or	map
elements	during	the	iteration	will	be	reflected	to	the	iteration	variables.	The	reason	is	that	the
clone	of	the	slice	(or	map)	shares	all	elements	(entries)	with	the	slice	(or	map).

2.	 A	key-element	pair	of	the	copy	of	aContainer 	will	be	assigned	(copied)	to	the	iteration	variable
pair	at	each	iteration	step,	so	the	modifications	made	on	the	direct	parts	of	the	iteration	variables
will	not	be	reflected	to	the	elements	(and	keys	for	maps)	stored	in	aContainer .	(For	this	fact,	and
as	using	for-range 	loop	blocks	is	the	only	way	to	iterate	map	keys	and	elements,	it	is
recommended	not	to	use	large-size	types	as	map	key	and	element	types,	to	avoid	large	copy
burdens.)

3.	 All	key-element	pairs	will	be	assigned	to	the	same	iteration	variable	pair.

An	example	which	proves	the	first	and	second	facts.

1| package	main

2|
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3| import	"fmt"

4|

5| func	main()	{

6| 			type	Person	struct	{

7| 						name	string

8| 						age		int

9| 			}

10| 			persons	:=	[2]Person	{{"Alice",	28},	{"Bob",	25}}

11| 			for	i,	p	:=	range	persons	{

12| 						fmt.Println(i,	p)

13|

14| 						//	This	modification	has	no	effects	on

15| 						//	the	iteration,	for	the	ranged	array

16| 						//	is	a	copy	of	the	persons	array.

17| 						persons[1].name	=	"Jack"

18|

19| 						//	This	modification	has	not	effects	on

20| 						//	the	persons	array,	for	p	is	just	a

21| 						//	copy	of	a	copy	of	one	persons	element.

22| 						p.age	=	31

23| 			}

24| 			fmt.Println("persons:",	&persons)

25| }

The	output:

0	{Alice	28}

1	{Bob	25}

persons:	&[{Alice	28}	{Jack	25}]

If	we	change	the	array	in	the	above	to	a	slice,	then	the	modification	on	the	slice	during	the	iteration	has
effects	on	the	iteration,	but	the	modification	on	the	iteration	variable	still	has	no	effects	on	the	slice.

1| ...

2|

3| 			//	A	slice.

4| 			persons	:=	[]Person	{{"Alice",	28},	{"Bob",	25}}

5| 			for	i,	p	:=	range	persons	{

6| 						fmt.Println(i,	p)

7|

8| 						//	Now	this	modification	has	effects

9| 						//	on	the	iteration.

10| 						persons[1].name	=	"Jack"

11|

12| 						//	This	modification	still	has	not

13| 						//	any	real	effects.

14| 						p.age	=	31

15| 			}
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16| 			fmt.Println("persons:",	&persons)

17| }

The	output	becomes	to:

0	{Alice	28}

1	{Jack	25}

persons:	&[{Alice	28}	{Jack	25}]

An	example	to	prove	the	second	and	third	facts.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			langs	:=	map[struct{	dynamic,	strong	bool	}]map[string]int{

7| 						{true,	false}:		{"JavaScript":	1995},

8| 						{false,	true}:		{"Go":	2009},

9| 						{false,	false}:	{"C":	1972},

10| 			}

11| 			//	The	key	type	and	element	type	of	this	map

12| 			//	are	both	pointer	types.	Some	weird,	just

13| 			//	for	education	purpose.

14| 			m0	:=	map[*struct{	dynamic,	strong	bool	}]*map[string]int{}

15| 			for	category,	langInfo	:=	range	langs	{

16| 						m0[&category]	=	&langInfo

17| 						//	This	following	line	has	no	effects	on	langs.

18| 						category.dynamic,	category.strong	=	true,	true

19| 			}

20| 			for	category,	langInfo	:=	range	langs	{

21| 						fmt.Println(category,	langInfo)

22| 			}

23|

24| 			m1	:=	map[struct{	dynamic,	strong	bool	}]map[string]int{}

25| 			for	category,	langInfo	:=	range	m0	{

26| 						m1[*category]	=	*langInfo

27| 			}

28| 			//	m0	and	m1	both	contain	only	one	entry.

29| 			fmt.Println(len(m0),	len(m1))	//	1	1

30| 			fmt.Println(m1)	//	map[{true	true}:map[C:1972]]

31| }

As	mentioned	above,	the	entry	iteration	order	is	randomized,	so	the	order	of	the	first	three	lines	of	the
output	of	the	above	program	may	be	not	same	as	the	following	one.

{false	true}	map[Go:2009]

{false	false}	map[C:1972]

{true	false}	map[JavaScript:1995]
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1	1

map[{true	true}:map[Go:2009]]

The	cost	of	a	slice	or	map	assignment	is	small,	but	the	cost	of	an	array	assignment	is	large	if	the	size	of	the
array	type	is	large.	So,	generally,	it	is	not	a	good	idea	to	range	over	a	large	array.	We	can	range	over	a
slice	derived	from	the	array,	or	range	over	a	pointer	to	the	array	(see	the	next	section	for	details).

For	an	array	or	slice,	if	the	size	of	its	element	type	is	large,	then,	generally,	it	is	also	not	a	good	idea	to	use
the	second	iteration	variable	to	store	the	iterated	element	at	each	loop	step.	For	such	arrays	and	slices,	we
should	use	the	one-iteration-variable	for-range 	loop	variant	or	the	traditional	for 	loop	to	iterate	their
elements.	In	the	following	example,	the	loop	in	function	fa 	is	much	less	efficient	than	the	loop	in
function	fb .

1| type	Buffer	struct	{

2| 			start,	end	int

3| 			data							[1024]byte

4| }

5|

6| func	fa(buffers	[]Buffer)	int	{

7| 			numUnreads	:=	0

8| 			for	_,	buf	:=	range	buffers	{

9| 						numUnreads	+=	buf.end	-	buf.start

10| 			}

11| 			return	numUnreads

12| }

13|

14| func	fb(buffers	[]Buffer)	int	{

15| 			numUnreads	:=	0

16| 			for	i	:=	range	buffers	{

17| 						numUnreads	+=	buffers[i].end	-	buffers[i].start

18| 			}

19| 			return	numUnreads

20| }

Use	Array	Pointers	as	Arrays

In	many	scenarios,	we	can	use	a	pointer	to	an	array	as	the	array.

We	can	range	over	a	pointer	to	an	array	to	iterate	the	elements	of	the	array.	For	arrays	with	large	lengths,
this	way	is	much	more	efficient,	for	copying	a	pointer	is	much	more	efficient	than	copying	a	large-size
array.	In	the	following	example,	the	two	loop	blocks	are	equivalent	and	both	are	efficient.

1| package	main

2|

3| import	"fmt"

4|
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5| func	main()	{

6| 			var	a	[100]int

7|

8| 			//	Copying	a	pointer	is	cheap.

9| 			for	i,	n	:=	range	&a	{

10| 						fmt.Println(i,	n)

11| 			}

12|

13| 			//	Copying	a	slice	is	cheap.

14| 			for	i,	n	:=	range	a[:]	{

15| 						fmt.Println(i,	n)

16| 			}

17| }

If	the	second	iteration	in	a	for-range 	loop	is	neither	ignored	nor	omitted,	then	range	over	a	nil	array
pointer	will	panic.	In	the	following	example,	each	of	the	first	two	loop	blocks	will	print	five	indexes,
however,	the	last	one	will	produce	a	panic.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	p	*[5]int	//	nil

7|

8| 			for	i,	_	:=	range	p	{	//	okay

9| 						fmt.Println(i)

10| 			}

11|

12| 			for	i	:=	range	p	{	//	okay

13| 						fmt.Println(i)

14| 			}

15|

16| 			for	i,	n	:=	range	p	{	//	panic

17| 						fmt.Println(i,	n)

18| 			}

19| }

Array	pointers	can	also	used	to	index	array	elements.	Indexing	array	elements	through	a	nil	array	pointer
produces	a	panic.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			a	:=	[5]int{2,	3,	5,	7,	11}

7| 			p	:=	&a
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8| 			p[0],	p[1]	=	17,	19

9| 			fmt.Println(a)	//	[17	19	5	7	11]

10| 			p	=	nil

11| 			_	=	p[0]	//	panic

12| }

We	can	also	derive	slices	from	array	pointers.	Deriving	slices	from	a	nil	array	pointer	produce	a	panic.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			pa	:=	&[5]int{2,	3,	5,	7,	11}

7| 			s	:=	pa[1:3]

8| 			fmt.Println(s)	//	[3	5]

9| 			pa	=	nil

10| 			s	=	pa[0:0]	//	panic

11| }

We	can	also	pass	array	pointers	as	the	arguments	of	the	built-in	len 	and	cap 	functions.	Nil	array	pointer
arguments	for	the	two	functions	will	not	produce	panics.

1| var	pa	*[5]int	//	==	nil

2| fmt.Println(len(pa),	cap(pa))	//	5	5

The	memclr	Optimization

Assume	t0 	is	a	literal	presentation	of	the	zero	value	of	type	T ,	and	a 	is	an	array	which	element	type	is	T ,
then	the	standard	Go	compiler	will	translate	the	following	one-iteration-variable	for-range 	loop	block

1| for	i	:=	range	a	{

2| 			a[i]	=	t0

3| }

to	an	internal	memclr 	call Ң ,	generally	which	is	faster	than	resetting	each	element	one	by	one.

The	optimization	was	adopted	in	the	standard	Go	compiler	1.5.

The	optimization	also	works	if	the	ranged	container	is	a	slice.	Sadly,	it	doesn't	work	if	the	ranged	value	is
an	array	pointer	(up	to	Go	1.12).	So	if	you	want	to	reset	an	array,	don't	range	its	pointer.	In	particular,	it	is
recommended	to	range	a	slice	derived	from	the	array,	like	this:

1| s	:=	a[:]

2| for	i	:=	range	s	{

3| 			s[i]	=	t0
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4| }

The	reason	of	why	it	is	not	recommended	to	range	over	the	array	directly	is	it	is	very	possible	that	other
Go	compilers	don't	make	the	above	optimization,	and	as	above	has	mentioned,	ranging	over	the	array	will
make	a	copy	of	the	array	(though	the	standard	Go	compiler	won't	in	this	optimization).

Calls	to	the	Built-in	len	and	cap	Functions	May	Be
Evaluated	at	Compile	Time

If	the	argument	passed	to	a	built-in	function	len 	or	cap 	function	call	is	an	array	or	an	array	pointer
value,	then	the	call	is	evaluated	at	compile	time	and	the	result	of	the	call	is	a	typed	constant	with	type	as
the	built-in	type	int .	The	result	can	be	bound	to	named	constants.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| var	a	[5]int

6| var	p	*[7]string

7|

8| //	N	and	M	are	both	typed	constants.

9| const	N	=	len(a)

10| const	M	=	cap(p)

11|

12| func	main()	{

13| 			fmt.Println(N)	//	5

14| 			fmt.Println(M)	//	7

15| }

Modify	the	Length	and	Capacity	Properties	of	a	Slice
Individually

Above	has	mentioned,	generally,	the	length	and	capacity	of	a	slice	value	can't	be	modified	individually.	A
slice	value	can	only	be	overwritten	as	a	whole	by	assigning	another	slice	value	to	it.	However,	we	can
modify	the	length	and	capacity	of	a	slice	individually	by	using	reflections.	Reflection	will	be	explained	in
a	later	article	(§27)	in	detail.

Example:

1| package	main

2|

3| import	(
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4| 			"fmt"

5| 			"reflect"

6| )

7|

8| func	main()	{

9| 			s	:=	make([]int,	2,	6)

10| 			fmt.Println(len(s),	cap(s))	//	2	6

11|

12| 			reflect.ValueOf(&s).Elem().SetLen(3)

13| 			fmt.Println(len(s),	cap(s))	//	3	6

14|

15| 			reflect.ValueOf(&s).Elem().SetCap(5)

16| 			fmt.Println(len(s),	cap(s))	//	3	5

17| }

The	second	argument	passed	to	the	reflect.SetLen 	function	must	not	be	larger	than	the	current
capacity	of	the	argument	slice	s .	The	second	argument	passed	to	the	reflect.SetCap 	function	must	not
be	smaller	than	the	current	length	of	the	argument	slice	s 	and	larger	than	the	current	capacity	of	the
argument	slice	s .	Otherwise,	a	panic	will	occur.

The	reflection	way	is	very	inefficient,	it	is	slower	than	a	slice	assignment.

More	Slice	Manipulations

Go	doesn't	support	more	built-in	slice	operations,	such	as	slice	clone,	element	deletion	and	insertion.	We
must	compose	the	built-in	ways	to	achieve	those	operations.

In	the	following	examples	in	the	current	section,	assume	s 	is	the	talked	slice,	T 	is	its	element	type	and	t0
is	a	zero	value	literal	representation	of	T .

Clone	slices

For	the	latest	standard	Go	compler	(version	1.12),	the	simplest	way	to	clone	a	slice	is:

sClone	:=	append(s[:0:0],	s...)

For	slices	with	large	lengths	(thousands	of	elements),	the	above	way	is	more	efficient	than

sClone	:=	make([]T,	len(s))

copy(sClone,	s)

The	second	way	has	a	drawback	that	if	s 	is	a	nil	slice,	the	second	way	results	a	non-nil	clone.

Delete	a	segment	of	slice	elements
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Above	has	mentioned	that	the	elements	a	slice	are	stored	contiguously	in	memory	and	there	are	no	gaps
between	any	two	adjacent	elements	of	the	slice.	So	when	a	slice	element	is	removed,

if	the	element	order	must	be	preserved,	then	each	of	the	subsequent	elements	followed	the	removed
elements	must	be	moved	forwards.
if	the	element	order	doesn't	need	to	be	preserved,	then	we	can	move	the	last	elements	in	the	slice	to
the	removed	indexes.

In	the	following	example,	assume	from 	and	to 	are	two	legal	indexes,	from 	is	not	larger	than	to ,	and
the	to 	index	is	exclusive.

1| //	way	1	(preserve	element	orders):

2| s	=	append(s[:from],	s[to:]...)

3|

4| //	way	2	(preserve	element	orders):

5| s	=	s[:from	+	copy(s[from:],	s[to:])]

6|

7| //	Don't	preserve	element	orders:

8| if	n	:=	to-from;	len(s)-to	<	n	{

9| 			copy(s[from:to],	s[to:])

10| }	else	{

11| 			copy(s[from:to],	s[len(s)-n:])

12| }

13| s	=	s[:len(s)-(to-from)]

If	the	slice	elements	reference	other	values,	we	should	reset	tail	elements	(on	the	just	freed-up	slots)	to
avoid	memory	leaking.

1| //	"len(s)+to-from"	is	the	old	slice	length.

2| temp	:=	s[len(s):len(s)+to-from]

3| for	i	:=	range	temp	{

4| 			temp[i]	=	t0

5| }

As	mentioned	above,	the	for-range 	loop	code	block	will	be	optimized	as	a	memclr 	call	by	the	standard
Go	compiler.

Delete	one	slice	element

Deleting	one	element	is	similar	to,	and	also	simpler	than,	deleting	a	segment	of	elements.

In	the	following	example,	assume	i 	the	index	of	the	element	to	be	removed	and	i 	is	a	legal	index.

1| //	Way	1	(preserve	element	orders):

2| s	=	append(s[:i],	s[i+1:]...)

3|
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4| //	Way	2	(preserve	element	orders):

5| s	=	s[:i	+	copy(s[i:],	s[i+1:])]

6|

7| //	There	will	be	len(s)-i-1	elements	being

8| //	copied	in	either	of	the	above	two	ways.

9|

10| //	Don't	preserve	element	orders:

11| s[i]	=	s[len(s)-1]

12| s	=	s[:len(s)-1]

If	the	slice	elements	contain	pointers,	then	after	the	deletion	action,	we	should	reset	the	last	element	of	the
old	slice	value	to	avoid	memory	leaking:

1| s[len(s):len(s)+1][0]	=	t0

2| //	or

3| s[:len(s)+1][len(s)]	=	t0

Delete	slice	elements	conditionally

Sometimes,	we	may	need	to	delete	slice	elements	by	some	conditions.

1| //	Assume	T	is	a	small-size	type.

2| func	DeleteElements(s	[]T,	keep	func(T)	bool,	clear	bool)	[]T	{

3| 			//result	:=	make([]T,	0,	len(s))

4| 			result	:=	s[:0]	//	without	allocating	a	new	slice

5| 			for	_,	v	:=	range	s	{

6| 						if	keep(v)	{

7| 									result	=	append(result,	v)

8| 						}

9| 			}

10| 			if	clear	{	//	avoid	memory	leaking

11| 						temp	:=	s[len(result):]

12| 						for	i	:=	range	temp	{

13| 									//	t0	is	a	zero	value	literal	of	T.

14| 									temp[i]	=	t0

15| 						}

16| 			}

17| 			return	result

18| }

Please	note,	if	T 	is	not	a	small-size	type,	then	generally	we	should	try	to	(§34)	avoid	using	T 	as	function
parameter	types	and	using	two-iteration-variable	for-range 	block	form	to	iterate	slices	with	element
types	as	T .

Insert	all	elements	of	a	slice	into	another	slice
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Assume	the	insertion	position	is	a	legal	index	i 	and	elements 	is	the	slice	whose	elements	are	to	be
inserted.

1| //	One-line	implementation:

2| s	=	append(s[:i],	append(elements,	s[i:]...)...)

3|

4| //	A	more	efficient	but	more	verbose	way:

5| if	cap(s)-len(s)	>=	len(elements)	{

6| 			s	=	s[:len(s)+len(elements)]

7| 			copy(s[i+len(elements):],	s[i:])

8| 			copy(s[i:],	elements)

9| }	else	{

10| 			x	:=	make([]T,	0,	len(elements)+len(s))

11| 			x	=	append(x,	s[:i]...)

12| 			x	=	append(x,	elements...)

13| 			x	=	append(x,	s[i:]...)

14| 			s	=	x

15| }

16|

17| //	Push:

18| s	=	append(s,	elements...)

19|

20| //	Unshift:

21| s	=	append(elements,	s...)

The	make 	call	in	the	above	code	snippet	clear	the	memory	allocated	for	for	slice	x ,	this	is	actually	an
unnecessary	operation	for	this	specified	use	case.	Future	compiler	optimization Ң 	might	remove	the	clear
operation.

Insert	several	individual	elements

Inserting	several	individual	elements	is	similar	to	inserting	all	elements	of	a	slice.	We	can	construct	a	slice
with	a	slice	composite	literal	with	the	elements	to	be	inserted,	then	use	the	above	ways	to	insert	these
elements.

Special	deletions	and	insertions:	push	front/back,	pop	front/back

Assume	the	pushed	or	popped	element	is	e 	and	slice	s 	has	at	least	one	element.

1| //	Pop	front	(shift):

2| s,	e	=	s[1:],	s[0]

3| //	Pop	back:

4| s,	e	=	s[:len(s)-1],	s[len(s)-1]

5| //	Push	front:

6| s	=	append([]T{e},	s...)
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7| //	Push	back:

8| s	=	append(s,	e)

More	slice	operations

In	reality,	the	needs	are	varied.	For	some	specific	cases,	it	is	possible	none	of	the	above	ways	shown	in	the
above	examples	are	the	most	efficient	way.	And	sometimes,	the	above	ways	may	not	satisfy	some	specific
requirements	in	practice.	So,	please	learn	and	apply	elastically.	This	may	be	the	reason	why	Go	doesn't
support	the	more	operations	introduced	above	in	the	built-in	way.

Use	Maps	to	Simulate	Sets

Go	doesn't	support	built-in	set	types.	However,	it	is	easy	to	use	a	map	type	to	simulate	a	set	type.	In
practice,	we	often	use	the	map	type	map[K]struct{} 	to	simulate	a	set	type	with	element	type	K .	The
size	of	the	map	element	type	struct{} 	is	zero,	elements	of	values	of	such	map	types	don't	occupy
memory	space.

Container	Related	Operations	Are	Not	Synchronized
Internally

Please	note	that,	all	container	operations	are	not	synchronized	internally.	Without	making	using	of	any
data	synchronization	technique,	it	is	okay	for	multiple	goroutines	to	read	a	container	concurrently,	but	it	is
not	okay	for	multiple	goroutines	to	manipulate	a	container	concurrently	and	at	least	one	goroutine
modifies	the	container.	The	latter	case	will	cause	data	races,	even	make	goroutines	panic.	We	must
synchronize	the	container	operations	manually.	Please	read	the	articles	on	data	synchronizations	(§36)	for
details.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Strings	in	Go
Like	many	other	programming	languages,	string	is	also	one	important	kind	of	types	in	Go.	This	article	will
list	all	the	facts	of	strings.

The	Internal	Structure	of	String	Types

For	the	standard	Go	compiler,	the	internal	structure	of	any	string	type	is	declared	like:

1| type	_string	struct	{

2| 			elements	*byte	//	underlying	bytes

3| 			len						int			//	number	of	bytes

4| }

From	the	declaration,	we	know	that	a	string	is	actually	a	byte 	sequence	wrapper.	In	fact,	we	can	really
view	a	string	as	an	(element-immutable)	byte	slice.

Note,	in	Go,	byte 	is	a	built-in	alias	of	type	uint8 .

Some	Simple	Facts	About	Strings

We	have	learned	the	following	facts	about	strings	from	previous	articles.

String	values	can	be	used	as	constants	(along	with	boolean	and	all	kinds	of	numeric	values).
Go	supports	two	styles	of	string	literals	(§6),	the	double-quote	style	(or	interpreted	literals)	and	the
back-quote	style	(or	raw	string	literals).
The	zero	values	of	string	types	are	blank	strings,	which	can	be	represented	with	"" 	or	`` 	in	literal.
Strings	can	be	concatenated	with	+ 	and	+= 	operators.
String	types	are	all	comparable	(by	using	the	== 	and	!= 	operators).	And	like	integer	and	floating-
point	values,	two	values	of	the	same	string	type	can	also	be	compared	with	> ,	< ,	>= 	and	<=
operators.	When	comparing	two	strings,	their	underlying	bytes	will	be	compared,	one	byte	by	one
byte.	If	one	string	is	a	prefix	of	the	other	one	and	the	other	one	is	longer,	then	the	other	one	will	be
viewed	as	the	larger	one.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			const	World	=	"world"
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7| 			var	hello	=	"hello"

8|

9| 			//	Concatenate	strings.

10| 			var	helloWorld	=	hello	+	"	"	+	World

11| 			helloWorld	+=	"!"

12| 			fmt.Println(helloWorld)	//	hello	world!

13|

14| 			//	Compare	strings.

15| 			fmt.Println(hello	==	"hello")			//	true

16| 			fmt.Println(hello	>	helloWorld)	//	false

17| }

More	facts	about	string	types	and	values	in	Go.

Like	Java,	the	contents	(underlying	bytes)	of	string	values	are	immutable.	The	lengths	of	string
values	also	can't	be	modified	separately.	An	addressable	string	value	can	only	be	overwritten	as	a
whole	by	assigning	another	string	value	to	it.
The	built-in	string 	type	has	no	methods	(just	like	most	other	built-in	types	in	Go),	but	we	can

use	functions	provided	in	the	strings 	standard	package Ң 	to	do	all	kinds	of	string
manipulations.
call	the	built-in	len 	function	to	get	the	length	of	a	string	(number	of	bytes	stored	in	the
string).
use	the	element	access	syntax	aString[i] 	introduced	in	container	element	accesses	(§18)	to
get	the	ith	byte 	value	stored	in	aString .	The	expression	aString[i] 	is	not	addressable.	In
other	words,	value	aString[i] 	can't	be	modified.
use	the	subslice	syntax	(§18)	aString[start:end] 	to	get	a	substring	of	aString .	Here,
start 	and	end 	are	both	indexes	of	bytes	stored	in	aString .

For	the	standard	Go	compiler,	the	destination	string	variable	and	source	string	value	in	a	string
assignment	will	share	the	same	underlying	byte	sequence	in	memory.	The	result	of	a	substring
expression	aString[start:end] 	also	shares	the	same	underlying	byte	sequence	with	the	base
string	aString 	in	memory.

Note,	if	aString 	and	the	indexes	in	expressions	aString[i] 	and	aString[start:end] 	are	all
constants,	then	out-of-range	constant	indexes	will	make	compilations	fail.	And	please	note	that	the
evaluation	results	of	such	expressions	are	always	non-constants.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"strings"

6| )

7|
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8| func	main()	{

9| 			var	helloWorld	=	"hello	world!"

10|

11| 			var	hello	=	helloWorld[:5]	//	substring

12| 			//	104	is	the	ASCII	code	(and	Unicode)	of	char	'h'.

13| 			fmt.Println(hello[0])									//	104

14| 			fmt.Printf("%T	\n",	hello[0])	//	uint8

15|

16| 			//	hello[0]	is	unaddressable	and	immutable,

17| 			//	so	the	following	two	lines	fail	to	compile.

18| 			/*

19| 			hello[0]	=	'H'									//	error

20| 			fmt.Println(&hello[0])	//	error

21| 			*/

22|

23| 			//	The	next	statement	prints:	5	12	true

24| 			fmt.Println(len(hello),	len(helloWorld),

25| 									strings.HasPrefix(helloWorld,	hello))

26| }

String	Encoding	and	Unicode	Code	Points

Unicode	standard	specifies	a	unique	value	for	each	character	in	all	kinds	of	human	languages.	But	the
basic	unit	in	Unicode	is	not	character,	it	is	code	point	instead.	For	most	code	points,	each	of	them
corresponds	to	a	character,	but	for	a	few	characters,	each	of	them	consists	of	several	code	points.

Code	points	are	represented	as	rune	values	(§6)	in	Go.	In	Go,	rune 	is	a	built-in	alias	of	type	int32 .

In	applications,	there	are	several	encoding	methods	to	represent	code	points,	such	as	UTF-8	encoding	and
UTF-16	encoding.	Nowadays,	the	most	popularly	used	encoding	method	is	UTF-8	encoding.	In	Go,	all
string	constants	are	viewed	as	UTF-8	encoded.	At	compile	time,	illegal	UTF-8	encoded	string	constants
will	make	compilation	fail.	However,	at	run	time,	Go	runtime	can't	prevent	some	strings	from	being
illegally	UTF-8	encoded.

For	UTF-8	encoding,	each	code	point	value	may	be	stored	as	one	or	more	bytes	(up	to	four	bytes).	For
example,	each	English	code	point	(which	corresponds	to	one	English	character)	is	stored	as	one	byte,
however	each	Chinese	code	point	(which	corresponds	to	one	Chinese	character)	is	stored	as	three	bytes.

String	Related	Conversions

In	the	article	constants	and	variables	(§7),	we	have	learned	that	integers	can	be	explicitly	converted	to
strings	(but	not	vice	versa).

Here	introduces	two	more	string	related	conversions	rules	in	Go:
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1.	 a	string	value	can	be	explicitly	converted	to	a	byte	slice,	and	vice	versa.	A	byte	slice	is	a	slice	whose
underlying	type	is	[]byte 	(a.k.a.,	[]uint8 ).

2.	 a	string	value	can	be	explicitly	converted	to	a	rune	slice,	and	vice	versa.	A	rune	slice	is	a	slice	whose
underlying	type	is	[]rune 	(a.k.a.,	[]int32 ).

(Note:	the	definition	of	byte/rune	slices	might	change	to Ң 	a	slice	whose	element	type's	underlying
type	is	byte /rune 	in	future	official	Go	documentation).

In	a	conversion	from	a	rune	slice	to	string,	each	slice	element	(a	rune	value)	will	be	UTF-8	encoded	as
from	one	to	four	bytes	and	stored	in	the	result	string.	If	a	slice	rune	element	value	is	outside	the	range	of
valid	Unicode	code	points,	then	it	will	be	viewed	as	0xFFFD ,	the	code	point	for	the	Unicode	replacement
character.	0xFFFD 	will	be	UTF-8	encoded	as	three	bytes	(0xef	0xbf	0xbd ).

When	a	string	is	converted	to	a	rune	slice,	the	bytes	stored	in	the	string	will	be	viewed	as	successive	UTF-
8	encoding	byte	sequence	representations	of	many	Unicode	code	points.	Bad	UTF-8	encoding
representations	will	be	converted	to	a	rune	value	0xFFFD .

When	a	string	is	converted	to	a	byte	slice,	the	result	byte	slice	is	just	a	deep	copy	of	the	underlying	byte
sequence	of	the	string.	When	a	byte	slice	is	converted	to	a	string,	the	underlying	byte	sequence	of	the
result	string	is	also	just	a	deep	copy	of	the	byte	slice.	A	memory	allocation	is	needed	to	store	the	deep
copy	in	each	of	such	conversions.	The	reason	why	a	deep	copy	is	essential	is	slice	elements	are	mutable
but	the	bytes	stored	in	strings	are	immutable,	so	a	byte	slice	and	a	string	can't	share	byte	elements.

Please	note,	for	conversions	between	strings	and	byte	slices,

illegal	UTF-8	encoded	bytes	are	allowed	and	will	keep	unchanged.
the	standard	Go	compiler	makes	some	optimizations	for	some	special	cases	of	such	conversions,	so
that	the	deep	copies	are	not	made.	Such	cases	will	be	introduced	below.

Conversions	between	byte	slices	and	rune	slices	are	not	supported	directly	in	Go,	We	can	use	the
following	ways	to	achieve	this	goal:

use	string	values	as	a	hop.	This	way	is	convenient	but	not	very	efficient,	for	two	deep	copies	are
needed	in	the	process.
use	the	functions	in	unicode/utf8 Ң 	standard	package.
use	the	Runes 	function	in	the	bytes	standard	package Ң 	to	convert	a	[]byte 	value	to	a	[]rune
value.	There	is	not	a	function	in	this	package	to	convert	a	rune	slice	to	byte	slice.

Example:

1| package	main

2|

3| import	(

4| 			"bytes"

5| 			"unicode/utf8"

6| )
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7|

8| func	Runes2Bytes(rs	[]rune)	[]byte	{

9| 			n	:=	0

10| 			for	_,	r	:=	range	rs	{

11| 						n	+=	utf8.RuneLen(r)

12| 			}

13| 			n,	bs	:=	0,	make([]byte,	n)

14| 			for	_,	r	:=	range	rs	{

15| 						n	+=	utf8.EncodeRune(bs[n:],	r)

16| 			}

17| 			return	bs

18| }

19|

20| func	main()	{

21| 			s	:=	"Color	Infection	is	a	fun	game."

22| 			bs	:=	[]byte(s)	//	string	->	[]byte

23| 			s	=	string(bs)		//	[]byte	->	string

24| 			rs	:=	[]rune(s)	//	string	->	[]rune

25| 			s	=	string(rs)		//	[]rune	->	string

26| 			rs	=	bytes.Runes(bs)	//	[]byte	->	[]rune

27| 			bs	=	Runes2Bytes(rs)	//	[]rune	->	[]byte

28| }

Compiler	Optimizations	for	Conversions	Between	Strings
and	Byte	Slices

Above	has	mentioned	that	the	underlying	bytes	in	the	conversions	between	strings	and	byte	slices	will	be
copied.	The	standard	Go	compiler	makes	some	optimizations,	which	are	proven	to	still	work	in	Go	SDK
1.13,	for	some	special	scenarios	to	avoid	the	duplicate	copies.	These	scenarios	include:

a	conversion	(from	string	to	byte	slice)	which	follows	the	range 	keyword	in	a	for-range 	loop.
a	conversion	(from	byte	slice	to	string)	which	is	used	as	a	map	key	in	map	element	indexing	syntax.
a	conversion	(from	byte	slice	to	string)	which	is	used	in	a	comparison.
a	conversion	(from	byte	slice	to	string)	which	is	used	in	a	string	concatenation,	and	at	least	one	of
concatenated	string	values	is	a	non-blank	string	constant.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	str	=	"world"

7| 			//	Here,	the	[]byte(str)	conversion	will

8| 			//	not	copy	the	underlying	bytes	of	str.
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9| 			for	i,	b	:=	range	[]byte(str)	{

10| 						fmt.Println(i,	":",	b)

11| 			}

12|

13| 			key	:=	[]byte{'k',	'e',	'y'}

14| 			m	:=	map[string]string{}

15| 			//	Here,	the	string(key)	conversion	will	not	copy

16| 			//	the	bytes	in	key.	The	optimization	will	be	still

17| 			//	made,	even	if	key	is	a	package-level	variable.

18| 			m[string(key)]	=	"value"

19| 			fmt.Println(m[string(key)])	//	value

20| }

Another	example:

1| package	main

2|

3| import	"fmt"

4| import	"testing"

5|

6| var	s	string

7| var	x	=	[]byte{1023:	'x'}

8| var	y	=	[]byte{1023:	'y'}

9|

10| func	fc()	{

11| 			//	None	of	the	below	4	conversions	will

12| 			//	copy	the	underlying	bytes	of	x	and	y.

13| 			//	Surely,	the	underlying	bytes	of	x	and	y	will

14| 			//	be	still	copied	in	the	string	concatenation.

15| 			if	string(x)	!=	string(y)	{

16| 						s	=	("	"	+	string(x)	+	string(y))[1:]

17| 			}

18| }

19|

20| func	fd()	{

21| 			//	Only	the	two	conversions	in	the	comparison

22| 			//	will	not	copy	the	underlying	bytes	of	x	and	y.

23| 			if	string(x)	!=	string(y)	{

24| 						//	Please	note	the	difference	between	the

25| 						//	following	concatenation	and	the	one	in	fc.

26| 						s	=	string(x)	+	string(y)

27| 			}

28| }

29|

30| func	main()	{

31| 			fmt.Println(testing.AllocsPerRun(1,	fc))	//	1

32| 			fmt.Println(testing.AllocsPerRun(1,	fd))	//	3

33| }
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for-range	on	Strings

The	for-range 	loop	control	flow	applies	to	strings.	But	please	note,	for-range 	will	iterate	the
Unicode	code	points	(as	rune 	values),	instead	of	bytes,	in	a	string.	Bad	UTF-8	encoding	representations
in	the	string	will	be	interpreted	as	rune 	value	0xFFFD .

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			s	:=	"eि́Ꮻaπ囧"
7| 			for	i,	rn	:=	range	s	{

8| 						fmt.Printf("%2v:	0x%x	%v	\n",	i,	rn,	string(rn))

9| 			}

10| 			fmt.Println(len(s))

11| }

The	output	of	the	above	program:

	0:	0x65	e

	1:	0x301	́
	3:	0x915	क
	6:	0x94d	्
	9:	0x937	ष
12:	0x93f	ि
15:	0x61	a

16:	0x3c0	π

18:	0x56e7	囧

21

From	the	output	result,	we	can	find	that

1.	 the	iteration	index	value	may	be	not	continuous.	The	reason	is	the	index	is	the	byte	index	in	the
ranged	string	and	one	code	point	may	need	more	than	one	byte	to	represent.

2.	 the	first	character,	e ,́	is	composed	of	two	runes	(3	bytes	total)
3.	 the	second	character,	 िᏫ ,	is	composed	of	four	runes	(12	bytes	total).
4.	 the	English	character,	a ,	is	composed	of	one	rune	(1	byte).
5.	 the	character,	π ,	is	composed	of	one	rune	(2	bytes).
6.	 the	Chinese	character,	囧 ,	is	composed	of	one	rune	(3	bytes).

Then	how	to	iterate	bytes	in	a	string?	Do	this:

1| package	main
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2|

3| import	"fmt"

4|

5| func	main()	{

6| 			s	:=	"eि́Ꮻaπ囧"
7| 			for	i	:=	0;	i	<	len(s);	i++	{

8| 						fmt.Printf("The	byte	at	index	%v:	0x%x	\n",	i,	s[i])

9| 			}

10| }

Surely,	we	can	also	make	use	of	the	compiler	optimization	mentioned	above	to	iterate	bytes	in	a	string.
For	the	standard	Go	compiler,	this	way	is	a	little	more	efficient	than	the	above	one.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			s	:=	"eि́Ꮻaπ囧"
7| 			//	Here,	the	underlying	bytes	of	s	are	not	copied.

8| 			for	i,	b	:=	range	[]byte(s)	{

9| 						fmt.Printf("The	byte	at	index	%v:	0x%x	\n",	i,	b)

10| 			}

11| }

From	the	above	several	examples,	we	know	that	len(s) 	will	return	the	number	of	bytes	in	string	s .	The
time	complexity	of	len(s) 	is	O(1) .	How	to	get	the	number	of	runes	in	a	string?	Using	a	for-range
loop	to	iterate	and	count	all	runes	is	a	way,	and	using	the	RuneCountInString Ң 	function	in	the
unicode/utf8 	standard	package	is	another	way.	The	efficiencies	of	the	two	ways	are	almost	the	same.
The	third	way	is	to	use	len([]rune(s)) 	to	get	the	count	of	runes	in	string	s .	Since	Go	SDK	1.11,	the
standard	Go	compiler	make	an	optimization	for	the	third	way	to	avoid	an	unnecessary	deep	copy	so	that	it
is	as	efficient	as	the	former	two	ways.	Please	note	that	the	time	complexities	of	these	ways	are	all	O(n) .

More	String	Concatenation	Methods

Besides	using	the	+ 	operator	to	concatenate	strings,	we	can	also	use	following	ways	to	concatenate
strings.

The	Sprintf /Sprint /Sprintln 	functions	in	the	fmt 	standard	package	can	be	used	to
concatenate	values	of	any	types,	including	string	types.
Use	the	Join 	function	in	the	strings 	standard	package.
The	Buffer 	type	in	the	bytes 	standard	package	(or	the	built-in	copy 	function)	can	be	used	to
build	byte	slices,	which	afterwards	can	be	converted	to	string	values.
Since	Go	1.10,	the	Builder 	type	in	the	strings 	standard	package	can	be	used	to	build	strings.
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Comparing	with	bytes.Buffer 	way,	this	way	avoids	making	an	unnecessary	duplicated	copy	of
underlying	bytes	for	the	result	string.

The	standard	Go	compiler	makes	optimizations	for	string	concatenations	by	using	the	+ 	operator.	So
generally,	using	+ 	operator	to	concatenate	strings	is	convenient	and	efficient	if	the	number	of	the
concatenated	strings	is	known	at	compile	time.

Sugar:	Use	Strings	as	Byte	Slices

From	the	article	arrays,	slices	and	maps	(§18),	we	have	learned	that	we	can	use	the	built-in	copy 	and
append 	functions	to	copy	and	append	slice	elements.	In	fact,	as	a	special	case,	if	the	first	argument	of	a
call	to	either	of	the	two	functions	is	a	byte	slice,	then	the	second	argument	can	be	a	string	(if	the	call	is	an
append 	call,	then	the	string	argument	must	be	followed	by	three	dots	... ).	In	other	words,	a	string	can
be	used	as	a	byte	slice	for	the	special	case.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			hello	:=	[]byte("Hello	")

7| 			world	:=	"world!"

8|

9| 			//	The	normal	way:

10| 			//	helloWorld	:=	append(hello,	[]byte(world)...)

11| 			helloWorld	:=	append(hello,	world...)	//	sugar	way

12| 			fmt.Println(string(helloWorld))

13|

14| 			helloWorld2	:=	make([]byte,	len(hello)	+	len(world))

15| 			copy(helloWorld2,	hello)

16| 			//	The	normal	way:

17| 			//	copy(helloWorld2[len(hello):],	[]byte(world))

18| 			copy(helloWorld2[len(hello):],	world)	//	sugar	way

19| 			fmt.Println(string(helloWorld2))

20| }

More	About	String	Comparisons

Above	has	mentioned	that	comparing	two	strings	is	comparing	their	underlying	bytes	actually.	Generally,
Go	compilers	will	made	the	following	optimizations	for	string	comparisons.

For	== 	and	!= 	comparisons,	if	the	lengths	of	the	compared	two	strings	are	not	equal,	then	the	two
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strings	must	be	also	not	equal	(no	needs	to	compare	their	bytes).
If	their	underlying	byte	sequence	pointers	of	the	compared	two	strings	are	equal,	then	the
comparison	result	is	the	same	as	comparing	the	lengths	of	the	two	strings.

So	for	two	equal	strings,	the	time	complexity	of	comparing	them	depends	on	whether	or	not	their
underlying	byte	sequence	pointers	are	equal.	If	the	two	equal	string	values	don't	share	the	same	underlying
bytes,	then	the	time	complexity	of	comparing	the	two	values	is	O(n) ,	where	n 	is	the	length	of	the	two
strings,	otherwise,	the	time	complexity	is	O(1) .

As	above	mentioned,	for	the	standard	Go	compiler,	in	a	string	value	assignment,	the	destination	string
value	and	the	source	string	value	will	share	the	same	underlying	byte	sequence	in	memory.	So	the	cost	of
comparing	the	two	strings	becomes	very	small.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			bs	:=	make([]byte,	1<<26)

10| 			s0	:=	string(bs)

11| 			s1	:=	string(bs)

12| 			s2	:=	s1

13|

14| 			//	s0,	s1	and	s2	are	three	equal	strings.

15| 			//	The	underlying	bytes	of	s0	is	a	copy	of	bs.

16| 			//	The	underlying	bytes	of	s1	is	also	a	copy	of	bs.

17| 			//	The	underlying	bytes	of	s0	and	s1	are	two

18| 			//	different	copies	of	bs.

19| 			//	s2	shares	the	same	underlying	bytes	with	s1.

20|

21| 			startTime	:=	time.Now()

22| 			_	=	s0	==	s1

23| 			duration	:=	time.Now().Sub(startTime)

24| 			fmt.Println("duration	for	(s0	==	s1):",	duration)

25|

26| 			startTime	=	time.Now()

27| 			_	=	s1	==	s2

28| 			duration	=	time.Now().Sub(startTime)

29| 			fmt.Println("duration	for	(s1	==	s2):",	duration)

30| }

Output:
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duration	for	(s0	==	s1):	10.462075ms

duration	for	(s1	==	s2):	136ns

1ms	is	1000000ns!	So	please	try	to	avoid	comparing	two	long	strings	if	they	don't	share	the	same
underlying	byte	sequence.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Functions	in	Go
Function	declarations	and	calls	(§9)	have	been	explained	before.	The	current	article	will	touch	more
function	related	concepts	and	details	in	Go.

In	fact,	function	is	one	kind	of	first-class	citizen	types	in	Go.	In	other	words,	we	can	use	functions	as
values.	Although	Go	is	a	static	language,	Go	functions	are	very	flexible.	The	feeling	of	using	Go	functions
is	much	like	using	many	dynamic	languages.

There	are	some	built-in	functions	in	Go.	These	functions	are	declared	in	builtin 	and	unsafe 	standard
code	packages.	Built-in	functions	have	several	differences	from	custom	functions.	One	difference	is	that
built-in	functions	support	generic	parameters,	but	custom	declared	ones	don't	(up	to	now,	Go	1.13).	More
differences	will	be	mentioned	below.

Function	Signatures	and	Function	Types

The	literal	of	a	function	type	is	composed	of	the	func 	keyword	and	a	function	signature	literal.	A
function	signature	is	composed	of	two	type	list,	one	is	the	input	parameter	type	list,	the	other	is	the	output
result	type	lists.	Parameter	and	result	names	can	appear	in	function	type	and	signature	literals,	but	the
names	are	not	important.

In	practice,	the	func 	keyword	can	be	presented	in	signature	literals,	or	not.	For	this	reason,	we	can	think
function	type	and	function	signature	as	the	same	concept.

Here	is	a	literal	of	a	function	type:

func	(a	int,	b	string,	c	string)	(x	int,	y	int,	z	bool)

From	the	article	function	declarations	and	calls	(§9),	we	have	learned	that	consecutive	parameters	and
results	of	the	same	type	can	be	declared	together.	So	the	above	literal	is	equivalent	to

func	(a	int,	b,	c	string)	(x,	y	int,	z	bool)

As	parameter	names	and	result	names	are	not	important	in	the	literals	(as	long	as	there	are	no	duplicate
non-blank	names),	the	above	ones	are	equivalent	to	the	following	one.

func	(x	int,	y,	z	string)	(a,	b	int,	c	bool)

Variable	(parameter	and	result)	names	can	be	blank	identifier	_ .	The	above	ones	are	equivalent	to	the
following	one.

func	(_	int,	_,	_	string)	(_,	_	int,	_	bool)

The	parameter	names	must	be	either	all	present	or	all	absent	(anonymous).	The	same	rule	is	for	result
names.	The	above	ones	are	equivalent	to	the	following	ones.
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names.	The	above	ones	are	equivalent	to	the	following	ones.

func	(int,	string,	string)	(int,	int,	bool)	//	the	standard	form

func	(a	int,	b	string,	c	string)	(int,	int,	bool)

func	(x	int,	_	string,	z	string)	(int,	int,	bool)

func	(int,	string,	string)	(x	int,	y	int,	z	bool)

func	(int,	string,	string)	(a	int,	b	int,	_	bool)

All	of	the	above	function	type	literals	denote	the	same	(non-defined)	function	type.

Each	parameter	list	must	be	enclosed	in	a	() 	in	a	literal,	even	if	the	parameter	list	is	blank.	If	a	result	list
of	a	function	type	is	blank,	then	it	can	be	omitted	from	literal	of	the	function	type.	When	a	result	list	has
most	one	result,	then	the	result	list	doesn't	need	to	be	enclosed	in	a	() 	if	the	literal	of	the	result	list
contains	no	result	names.

//	The	following	three	function	types	are	identical.

func	()	(x	int)

func	()	(int)

func	()	int

//	The	following	two	function	types	are	identical.

func	(a	int,	b	string)	()

func	(a	int,	b	string)

Variadic	parameters	and	variadic	function	types

The	last	parameter	of	a	function	can	be	a	variadic	parameter.	Each	function	can	have	at	most	one	variadic
parameter.	The	type	of	a	variadic	parameter	is	always	a	slice	type.	To	indicate	the	last	parameter	is
variadic,	just	prefix	three	dots	... 	to	the	element	type	of	its	(slice)	type	in	its	declaration.	Example:

func	(values	...int64)	(sum	int64)

func	(sep	string,	tokens	...string)	string

A	function	type	with	variadic	parameter	can	be	called	a	variadic	function	type.	A	variadic	function	type
and	a	non-variadic	function	type	are	absolutely	not	identical.

Some	variadic	functions	examples	will	be	shown	in	a	below	section.

Function	types	are	incomparable	types

It	has	been	mentioned	(§14)	several	times	in	Go	101	that	function	types	are	incomparable	types.	But	like
map	and	slice	values,	function	values	can	compare	with	the	untyped	bare	nil 	identifier.	(Function	values
will	be	explained	in	the	last	section	of	the	current	article.)

As	function	types	are	incomparable	types,	they	can't	be	used	as	the	key	types	of	map	types.
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Function	Prototypes

A	function	prototype	is	composed	of	a	function	name	and	a	function	type	(or	signature).	Its	literal	is
composed	of	the	func 	keyword,	a	function	name	and	the	literal	of	a	function	signature	literal.

A	function	prototype	literal	example:

func	Double(n	int)	(result	int)

In	other	words,	a	function	prototype	is	a	function	declaration	without	the	body	portion.	A	function
declaration	is	composed	of	a	function	prototype	and	a	function	body.

Variadic	Function	Declarations	and	Variadic	Function
Calls

General	function	declarations	and	calls	have	been	explained	in	function	declarations	and	calls	(§9).	Here
introduces	how	to	declare	and	call	variadic	functions.

Variadic	function	declarations

Variadic	function	declarations	are	similar	to	general	function	declarations.	The	difference	is	that	the	last
parameter	of	a	variadic	function	must	be	variadic	parameter.	Note,	the	variadic	parameter	of	a	variadic
function	will	be	treated	as	a	slice	within	the	body	of	the	variadic	function.

1| //	Sum	and	return	the	input	numbers.

2| func	Sum(values	...int64)	(sum	int64)	{

3| 			//	The	type	of	values	is	[]int64.

4| 			sum	=	0

5| 			for	_,	v	:=	range	values	{

6| 						sum	+=	v

7| 			}

8| 			return

9| }

10|

11| //	An	inefficient	string	concatenation	function.

12| func	Concat(sep	string,	tokens	...string)	string	{

13| 			//	The	type	of	tokens	is	[]string.

14| 			r	:=	""

15| 			for	i,	t	:=	range	tokens	{

16| 						if	i	!=	0	{

17| 									r	+=	sep

18| 						}

19| 						r	+=	t
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20| 			}

21| 			return	r

22| }

From	the	above	two	variadic	function	declarations,	we	can	find	that	if	a	variadic	parameter	is	declared
with	type	portion	as	...T ,	then	the	type	of	the	parameter	is	[]T 	actually.

In	fact,	the	Print ,	Println 	and	Printf 	functions	in	the	fmt 	standard	package	are	all	variadic
functions.

1| func	Print(a	...interface{})	(n	int,	err	error)

2| func	Printf(format	string,	a	...interface{})	(n	int,	err	error)

3| func	Println(a	...interface{})	(n	int,	err	error)

The	variadic	parameter	types	of	the	three	functions	are	all	[]interface{} ,	which	element	type
interface{} 	is	an	interface	types.	Interface	types	and	values	will	be	explained	interfaces	in	Go	(§23)
later.

Variadic	function	calls

There	are	two	manners	to	pass	arguments	to	a	variadic	parameter	of	type	[]T :

1.	 pass	a	slice	value	as	the	only	argument.	The	slice	must	be	assignable	to	values	of	type	[]T ,	and	the
slice	must	be	followed	by	three	dots	... .	The	passed	slice	is	called	as	a	variadic	argument.

2.	 pass	zero	or	more	arguments	which	are	assignable	to	values	of	type	T .	These	arguments	will	be
copied	(or	converted)	as	the	elements	of	a	new	allocated	slice	value	of	type	[]T ,	then	the	new
allocated	slice	will	be	passed	to	the	variadic	parameter.

Note,	the	two	manners	can't	be	mixed	in	the	same	variadic	function	call.

An	example	program	which	uses	some	variadic	function	calls:

1| package	main

2|

3| import	"fmt"

4|

5| func	Sum(values	...int64)	(sum	int64)	{

6| 			sum	=	0

7| 			for	_,	v	:=	range	values	{

8| 						sum	+=	v

9| 			}

10| 			return

11| }

12|

13| func	main()	{

14| 			a0	:=	Sum()
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15| 			a1	:=	Sum(2)

16| 			a3	:=	Sum(2,	3,	5)

17| 			//	The	above	three	lines	are	equivalent	to

18| 			//	the	following	three	respective	lines.

19| 			b0	:=	Sum([]int64{}...)	//	<=>	Sum(nil...)

20| 			b1	:=	Sum([]int64{2}...)

21| 			b3	:=	Sum([]int64{2,	3,	5}...)

22| 			fmt.Println(a0,	a1,	a3)	//	0	2	10

23| 			fmt.Println(b0,	b1,	b3)	//	0	2	10

24| }

Another	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	Concat(sep	string,	tokens	...string)	(r	string)	{

6| 			for	i,	t	:=	range	tokens	{

7| 						if	i	!=	0	{

8| 									r	+=	sep

9| 						}

10| 						r	+=	t

11| 			}

12| 			return

13| }

14|

15| func	main()	{

16| 			tokens	:=	[]string{"Go",	"C",	"Rust"}

17| 			//	manner	1

18| 			langsA	:=	Concat(",",	tokens...)

19| 			//	manner	2

20| 			langsB	:=	Concat(",",	"Go",	"C","Rust")

21| 			fmt.Println(langsA	==	langsB)	//	true

22| }

The	following	example	doesn't	compile,	for	the	two	variadic	function	call	manners	are	mixed.

1| package	main

2|

3| //	See	above	examples	for	the	full	declarations

4| //	of	the	following	two	functions.

5| func	Sum(values	...int64)	(sum	int64)

6| func	Concat(sep	string,	tokens	...string)	string

7|

8| func	main()	{

9| 			//	The	following	two	lines	both	fail

10| 			//	to	compile,	for	the	same	error:
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11| 			//	too	many	arguments	in	call.

12| 			_	=	Sum(2,	[]int64{3,	5}...)

13| 			_	=	Concat(",",	"Go",	[]string{"C",	"Rust"}...)

14| }

More	About	Function	Declarations	and	Calls

Functions	whose	names	can	be	duplicate

Generally,	the	names	of	the	functions	declared	in	the	same	code	package	can't	be	duplicate.	But	there	are
two	exceptions.

1.	 One	exception	is	each	code	package	can	declare	several	functions	with	the	same	name	init 	and	the
same	type	func	() 	(§10).

2.	 The	other	exception	is	multiple	functions	can	be	declared	with	names	as	the	blank	identifier	_ ,	in
which	cases,	the	declared	functions	can	never	be	called.

Some	function	calls	are	evaluated	at	compile	time

Most	function	calls	are	evaluated	at	run	time.	But	calls	to	the	functions	of	the	unsafe 	standard	package
are	always	evaluated	at	compile	time.	Calls	to	some	other	built-in	functions,	such	as	len 	and	cap ,	may
be	evaluated	at	either	compile	time	or	run	time	(§46),	depending	on	the	passed	arguments.	The	results	of
the	function	calls	evaluated	at	compile	time	can	be	assigned	to	constants.

All	function	arguments	are	passed	by	copy

Let's	repeat	it	again,	like	all	value	assignments	in	Go,	all	function	arguments	are	passed	by	copy	in	Go.
When	a	value	is	copied,	only	its	direct	part	is	copied	(§17)	(a.k.a.,	a	shallow	copy).

Function	declarations	without	bodies

We	can	implement	a	function	in	Go	assembly Ң .	Go	assembly	source	files	are	stored	in	*.a 	files.	A
function	implemented	in	Go	assembly	is	still	needed	to	be	declared	in	a	*.go 	file,	but	the	only	the
prototype	of	the	function	is	needed	to	be	present.	The	body	portion	of	the	declaration	of	the	function	must
be	omitted	in	the	*.go 	file.

Some	functions	with	results	are	not	required	to	return
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If	a	function	has	return	results,	then	the	last	statement	in	its	declaration	body	must	be	a	terminating
statement Ң .	Other	than	return 	terminating	statement,	there	are	some	other	kinds	of	terminating
statements.	So	a	function	body	is	not	required	to	contain	a	return	statement.	For	example,

1| func	fa()	int	{

2| 			a:

3| 			goto	a

4| }

5|

6| func	fb()	bool	{

7| 			for{}

8| }

The	results	of	some	function	calls	can't	be	discarded

The	return	results	of	a	custom	function	call	can	be	all	discarded	together.	The	return	results	of	calls	to
built-in	functions,	except	recover 	and	copy ,	can't	be	discarded,	though	they	can	be	ignored	by
assigning	them	to	some	blank	identifiers.	Function	calls	whose	results	can't	be	discarded	can't	be	used	as
deferred	function	calls	or	goroutine	calls.

Use	function	calls	as	expressions

A	call	to	a	function	with	single	return	result	can	always	be	used	as	a	single	value.	For	example,	it	can	be
nested	in	another	function	call	as	an	argument,	and	can	also	be	used	as	a	single	value	to	appear	in	any
other	expressions	and	statements.

If	the	return	results	of	a	call	to	a	multi-result	function	are	not	discarded,	then	the	call	can	only	be	used	as	a
multi-value	expression	in	two	scenarios.

1.	 The	call	can	be	used	in	an	assignment	as	source	values.	But	the	call	can't	mix	with	other	source
values	in	the	assignment.

2.	 The	call	can	be	nested	in	another	function	call	as	arguments.	But	the	call	can't	mix	with	other
arguments.

An	example:

1| package	main

2|

3| func	HalfAndNegative(n	int)	(int,	int)	{

4| 			return	n/2,	-n

5| }

6|

7| func	AddSub(a,	b	int)	(int,	int)	{

8| 			return	a+b,	a-b
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9| }

10|

11| func	Dummy(values	...int)	{}

12|

13| func	main()	{

14| 			//	These	lines	compile	okay.

15| 			AddSub(HalfAndNegative(6))

16| 			AddSub(AddSub(AddSub(7,	5)))

17| 			AddSub(AddSub(HalfAndNegative(6)))

18| 			Dummy(HalfAndNegative(6))

19| 			_,	_	=	AddSub(7,	5)

20|

21| 			//	The	following	lines	fail	to	compile.

22| 			/*

23| 			_,	_,	_	=	6,	AddSub(7,	5)

24| 			Dummy(AddSub(7,	5),	9)

25| 			Dummy(AddSub(7,	5),	HalfAndNegative(6))

26| 			*/

27| }

Note,	for	the	standard	Go	compiler,	some	built-in	functions	break	the	universality	(§49)	of	the	just
described	rules	above.

Function	Values

As	mentioned	above,	function	types	are	one	kind	of	types	in	Go.	A	value	of	a	function	type	is	called	a
function	value.	The	zero	values	of	function	types	are	represented	with	the	predeclared	nil .

When	we	declare	a	custom	function,	we	also	declared	an	immutable	function	value	actually.	The	function
value	is	identified	by	the	function	name.	The	type	of	the	function	value	is	represented	as	the	literal	by
omitting	the	function	name	from	the	function	prototype	literal.

Note,	built-in	functions	can't	be	used	as	values.	init 	functions	also	can't	be	used	as	values.

Any	function	value	can	be	invoked	just	like	a	declared	function.	It	is	fatal	error	to	call	a	nil	function	to
start	a	new	goroutine.	The	fatal	error	is	not	recoverable	and	will	make	the	whole	program	crash.	For	other
situations,	calls	to	nil	function	values	will	produce	recoverable	panics,	including	deferred	function	calls.

From	the	article	value	parts	(§17),	we	know	that	non-nil	function	values	are	multi-part	values.	After	one
function	value	is	assigned	to	another,	the	two	functions	share	the	same	underlying	parts(s).	In	other	words,
the	two	functions	represent	the	same	internal	function	object.	The	effects	of	invoking	two	functions	are	the
same.

An	example:

1| package	main
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2|

3| import	"fmt"

4|

5| func	Double(n	int)	int	{

6| 			return	n	+	n

7| }

8|

9| func	Apply(n	int,	f	func(int)	int)	int	{

10| 			return	f(n)	//	the	type	of	f	is	"func(int)	int"

11| }

12|

13| func	main()	{

14| 			fmt.Printf("%T\n",	Double)	//	func(int)	int

15| 			//	Double	=	nil	//	error:	Double	is	immutable.

16|

17| 			var	f	func(n	int)	int	//	default	value	is	nil.

18| 			f	=	Double

19| 			g	:=	Apply	//	let	compile	deduce	the	type	of	g

20| 			fmt.Printf("%T\n",	g)	//	func(int,	func(int)	int)	int

21|

22| 			fmt.Println(f(9))									//	18

23| 			fmt.Println(g(6,	Double))	//	12

24| 			fmt.Println(Apply(6,	f))		//	12

25| }

In	the	above	example,	g(6,	Double) 	and	Apply(6,	f) 	are	equivalent.

In	practice,	we	often	assign	anonymous	functions	to	function	variables,	so	that	we	can	call	the	anonymous
functions	multiple	times.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			//	This	function	returns	a	function	(a	closure).

7| 			isMultipleOfX	:=	func	(x	int)	func(int)	bool	{

8| 						return	func(n	int)	bool	{

9| 									return	n%x	==	0

10| 						}

11| 			}

12|

13| 			var	isMultipleOf3	=	isMultipleOfX(3)

14| 			var	isMultipleOf5	=	isMultipleOfX(5)

15| 			fmt.Println(isMultipleOf3(6))		//	true

16| 			fmt.Println(isMultipleOf3(8))		//	false

17| 			fmt.Println(isMultipleOf5(10))	//	true

18| 			fmt.Println(isMultipleOf5(12))	//	false
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19|

20| 			isMultipleOf15	:=	func(n	int)	bool	{

21| 						return	isMultipleOf3(n)	&&	isMultipleOf5(n)

22| 			}

23| 			fmt.Println(isMultipleOf15(32))	//	false

24| 			fmt.Println(isMultipleOf15(60))	//	true

25| }

All	functions	in	Go	can	be	viewed	as	closures.	This	is	why	user	experiences	of	all	kinds	of	Go	functions
are	so	uniform	and	why	Go	functions	are	as	flexible	as	dynamic	languages.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Channels	in	Go
Channel	is	an	important	built-in	feature	in	Go.	It	is	one	of	the	features	that	makes	Go	unique.	Along	with
another	unique	feature,	goroutine	(§13),	channel	makes	concurrent	programming	convenient,	fun	and
lowers	the	difficulties	of	concurrent	programming.

Channel	mainly	acts	as	a	concurrency	synchronization	(§13)	technique.	This	article	will	list	all	the	channel
related	concepts,	syntax	and	rules.	To	understand	channels	better,	the	internal	structure	of	channels	and
some	implementation	details	by	the	standard	Go	compiler/runtime	are	also	simply	described.

The	information	in	this	article	may	be	slightly	challenging	for	new	gophers.	Some	parts	of	this	article	may
need	to	be	read	several	times	to	be	fully	understood.

Channel	Introduction

One	suggestion	(made	by	Rob	Pike)	for	concurrent	programming	is	don't	(let	computations)
communicate	by	sharing	memory,	(let	them)	share	memory	by	communicating	(through	channels).
(We	can	view	each	computation	as	a	goroutine	in	Go	programming.)

Communicating	by	sharing	memory	and	sharing	memory	by	communicating	are	two	programming
manners	in	concurrent	programming.	When	goroutines	communicate	by	sharing	memory,	we	use
traditional	concurrency	synchronization	techniques,	such	as	mutex	locks,	to	protect	the	shared	memory	to
prevent	data	races.	We	can	use	channels	to	implement	sharing	memory	by	communicating.

Go	provides	a	unique	concurrency	synchronization	technique,	channel.	Channels	make	goroutines	share
memory	by	communicating.	We	can	view	a	channel	as	an	internal	FIFO	(first	in,	first	out)	queue	within	a
program.	Some	goroutines	send	values	to	the	queue	(the	channel)	and	some	other	goroutines	receive
values	from	the	queue.

Along	with	transferring	values	(through	channels),	the	ownership	of	some	values	may	also	be	transferred
between	goroutines.	When	a	goroutine	sends	a	value	to	a	channel,	we	can	view	the	goroutine	releases	the
ownership	of	some	values.	When	a	goroutine	receives	a	value	from	a	channel,	we	can	view	the	goroutine
acquires	the	ownerships	of	some	values.

Surely,	there	may	be	also	not	any	ownership	transferred	along	with	channel	communications.

The	values	(whose	ownerships	are	transferred)	are	often	referenced	(but	are	not	required	to	be	referenced)
by	the	transferred	value.	Please	note,	here,	when	we	talk	about	ownership,	we	mean	the	ownership	from
the	logic	view.	Unlike	Rust	language,	Go	doesn't	ensure	value	ownership	from	the	syntax	level.	Go
channels	can	help	programmers	write	data	races	free	code	easily,	but	Go	channels	can't	prevent
programmers	from	writing	bad	concurrent	code	from	the	syntax	level.

Although	Go	also	supports	traditional	concurrency	synchronization	techniques.	only	channel	is	first-class
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citizen	in	Go.	Channel	is	one	kind	of	types	in	Go,	so	we	can	use	channels	without	importing	any	packages.
On	the	other	hand,	those	traditional	concurrency	synchronization	techniques	are	provided	in	the	sync 	and
sync/atomic 	standard	packages.

Honestly,	each	concurrency	synchronization	technique	has	its	own	best	use	scenarios.	But	channel	has	a
wider	application	range	and	has	more	variety	in	using	(§37).	One	problem	of	channels	is,	the	experience	of
programming	with	channels	is	so	enjoyable	and	fun	that	programmers	often	even	prefer	to	use	channels
for	the	scenarios	which	channels	are	not	best	for.

Channel	Types	and	Values

Like	array,	slice	and	map,	each	channel	type	has	an	element	type.	A	channel	can	only	transfer	values	of
the	element	type	of	the	channel.

Channel	types	can	be	bi-directional	or	single-directional.	Assume	T 	is	an	arbitrary	type,

chan	T 	denotes	a	bidirectional	channel	type.	Compilers	allow	both	receiving	values	from	and
sending	values	to	bidirectional	channels.
chan<-	T 	denotes	a	send-only	channel	type.	Compilers	don't	allow	receiving	values	from	send-
only	channels.
<-chan	T 	denotes	a	receive-only	channel	type.	Compilers	don't	allow	sending	values	to	receive-
only	channels.

T 	is	called	the	element	type	of	these	channel	types.

Values	of	bidirectional	channel	type	chan	T 	can	be	implicitly	converted	to	both	send-only	type	chan<-
T 	and	receive-only	type	<-chan	T ,	but	not	vice	versa	(even	if	explicitly).	Values	of	send-only	type
chan<-	T 	can't	be	converted	to	receive-only	type	<-chan	T ,	and	vice	versa.	Note	that	the	<- 	signs	in
channel	type	literals	are	modifiers.

Each	channel	value	has	a	capacity,	which	will	be	explained	in	the	section	after	next.	A	channel	value	with
a	zero	capacity	is	called	unbuffered	channel	and	a	channel	value	with	a	non-zero	capacity	is	called
buffered	channel.

The	zero	values	of	channel	types	are	represented	with	the	predeclared	identifier	nil .	A	non-nil	channel
value	must	be	created	by	using	the	built-in	make 	function.	For	example,	make(chan	int,	10) 	will
create	a	channel	whose	element	type	is	int .	The	second	argument	of	the	make 	function	call	specifies	the
capacity	of	the	new	created	channel.	The	second	parameter	is	optional	and	its	default	value	is	zero.

Channel	Value	Comparisons

All	channel	types	are	comparable	types.
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From	the	article	value	parts	(§17),	we	know	that	non-nil	channel	values	are	multi-part	values.	If	one
channel	value	is	assigned	to	another,	the	two	channels	share	the	same	underlying	part(s).	In	other	words,
those	two	channels	represent	the	same	internal	channel	object.	The	result	of	comparing	them	is	true .

Channel	Operations

There	are	five	channel	specified	operations.	Assume	the	channel	is	ch ,	their	syntax	and	function	calls	of
these	operations	are	listed	here.

1.	 Close	the	channel	by	using	the	following	function	call

close(ch)

where	close 	is	a	built-in	function.	The	argument	of	a	close 	function	call	must	be	a	channel	value,
and	the	channel	ch 	must	not	be	a	receive-only	channel.

2.	 Send	a	value,	v ,	to	the	channel	by	using	the	following	syntax

ch	<-	v

where	v 	must	be	a	value	which	is	assignable	to	the	element	type	of	channel	ch ,	and	the	channel	ch
must	not	be	a	receive-only	channel.	Note	that	here	<- 	is	a	channel-send	operator.

3.	 Receive	a	value	from	the	channel	by	using	the	following	syntax

<-ch

A	channel	receive	operation	always	returns	at	least	one	result,	which	is	a	value	of	the	element	type
of	the	channel,	and	the	channel	ch 	must	not	be	a	send-only	channel.	Note	that	here	<- 	is	a	channel-
receive	operator.	Yes,	its	representation	is	the	same	as	a	channel-send	operator.

For	most	scenarios,	a	channel	receive	operation	is	viewed	as	a	single-value	expression.	However,
when	a	channel	operation	is	used	as	the	only	source	value	expression	in	an	assignment,	it	can	result
a	second	optional	untyped	boolean	value	and	become	a	multi-value	expression.	The	untyped	boolean
value	indicates	whether	or	not	the	first	result	is	sent	before	the	channel	is	closed.	(Below	we	will
learn	that	we	can	receive	unlimited	number	of	values	from	a	closed	channel.)

Two	channel	receive	operations	which	are	used	as	source	values	in	assignments:

v	=	<-ch

v,	sentBeforeClosed	=	<-ch

4.	 Query	the	value	buffer	capacity	of	the	channel	by	using	the	following	function	call

cap(ch)
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where	cap 	is	a	built-in	function	which	has	ever	been	introduced	in	containers	in	Go	(§18).	The
return	result	of	a	cap 	function	call	is	an	int 	value.

5.	 Query	the	current	number	of	values	in	the	value	buffer	(or	the	length)	of	the	channel	by	using	the
following	function	call

len(ch)

where	len 	is	a	built-in	function	which	also	has	ever	been	introduced	before.	The	return	value	of	a
len 	function	call	is	an	int 	value.	The	result	length	is	number	of	elements	which	have	already	been
sent	successfully	to	the	queried	channel	but	haven't	been	received	(taken	out)	yet.

Most	basic	operations	in	Go	are	not	synchronized.	In	other	words,	they	are	not	concurrency-safe.	These
operations	include	value	assignments,	argument	passing	and	container	element	manipulations,	etc.
However,	all	the	just	introduced	channel	operations	are	already	synchronized,	so	no	further
synchronizations	are	needed	to	safely	perform	these	operations,	except	the	case	of	concurrent	send	and
close	operations	on	the	channel.	The	exception	case	should	be	avoided	in	code	design,	for	it	is	a	bad
design.	(The	reason	will	be	explained	below.)

Like	most	other	operations	in	Go,	channel	value	assignments	are	not	synchronized.	Similarly,	assigning
the	received	value	to	another	value	is	also	not	synchronized,	though	any	channel	receive	operation	is
synchronized.

If	the	queried	channel	is	a	nil	channel,	both	of	the	built-in	cap 	and	len 	functions	return	zero.	The	two
query	operations	are	so	simple	that	they	will	not	get	further	explanations	later.	In	fact,	the	two	operations
are	seldom	used	in	practice.

Channel	send,	receive	and	close	operations	will	be	explained	in	detail	in	the	next	section.

Detailed	Explanations	for	Channel	Operations

To	make	the	explanations	for	channel	operations	simple	and	clear,	in	the	remaining	of	this	article,
channels	will	be	classified	into	three	categories:

1.	 nil	channels.
2.	 non-nil	but	closed	channels.
3.	 not-closed	non-nil	channels.

The	following	table	simply	summarizes	the	behaviors	for	all	kinds	of	operations	applying	on	nil,	closed
and	not-closed	non-nil	channels.

Operation A	Nil	Channel A	Closed	Channel A	Not-Closed	Non-Nil	Channel
Close panic panic succeed	to	close	(C)

Send	Value	To block	for	ever panic block	or	succeed	to	send	(B)

Receive	Value	From block	for	ever never	block	(D) block	or	succeed	to	receive	(A)
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never	block	(D) block	or	succeed	to	receive	(A)

For	the	five	cases	shown	without	superscripts,	the	behaviors	are	very	clear.

Closing	a	nil	or	an	already	closed	channel	produces	a	panic	in	the	current	goroutine.
Sending	a	value	to	a	closed	channel	also	produces	a	panic	in	the	current	goroutine.
Sending	a	value	to	or	receiving	a	value	from	a	nil	channel	makes	the	current	goroutine	enter	and	stay
in	blocking	state	for	ever.

The	following	will	make	more	explanations	for	the	four	cases	shown	with	superscripts	(A,	B,	C	and	D).

To	better	understand	channel	types	and	values,	and	to	make	some	explanations	easier,	looking	in	the	raw
internal	structures	of	internal	channel	objects	is	very	helpful.

We	can	think	of	each	channel	consisting	of	three	queues	(all	can	be	viewed	as	FIFO	queues)	internally:

1.	 the	receiving	goroutine	queue.	The	queue	is	a	linked	list	without	size	limitation.	Goroutines	in	this
queue	are	all	in	blocking	state	and	waiting	to	receive	values	from	that	channel.

2.	 the	sending	goroutine	queue.	The	queue	is	also	a	linked	list	without	size	limitation.	Goroutines	in
this	queue	are	all	in	blocking	state	and	waiting	to	send	values	to	that	channel.	The	value	(or	the
address	of	the	value,	depending	on	compiler	implementation)	each	goroutine	is	trying	to	send	is	also
stored	in	the	queue	along	with	that	goroutine.

3.	 the	value	buffer	queue.	This	is	a	circular	queue.	Its	size	is	equal	to	the	capacity	of	the	channel.	The
types	of	the	values	stored	in	this	buffer	queue	are	all	the	element	type	of	that	channel.	If	the	current
number	of	values	stored	in	the	value	buffer	queue	of	the	channel	reaches	the	capacity	of	the	channel,
the	channel	is	called	in	full	status.	If	no	values	are	stored	in	the	value	buffer	queue	of	the	channel
currently,	the	channel	is	called	in	empty	status.	For	a	zero-capacity	(unbuffered)	channel,	it	is	always
in	both	full	and	empty	status.

Each	channel	internally	holds	a	mutex	lock	which	is	used	to	avoid	data	races	in	all	kinds	of	operations.

Channel	operation	case	A:	when	a	goroutine	Gr 	tries	to	receive	a	value	from	a	not-closed	non-nil
channel,	the	goroutine	Gr 	will	acquire	the	lock	associated	with	the	channel	firstly,	then	do	the	following
steps	until	one	condition	is	satisfied.

1.	 If	the	value	buffer	queue	of	the	channel	is	not	empty,	in	which	case	the	receiving	goroutine	queue	of
the	channel	must	be	empty,	the	goroutine	Gr 	will	receive	(by	unshifting)	a	value	from	the	value
buffer	queue.	If	the	sending	goroutine	queue	of	the	channel	is	also	not	empty,	a	sending	goroutine
will	be	unshifted	out	of	the	sending	goroutine	queue	and	resumed	to	running	state	again.	The	value
the	just	unshifted	sending	goroutine	trying	to	send	will	be	pushed	into	the	value	buffer	queue	of	the
channel.	The	receiving	goroutine	Gr 	continues	running.	For	this	scenario,	the	channel	receive
operation	is	called	a	non-blocking	operation.

2.	 Otherwise	(the	value	buffer	queue	of	the	channel	is	empty),	if	the	sending	goroutine	queue	of	the
channel	is	not	empty,	in	which	case	the	channel	must	be	an	unbuffered	channel,	the	receiving
goroutine	Gr 	will	unshift	a	sending	goroutine	from	the	sending	goroutine	queue	of	the	channel	and
receive	the	value	the	just	unshifted	sending	goroutine	trying	to	send.	The	just	unshifted	sending
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goroutine	will	get	unblocked	and	resumed	to	running	state	again.	The	receiving	goroutine	Gr
continues	running.	For	this	scenario,	the	channel	receive	operation	is	called	a	non-blocking
operation.

3.	 If	value	buffer	queue	and	the	sending	goroutine	queue	of	the	channel	are	both	empty,	the	goroutine
Gr 	will	be	pushed	into	the	receiving	goroutine	queue	of	the	channel	and	enter	(and	stay	in)	blocking
state.	It	may	be	resumed	to	running	state	when	another	goroutine	sends	a	value	to	the	channel	later.
For	this	scenario,	the	channel	receive	operation	is	called	a	blocking	operation.

Channel	rule	case	B:	when	a	goroutine	Gs 	tries	to	send	a	value	to	a	not-closed	non-nil	channel,	the
goroutine	Gs 	will	acquire	the	lock	associated	with	the	channel	firstly,	then	do	the	following	steps	until	one
step	condition	is	satisfied.

1.	 If	the	receiving	goroutine	queue	of	the	channel	is	not	empty,	in	which	case	the	value	buffer	queue	of
the	channel	must	be	empty,	the	sending	goroutine	Gs 	will	unshift	a	receiving	goroutine	from	the
receiving	goroutine	queue	of	the	channel	and	send	the	value	to	the	just	unshifted	receiving
goroutine.	The	just	unshifted	receiving	goroutine	will	get	unblocked	and	resumed	to	running	state
again.	The	sending	goroutine	Gs 	continues	running.	For	this	scenario,	the	channel	send	operation	is
called	a	non-blocking	operation.

2.	 Otherwise	(the	receiving	goroutine	queue	is	empty),	if	the	value	buffer	queue	of	the	channel	is	not
full,	in	which	case	the	sending	goroutine	queue	must	be	also	empty,	the	value	the	sending	goroutine
Gs 	trying	to	send	will	be	pushed	into	the	value	buffer	queue,	and	the	sending	goroutine	Gs
continues	running.	For	this	scenario,	the	channel	send	operation	is	called	a	non-blocking	operation.

3.	 If	the	receiving	goroutine	queue	is	empty	and	the	value	buffer	queue	of	the	channel	is	already	full,
the	sending	goroutine	Gs 	will	be	pushed	into	the	sending	goroutine	queue	of	the	channel	and	enter
(and	stay	in)	blocking	state.	It	may	be	resumed	to	running	state	when	another	goroutine	receives	a
value	from	the	channel	later.	For	this	scenario,	the	channel	send	operation	is	called	a	blocking
operation.

Above	has	mentioned,	once	a	non-nil	channel	is	closed,	sending	a	value	to	the	channel	will	produce	a
runtime	panic	in	the	current	goroutine.	Note,	sending	data	to	a	closed	channel	is	viewed	as	a	non-blocking
operation.

Channel	operation	case	C:	when	a	goroutine	tries	to	close	a	not-closed	non-nil	channel,	once	the
goroutine	has	acquired	the	lock	of	the	channel,	both	of	the	following	two	steps	will	be	performed	by	the
following	order.

1.	 If	the	receiving	goroutine	queue	of	the	channel	is	not	empty,	in	which	case	the	value	buffer	of	the
channel	must	be	empty,	all	the	goroutines	in	the	receiving	goroutine	queue	of	the	channel	will	be
unshifted	one	by	one,	each	of	them	will	receive	a	zero	value	of	the	element	type	of	the	channel	and
be	resumed	to	running	state.

2.	 If	the	sending	goroutine	queue	of	the	channel	is	not	empty,	all	the	goroutines	in	the	sending
goroutine	queue	of	the	channel	will	be	unshifted	one	by	one	and	each	of	them	will	produce	a	panic
for	sending	on	a	closed	channel.	This	is	the	reason	why	we	should	avoid	concurrent	send	and	close
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operations	on	the	same	channel.	In	fact,	data	races	happen	in	concurrent	send	and	close	operations.

Note:	after	a	channel	is	closed,	the	values	which	have	been	already	pushed	into	the	value	buffer	of	the
channel	are	still	there.	Please	read	the	closely	following	explanations	for	case	D	for	details.

Channel	operation	case	D:	after	a	non-nil	channel	is	closed,	channel	receive	operations	on	the	channel
will	never	block.	The	values	in	the	value	buffer	of	the	channel	can	still	be	received.	The	accompanying
second	optional	bool	return	values	are	still	true .	Once	all	the	values	in	the	value	buffer	are	taken	out	and
received,	infinite	zero	values	of	the	element	type	of	the	channel	will	be	received	by	any	of	the	following
receive	operations	on	the	channel.	As	mentioned	above,	the	optional	second	return	result	of	a	channel
receive	operation	is	an	untyped	boolean	value	which	indicates	whether	or	not	the	first	result	(the	received
value)	is	sent	before	the	channel	is	closed.	If	the	second	return	result	is	false ,	then	the	first	return	result
(the	received	value)	must	be	a	zero	value	of	the	element	type	of	the	channel.

Knowing	what	are	blocking	and	non-blocking	channel	send	or	receive	operations	is	important	to
understand	the	mechanism	of	select 	control	flow	blocks	which	will	be	introduced	in	a	later	section.

In	the	above	explanations,	if	a	goroutine	is	unshifted	out	of	a	queue	(either	the	sending	or	the	receiving
goroutine	queue)	of	a	channel,	and	the	goroutine	was	blocked	for	being	pushed	into	the	queue	at	a
select 	control	flow	code	block,	then	the	goroutine	will	be	resumed	to	running	state	at	step	9	of	the
select 	control	flow	code	block	execution.	It	may	be	dequeued	from	the	corresponding	goroutine	queue
of	several	channels	involved	in	the	select 	control	flow	code	block.

According	to	the	explanations	listed	above,	we	can	get	some	facts	about	the	internal	queues	of	a	channel.

If	the	channel	is	closed,	both	of	its	sending	goroutine	queue	and	receiving	goroutine	queue	must	be
empty,	but	its	value	buffer	queue	may	not	be	empty.
At	any	time,	if	the	value	buffer	is	not	empty,	then	its	receiving	goroutine	queue	must	be	empty.
At	any	time,	if	the	value	buffer	is	not	full,	then	its	sending	goroutine	queue	must	be	empty.
If	the	channel	is	buffered,	then	at	any	time,	one	of	its	sending	goroutine	queue	and	receiving
goroutine	queue	must	be	empty.
If	the	channel	is	unbuffered,	then	at	any	time,	generally	one	of	its	sending	goroutine	queue	and	the
receiving	goroutine	queue	must	be	empty,	but	with	an	exception	that	a	goroutine	may	be	pushed	into
both	of	the	two	queues	when	executing	a	select 	control	flow	code	block.

Some	Channel	Use	Examples

Let's	view	some	examples	which	use	channels	to	enhance	the	understanding	by	reading	the	last	section.

A	simple	request/response	example.	The	two	goroutines	in	this	example	talk	to	each	other	through	an
unbuffered	channel.

1| package	main

2|
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3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			c	:=	make(chan	int)	//	an	unbuffered	channel

10| 			go	func(ch	chan<-	int,	x	int)	{

11| 						time.Sleep(time.Second)

12| 						//	<-ch				//	fails	to	compile

13| 						//	Send	the	value	and	block	until	the	result	is	received.

14| 						ch	<-	x*x	//	9	is	sent

15| 			}(c,	3)

16| 			done	:=	make(chan	struct{})

17| 			go	func(ch	<-chan	int)	{

18| 						//	Block	until	9	is	received.

19| 						n	:=	<-ch

20| 						fmt.Println(n)	//	9

21| 						//	ch	<-	123			//	fails	to	compile

22| 						time.Sleep(time.Second)

23| 						done	<-	struct{}{}

24| 			}(c)

25| 			//	Block	here	until	a	value	is	received	by

26| 			//	the	channel	"done".

27| 			<-done

28| 			fmt.Println("bye")

29| }

The	output:

9

bye

A	demo	of	using	a	buffered	channel.	This	program	is	not	a	concurrent	one,	it	just	shows	how	to	use
buffered	channels.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			c	:=	make(chan	int,	2)	//	a	buffered	channel

7| 			c	<-	3

8| 			c	<-	5

9| 			close(c)

10| 			fmt.Println(len(c),	cap(c))	//	2	2

11| 			x,	ok	:=	<-c

12| 			fmt.Println(x,	ok)	//	3	true
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13| 			fmt.Println(len(c),	cap(c))	//	1	2

14| 			x,	ok	=	<-c

15| 			fmt.Println(x,	ok)	//	5	true

16| 			fmt.Println(len(c),	cap(c))	//	0	2

17| 			x,	ok	=	<-c

18| 			fmt.Println(x,	ok)	//	0	false

19| 			x,	ok	=	<-c

20| 			fmt.Println(x,	ok)	//	0	false

21| 			fmt.Println(len(c),	cap(c))	//	0	2

22| 			close(c)	//	panic!

23| 			//	The	send	will	also	panic	if	the	above

24| 			//	close	call	is	removed.

25| 			c	<-	7

26| }

A	never-ending	football	game.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			var	ball	=	make(chan	string)

10| 			kickBall	:=	func(playerName	string)	{

11| 						for	{

12| 									fmt.Println(<-ball,	"kicked	the	ball.")

13| 									time.Sleep(time.Second)

14| 									ball	<-	playerName

15| 						}

16| 			}

17| 			go	kickBall("John")

18| 			go	kickBall("Alice")

19| 			go	kickBall("Bob")

20| 			go	kickBall("Emily")

21| 			ball	<-	"referee"	//	kick	off

22| 			var	c	chan	bool			//	nil

23| 			<-c															//	blocking	here	for	ever

24| }

Please	read	channel	use	cases	(§37)	for	more	channel	use	examples.

Channel	Element	Values	Are	Transferred	by	Copy

When	a	value	is	transferred	from	one	goroutine	to	another	goroutine,	the	value	will	be	copied	at	least	one
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time.	If	the	transferred	value	ever	stayed	in	the	value	buffer	of	a	channel,	then	two	copies	will	happen	in
the	transfer	process.	One	copy	happens	when	the	value	is	copied	from	the	sender	goroutine	into	the	value
buffer,	the	other	happens	when	the	value	is	copied	from	the	value	buffer	to	the	receiver	goroutine.	Like
value	assignments	and	function	argument	passing,	when	a	value	is	transferred,	only	its	direct	part	is	copied
(§17).

For	the	standard	Go	compiler,	the	size	of	channel	element	types	must	be	smaller	than	65536 .	However,
generally,	we	shouldn't	create	channels	with	large-size	element	types,	to	avoid	too	large	copy	cost	in	the
process	of	transferring	values	between	goroutines.	So	if	the	passed	value	size	is	too	large,	it	is	best	to	use	a
pointer	element	type	instead,	to	avoid	a	large	value	copy	cost.

About	Channel	and	Goroutine	Garbage	Collections

Note,	a	channel	is	referenced	by	all	the	goroutines	in	either	the	sending	or	the	receiving	goroutine	queue	of
the	channel,	so	if	neither	of	the	queues	of	the	channel	is	empty,	the	channel	will	not	be	garbage	collected
for	sure.	On	the	other	hand,	if	a	goroutine	is	blocked	and	stays	in	either	the	sending	or	the	receiving
goroutine	queue	of	a	channel,	then	the	goroutine	will	also	not	be	garbage	collected	for	sure,	even	if	the
channel	is	referenced	only	by	this	goroutine.	In	fact,	a	goroutine	can	be	only	garbage	collected	when	it	has
already	exited.

Channel	Send	and	Receive	Operations	Are	Simple
Statements

Channel	send	operations	and	receive	operations	are	simple	statements	(§11).	A	channel	receive	operation
can	be	always	used	as	a	single-value	expression.	Simple	statements	and	expressions	can	be	used	at	certain
portions	of	basic	control	flow	blocks	(§12).

An	example	in	which	channel	send	and	receive	operations	appear	as	simple	statements	in	two	for 	control
flow	blocks.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			fibonacci	:=	func()	chan	uint64	{

10| 						c	:=	make(chan	uint64)

11| 						go	func()	{

12| 									var	x,	y	uint64	=	0,	1

13| 									for	;	y	<	(1	<<	63);	c	<-	y	{	//	here
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14| 												x,	y	=	y,	x+y

15| 									}

16| 									close(c)

17| 						}()

18| 						return	c

19| 			}

20| 			c	:=	fibonacci()

21| 			for	x,	ok	:=	<-c;	ok;	x,	ok	=	<-c	{	//	here

22| 						time.Sleep(time.Second)

23| 						fmt.Println(x)

24| 			}

25| }

for-range	on	Channels

The	for-range 	control	flow	code	block	applies	to	channels.	The	loop	will	try	to	iteratively	receive	the
values	sent	to	a	channel,	until	the	channel	is	closed	and	its	value	buffer	queue	becomes	blank.	Unlike	the
for-range 	syntax	on	arrays,	slices	and	maps,	most	one	iteration	variable,	which	is	used	to	store	the
received	values,	is	allowed	to	be	present	in	the	for-range 	syntax	on	channels.

1| for	v	=	range	aChannel	{

2| 			//	use	v

3| }

is	equivalent	to

1| for	{

2| 			v,	ok	=	<-aChannel

3| 			if	!ok	{

4| 						break

5| 			}

6| 			//	use	v

7| }

Surely,	here	the	aChannel 	value	must	not	be	a	send-only	channel.	If	it	is	a	nil	channel,	the	loop	will
block	there	for	ever.

For	example,	the	second	for 	loop	block	in	the	example	shown	in	the	last	section	can	be	simplified	to

1| 			for	x	:=	range	c	{

2| 						time.Sleep(time.Second)

3| 						fmt.Println(x)

4| 			}

select-case	Control	Flow	Code	Blocks
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There	is	a	select-case 	code	block	syntax	which	is	specially	designed	for	channels.	The	syntax	is	much
like	the	switch-case 	block	syntax.	For	example,	there	can	be	multiple	case 	branches	and	at	most	one
default 	branch	in	the	select-case 	code	block.	But	there	are	also	some	obvious	differences	between
them.

No	expressions	and	statements	are	allowed	to	follow	the	select 	keyword	(before	{ ).
No	fallthrough 	statements	are	allowed	to	be	used	in	case 	branches.
Each	statement	following	a	case 	keyword	in	a	select-case 	code	block	must	be	either	a	channel
receive	operation	or	a	channel	send	operation	statement.	A	channel	receive	operation	can	appear	as
the	source	value	of	a	simple	assignment	statement.	Later,	a	channel	operation	following	a	case
keyword	will	be	called	a	case 	operation.
In	case	of	there	are	some	non-blocking	case 	operations,	Go	runtime	will	randomly	select	one	of
them	to	execute,	then	continue	to	execute	the	corresponding	case 	branch.
In	case	of	all	the	case 	operations	in	a	select-case 	code	block	are	blocking	operations,	the
default 	branch	will	be	selected	to	execute	if	the	default 	branch	is	present.	If	the	default
branch	is	absent,	the	current	goroutine	will	be	pushed	into	the	corresponding	sending	goroutine
queue	or	receiving	goroutine	queue	of	every	channel	involved	in	all	case 	operations,	then	enter
blocking	state.

By	the	rules,	a	select-case 	code	block	without	any	branches,	select{} ,	will	make	the	current
goroutine	stay	in	blocking	state	forever.

The	following	program	will	enter	the	default 	branch	for	sure.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	c	chan	struct{}	//	nil

7| 			select	{

8| 			case	<-c:													//	blocking	operation

9| 			case	c	<-	struct{}{}:	//	blocking	operation

10| 			default:

11| 						fmt.Println("Go	here.")

12| 			}

13| }

An	example	showing	how	to	use	try-send	and	try-receive:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{
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6| 			c	:=	make(chan	string,	2)

7| 			trySend	:=	func(v	string)	{

8| 						select	{

9| 						case	c	<-	v:

10| 						default:	//	go	here	if	c	is	full.

11| 						}

12| 			}

13| 			tryReceive	:=	func()	string	{

14| 						select	{

15| 						case	v	:=	<-c:	return	v

16| 						default:	return	"-"	//	go	here	if	c	is	empty

17| 						}

18| 			}

19| 			trySend("Hello!")	//	succeed	to	send

20| 			trySend("Hi!")				//	succeed	to	send

21| 			//	Fail	to	send,	but	will	not	block.

22| 			trySend("Bye!")

23| 			//	The	following	two	lines	will

24| 			//	both	succeed	to	receive.

25| 			fmt.Println(tryReceive())	//	Hello!

26| 			fmt.Println(tryReceive())	//	Hi!

27| 			//	The	following	line	fails	to	receive.

28| 			fmt.Println(tryReceive())	//	-

29| }

The	following	example	has	50%	possibility	to	panic.	Both	of	the	two	case 	operations	are	non-blocking	in
this	example.

1| package	main

2|

3| func	main()	{

4| 			c	:=	make(chan	struct{})

5| 			close(c)

6| 			select	{

7| 			case	c	<-	struct{}{}:

8| 						//	Panic	if	the	first	case	is	selected.

9| 			case	<-c:

10| 			}

11| }

The	Implementation	of	the	Select	Mechanism

The	select	mechanism	in	Go	is	an	important	and	unique	feature.	Here	the	steps	of	the	select	mechanism
implementation	by	the	official	Go	runtime Ң 	are	listed.

There	are	several	steps	to	execute	a	select-case 	block:
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1.	 evaluate	all	involved	channel	expressions	and	value	expressions	to	be	potentially	sent	in	case
operations,	from	top	to	bottom	and	left	to	right.	Destination	values	for	receive	operations	(as	source
values)	in	assignments	needn't	to	be	evaluated	at	this	time.

2.	 randomize	the	branch	orders	for	polling	in	step	5.	The	default 	branch	is	always	put	at	the	last
position	in	the	result	order.	Channels	may	be	duplicate	in	the	case 	operations.

3.	 sort	all	involved	channels	in	the	case 	operations	to	avoid	deadlock	(with	other	goroutines)	in	the
next	step.	No	duplicate	channels	stay	in	the	first	N 	channels	of	the	sorted	result,	where	N 	is	the
number	of	involved	channels	in	the	case 	operations.	Below,	the	channel	lock	order	is	a	concept	for
the	first	N 	channels	in	the	sorted	result.

4.	 lock	(a.k.a.,	acquire	the	locks	of)	all	involved	channels	by	the	channel	lock	order	produced	in	last
step.

5.	 poll	each	branch	in	the	select	block	by	the	randomized	order	produced	in	step	2:
1.	 if	this	is	a	case 	branch	and	the	corresponding	channel	operation	is	a	send-value-to-closed-

channel	operation,	unlock	all	channels	by	the	inverse	channel	lock	order	and	make	the	current
goroutine	panic.	Go	to	step	12.

2.	 if	this	is	a	case 	branch	and	the	corresponding	channel	operation	is	non-blocking,	perform	the
channel	operation	and	unlock	all	channels	by	the	inverse	channel	lock	order,	then	execute	the
corresponding	case 	branch	body.	The	channel	operation	may	wake	up	another	goroutine	in
blocking	state.	Go	to	step	12.

3.	 if	this	is	the	default 	branch,	then	unlock	all	channels	by	the	inverse	channel	lock	order	and
execute	the	default 	branch	body.	Go	to	step	12.

(Up	to	here,	the	default 	branch	is	absent	and	all	case 	operations	are	blocking	operations.)
6.	 push	(enqueue)	the	current	goroutine	(along	with	the	information	of	the	corresponding	case

branch)	into	the	receiving	or	sending	goroutine	queue	of	the	involved	channel	in	each	case
operation.	The	current	goroutine	may	be	pushed	into	the	queues	of	a	channel	for	multiple	times,	for
the	involved	channels	in	multiple	cases	may	be	the	same	one.

7.	 make	the	current	goroutine	enter	blocking	state	and	unlock	all	channels	by	the	inverse	channel	lock
order.

8.	 wait	in	blocking	state	until	other	channel	operations	wake	up	the	current	goroutine,	...
9.	 the	current	goroutine	is	waken	up	by	another	channel	operation	in	another	goroutine.	The	other

operation	may	be	a	channel	close	operation	or	a	channel	send/receive	operation.	If	it	is	a	channel
send/receive	operation,	there	must	be	a	case 	channel	receive/send	operation	(in	the	current	being
explained	select-case 	block)	cooperating	with	it	(by	transferring	a	value).	In	the	cooperation,	the
current	goroutine	will	be	dequeued	from	the	receiving/sending	goroutine	queue	of	the	channel.

10.	 lock	all	involved	channels	by	the	channel	lock	order.
11.	 dequeue	the	current	goroutine	from	the	receiving	goroutine	queue	or	sending	goroutine	queue	of	the

involved	channel	in	each	case 	operation,
1.	 if	the	current	goroutine	is	waken	up	by	a	channel	close	operation,	go	to	step	5.
2.	 if	the	current	goroutine	is	waken	up	by	a	channel	send/receive	operation,	the	corresponding

case 	branch	of	the	cooperating	receive/send	operation	has	already	been	found	in	the
dequeuing	process,	so	just	unlock	all	channels	by	the	inverse	channel	lock	order	and	execute
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the	corresponding	case 	branch.
12.	 done.

From	the	implementation,	we	know	that

a	goroutine	may	stay	in	the	sending	goroutine	queues	and	the	receiving	goroutine	queues	of	multiple
channels	at	the	same	time.	It	can	even	stay	in	the	sending	goroutine	queue	and	the	receiving
goroutine	queue	of	the	same	channel	at	the	same	time.
when	a	goroutine	being	blocked	at	a	select-case 	code	block	gets	resumed	later,	it	will	be
removed	from	all	the	sending	goroutine	queues	and	the	receiving	goroutine	queues	of	every	channels
involved	in	the	channel	operations	followed	case 	keywords	in	the	select-case 	code	block.

More

We	can	find	more	channel	use	cases	in	this	article	(§37).

Although	channels	can	help	us	write	correct	concurrent	code	easily	(§38),	like	other	data	synchronization
techniques,	channels	will	not	prevent	us	from	writing	improper	concurrent	code	(§42).

Channel	may	be	not	always	the	best	solution	for	all	use	cases	for	data	synchronizations.	Please	read	this
article	(§39)	and	this	article	(§40)	for	more	synchronization	techniques	in	Go.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Methods	in	Go
Go	supports	some	object-orient	programming	features.	Method	is	one	of	these	features.	This	article	will
introduce	method	related	concepts	in	Go.

Method	Declarations

In	Go,	we	can	(explicitly)	declare	a	method	for	type	T 	and	*T ,	where	T 	must	satisfy	4	conditions:

1.	 T 	must	be	a	defined	type	(§14);
2.	 T 	must	be	defined	in	the	same	package	as	the	method	declaration;
3.	 T 	must	not	be	a	pointer	type;
4.	 T 	must	not	be	an	interface	type.	Interface	types	will	be	explained	in	the	next	article	(§23).

Type	T 	and	*T 	are	called	the	receiver	type	of	the	respective	methods	declared	for	them.	Type	T 	is	called
the	receiver	base	types	of	all	methods	declared	for	both	type	T 	and	*T .

Note,	we	can	also	declare	methods	for	type	aliases	(§14)	of	the	T 	and	*T 	types	specified	above.	The
effect	is	the	same	as	declaring	methods	for	the	T 	and	*T 	types	themselves.

If	a	method	is	declared	for	a	type,	we	can	say	the	type	has	(or	owns)	the	method.

From	the	above	listed	conditions,	we	will	get	the	conclusions	that	we	can	never	(explicitly)	declare
methods	for:

built-in	basic	types,	such	as	int 	and	string ,	for	we	can't	declare	methods	in	the	builtin
standard	package.
interface	types.	But	an	interface	type	can	own	methods.	Please	read	the	next	article	(§23)	for	details.
non-defined	types	(§14)	except	the	pointer	types	with	the	form	*T 	which	are	described	above.

A	method	declaration	is	similar	to	a	function	declaration,	but	it	has	an	extra	parameter	declaration	part.
The	extra	parameter	part	can	contain	one	and	only	one	parameter	of	the	receiver	type	of	the	method.	The
only	one	parameter	is	called	a	receiver	parameter	of	the	method	declaration.	The	receiver	parameter	must
be	enclosed	in	a	() 	and	declared	between	the	func 	keyword	and	the	method	name.

Here	are	some	method	declaration	examples:

1| //	Age	and	int	are	two	distinct	types.	We

2| //	can't	declare	methods	for	int	and	*int,

3| //	but	can	for	Age	and	*Age.

4| type	Age	int

5| func	(age	Age)	LargerThan(a	Age)	bool	{

6| 			return	age	>	a
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7| }

8| func	(age	*Age)	Increase()	{

9| 			*age++

10| }

11|

12| //	Receiver	of	custom	defined	function	type.

13| type	FilterFunc	func(in	int)	bool

14| func	(ff	FilterFunc)	Filte(in	int)	bool	{

15| 			return	ff(in)

16| }

17|

18| //	Receiver	of	custom	defined	map	type.

19| type	StringSet	map[string]struct{}

20| func	(ss	StringSet)	Has(key	string)	bool	{

21| 			_,	present	:=	ss[key]

22| 			return	present

23| }

24| func	(ss	StringSet)	Add(key	string)	{

25| 			ss[key]	=	struct{}{}

26| }

27| func	(ss	StringSet)	Remove(key	string)	{

28| 			delete(ss,	key)

29| }

30|

31| //	Receiver	of	custom	defined	struct	type.

32| type	Book	struct	{

33| 			pages	int

34| }

35| func	(b	Book)	Pages()	int	{

36| 			return	b.pages

37| }

38| func	(b	*Book)	SetPages(pages	int)	{

39| 			b.pages	=	pages

40| }

From	the	above	examples,	we	know	that	the	receiver	base	types	not	only	can	be	struct	types,	but	also	can
be	other	kinds	of	types,	such	as	basic	types	and	container	types,	as	long	as	the	receiver	base	types	satisfy
the	4	conditions	listed	above.

In	some	other	programming	languages,	the	receiver	parameter	names	are	always	the	implicit	this ,	which
is	not	a	recommended	identifier	for	receiver	parameter	names	in	Go.

The	receiver	of	type	*T 	is	called	pointer	receiver,	non-pointer	receivers	are	called	value	receivers.
Personally,	I	don't	recommend	to	view	the	terminology	pointer	as	an	opposite	of	the	terminology	value,
because	pointer	values	are	just	special	values.	But,	I	am	not	against	using	the	pointer	receiver	and	value
receiver	terminologies	here.	The	reason	will	be	explained	below.
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Method	names	can	be	the	blank	identifier	_ .	A	type	can	have	multiple	methods	with	the	blank	identifier	as
name.	But	such	methods	can	never	be	called.	Only	exported	methods	can	be	called	from	other	packages.
Method	calls	will	be	introduced	in	a	later	section.

Each	Method	Corresponds	to	an	Implicit	Function

For	each	method	declaration,	compiler	will	declare	a	corresponding	implicit	function	for	it.	For	the	last
two	methods	declared	for	type	Book 	and	type	*Book 	in	the	last	example	in	the	last	section,	two	following
functions	are	implicitly	declared	by	compiler:

1| func	Book.Pages(b	Book)	int	{

2| 			//	The	body	is	the	same	as	the	Pages	method.

3| 			return	b.pages

4| }

5|

6| func	(*Book).SetPages(b	*Book,	pages	int)	{

7| 			//	The	body	is	the	same	as	the	SetPages	method.

8| 			b.pages	=	pages

9| }

In	each	of	the	two	implicit	function	declarations,	the	receiver	parameter	is	removed	from	its	corresponding
method	declaration	and	inserted	into	the	normal	parameter	list	as	the	first	one.	The	function	bodies	of	the
two	implicitly	declared	functions	is	the	same	as	their	corresponding	method	explicit	bodies.

The	implicit	function	names,	Book.Pages 	and	(*Book).SetPages ,	are	both	of	the	form
TypeDenotation.MethodName .	As	identifiers	in	Go	can't	contain	the	period	special	characters,	the	two
implicit	function	names	are	not	legal	identifiers,	so	the	two	functions	can't	be	declared	explicitly.	They	can
only	be	declared	by	compilers	implicitly,	but	they	can	be	called	in	user	code:

1| package	main

2|

3| import	"fmt"

4|

5| type	Book	struct	{

6| 			pages	int

7| }

8| func	(b	Book)	Pages()	int	{

9| 			return	b.pages

10| }

11| func	(b	*Book)	SetPages(pages	int)	{

12| 			b.pages	=	pages

13| }

14|

15| func	main()	{

16| 			var	book	Book
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17| 			//	Call	the	two	implicit	declared	functions.

18| 			(*Book).SetPages(&book,	123)

19| 			fmt.Println(Book.Pages(book))	//	123

20| }

In	fact,	compilers	not	only	declare	the	two	implicit	functions,	they	also	rewrite	the	two	corresponding
explicit	declared	methods	to	let	the	two	methods	call	the	two	implicit	functions	in	the	method	bodies	(at
least,	we	can	think	this	happens),	just	like	the	following	code	shows:

1| func	(b	Book)	Pages()	int	{

2| 			return	Book.pages(b)

3| }

4| func	(b	*Book)	SetPages(pages	int)	{

5| 			(*Book).SetPages(b,	pages)

6| }

Implicit	Methods	With	Pointer	Receivers

For	each	method	declared	for	value	receiver	type	T ,	a	corresponding	method	with	the	same	name	will	be
implicitly	declared	by	compiler	for	type	*T .	By	the	example	above,	the	Pages 	method	is	declared	for
type	Book ,	so	compilers	will	implicitly	declare	a	method	with	the	same	name	Pages 	for	type	*Book .
The	same	method	name	contains	one	line	of	code,	which	is	a	call	to	the	implicit	function	Book.Pages
introduced	above.

1| func	(b	*Book)	Pages()	int	{

2| 			return	Book.Pages(*b)

3| }

This	is	why	I	don't	reject	the	use	the	value	receiver	terminology	(as	the	opposite	of	the	pointer	receiver
terminology).	After	all,	when	we	expliclty	declare	a	method	for	a	non-pointer	type,	in	fact	two	methods
are	declared,	the	explicit	one	is	for	the	non-pointer	type	and	the	implicit	one	is	for	the	corresponding
pointer	type.

As	mentioned	at	the	last	section,	for	each	declared	method,	compilers	will	also	declare	a	corresponding
implicit	function	for	it.	So	for	the	implicitly	declared	method,	the	following	implicit	function	is	declared
by	compiler.

1| func	(*Book).Pages(b	*Book)	int	{

2| 			return	Book.Pages(*b)

3| }

In	other	words,	for	each	explicitly	declared	method	with	a	value	receiver,	two	implicit	functions	and	one
implicit	method	will	also	be	declared	at	the	same	time.
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Method	Prototypes	and	Method	Sets

A	method	prototype	can	be	viewed	as	a	function	prototype	(§20)	without	the	func 	keyword.	We	can	view
each	method	declaration	is	composed	of	the	func 	keyword,	a	receiver	parameter	declaration,	a	method
prototype	and	a	method	(function)	body.

For	example,	the	method	prototypes	of	the	Pages 	and	SetPages 	methods	shown	above	are

1| Pages()	int

2| SetPages(pages	int)

Each	type	has	a	method	set.	The	method	set	of	a	non-interface	type	is	composed	of	all	the	method
prototypes	of	the	methods	declared,	either	explicitly	or	implicitly,	for	the	type,	except	the	ones	whose
names	are	the	blank	identifier	_ .	Interface	types	will	be	explained	in	the	next	article	(§23).

For	example,	the	method	sets	of	the	Book 	type	shown	in	the	previous	sections	is

1| Pages()	int

and	the	method	set	of	the	*Book 	type	is

1| Pages()	int

2| SetPages(pages	int)

The	order	of	the	method	prototypes	in	a	method	set	is	not	important	for	the	method	set.

For	a	method	set,	if	every	method	prototype	in	it	is	also	in	another	method	set,	then	we	say	the	former
method	set	is	a	subset	of	the	latter	one,	and	the	latter	one	is	a	superset	of	the	former	one.	If	two	method
sets	are	subsets	(or	supersets)	of	each	other,	then	we	say	the	two	method	sets	are	identical.

Given	a	type	T ,	assume	it	is	neither	a	pointer	type	nor	an	interface	type,	for	the	reason	mentioned	in	the
last	section,	the	method	set	of	a	type	T 	is	always	a	subset	of	the	method	set	of	type	*T .	For	example,	the
method	set	of	the	Book 	type	shown	above	is	a	subset	of	the	method	set	of	the	*Book 	type.

Please	note,	non-exported	method	names,	which	start	with	lower-case	letters,	from	different
packages	will	be	always	viewed	as	two	different	method	names,	even	if	the	two	method	names	are
the	same	in	literal.

Method	sets	play	an	important	role	in	the	polymorphism	feature	of	Go.	About	polymorphism,	please	read
the	next	article	(§23)	(interfaces	in	Go)	for	details.

The	method	sets	of	the	following	types	are	always	blank:

built-in	basic	types.
defined	pointer	types.
pointer	types	whose	base	types	are	interface	or	pointer	types.
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undefined	array,	slice,	map,	function	and	channel	types.

Method	Values	and	Method	Calls

Methods	are	special	functions	in	fact.	Methods	are	often	called	member	functions.	When	a	type	owns	a
method,	each	value	of	the	type	will	own	an	immutable	member	of	function	type.	The	member	name	is	the
same	as	the	method	name	and	the	type	of	the	member	is	the	same	as	the	function	declared	with	the	form	of
the	method	declaration	but	without	the	receiver	part.

A	method	call	is	just	a	call	to	such	a	member	function.	For	a	value	v ,	its	method	m 	can	be	represented
with	the	selector	form	v.m ,	which	is	a	function	value.

An	example	containing	some	method	calls:

1| package	main

2|

3| import	"fmt"

4|

5| type	Book	struct	{

6| 			pages	int

7| }

8|

9| func	(b	Book)	Pages()	int	{

10| 			return	b.pages

11| }

12|

13| func	(b	*Book)	SetPages(pages	int)	{

14| 			b.pages	=	pages

15| }

16|

17| func	main()	{

18| 			var	book	Book

19|

20| 			fmt.Printf("%T	\n",	book.Pages)							//	func()	int

21| 			fmt.Printf("%T	\n",	(&book).SetPages)	//	func(int)

22| 			//	&book	has	an	implicit	method.

23| 			fmt.Printf("%T	\n",	(&book).Pages)	//	func()	int

24|

25| 			//	Call	the	three	methods.

26| 			(&book).SetPages(123)

27| 			book.SetPages(123)	//	equivalent	to	the	last	line

28| 			fmt.Println(book.Pages())				//	123

29| 			fmt.Println((&book).Pages())	//	123

30| }

(Different	from	C	language,	there	is	not	the	-> 	operator	in	Go	to	call	methods	with	pointer	receivers,	so
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(&book)->SetPages(123) 	is	illegal	in	Go.)

Wait!	Why	does	the	line	book.SetPages(123) 	in	the	above	example	compile	okay?	After	all,	the
method	SetPages 	is	not	declared	for	the	Book 	type.	One	one	hand,	this	can	be	viewed	as	a	syntactic
sugar	to	make	programming	convenient.	This	sugar	only	works	for	addressable	value	receivers.	Compiler
will	automatically	take	the	address	of	the	addressable	value	book 	when	it	is	passed	as	the	receiver
argument	of	a	SetPages 	method	call.	On	the	other	hand,	we	should	also	think
aBookExpression.SetPages 	is	always	a	legal	selector	(from	the	syntax	view),	even	if	the	expression
aBookExpression 	is	evaluated	as	an	unaddressable	Book 	value,	for	which	case,	the	selector
aBookExpression.SetPages 	is	invalid	(but	legal).

As	above	just	mentioned,	when	a	method	is	declared	for	a	type,	each	value	of	the	type	will	own	a	member
function.	Zero	values	are	not	exceptions,	whether	or	not	the	zero	values	of	the	types	are	represented	by
nil .

Example:

1| package	main

2|

3| type	StringSet	map[string]struct{}

4| func	(ss	StringSet)	Has(key	string)	bool	{

5| 			//	Never	panic	here,	even	if	ss	is	nil.

6| 			_,	present	:=	ss[key]

7| 			return	present

8| }

9|

10| type	Age	int

11| func	(age	*Age)	IsNil()	bool	{

12| 			return	age	==	nil

13| }

14| func	(age	*Age)	Increase()	{

15| 			*age++	//	If	age	is	a	nil	pointer,	then

16| 										//	dereferencing	it	will	panic.

17| }

18|

19| func	main()	{

20| 			_	=	(StringSet(nil)).Has			//	will	not	panic

21| 			_	=	((*Age)(nil)).IsNil				//	will	not	panic

22| 			_	=	((*Age)(nil)).Increase	//	will	not	panic

23|

24| 			_	=	(StringSet(nil)).Has("key")	//	will	not	panic

25| 			_	=	((*Age)(nil)).IsNil()							//	will	not	panic

26|

27| 			//	This	following	line	will	panic.	But	the

28| 			//	panic	is	not	caused	by	invoking	the	method.

29| 			//	It	is	caused	by	the	nil	pointer	dereference
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30| 			//	within	the	method	body.

31| 			((*Age)(nil)).Increase()

32| }

Receiver	Arguments	Are	Passed	by	Copy

Same	as	general	function	arguments,	the	receiver	arguments	are	also	passed	by	copy.	So,	the
modifications	on	the	direct	part	(§17)	of	a	receiver	argument	in	a	method	call	will	not	be	reflected	to	the
outside	of	the	method.

An	example:

1| package	main

2|

3| import	"fmt"

4|

5| type	Book	struct	{

6| 			pages	int

7| }

8|

9| func	(b	Book)	SetPages(pages	int)	{

10| 			b.pages	=	pages

11| }

12|

13| func	main()	{

14| 			var	b	Book

15| 			b.SetPages(123)

16| 			fmt.Println(b.pages)	//	0

17| }

Another	example:

1| package	main

2|

3| import	"fmt"

4|

5| type	Book	struct	{

6| 			pages	int

7| }

8|

9| type	Books	[]Book

10|

11| func	(books	Books)	Modify()	{

12| 			//	Modifications	on	the	underlying	part	of

13| 			//	the	receiver	will	be	reflected	to	outside

14| 			//	of	the	method.

15| 			books[0].pages	=	500
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16| 			//	Modifications	on	the	direct	part	of	the

17| 			//	receiver	will	not	be	reflected	to	outside

18| 			//	of	the	method.

19| 			books	=	append(books,	Book{789})

20| }

21|

22| func	main()	{

23| 			var	books	=	Books{{123},	{456}}

24| 			books.Modify()

25| 			fmt.Println(books)	//	[{500}	{456}]

26| }

Some	off	topic,	if	the	two	lines	in	the	orders	of	the	above	Modify 	method	are	exchanged,	then	both	of	the
modifications	will	not	be	reflected	to	outside	of	the	method	body.

1| func	(books	Books)	Modify()	{

2| 			books	=	append(books,	Book{789})

3| 			books[0].pages	=	500

4| }

5|

6| func	main()	{

7| 			var	books	=	Books{{123},	{456}}

8| 			books.Modify()

9| 			fmt.Println(books)	//	[{123}	{456}]

10| }

The	reason	here	is	that	the	append 	call	will	allocate	a	new	memory	block	to	store	the	elements	of	the
copy	of	the	passed	slice	receiver	argument.	The	allocation	will	not	reflect	to	the	passed	slice	receiver
argument	itself.

To	make	both	of	the	modifications	be	reflected	to	outside	of	the	method	body,	the	receiver	of	the	method
must	be	a	pointer	one.

1| func	(books	*Books)	Modify()	{

2| 			*books	=	append(*books,	Book{789})

3| 			(*books)[0].pages	=	500

4| }

5|

6| func	main()	{

7| 			var	books	=	Books{{123},	{456}}

8| 			books.Modify()

9| 			fmt.Println(books)	//	[{500}	{456}	{789}]

10| }

Should	a	Method	Be	Declared	With	Pointer	Receiver	or
Value	Receiver?
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Firstly,	from	the	last	section,	we	know	that	sometimes	we	must	declare	methods	with	pointer	receivers.

In	fact,	we	can	always	declare	methods	with	pointer	receivers	without	any	logic	problems.	It	is	just	a
matter	of	program	performance	that	sometimes	it	is	better	to	declare	methods	with	value	receivers.

For	the	cases	value	receivers	and	pointer	receivers	are	both	acceptable,	here	are	some	factors	needed	to	be
considered	to	make	decisions.

Too	many	pointer	copies	may	cause	heavier	workload	for	garbage	collector.
If	the	size	of	a	value	receiver	type	is	large,	then	the	receiver	argument	copy	cost	may	be	not
negligible.	Pointer	types	are	all	small-size	(§34)	types.
Declaring	methods	of	both	value	receivers	and	pointer	receivers	for	the	same	base	type	is	more
likely	to	cause	data	races	if	the	declared	methods	are	called	concurrently	in	multiple	goroutines.
Values	of	the	types	in	the	sync 	standard	package	should	not	be	copied,	so	defining	methods	with
value	receivers	for	struct	types	which	embedding	(§24)	the	types	in	the	sync 	standard	package	is
problematic.

If	it	is	hard	to	make	a	decision	whether	a	method	should	use	a	pointer	receiver	or	a	value	receiver,	then
just	choose	the	pointer	receiver	way.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Interfaces	in	Go
Interface	types	are	one	special	kind	of	types	in	Go.	Interface	kind	plays	several	important	roles	in	Go.
Firstly,	interface	types	make	Go	support	value	boxing.	Consequently,	through	value	boxing,	reflection	and
polymorphism	get	supported.

The	remaining	of	this	article	will	explain	the	functionalities	of	interfaces	in	detail.	Some	interface	related
details	will	also	be	shown.

What	Are	Interface	Types?

An	interface	type	specifies	a	collection	of	method	prototypes	(§22).	In	other	words,	each	interface	type
defines	a	method	set	(§22).	In	fact,	we	can	view	an	interface	type	as	a	method	set.	For	any	of	the	method
prototype	specified	in	an	interface	type,	its	name	can't	be	the	blank	identifier	_ .

We	also	often	say	that	each	interface	type	specifies	a	behavior	set	(represented	by	the	method	set	specified
by	that	interface	type).

Some	examples	of	interface	types:

1| //	This	is	a	non-defined	interface	type.

2| interface	{

3| 			About()	string

4| }

5|

6| //	ReadWriter	is	a	defined	interface	type.

7| type	ReadWriter	interface	{

8| 			Read(buf	[]byte)	(n	int,	err	error)

9| 			Write(buf	[]byte)	(n	int,	err	error)

10| }

11|

12| //	Runnable	is	an	alias	of	a	non-defined	interface	type.

13| type	Runnable	=	interface	{

14| 			Run()

15| }

Please	note	that	the	error 	result	type	in	the	method	prototypes	specified	by	the	ReadWriter 	interface
type	is	a	built-in	interface	type Ң .	It	is	defined	as

1| type	error	interface	{

2| 								Error()	string

3| }

In	particular,	an	interface	type	without	specifying	any	method	prototype	is	called	a	blank	interface	type.
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Here	are	some	blank	interface	types	examples:

1| //	A	non-defined	blank	interface	type.

2| interface{}

3|

4| //	Type	I	is	a	defined	blank	interface	type.

5| type	I	interface{}

The	Method	Set	of	a	Type

Each	type	has	a	method	set	(§22)	associated	with	it.

For	a	non-interface	type,	its	method	set	is	the	prototype	collection	of	all	the	methods	(either	explicit
or	implicit	ones)	declared	(§22)	for	it.
For	an	interface	type,	its	method	set	is	the	method	prototype	collection	it	specifies.

For	convenience,	the	method	set	of	a	type	is	often	also	called	the	method	set	of	any	value	of	the	type.

Two	non-defined	interface	types	are	identical	if	their	method	sets	are	identical.	Please	note,	non-exported
method	names,	which	start	with	lower-case	letters,	from	different	packages	will	be	always	viewed	as	two
different	method	names,	even	if	the	two	method	names	are	the	same	in	literal.

What	Are	Implementations?

If	the	method	set	of	an	arbitrary	type	T ,	T 	may	be	an	interface	type	or	not,	is	a	super	set	of	the	method	set
of	an	interface	type	I ,	then	we	say	type	T 	implements	interface	I .

Implementations	are	all	implicit	in	Go.	The	implementation	relations	are	not	needed	to	be	specified	for
compilers	in	code	explicitly.	There	is	not	an	implements 	keyword	in	Go.	Go	compilers	will	check	the
implementation	relations	automatically	as	needed.

An	interface	type	always	implements	itself.	Two	interface	types	with	the	same	method	set	implement	each
other.

For	example,	in	the	following	example,	the	method	sets	of	struct	pointer	type	*Book ,	integer	type	MyInt
and	pointer	type	*MyInt 	all	contain	the	method	prototype	About()	string ,	so	they	all	implement	the
above	mentioned	interface	type	interface	{About()	string} .

1| type	Book	struct	{

2| 			name	string

3| 			//	more	other	fields	...

4| }

5|

6| func	(book	*Book)	About()	string	{
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7| 			return	"Book:	"	+	book.name

8| }

9|

10| type	MyInt	int

11|

12| func	(MyInt)	About()	string	{

13| 			return	"I'm	a	custom	integer	value"

14| }

Note,	as	any	method	set	is	a	super	set	of	a	blank	method	set,	so	any	type	implements	any	blank
interface	type.	This	is	an	important	fact	in	Go.

The	implicit	implementation	design	makes	it	possible	to	let	concrete	types	defined	in	other	library
packages,	such	as	standard	packages,	passively	implement	some	interface	types	declared	in	user	packages.
For	example,	if	we	declare	an	interface	type	as	the	following	one,	then	the	type	DB 	and	type	Tx 	declared
in	the	database/sql 	standard	package Ң 	will	both	implement	the	interface	type	automatically,	for	they
both	have	the	three	corresponding	methods	specified	in	the	interface.

1| import	"database/sql"

2|

3| ...

4|

5| type	DatabaseStorer	interface	{

6| 			Exec(query	string,	args	...interface{})	(sql.Result,	error)

7| 			Prepare(query	string)	(*sql.Stmt,	error)

8| 			Query(query	string,	args	...interface{})	(*sql.Rows,	error)

9| }

Value	Boxing

We	can	view	each	interface	value	as	a	box	to	encapsulate	a	non-interface	value.	To	box/encapsulate	a	non-
interface	value	into	an	interface	value,	the	type	of	the	non-interface	value	must	implement	the	type	of	the
interface	value.

In	Go,	if	a	type	T 	implements	an	interface	type	I ,	then	any	value	of	type	T 	can	be	implicitly	converted	to
type	I .	In	other	words,	any	value	of	type	T 	is	assignable	(§7)	to	(modifiable)	values	of	type	I .	When	a	T
value	is	converted	(assigned)	to	an	I 	value,

if	type	T 	is	a	non-interface	type,	then	a	copy	of	the	T 	value	is	boxed	(or	encapsulated)	into	the	result
(or	destination)	I 	value.	The	time	complexity	of	the	copy	is	O(n) ,	where	n 	is	the	size	of	copied	T
value.
if	type	T 	is	also	an	interface	type,	then	a	copy	of	the	value	boxed	in	the	T 	value	is	boxed	(or
encapsulated)	into	the	result	(or	destination)	I 	value.	The	standard	Go	compiler	makes	an
optimization	here,	so	the	time	complexity	of	the	copy	is	O(1) ,	instead	of	O(n) .
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The	type	information	of	the	boxed	value	is	also	stored	in	the	result	(or	destination)	interface	value.	(This
will	be	further	explained	below.)

When	a	value	is	boxed	in	an	interface	value,	the	value	is	called	the	dynamic	value	of	the	interface	value.
The	type	of	the	dynamic	value	is	called	the	dynamic	type	of	the	interface	value.

The	direct	part	of	the	dynamic	value	of	an	interface	value	is	immutable,	though	we	can	replace	the
dynamic	value	of	an	interface	value	with	another	dynamic	value.

In	Go,	the	zero	values	of	any	interface	type	are	represented	by	the	predeclared	nil 	identifier.	Nothing	is
boxed	in	a	nil	interface	value.	Assigning	an	untyped	nil 	to	an	interface	value	will	clear	the	dynamic
value	boxed	in	the	interface	value.

(Note,	the	zero	values	of	many	non-interface	types	in	Go	are	also	represented	by	nil 	in	Go.	Non-
interface	nil	values	can	also	be	boxed	in	interface	values.	An	interface	value	boxing	a	nil	non-interface
value	still	boxes	something,	so	it	is	not	a	nil	interface	value.)

As	any	type	implements	any	blank	interface	types,	so	any	non-interface	value	can	be	boxed	in	(or	assigned
to)	a	blank	interface	value.	For	this	reason,	blank	interface	types	can	be	viewed	as	the	any 	type	in	many
other	languages.

When	an	untyped	value	(except	untyped	nil 	values)	is	assigned	to	a	blank	interface	value,	the	untyped
value	will	be	first	converted	to	its	default	type.	(In	other	words,	we	can	think	the	untyped	value	is	deduced
as	a	value	of	its	default	type).

Let's	view	an	example	which	demonstrates	some	assignments	with	interface	values	as	the	destinations.

1| package	main

2|

3| import	"fmt"

4|

5| type	Aboutable	interface	{

6| 			About()	string

7| }

8|

9| //	Type	*Book	implements	Aboutable.

10| type	Book	struct	{

11| 			name	string

12| }

13| func	(book	*Book)	About()	string	{

14| 			return	"Book:	"	+	book.name

15| }

16|

17| func	main()	{

18| 			//	A	*Book	value	is	boxed	into	an

19| 			//	interface	value	of	type	Aboutable.

20| 			var	a	Aboutable	=	&Book{"Go	101"}
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21| 			fmt.Println(a)	//	&{Go	101}

22|

23| 			//	i	is	a	blank	interface	value.

24| 			var	i	interface{}	=	&Book{"Rust	101"}

25| 			fmt.Println(i)	//	&{Rust	101}

26|

27| 			//	Aboutable	implements	interface{}.

28| 			i	=	a

29| 			fmt.Println(i)	//	&{Go	101}

30| }

Please	note,	the	prototype	of	the	fmt.Println 	function	used	many	times	in	previous	articles	is

func	Println(a	...interface{})	(n	int,	err	error)

This	is	why	a	fmt.Println 	function	calls	can	take	arguments	of	any	types.

The	following	is	another	example	which	shows	how	a	blank	interface	value	is	used	to	box	values	of	any
non-interface	type.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	i	interface{}

7| 			i	=	[]int{1,	2,	3}

8| 			fmt.Println(i)	//	[1	2	3]

9| 			i	=	map[string]int{"Go":	2012}

10| 			fmt.Println(i)	//	map[Go:2012]

11| 			i	=	true

12| 			fmt.Println(i)	//	true

13| 			i	=	1

14| 			fmt.Println(i)	//	1

15| 			i	=	"abc"

16| 			fmt.Println(i)	//	abc

17|

18| 			//	Clear	the	boxed	value	in	interface	value	i.

19| 			i	=	nil

20| 			fmt.Println(i)	//	<nil>

21| }

Go	compilers	will	build	a	global	table	which	contains	the	information	of	each	type	at	compile	time.	The
information	includes	what	kind	(§14)	a	type	is,	what	methods	and	fields	a	type	owns,	what	the	element
type	of	a	container	type	is,	type	sizes,	etc.	The	global	table	will	be	loaded	into	memory	when	a	program
starts.

At	run	time,	when	a	non-interface	value	is	boxed	into	an	interface	value,	the	Go	runtime	(at	least	for	the
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standard	Go	runtime)	will	analyze	and	build	the	implementation	information	for	the	type	pair	of	the	two
values,	and	store	the	implementation	information	in	the	interface	value.	The	implementation	information
for	each	non-interface	type	and	interface	type	pair	will	only	be	built	most	once	and	cached	in	a	global	map
for	execution	efficiency	consideration.	The	number	of	entries	of	the	global	map	never	decreases.	In	fact,	a
non-nil	interface	value	just	uses	an	internal	pointer	field	which	references	a	cached	implementation
information	entry	(§17).

The	implementation	information	for	each	(interface	type,	dynamic	type)	pair	includes	two	pieces	of
information:

1.	 the	information	of	the	dynamic	type	(a	non-interface	type)
2.	 and	a	method	table	(a	slice)	which	stores	all	the	corresponding	methods	specified	by	the	interface

type	and	declared	for	the	non-interface	type	(the	dynamic	type).

The	two	pieces	of	information	are	essential	for	implementing	two	important	features	in	Go.

1.	 The	dynamic	type	information	is	the	key	to	implement	reflection	in	Go.
2.	 The	method	table	information	is	the	key	to	implement	polymorphism	(polymorphism	will	be

explained	in	the	next	section).

Polymorphism

Polymorphism	is	one	key	functionality	provided	by	interfaces,	and	it	is	an	important	feature	of	Go.

When	a	non-interface	value	t 	of	a	type	T 	is	boxed	in	an	interface	value	i 	of	type	I ,	calling	a	method
specified	by	the	interface	type	I 	on	the	interface	value	i 	will	call	the	corresponding	method	declared	for
the	non-interface	type	T 	on	the	non-interface	value	t 	actually.	In	other	words,	calling	the	method	of	an
interface	value	will	call	the	corresponding	method	of	the	dynamic	value	of	the	interface	value
actually.	For	example,	calling	method	i.m 	will	call	method	t.m 	actually.	With	different	dynamic	values
of	different	dynamic	types	boxed	into	the	interface	value,	the	interface	value	behaves	differently.	This	is
called	polymorphism.

When	method	i.m 	is	called,	the	method	table	in	the	implementation	information	stored	in	i 	will	be
looked	up	to	find	and	call	the	corresponding	method	t.m .	The	method	table	is	a	slice	and	the	lookup	is
just	a	slice	element	indexing,	so	no	much	time	is	consumed.

(Note,	calling	methods	on	a	nil	interface	value	will	panic	at	run	time,	for	there	are	no	available	declared
methods	can	be	called.)

An	example:

1| package	main

2|

3| import	"fmt"
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4|

5| type	Filter	interface	{

6| 			About()	string

7| 			Process([]int)	[]int

8| }

9|

10| //	UniqueFilter	is	used	to	remove	duplicate	numbers.

11| type	UniqueFilter	struct{}

12| func	(UniqueFilter)	About()	string	{

13| 			return	"remove	duplicate	numbers"

14| }

15| func	(UniqueFilter)	Process(inputs	[]int)	[]int	{

16| 			outs	:=	make([]int,	0,	len(inputs))

17| 			pusheds	:=	make(map[int]bool)

18| 			for	_,	n	:=	range	inputs	{

19| 						if	!pusheds[n]	{

20| 									pusheds[n]	=	true

21| 									outs	=	append(outs,	n)

22| 						}

23| 			}

24| 			return	outs

25| }

26|

27| //	MultipleFilter	is	used	to	keep	only

28| //	the	numbers	which	are	multiples	of

29| //	the	MultipleFilter	as	an	int	value.

30| type	MultipleFilter	int

31| func	(mf	MultipleFilter)	About()	string	{

32| 			return	fmt.Sprintf("keep	multiples	of	%v",	mf)

33| }

34| func	(mf	MultipleFilter)	Process(inputs	[]int)	[]int	{

35| 			var	outs	=	make([]int,	0,	len(inputs))

36| 			for	_,	n	:=	range	inputs	{

37| 						if	n	%	int(mf)	==	0	{

38| 									outs	=	append(outs,	n)

39| 						}

40| 			}

41| 			return	outs

42| }

43|

44| //	With	the	help	of	polymorphism,	only	one

45| //	"filterAndPrint"	function	is	needed.

46| func	filterAndPrint(fltr	Filter,	unfiltered	[]int)	[]int	{

47| 			//	Call	the	methods	of	"fltr"	will	call	the

48| 			//	methods	of	the	value	boxed	in	"fltr"	actually.

49| 			filtered	:=	fltr.Process(unfiltered)

50| 			fmt.Println(fltr.About()	+	":\n\t",	filtered)

51| 			return	filtered
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52| }

53|

54| func	main()	{

55| 			numbers	:=	[]int{12,	7,	21,	12,	12,	26,	25,	21,	30}

56| 			fmt.Println("before	filtering:\n\t",	numbers)

57|

58| 			//	Three	non-interface	values	are	boxed	into

59| 			//	three	Filter	interface	slice	element	values.

60| 			filters	:=	[]Filter{

61| 						UniqueFilter{},

62| 						MultipleFilter(2),

63| 						MultipleFilter(3),

64| 			}

65|

66| 			//	Each	slice	element	will	be	assigned	to	the

67| 			//	local	variable	"fltr"	(of	interface	type

68| 			//	Filter)	one	by	one.	The	value	boxed	in	each

69| 			//	element	will	also	be	copied	into	"fltr".

70| 			for	_,	fltr	:=	range	filters	{

71| 						numbers	=	filterAndPrint(fltr,	numbers)

72| 			}

73| }

The	output:

before	filtering:

				[12	7	21	12	12	26	25	21	30]

remove	duplicate	numbers:

				[12	7	21	26	25	30]

keep	multiples	of	2:

				[12	26	30]

keep	multiples	of	3:

				[12	30]

In	the	above	example,	polymorphism	makes	it	unnecessary	to	write	one	filterAndPrint 	function	for
each	filter	types.

Besides	the	above	benefit,	polymorphism	also	makes	it	possible	for	the	developers	of	a	library	code
package	to	declare	an	exported	interface	type	and	declare	a	function	(or	method)	which	has	a	parameter	of
the	interface	type,	so	that	a	user	of	the	package	can	declare	a	type,	which	implements	the	interface	type,	in
user	code	and	pass	arguments	of	the	user	type	to	calls	to	the	function	(or	method).	The	developers	of	the
code	package	don't	need	to	care	about	how	the	user	type	is	declared,	as	long	as	the	user	type	satisfies	the
behaviors	specified	by	the	interface	type	declared	in	the	library	code	package.

In	fact,	polymorphism	is	not	an	essential	feature	for	a	language.	There	are	alternative	ways	to	achieve	the
same	job,	such	as	callback	functions.	But	the	polymorphism	way	is	cleaner	and	more	elegant.
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Reflection

The	dynamic	type	information	stored	in	an	interface	value	can	be	used	to	inspect	the	dynamic	value	of	the
interface	value	and	manipulate	the	values	referenced	by	the	dynamic	value.	This	is	called	reflection	in
programming.

Currently	(Go	1.13),	Go	doesn't	support	generic	for	custom	functions	and	types.	Reflection	partially
remedies	the	inconveniences	caused	by	the	lack	of	generics.

This	article	will	not	explain	the	functionalities	provided	by	the	reflect 	standard	package Ң .	Please
read	reflections	in	Go	(§27)	to	get	how	to	use	this	package.	Below	will	only	introduce	the	built-in
reflection	functionalities	in	Go.	In	Go,	built-in	reflections	are	achieved	with	type	assertions	and	type-
switch 	control	flow	code	blocks.

Type	assertion

There	are	four	kinds	of	interface	value	involved	value	conversion	cases	in	Go:

1.	 convert	a	non-interface	value	to	an	interface	value,	where	the	type	of	the	non-interface	value	must
implement	the	type	of	the	interface	value.

2.	 convert	an	interface	value	to	an	interface	value,	where	the	type	of	the	source	interface	value	must
implement	the	type	of	the	destination	interface	value.

3.	 convert	an	interface	value	to	a	non-interface	value,	where	the	type	of	the	non-interface	value	must
implement	the	type	of	the	interface	value.

4.	 convert	an	interface	value	to	an	interface	value,	where	the	type	of	the	source	interface	value	may	or
may	not	implement	the	type	of	the	destination	interface	value.

Above	has	explained	the	first	two	kinds	of	cases.	The	two	both	require	the	source	value	type	must
implement	the	destination	interface	type.	The	convertibility	for	the	first	two	are	verified	at	compile	time.

Here	will	explain	the	later	two	kinds	of	cases.	The	convertibility	for	the	later	two	are	verified	at	run	time,
by	using	a	syntax	called	type	assertion.	In	fact,	the	syntax	also	applies	to	the	second	kind	of	conversions.

The	form	of	a	type	assertion	expression	is	i.(T) ,	where	i 	is	an	interface	value	and	T 	is	a	type	name	or	a
type	literal.	Type	T 	must	be

either	an	arbitrary	non-interface	type,
or	an	arbitrary	interface	type.

In	a	type	assertion	i.(T) ,	i 	is	called	the	asserted	value	and	T 	is	called	the	asserted	type.	A	type	assertion
might	succeed	or	fail.

In	case	of	T 	is	a	non-interface	type,	if	the	dynamic	type	of	i 	exists	and	is	identical	to	T ,	then	the
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assertion	will	succeed,	otherwise,	the	assertion	will	fail.	When	the	assertion	succeeds,	the	evaluation
result	of	the	assertion	is	a	copy	of	the	dynamic	value	of	i .	We	can	view	assertions	of	this	case	as
value	unboxing	attempt.
In	case	of	T 	is	an	interface	type,	if	the	dynamic	type	of	the	i 	exists	and	implements	T ,	then	the
assertion	will	succeed,	otherwise,	the	assertion	will	fail.	When	the	assertion	succeeds,	a	copy	of	the
dynamic	value	of	i 	will	be	boxed	into	a	T 	value	and	the	T 	value	will	be	used	as	the	evaluation
result	of	the	assertion.

When	a	type	assertion	fails,	its	evaluation	result	is	a	zero	value	of	the	asserted	type.

By	the	rules	described	above,	if	the	asserted	value	in	a	type	assertion	is	a	nil	interface	value,	then	the
assertion	will	always	fail.

For	most	scenarios,	a	type	assertion	is	used	as	a	single-value	expression.	However,	when	a	type	assertion
is	used	as	the	only	source	value	expression	in	an	assignment,	it	can	result	in	a	second	optional	untyped
boolean	value	and	be	viewed	as	a	multi-value	expression.	The	second	optional	untyped	boolean	value
indicates	whether	or	not	the	type	assertion	succeeds.

Note,	if	a	type	assertion	fails	and	the	type	assertion	is	used	as	a	single-value	expression	(the	second
optional	bool	result	is	absent),	then	a	panic	will	occur.

An	example	which	shows	how	to	use	type	assertions	(asserted	types	are	non-interface	types):

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			//	Compiler	will	deduce	the	type	of	123	as	int.

7| 			var	x	interface{}	=	123

8|

9| 			//	Case	1:

10| 			n,	ok	:=	x.(int)

11| 			fmt.Println(n,	ok)	//	123	true

12| 			n	=	x.(int)

13| 			fmt.Println(n)	//	123

14|

15| 			//	Case	2:

16| 			a,	ok	:=	x.(float64)

17| 			fmt.Println(a,	ok)	//	0	false

18|

19| 			//	Case	3:

20| 			a	=	x.(float64)	//	will	panic

21| }

Another	example	which	shows	how	to	use	type	assertions	(asserted	types	are	interface	types):
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1| package	main

2|

3| import	"fmt"

4|

5| type	Writer	interface	{

6| 			Write(buf	[]byte)	(int,	error)

7| }

8|

9| type	DummyWriter	struct{}

10| func	(DummyWriter)	Write(buf	[]byte)	(int,	error)	{

11| 			return	len(buf),	nil

12| }

13|

14| func	main()	{

15| 			var	x	interface{}	=	DummyWriter{}

16| 			var	y	interface{}	=	"abc"

17| 			//	Now	the	dynamic	type	of	y	is	"string".

18| 			var	w	Writer

19| 			var	ok	bool

20|

21| 			//	Type	DummyWriter	implements	both

22| 			//	Writer	and	interface{}.

23| 			w,	ok	=	x.(Writer)

24| 			fmt.Println(w,	ok)	//	{}	true

25| 			x,	ok	=	w.(interface{})

26| 			fmt.Println(x,	ok)	//	{}	true

27|

28| 			//	The	dynamic	type	of	y	is	"string",

29| 			//	which	doesn't	implement	Writer.

30| 			w,	ok	=	y.(Writer)

31| 			fmt.Println(w,	ok)	//	<nil>	false

32| 			w	=	y.(Writer)					//	will	panic

33| }

In	fact,	for	an	interface	value	i 	with	dynamic	type	as	T ,	the	method	call	i.m(...) 	is	equivalent	to	the
method	call	i.(T).m(...) .

type-switch 	control	flow	block

The	type-switch 	code	block	syntax	may	be	the	weirdest	syntax	in	Go.	It	can	be	viewed	as	the	enhanced
version	of	type	assertion.	A	type-switch 	code	block	is	some	similar	with	a	switch-case 	control	flow
code	block.	It	looks	like:

1| switch	aSimpleStatement;	v	:=	x.(type)	{

2| case	TypeA:

3| 			...
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4| case	TypeB,	TypeC:

5| 			...

6| case	nil:

7| 			...

8| default:

9| 			...

10| }

The	aSimpleStatement; 	portion	is	optional	in	a	type-switch 	code	block.	aSimpleStatementmust
be	a	simple	statement	(§11).	x 	must	be	an	interface	value	and	it	is	called	the	asserted	value.	v 	is	called	the
assertion	result,	it	must	be	present	in	a	short	variable	declaration	form.

Each	case 	keyword	in	a	type-switch 	block	can	be	followed	by	a	nil 	identifier	and	several	type
names	or	type	literals.	None	of	such	items	can	be	duplicate	in	the	same	type-switch 	code	block.

If	the	type	denoted	by	a	type	name	or	type	literal	following	a	case 	keyword	in	a	type-switch 	code
block	is	not	an	interface	type,	then	it	must	implement	the	interface	type	of	the	asserted	value.

Here	is	an	example	in	which	a	type-switch 	control	flow	code	block	is	used.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			values	:=	[]interface{}{

7| 						456,	"abc",	true,	0.33,	int32(789),

8| 						[]int{1,	2,	3},	map[int]bool{},	nil,

9| 			}

10| 			for	_,	x	:=	range	values	{

11| 						//	Here,	v	is	declared	once,	but	it	denotes

12| 						//	different	variables	in	different	branches.

13| 						switch	v	:=	x.(type)	{

14| 						case	[]int:	//	a	type	literal

15| 									//	The	type	of	v	is	"[]int"	in	this	branch.

16| 									fmt.Println("int	slice:",	v)

17| 						case	string:	//	one	type	name

18| 									//	The	type	of	v	is	"string"	in	this	branch.

19| 									fmt.Println("string:",	v)

20| 						case	int,	float64,	int32:	//	multiple	type	names

21| 									//	The	type	of	v	is	"interface{}",

22| 									//	the	same	as	x	in	this	branch.

23| 									fmt.Println("number:",	v)

24| 						case	nil:

25| 									//	The	type	of	v	is	"interface{}",

26| 									//	the	same	as	x	in	this	branch.

27| 									fmt.Println(v)

28| 						default:
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29| 									//	The	type	of	v	is	"interface{}",

30| 									//	the	same	as	x	in	this	branch.

31| 									fmt.Println("others:",	v)

32| 						}

33| 						//	Note,	each	variable	denoted	by	v	in	the

34| 						//	last	three	branches	is	a	copy	of	x.

35| 			}

36| }

The	output:

number:	456

string:	abc

others:	true

number:	0.33

number:	789

int	slice:	[1	2	3]

others:	map[]

<nil>

The	above	example	is	equivalent	to	the	following	in	logic:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			values	:=	[]interface{}{

7| 						456,	"abc",	true,	0.33,	int32(789),

8| 						[]int{1,	2,	3},	map[int]bool{},	nil,

9| 			}

10| 			for	_,	x	:=	range	values	{

11| 						if	v,	ok	:=	x.([]int);	ok	{

12| 									fmt.Println("int	slice:",	v)

13| 						}	else	if	v,	ok	:=	x.(string);	ok	{

14| 									fmt.Println("string:",	v)

15| 						}	else	if	x	==	nil	{

16| 									v	:=	x

17| 									fmt.Println(v)

18| 						}	else	{

19| 									_,	isInt	:=	x.(int)

20| 									_,	isFloat64	:=	x.(float64)

21| 									_,	isInt32	:=	x.(int32)

22| 									if	isInt	||	isFloat64	||	isInt32	{

23| 												v	:=	x

24| 												fmt.Println("number:",	v)

25| 									}	else	{

26| 												v	:=	x

27| 												fmt.Println("others:",	v)
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28| 									}

29| 						}

30| 			}

31| }

type-switch 	code	blocks	are	similar	with	switch-case 	code	blocks	in	some	aspects.

Like	switch-case 	blocks,	in	a	type-switch 	code	block,	there	can	be	most	one	default
branch.
Like	switch-case 	blocks,	in	a	type-switch 	code	block,	if	the	default 	branch	is	present,	it	can
be	the	last	branch,	the	first	branch,	or	a	middle	branch.
Like	switch-case 	blocks,	a	type-switch 	code	block	may	not	contain	any	branches,	it	will	be
viewed	as	a	no-op.

But,	unlike	switch-case 	code	blocks,	fallthrough 	statements	can't	be	used	within	branch	blocks	of	a
type-switch 	code	block.

More	About	Interfaces	in	Go

Interface	type	embedding

An	interface	type	can	embed	a	type	name	which	denotes	another	interface	type.	The	final	effect	is	the
same	as	unfolding	the	method	prototypes	specified	by	the	embedded	interface	type	into	the	definition
body	of	the	embedding	interface	type.	For	example,	in	the	following	example,	the	respective	method	sets
specified	by	interface	types	Ic ,	Id 	and	Ie 	are	identical.

1| type	Ia	interface	{

2| 			fa()

3| }

4|

5| type	Ib	=	interface	{

6| 			fb()

7| }

8|

9| type	Ic	interface	{

10| 			fa()

11| 			fb()

12| }

13|

14| type	Id	=	interface	{

15| 			Ia	//	embed	Ia

16| 			Ib	//	embed	Ib

17| }

18|
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19| type	Ie	interface	{

20| 			Ia	//	embed	Ia

21| 			fb()

22| }

Before	Go	1.14,	two	interface	types	can't	embed	each	other	if	they	both	specify	a	method	prototype	with
the	same	name,	and	they	also	can't	be	embeded	at	the	same	time	in	the	same	third	interface	type,	even	if
the	two	method	prototypes	are	identical.	For	example,	the	following	interface	type	declartions	are	all
illegal.

1| type	Ix	interface	{

2| 			Ia

3| 			Ic

4| }

5|

6| type	Iy	=	interface	{

7| 			Ib

8| 			Ic

9| }

10|

11| type	Iz	interface	{

12| 			Ic

13| 			fa()

14| }

Since	Go	1.14 Ң ,	the	limit	demonstrated	in	the	above	example	will	be	removed Ң .	The	method	set
specified	by	any	of	the	interface	types	declared	in	the	above	exmaple	is	the	same	as	Ic .

An	interface	type	can't	embed	itself	or	any	other	interface	types	that	embeds	the	interface	type,
recursively.

Interface	values	involved	comparisons

There	are	two	cases	of	interface	values	involved	comparisons:

1.	 comparisons	between	a	non-interface	value	and	an	interface	value.
2.	 comparisons	between	two	interface	values.

For	the	first	case,	the	type	of	the	non-interface	value	must	implement	the	type	(assume	it	is	I )	of	the
interface	value,	so	the	non-interface	value	can	be	converted	to	(boxed	into)	an	interface	value	of	I .	This
means	a	comparison	between	a	non-interface	value	and	an	interface	value	can	be	translated	to	a
comparison	between	two	interface	values.	So	below	only	comparisons	between	two	interface	values	will
be	explained.

Comparing	two	interface	values	is	comparing	their	respective	dynamic	types	and	dynamic	values	actually.
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The	steps	of	comparing	two	interface	values	(with	the	== 	operator):

1.	 if	one	of	the	two	interface	values	is	a	nil	interface	value,	then	the	comparison	result	is	whether	or	not
the	other	interface	value	is	also	a	nil	interface	value.

2.	 if	the	dynamic	types	of	the	two	interface	values	are	two	different	types,	then	the	comparison	result	is
false .

3.	 for	the	case	of	the	dynamic	types	of	the	two	interface	values	are	the	same	type,
if	the	same	dynamic	type	is	an	incomparable	type	(§48),	a	panic	will	occur.
otherwise,	the	comparison	result	is	the	result	of	comparing	the	dynamic	values	of	the	two
interface	values.

In	short,	two	interface	values	are	equal	only	if	one	of	the	following	conditions	is	satisfied.

1.	 They	are	both	nil	interface	values.
2.	 Their	dynamic	types	are	identical	and	comparable,	and	their	dynamic	values	are	equal	to	each	other.

By	the	rules,	two	interface	values	which	dynamic	values	are	both	nil 	may	be	not	equal.	An	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	a,	b,	c	interface{}	=	"abc",	123,	"a"+"b"+"c"

7| 			//	A	case	of	step	2.

8| 			fmt.Println(a	==	b)	//	false

9| 			//	A	case	of	step	3.

10| 			fmt.Println(a	==	c)	//	true

11|

12| 			var	x	*int	=	nil

13| 			var	y	*bool	=	nil

14| 			var	ix,	iy	interface{}	=	x,	y

15| 			var	i	interface{}	=	nil

16| 			//	A	case	of	step	2.

17| 			fmt.Println(ix	==	iy)	//	false

18| 			//	A	case	of	step	1.

19| 			fmt.Println(ix	==	i)	//	false

20| 			//	A	case	of	step	1.

21| 			fmt.Println(iy	==	i)	//	false

22|

23| 			//	[]int	is	an	incomparable	type

24| 			var	s	[]int	=	nil

25| 			i	=	s

26| 			//	A	case	of	step	1.

27| 			fmt.Println(i	==	nil)	//	false

28| 			//	A	case	of	step	3.

29| 			fmt.Println(i	==	i)	//	will	panic
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30| }

The	internal	structure	of	interface	values

For	the	official	Go	compiler/runtime,	blank	interface	values	and	non-blank	interface	values	are
represented	with	two	different	internal	structures.	Please	read	value	parts	(§17)	for	details.

Pointer	dynamic	value	vs.	non-pointer	dynamic	value

The	official	Go	compiler/runtime	makes	an	optimization	which	makes	that	boxing	pointer	values	into
interface	values	is	more	efficient	than	boxing	non-pointer	values.	For	small	size	values	(§34),	the
efficiency	differences	are	small,	but	for	large	size	values,	the	differences	may	be	not	small.	For	the	same
optimization,	type	assertions	with	a	pointer	type	are	also	more	efficient	than	type	assertions	with	the	base
type	of	the	pointer	type	if	the	base	type	is	a	large	size	type.

So	please	try	to	avoid	boxing	large	size	values,	box	their	pointers	instead.

Values	of	[]T 	can't	be	directly	converted	to	[]I ,	even	if	type	T
implements	interface	type	I .

For	example,	sometimes,	we	may	need	to	convert	a	[]string 	value	to	[]interface{} 	type.	Unlike
some	other	languages,	there	is	no	direct	ways	to	make	the	conversion.	We	must	make	the	conversion
manually	in	a	loop:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			words	:=	[]string{

7| 						"Go",	"is",	"a",	"high",

8| 						"efficient",	"language.",

9| 			}

10|

11| 			//	The	prototype	of	fmt.Println	function	is

12| 			//	func	Println(a	...interface{})	(n	int,	err	error).

13| 			//	So	words...	can't	be	passed	to	it	as	the	argument.

14|

15| 			//	fmt.Println(words...)	//	not	compile

16|

17| 			//	Convert	the	[]string	value	to	[]interface{}.

18| 			iw	:=	make([]interface{},	0,	len(words))

19| 			for	_,	w	:=	range	words	{
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20| 						iw	=	append(iw,	w)

21| 			}

22| 			fmt.Println(iw...)	//	compiles	okay

23| }

Each	method	specified	in	an	interface	type	corresponds	to	an	implicit
function

For	each	method	with	name	m 	in	the	method	set	defined	by	an	interface	type	I ,	compilers	will	implicitly
declare	a	function	named	I.m ,	which	has	one	more	input	parameter,	of	type	I ,	than	method	m .	The	extra
parameter	is	the	first	input	parameter	of	function	I.m .	Assume	i 	is	an	interface	value	of	I ,	then	the
method	call	i.m(...) 	is	equivalent	to	the	function	call	I.m(i,	...) .

An	example:

1| package	main

2|

3| import	"fmt"

4|

5| type	I	interface	{

6| 			m(int)bool

7| }

8|

9| type	T	string

10| func	(t	T)	m(n	int)	bool	{

11| 			return	len(t)	>	n

12| }

13|

14| func	main()	{

15| 			var	i	I	=	T("gopher")

16| 			fmt.Println(i.m(5))																								//	true

17| 			fmt.Println(I.m(i,	5))																					//	true

18| 			fmt.Println(interface{m(int)bool}.m(i,	5))	//	true

19|

20| 			//	The	following	lines	compile	okay,

21| 			//	but	will	panic	at	run	time.

22| 			I(nil).m(5)

23| 			I.m(nil,	5)

24| 			interface	{m(int)	bool}.m(nil,	5)

25| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Type	Embedding
From	the	article	structs	in	Go	(§16),	we	know	that	a	struct	type	can	have	many	fields.	Each	field	is
composed	of	one	field	name	and	one	field	type.	In	fact,	sometimes,	a	struct	field	can	be	composed	of	one
field	type	name	only.	The	way	to	declare	struct	fields	is	called	type	embedding.

This	article	will	explain	the	purpose	of	type	embedding	and	all	kinds	of	details	in	type	embedding.

What	Does	Type	Embedding	Look	Like?

Here	is	an	example	demonstrating	type	embedding:

1| package	main

2|

3| import	"net/http"

4|

5| func	main()	{

6| 			type	P	=	*bool

7| 			type	M	=	map[int]int

8| 			var	x	struct	{

9| 						string	//	a	defined	non-pointer	type

10| 						error		//	a	defined	interface	type

11| 						*int			//	a	non-defined	pointer	type

12| 						P						//	an	alias	of	a	non-defined	pointer	type

13| 						M						//	an	alias	of	a	non-defined	type

14|

15| 						http.Header	//	a	defined	map	type

16| 			}

17| 			x.string	=	"Go"

18| 			x.error	=	nil

19| 			x.int	=	new(int)

20| 			x.P	=	new(bool)

21| 			x.M	=	make(M)

22| 			x.Header	=	http.Header{}

23| }

In	the	above	example,	six	types	are	embedded	in	the	struct	type.	Each	type	embedding	forms	an	embedded
field.

Embedded	fields	are	also	called	as	anonymous	fields.	However,	each	embedded	field	has	a	name	specified
implicitly.	The	unqualified Ң 	type	name	of	an	embedded	field	acts	as	the	name	of	the	field.	For	example,
the	names	of	the	six	embedded	fields	in	the	above	examples	are	string ,	error ,	int ,	P ,	M ,	and
Header ,	respectively.
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Which	Types	Can	be	Embedded?

The	current	Go	specification	(version	1.13)	says Ң
An	embedded	field	must	be	specified	as	a	type	name	 T 	or	as	a	pointer	to	a	non-interface	type	name	 *T ,	and	 T 	itself	may	not

be	a	pointer	type.

The	above	description	is	accurate	before	Go	1.9.	However,	with	the	introduction	of	type	aliases	in	Go	1.9,
the	description	becomes	a	little	outdated	and	inaccurate Ң .	For	example,	the	description	doesn't	include
the	case	of	the	P 	field	in	the	example	in	the	last	section.

Here,	the	article	tries	to	provide	more	accurate	descriptions.

A	type	name	T 	can	be	embedded	as	an	embedded	field	unless	T 	denotes	a	defined	pointer	type	or	a
pointer	type	which	base	type	is	either	a	pointer	or	an	interface	type.
A	pointer	type	*T ,	where	T 	is	a	type	name	denoting	the	base	type	of	the	pointer	type,	can	be
embedded	as	an	embedded	field	unless	type	name	T 	denotes	a	pointer	or	interface	type.

The	following	lists	some	example	types	which	can	and	can't	be	embedded:

1| type	Encoder	interface	{Encode([]byte)	[]byte}

2| type	Person	struct	{name	string;	age	int}

3| type	Alias	=	struct	{name	string;	age	int}

4| type	AliasPtr	=	*struct	{name	string;	age	int}

5| type	IntPtr	*int

6| type	AliasPP	=	*IntPtr

7|

8| //	These	types	and	aliases	can	be	embedded.

9| Encoder

10| Person

11| *Person

12| Alias

13| *Alias

14| AliasPtr

15| int

16| *int

17|

18| //	These	types	and	aliases	can't	be	embedded.

19| AliasPP										//	base	type	is	a	pointer	type

20| *Encoder									//	base	type	is	an	interface	type

21| *AliasPtr								//	base	type	is	a	pointer	type

22| IntPtr											//	defined	pointer	type

23| *IntPtr										//	base	type	is	a	pointer	type

24| *chan	int								//	base	type	is	a	non-defined	type

25| struct	{age	int}	//	non-defined	non-pointer	type

26| map[string]int			//	non-defined	non-pointer	type

27| []int64										//	non-defined	non-pointer	type
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28| func()											//	non-defined	non-pointer	type

No	two	fields	are	allowed	to	have	the	same	name	in	a	struct,	there	are	no	exceptions	for	anonymous	struct
fields.	By	the	embedded	field	naming	rules,	a	non-defined	pointer	type	can't	be	embedded	along	with	its
base	type	in	the	same	struct	type.	For	example,	int 	and	*int 	can't	be	embedded	in	the	same	struct	type.

A	struct	type	can't	embed	itself	or	its	aliases,	recursively.

Generally,	it	is	only	meaningful	to	embed	types	who	have	fields	or	methods	(the	following	sections	will
explain	why),	though	some	types	without	any	field	and	method	can	also	be	embedded.

What	Is	the	Meaningfulness	of	Type	Embedding?

The	main	purpose	of	type	embedding	is	to	extend	the	functionalities	of	the	embedded	types	into	the
embedding	type,	so	that	we	don't	need	to	re-implement	the	functionalities	of	the	embedded	types	for	the
embedding	type.

Many	other	object-oriented	programming	languages	use	inheritance	to	achieve	the	same	goal	of	type
embedding.	Both	mechanisms	have	their	own	benefits	and	drawbacks Ң .	Here,	this	article	will	not
discuss	which	one	is	better.	We	should	just	know	Go	chose	the	type	embedding	mechanism,	and	there	is	a
big	difference	between	the	two:

If	a	type	T 	inherits	another	type,	then	type	T 	obtains	the	abilities	of	the	other	type.	At	the	same	time,
each	value	of	type	T 	can	also	be	viewed	as	a	value	of	the	other	type.
If	a	type	T 	embeds	another	type,	then	type	other	type	becomes	a	part	of	type	T ,	and	type	T 	obtains
the	abilities	of	the	other	type,	but	none	values	of	type	T 	can	be	viewed	as	values	of	the	other	type.

Here	is	an	example	to	show	how	an	embedding	type	extends	the	functionalities	of	the	embedded	type.

1| package	main

2|

3| import	"fmt"

4|

5| type	Person	struct	{

6| 			Name	string

7| 			Age		int

8| }

9| func	(p	Person)	PrintName()	{

10| 			fmt.Println("Name:",	p.Name)

11| }

12| func	(p	*Person)	SetAge(age	int)	{

13| 			p.Age	=	age

14| }

15|

16| type	Singer	struct	{
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17| 			Person	//	extends	Person	by	embedding	it

18| 			works		[]string

19| }

20|

21| func	main()	{

22| 			var	gaga	=	Singer{Person:	Person{"Gaga",	30}}

23| 			gaga.PrintName()	//	Name:	Gaga

24| 			gaga.Name	=	"Lady	Gaga"

25| 			(&gaga).SetAge(31)

26| 			(&gaga).PrintName()			//	Name:	Lady	Gaga

27| 			fmt.Println(gaga.Age)	//	31

28| }

From	the	above	example,	it	looks	that,	after	embedding	type	Person ,	the	type	Singer 	obtains	all
methods	and	fields	of	type	Person ,	and	type	*Singer 	obtains	all	methods	of	type	*Person .	Are	the
conclusions	right?	The	following	sections	will	answer	this	question.

Please	note	that,	a	Singer 	value	is	not	a	Person 	value,	the	following	code	doesn't	compile:

1| var	gaga	=	Singer{}

2| var	_	Person	=	gaga

Does	the	Embedding	Type	Obtain	the	Fields	and	Methods
of	the	Embedded	Types?

Let's	list	all	the	fields	and	methods	of	type	Singer 	and	the	methods	of	type	*Singer 	used	in	the	last
example	by	using	the	reflection	functionalities	(§27)	provided	in	the	reflect 	standard	package.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"reflect"

6| )

7|

8| ...	//	the	types	declared	in	the	last	example

9|

10| func	main()	{

11| 			t	:=	reflect.TypeOf(Singer{})	//	the	Singer	type

12| 			fmt.Println(t,	"has",	t.NumField(),	"fields:")

13| 			for	i	:=	0;	i	<	t.NumField();	i++	{

14| 						fmt.Print("	field#",	i,	":	",	t.Field(i).Name,	"\n")

15| 			}

16| 			fmt.Println(t,	"has",	t.NumMethod(),	"methods:")

17| 			for	i	:=	0;	i	<	t.NumMethod();	i++	{

18| 						fmt.Print("	method#",	i,	":	",	t.Method(i).Name,	"\n")
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19| 			}

20|

21| 			pt	:=	reflect.TypeOf(&Singer{})	//	the	*Singer	type

22| 			fmt.Println(pt,	"has",	pt.NumMethod(),	"methods:")

23| 			for	i	:=	0;	i	<	pt.NumMethod();	i++	{

24| 						fmt.Print("	method#",	i,	":	",	pt.Method(i).Name,	"\n")

25| 			}

26| }

The	result:

main.Singer	has	2	fields:

	field#0:	Person

	field#1:	works

main.Singer	has	1	methods:

	method#0:	PrintName

*main.Singer	has	2	methods:

	method#0:	PrintName

	method#1:	SetAge

From	the	result,	we	know	that	the	type	Singer 	really	owns	a	PrintName 	method,	and	the	type	*Singer
really	owns	two	methods,	PrintName 	and	SetAge .	But	the	type	Singerdoesn't	own	a	Name 	field.	Then
why	is	the	selector	expression	gaga.Name 	legal	for	a	Singer 	value	gaga?	Please	read	the	next	section
to	get	the	reason.

Shorthands	of	Selectors

From	the	articles	structs	in	Go	(§16)	and	methods	in	Go	(§22),	we	have	learned	that,	for	a	value	x ,	x.y 	is
called	a	selector,	where	y 	is	either	a	field	name	or	a	method	name.	If	y 	is	a	field	name,	then	x 	must	be	a
struct	value	or	a	struct	pointer	value.	A	selector	is	an	expression,	which	represents	a	value.	If	the	selector
x.y 	denotes	a	field,	it	may	also	has	its	own	fields	(if	x.y 	is	a	struct	value)	and	methods.	Such	as	x.y.z ,
where	z 	can	also	be	either	a	field	name	or	a	method	name.

In	Go,	(without	considering	selector	colliding	and	shadowing	explained	in	a	later	section),	if	a	middle
name	in	a	selector	corresponds	to	an	embedded	field,	then	that	name	can	be	omitted	from	the	selector.
This	is	why	embedded	fields	are	also	called	anonymous	fields.

For	example:

1| package	main

2|

3| type	A	struct	{

4| 			x	int

5| }

6| func	(a	A)	MethodA()	{}
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7|

8| type	B	struct	{

9| 			A

10| }

11| type	C	struct	{

12| 			B

13| }

14|

15| func	main()	{

16| 			var	c	C

17|

18| 			//	The	following	4	lines	are	equivalent.

19| 			_	=	c.B.A.x

20| 			_	=	c.B.x

21| 			_	=	c.A.x

22| 			_	=	c.x	//	x	is	called	a	promoted	field	of	type	C

23|

24| 			//	The	following	4	lines	are	equivalent.

25| 			c.B.A.MethodA()

26| 			c.B.MethodA()

27| 			c.A.MethodA()

28| 			c.MethodA()

29| }

This	is	why	the	expression	gaga.Name 	is	legal	in	the	example	in	the	last	section.	For	it	is	just	the
shorthand	of	gaga.Person.Name .	Name 	is	called	a	promoted	field	of	type	Singer .

As	any	embedding	type	must	be	a	struct	type,	and	the	article	structs	in	Go	(§16)	has	mentioned	that	the
field	of	an	addressable	struct	value	can	be	selected	through	the	pointers	of	the	struct	value,	so	the
following	code	is	also	legal	in	Go.

1| func	main()	{

2| 			var	c	C

3| 			pc	=	&c

4|

5| 			//	The	following	4	lines	are	equivalent.

6| 			fmt.Println(pc.B.A.x)

7| 			fmt.Println(pc.B.x)

8| 			fmt.Println(pc.A.x)

9| 			fmt.Println(pc.x)

10|

11| 			//	The	following	4	lines	are	equivalent.

12| 			pc.B.A.MethodA()

13| 			pc.B.MethodA()

14| 			pc.A.MethodA()

15| 			pc.MethodA()

16| }
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Similarly,	the	selector	gaga.PrintName 	can	be	viewed	as	a	shorthand	of	gaga.Person.PrintName .
But,	it	is	also	okay	if	we	think	it	is	not	a	shorthand.	After	all,	the	type	Singer 	really	has	a	PrintName
method,	though	the	method	is	declared	implicitly	(please	read	the	section	after	next	for	details).	For	the
similar	reason,	the	selector	(&gaga).PrintName 	and	(&gaga).SetAge 	can	also	be	viewed	as,	or	not
as,	shorthands	of	(&gaga.Person).PrintName 	and	(&gaga.Person).SetAge .

Note,	we	can	also	use	the	selector	gaga.SetAge ,	only	if	gaga 	is	an	addressable	value	of	type	Singer .
It	is	just	syntactical	sugar	of	(&gaga).SetAge .	Please	read	method	calls	(§22)	for	details.

In	the	above	examples,	c.B.A.x 	is	called	the	full	form	of	selectors	c.x ,	c.B.x 	and	c.A.x .	Similarly,
c.B.A.MethodA 	is	called	the	full	form	of	selectors	c.MethodA ,	c.B.MethodA 	and	c.A.MethodA .

If	every	middle	name	in	the	full	form	of	a	selector	corresponds	to	an	embedded	field,	then	the	number	of
middle	names	in	the	selector	is	called	the	depth	of	the	selector.	For	example,	the	depth	of	the	selector
c.MethodA 	used	in	an	above	example	is	2,	for	the	full	form	of	the	selector	is	c.B.A.MethodA .

Selector	Shadowing	and	Colliding

For	a	value	x 	(we	should	always	assume	it	is	addressable,	even	if	it	is	not),	it	is	possible	that	many	of	its
full-form	selectors	have	the	same	last	item	y 	and	every	middle	name	of	these	selectors	represents	an
embedded	field.	For	such	cases,

only	the	full-form	selector	with	the	shallowest	depth	(assume	it	is	the	only	one)	can	be	shortened	as
x.y .	In	other	words,	x.y 	denotes	the	full-form	selector	with	the	shallowest	depth.	Other	full-form
selectors	are	shadowed	by	the	one	with	the	shallowest	depth.
if	there	are	more	than	one	full-form	selectors	with	the	shallowest	depth,	then	none	of	those	full-form
selectors	can	be	shortened	as	x.y .	We	say	those	full-form	selectors	with	the	shallowest	depth	are
colliding	with	each	other.

If	a	method	selector	is	shadowed	by	another	method	selector,	and	the	two	corresponding	method
signatures	are	identical,	we	say	the	first	method	is	overridden	by	the	other	one.

For	example,	assume	A ,	B 	and	C 	are	three	defined	types	(§14).

1| type	A	struct	{

2| 			x	string

3| }

4| func	(A)	y(int)	bool	{

5| 			return	false

6| }

7|

8| type	B	struct	{

9| 			y	bool

10| }
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11| func	(B)	x(string)	{}

12|

13| type	C	struct	{

14| 			B

15| }

The	following	code	doesn't	compile.	The	reason	is	the	depths	of	the	selectors	v1.A.x 	and	v1.B.x 	are
equal,	so	the	two	selectors	collide	with	each	other	and	neither	of	them	can	be	shortened	to	v1.x .	The
same	situation	is	for	the	selectors	v1.A.y 	and	v1.B.y .

1| var	v1	struct	{

2| 			A

3| 			B

4| }

5|

6| func	f1()	{

7| 			_	=	v1.x

8| 			_	=	v1.y

9| }

The	following	code	compiles	okay.	The	selector	v2.C.B.x 	is	shadowed	by	v2.A.x ,	so	the	selector
v2.x 	is	a	shortened	form	of	v2.A.x 	actually.	For	the	same	reason,	the	selector	v2.y 	is	a	shortened	form
of	v2.A.y ,	not	of	v2.C.B.y .

1| var	v2	struct	{

2| 			A

3| 			C

4| }

5|

6| func	f2()	{

7| 			fmt.Printf("%T	\n",	v2.x)	//	string

8| 			fmt.Printf("%T	\n",	v2.y)	//	func(int)	bool

9| }

One	detail	which	is	unusual	but	should	be	noted	is	that	two	unexported	fields	(or	methods)	from	two
differnt	packages	are	always	viewed	as	two	different	identifiers,	even	if	their	names	are	identical.	So	they
will	not	never	collide	with	or	shadow	each	other	when	their	owner	types	are	embedded	in	the	same	struct
type.

For	example,	a	program	comprising	two	packages	as	the	following	shows	will	compile	and	run	okay.	But
if	all	the	m() 	occurrences	are	replaced	with	M() ,	then	the	program	will	fail	to	compile	for	A.M 	and	B.M
collide,	so	c.M 	is	not	a	valid	selector.

1| package	foo	//	x.y/foo

2|

3| import	"fmt"

4|
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5| type	A	struct	{

6| 			n	int

7| }

8|

9| func	(a	A)	m()	{

10| 			fmt.Println("A",	a.n)

11| }

12|

13| type	I	interface	{

14| 			m()

15| }

16|

17| func	Bar(i	I)	{

18| 			i.m()

19| }

1| package	main

2|

3| import	"fmt"

4| import	"x.y/foo"

5|

6| type	B	struct	{

7| 			n	bool

8| }

9|

10| func	(b	B)	m()	{

11| 			fmt.Println("B",	b.n)

12| }

13|

14| type	C	struct{

15| 			foo.A

16| 			B

17| }

18|

19| func	main()	{

20| 			var	c	C

21| 			c.m()						//	B	false

22| 			foo.Bar(c)	//	A	0

23| }

Implicit	Methods	for	Embedding	Types

As	mentioned	above,	both	of	type	Singer 	and	type	*Singer 	have	a	PrintName 	method	each,	and	the
type	*Singer 	also	has	a	SetAge 	method.	However,	we	never	explicitly	declare	these	methods	for	the
two	types.	Where	do	these	methods	come	from?
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In	fact,	assume	a	struct	type	S 	embeds	a	type	T 	and	the	embedding	is	legal,

for	each	method	of	the	embedded	type	T ,	if	the	selectors	to	that	method	neither	collide	with	nor	are
shadowed	by	other	selectors,	then	compilers	will	implicitly	declare	a	corresponding	method	with	the
same	prototype	for	the	embedding	struct	type	S .	And	consequently,	compilers	will	also	implicitly
declare	a	corresponding	method	(§22)	for	the	pointer	type	*S .
for	each	method	of	the	pointer	type	*T ,	if	the	selectors	to	that	method	neither	collide	with	nor	are
shadowed	by	other	selectors,	then	compilers	will	implicitly	declare	a	corresponding	method	with	the
same	prototype	for	the	pointer	type	*S .

The	above	facts	still	hold	true	even	if	*T 	is	not	embeddable	(a.k.a,	T 	is	a	pointer	or	interface	type),	in
which	cases,	the	method	set	of	*T 	is	blank.

Simply	speaking,

type	struct{T} 	and	type	*struct{T} 	both	obtain	all	the	methods	of	the	type	denoted	by	T .
type	*struct{T} ,	type	struct{*T} ,	and	type	*struct{*T} 	obtains	all	the	methods	of	type	*T .

The	following	methods	are	implicitly	declared	by	compilers	for	type	Singer 	and	type	*Singer .

1| func	(s	Singer)	PrintName()	{

2| 			s.Person.PrintName()

3| }

4|

5| func	(s	*Singer)	PrintName()	{

6| 			(*s).Person.PrintName()

7| }

8|

9| func	(s	*Singer)	SetAge(age	int)	{

10| 			//	<=>	(&((*s).Person)).SetAge(age)

11| 			(&s.Person).SetAge(age)

12| }

The	implicit	methods	can	also	be	called	promoted	methods.

From	the	article	methods	in	Go	(§22),	we	know	that	we	can't	explicitly	declare	methods	for	non-defined
struct	types	and	non-defined	pointer	types	whose	base	types	are	non-defined	struct	types.	But	through	type
embedding,	such	non-defined	types	can	also	own	methods.

Here	is	another	example	to	show	which	implicit	methods	are	declared.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| type	F	func(int)	bool
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7| func	(f	F)	Validate(n	int)	bool	{

8| 			return	f(n)

9| }

10| func	(f	*F)	Modify(f2	F)	{

11| 			*f	=	f2

12| }

13|

14| type	B	bool

15| func	(b	B)	IsTrue()	bool	{

16| 			return	bool(b)

17| }

18| func	(pb	*B)	Invert()	{

19| 			*pb	=	!*pb

20| }

21|

22| type	I	interface	{

23| 			Load()

24| 			Save()

25| }

26|

27| func	PrintTypeMethods(t	reflect.Type)	{

28| 			fmt.Println(t,	"has",	t.NumMethod(),	"methods:")

29| 			for	i	:=	0;	i	<	t.NumMethod();	i++	{

30| 						fmt.Print("	method#",	i,	":	",

31| 												t.Method(i).Name,	"\n")

32| 			}

33| }

34|

35| func	main()	{

36| 			var	s	struct	{

37| 						F

38| 						*B

39| 						I

40| 			}

41|

42| 			PrintTypeMethods(reflect.TypeOf(s))

43| 			fmt.Println()

44| 			PrintTypeMethods(reflect.TypeOf(&s))

45| }

The	result:

struct	{	main.F;	*main.B;	main.I	}	has	5	methods:

	method#0:	Invert

	method#1:	IsTrue

	method#2:	Load

	method#3:	Save

	method#4:	Validate
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*struct	{	main.F;	*main.B;	main.I	}	has	6	methods:

	method#0:	Invert

	method#1:	IsTrue

	method#2:	Load

	method#3:	Modify

	method#4:	Save

	method#5:	Validate

If	a	struct	type	embeds	a	type	which	implements	an	interface	type	(the	embedded	type	may	be	the
interface	type	itself),	then	generally	the	struct	type	also	implements	the	interface	type,	exception	there	is	a
method	specified	by	the	interface	type	shadowed	by	or	colliding	other	methods	or	fields.	For	example,	in
the	above	example	program,	both	the	embedding	struct	type	and	the	pointer	type	whose	base	type	is	the
embedding	struct	type	implement	the	interface	type	I .

Please	note,	a	type	will	only	obtain	the	methods	of	the	types	it	embeds	directly	or	indirectly.	In	other
words,	the	method	set	of	a	type	is	composed	of	the	methods	declared	directly	(either	explicitly	or
implicitly)	for	the	type	and	the	method	set	of	the	type's	underlying	type.	For	example,	in	the	following
code,

the	type	Age 	has	no	methods,	for	it	doesn't	embed	any	types.
the	type	X 	has	two	methods,	IsOdd 	and	Double .	IsOdd 	is	obtained	by	embedding	the	type
MyInt .
the	type	Y 	has	no	methods,	for	its	embedded	the	type	Age 	has	not	methods.
the	type	Z 	has	only	one	method,	IsOdd ,	which	is	obtained	by	embedding	the	type	MyInt .	It	doesn't
obtain	the	method	Double 	from	the	type	X ,	for	it	doesn't	embed	the	type	X .

1| type	MyInt	int

2| func	(mi	MyInt)	IsOdd()	bool	{

3| 			return	mi%2	==	1

4| }

5|

6| type	Age	MyInt

7|

8| type	X	struct	{

9| 			MyInt

10| }

11| func	(x	X)	Double()	MyInt	{

12| 			return	x.MyInt	+	x.MyInt

13| }

14|

15| type	Y	struct	{

16| 			Age

17| }

18|

19| type	Z	X
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Interface	Types	Embed	Interface	Types

Not	only	can	struct	types	embed	other	types,	but	also	can	interface	types.	But	interface	types	can	only
embed	interface	types.	Please	read	interfaces	in	Go	(§23)	for	details.

An	Interesting	Type	Embedding	Example

In	the	end,	let's	view	an	interesting	example.	The	example	program	will	dead	loop	and	stack	overflow.	If
you	have	understood	the	above	content	and	polymorphism	(§23)	and	type	embedding,	it	is	easy	to
understand	why	it	will	dead	loop.

1| package	main

2|

3| type	I	interface	{

4| 			m()

5| }

6|

7| type	T	struct	{

8| 			I

9| }

10|

11| func	main()	{

12| 			var	t	T

13| 			var	i	=	&t

14| 			t.I	=	i

15| 			i.m()	//	will	call	t.m(),	then	call	i.m()	again,	...

16| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Type-Unsafe	Pointers
We	have	learned	Go	pointers	from	the	article	pointers	in	Go	(§15).	From	that	article,	we	know	that,
comparing	to	C	pointers,	there	are	many	restrictions	made	for	Go	pointers.	For	example,	Go	pointers	can't
participate	arithmetic	operations,	and	for	two	arbitrary	pointer	types,	it	is	very	possible	that	their	values
can't	be	converted	to	each	other.

The	pointers	explained	in	that	article	are	called	type-safe	pointers	actually.	Although	the	restrictions	on
type-safe	pointers	really	make	us	be	able	to	write	safe	Go	code	with	ease,	they	also	make	some	obstacles
to	write	efficient	code	for	some	scenarios.

In	fact,	Go	also	supports	type-unsafe	pointers,	which	are	pointers	without	the	restrictions	made	for	safe
pointers.	Type-unsafe	pointers	are	also	called	unsafe	pointers	in	Go.	Go	unsafe	pointers	are	much	like	C
pointers,	they	are	powerful,	and	also	dangerous.	For	some	cases,	we	can	write	more	efficient	code	with	the
help	of	unsafe	pointers.	On	the	other	hand,	by	using	unsafe	pointers,	it	is	easy	to	write	bad	code	which	is
too	subtle	to	detect	in	time.

Another	big	risk	of	using	unsafe	pointers	comes	from	the	fact	that	the	unsafe	mechanism	is	not	protected
by	the	Go	1	compatibility	guidelines Ң .	Code	depending	on	unsafe	pointers	works	today	could	break
since	a	later	Go	version.

If	you	really	desire	the	code	efficient	improvements	by	using	unsafe	pointers	for	any	reason,	you	should
not	only	know	the	above	mentioned	risks,	but	also	follow	the	instructions	written	in	the	official	Go
documentation	and	clearly	understand	the	effect	of	each	unsafe	pointer	use,	so	that	you	can	write	safe	Go
code	with	unsafe	pointers.

About	the	unsafe	Standard	Package

Go	provides	a	special	kind	of	types	(§14)	for	unsafe	pointers.	We	must	import	the	unsafe 	standard
package Ң 	to	use	unsafe	pointers.	The	unsafe.Pointer 	type	is	defined	as

type	Pointer	*ArbitraryType

Surely,	it	is	not	a	usual	type	definition.	Here	the	ArbitraryType 	just	hints	that	a	unsafe.Pointer
value	can	be	converted	to	any	safe	pointer	values	in	Go	(and	vice	versa).	In	other	words,
unsafe.Pointer 	is	like	the	void* 	in	C	language.

Go	unsafe	pointers	mean	the	types	whose	underlying	types	are	unsafe.Pointer .

The	zero	values	of	unsafe	pointers	are	also	represented	with	the	predeclared	identifier	nil .

The	unsafe 	standard	package	also	provides	three	functions.

§25.	Type-Unsafe	Pointers

257

https://golang.org/doc/go1compat
https://golang.org/pkg/unsafe/


func	Alignof(variable	ArbitraryType)	uintptr ,	which	is	used	to	get	the	address
alignment	of	a	value.	Please	notes,	the	aligns	for	struct-field	values	and	non-field	values	of	the	same
type	may	be	different,	though	for	the	standard	Go	compiler,	they	are	always	the	same.	For	the	gccgo
compiler,	they	may	be	different.
func	Offsetof(selector	ArbitraryType)	uintptr ,	which	is	used	to	get	the	address	offset
of	a	field	in	a	struct	value.	The	offset	is	relative	to	the	address	of	the	struct	value.	The	return	results
should	be	always	the	same	for	the	same	corresponding	field	of	values	of	the	same	struct	type	in	the
same	program.
func	Sizeof(variable	ArbitraryType)	uintptr ,	which	is	used	to	get	the	size	of	a	value
(a.k.a.,	the	size	of	the	type	of	the	value).	The	return	results	should	be	always	the	same	for	all	values
of	the	same	type	in	the	same	program.

Note,

the	types	of	the	return	results	of	the	three	functions	are	all	uintptr .	Below	we	will	learn	that
uintptr	values	can	be	converted	to	unsafe	pointers	(and	vice	versa).
although	the	return	results	of	calls	of	any	of	the	three	functions	are	consistent	in	the	same	program,
they	might	be	different	crossing	operating	systems,	crossing	architectures,	crossing	compilers,	and
crossing	compiler	versions.
calls	to	the	three	functions	are	always	evaluated	at	compile	time.	The	evaluation	results	are	typed
constants	with	type	uintptr .
the	argument	passed	to	a	call	to	the	unsafe.Offsetof 	function	must	the	struct	field	selector	form
value.field .	The	selector	may	denote	an	embedded	field,	but	the	field	must	be	reachable	without
implicit	pointer	indirections.

An	example	of	using	the	three	functions.

1| package	main

2|

3| import	"fmt"

4| import	"unsafe"

5|

6| func	main()	{

7| 			var	x	struct	{

8| 						a	int64

9| 						b	bool

10| 						c	string

11| 			}

12| 			const	M,	N	=	unsafe.Sizeof(x.c),	unsafe.Sizeof(x)

13| 			fmt.Println(M,	N)	//	16	32

14|

15| 			fmt.Println(unsafe.Alignof(x.a))	//	8

16| 			fmt.Println(unsafe.Alignof(x.b))	//	1

17| 			fmt.Println(unsafe.Alignof(x.c))	//	8

18|
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19| 			fmt.Println(unsafe.Offsetof(x.a))	//	0

20| 			fmt.Println(unsafe.Offsetof(x.b))	//	8

21| 			fmt.Println(unsafe.Offsetof(x.c))	//	16

22| }

An	example	which	demostrates	the	last	note	mentioned	above.

1| package	main

2|

3| import	"fmt"

4| import	"unsafe"

5|

6| func	main()	{

7| 			type	T	struct	{

8| 						c	string

9| 			}

10| 			type	S	struct	{

11| 						b	bool

12| 			}

13| 			var	x	struct	{

14| 						a	int64

15| 						*S

16| 						T

17| 			}

18|

19| 			fmt.Println(unsafe.Offsetof(x.a))	//	0

20| 			

21| 			fmt.Println(unsafe.Offsetof(x.S))	//	8

22| 			fmt.Println(unsafe.Offsetof(x.T))	//	16

23| 			

24| 			//	This	line	compiles,	for	c	can	be	reached

25| 			//	without	implicit	pointer	indirections.

26| 			fmt.Println(unsafe.Offsetof(x.c))	//	16

27| 			

28| 			//	This	line	doesn't	compile,	for	b	must	be

29| 			//	reached	with	the	implicit	pointer	field	S.

30| 			//fmt.Println(unsafe.Offsetof(x.b))	//	error

31| 			

32| 			//	This	line	compiles.	However,	it	prints

33| 			//	the	offset	of	field	b	in	the	value	x.S.

34| 			fmt.Println(unsafe.Offsetof(x.S.b))	//	0

35| }

Please	note,	the	print	results	shown	in	the	comments	are	for	the	standard	Go	compiler	version	1.13	on
Linux	AMD64	architecture.

The	three	functions	provided	in	the	unsafe 	package	don't	look	much	dangerous.	The	signatures	of	these
functions	are	very	impossible	to	be	changed	in	future	Go	1	versions Ң .	Rob	Pike	even	ever	made	a
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proposal	to	move	the	three	functions	to	elsewhere Ң .	Most	of	the	unsafty	of	the	unsafe 	package	comes
from	unsafe	pointers.	They	are	as	dangerous	as	C	pointers,	what	is	Go	safe	pointers	always	try	to	avoid.

Unsafe	Pointers	Related	Conversion	Rules

Currently	(Go	1.13),	Go	compilers	allow	the	following	explicit	conversions.

A	safe	pointer	can	be	explicitly	converted	to	an	unsafe	pointer,	and	vice	versa.
An	uintptr	value	can	be	explicitly	converted	to	an	unsafe	pointer,	and	vice	versa.	But	please	note,	a
nil	unsafe.Pointer	shouldn't	be	converted	to	uintptr	and	back	with	arithmetic.

By	using	these	conversions,	we	can	convert	a	safe	pointer	value	to	an	arbitrary	safe	pointer	type.

However,	although	these	conversions	are	all	legal	at	compile	time,	not	all	of	them	are	valid	(safe)	at	run
time.	These	conversions	defeat	the	memory	safety	the	whole	Go	type	system	(except	the	unsafe	part)	tries
to	maintain.	We	must	follow	the	instructions	listed	in	a	later	section	below	to	write	valid	Go	code	with
unsafe	pointers.

Some	Facts	in	Go	We	Should	Know

Before	introducing	the	valid	unsafe	pointer	use	patterns,	we	need	to	know	some	facts	in	Go.

Fact	1:	unsafe	pointers	are	pointers	and	uintptr	values	are	integers

Each	of	non-nil	safe	and	unsafe	pointers	references	another	value.	However	uintptr	values	don't	reference
any	values,	they	are	just	plain	integers,	though	often	each	of	them	stores	an	integer	which	can	be	used	to
represent	a	memory	address.

Go	is	a	language	supporting	automatic	garbage	collection.	When	a	Go	program	is	running,	Go	runtime
will	check	which	memory	blocks	are	not	used	by	any	value	any	more	and	collect	the	memory	(§43)
allocated	for	these	unused	blocks,	from	time	to	time.	Pointers	play	an	important	role	in	the	check	process.
If	a	memory	block	is	unreachable	from	(referenced	by)	any	values	still	in	using,	then	Go	runtime	thinks	it
is	an	unused	value	and	it	can	be	safely	garbage	collected.

As	uintptr	values	are	integers,	they	can	participate	arithmetic	operations.

The	example	in	the	next	subsection	shows	the	differences	between	pointers	and	uintptr	values.

Fact	2:	unused	memory	blocks	may	be	collected	at	any	time

At	run	time,	the	garbage	collector	may	run	at	an	uncertain	time,	and	each	garbage	collection	process	may
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last	an	uncertain	duration.	So	when	a	memory	block	becomes	unused,	it	may	be	collected	at	an	uncertain
time	(§43).

For	example:

1| import	"unsafe"

2|

3| //	Assume	createInt	will	not	be	inlined.

4| func	createInt()	*int	{

5| 			return	new(int)

6| }

7|

8| func	foo()	{

9| 			p0,	y,	z	:=	createInt(),	createInt(),	createInt()

10| 			var	p1	=	unsafe.Pointer(y)

11| 			var	p2	=	uintptr(unsafe.Pointer(z))

12|

13| 			//	At	the	time,	even	if	the	address	of	the	int

14| 			//	value	referenced	by	z	is	still	stored	in	p2,

15| 			//	the	int	value	has	already	become	unused,	so

16| 			//	garbage	collector	can	collect	the	memory

17| 			//	allocated	for	it	now.	On	the	other	hand,	the

18| 			//	int	values	referenced	by	p0	and	p1	are	still

19| 			//	in	using.

20|

21| 			//	uintptr	can	participate	arithmetic	operations.

22| 			p2	+=	2;	p2--;	p2--

23|

24| 			*p0	=	1																										//	okay

25| 			*(*int)(p1)	=	2																		//	okay

26| 			*(*int)(unsafe.Pointer(p2)))	=	3	//	dangerous!

27| }

In	the	above	example,	the	fact	that	value	p2 	is	still	in	using	can't	guarantee	that	the	memory	block	ever
hosting	the	int 	value	referenced	by	z 	has	not	been	garbage	collected	yet.	In	other	words,	when	*(*T)
(unsafe.Pointer(p2)))	=	3 	is	executed,	the	memory	block	may	be	collected,	or	not.	It	is	dangerous
to	dereference	the	address	stored	in	value	p2 	to	an	int 	value,	for	it	is	possible	that	the	memory	block	has
been	already	reallocated	for	another	value	(even	for	another	program).

Fact	3:	the	addresses	of	some	values	might	change	at	run	time

Please	read	the	article	memory	blocks	(§43)	for	details	(see	the	end	of	the	hyperlinked	section).	Here,	we
should	just	know	that	when	the	size	of	the	stack	of	a	goroutine	changes,	the	memory	blocks	allocated	on
the	stack	will	be	moved.	In	other	words,	the	addresses	of	the	values	hosted	on	these	memory	blocks	will
change.
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Fact	4:	we	can	use	a	runtime.KeepAlive 	function	call	to	mark	a
value	as	still	in	using	(reachable)	before	the	call

To	mark	a	value	and	the	value	parts	referenced	by	it	still	reachable,	we	should	pass	a	value	which
references	the	value	as	the	argument	of	a	runtime.KeepAlive 	function	call.	A	pointer	to	the	value	is
often	used	as	such	an	argument.

For	example,	by	appending	a	runtime.KeepAlive(&z) 	call	to	the	example	in	the	last	subsection,	*
(*T)(unsafe.Pointer(p2)))	=	3 	can	be	executed	safely	now.

1| func	foo()	{

2| 			p0,	y,	z	:=	createInt(),	createInt(),	createInt()

3| 			var	p1	=	unsafe.Pointer(y)

4| 			var	p2	=	uintptr(unsafe.Pointer(z))

5|

6| 			p2	+=	2;	p2--;	p2--

7|

8| 			*p0	=	1

9| 			*(*int)(p1)	=	2

10| 			*(*int)(unsafe.Pointer(p2)))	=	3	//	safe	now!

11|

12| 			runtime.KeepAlive(&z)	//	This	line	k

13| }

Fact	5:	the	reachable	range	of	a	value	at	run	time	may	be	not	as	large
as	it	looks	in	code

In	the	following	example,	the	fact	value	t 	is	still	in	using	can't	guarantee	that	the	values	referenced	by
value	t.y 	are	still	in	using.

1| type	T	struct	{

2| 			x	int

3| 			y	*[1<<23]byte

4| }

5|

6| func	bar()	{

7| 			t	:=	T{y:	new([1<<23]byte)}

8| 			p	:=	uintptr(unsafe.Pointer(&t.y[0]))

9|

10| 			...	//	use	T.x	and	T.y

11|

12| 			//	A	smart	compiler	can	detect	that	the	value

13| 			//	t.y	will	never	be	used	again	and	think	the

14| 			//	memory	block	hosting	t.y	can	be	collected	now.

15|
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16| 			//	Using	*(*byte)(unsafe.Pointer(p)))	is

17| 			//	dangerous	here.

18|

19| 			//	Continue	using	value	t,	but	only	use	its	x	field.

20| 			println(t.x)

21| }

Fact	6:	*unsafe.Pointer 	is	a	general	safe	pointer	type

Yes,	*unsafe.Pointer 	is	a	safe	pointer	type.	Its	base	type	is	unsafe.Pointer .	As	it	is	a	safe	pointer,
according	the	conversion	rules	listed	above,	it	can	be	converted	to	unsafe.Pointer 	type,	and	vice	versa.

For	example:

1| package	main

2|

3| import	"unsafe"

4|

5| func	main()	{

6| 			x	:=	123																//	of	type	int

7| 			p	:=	unsafe.Pointer(&x)	//	of	type	unsafe.Pointer

8| 			pp	:=	&p																//	of	type	*unsafe.Pointer

9| 			p	=	unsafe.Pointer(pp)

10| 			pp	=	(*unsafe.Pointer)(p)

11| }

How	to	Use	Unsafe	Pointers	Correctly?

The	unsafe 	standard	package	documentation	lists	six	unsafe	pointer	use	patterns Ң .	Following	will
introduce	and	explain	them	one	by	one.

Pattern	1:	convert	a	*T1 	value	to	unsafe	Pointer,	then	convert	the
unsafe	pointer	value	to	*T2 .

As	mentioned	above,	by	using	the	unsafe	pointer	conversion	rules	above,	we	can	convert	a	value	of	*T1
to	type	*T2 ,	where	T1 	and	T2 	are	two	arbitrary	types.	However,	we	should	only	do	such	conversions	if
the	size	of	T1 	is	no	larger	than	T2 ,	and	only	if	the	conversions	are	meaningful.

As	a	result,	we	can	also	achieve	the	conversions	between	type	T1 	and	T2 	by	using	this	pattern.

One	example	is	the	math.Float64bits 	function,	which	converts	a	float64 	value	to	an	uint64 	value,
without	changing	any	bit	in	the	float64 	value.	The	math.Float64bits 	function	does	reverse
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conversions.

1| func	Float64bits(f	float64)	uint64	{

2| 			return	*(*uint64)(unsafe.Pointer(&f))

3| }

4|

5| func	Float64frombits(b	uint64)	float64	{

6| 			return	*(*float64)(unsafe.Pointer(&b))

7| }

Please	note,	the	return	result	of	the	math.Float64bits(aFloat64) 	function	call	is	different	from	the
result	of	the	explicit	conversion	uint64(aFloat64) .

In	the	following	example,	we	use	this	pattern	to	convert	a	[]MyString 	slice	to	type	[]string ,	and	vice
versa.	The	result	slice	and	the	original	slice	share	the	underlying	elements.	Such	conversions	are
impossible	through	safe	ways,

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"unsafe"

6| )

7|

8| func	main()	{

9| 			type	MyString	string

10| 			ms	:=	[]MyString{"C",	"C++",	"Go"}

11| 			fmt.Printf("%s\n",	ms)		//	[C	C++	Go]

12| 			//	ss	:=	([]string)(ms)	//	compiling	error

13| 			ss	:=	*(*[]string)(unsafe.Pointer(&ms))

14| 			ss[1]	=	"Rust"

15| 			fmt.Printf("%s\n",	ms)	//	[C	Rust	Go]

16| 			//	ms	=	[]MyString(ss)	//	compiling	error

17| 			ms	=	*(*[]MyString)(unsafe.Pointer(&ss))

18| }

Pattern	2:	convert	unsafe	pointer	to	uintptr,	then	use	the	uintptr
value.

This	pattern	is	not	very	useful.	Usually,	we	print	the	result	uintptr	values	to	check	the	memory	addresses
stored	in	them.	However,	there	are	other	less	verbose	ways	to	this	job.	So	this	pattern	is	not	much	useful.

Example:

1| package	main

2|
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3| import	"fmt"

4| import	"unsafe"

5|

6| func	main()	{

7| 			type	T	struct{a	int}

8| 			var	t	T

9| 			fmt.Println(&t)	//	&{0}

10| 			println(&t)					//	0xc6233120a8

11| 			//	The	next	line	print:	c6233120a8

12| 			fmt.Printf("%x\n",	uintptr(unsafe.Pointer(&t)))

13| }

The	outputted	addresses	might	be	different	for	each	run.

Pattern	3:	convert	unsafe	pointer	to	uintptr,	do	arithmetic	operations
with	the	uintptr	value,	then	convert	it	back

For	example:

1| package	main

2|

3| import	"fmt"

4| import	"unsafe"

5|

6| type	T	struct	{

7| 			x	bool

8| 			y	[3]int16

9| }

10|

11| const	N	=	unsafe.Offsetof(T{}.y)

12| const	M	=	unsafe.Sizeof([3]int16{}[0])

13|

14| func	main()	{

15| 			t	:=	T{y:	[3]int16{123,	456,	789}}

16| 			p	:=	unsafe.Pointer(&t)

17| 			//	"uintptr(p)+N+M+M"	is	the	address	of	t.y[2].

18| 			ty2	:=	(*int16)(unsafe.Pointer(uintptr(p)+N+M+M))

19| 			fmt.Println(*ty2)	//	789

20| }

Please	note,	in	this	specified	example,	the	conversion	unsafe.Pointer(uintptr(p)	+	N	+	M	+	M)
shouldn't	be	split	into	two	lines,	like	the	following	code	shows.	Please	read	the	comments	in	the	code	for
the	reason.

1| func	main()	{

2| 			t	:=	T{y:	[3]int16{123,	456,	789}}
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3| 			p	:=	unsafe.Pointer(&t)

4| 			//	ty2	:=	(*int16)(unsafe.Pointer(uintptr(p)+N+M+M))

5| 			addr	:=	uintptr(p)	+	N	+	M	+	M

6| 			//	Now	the	t	value	becomes	unused,	its	memory	may	be

7| 			//	garbage	collected	at	this	time.	So	the	following

8| 			//	use	of	the	address	of	t.y[2]	may	become	invalid

9| 			//	and	dangerous!	

10| 			//	Another	potential	danger	is,	if	some	operations

11| 			//	make	the	stack	grow	or	shrink	here,	then	the

12| 			//	address	of	t	might	change,	so	that	the	address

13| 			//	saved	in	addr	will	become	invalid	(fact	3),

14| 			//	though	this	danger	doesn't	exist	for	this

15| 			//	specified	example.

16| 			ty2	:=	(*int16)(unsafe.Pointer(addr))

17| 			fmt.Println(*ty2)

18| }

Such	bugs	are	very	subtle	and	hard	to	detect,	which	is	why	the	uses	of	unsafe	pointers	are	dangerous.

If	we	do	want	to	split	that	conversion	line	into	two	lines,	we	should	call	the	runtime.KeepAlive
function	and	pass	the	unsafe	pointer	p 	(or	any	other	value	which	is	also	referencing	value	t.y[2] )	as	the
argument,	after	the	split	two	lines.	Like	this

1| func	main()	{

2| 			t	:=	T{y:	[3]int16{123,	456,	789}}

3| 			p	:=	unsafe.Pointer(t)

4| 			addr	:=	uintptr(p)	+	N	+	M	+	M

5| 			ty2	:=	(*int16)(unsafe.Pointer(addr))

6| 			//	This	following	line	ensures	the	memory	of

7| 			//	the	value	t	will	not	get	garbage	collected

8| 			//	currently	for	sure.

9| 			runtime.KeepAlive(p)

10| 			fmt.Println(*ty2)

11| }

However,	I	don't	recommend	to	use	the	runtime.KeepAlive 	trick	for	this	use	pattern,	for	the	potential
another	danger	mentioned	above.	If	is	possible	that	the	stack	grows	when	the	runtime	allocates	memory
for	the	variable	ty2 ,	so	that	the	address	of	t 	changes	and	the	value	stored	in	addr 	becomes	invalid,
which	directly	leads	to	the	value	of	ty2 	is	also	invalid.	But	honestly	speaking,	this	potential	danger
doesn't	exist	here	if	the	code	compiles	with	the	standard	Go	compiler.	In	the	implementation	of	the
standard	Go	compiler,	a	runtime.KeepAlive 	call	will	makes	its	argument	and	the	values	referenced	by
the	argument	be	allocated	on	heap	and	memory	blocks	allocated	on	heap	will	be	never	moved.

Another	detail	which	should	be	also	noted	is	that,	it	is	not	recommended	to	store	the	end	boundary	of	a
memory	block	in	a	pointer	(either	safe	or	unsafe	one).	Doing	this	will	prevent	another	memory	block
which	closely	follows	the	former	memory	block	from	being	garbage	collected.	Please	read	this	FAQ	item
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(§51)	to	get	more	explanations.

Pattern	4:	convert	unsafe	pointers	to	uintptr 	values	as	arguments	of
syscall.Syscall 	calls.

From	the	explanations	for	the	last	pattern,	we	know	that	the	following	function	is	dangerous.

1| //	Assume	this	function	will	not	inlined.

2| func	DoSomething(addr	uintptr)	{

3| 			//	read	or	write	values	at	the	passed	address	...

4| }

The	reason	why	the	above	function	is	dangerous	is	that	the	function	itself	can't	guarantee	the	memory
block	at	the	passed	argument	address	is	not	garbage	collected	yet.	If	the	memory	block	is	collected	or	is
reallocated	for	other	values,	then	the	operations	made	in	the	function	body	are	dangerous.

However,	the	prototype	of	the	Syscall 	function	in	the	syscall 	standard	package	is	as

func	Syscall(trap,	a1,	a2,	a3	uintptr)	(r1,	r2	uintptr,	err	Errno)

How	does	this	function	guarantee	that	the	memory	blocks	at	the	passed	addresses	a1 ,	a2 	and	a3 	are	still
not	garbage	collected	yet	within	the	function	internal?	The	function	can't	guarantee	this.	In	fact,	compilers
will	make	the	guarantee.	It	is	the	privilege	of	calls	to	syscall.Syscall 	alike	functions.

We	can	think	that,	compilers	will	automatically	insert	some	instructions	for	each	of	the	unsafe	pointer
arguments	who	are	converted	to	uintptr ,	like	the	third	argument	in	the	following	syscall.Syscall
call,	to	prevent	the	memory	block	referenced	by	that	argument	from	being	garbage	collected	or	moved.

The	following	call	is	safe:

1| syscall.Syscall(SYS_READ,	uintptr(fd),

2| 									uintptr(unsafe.Pointer(p)),	uintptr(n))

But	the	following	call	is	dangerous:

1| u	:=	uintptr(unsafe.Pointer(p))

2| //	At	this	time,	the	value	referenced	by	p	might

3| //	have	become	unused	and	been	collected	already,

4| //	or	the	address	of	the	value	has	changed.

5| syscall.Syscall(SYS_READ,	uintptr(fd),	u,	uintptr(n))

Again,	never	use	this	pattern	when	calling	other	functions.

Pattern	5:	convert	the	uintptr 	result	of	reflect.Value.Pointer 	or
reflect.Value.UnsafeAddr 	method	call	to	unsafe	pointer
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The	methods	Pointer 	and	UnsafeAddr 	of	the	Value 	type	in	the	reflect 	standard	package	both
return	a	result	of	type	uintptr 	instead	of	unsafe.Pointer .	This	is	a	deliberate	design,	which	is	to
avoid	converting	the	results	of	calls	(to	the	two	methods)	to	any	safe	pointer	types	without	importing	the
unsafe 	standard	package.

The	design	requires	the	return	result	of	a	call	to	either	of	the	two	methods	must	be	converted	to	an	unsafe
pointer	immediately	after	making	the	call.	Otherwise,	there	will	be	small	time	window	in	which	the
memory	block	allocated	at	the	address	stored	in	the	result	might	lose	all	references	and	be	garbage
collected.

For	example,	the	following	call	is	safe.

p	:=	(*int)(unsafe.Pointer(reflect.ValueOf(new(int)).Pointer()))

On	the	other	hand,	the	following	call	is	dangerous.

1| u	:=	reflect.ValueOf(new(int)).Pointer()

2| //	At	this	moment,	the	memory	block	at	the	address

3| //	stored	in	u	might	have	been	collected	already.

4| p	:=	(*int)(unsafe.Pointer(u))

Note:	this	pattern	also	applies	to	the	syscall.Proc.Call Ң 	and	syscall.LazyProc.Call Ң 	methods	on
Windows.

Pattern	6:	convert	a	reflect.SliceHeader.Data 	or
reflect.StringHeader.Data 	field	to	unsafe	pointer,	and	the
inverse.

For	the	same	reason	mentioned	for	the	last	subsection,	the	Data 	fields	of	the	struct	type	SliceHeader
and	StringHeader 	in	the	reflect 	standard	package	are	declared	with	type	uintptr 	instead	of
unsafe.Pointer .

We	convert	a	pointer	to	a	string	to	a	*reflect.StringHeader 	pointer	value,	so	that	we	can	manipulate
the	internal	of	the	string.	The	same,	we	can	convert	a	pointer	to	a	slice	to	a	*reflect.SliceHeader
pointer	value,	so	that	we	can	manipulate	the	internal	of	the	slice.

An	example	of	using	reflect.StringHeader :

1| package	main

2|

3| import	"fmt"

4| import	"unsafe"

5| import	"reflect"

6|

7| func	main()	{

§25.	Type-Unsafe	Pointers

268

https://golang.org/pkg/syscall/?GOOS=windows#Proc.Call
https://golang.org/pkg/syscall/?GOOS=windows#LazyProc.Call


8| 			a	:=	[...]byte{'G',	'o',	'l',	'a',	'n',	'g'}

9| 			s	:=	"Java"

10| 			hdr	:=	(*reflect.StringHeader)(unsafe.Pointer(&s))

11| 			hdr.Data	=	uintptr(unsafe.Pointer(&a))

12| 			hdr.Len	=	len(a)

13| 			fmt.Println(s)	//	Golang

14| 			//	Now	s	and	a	share	the	same	byte	sequence,	which

15| 			//	makes	the	bytes	in	the	string	s	become	mutable.

16| 			a[2],	a[3],	a[4],	a[5]	=	'o',	'g',	'l',	'e'

17| 			fmt.Println(s)	//	Google

18| }

An	example	of	using	reflect.SliceHeader :

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"unsafe"

6| 			"reflect"

7| 			"runtime"

8| )

9|

10| func	main()	{

11| 			a	:=	[6]byte{'G',	'o',	'1',	'0',	'1'}

12| 			bs	:=	[]byte("Golang")

13| 			hdr	:=	(*reflect.SliceHeader)(unsafe.Pointer(&bs))

14| 			hdr.Data	=	uintptr(unsafe.Pointer(&a))

15| 			runtime.KeepAlive(&a)	//	needed!

16| 			hdr.Len	=	2

17| 			hdr.Cap	=	len(a)

18| 			fmt.Printf("%s\n",	bs)	//	Go

19| 			bs	=	bs[:cap(bs)]

20| 			fmt.Printf("%s\n",	bs)	//	Go101

21| }

Note,	a	runtime.KeepAlive 	call	is	needed	in	this	example,	otherwise,	the	slice	might	reference	an
invalid	underlying	byte	sequence.

In	general,	we	should	only	get	a	*reflect.StringHeader 	pointer	value	from	an	actual	(already
existed)	string,	or	get	a	*reflect.SliceHeader 	pointer	value	from	an	actual	(already	existed)	slice.	We
shouldn't	do	the	contrary,	such	as	creating	a	string	from	a	StringHeader ,	or	creating	a	slice	from	a
SliceHeader .	For	example,	the	following	code	is	dangerous.

1| var	hdr	reflect.StringHeader

2| hdr.Data	=	uintptr(unsafe.Pointer(new([5]byte)))

3| //	Now	the	just	allocated	byte	array	has	lose	all
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4| //	references	and	it	can	be	garbage	collected	now.

5| hdr.Len	=	5

6| s	:=	*(*string)(unsafe.Pointer(&hdr))	//	dangerous!

The	following	is	an	example	which	shows	how	to	convert	a	string	to	to	a	byte	slice,	by	using	the	unsafe
way.	Different	from	the	safe	conversion	from	a	string	to	to	a	byte	slice,	the	unsafe	way	doesn't	allocate	a
new	underlying	byte	sequence	for	the	result	slice	in	each	conversion.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"unsafe"

6| 			"reflect"

7| 			"runtime"

8| 			"strings"

9| )

10|

11| func	String2ByteSlice(str	string)	(bs	[]byte)	{

12| 			strHdr	:=	(*reflect.StringHeader)(unsafe.Pointer(&str))

13| 			sliceHdr	:=	(*reflect.SliceHeader)(unsafe.Pointer(&bs))

14| 			sliceHdr.Data	=	strHdr.Data

15| 			sliceHdr.Len	=	strHdr.Len

16| 			sliceHdr.Cap	=	strHdr.Len

17| 			//	This	KeepAlive	line	is	essential	to	make	the

18| 			//	String2ByteSlice	function	be	always	valid

19| 			//	when	it	is	used	in	other	custom	packages.

20| 			runtime.KeepAlive(&str)

21| 			return

22| }

23|

24| func	main()	{

25| 			str	:=	strings.Join([]string{"Go",	"land"},	"")

26| 			s	:=	String2ByteSlice(str)

27| 			fmt.Printf("%s\n",	s)	//	Goland

28| 			s[5]	=	'g'

29| 			fmt.Println(str)	//	Golang

30| }

The	docs Ң 	of	the	SliceHeader 	and	StringHeader 	types	in	the	reflect 	standard	package	are
similar.	The	docs	says	the	representations	of	the	two	struct	types	may	change	in	a	later	release.	So	the
above	example	may	become	invalid	even	if	the	unsafe	rules	keep	unchanged.	Fortunately,	the	current	two
available	Go	compilers	(the	standard	Go	compiler	and	the	gccgo	compiler)	both	recognize	the
representations	of	the	two	types	declared	in	the	reflect 	standard	package.

It	is	also	possible	to	convert	a	byte	slice	to	a	string	by	using	a	similar	way.	However,	currently	(Go	1.13),
there	is	a	simpler	but	more	efficient	(and	more	unsafe)	way	to	convert	a	byte	slice	to	a	string.
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1| func	ByteSlice2String(bs	[]byte)	string	{

2| 			return	*(*string)(unsafe.Pointer(&bs))

3| }

This	is	the	implementation	adopted	by	the	String 	method	of	the	Builder 	type	supported	since	Go	1.10
in	the	strings 	standard	package.	It	makes	use	of	the	first	pattern	introduced	above.

In	fact,	in	practice,	to	avoid	the	danger	caused	by	missing	runtime.KeepAlive 	calls,	it	is	more
recommended	to	define	our	own	custom	SliceHeader 	and	StringHeader 	struct	types	which	hold
Data 	fileds	of	the	unsafe.Pointer 	type	instead	of	the	uintptr 	type.	For	example,

1| type	SliceHeader	struct	{

2| 			Data	unsafe.Pointer

3| 			Len		int

4| 			Cap		int

5| }

6|

7| type	StringHeader	struct	{

8| 			Data	unsafe.Pointer

9| 			Len		int

10| }

11|

12| func	String2ByteSlice(str	string)	(bs	[]byte)	{

13| 			strHdr	:=	(*StringHeader)(unsafe.Pointer(&str))

14| 			sliceHdr	:=	(*SliceHeader)(unsafe.Pointer(&bs))

15| 			sliceHdr.Data	=	strHdr.Data

16| 			sliceHdr.Len	=	strHdr.Len

17| 			sliceHdr.Cap	=	strHdr.Len

18| 			

19| 			//	The	KeepAlive	call	is	inessential	now.

20| 			//runtime.KeepAlive(&str)

21| 			return

22| }

Matthew	Dempsky	has	made	a	proposal	which	suggests Ң 	adding	the	two	custom	SliceHeader 	and
StringHeader 	types	to	the	unsafe 	standard	package.

Final	Words

From	the	above	content,	we	know	that,	for	some	cases,	the	unsafe	mechanism	can	help	us	write	more
efficient	Go	code.	However,	it	is	very	easy	to	introduce	some	subtle	bugs	which	have	very	low
possibilities	to	produce	when	using	the	unsafe	mechanism.	A	program	with	these	bugs	may	run	well	for	a
long	time,	but	suddenly	behave	abnormally	and	even	crash	at	a	later	time.	Such	bugs	are	very	hard	to
detect	and	debug.
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We	should	only	use	the	unsafe	mechanism	when	we	have	to,	and	we	must	use	it	with	extreme	care.	In
particular,	we	should	follow	the	instructions	described	above.

And	again,	we	should	aware	that	the	unsafe	mechanism	introduced	above	may	change	and	even	become
invalid	totally	in	later	Go	versions,	though	no	evidences	this	will	happen	soon.	If	the	unsafe	mechanism
rules	change,	the	above	introduced	valid	unsafe	pointer	use	patterns	may	become	invalid.	So	please	keep	it
easy	to	switch	back	to	the	safe	implementations	for	you	code	depending	on	the	unsafe	mechanism.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Built-in	Generics
Currently	(Go	1.13),	Go	doesn't	support	user-defined	generic	types,	and	only	supports	generics	for	first-
class	citizen	composite	types.	We	can	use	composite	types	to	create	infinite	custom	types	by	using	all
kinds	of	first-class	citizen	types	in	Go.

This	article	will	show	type	composition	examples	and	explain	how	to	read	these	composited	types.

Type	Composition	Examples

Type	compositions	in	Go	are	designed	very	intuitive	and	easy	to	interpret.	It	is	hardly	to	get	lost	in
understanding	Go	composite	types,	even	if	for	some	very	complex	ones.	The	following	will	list	several
type	composition	examples,	from	simpler	ones	to	more	complex	ones.

Let's	view	an	simple	composite	type	literal.

1| [3][4]int

When	interpreting	a	composite	type,	we	should	look	at	it	from	left	to	right.	The	[3] 	on	the	left	in	the
above	type	literal	indicates	that	this	type	is	an	array	type.	The	whole	right	part	following	the	[4]int 	is
another	array	type,	which	is	the	element	type	of	the	first	array	type.	The	element	type	of	the	element	type
(an	array	type)	of	the	first	array	type	is	built-in	type	int .	The	first	array	type	can	be	viewed	as	a	two-
dimensional	array	type.

An	example	on	using	this	two-dimensional	array	type.

1| package	main

2|

3| import	(

4| 			"fmt"

5| )

6|

7| func	main()	{

8| 			matrix	:=	[3][4]int{

9| 						{1,	0,	0,	1},

10| 						{0,	1,	0,	1},

11| 						{0,	0,	1,	1},

12| 			}

13|

14| 			matrix[1][1]	=	3

15| 			a	:=	matrix[1]	//	type	of	a	is	[4]int

16| 			fmt.Println(a)	//	[0	3	0	1]

17| }

Similarly,
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Similarly,

[][]string 	is	a	slice	type	whose	element	type	is	another	slice	type	[]string .
**bool 	is	a	pointer	type	whose	base	type	is	another	pointer	type	*bool .
chan	chan	int 	is	a	channel	type	whose	element	type	is	another	channel	type	chan	int .
map[int]map[int]string 	is	a	map	type	whose	element	type	is	another	map	type
map[int]string .	The	key	types	of	the	two	map	types	are	both	int .
func(int32)	func(int32) 	is	a	function	type	whose	only	return	result	type	is	another	function
type	func(int32) .	The	two	function	types	both	have	only	one	input	parameter	with	type	int32 .

Let's	view	another	type.

1| chan	*[16]byte

The	chan 	keyword	at	the	left	most	indicates	this	type	is	a	channel	type.	The	whole	right	part	*[16]byte ,
which	is	a	pointer	type,	denotes	the	element	type	of	this	channel	type.	The	base	type	of	the	pointer	type	is
[16]byte ,	which	is	an	array	type.	The	element	type	of	the	array	type	is	byte .

An	example	on	using	this	channel	type.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| 			"crypto/rand"

7| )

8|

9| func	main()	{

10| 			c	:=	make(chan	*[16]byte)

11|

12| 			go	func()	{

13| 						//	Use	two	arrays	to	avoid	data	races.

14| 						var	dataA,	dataB	=	new([16]byte),	new([16]byte)

15| 						for	{

16| 									_,	err	:=	rand.Read(dataA[:])

17| 									if	err	!=	nil	{

18| 												close(c)

19| 									}	else	{

20| 												c	<-	dataA

21| 												dataA,	dataB	=	dataB,	dataA

22| 									}

23| 						}

24| 			}()

25|

26| 			for	data	:=	range	c	{

27| 						fmt.Println((*data)[:])
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28| 						time.Sleep(time.Second	/	2)

29| 			}

30| }

Similarly,	type	map[string][]func(int)	int 	is	a	map	type.	The	key	type	of	this	map	type	is
string .	The	remaining	right	part	[]func(int)	int 	denotes	the	element	type	of	the	map	type.	The	[]
indicates	the	element	type	is	a	slice	type,	whose	element	type	is	a	function	type	func(int)	int .

An	example	on	using	the	just	explained	map	type.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			addone	:=	func(x	int)	int	{return	x	+	1}

7| 			square	:=	func(x	int)	int	{return	x	*	x}

8| 			double	:=	func(x	int)	int	{return	x	+	x}

9|

10| 			transforms	:=	map[string][]func(int)	int	{

11| 						"inc,inc,inc":	{addone,	addone,	addone},

12| 						"sqr,inc,dbl":	{square,	addone,	double},

13| 						"dbl,sqr,sqr":	{double,	double,	square},

14| 			}

15|

16| 			for	_,	n	:=	range	[]int{2,	3,	5,	7}	{

17| 						fmt.Println(">>>",	n)

18| 						for	name,	transfers	:=	range	transforms	{

19| 									result	:=	n

20| 									for	_,	xfer	:=	range	transfers	{

21| 												result	=	xfer(result)

22| 									}

23| 									fmt.Printf("	%v:	%v	\n",	name,	result)

24| 						}

25| 			}

26| }

Below	is	a	type	which	looks	some	complex.

1| []map[struct	{

2| 			a	int

3| 			b	struct	{

4| 						x	string

5| 						y	bool

6| 			}

7| }]interface	{

8| 			Build([]byte,	struct	{x	string;	y	bool})	error

9| 			Update(dt	float64)
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10| 			Destroy()

11| }

Let's	read	it	from	left	to	right.	The	starting	[] 	at	the	left	most	indicates	this	type	is	a	slice	type.	The
following	map 	keyword	shows	the	element	type	of	the	slice	type	is	a	map	type.	The	struct	type	denoted	by
the	struct	literal	enclosed	in	the	[] 	following	the	map 	keyword	is	the	key	type	of	the	map	type.	The
element	type	of	the	map	type	is	an	interface	type	which	specifies	three	methods.	The	key	type,	a	struct
type,	has	two	fields,	one	field	a 	is	of	int 	type,	and	the	other	field	b 	is	of	another	struct	type	struct	{x
string;	y	bool} .

Please	note	that	the	second	struct	type	is	also	used	as	one	parameter	type	of	one	method	specified	by	the
just	mentioned	interface	type.

To	get	a	better	readability,	we	often	decompose	such	a	type	into	multiple	type	declarations.	The	type	alias
T 	declared	in	the	following	code	and	the	just	explained	type	above	denote	the	identical	type.

1| type	B	=	struct	{

2| 			x	string

3| 			y	bool

4| }

5|

6| type	K	=	struct	{

7| 			a	int

8| 			b	B

9| }

10|

11| type	E	=	interface	{

12| 			Build([]byte,	B)	error

13| 			Update(dt	float64)

14| 			Destroy()

15| }

16|

17| type	T	=	[]map[K]E

The	Current	Status	of	the	Built-in	Generic	Functionalities
in	Go

Besides	the	built-in	generics	for	composite	types,	there	are	several	built-in	functions	which	also	support
generics.	Such	as	the	built-in	len 	function	can	be	used	to	get	the	length	of	values	of	arrays,	slices,	maps,
strings	and	channels.	Generally,	the	functions	in	the	unsafe 	standard	package	are	also	viewed	as	built-in
functions.

The	fact	that	currently	Go	doesn't	support	generics	for	custom	types	and	functions	really	brings	some
inconveniences	in	Go	programming	sometimes.	For	example,	the	types	of	the	arguments	and	results	of
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most	functions	in	the	math 	standard	package	are	float64 .	When	we	want	to	use	these	functions	on
values	of	other	kinds	of	numeric	types,	we	must	first	convert	the	values	to	float64 	values	as	arguments,
and	we	must	convert	the	float64 	results	back	to	the	original	numeric	types,	which	is	not	only
inconvenient,	but	also	is	not	efficient.

Luckily,	many	kinds	of	Go	projects	don't	need	custom	general	types	and	functions.	And	the	shortcomings
caused	by	lacking	of	custom	generics	can	be	partially	remedied	by	the	reflection	functionalities	provided
in	Go	(at	run	time)	and	code	generating	(at	compile	time).

The	Future	of	Generics	in	Go

Go	language	design	and	development	team	wouldn't	mind	supporting	generics	feature	in	Go Ң ,	it	is	just
that	they	haven't	found	a	generics	solution Ң 	which	will	keep	Go	simple	and	clean	yet.	So,	it	is	(very)
possible	that	Go	2	will	support	custom	generics.	Currently,	there	is	a	page	for	Go	2	draft	designs Ң ,
including	a	generics	design	draft.	The	draft	is	still	in	the	early	phase	so	the	final	implementation	would	be
much	different.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Reflections	in	Go
Go	is	a	static	language	with	well	reflection	support.	The	remaining	of	this	article	will	explain	the
reflection	functionalities	provided	in	the	reflect 	standard	package.

It	is	very	helpful	to	read	the	overview	of	Go	type	system	(§14)	and	interfaces	in	Go	(§23)	articles	before
reading	the	remaining	of	the	current	article.

Overview	of	Go	Reflection

From	the	last	article	(§26),	we	know	that	currently	Go	lacks	of	generic	support	for	custom	types	and
functions.	Go	reflection	brings	many	dynamic	functionalities	to	Go	programming,	which	makes	up	for	the
lacking	of	custom	generic	problem	to	some	extent	(though	the	reflection	way	is	less	efficient	than	real
generic	from	the	CPU	consuming	view).	Many	standard	code	packages,	such	as	the	fmt 	and	encoding
packages,	heavily	rely	on	the	reflection	functionalities	heavily.

We	can	inspect	Go	values	through	the	values	of	the	Type 	and	Value 	types	defined	in	the	reflect
standard	package.	The	remaining	of	this	article	will	show	some	examples	on	how	to	use	values	of	the	two
types.

One	of	the	Go	reflection	design	goals	is	any	non-reflection	operation	should	be	also	possible	to	be	applied
through	the	reflection	ways.	For	all	kinds	of	reasons,	this	goal	is	not	100	percent	achieved	currently	(Go
1.13).	However,	most	non-reflection	operations	can	be	applied	through	the	reflection	ways	now.	On	the
other	hand,	through	the	reflection	ways,	we	can	do	some	operations	which	are	impossible	to	be	achieved
through	non-reflection	ways.	The	operations	which	can't	and	can	only	be	achieved	through	the	reflection
ways	will	be	mentioned	in	the	following	sections.

The	reflect.Type	Type	and	Values

In	Go,	we	can	create	a	reflect.Type 	value	from	an	arbitrary	non-interface	value	by	calling	the
reflect.TypeOf 	function.	The	result	reflect.Type 	value	represents	the	type	of	the	non-interface
value.	Surely,	we	can	also	pass	an	interface	value	to	a	reflect.TypeOf 	function	call,	but	the	call	will
return	a	reflect.Type 	value	which	represents	the	dynamic	type	of	the	interface	value.	In	fact,	the
reflect.TypeOf 	function	has	only	one	parameter	of	type	interface{} 	and	always	returns	a
reflect.Type 	value	which	represents	the	dynamic	type	of	the	only	interface	parameter.	Then	how	to	get
a	reflect.Type 	value	which	represents	an	interface	type?	We	must	use	indirect	ways	which	will	be
introduced	below	to	achieve	this	goal.

The	reflect.Type 	type	is	an	interface	type.	It	specifies	several	methods Ң .	We	can	call	these	methods
to	inspect	the	information	of	the	type	represented	by	a	reflect.Type 	receiver	value.	Some	of	these

§27.	Reflections	in	Go

278

https://golang.org/pkg/reflect/#Type


methods	apply	for	all	kinds	of	types Ң ,	some	of	them	are	one	kind	or	several	kinds	specific.	Please	read
the	documentation	of	each	method	for	details.	Calling	one	of	the	methods	through	an	improper
reflect.Type 	receiver	value	will	produce	a	panic.

An	example:

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			type	A	=	[16]int16

8| 			var	c	<-chan	map[A][]byte

9| 			tc	:=	reflect.TypeOf(c)

10| 			fmt.Println(tc.Kind())				//	chan

11| 			fmt.Println(tc.ChanDir())	//	<-chan

12| 			tm	:=	tc.Elem()

13| 			ta,	tb	:=	tm.Key(),	tm.Elem()

14| 			//	The	next	line	prints:	map	array	slice

15| 			fmt.Println(tm.Kind(),	ta.Kind(),	tb.Kind())

16| 			tx,	ty	:=	ta.Elem(),	tb.Elem()

17|

18| 			//	byte	is	an	alias	of	uint8

19| 			fmt.Println(tx.Kind(),	ty.Kind())	//	int16	uint8

20| 			fmt.Println(tx.Bits(),	ty.Bits())	//	16	8

21| 			fmt.Println(tx.ConvertibleTo(ty))	//	true

22| 			fmt.Println(tb.ConvertibleTo(ta))	//	false

23|

24| 			//	Slice	and	map	types	are	incomparable.

25| 			fmt.Println(tb.Comparable())	//	false

26| 			fmt.Println(tm.Comparable())	//	false

27| 			fmt.Println(ta.Comparable())	//	true

28| 			fmt.Println(tc.Comparable())	//	true

29| }

There	are	26	kinds	of	types Ң 	in	Go.

In	the	above	example,	we	use	the	method	Elem 	to	get	the	element	types	of	some	container	types	(a
channel	type,	a	map	type,	a	slice	type	and	an	array	type).	In	fact,	we	can	also	use	this	method	to	get	the
base	type	of	a	pointer	type.	For	example,

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| type	T	[]interface{m()}
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7| func	(T)	m()	{}

8|

9| func	main()	{

10| 			tp	:=	reflect.TypeOf(new(interface{}))

11| 			tt	:=	reflect.TypeOf(T{})

12| 			fmt.Println(tp.Kind(),	tt.Kind())	//	ptr	slice

13|

14| 			//	Get	two	interface	Types	indirectly.

15| 			ti,	tim	:=	tp.Elem(),	tt.Elem()

16| 			//	The	next	line	prints:	interface	interface

17| 			fmt.Println(ti.Kind(),	tim.Kind())

18|

19| 			fmt.Println(tt.Implements(tim))		//	true

20| 			fmt.Println(tp.Implements(tim))		//	false

21| 			fmt.Println(tim.Implements(tim))	//	true

22|

23| 			//	All	types	implement	any	blank	interface	type.

24| 			fmt.Println(tp.Implements(ti))		//	true

25| 			fmt.Println(tt.Implements(ti))		//	true

26| 			fmt.Println(tim.Implements(ti))	//	true

27| 			fmt.Println(ti.Implements(ti))		//	true

28| }

We	can	get	all	of	the	field	types	(of	a	struct	type)	and	the	method	information	of	a	type	through	reflection.
We	can	also	get	the	parameter	and	result	type	information	of	a	function	type	through	reflection.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| type	F	func(string,	int)	bool

7| func	(f	F)	Validate(s	string)	bool	{

8| 			return	f(s,	32)

9| }

10|

11| func	main()	{

12| 			var	x	struct	{

13| 						N	int

14| 						f	F

15| 			}

16| 			tx	:=	reflect.TypeOf(x)

17| 			fmt.Println(tx.Kind())								//	struct

18| 			fmt.Println(tx.NumField())				//	2

19| 			fmt.Println(tx.Field(1).Name)	//	f

20| 			tf	:=	tx.Field(1).Type

21| 			fmt.Println(tf.Kind())															//	func

22| 			fmt.Println(tf.IsVariadic())									//	false
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23| 			fmt.Println(tf.NumIn(),	tf.NumOut())	//	2	1

24| 			fmt.Println(tf.NumMethod())										//	1

25| 			fmt.Println(tf.Method(0).Name)							//	Validate

26| 			ts,	ti,	tb	:=	tf.In(0),	tf.In(1),	tf.Out(0)

27| 			//	The	next	line	prints:	string	int	bool

28| 			fmt.Println(ts.Kind(),	ti.Kind(),	tb.Kind())

29| }

Note,	the	reflect.Type.NumMethod 	only	returns	the	number	of	exported	methods	(including	implicitly
declared	ones)	of	a	type.

Note,

1.	 the	reflect.Type.NumMethod 	only	returns	the	number	of	exported	methods	(including	implicitly
declared	ones)	of	a	type.	We	are	unable	to	get	the	information	of	a	non-exported	method	by	using
the	reflect.Type.MethodByName 	method.

2.	 Although	a	reflect.Type.NumField 	method	call	returns	the	number	of	all	fields	(including	non-
exported	ones)	of	a	struct	type,	it	is	not	a	good	idea Ң 	to	use	the	reflect.Type.FieldByName
method	to	get	the	information	of	a	non-exported	field.

We	can	inspect	struct	field	tags	through	reflection Ң .	The	types	of	struct	field	tags	are
reflect.StructTag ,	which	has	two	methods,	Get 	and	Lookup .	An	example	of	inspecting	struct	field
tags:

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| type	T	struct	{

7| 			X	int		`max:"99"	min:"0"`

8| 			Y	bool	`optional:"yes"`

9| }

10|

11| func	main()	{

12| 			t	:=	reflect.TypeOf(T{})

13| 			x,	y	:=	t.Field(0).Tag,	t.Field(1).Tag

14| 			fmt.Println(reflect.TypeOf(x))	//	reflect.StructTag

15|

16| 			tag,	present	:=	y.Lookup("default")

17| 			fmt.Println(len(tag),	present)				//	0	false

18| 			fmt.Println(y.Lookup("optional"))	//	yes	true

19|

20| 			fmt.Println(x.Get("max"),	x.Get("min"))	//	99	0

21| }

Beside	the	reflect.TypeOf 	function,	we	can	also	use	some	other	functions	in	the	reflect 	standard
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package	to	create	reflect.Type 	values	which	represent	some	non-defined	composite	types.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			ta	:=	reflect.ArrayOf(5,	reflect.TypeOf(123))

8| 			fmt.Println(ta)	//	[5]int

9| 			tc	:=	reflect.ChanOf(reflect.SendDir,	ta)

10| 			fmt.Println(tc)	//	chan<-	[5]int

11| 			tp	:=	reflect.PtrTo(ta)

12| 			fmt.Println(tp)	//	*[5]int

13| 			ts	:=	reflect.SliceOf(tp)

14| 			fmt.Println(ts)	//	[]*[5]int

15| 			tm	:=	reflect.MapOf(ta,	tc)

16| 			fmt.Println(tm)	//	map[[5]int]chan<-	[5]int

17| 			tf	:=	reflect.FuncOf([]reflect.Type{ta},

18| 												[]reflect.Type{tp,	tc},	false)

19| 			fmt.Println(tf)	//	func([5]int)	(*[5]int,	chan<-	[5]int)

20| 			tt	:=	reflect.StructOf([]reflect.StructField{

21| 						{Name:	"Age",	Type:	reflect.TypeOf("abc")},

22| 			})

23| 			fmt.Println(tt)												//	struct	{	Age	string	}

24| 			fmt.Println(tt.NumField())	//	1

25| }

There	are	more	reflect.Type 	methods	which	are	not	used	in	above	examples,	please	read	the	reflect
package	documentation	for	their	usages.

Note,	up	to	now	(Go	1.13),	there	are	no	ways	to	create	interface	types	through	reflection.	This	is	a	known
limitation	of	Go	reflection.

Another	limitation	is,	although	we	can	create	a	struct	type	embedding	other	types	as	anonymous	fields
through	reflection,	the	struct	type	may	or	may	not	obtain	the	methods	of	the	embedded	types,	and	creating
a	struct	type	with	anonymous	fields	even	might	panic	at	run	time.	In	other	words,	the	behavior	of	creating
struct	types	with	anonymous	fields	is	partially	compiler	dependent.

The	third	limitation	is	we	can't	declare	new	types	through	reflection.

The	reflect.Value	Type	and	Values

Similarly,	we	can	create	a	reflect.Value 	value	from	an	arbitrary	non-interface	value	by	calling	the
reflect.ValueOf 	function.	The	result	reflect.Value 	value	represents	the	non-interface	value.	Same
as	the	reflect.TypeOf 	function,	the	reflect.ValueOf 	function	also	has	only	one	parameter	of	type
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interface{} .	When	an	interface	argument	is	passed	to	a	reflect.ValueOf 	function	call,	the	call	will
return	a	reflect.Value 	value	which	represents	the	dynamic	value	of	the	interface	argument.	To	get	a
reflect.Value 	value	which	represents	an	interface	value,	we	must	use	indirect	ways	which	will	be
introduced	below	to	achieve	this	goal.

The	value	represented	by	a	reflect.Value 	value	v 	is	often	called	the	underlying	value	of	v .

There	are	plenty	of	methods Ң 	declared	for	the	reflect.Value 	type.	We	can	call	these	methods	to
inspect	the	information	of	(and	manipulate)	the	underlying	value	of	a	reflect.Value 	receiver	value.
Some	of	these	methods	apply	for	all	kinds	of	values,	some	of	them	are	one	kind	or	several	kinds	specific.
Please	read	the	reflect 	standard	package	documentation	for	details.	Calling	a	kind-specific	method	with
an	improper	reflect.Value 	receiver	value	will	produce	a	panic.

The	CanSet 	method	of	a	reflect.Value 	value	returns	whether	or	not	the	underlying	value	of	the
reflect.Value 	value	is	modifiable	(can	be	assigned	to).	If	the	Go	value	is	modifiable,	we	can	call	the
Set 	method	of	the	corresponding	reflect.Value 	value	to	modify	the	Go	value.	Note,	the
reflect.Value 	values	returned	directly	by	reflect.ValueOf 	function	calls	are	always	read-only.

An	example:

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			n	:=	123

8| 			p	:=	&n

9| 			vp	:=	reflect.ValueOf(p)

10| 			fmt.Println(vp.CanSet(),	vp.CanAddr())	//	false	false

11| 			vn	:=	vp.Elem()	//	get	the	value	referenced	by	vp

12| 			fmt.Println(vn.CanSet(),	vn.CanAddr())	//	true	true

13| 			vn.Set(reflect.ValueOf(789))	//	<=>	vn.SetInt(789)

14| 			fmt.Println(n)															//	789

15| }

Non-exported	fields	of	struct	values	can't	be	modified	through	reflections.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			var	s	struct	{

8| 						X	interface{}	//	an	exported	field
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9| 						y	interface{}	//	a	non-exported	field

10| 			}

11| 			vp	:=	reflect.ValueOf(&s)

12| 			//	If	vp	represents	a	pointer.	the	following

13| 			//	line	is	equivalent	to	"vs	:=	vp.Elem()".

14| 			vs	:=	reflect.Indirect(vp)

15| 			//	vx	and	vy	both	represent	interface	values.

16| 			vx,	vy	:=	vs.Field(0),	vs.Field(1)

17| 			fmt.Println(vx.CanSet(),	vx.CanAddr())	//	true	true

18| 			//	vy	is	addressable	but	not	modifiable.

19| 			fmt.Println(vy.CanSet(),	vy.CanAddr())	//	false	true

20| 			vb	:=	reflect.ValueOf(123)

21| 			vx.Set(vb)					//	okay,	for	vx	is	modifiable

22| 			//	vy.Set(vb)		//	will	panic,	for	vy	is	unmodifiable

23| 			fmt.Println(s)	//	{123	<nil>}

24| 			fmt.Println(vx.IsNil(),	vy.IsNil())	//	false	true

25| }

From	the	above	two	examples,	we	can	learn	that	there	are	two	ways	to	get	a	reflect.Value 	value
whose	underlying	value	is	referenced	by	the	underlying	value	(a	pointer	value)	of	another
reflect.Value 	value.

1.	 One	way	is	by	calling	the	Elem 	method	of	a	reflect.Value 	value	which	represents	the	pointer
value.

2.	 The	other	way	is	to	pass	a	reflect.Value 	value	which	represents	the	pointer	value	to	a
reflect.Indirect 	function	call.	(If	the	argument	passed	to	a	reflect.Indirect 	function	call
doesn't	represent	a	pointer	value,	then	the	call	returns	a	copy	of	the	argument.)

Note,	the	reflect.Value.Elem 	method	can	be	also	used	to	get	a	reflect.Value 	value	which
represents	the	dynamic	value	of	an	interface	value.	For	example,

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			var	z	=	123

8| 			var	y	=	&z

9| 			var	x	interface{}	=	y

10| 			v	:=	reflect.ValueOf(&x)

11| 			vx	:=	v.Elem()

12| 			vy	:=	vx.Elem()

13| 			vz	:=	vy.Elem()

14| 			vz.Set(reflect.ValueOf(789))

15| 			fmt.Println(z)	//	789

16| }
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The	reflect 	standard	package	also	declares	some	reflect.Value 	related	functions.	Each	of	these
functions	corresponds	to	a	built-in	function	or	a	non-reflection	functionality,	The	following	example
demonstrates	how	to	bind	a	custom	generic	function	to	different	function	values.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	InvertSlice(args	[]reflect.Value)	(result	[]reflect.Value)	{

7| 			inSlice,	n	:=	args[0],	args[0].Len()

8| 			outSlice	:=	reflect.MakeSlice(inSlice.Type(),	0,	n)

9| 			for	i	:=	n-1;	i	>=	0;	i--	{

10| 						element	:=	inSlice.Index(i)

11| 						outSlice	=	reflect.Append(outSlice,	element)

12| 			}

13| 			return	[]reflect.Value{outSlice}

14| }

15|

16| func	Bind(p	interface{},	f	func	([]reflect.Value)	[]reflect.Value)	{

17| 			//	invert	represents	a	function	value.

18| 			invert	:=	reflect.ValueOf(p).Elem()

19| 			invert.Set(reflect.MakeFunc(invert.Type(),	f))

20| }

21|

22| func	main()	{

23| 			var	invertInts	func([]int)	[]int

24| 			Bind(&invertInts,	InvertSlice)

25| 			fmt.Println(invertInts([]int{2,	3,	5}))	//	[5	3	2]

26|

27| 			var	invertStrs	func([]string)	[]string

28| 			Bind(&invertStrs,	InvertSlice)

29| 			fmt.Println(invertStrs([]string{"Go",	"C"}))	//	[C	Go]

30| }

If	the	underlying	value	of	a	reflect.Value 	is	a	function	value,	then	we	can	call	the	Call 	method	of	the
reflect.Value 	to	call	the	underlying	function.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| type	T	struct	{

7| 			A,	b	int

8| }

9|

10| func	(t	T)	AddSubThenScale(n	int)	(int,	int)	{
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11| 			return	n	*	(t.A	+	t.b),	n	*	(t.A	-	t.b)

12| }

13|

14| func	main()	{

15| 			t	:=	T{5,	2}

16| 			vt	:=	reflect.ValueOf(t)

17| 			vm	:=	vt.MethodByName("AddSubThenScale")

18| 			results	:=	vm.Call([]reflect.Value{reflect.ValueOf(3)})

19| 			fmt.Println(results[0].Int(),	results[1].Int())	//	21	9

20|

21| 			neg	:=	func(x	int)	int	{

22| 						return	-x

23| 			}

24| 			vf	:=	reflect.ValueOf(neg)

25| 			fmt.Println(vf.Call(results[:1])[0].Int())	//	-21

26| 			fmt.Println(vf.Call([]reflect.Value{

27| 						vt.FieldByName("A"),	//	panic	on	changing	to	"b"

28| 			})[0].Int())	//	-5

29| }

Please	note	that,	non-exported	fields	shouldn't	be	used	as	arguments	of	reflection	calls.	If	the	line
vt.FieldByName("A") 	in	the	above	example	is	replaced	with	vt.FieldByName("b") ,	a	panic	will
occur.

A	reflection	example	for	map	values.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			valueOf	:=	reflect.ValueOf

8| 			m	:=	map[string]int{"Unix":	1973,	"Windows":	1985}

9| 			v	:=	valueOf(m)

10| 			//	A	zero	second	Value	argument	means	to	delete	an	entry.

11| 			v.SetMapIndex(valueOf("Windows"),	reflect.Value{})

12| 			v.SetMapIndex(valueOf("Linux"),	valueOf(1991))

13| 			for	i	:=	v.MapRange();	i.Next();	{

14| 						fmt.Println(i.Key(),	"\t:",	i.Value())

15| 			}

16| }

Please	note	that,	the	MapRange 	method	is	supported	since	Go	1.12.

A	reflection	example	for	channel	values.

1| package	main
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2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			c	:=	make(chan	string,	2)

8| 			vc	:=	reflect.ValueOf(c)

9| 			vc.Send(reflect.ValueOf("C"))

10| 			succeeded	:=	vc.TrySend(reflect.ValueOf("Go"))

11| 			fmt.Println(succeeded)	//	true

12| 			succeeded	=	vc.TrySend(reflect.ValueOf("C++"))

13| 			fmt.Println(succeeded)	//	false

14| 			fmt.Println(vc.Len(),	vc.Cap())	//	2	2

15| 			vs,	succeeded	:=	vc.TryRecv()

16| 			fmt.Println(vs.String(),	succeeded)	//	C	true

17| 			vs,	sentBeforeClosed	:=	vc.Recv()

18| 			fmt.Println(vs.String(),	sentBeforeClosed)	//	Go	false

19| 			vs,	succeeded	=	vc.TryRecv()

20| 			fmt.Println(vs.String())	//	<invalid	Value>

21| 			fmt.Println(succeeded)			//	false

22| }

The	TrySend 	and	TryRecv 	methods	correspond	to	one-case-one-default	select 	control	flow	code
blocks	(§21).

We	can	use	the	reflect.Select 	function	to	simulate	a	select 	code	block	with	dynamic	number	of
case 	branches	at	run	time.

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			c	:=	make(chan	int,	1)

8| 			vc	:=	reflect.ValueOf(c)

9| 			succeeded	:=	vc.TrySend(reflect.ValueOf(123))

10| 			fmt.Println(succeeded,	vc.Len(),	vc.Cap())	//	true	1	1

11|

12| 			vSend,	vZero	:=	reflect.ValueOf(789),	reflect.Value{}

13| 			branches	:=	[]reflect.SelectCase{

14| 						{Dir:	reflect.SelectDefault,	Chan:	vZero,	Send:	vZero},

15| 						{Dir:	reflect.SelectRecv,	Chan:	vc,	Send:	vZero},

16| 						{Dir:	reflect.SelectSend,	Chan:	vc,	Send:	vSend},

17| 			}

18| 			selIndex,	vRecv,	sentBeforeClosed	:=	reflect.Select(branches)

19| 			fmt.Println(selIndex)									//	1

20| 			fmt.Println(sentBeforeClosed)	//	true
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21| 			fmt.Println(vRecv.Int())						//	123

22| 			vc.Close()

23| 			//	Remove	the	send	case	branch	this	time,

24| 			//	for	it	may	cause	panic.

25| 			selIndex,	_,	sentBeforeClosed	=	reflect.Select(branches[:2])

26| 			fmt.Println(selIndex,	sentBeforeClosed)	//	1	false

27| }

The	respective	underlying	values	of	some	reflect.Value 	values	may	be	nothing.	For	example,	zero
reflect.Value 	values.

1| package	main

2|

3| import	"reflect"

4| import	"fmt"

5|

6| func	main()	{

7| 			var	z	reflect.Value	//	a	zero	Value	value

8| 			fmt.Println(z)						//	<invalid	reflect.Value>

9| 			v	:=	reflect.ValueOf((*int)(nil)).Elem()

10| 			fmt.Println(v)						//	<invalid	reflect.Value>

11| 			fmt.Println(v	==	z)	//	true

12| 			var	i	=	reflect.ValueOf([]interface{}{nil}).Index(0)

13| 			fmt.Println(i)													//	<nil>

14| 			fmt.Println(i.Elem()	==	z)	//	true

15| 			fmt.Println(i.Elem())						//	<invalid	reflect.Value>

16| }

For	a	Go	value,	we	can	use	the	reflect.ValueOf 	function	to	create	a	reflect.Value 	value
representing	the	Go	value,	through	the	help	of	interface{} .	The	inverse	process	in	similar,	we	can	call
the	Interface 	method	of	a	reflect.Value 	value	to	get	an	interface{} 	value,	then	type	assert	on
the	interface{} 	value	to	the	Go	value	represented	by	(a.k.a.,	the	underlying	value	of	)	the
reflect.Value 	value.

1| package	main

2|

3| import	"reflect"

4| import	"fmt"

5|

6| func	main()	{

7| 			vx	:=	reflect.ValueOf(123)

8| 			vy	:=	reflect.ValueOf("abc")

9| 			vz	:=	reflect.ValueOf([]bool{false,	true})

10|

11| 			x	:=	vx.Interface().(int)

12| 			y	:=	vy.Interface().(string)

13| 			z	:=	vz.Interface().([]bool)
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14| 			fmt.Println(x,	y,	z)	//	123	abc	[false	true]

15| }

Since	Go	1.13,	we	can	use	the	method	reflect.Value.IsZero 	to	check	whether	or	not	the	underlying
value	of	a	reflect.Value 	value	is	a	zero	value.

There	are	more	reflect.Value 	related	functions	and	methods	which	are	not	used	in	above	examples,
please	read	the	reflect 	package	documentation	for	their	usages.	In	addition,	please	note	that	there	are
some	reflection	(§50)	related	details	(§50)	mentioned	in	Go	details	101	(§50).

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Line	Break	Rules	in	Go
If	you	have	written	go	code	much,	you	should	have	known	that	we	can't	use	arbitrary	code	styles	in	Go
programming.	Specifically	speaking,	we	can't	break	a	code	line	at	an	arbitrary	space	character	position.
The	remaining	of	this	article	will	list	the	detailed	line	break	rules	in	Go.

Semicolon	Insertion	Rules

One	rule	we	often	obey	in	practice	is,	we	should	not	put	the	a	starting	curly	brace	({ )	of	any	explicit	code
block	on	a	new	line.	For	example,	the	following	for 	loop	code	block	fails	to	compile.

1| 			for	i	:=	5;	i	>	0;	i--

2| 			{	//	unexpected	newline,	expecting	{	after	for	clause

3| 			}

To	make	it	compiles	okay,	the	starting	curly	brace	mustn't	be	put	on	a	new	line,	like	the	following:

1| 			for	i	:=	5;	i	>	0;	i--	{

2| 			}

However,	there	are	some	exceptions	for	the	rule	mentioned	above.	For	example,	the	following	bare	for
loop	block	compiles	okay.

1| 			for

2| 			{

3| 						//	do	something	...

4| 			}

Then,	what	are	the	fundamental	rules	to	do	line	breaks	in	Go	programming?	Before	answering	this
question,	we	should	know	a	fact	that	the	formal	Go	grammar	uses	semicolons	; 	as	terminators	of	code
lines.	However,	we	seldom	use	semicolons	in	our	Go	code.	Why?	The	reason	is	most	semicolons	are
optional	and	can	be	omitted.	Go	compilers	will	insert	the	omitted	semicolons	for	us	automatically	in
compiling.

For	example,	the	ten	semicolons	in	the	following	program	are	all	optional.

1| package	main;

2|

3| import	"fmt";

4|

5| func	main()	{

6| 			var	(

7| 						i			int;

8| 						sum	int;
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9| 			);

10| 			for	i	<	6	{

11| 						sum	+=	i;

12| 						i++;

13| 			};

14| 			fmt.Println(sum);

15| };

Assume	the	above	program	is	stored	in	a	file	named	semicolons.go ,	we	can	run	go	fmt
semicolons.go 	to	remove	all	the	unnecessary	semicolons	from	that	file.	Compilers	will	insert	the
removed	semicolons	back	(in	memory)	automatically	in	compiling	the	source	code.

What	are	the	semicolons	insertion	rules	in	Go?	Let's	read	the	semicolon	rules	listed	in	Go
specification Ң .

The	formal	grammar	uses	semicolons	";"	as	terminators	in	a	number	of	productions.	Go	programs
may	omit	most	of	these	semicolons	using	the	following	two	rules:

1.	 When	the	input	is	broken	into	tokens,	a	semicolon	is	automatically	inserted	into	the	token
stream	immediately	after	a	line's	final	token	if	that	token	is

an	identifier	(§5)
an	integer,	floating-point,	imaginary,	rune,	or	string	literal	(§6)
one	of	the	keywords	break ,	continue ,	fallthrough ,	or	return
one	of	the	operators	and	punctuation	++ ,	-- ,	) ,	] ,	or	}

2.	 To	allow	complex	statements	to	occupy	a	single	line,	a	semicolon	may	be	omitted	before	a
closing	) 	or	} .

For	the	scenarios	listed	in	the	first	rule,	surely,	we	can	also	insert	the	semicolons	manually,	just	like	the
semicolons	in	the	last	code	example.	In	other	words,	these	semicolons	are	optional	in	programming.

The	second	rule	means	the	last	semicolon	in	a	multi-item	declaration	before	the	closing	sign	) 	and	the	last
semicolon	within	a	code	block	or	a	(struct	or	interface)	type	declaration	before	the	closing	sign	} 	are
optional.	If	the	last	semicolon	is	absent,	compilers	will	automatically	insert	it	back.

The	second	rule	lets	us	be	able	to	write	the	following	valid	code.

1| import	(_	"math";	"fmt")

2| var	(a	int;	b	string)

3| const	(M	=	iota;	N)

4| type	(MyInt	int;	T	struct{x	bool;	y	int32})

5| type	I	interface{m1(int)	int;	m2()	string}

6| func	f()	{print("a");	panic(nil)}

Compilers	will	automatically	insert	the	omitted	senicolons	for	us,	as	the	following	code	shows.
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1| var	(a	int;	b	string;);

2| const	(M	=	iota;	N;);

3| type	(MyInt	int;	T	struct{x	bool;	y	int32;};);

4| type	I	interface{m1(int)	int;	m2()	string;};

5| func	f()	{print("a");	panic(nil);};

Compilers	will	not	insert	semicolons	for	any	other	scenarios.	We	must	insert	the	semicolons	manually	as
needed	for	other	scenarios.	For	example,	the	first	semicolon	at	each	line	in	the	last	code	example	are	all
required.	The	semicolons	in	the	following	example	are	also	required.

1| var	a	=	1;	var	b	=	true

2| a++;	b	=	!b

3| print(a);	print(b)

From	the	two	rules,	we	know	that	a	semicolon	will	never	be	inserted	just	after	the	for 	keyword.	This	is
why	the	bare	for 	loop	example	shown	above	is	valid.

One	consequence	of	the	semicolon	insertion	rules	is	that	the	self	increment	and	self	decrement	operations
must	appear	as	statements.	They	can't	be	used	as	expressions.	For	example,	the	following	code	is	invalid.

1| func	f()	{

2| 			a	:=	0

3| 			//	The	following	two	lines	both	fail	to	compile.

4| 			println(a++)	//	unexpected	++,	expecting	comma	or	)

5| 			println(a--)	//	unexpected	--,	expecting	comma	or	)

6| }

The	reason	why	the	above	code	is	invalid	is	compilers	will	view	it	as

1| func	f()	{

2| 			a	:=	0;

3| 			println(a++;);

4| 			println(a--;);

5| }

Another	consequence	of	the	semicolon	insertion	rules	is	we	can't	break	a	line	before	the	dot	. 	in	a
selector.	We	can	only	break	a	line	after	the	dot,	as	the	following	code	shows

1| 			anObject.

2| 						MethodA().

3| 						MethodB().

4| 						MethodC()

whereas	the	following	code	fails	to	compile.

1| 			anObject

2| 						.MethodA()

3| 						.MethodB()
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4| 						.MethodC()

Compilers	will	insert	a	semicolon	at	the	end	of	each	line	in	the	modified	version,	so	the	above	code	is
equivalent	to	the	following	code	which	is	obviously	invalid.

1| 			anObject;

2| 						.MethodA();

3| 						.MethodB();

4| 						.MethodC();

The	semicolon	insertion	rules	make	us	write	cleaner	code.	They	also	make	it	is	possible	to	write	some
valid	but	a	little	weird	code.	For	example,

1| package	main

2|

3| import	"fmt"

4|

5| func	alwaysFalse()	bool	{return	false}

6|

7| func	main()	{

8| 			for

9| 			i	:=	0

10| 			i	<	6

11| 			i++	{

12| 						//	use	i	...

13| 			}

14|

15| 			if	x	:=	alwaysFalse()

16| 			!x	{

17| 						//	do	something	...

18| 			}

19|

20| 			switch	alwaysFalse()

21| 			{

22| 			case	true:	fmt.Println("true")

23| 			case	false:	fmt.Println("false")

24| 			}

25| }

All	the	three	control	flow	blocks	are	valid.	Compilers	will	insert	a	semicolon	at	the	end	of	each	of	line	9,
10,	15	and	20.

Please	note,	the	switch-case 	block	in	the	above	example	will	print	a	true 	instead	of	a	false .	It	is
different	from

1| 			switch	alwaysFalse()	{

2| 			case	true:	fmt.Println("true")

3| 			case	false:	fmt.Println("false")
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4| 			}

If	we	use	the	go	fmt 	commend	to	format	the	former	one,	a	semicolon	will	be	appended	automatically
after	the	alwaysFalse() 	call,	so	it	will	become	to

1| 			switch	alwaysFalse();

2| 			{

3| 			case	true:	fmt.Println("true")

4| 			case	false:	fmt.Println("false")

5| 			}

The	modified	version	is	equivalent	to	the	following	one.

1| 			switch	alwaysFalse();	true	{

2| 			case	true:	fmt.Println("true")

3| 			case	false:	fmt.Println("false")

4| 			}

That	is	why	it	will	print	a	true .

It	is	a	good	habit	to	run	go	fmt 	and	go	vet 	often	for	your	code.

For	a	rare	case.	the	semicolon	insertion	rules	also	make	some	code	look	valid	but	invalid	actually.	For
example,	the	following	code	snippet	fails	to	compile.

1| func	f(x	int)	{

2| 			switch	x	{

3| 			case	1:

4| 			{

5| 						goto	A

6| 						A:	//	compiles	okay

7| 			}

8| 			case	2:

9| 						goto	B

10| 						B:	//	syntax	error:	missing	statement	after	label

11| 			case	0:

12| 						goto	C

13| 						C:	//	compiles	okay

14| 			}

15| }

The	compilation	error	message	indicates	that	there	must	be	a	statement	following	a	label	declaration.	But
it	looks	none	label	in	the	above	two	examples	is	followed	by	a	statement.	Why	is	only	the	B: 	label
declaration	invalid?	The	reason	is,	by	the	second	semicolon	insertion	rule	mentioned	above,	compilers	will
insert	a	semicolon	before	each	of	the	} 	characters	following	the	A: 	and	C: 	label	declarations.	As	the
following	code	shows.

1| func	f(x	int)	{
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2| 			switch	x	{

3| 			case	1:

4| 			{

5| 						goto	A

6| 						A:

7| 			;}	//	a	semicolon	is	inserted	here

8| 			case	2:

9| 						goto	B

10| 						B:	//	syntax	error:	missing	statement	after	label

11| 			case	0:

12| 						goto	C

13| 						C:

14| 			;}	//	a	semicolon	is	inserted	here

15| }

A	solo	semicolon	represents	a	blank	statement	(§11)	actually,	which	is	why	the	A: 	and	C: 	label
declarations	are	both	valid.	On	the	other	hand,	the	B: 	label	declaration	is	followed	by	case	0: ,	which	is
not	a	statement,	so	the	B: 	label	declaration	is	invalid.

We	can	manually	insert	a	semicolon	(a	blank	statement)	at	the	end	of	each	of	the	B: 	label	declaration	to
make	it	compile	okay.

Comma	(,)	Will	Not	Be	Inserted	Automatically

In	some	syntax	forms	containing	multiple	alike	items,	commas	are	used	as	separators,	such	as	composite
literals,	function	argument	lists,	function	parameter	lists	and	function	result	lists.	In	such	a	syntax	form,
the	last	item	can	always	be	followed	by	a	comma.	If	the	following	comma	is	the	last	effective	character	in
its	respective	code	line,	then	the	comma	is	required,	otherwise,	it	is	optional.	Compilers	will	not	insert
commas	automatically	for	any	cases.

For	example,	the	following	code	snippet	is	valid.

1| func	f1(a	int,	b	string,)	(x	bool,	y	int,)	{

2| 			return	true,	789

3| }

4| var	f2	func	(a	int,	b	string)	(x	bool,	y	int)

5| var	f3	func	(a	int,	b	string,	//	the	last	comma	is	required

6| )	(x	bool,	y	int,													//	the	last	comma	is	required

7| )

8| var	_	=	[]int{2,	3,	5,	7,	9,}	//	the	last	comma	is	optional

9| var	_	=	[]int{2,	3,	5,	7,	9,		//	the	last	comma	is	required

10| }

11| var	_	=	[]int{2,	3,	5,	7,	9}

12| var	_,	_	=	f1(123,	"Go",)	//	the	last	comma	is	optional

13| var	_,	_	=	f1(123,	"Go",		//	the	last	comma	is	required

14| )
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15| var	_,	_	=	f1(123,	"Go")

However,	the	following	code	snippet	is	invalid,	for	compilers	will	insert	a	semicolon	for	each	line	in	the
code,	except	the	second	line.	There	are	three	lines	which	will	cause	unexpected	newline 	syntax	errors.

1| func	f1(a	int,	b	string,)	(x	bool,	y	int	//	error

2| )	{

3| 			return	true,	789

4| }

5| var	_	=	[]int{2,	3,	5,	7	//	error:	unexpected	newline

6| }

7| var	_,	_	=	f1(123,	"Go"	//	error:	unexpected	newline

8| )

Final	Words

At	the	end,	let's	describe	the	line	break	rules	in	Go	according	to	the	above	explanations.

In	Go,	a	line	break	is	okay	(will	not	affect	code	behavior)	if:

it	happens	immediately	after	a	keyword	other	than	break ,	continue 	and	return ,	or
after	any	of	the	three	keywords	they	are	not	followed	by	labels	or	return	results;
it	happens	immediately	after	a	semicolon,	whether	the	semicolon	is	inserted	explicitly	or
implicitly;
it	doesn't	lead	to	an	implicit	semicolon	will	be	inserted.

Like	some	other	design	details	in	Go,	there	are	both	praises	and	criticisms	for	the	semicolon	insertion
rules.	Some	programmers	don't	like	the	rules,	for	they	think	the	rules	limit	the	freedom	of	code	styles.
Praisers	think	the	rules	make	code	compile	faster,	and	make	the	code	written	by	different	programmers
look	similar,	so	that	it	is	easy	to	understand	the	code	written	by	each	other.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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More	about	Deferred	Function	Calls
Deferred	function	calls	have	been	introduced	before	(§13).	Due	to	the	limited	Go	knowledge	at	that	time,
some	more	details	and	use	cases	of	deferred	functions	calls	are	not	touched	in	that	article.	These	details
and	use	cases	will	be	touched	in	the	remaining	of	this	article.

Calls	to	Many	Built-in	Functions	With	Return	Results
Can't	Be	Deferred

In	Go,	the	result	values	of	a	call	to	custom	functions	can	be	all	absent	(discarded).	However,	for	built-in
functions	with	non-blank	return	result	lists,	the	result	values	of	their	calls	mustn't	be	absent	(§49)	(at	least
for	the	standard	Go	compiler	1.13),	except	the	calls	to	the	built-in	copy 	and	recover 	functions.	On	the
other	hand,	we	have	learned	that	the	result	values	of	a	deferred	function	call	must	be	discarded,	so	the	calls
to	many	built-in	functions	can't	be	deferred.

Fortunately,	the	needs	to	defer	built-in	function	calls	(with	non-blank	return	result	lists)	are	rare	in
practice.	As	far	as	I	know,	only	the	calls	to	the	built-in	append 	function	may	needed	to	be	deferred
sometimes.	For	this	case,	we	can	defer	a	call	to	an	anonymous	function	which	wraps	the	append 	call.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			s	:=	[]string{"a",	"b",	"c",	"d"}

7| 			defer	fmt.Println(s)	//	[a	x	y	d]

8| 			//	defer	append(s[:1],	"x",	"y")	//	error

9| 			defer	func()	{

10| 						_	=	append(s[:1],	"x",	"y")

11| 			}()

12| }

The	Evaluation	Moment	of	Deferred	Function	Values

The	called	function	(value)	in	a	deferred	function	call	is	evaluated	when	the	call	is	pushed	into	the
deferred	call	stack	of	the	current	goroutine.	For	example,	the	following	program	will	print	false .

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

§29.	More	about	Deferred	Function	Calls

297



6| 			var	f	=	func	()	{

7| 						fmt.Println(false)

8| 			}

9| 			defer	f()

10| 			f	=	func	()	{

11| 						fmt.Println(true)

12| 			}

13| }

The	called	function	in	a	deferred	function	call	may	be	a	nil	function	value.	For	such	a	case,	the	panic	will
occur	when	the	call	to	the	nil	function	is	invoked,	instead	of	when	the	call	is	pushed	into	the	deferred	call
stack	of	the	current	goroutine.	An	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			defer	fmt.Println("reachable")

7| 			var	f	func()	//	f	is	nil	by	default

8| 			defer	f()				//	panic	here

9| 			//	The	following	lines	are	also	reachable.

10| 			fmt.Println("also	reachable")

11| 			f	=	func()	{}	//	useless	to	avoid	panicking

12| }

The	arguments	of	a	deferred	function	call	are	also	evaluated	before	(§13)	the	deferred	call	is	pushed	into
the	deferred	call	stack	of	the	current	goroutine.

Deferred	Calls	Make	Code	Cleaner	and	Less	Bug	Prone

Example:

1| import	"os"

2|

3| func	withoutDefers(filepath	string,	head,	body	[]byte)	error	{

4| 			f,	err	:=	os.Open(filepath)

5| 			if	err	!=	nil	{

6| 						return	err

7| 			}

8|

9| 			_,	err	=	f.Seek(16,	0)

10| 			if	err	!=	nil	{

11| 						f.Close()

12| 						return	err

13| 			}

14|

§29.	More	about	Deferred	Function	Calls

298



15| 			_,	err	=	f.Write(head)

16| 			if	err	!=	nil	{

17| 						f.Close()

18| 						return	err

19| 			}

20|

21| 			_,	err	=	f.Write(body)

22| 			if	err	!=	nil	{

23| 						f.Close()

24| 						return	err

25| 			}

26|

27| 			err	=	f.Sync()

28| 			f.Close()

29| 			return	err

30| }

31|

32| func	withDefers(filepath	string,	head,	body	[]byte)	error	{

33| 			f,	err	:=	os.Open(filepath)

34| 			if	err	!=	nil	{

35| 						return	err

36| 			}

37| 			defer	f.Close()

38|

39| 			_,	err	=	f.Seek(16,	0)

40| 			if	err	!=	nil	{

41| 						return	err

42| 			}

43|

44| 			_,	err	=	f.Write(head)

45| 			if	err	!=	nil	{

46| 						return	err

47| 			}

48|

49| 			_,	err	=	f.Write(body)

50| 			if	err	!=	nil	{

51| 						return	err

52| 			}

53|

54| 			return	f.Sync()

55| }

Which	one	looks	cleaner?	Apparently,	the	one	with	the	deferred	calls,	though	a	little.	And	it	is	less	bug
prone,	for	there	are	so	many	f.Close() 	calls	in	the	function	without	deferred	calls	that	it	has	a	higher
possibility	to	miss	one	of	them.

The	following	is	another	example	to	show	deferred	calls	can	make	code	less	bug	prone.	If	the
doSomething 	calls	panic	in	the	following	example,	the	function	f2 	will	exit	by	leaving	the	Mutex
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unlocked.	So	the	function	f1 	is	less	bug	prone.

1| var	m	sync.Mutex

2|

3| func	f1()	{

4| 			m.Lock()

5| 			defer	m.Unlock()

6| 			doSomething()

7| }

8|

9| func	f2()	{

10| 			m.Lock()

11| 			doSomething()

12| 			m.Unlock()

13| }

Performance	Losses	Caused	by	Deferring	Function	Calls

It	is	not	always	good	to	use	deferred	function	calls.	For	the	official	Go	compiler,	before	version	1.13,
deferred	function	calls	will	cause	a	few	performance	losses	at	run	time.	Since	Go	SDK	1.13,	some
common	defer	use	cases	have	got	optimized	much,	so	that	generally	we	don't	need	to	care	about	the
performance	loss	problem	caused	by	deferred	calls.

Kind-of	Resource	Leaking	by	Deferring	Function	Calls

A	very	large	deferred	call	stack	may	also	consume	much	memory,	and	the	unexecuted	deferred	calls	may
prevent	some	resources	from	being	released	in	time.	For	example,	if	there	are	many	files	needed	to	be
handled	in	a	call	to	the	following	function,	then	a	large	number	of	file	handlers	will	be	not	get	released
before	the	function	exits.

1| func	writeManyFiles(files	[]File)	error	{

2| 			for	_,	file	:=	range	files	{

3| 						f,	err	:=	os.Open(file.path)

4| 						if	err	!=	nil	{

5| 									return	err

6| 						}

7| 						defer	f.Close()

8|

9| 						_,	err	=	f.WriteString(file.content)

10| 						if	err	!=	nil	{

11| 									return	err

12| 						}

13|

14| 						err	=	f.Sync()

15| 						if	err	!=	nil	{
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16| 									return	err

17| 						}

18| 			}

19|

20| 			return	nil

21| }

For	such	cases,	we	can	use	an	anonymous	function	to	enclose	the	deferred	calls	so	that	the	deferred
function	calls	will	get	executed	earlier.	For	example,	the	above	function	can	be	rewritten	and	improved	as

1| func	writeManyFiles(files	[]File)	error	{

2| 			for	_,	file	:=	range	files	{

3| 						if	err	:=	func()	error	{

4| 									f,	err	:=	os.Open(file.path)

5| 									if	err	!=	nil	{

6| 												return	err

7| 									}

8| 									//	The	close	method	will	be	called	at

9| 									//	the	end	of	the	current	loop	step.

10| 									defer	f.Close()

11|

12| 									_,	err	=	f.WriteString(file.content)

13| 									if	err	!=	nil	{

14| 												return	err

15| 									}

16|

17| 									return	f.Sync()

18| 						}();	err	!=	nil	{

19| 									return	err

20| 						}

21| 			}

22|

23| 			return	nil

24| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Some	Panic/Recover	Use	Cases
Panic	and	recover	have	been	introduced	before	(§13).	The	following	of	the	current	article	will	introduce
some	(good	and	bad)	panic/recover	use	cases.

Use	Case	1:	Avoid	Panics	Crashing	Programs

This	should	be	the	most	popular	use	case	of	panic/recover.	The	use	case	is	used	commonly	in	concurrent
programs,	especially	client-server	programs.

An	example:

1| package	main

2|

3| import	"errors"

4| import	"log"

5| import	"net"

6|

7| func	main()	{

8| 			listener,	err	:=	net.Listen("tcp",	":12345")

9| 			if	err	!=	nil	{

10| 						log.Fatalln(err)

11| 			}

12| 			for	{

13| 						conn,	err	:=	listener.Accept()

14| 						if	err	!=	nil	{

15| 									log.Println(err)

16| 						}

17| 						//	Handle	each	client	connection

18| 						//	in	a	new	goroutine.

19| 						go	ClientHandler(conn)

20| 			}

21| }

22|

23| func	ClientHandler(c	net.Conn)	{

24| 			defer	func()	{

25| 						if	v	:=	recover();	v	!=	nil	{

26| 									log.Println("capture	a	panic:",	v)

27| 									log.Println("avoid	crashing	the	program")

28| 						}

29| 						c.Close()

30| 			}()

31| 			panic(errors.New("just	a	demo."))	//	a	demo-purpose	panic

32| }
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Start	the	server	and	run	telnet	localhost	12345 	in	another	terminal,	we	can	observe	that	the	server
will	not	crash	down	for	the	panics	created	in	each	client	handler	goroutine.

If	we	don't	recover	the	potential	panic	in	each	client	handler	goroutine,	the	potential	panic	will	crash	the
program.

Use	Case	2:	Automatically	Restart	a	Crashed	Goroutine

When	a	panic	is	detected	in	a	goroutine,	we	can	create	a	new	goroutine	for	it.	An	example:

1| package	main

2|

3| import	"log"

4| import	"time"

5|

6| func	shouldNotExit()	{

7| 			for	{

8| 						//	Simulate	a	workload.

9| 						time.Sleep(time.Second)

10|

11| 						//	Simulate	an	unexpected	panic.

12| 						if	time.Now().UnixNano()	&	0x3	==	0	{

13| 									panic("unexpected	situation")

14| 						}

15| 			}

16| }

17|

18| func	NeverExit(name	string,	f	func())	{

19| 			defer	func()	{

20| 						if	v	:=	recover();	v	!=	nil	{

21| 									//	A	panic	is	detected.

22| 									log.Println(name,	"is	crashed.	Restart	it	now.")

23| 									go	NeverExit(name,	f)	//	restart

24| 						}

25| 			}()

26| 			f()

27| }

28|

29| func	main()	{

30| 			log.SetFlags(0)

31| 			go	NeverExit("job#A",	shouldNotExit)

32| 			go	NeverExit("job#B",	shouldNotExit)

33| 			select{}	//	block	here	for	ever

34| }

Use	Case	3:	Use	panic/recover	Calls	to	Simulate	Long
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Jump	Statements

Sometimes,	we	can	use	panic/recover	as	a	way	to	simulate	crossing-function	long	jump	statements	and
crossing-function	returns,	though	generally	this	way	is	not	recommended	to	use.	This	way	does	harm	for
both	code	readability	and	execution	efficiency.	The	only	benefit	is	sometimes	it	can	make	code	look	less
verbose.

In	the	following	example,	once	a	panic	is	created	in	an	inner	function,	the	execution	will	jump	to	the
deferred	call.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			n	:=	func	()	(result	int)		{

7| 						defer	func()	{

8| 									if	v	:=	recover();	v	!=	nil	{

9| 												if	n,	ok	:=	v.(int);	ok	{

10| 															result	=	n

11| 												}

12| 									}

13| 						}()

14|

15| 						func	()	{

16| 									func	()	{

17| 												func	()	{

18| 															//	...

19| 															panic(123)	//	panic	on	succeeded

20| 												}()

21| 												//	...

22| 									}()

23| 						}()

24| 						//	...

25| 						return	0

26| 			}()

27| 			fmt.Println(n)	//	123

28| }

Use	Case	4:	Use	panic/recover	Calls	to	Reduce	Error
Checks

An	example:

1| func	doSomething()	(err	error)	{
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2| 			defer	func()	{

3| 						err	=	recover()

4| 			}()

5|

6| 			doStep1()

7| 			doStep2()

8| 			doStep3()

9| 			doStep4()

10| 			doStep5()

11|

12| 			return

13| }

14|

15| //	In	reality,	the	prototypes	of	the	doStepN	functions

16| //	might	be	different.	For	each	of	them,

17| //	*	panic	with	nil	for	success	and	no	needs	to	continue.

18| //	*	panic	with	error	for	failure	and	no	needs	to	contine.

19| //	*	not	panic	for	continuing.

20| func	doStepN()	{

21| 			...

22| 			if	err	!=	nil	{

23| 						panic(err)

24| 			}

25| 			...

26| 			if	done	{

27| 						panic(nil)

28| 			}

29| }

The	above	code	is	less	verbose	than	the	following	one.

1| func	doSomething()	(err	error)	{

2| 			shouldContinue,	err	:=	doStep1()

3| 			if	!shouldContinue	{

4| 						return	err

5| 			}

6| 			shouldContinue,	err	=	doStep2()

7| 			if	!shouldContinue	{

8| 						return	err

9| 			}

10| 			shouldContinue,	err	=	doStep3()

11| 			if	!shouldContinue	{

12| 						return	err

13| 			}

14| 			shouldContinue,	err	=	doStep4()

15| 			if	!shouldContinue	{

16| 						return	err

17| 			}
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18| 			shouldContinue,	err	=	doStep5()

19| 			if	!shouldContinue	{

20| 						return	err

21| 			}

22|

23| 			return

24| }

25|

26| //	If	err	is	not	nil,	then	shouldContinue	must	be	true.

27| //	If	shouldContinue	is	true,	err	might	be	nil	or	non-nil.

28| func	doStepN()	(shouldContinue	bool,	err	error)	{

29| 			...

30| 			if	err	!=	nil	{

31| 						return	false,	err

32| 			}

33| 			...

34| 			if	done	{

35| 						return	false,	nil

36| 			}

37| 			return	true,	nil

38| }

However,	usually,	this	panic/recover	use	pattern	is	not	recommended	to	use.	It	is	less	Go-idiomatic	and
less	efficient.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Explain	Panic/Recover	Mechanism	in	Detail
Panic	and	recover	mechanism	has	been	introduced	before	(§13),	and	several	panic/recover	use	cases	are
shown	in	the	last	article	(§30).	This	current	article	will	explain	panic/recover	mechanism	in	detail.	Exiting
phases	of	function	calls	will	also	be	explained	detailedly.

Exiting	Phases	of	Function	Calls

In	Go,	a	function	call	may	undergo	an	exiting	phase	before	it	fully	exits.	In	the	exiting	phase,	the	deferred
function	calls	pushed	into	the	defer-call	stack	in	executing	the	function	call	will	be	executed	(in	the
inverse	pushing	order).	When	all	of	the	deferred	calls	fully	exit,	the	exiting	phase	ends	and	the	function
call	also	fully	exits.

Exiting	phases	might	also	be	called	returning	phases	elsewhere.

A	funciton	call	may	enter	its	exiting	phase	(or	exit	directly)	through	three	ways:

1.	 after	the	call	returns	normally.
2.	 when	a	panic	occurs	in	the	call.
3.	 after	the	runtime.Goexit 	function	is	called	and	fully	exits	in	the	call.

For	example,	in	the	following	code	snippet,

a	call	to	the	function	f0 	or	f1 	will	enter	its	existing	phase	after	it	returns	normally.
a	call	to	the	function	f2 	will	enter	its	exiting	phase	after	the	divided-by-zero	panic	happens.
a	call	to	the	function	f3 	will	enter	its	exiting	phase	after	the	runtime.Goexit 	function	call	fully
exits.

1| import	(

2| 			"fmt"

3| 			"runtime"

4| )

5|

6| func	f0()	int	{

7| 			var	x	=	1

8| 			defer	fmt.Println("exits	normally:",	x)

9| 			x++

10| 			return	x

11| }

12|

13| func	f1()	{

14| 			var	x	=	1

15| 			defer	fmt.Println("exits	normally:",	x)

16| 			x++
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17| }

18|

19| func	f2()	{

20| 			var	x,	y	=	1,	0

21| 			defer	fmt.Println("exits	for	panicking:",	x)

22| 			x	=	x	/	y	//	will	panic

23| 			x++							//	unreachable

24| }

25|

26| func	f3()	int	{

27| 			x	:=	1

28| 			defer	fmt.Println("exits	for	Goexiting:",	x)

29| 			x++

30| 			runtime.Goexit()

31| 			return	x+x	//	unreachable

32| }

Assosiating	Panics	and	Goexit	Signals	of	Function	Calls

When	a	panic	occurs	directly	in	a	function	call,	we	say	the	(unrecovered)	panic	starts	associating	with	the
function	call.	Similarly,	when	the	runtime.Goexit 	function	is	called	in	a	function	call,	we	say	a	Goexit
signal	starts	associating	with	the	function	call	after	the	the	runtime.Goexit 	call	fully	exits.	A	panic	and
a	Goexit	signal	are	independent	of	each	other.	As	explained	in	the	last	section,	associating	either	a	panic	or
a	Goexit	signal	with	a	funciton	call	will	make	the	function	call	enter	its	exiting	phase	immediately.

We	have	learned	that	panics	can	be	recovered	(§13).	However,	there	are	no	ways	to	cancel	a	Goexit	signal.

At	any	give	time,	a	function	call	may	associate	with	at	most	one	unrecovered	panic.	If	a	call	is	associating
with	an	unrecovered	panic,	then

the	call	will	associate	with	no	panics	when	the	unrecovered	panic	is	recovered.
when	a	new	panic	occurs	in	the	function	call,	the	new	one	will	replace	the	old	one	to	be	the
associating	unrecovered	panic	of	the	function	call.

For	example,	in	the	following	program,	the	recovered	panic	is	panic	3,	which	is	the	last	panic	associating
with	the	main 	function	call.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			defer	func()	{

7| 						fmt.Println(recover())	//	3

8| 			}()

9| 			
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10| 			defer	panic(3)	//	will	replace	panic	2

11| 			defer	panic(2)	//	will	replace	panic	1

12| 			defer	panic(1)	//	will	replace	panic	0

13| 			panic(0)

14| }

As	Goexit	signals	can't	be	cancelled,	arguing	whether	a	function	call	may	associate	with	at	most	one	or
more	than	one	Goexit	signal	is	unecessary.

Although	it	is	unusual,	there	might	be	multiple	unrecovered	panics	coexisting	in	a	goroutine	at	a	time.
Each	one	associates	with	one	non-exited	function	call	in	the	call	stack	of	the	goroutine.	When	a	nested	call
still	associating	with	an	unrecovered	panic	fully	exits,	the	unrecovered	panic	will	spread	to	the	nesting	call
(the	caller	of	the	nested	call).	The	effect	is	the	same	as	a	panic	occurs	directly	in	the	nesting	call.	That
says,

if	there	was	an	old	unrecovered	panic	associating	with	the	nesting	call	before,	the	old	one	will	be
replaced	by	the	spread	one.	For	this	case,	the	nesting	call	has	already	entered	its	exiting	phase	for
sure,	so	the	next	deferred	function	call	in	the	defer-call	stack	will	be	invoked.
if	there	was	not	an	unrecovered	panic	associating	with	the	nesting	call	before,	the	spread	one	will
associates	with	the	the	nesting	call.	For	this	case,	the	nesting	call	might	has	entered	its	exiting	phase
or	not.	If	it	hasn't,	it	will	enter	its	exiting	phase	immediately.

So,	when	a	goroutine	finishes	to	exit,	there	may	be	at	most	one	unrecovered	panic	in	the	goroutine.	If	a
goroutine	exits	with	an	unrecovered	panic,	the	whole	program	crashes.	The	information	of	the
unrecovered	panic	will	be	reported	when	the	program	crashes.

When	a	function	is	invoked,	there	is	neither	a	panic	nor	Goexit	signals	associating	with	its	call	initially,	no
matter	whether	its	caller	(the	nesting	call)	has	entered	exiting	phase	or	not.	Surely,	panics	might	occur	or
the	runtime.Goexit 	function	might	be	called	later	in	the	process	of	executing	the	call,	so	panics	and
Goexit	signals	might	associate	with	the	call	later.

The	following	example	program	will	crash	if	it	runs,	because	the	panic	2	is	still	not	recovered	when	the
new	goroutine	exits.

1| package	main

2|

3| func	main()	{

4| 			//	The	new	goroutine.

5| 			go	func()	{

6| 						//	The	anonymous	deferred	call.

7| 						//	When	it	fully	exits,	the	panic	2	will	spread

8| 						//	to	the	entry	function	call	of	the	new

9| 						//	goroutine,	and	replace	the	panic	0.	The

10| 						//	panic	2	will	never	be	recovered.

11| 						defer	func()	{

12| 									//	As	explained	in	the	last	example,

13| 									//	panic	2	will	replace	panic	1.
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14| 									defer	panic(2)

15| 									

16| 									//	When	the	anonymous	function	call	fully

17| 									//	exits,	panic	1	will	spread	to	(and

18| 									//	associate	with)	the	nesting	anonymous

19| 									//	deferred	call.

20| 									func	()	{

21| 												panic(1)

22| 												//	Once	the	panic	1	occurs,	there	will

23| 												//	be	two	unrecovered	panics	coexisting

24| 												//	in	the	new	goroutine.	One	(panic	0)

25| 												//	associates	with	the	entry	function

26| 												//	call	of	the	new	goroutine,	the	other

27| 												//	(panic	1)	accosiates	with	the

28| 												//	current	anonymous	function	call.

29| 									}()

30| 						}()

31| 						panic(0)

32| 			}()

33| 			

34| 			select{}

35| }

The	output	(when	the	above	program	is	compiled	with	the	standad	Go	compiler	v1.13):

panic:	0

			panic:	1

			panic:	2

goroutine	5	[running]:

...

The	format	of	the	output	is	not	perfect,	it	is	prone	to	make	some	people	think	that	the	panic	0	is	the	final
unrecovered	panic,	whereas	the	final	unrecovered	panic	is	panic	2	actually.

Similarly,	when	a	nested	call	fully	exits	and	it	is	associating	with	a	Goexit	signal,	then	the	Goexit	signal
will	also	spread	to	(and	associate	with)	the	nesting	call.	This	will	make	the	nesting	call	enter	(if	it	hasn't
entered)	its	exiting	phase	immediately.

The	above	has	mentioned	that	a	panic	and	a	Goexit	signal	are	independent	of	each	other.	In	other	words,
an	unrecovered	panic	should	not	cancel	a	Goexit	signal,	and	a	Goexit	signal	should	not	shadow	an
unrecovered	panic	or	be	cancelled.	However,	both	of	the	current	official	Go	compiler	(gc,	v1.13)	and
gccgo	(v8.0)	don't	implement	this	rule	correctly.	For	example,	the	following	program	should	crash	but	it
doesn't	if	it	is	compiled	with	the	current	versions	of	gc	and	gccgo.

1| package	main

2|

3| import	"runtime"
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4|

5| func	main()	{

6| 			c	:=	make(chan	struct{})

7| 			go	func()	{

8| 						defer	close(c)

9| 						//	The	Goexit	signal	shadows	the

10| 						//	"bye"	panic,	but	it	should	not.

11| 						defer	runtime.Goexit()

12| 						panic("bye")

13| 			}()

14| 			<-c

15| }

The	following	is	another	example	neither	gc	nor	gccgo	compiles	it	correctly.	The	example	program	should
exit	quickly	in	running,	but	in	fact	it	never	exit	if	it	is	compiled	with	the	current	versions	of	gc	and	gccgo.

1| package	main

2|

3| import	"runtime"

4|

5| func	f()	{

6| 			defer	func()	{

7| 						recover()

8| 			}()

9| 			defer	panic("will	cancel	Goexit	but	should	not")

10| 			runtime.Goexit()

11| }

12|

13| func	main()	{

14| 			c	:=	make(chan	struct{})

15| 			go	func()	{

16| 						defer	close(c)

17| 						f()

18| 						for	{

19| 									runtime.Gosched()

20| 						}

21| 			}()

22| 			<-c

23| }

The	problems	in	the	current	versions	of	gc	and	gccgo	will	be Ң 	fixed	later Ң .

Some	recover	Calls	Are	No-Ops

The	builtin	recover 	funciton	must	be	called	at	proper	places	to	take	effect.	Otherwise,	the	calls	are	no-
ops.	For	example,	none	of	the	recover 	calls	in	the	following	exmaple	recover	the	bye 	panic.
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1| package	main

2|

3| func	main()	{

4| 			defer	func()	{

5| 						defer	func()	{

6| 									recover()	//	no-op

7| 						}()

8| 			}()

9| 			defer	func()	{

10| 						func()	{

11| 									recover()	//	no-op

12| 						}()

13| 			}()

14| 			func()	{

15| 						defer	func()	{

16| 									recover()	//	no-op

17| 						}()

18| 			}()

19| 			func()	{

20| 						defer	recover()	//	no-op

21| 			}()

22| 			func()	{

23| 						recover()	//	no-op

24| 			}()

25| 			recover()							//	no-op

26| 			defer	recover()	//	no-op

27| 			panic("bye")

28| }

We	have	already	known	that	the	following	recover 	call	takes	effect.

1| package	main

2|

3| func	main()	{

4| 			defer	func()	{

5| 						recover()	//	take	effect

6| 			}()

7|

8| 			panic("bye")

9| }

Then	why	don't	those	recover 	calls	in	the	first	example	in	the	current	section	take	effect?	Let's	read	the
current	verson	of	Go	specification Ң :

The	return	value	of	recover 	is	nil 	if	any	of	the	following	conditions	holds:

panic's	argument	was	nil;
the	goroutine	is	not	panicking;
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recover	was	not	called	directly	by	a	deferred	function.

There	is	an	example	(§30)	showing	the	first	condition	case	in	the	last	article.

Most	of	the	recover 	calls	in	the	first	example	in	the	current	section	satisfy	either	the	second	or	the	third
conditions	mentioned	in	Go	specification,	except	the	first	one.	Yes,	the	current	descriptions	are	not	precise
yet.	It	is	still	being	improved Ң 	now.

In	fact,	the	current	Go	specification	also	doesn't	explain	well	why	the	second	recover 	call,	which	is
expected	to	recover	panic	1,	in	the	following	example	doesn't	take	effect.

1| //	This	program	exits	without	panic	1	being	recovered.

2| package	main

3|

4| func	demo()	{

5| 			defer	func()	{

6| 						defer	func()	{

7| 									recover()	//	this	one	recovers	panic	2

8| 						}()

9|

10| 						defer	recover()	//	no-op

11|

12| 						panic(2)

13| 			}()

14| 			panic(1)

15| }

16|

17| func	main()	{

18| 			demo()

19| }

What	Go	specification	doesn't	mention	is	that,	at	any	given	time,	only	the	newest	unrecovered	panic	in	a
goroutine	is	recoverable.	In	other	words,	each	recover 	call	is	viewed	as	an	attempt	to	recover	the	newest
unrecovered	panic	in	the	currrent	goroutine.	This	is	why	the	second	recover 	call	in	the	above	example	is
a	no-op.

OK,	now,	let's	try	to	make	an	explanation	on	which	recover 	calls	will	take	effect:

A	recover 	call	takes	effect	only	if	the	direct	caller	of	the	recover 	call	is	a	deferred	call	and	the
direct	caller	of	the	deferred	call	associates	with	the	newest	unrecovered	panic	in	the	current
goroutine.	An	effective	recover 	call	disassociates	the	newest	unrecovered	panic	from	its
associating	function	call,	and	returns	the	value	passed	to	the	panic 	call	which	produced	the
newest	unrecovered	panic.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
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from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,
Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit

tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Code	Blocks	and	Identifier	Scopes
This	article	will	explain	the	code	blocks	and	identifier	scopes	in	Go.

(Please	note,	the	definitions	of	code	block	hierarchies	in	this	article	are	a	little	different	from	Go
specification.)

Code	Blocks

In	a	Go	project,	there	are	four	kinds	of	code	blocks	(also	called	blocks	later):

the	universe	block	contains	all	project	source	code.
each	package	has	a	package	block	containing	all	source	code,	excluding	the	package	import
declarations	in	that	package.
each	file	has	a	file	block	containing	all	the	source	code,	including	the	package	import	declarations,
in	that	file.
generally,	a	pair	of	braces	{} 	encloses	a	local	block.	However,	some	local	blocks	aren't	enclosed
within	{} ,	such	blocks	are	called	implicit	local	blocks.	The	local	blocks	enclosed	in	{} 	are	called
explicit	local	blocks.	The	{} 	in	composite	literals	and	type	definitions	don't	form	local	blocks.

Some	keywords	in	all	kinds	of	control	flows	are	followed	by	some	implicit	code	blocks.

An	if ,	switch 	or	for 	keyword	is	followed	by	two	nested	local	blocks.	One	is	implicit,	the	other
is	explicit.	The	explicit	one	is	nested	in	the	implicit	one.	If	such	a	keyword	is	followed	by	a	short
variable	declaration,	then	the	variables	are	declared	in	the	implicit	block.
An	else 	keyword	is	followed	by	one	explicit	or	implicit	block,	which	is	nested	in	the	implicit	block
following	its	if 	counterpart	keyword.	If	the	else 	keyword	is	followed	by	another	if 	keyword,
then	the	code	block	following	the	else 	keyword	can	be	implicit,	otherwise,	the	code	block	must	be
explicit.
An	select 	keyword	is	followed	by	one	explicit	block.
Each	case 	and	default 	keyword	is	followed	by	one	implicit	block,	which	is	nested	in	the	explicit
block	following	its	corresponding	switch 	or	select 	keyword.

The	local	blocks	which	aren't	nested	in	any	other	local	blocks	are	called	top-level	(or	package-level)	local
blocks.	Top-level	local	blocks	are	all	function	bodies.

Note,	the	input	parameters	and	output	results	of	a	function	are	viewed	as	being	declared	in	explicit	body
code	block	of	the	function,	even	if	their	declarations	stay	out	of	the	pair	of	braces	enclosing	the	function
body	block.

Code	block	hierarchies:
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package	blocks	are	nested	in	the	universe	block.
file	blocks	are	also	directly	nested	in	the	universe	block,	instead	of	package	blocks.	(This
explanation	is	different	from	Go	specification	and	the	go/* 	standard	packages.)
each	top-level	local	block	is	nested	in	both	a	package	block	and	a	file	block.	(This	explanation	is
also	different	from	Go	specification	and	the	go/* 	standard	packages.)
a	non-top	local	block	must	be	nested	in	another	local	block.

(The	differences	to	Go	specification	are	to	make	the	below	explanations	for	identifier	shadowing	simpler.)

Here	is	a	picture	shows	the	block	hierarchies	in	a	program:

Code	blocks	are	mainly	used	to	explain	allowed	declaration	positions	and	scopes	of	source	code	element
identifiers.

Source	Code	Element	Declaration	Places

There	are	six	kinds	of	source	code	elements	which	can	be	declared:

package	imports.
defined	types	and	type	alias.
named	constants.
variables.
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functions.
labels.

Labels	are	used	in	the	break ,	continue ,	and	goto 	statements.

A	declaration	binds	a	non-blank	identifier	to	a	source	code	element	(constant,	type,	variable,	function,
label,	or	package).	In	other	words,	in	the	declaration,	the	declared	source	code	element	is	named	as	the
non-blank	identifier.	After	the	declaration,	we	can	use	the	non-blank	identifier	to	represent	the	declared
source	code	element.

The	following	table	shows	which	code	blocks	all	kinds	of	source	code	elements	can	be	directly	declared
in:

the	universe	block package	blocks file	blocks local	blocks
predeclared	(built-in	elements)	(1) Yes

package	imports Yes
defined	types	and	type	alias	(non-builtin) Yes Yes Yes

named	constants	(non-builtin) Yes Yes Yes
variables	(non-builtin)	(2) Yes Yes Yes
functions	(non-builtin) Yes Yes

labels Yes

(1)	predeclared	elements	are	documented	in	builtin 	standard	package Ң .	
(2)	excluding	struct	field	variables.

So,

package	imports	can	never	be	declared	in	package	blocks	and	local	blocks.
functions	can	never	be	declared	in	local	blocks.	(Anonymous	functions	can	be	enclosed	in	local
blocks	but	they	are	not	declarations.)
labels	can	only	be	declared	in	local	blocks.

Please	note,

if	the	innermost	containing	blocks	of	two	code	element	declarations	are	the	same	one,	then	the
names	(identifiers)	of	the	two	code	elements	can't	be	identical.
the	name	(identifier)	of	a	package-level	code	element	declared	in	a	package	must	not	be	identical	to
any	package	import	name	declared	in	any	source	file	in	the	package.
if	the	innermost	containing	function	body	blocks	of	two	label	declarations	are	the	same	one,	then	the
names	(identifiers)	of	the	two	labels	can't	be	identical.
the	references	of	a	label	must	be	within	the	innermost	function	body	block	containing	the	declaration
of	the	label.
some	special	portions	in	the	implicit	local	blocks	in	all	kinds	of	control	flows	have	special
requirements.	Generally,	no	code	elements	are	allowed	to	be	directly	declared	in	such	implicit	local
blocks,	except	some	short	variable	declarations.

Each	if ,	switch 	or	for 	keyword	can	be	closely	followed	by	a	short	variable	declaration.
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Each	case 	keyword	in	a	select 	control	flow	can	be	closely	followed	by	a	short	variable
declaration.

(BTW,	the	go/* 	standard	packages	think	file	code	blocks	can	only	contain	package	import	declarations.)

The	source	code	elements	declared	in	package	blocks	but	outside	of	any	local	blocks	are	called	package-
level	source	code	elements.	Package-level	source	code	elements	can	be	named	constants,	variables,
functions,	defined	types,	or	type	aliases.

Scopes	of	Declared	Source	Code	Elements

The	scope	of	a	declared	identifier	means	the	identifiable	range	of	the	identifier	(or	visible	range).

Without	considering	identifier	shadowing	which	will	be	explained	in	the	last	section	of	the	current	article,
the	scope	definitions Ң 	for	the	identifiers	of	all	kinds	of	source	code	elements	are	listed	below.

The	scope	of	a	predeclared/built-in	identifier	is	the	universe	block.
The	scope	of	the	identifier	of	a	package	import	is	the	file	block	containing	the	package	import
declaration.
The	scope	of	an	identifier	denoting	a	constant,	type,	variable,	or	function	(but	not	method)	declared
at	package	level	is	the	package	block.
The	scope	of	an	identifier	denoting	a	method	receiver,	function	parameter,	or	result	variable	is	the
corresponding	function	body	(a	local	block).
The	scope	of	the	identifier	of	a	constant	or	variable	declared	inside	a	function	begins	at	the	end	of
the	specification	of	the	constant	or	variable	(or	the	end	of	the	declaration	for	a	short	declared
variable)	and	ends	at	the	end	of	the	innermost	containing	block.
The	scope	of	the	identifier	of	a	defined	type	(§14)	declared	inside	a	function	begins	at	the	identifier
in	the	specification	of	the	type	ends	at	the	end	of	the	innermost	containing	block.
The	scope	of	the	identifier	of	a	type	alias	(§14)	declared	inside	a	local	block	begins	at	the	end	of	the
declaration	of	the	type	and	ends	at	the	end	of	the	innermost	containing	block.
The	scope	of	a	label	is	the	body	of	the	innermost	function	body	block	containing	the	label
declaration	but	excludes	all	the	bodies	of	anonymous	functions	nested	in	the	containing	function.

Blank	identifiers	have	no	scopes.

(Note,	the	predeclared	iota 	is	only	visible	in	constant	declarations.)

You	may	have	noticed	the	minor	difference	of	identifier	scope	definitions	between	local	type	definitions
and	local	variables,	local	constants	and	local	type	aliases.	The	difference	means	a	defined	type	may	be
able	to	reference	itself	in	its	declaration.	Here	is	an	example	to	show	the	difference.

1| package	main

2|

3| func	main()	{
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4| 			//	var	v	int	=	v			//	error:	v	is	undefined

5| 			//	const	C	int	=	C	//	error:	C	is	undefined

6| 			/*

7| 			type	T	=	struct	{

8| 						*T				//	error:	T	uses	<T>

9| 						x	[]T	//	error:	T	uses	<T>

10| 			}

11| 			*/

12|

13| 			//	Following	type	definitions	are	all	valid.

14| 			type	T	struct	{

15| 						*T

16| 						x	[]T

17| 			}

18| 			type	A	[5]*A

19| 			type	S	[]S

20| 			type	M	map[int]M

21| 			type	F	func(F)	F

22| 			type	Ch	chan	Ch

23| 			type	P	*P

24|

25| 			//	...

26| 			var	s	=	make(S,	3)

27| 			s[0]	=	s

28| 			s	=	s[0][0][0][0][0][0][0][0]

29|

30| 			var	m	=	M{}

31| 			m[1]	=	m

32| 			m	=	m[1][1][1][1][1][1][1][1]

33|

34| 			var	p	P

35| 			p	=	&p

36| 			p	=	***********************p

37| 			***********************p	=	p

38| }

And	the	scope	difference	between	package-level	and	local	declarations:

1| package	main

2|

3| //	Here	the	two	identifiers	at	each	line	are	the

4| //	same	one.	The	right	ones	are	both	not	the

5| //	predeclared	identifiers.	Instead,	they	are

6| //	same	as	respective	left	one.	So	the	two

7| //	lines	both	fail	to	compile.

8| /*

9| const	iota	=	iota	//	error:	constant	definition	loop

10| var	true	=	true			//	error:	typechecking	loop
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11| */

12|

13| var	a	=	b	//	can	reference	variables	declared	later

14| var	b	=	123

15|

16| func	main()	{

17| 			//	The	identifiers	at	the	right	side	in	the

18| 			//	next	two	lines	are	the	predeclared	ones.

19| 			const	iota	=	iota	//	ok

20| 			var	true	=	true			//	ok

21| 			_	=	true

22|

23| 			//	The	following	lines	fail	to	compile,	for

24| 			//	c	references	a	later	declared	variable	d.

25| 			/*

26| 			var	c	=	d

27| 			var	d	=	123

28| 			_	=	c

29| 			*/

30| }

Identifier	Shadowing

Ignoring	labels,	an	identifier	declared	in	an	outer	code	block	can	be	shadowed	by	the	same	identifier
declared	in	code	blocks	nested	(directly	or	indirectly)	in	the	outer	code	block.

Labels	can’t	be	shadowed.

If	an	identifier	is	shadowed,	its	scope	will	exclude	the	scopes	of	its	shadowing	identifiers.

Below	is	an	interesting	example.	The	code	contains	6	declared	variables	named	x .	A	x 	declared	in	a
deeper	block	shadows	the	x s	declared	in	shallower	blocks.

1| package	main

2|

3| import	"fmt"

4|

5| var	p0,	p1,	p2,	p3,	p4,	p5	*int

6| var	x	=	9999	//	x#0

7|

8| func	main()	{

9| 			p0	=	&x

10| 			var	x	=	888		//	x#1

11| 			p1	=	&x

12| 			for	x	:=	70;	x	<	77;	x++	{		//	x#2

13| 						p2	=	&x

14| 						x	:=	x	-	70	//		//	x#3
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15| 						p3	=	&x

16| 						if	x	:=	x	-	3;	x	>	0	{	//	x#4

17| 									p4	=	&x

18| 									x	:=	-x	//	x#5

19| 									p5	=	&x

20| 						}

21| 			}

22|

23| 			//	9999	888	77	6	3	-3

24| 			fmt.Println(*p0,	*p1,	*p2,	*p3,	*p4,	*p5)

25| }

Another	example:	the	following	program	prints	Sheep	Goat 	instead	of	Sheep	Sheep .	Please	read	the
comments	for	explanations.

1| package	main

2|

3| import	"fmt"

4|

5| var	f	=	func(b	bool)	{

6| 			fmt.Print("Goat")

7| }

8|

9| func	main()	{

10| 			var	f	=	func(b	bool)	{

11| 						fmt.Print("Sheep")

12| 						if	b	{

13| 									fmt.Print("	")

14| 									f(!b)	//	The	f	is	the	package-level	f.

15| 						}

16| 			}

17| 			f(true)	//	The	f	is	the	local	f.

18| }

If	we	remove	the	var 	keyword	in	the	local	f 	declaration,	or	modify	the	above	program	as	the	following
shown,	then	it	will	print	Sheep	Sheep .

1| func	main()	{

2| 			var	f	func(b	bool)

3| 			f	=	func(b	bool)	{

4| 						fmt.Print("Sheep")

5| 						if	b	{

6| 									fmt.Print("	")

7| 									f(!b)	//	The	f	is	also	the	local	f	now.

8| 						}

9| 			}

10| 			f(true)

11| }

§32.	Code	Blocks	and	Identifier	Scopes

321



For	some	circumstances,	when	identifiers	are	shadowed	by	variables	declared	with	short	variable
declarations,	some	new	gophers	may	get	confused	about	whether	a	variable	in	a	short	variable	declaration
is	redeclared	or	newly	declared.	The	following	example	(which	has	bugs)	shows	the	famous	trap	in	Go.
Almost	every	gopher	has	ever	fallen	into	the	trap	in	the	early	days	of	using	Go.

1| package	main

2|

3| import	"fmt"

4| import	"strconv"

5|

6| func	parseInt(s	string)	(int,	error)	{

7| 			n,	err	:=	strconv.Atoi(s)

8| 			if	err	!=	nil	{

9| 						//	Some	new	gophers	may	think	err	is	an

10| 						//	already	declared	variable	in	the	following

11| 						//	short	variable	declaration.	However,	both

12| 						//	b	and	err	are	new	declareds	here	in	fact.

13| 						//	The	new	declared	err	variable	shadows	the

14| 						//	err	variable	declared	above.

15| 						b,	err	:=	strconv.ParseBool(s)

16| 						if	err	!=	nil	{

17| 									return	0,	err

18| 						}

19|

20| 						//	If	execution	goes	here,	some	new	gophers

21| 						//	might	expect	a	nil	error	will	be	returned.

22| 						//	But	in	fact,	the	outer	non-nil	error	will

23| 						//	be	returned	instead,	for	the	scope	of	the

24| 						//	inner	err	variable	ends	at	the	end	of	the

25| 						//	outer	if-clause.

26| 						if	b	{

27| 									n	=	1

28| 						}

29| 			}

30| 			return	n,	err

31| }

32|

33| func	main()	{

34| 			fmt.Println(parseInt("TRUE"))

35| }

The	output:

1	strconv.Atoi:	parsing	"TRUE":	invalid	syntax

Go	only	has	25	keywords	(§5).	Keywords	can't	be	used	as	identifiers.	Many	familiar	words	in	Go	are	not
keywords,	such	as	int ,	bool ,	string ,	len ,	cap ,	nil ,	etc.	They	are	just	predeclared	(built-in)
identifiers.	These	predeclared	identifiers	are	declared	in	the	universe	block,	so	custom	defined	identifiers
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can	shadow	them.	Here	is	a	weird	example	in	which	many	predeclared	identifiers	are	shadowed.	Its
compiles	and	runs	okay.

1| package	main

2|

3| import	(

4| 			"fmt"

5| )

6|

7| //	Shadows	the	built-in	function	identifier	"len".

8| const	len	=	3

9| //	Shadows	the	built-in	const	identifier	"true".

10| var	true	=	0

11| //	Shadows	the	built-in	variable	identifier	"nil".

12| type	nil	struct	{}

13| //	Shadows	the	built-in	type	identifier	"int".

14| func	int(){}

15|

16| func	main()	{

17| 			fmt.Println("a	weird	program")

18| 			var	output	=	fmt.Println

19|

20| 			//	Shadows	the	package	import	"fmt".

21| 			var	fmt	=	[len]nil{{},	{},	{}}

22| 			//	Sorry,	"len"	is	a	constant.

23| 			//	var	n	=	len(fmt)

24| 			//	Use	the	built-in	cap	function	instead,	:(

25| 			var	n	=	cap(fmt)

26|

27| 			//	The	"for"	keyword	is	followed	by	one

28| 			//	implicit	local	code	block	and	one	explicit

29| 			//	local	code	block.	The	iteration	variable

30| 			//	"true"	shadows	the	package-level	variable

31| 			//	"true"	declared	above.

32| 			for	true	:=	0;	true	<	n;	true++	{

33| 						//	Shadows	the	built-in	const	"false".

34| 						var	false	=	fmt[true]

35| 						//	The	new	declared	"true"	variable

36| 						//	shadows	the	iteration	variable	"true".

37| 						var	true	=	true+1

38| 						//	Sorry,	"fmt"	is	an	array,	not	a	package.

39| 						//	fmt.Println(true,	false)

40| 						output(true,	false)

41| 			}

42| }

The	output:
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a	weird	program

1	{}

2	{}

3	{}

Yes,	this	example	is	extreme.	It	contains	many	bad	practices.	Identifier	shadowing	is	useful,	but	please
don't	abuse	it.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Expression	Evaluation	Orders
This	article	will	explain	expression	(§11)	evaluation	orders	in	all	kinds	of	scenarios.

An	Expression	Is	Evaluated	After	the	Expressions	It
Depends	On

This	is	easy	to	comprehend.	An	apparent	example	is	an	expression	is	evaluated	later	than	its	sub-
expressions.	For	example,	in	a	function	call	f(x,	y[n]) ,

f() 	is	evaluated	later	than	its	depended	expressions,	including	f ,	x 	and	y[n] .
the	evaluation	of	the	expression	y[n] 	is	later	than	the	evaluations	of	n 	and	y .

Please	read	program	resource	initialization	order	(§10)	for	another	example	on	package-level	variable
initialization	orders.

Initialization	Order	of	Package-Level	Variables

When	a	package	is	loaded	at	run	time,	Go	runtime	will	try	to	initialize	uninitialized	package-level
variables	which	have	no	dependencies	on	uninitialized	variables,	by	their	declaration	order.	The	process
might	be	applied	(looped)	several	times,	until	no	variables	are	initialized	in	such	a	process.	For	a
successfully	compiled	Go	program,	there	should	be	no	uninitialized	variables	after	all	such	processes	end.

Package-level	variables	appearing	as	blank	identifers	are	treated	like	any	other	variables	in	the
initialization	process.

For	example,	the	following	program	should	print	yzxw .

1.	 In	the	first	run	of	above	described	process,	y 	and	z 	are	the	only	two	uninitialized	variables	which
have	no	dependencies	on	uninitialized	variables,	so	they	are	initialized	by	their	declaration	order.

2.	 In	the	second	run	of	above	described	process,	x 	is	the	only	uninitialized	variable	which	has	no
dependencies	on	uninitialized	variables,	so	it	is	initialized.

3.	 In	the	third	run	of	above	described	process,	w 	is	the	only	uninitialized	variable	which	has	no
dependencies	on	uninitialized	variables,	so	it	is	initialized.

1| package	main

2|

3| var	(

4| 			_	=	f("w",	x)

5| 			x	=	f("x",	z)

6| 			y	=	f("y")
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7| 			z	=	f("z")

8| )

9|

10| func	f(s	string,	deps	...int)	int	{

11| 			print(s)

12| 			return	0

13| }

14|

15| func	main()	{

16| 			f("\n")

17| }

(Note,	Before	Go	SDK	1.13,	the	standard	Go	compiler	doesn't	implement	the	rule	correctly Ң .	If	the
above	program	is	compiled	with	the	standard	Go	compiler	version	1.12,	it	will	print	zxwy .)

Multiple	variables	on	the	left-hand	side	of	a	variable	declaration	initialized	by	single	multi-valued
expression	on	the	right-hand	side	are	initialized	together.	For	example,	for	a	package-level	variable
declaration	var	x,	y	=	f() ,	variables	x 	and	y 	will	be	initialized	together.	In	other	words,	no	other
variables	will	be	initialized	between	them.

If	hidden	dependencies	exists	between	variables,	the	initialization	order	between	those	variables	is
unspecified.	In	the	following	example	(copied	from	Go	specification),

the	variable	a 	will	be	initialized	after	b 	for	sure,
but	whether	x 	is	initialized	before	b ,	between	b 	and	a ,	or	after	a ,	is	not	specified.
and	the	moment	at	which	function	sideEffect() 	is	called	(before	or	after	x 	is	initialized)	is	also
not	specified.

1| //	x	has	a	hidden	dependency	on	a	and	b

2| var	x	=	I(T{}).ab()

3| //	Assume	sideEffect	is	unrelated	to	x,	a,	or	b.

4| var	_	=	sideEffect()

5| var	a	=	b

6| var	b	=	42

7|

8| type	I	interface				{	ab()	[]int	}

9| type	T	struct{}

10| func	(T)	ab()	[]int	{	return	[]int{a,	b}	}

The	Usual	Order

For	the	evaluations	within	a	function	body,	Go	specification	says

...,	when	evaluating	the	operands	of	an	expression,	assignment,	or	return	statement,	all	function
calls,	method	calls,	and	(channel)	communication	operations	are	evaluated	in	lexical	left-to-right
order.
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The	just	described	order	is	called	the	usual	order.

Please	note	that	an	explicit	value	conversion	T(v) 	is	not	a	function	call.

For	example,	in	an	expression	[]int{x,	fa(),	fb(),	y} ,	assume	x 	and	y 	are	two	variables,	fa 	and
fb 	are	two	functions,	then	the	call	fa() 	is	guaranteed	to	be	evaluated	(executed)	before	fb() .	However,
the	following	the	evaluation	orders	are	unspecified	in	Go	specification:

the	evaluation	order	of	x 	(or	y )	and	fa() 	(or	fb() ).
the	evaluation	order	of	x ,	y ,	fa 	and	fb .

Another	example,	the	following	assignment,	is	demoed	in	Go	specification.

y[z.f()],	ok	=	g(h(a,	b),	i()+x[j()],	<-c),	k()

where

c 	is	a	channel	expression	and	will	be	evaluated	to	a	channel	value.
g ,	h ,	i ,	j 	and	k 	are	function	expressions.
f 	is	a	method	of	expression	z .

Also	considering	the	rule	mentioned	in	the	last	section,	compilers	should	guarantee	the	following
evaluation	orders	at	run	time.

The	function	calls,	method	calls	and	channel	communication	operations	happen	in	the	order
z.f()→h()→i()→j()→<-c→g()→k() .
h() 	is	evaluated	after	the	evaluations	of	expressions	h ,	a 	and	b .
y[] 	is	evaluated	after	the	evaluation	of	z.f() .
z.f() 	is	evaluated	after	the	evaluation	of	expression	z .
x[] 	is	evaluated	after	the	evaluation	of	j() .

However,	the	following	orders	(and	more	others)	are	not	specified.

The	evaluation	order	of	y ,	z ,	g ,	h ,	a ,	b ,	x ,	i ,	j ,	c 	and	k .
The	evaluation	order	of	y[] ,	x[] 	and	<-c .

By	the	usual	order,	we	know	the	following	declared	variables	x ,	m 	and	n 	(also	demoed	in	Go
specification)	will	be	initialized	with	ambiguous	values.

1| 			a	:=	1

2| 			f	:=	func()	int	{	a++;	return	a	}

3|

4| 			//	x	may	be	[1,	2]	or	[2,	2]:	evaluation	order

5| 			//	between	a	and	f()	is	not	specified.

6| 			x	:=	[]int{a,	f()}

7|
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8| 			//	m	may	be	{2:	1}	or	{2:	2}:	evaluation	order

9| 			//	between	the	two	map	element	assignments	is

10| 			//	not	specified.

11| 			m	:=	map[int]int{a:	1,	a:	2}

12|

13| 			//	n	may	be	{2:	3}	or	{3:	3}:	evaluation	order

14| 			//	between	the	key	and	the	value	is	unspecified.

15| 			n	:=	map[int]int{a:	f()}

Evaluation	and	Assignment	Orders	in	Assignment
Statements

Beside	the	above	introduced	rules,	Go	specification	specifies	more	on	the	expression	evaluation	order	the
order	of	individual	assignments	in	an	assignment	statement:

The	assignment	proceeds	in	two	phases.	First,	the	operands	of	index	expressions	and	pointer
indirection	(including	implicit	pointer	indirection	in	selectors)	on	the	left	and	the	expressions	on
the	right	are	all	evaluated	in	the	usual	order.	Second,	the	assignments	are	carried	out	in	left-to-
right	order.

Later,	we	may	call	the	first	phase	as	evaluation	phase	and	the	second	phase	as	carry-out	phase.

Go	specification	doesn't	specify	clearly	whether	or	not	the	assignments	carried-out	during	the	second
phase	may	affect	the	expression	evaluation	results	got	in	the	first	phase,	which	ever	caused	some Ң
disputes Ң .	So,	here,	this	article	will	explain	more	on	the	evaluation	orders	in	value	assignments.

Firstly,	let's	clarify	that	the	assignments	carried-out	during	the	second	phase	don't	affect	the	expression
evaluation	results	got	at	the	end	of	the	first	phase.

To	make	the	following	explanations	convenient,	we	assume	that	the	container	(slice	or	map)	value	of	an
index	destination	expression	in	an	assignment	is	always	addressable.	If	it	is	not,	we	can	think	the	container
value	has	already	been	saved	in	and	replaced	by	a	temporary	addressable	container	value	before	carrying
out	the	second	phase.

At	the	time	of	the	end	of	the	evaluation	phase	and	just	before	the	carry-out	phase	starts,	each	destination
expression	on	the	left	of	an	assignment	has	been	evaluated	as	its	elementary	form.	Different	destination
expressions	have	different	elementary	forms.

If	a	destination	expression	is	a	blank	identifier,	then	its	elementary	form	is	still	a	blank	identifier.
If	a	destination	expression	is	a	container	(array,	slice	or	map)	index	expression	c[k] ,	then	its
elementary	form	is	(*cAddr)[k] ,	where	cAddr 	is	a	pointer	pointing	to	c .
For	other	cases,	the	destination	expression	must	result	an	addressable	value,	then	its	elementary	form
is	a	dereference	to	the	address	of	the	destination	expression	evaluation	result.

Assume	a 	and	b 	are	two	addressable	variables	of	the	same	type,	the	following	assignment
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1| 			a,	b	=	b,	a

will	be	executed	like	the	following	steps:

1| //	The	evaluation	phase:

2| P0	:=	&a;	P1	:=	&b

3| R0	:=	b;	R1	:=	a	

4|

5| //	The	elementary	form:	*P0,	*P1	=	R0,	R1

6|

7| //	The	carry-out	phase:

8| *P0	=	R0

9| *P1	=	R1

Here	is	another	example,	in	which	x[0] 	instead	of	x[1] 	is	modified.

1| 			x	:=	[]int{0,	0}

2| 			i	:=	0

3| 			i,	x[i]	=	1,	2

4| 			fmt.Println(x)	//	[2	0]

The	decomposed	execution	steps	for	the	line	3	shown	below	are	like:

1| //	The	evaluation	phase:

2| P0	:=	&i;	P1	:=	&x;	T2	:=	i

3| R0	:=	1;	R1	:=	2

4| //	Now,	T2	==	0

5|

6| //	The	elementary	form:	*P0,	(*P1)[T2]	=	R0,	R1

7|

8| //	The	carry-out	phase:

9| *P0	=	R0

10| (*P1)[T2]	=	R1

An	example	which	is	a	little	more	complex.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			m	:=	map[string]int{"Go":	0}

7| 			s	:=	[]int{1,	1,	1};	olds	:=	s

8| 			n	:=	2

9| 			p	:=	&n

10| 			s,	m["Go"],	*p,	s[n]	=	[]int{2,	2,	2},	s[1],	m["Go"],	5

11| 			fmt.Println(m,	s,	n)	//	map[Go:1]	[2	2	2]	0

12| 			fmt.Println(olds)				//	[1	1	5]

13| }
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The	decomposed	execution	steps	for	the	line	10	shown	below	are	like:

1| //	The	evaluation	phase:

2| P0	:=	&s;	PM1	:=	&m;	K1	:=	"Go";	P2	:=	p;	PS3	:=	&s;	T3	:=	2

3| R0	:=	[]int{2,	2,	2};	R1	:=	s[1];	R2	:=	m["Go"];	R3	:=	5

4| //	now,	R1	==	1,	R2	==	0

5|

6| //	The	elementary	form:

7| //					*P0,	(*PM1)[K1],	*P2,	(*PS3)[T3]	=	R0,	R1,	R2,	R3

8|

9| //	The	carry-out	phase:

10| *P0	=	R0

11| (*PM1)[K1]	=	R1

12| *P2	=	R2

13| (*PS3)[T3]	=	R3

The	following	example	rotates	all	elements	in	a	slice	for	one	index.

1| 			x	:=	[]int{2,	3,	5,	7,	11}

2| 			t	:=	x[0]

3| 			var	i	int

4| 			for	i,	x[i]	=	range	x	{}

5| 			x[i]	=	t

6| 			fmt.Println(x)	//	[3	5	7	11	2]

Another	example:

1| 			x	:=	[]int{123}

2| 			x,	x[0]	=	nil,	456								//	will	not	panic

3| 			x,	x[0]	=	[]int{123},	789	//	will	panic

Although	it	is	legal,	it	is	not	recommended	to	use	complex	multi-value	assignments	in	Go,	for	their
readabilities	are	not	good	and	they	have	negative	effects	on	both	compilation	speed	and	execution
performance.

As	mentioned	above,	not	all	orders	are	specified	in	Go	specification	for	value	assignments,	so	some	bad
written	code	may	produce	different	results.	In	the	following	example,	the	expression	order	of	x+1 	and
f(&x) 	is	not	specified.	So	the	example	may	print	100	99 	or	1	99 .

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			f	:=	func	(p	*int)	int	{

7| 						*p	=	99

8| 						return	*p

9| 			}
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10|

11| 			x	:=	0

12| 			y,	z	:=	x+1,	f(&x)

13| 			fmt.Println(y,	z)

14| }

The	following	is	another	example	which	will	print	ambiguous	results.	It	may	print	1	7	2 ,	1	8	2 	or	1	9
2 ,	depending	on	different	compiler	implementations.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			x,	y	:=	0,	7

7| 			f	:=	func()	int	{

8| 						x++

9| 						y++

10| 						return	x

11| 			}

12| 			fmt.Println(f(),	y,	f())

13| }

Expression	Evaluation	Orders	in	switch-case	Code
Blocks

The	expression	evaluation	order	in	a	switch-case 	code	block	has	been	described	before	(§12).	Here	just
shows	an	example.	Simply	speaking,	before	a	branch	code	block	is	entered,	the	case 	expressions	will	be
evaluated	and	compared	with	the	switch	expression	one	by	one,	until	a	comparison	results	true .

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			f	:=	func(n	int)	int	{

7| 						fmt.Printf("f(%v)	is	called.\n",	n)

8| 						return	n

9| 			}

10|

11| 			switch	x	:=	f(3);	x	+	f(4)	{

12| 			default:

13| 			case	f(5):

14| 			case	f(6),	f(7),	f(8):

15| 			case	f(9),	f(10):

16| 			}
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17| }

At	run	time,	the	f() 	calls	will	be	evaluated	by	the	order	from	top	to	bottom	and	from	left	to	right,	until	a
comparison	results	true .	So	f(8) ,	f(9) 	and	f(10) 	will	be	not	evaluated	in	this	example.

The	output:

f(3)	is	called.

f(4)	is	called.

f(5)	is	called.

f(6)	is	called.

f(7)	is	called.

Expression	Evaluation	Orders	in	select-case	Code
Blocks

When	executing	a	select-case 	code	block,	before	entering	a	branch	code	block,	all	the	channel
operands	of	receive	operations	and	the	operands	of	send	statements	involved	in	the	select-case 	code
block	are	evaluated	exactly	once,	in	source	order	(from	top	to	bottom,	from	left	to	right).

Note,	the	target	expression	being	assigned	to	by	a	receive	case 	operation	will	only	be	evaluated	if	that
receive	operation	is	selected	later.

In	the	following	example,	the	expression	*fptr("aaa") 	will	never	get	evaluated,	for	its	corresponding
receive	operation	<-fchan("bbb",	nil) 	will	not	be	selected.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			c	:=	make(chan	int,	1)

7| 			c	<-	0

8| 			fchan	:=	func(info	string,	c	chan	int)	chan	int	{

9| 						fmt.Println(info)

10| 						return	c

11| 			}

12| 			fptr	:=	func(info	string)	*int	{

13| 						fmt.Println(info)

14| 						return	new(int)

15| 			}

16|

17| 			select	{

18| 			case	*fptr("aaa")	=	<-fchan("bbb",	nil):	//	blocking

19| 			case	*fptr("ccc")	=	<-fchan("ddd",	c):			//	non-blocking
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20| 			case	fchan("eee",	nil)	<-	*fptr("fff"):		//	blocking

21| 			case	fchan("ggg",	nil)	<-	*fptr("hhh"):		//	blocking

22| 			}

23| }

The	output	of	the	above	program:

bbb

ddd

eee

fff

ggg

hhh

ccc

Note	that	the	expression	*fptr("ccc") 	is	the	last	evaluated	expression	in	the	above	example.	It	is
evaluated	after	its	corresponding	receive	operation	<-fchan("ddd",	c) 	is	selected.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Go	Value	Copy	Costs
Value	copying	happens	frequently	in	Go	programming.	Values	assignments,	argument	passing	and
channel	value	send	operations	are	all	value	copying	involved.	This	article	will	talk	about	the	copy	costs	of
values	of	all	kinds	of	types.

Value	Sizes

The	size	of	a	value	means	how	many	bytes	the	direct	part	(§17)	of	the	value	will	occupy	in	memory.	The
indirect	underlying	parts	of	a	value	don't	contribute	to	the	size	of	the	value.

In	Go,	if	the	types	of	two	values	belong	to	the	same	kind	(§14),	and	the	type	kind	is	not	string	kind,
interface	kind,	array	kind	and	struct	kind,	then	the	sizes	of	the	two	value	are	always	equal.

In	fact,	for	the	standard	Go	compiler/runtime,	the	sizes	of	two	string	values	are	also	always	equal.	The
same	relation	is	for	the	sizes	of	two	interface	values.

Up	to	present	(Go	SDK	1.13),	for	the	standard	Go	compiler	(and	gccgo),	values	of	a	specified	type	always
have	the	same	value	size.	So,	often,	we	call	the	size	of	a	value	as	the	size	of	the	type	of	the	value.

The	size	of	an	array	type	depends	on	the	element	type	size	and	the	length	of	the	array	type.	The	array	type
size	is	the	product	of	the	size	of	the	array	element	type	and	the	array	length.

The	size	of	a	struct	type	depends	on	all	of	the	sizes	and	the	order	of	its	fields.	For	there	may	be	some
padding	bytes	(§44)	being	inserted	between	two	adjacent	struct	fields	to	guarantee	certain	memory	address
alignment	requirements	of	these	fields,	so	the	size	of	a	struct	type	must	be	not	smaller	than	(and	often
larger	than)	the	sum	of	the	respective	type	sizes	of	its	fields.

The	following	table	lists	the	value	sizes	of	all	kinds	of	types	(for	the	standard	Go	compiler	version	1.13).
In	the	table,	one	word	means	one	native	word,	which	is	4	bytes	on	32bits	architectures	and	8	bytes	on
64bits	architectures.

Kind	of	Types Value	Size Required Ң 	by	Go	Specification Ң
bool 1	byte not	specified

int8,	uint8	(byte) 1	byte 1	byte
int16,	uint16 2	bytes 2	bytes
int32	(rune),
uint32,	float32 4	bytes 4	bytes

int64,	uint64,
float64,

complex64
8	bytes 8	bytes

complex128 16	bytes 16	bytes

int,	uint 1	word architecture	dependent,	4	bytes	on	32bits
architectures	and	8	bytes	on	64bits	architectures
large	enough	to	store	the	uninterpreted	bits	of	a
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uintptr 1	word large	enough	to	store	the	uninterpreted	bits	of	a

pointer	value
string 2	words not	specified
pointer 1	word not	specified
slice 3	words not	specified
map 1	word not	specified

channel 1	word not	specified
function 1	word not	specified
interface 2	words not	specified

struct (the	sum	of	sizes	of	all	fields)	+
(number	of	padding	(§44)	bytes)

a	struct	type	has	size	zero	if	it	contains	no	fields
that	have	a	size	greater	than	zero

array (element	value	size)	*	(array
length)

an	array	type	has	size	zero	if	its	element	type	has
zero	size

Value	Copy	Costs

Generally	speaking,	the	cost	to	copy	a	value	is	proportional	to	the	size	of	the	value.	However,	value	sizes
are	not	the	only	factor	determining	value	copy	costs.	Different	CPU	architectures	may	specially	optimize
value	copying	for	values	with	specific	sizes.

In	practice,	we	can	view	values	with	sizes	which	are	not	larger	than	four	native	words	as	small-size	values.
The	costs	of	copying	small-size	values	are	small.

For	the	standard	Go	compiler,	except	values	of	large-size	struct	and	array	types,	other	types	in	Go	are	all
small-size	types.

To	avoid	large	value	copy	costs	in	argument	passing	and	channel	value	send	and	receive	operations,	we
should	try	to	avoid	using	large-size	struct	and	array	types	as	function	and	method	parameter	types
(including	method	receiver	types)	and	channel	element	types.	We	can	use	pointer	types	whose	base	types
are	large-size	types	instead	for	such	scenarios.

One	the	other	hand,	we	should	also	consider	the	fact	that	too	many	pointers	will	increase	the	pressure	of
garbage	collectors	at	run	time.	So	whether	large-size	struct	and	array	types	or	their	corresponding	pointer
types	should	be	used	relies	on	specific	circumstances.

Generally,	in	practice,	we	seldom	use	pointer	types	whose	base	types	are	slice	types,	map	types,	channel
maps,	function	types,	string	types	and	interface	types.	The	costs	of	copying	values	of	these	assumed	base
types	are	very	small.

We	should	also	try	to	avoid	using	the	two-iteration-variable	forms	to	iterate	array	and	slice	elements	if	the
element	types	are	large-size	types,	for	each	element	value	will	be	copied	to	the	second	iteration	variable	in
the	iteration	process.

The	following	is	an	example	which	benchmarks	different	ways	to	iterate	slice	elements.

1| package	main
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1| package	main

2|

3| import	"testing"

4|

5| type	S	struct{a,	b,	c,	d,	e	int64}

6| var	sX	=	make([]S,	1000)

7| var	sY	=	make([]S,	1000)

8| var	sZ	=	make([]S,	1000)

9| var	sumX,	sumY,	sumZ	int64

10|

11| func	Benchmark_Loop(b	*testing.B)	{

12| 			for	i	:=	0;	i	<	b.N;	i++	{

13| 						sumX	=	0

14| 						for	j	:=	0;	j	<	len(sX);	j++	{

15| 									sumX	+=	sX[j].a

16| 						}

17| 			}

18| }

19|

20| func	Benchmark_Range_OneIterVar(b	*testing.B)	{

21| 			for	i	:=	0;	i	<	b.N;	i++	{

22| 						sumZ	=	0

23| 						for	j	:=	range	sY	{

24| 									sumZ	+=	sY[j].a

25| 						}

26| 			}

27| }

28|

29| func	Benchmark_Range_TwoIterVar(b	*testing.B)	{

30| 			for	i	:=	0;	i	<	b.N;	i++	{

31| 						sumY	=	0

32| 						for	_,	v	:=	range	sY	{

33| 									sumY	+=	v.a

34| 						}

35| 			}

36| }

Run	the	benchmarks	in	the	directory	of	the	test	file,	we	will	get	a	result	similar	to:

Benchmark_Loop-4																500000			3228	ns/op

Benchmark_Range_OneIterVar-4				500000			3203	ns/op

Benchmark_Range_TwoIterVars-4			200000			6616	ns/op

We	can	find	that	the	efficiency	of	the	two-iteration-variable	form	is	much	lower	than	the	other	two.	But
please	note	that,	some	compilers	might	make	special	optimizations	to	remove	the	performance	differences
between	these	forms.	The	above	benchmark	result	is	for	the	standard	Go	compiler	1.13.
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from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,
Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit

tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Bounds	Check	Elimination
Go	is	a	memory	safe	language.	In	array/slice	element	indexing	and	subslice	operations,	Go	runtime	will
check	whether	or	not	the	involved	indexes	are	out	of	range.	If	an	index	is	out	of	range,	a	panic	will	be
produced	to	prevent	the	invalid	index	from	doing	harm.	This	is	called	bounds	check.	Bounds	checks	make
our	code	run	safely,	on	the	other	hand,	they	also	make	our	code	run	a	little	slower.

Since	Go	SDK	1.7,	the	standard	Go	compiler	has	used	a	new	compiler	backend,	which	based	on	SSA
(static	single-assignment	form).	SSA	helps	Go	compilers	effectively	use	optimizations	like	BCE Ң
(bounds	check	elimination)	and	CSE Ң 	(common	subexpression	elimination).	BCE	can	avoid	some
unnecessary	bounds	checks,	and	CSE	can	avoid	some	duplicate	calculations,	so	that	the	standard	Go
compiler	can	generate	more	efficient	programs.	Sometimes	the	improvement	effects	of	these	optimizations
are	obvious.

This	article	will	list	some	examples	to	show	how	BCE	works	with	the	standard	Go	compiler	1.7+.

For	Go	SDK	1.7+,	we	can	run	go	build	-gcflags="-d=ssa/check_bce/debug=1"	to	show	which	code	lines
still	need	bounds	checks.

Example	1

1| //	example1.go

2| package	main

3|

4| func	f1(s	[]int)	{

5| 			_	=	s[0]	//	line	5:	bounds	check

6| 			_	=	s[1]	//	line	6:	bounds	check

7| 			_	=	s[2]	//	line	7:	bounds	check

8| }

9|

10| func	f2(s	[]int)	{

11| 			_	=	s[2]	//	line	11:	bounds	check

12| 			_	=	s[1]	//	line	12:	bounds	check	eliminated!

13| 			_	=	s[0]	//	line	13:	bounds	check	eliminated!

14| }

15|

16| func	f3(s	[]int,	index	int)	{

17| 			_	=	s[index]	//	line	17:	bounds	check

18| 			_	=	s[index]	//	line	18:	bounds	check	eliminated!

19| }

20|

21| func	f4(a	[5]int)	{

22| 			_	=	a[4]	//	line	22:	bounds	check	eliminated!

23| }

§35.	Bounds	Check	Elimination

338

https://en.wikipedia.org/wiki/Bounds-checking_elimination
https://en.wikipedia.org/wiki/Common_subexpression_elimination


24|

25| func	main()	{}

$	go	build	-gcflags="-d=ssa/check_bce/debug=1"	example1.go

./example1.go:5:	Found	IsInBounds

./example1.go:6:	Found	IsInBounds

./example1.go:7:	Found	IsInBounds

./example1.go:11:	Found	IsInBounds

./example1.go:17:	Found	IsInBounds

We	can	see	that	there	are	no	needs	to	do	bounds	checks	for	line	12	and	line	13	in	function	f2 ,	for	the
bounds	check	at	line	11	ensures	that	the	indexes	in	line	12	and	line	13	will	not	be	out	of	range.

But	in	function	f1 ,	bounds	checks	must	be	performed	for	all	three	lines.	The	bounds	check	at	line	5	can't
ensure	line	6	and	line	7	are	safe,	and	the	bounds	check	at	line	6	can't	ensure	line	7	is	safe.

For	function	f3 ,	the	compiler	knows	the	second	s[index] 	is	absolutely	safe	if	the	first	s[index] 	is
safe.

The	compiler	also	correctly	thinks	the	only	line	(line	22)	in	function	f4 	is	safe.

Example	2

1| //	example2.go

2| package	main

3|

4| func	f5(s	[]int)	{

5| 			for	i	:=	range	s	{

6| 						_	=	s[i]

7| 						_	=	s[i:len(s)]

8| 						_	=	s[:i+1]

9| 			}

10| }

11|

12| func	f6(s	[]int)	{

13| 			for	i	:=	0;	i	<	len(s);	i++	{

14| 						_	=	s[i]

15| 						_	=	s[i:len(s)]

16| 						_	=	s[:i+1]

17| 			}

18| }

19|

20| func	f7(s	[]int)	{

21| 			for	i	:=	len(s)	-	1;	i	>=	0;	i--	{

22| 						_	=	s[i]

23| 						_	=	s[i:len(s)]
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24| 			}

25| }

26|

27| func	f8(s	[]int,	index	int)	{

28| 			if	index	>=	0	&&	index	<	len(s)	{

29| 						_	=	s[index]

30| 						_	=	s[index:len(s)]

31| 			}

32| }

33|

34| func	f9(s	[]int)	{

35| 			if	len(s)	>	2	{

36| 							_,	_,	_	=	s[0],	s[1],	s[2]

37| 			}

38| }

39|

40| func	main()	{}

$	go	build	-gcflags="-d=ssa/check_bce/debug=1"	example2.go

Cool!	The	standard	compiler	removes	all	bound	checks	in	this	program.

Note:	before	Go	SDK	version	1.11,	the	standard	compiler	is	not	smart	enough	to	detect	line	22	is	safe.

Example	3

1| //	example3.go

2| package	main

3|

4| import	"math/rand"

5|

6| func	fa()	{

7| 			s	:=	[]int{0,	1,	2,	3,	4,	5,	6}

8| 			index	:=	rand.Intn(7)

9| 			_	=	s[:index]	//	line	9:	bounds	check

10| 			_	=	s[index:]	//	line	10:	bounds	check	eliminated!

11| }

12|

13| func	fb(s	[]int,	i	int)	{

14| 			_	=	s[:i]	//	line	14:	bounds	check

15| 			_	=	s[i:]	//	line	15:	bounds	check,	not	smart	enough?

16| }

17|

18| func	fc()	{

19| 			s	:=	[]int{0,	1,	2,	3,	4,	5,	6}

20| 			s	=	s[:4]

21| 			i	:=	rand.Intn(7)
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22| 			_	=	s[:i]	//	line	22:	bounds	check

23| 			_	=	s[i:]	//	line	23:	bounds	check,	not	smart	enough?

24| }

25|

26| func	main()	{}

$	go	build	-gcflags="-d=ssa/check_bce/debug=1"	example3.go

./example3.go:9:	Found	IsSliceInBounds

./example3.go:14:	Found	IsSliceInBounds

./example3.go:15:	Found	IsSliceInBounds

./example3.go:22:	Found	IsSliceInBounds

./example3.go:23:	Found	IsSliceInBounds

Oh,	so	many	places	still	need	to	do	bounds	check!

But	wait,	why	does	the	standard	Go	compiler	think	line	10	is	safe	but	line	15	and	line	23	are	not?	Is	the
compiler	still	not	smart	enough?

In	fact,	the	compiler	is	right	here!	Why?	The	reason	is	the	start	index	in	a	subslice	expression	may	be
larger	than	the	length	of	the	base	slice.	Let's	view	a	simple	example:

1| package	main

2|

3| func	main()	{

4| 			s0	:=	make([]int,	5,	10)	//	len(s0)	==	5,	cap(s0)	==	10

5|

6| 			index	:=	8

7|

8| 			//	In	Go,	for	the	subslice	syntax	s[a:b],

9| 			//	the	relations	0	<=	a	<=	b	<=	cap(s)	must

10| 			//	be	ensured	to	avoid	panicking.

11|

12| 			_	=	s0[:index]

13| 			//	The	above	line	is	safe	can't	ensure	the

14| 			//	following	line	is	also	safe.	In	fact,	the

15| 			//	following	line	will	panic,	for	the	starting

16| 			//	index	is	larger	than	the	end	index.

17| 			_	=	s0[index:]	//	panic

18| }

So	the	conclusion	that	if	s[:index] 	is	safe	then	s[index:] 	is	also	safe	is	only	right	when	len(s) 	is
equal	to	cap(s) .	This	is	why	the	code	lines	in	function	fb 	and	fc 	of	example	3	still	need	to	do	bounds
checks.

Standard	Go	compiler	successfully	detects	len(s) 	is	equal	to	cap(s) 	in	function	fa .	Great	work!	Go
team!
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Example	4

1| //	example4.go

2| package	main

3|

4| import	"math/rand"

5|

6| func	fb2(s	[]int,	index	int)	{

7| 			_	=	s[index:]	//	line	7:	bounds	check

8| 			_	=	s[:index]	//	line	8:	bounds	check	eliminated!

9| }

10|

11| func	fc2()	{

12| 			s	:=	[]int{0,	1,	2,	3,	4,	5,	6}

13| 			s	=	s[:4]

14| 			index	:=	rand.Intn(7)

15| 			_	=	s[index:]	//	line	15	bounds	check

16| 			_	=	s[:index]	//	line	16:	bounds	check	eliminated!

17| }

18|

19| func	main()	{}

$	go	build	-gcflags="-d=ssa/check_bce/debug=1"	example4.go

./example4.go:7:7:	Found	IsSliceInBounds

./example4.go:15:7:	Found	IsSliceInBounds

In	this	example,	The	standard	Go	compiler	successfully	concludes

line	8	is	also	safe	if	line	7	is	safe	in	function	fb2 .
line	16	is	also	safe	if	line	15	is	safe	in	function	fc2 .

Note:	the	standard	Go	compiler	in	Go	SDK	earlier	than	version	1.9	fails	to	detect	line	8	doesn't	need
bounds	check.

Example	5

The	current	version	of	the	standard	Go	compiler	is	not	smart	enough	to	eliminate	all	unnecessary	bounds
checks.	Sometimes,	we	can	make	some	hints	to	help	the	compiler	eliminate	some	unnecessary	bounds
checks.

1| //	example5.go

2| package	main

3|

4| func	fd(is	[]int,	bs	[]byte)	{

5| 			if	len(is)	>=	256	{
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6| 						for	_,	n	:=	range	bs	{

7| 									_	=	is[n]	//	line	7:	bounds	check

8| 						}

9| 			}

10| }

11|

12| func	fd2(is	[]int,	bs	[]byte)	{

13| 			if	len(is)	>=	256	{

14| 						is	=	is[:256]	//	line	14:	a	hint

15| 						for	_,	n	:=	range	bs	{

16| 									_	=	is[n]	//	line	16:	BCEed!

17| 						}

18| 			}

19| }

20|

21| func	fe(isa	[]int,	isb	[]int)	{

22| 			if	len(isa)	>	0xFFF	{

23| 						for	_,	n	:=	range	isb	{

24| 									_	=	isa[n	&	0xFFF]	//	line	24:	bounds	check

25| 						}

26| 			}

27| }

28|

29| func	fe2(isa	[]int,	isb	[]int)	{

30| 			if	len(isa)	>	0xFFF	{

31| 						isa	=	isa[:0xFFF+1]	//	line	31:	a	hint

32| 						for	_,	n	:=	range	isb	{

33| 									_	=	isa[n	&	0xFFF]	//	line	33:	BCEed!

34| 						}

35| 			}

36| }

37|

38| func	main()	{}

$	go	build	-gcflags="-d=ssa/check_bce/debug=1"	example5.go

./example5.go:7:	Found	IsInBounds

./example5.go:24:	Found	IsInBounds

Summary

There	are	more	BCE	optimizations	made	by	the	standard	Go	compiler.	They	might	be	not	as	abvious	as
the	above	listed	ones,	So	this	article	will	not	show	them	all.

Although	the	BCE	feature	in	the	standard	Go	compiler	is	still	not	perfect,	it	really	does	well	for	many
common	cases.	It	is	no	doubt	that	standard	Go	compiler	will	do	better	in	later	versions	so	that	it	is	possible
the	hints	made	in	the	above	5th	example	will	become	unnecessary.	Thank	Go	team	for	adding	this
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wonderful	feature!

References:

1.	 Bounds	Check	Elimination Ң
2.	 Utilizing	the	Go	1.7	SSA	Compiler Ң

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Concurrency	Synchronization	Overview
This	article	will	explain	what	are	synchronizations	and	list	the	synchronization	techniques	supported	by
Go.

What	Are	Concurrency	Synchronizations?

Concurrency	synchronizations	means	how	to	control	concurrent	computations	(a.k.a.,	goroutines	in	Go)

to	avoid	data	races	between	them,
to	avoid	them	consuming	CPU	resources	when	they	have	nothing	to	do.

What	Synchronization	Techniques	Does	Go	Support?

The	article	channels	in	Go	(§21)	has	shown	that	we	can	use	channels	to	do	synchronizations.	Besides
using	channels,	Go	also	supports	several	other	common	synchronization	techniques,	such	as	mutex	and
atomic	operations.	Please	read	the	following	articles	to	get	how	to	do	synchronizations	with	all	kinds	of
techniques	in	Go:

Channel	Use	Cases	(§37)
How	to	Gracefully	Close	Channels	(§38)
Concurrency	Synchronization	Techniques	Provided	in	the	sync 	Standard	Package	(§39)
Atomic	Operations	Provided	in	the	sync/atomic 	Standard	Package	(§40)

We	can	also	do	synchronizations	by	making	use	of	network	and	file	IO.	But	such	techniques	are	very
inefficient	within	a	single	program	process.	Generally,	they	are	used	for	inter-process	and	distributed
synchronizations.	Go	101	will	not	cover	such	techniques.

To	understand	these	synchronization	techniques	better,	it	is	recommended	to	know	the	memory	order
guarantees	in	Go	(§41).

The	data	synchronization	techniques	in	Go	will	not	prevent	programmers	from	writing	improper
concurrent	code	(§42).	However	these	techniques	can	help	programmers	write	correct	concurrent	code
easily.	And	the	unique	channel	related	features	make	concurrent	programming	flexible	and	enjoyable.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Channel	Use	Cases
Before	reading	this	article,	please	read	the	article	channels	in	Go	(§21),	which	explains	channel	types	and
values	in	detail.	New	gophers	may	need	to	read	that	article	and	the	current	one	several	times	to	master	Go
channel	programming.

The	remaining	of	this	article	will	show	many	channel	use	cases.	I	hope	this	article	will	convince	you	that

asynchronous	and	concurrency	programming	with	Go	channels	is	easy	and	enjoyable.
the	channel	synchronization	technique	has	a	wider	range	of	uses	and	has	more	variations	than	the
synchronization	solutions	used	in	some	other	languages,	such	as	the	actor	model Ң 	and	the
async/await	pattern Ң .

Please	note	that	the	intention	of	this	article	is	to	show	as	many	channel	use	cases	as	possible.	We	should
know	that	channel	is	not	the	only	concurrency	synchronization	technique	supported	in	Go,	and	for	some
cases,	the	channel	way	may	not	be	the	best	solution.	Please	read	atomic	operations	(§40)	and	some	other
synchronization	techniques	(§39)	for	more	concurrency	synchronization	techniques	in	Go.

Use	Channels	as	Futures/Promises

Futures	and	promises	are	used	in	many	other	popular	languages.	They	are	often	associated	with	requests
and	responses.

Return	receive-only	channels	as	results

In	the	following	example,	the	values	of	two	arguments	of	the	sumSquares 	function	call	are	requested
concurrently.	Each	of	the	two	channel	receive	operations	will	block	until	a	send	operation	performs	on	the
corresponding	channel.	It	takes	about	three	seconds	instead	of	six	seconds	to	return	the	final	result.

1| package	main

2|

3| import	(

4| 			"time"

5| 			"math/rand"

6| 			"fmt"

7| )

8|

9| func	longTimeRequest()	<-chan	int32	{

10| 			r	:=	make(chan	int32)

11|

12| 			go	func()	{

13| 						//	Simulate	a	workload.
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14| 						time.Sleep(time.Second	*	3)

15| 						r	<-	rand.Int31n(100)

16| 			}()

17|

18| 			return	r

19| }

20|

21| func	sumSquares(a,	b	int32)	int32	{

22| 			return	a*a	+	b*b

23| }

24|

25| func	main()	{

26| 			rand.Seed(time.Now().UnixNano())

27|

28| 			a,	b	:=	longTimeRequest(),	longTimeRequest()

29| 			fmt.Println(sumSquares(<-a,	<-b))

30| }

Pass	send-only	channels	as	arguments

Same	as	the	last	example,	in	the	following	example,	the	values	of	two	arguments	of	the	sumSquares
function	call	are	requested	concurrently.	Different	to	the	last	example,	the	longTimeRequest 	function
takes	a	send-only	channel	as	parameter	instead	of	returning	a	receive-only	channel	result.

1| package	main

2|

3| import	(

4| 			"time"

5| 			"math/rand"

6| 			"fmt"

7| )

8|

9| func	longTimeRequest(r	chan<-	int32)		{

10| 			//	Simulate	a	workload.

11| 			time.Sleep(time.Second	*	3)

12| 			r	<-	rand.Int31n(100)

13| }

14|

15| func	sumSquares(a,	b	int32)	int32	{

16| 			return	a*a	+	b*b

17| }

18|

19| func	main()	{

20| 			rand.Seed(time.Now().UnixNano())

21|

22| 			ra,	rb	:=	make(chan	int32),	make(chan	int32)
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23| 			go	longTimeRequest(ra)

24| 			go	longTimeRequest(rb)

25|

26| 			fmt.Println(sumSquares(<-ra,	<-rb))

27| }

In	fact,	for	the	above-specified	example,	we	don't	need	two	channels	to	transfer	results.	Using	one	channel
is	okay.

1| ...

2|

3| 			//	The	channel	can	be	buffered	or	not.

4| 			results	:=	make(chan	int32,	2)

5| 			go	longTimeRequest(results)

6| 			go	longTimeRequest(results)

7|

8| 			fmt.Println(sumSquares(<-results,	<-results))

9| }

This	is	kind	of	data	aggregation	which	will	be	introduced	specially	below.

The	first	response	wins

This	is	the	enhancement	of	the	using-only-one-channel	variant	in	the	last	example.

Sometimes,	a	piece	of	data	can	be	received	from	several	sources	to	avoid	high	latencies.	For	a	lot	of
factors,	the	response	durations	of	these	sources	may	vary	much.	Even	for	a	specified	source,	its	response
durations	are	also	not	constant.	To	make	the	response	duration	as	short	as	possible,	we	can	send	a	request
to	every	source	in	a	separated	goroutine.	Only	the	first	response	will	be	used,	other	slower	ones	will	be
discarded.

Note,	if	there	are	N	sources,	the	capacity	of	the	communication	channel	must	be	at	least	N-1,	to	avoid	the
goroutines	corresponding	the	discarded	responses	being	blocked	for	ever.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| 			"math/rand"

7| )

8|

9| func	source(c	chan<-	int32)	{

10| 			ra,	rb	:=	rand.Int31(),	rand.Intn(3)	+	1

11| 			//	Sleep	1s/2s/3s.

12| 			time.Sleep(time.Duration(rb)	*	time.Second)
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13| 			c	<-	ra

14| }

15|

16| func	main()	{

17| 			rand.Seed(time.Now().UnixNano())

18|

19| 			startTime	:=	time.Now()

20| 			//	c	must	be	a	buffered	channel.

21| 			c	:=	make(chan	int32,	5)

22| 			for	i	:=	0;	i	<	cap(c);	i++	{

23| 						go	source(c)

24| 			}

25| 			//	Only	the	first	response	will	be	used.

26| 			rnd	:=	<-	c

27| 			fmt.Println(time.Since(startTime))

28| 			fmt.Println(rnd)

29| }

There	are	some	other	ways	to	implement	the	first-response-win	use	case,	by	using	the	select	mechanism
and	a	buffered	channel	whose	capacity	is	one.	Other	ways	will	be	introduced	below.

More	request-response	variants

The	parameter	and	result	channels	can	be	buffered	so	that	the	response	sides	won't	need	to	wait	for	the
request	sides	to	take	out	the	transferred	values.

Sometimes,	a	request	is	not	guaranteed	to	be	responded	back	a	valid	value.	For	all	kinds	of	reasons,	an
error	may	be	returned	instead.	For	such	cases,	we	can	use	a	struct	type	like	struct{v	T;	err	error}
or	a	blank	interface	type	as	the	channel	element	type.

Sometimes,	for	some	reasons,	the	response	may	need	a	much	longer	time	than	the	expected	to	arrive,	or
will	never	arrive.	We	can	use	the	timeout	mechanism	introduced	below	to	handle	such	circumstances.

Sometimes,	a	sequence	of	values	may	be	returned	from	the	response	side,	this	is	kind	of	the	data	flow
mechanism	mentioned	later	below.

Use	Channels	for	Notifications

Notifications	can	be	viewed	as	special	requests/responses	in	which	the	responded	values	are	not	important.
Generally,	we	use	the	blank	struct	type	struct{} 	as	the	element	types	of	the	notification	channels,	for
the	size	of	type	struct{} 	is	zero,	hence	values	of	struct{} 	doesn't	consume	memory.

1-To-1	notification	by	sending	a	value	to	a	channel
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If	there	are	no	values	to	be	received	from	a	channel,	then	the	next	receive	operation	on	the	channel	will
block	until	another	goroutine	sends	a	value	to	the	channel.	So	we	can	send	a	value	to	a	channel	to	notify
another	goroutine	which	is	waiting	to	receive	a	value	from	the	same	channel.

In	the	following	example,	the	channel	done 	is	used	as	a	signal	channel	to	do	notifications.

1| package	main

2|

3| import	(

4| 			"crypto/rand"

5| 			"fmt"

6| 			"os"

7| 			"sort"

8| )

9|

10| func	main()	{

11| 			values	:=	make([]byte,	32	*	1024	*	1024)

12| 			if	_,	err	:=	rand.Read(values);	err	!=	nil	{

13| 						fmt.Println(err)

14| 						os.Exit(1)

15| 			}

16|

17| 			done	:=	make(chan	struct{})	//	can	be	buffered	or	not

18|

19| 			//	The	sorting	goroutine

20| 			go	func()	{

21| 						sort.Slice(values,	func(i,	j	int)	bool	{

22| 									return	values[i]	<	values[j]

23| 						})

24| 						//	Notify	sorting	is	done.

25| 						done	<-	struct{}{}

26| 			}()

27|

28| 			//	do	some	other	things	...

29|

30| 			<-	done	//	waiting	here	for	notification

31| 			fmt.Println(values[0],	values[len(values)-1])

32| }

1-To-1	notification	by	receiving	a	value	from	a	channel

If	the	value	buffer	queue	of	a	channel	is	full	(the	buffer	queue	of	an	unbuffered	channel	is	always	full),	a
send	operation	on	the	channel	will	block	until	another	goroutine	receives	a	value	from	the	channel.	So	we
can	receive	a	value	from	a	channel	to	notify	another	goroutine	which	is	waiting	to	send	a	value	to	the	same
channel.	Generally,	the	channel	should	be	an	unbuffered	channel.

§37.	Channel	Use	Cases

350



This	notification	way	is	used	much	less	common	than	the	way	introduced	in	the	last	example.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			done	:=	make(chan	struct{})

10| 						//	The	capacity	of	the	signal	channel	can

11| 						//	also	be	one.	If	this	is	true,	then	a

12| 						//	value	must	be	sent	to	the	channel	before

13| 						//	creating	the	following	goroutine.

14|

15| 			go	func()	{

16| 						fmt.Print("Hello")

17| 						//	Simulate	a	workload.

18| 						time.Sleep(time.Second	*	2)

19|

20| 						//	Receive	a	value	from	the	done

21| 						//	channel,	to	unblock	the	second

22| 						//	send	in	main	goroutine.

23| 						<-	done

24| 			}()

25|

26| 			//	Blocked	here,	wait	for	a	notification.

27| 			done	<-	struct{}{}

28| 			fmt.Println("	world!")

29| }

In	fact,	there	are	no	fundamental	differences	between	receiving	or	sending	values	to	make	notifications.
They	can	both	be	summarized	as	the	fasters	are	notified	by	the	slowers.

N-To-1	and	1-To-N	notifications

By	extending	the	above	two	use	cases	a	little,	it	is	easy	to	do	N-To-1	and	1-To-N	notifications.

1| package	main

2|

3| import	"log"

4| import	"time"

5|

6| type	T	=	struct{}

7|

8| func	worker(id	int,	ready	<-chan	T,	done	chan<-	T)	{
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9| 			<-ready	//	block	here	and	wait	a	notification

10| 			log.Print("Worker#",	id,	"	starts.")

11| 			//	Simulate	a	workload.

12| 			time.Sleep(time.Second	*	time.Duration(id+1))

13| 			log.Print("Worker#",	id,	"	job	done.")

14| 			//	Notify	the	main	goroutine	(N-to-1),

15| 			done	<-	T{}

16| }

17|

18| func	main()	{

19| 			log.SetFlags(0)

20|

21| 			ready,	done	:=	make(chan	T),	make(chan	T)

22| 			go	worker(0,	ready,	done)

23| 			go	worker(1,	ready,	done)

24| 			go	worker(2,	ready,	done)

25|

26| 			//	Simulate	an	initialization	phase.

27| 			time.Sleep(time.Second	*	3	/	2)

28| 			//	1-to-N	notifications.

29| 			ready	<-	T{};	ready	<-	T{};	ready	<-	T{}

30| 			//	Being	N-to-1	notified.

31| 			<-done;	<-done;	<-done

32| }

In	fact,	the	ways	to	do	1-to-N	and	N-to-1	notifications	introduced	in	this	sub-section	are	not	used
commonly	in	practice.	In	practice,	we	often	use	sync.WaitGroup 	to	do	N-to-1	notifications,	and	we	do
1-to-N	notifications	by	close	channels.	Please	read	the	next	sub-section	for	details.

Broadcast	(1-To-N)	notifications	by	closing	a	channel

The	way	to	do	1-to-N	notifications	shown	in	the	last	sub-section	is	seldom	used	in	practice,	for	there	is	a
better	way.	By	making	using	of	the	feature	that	infinite	values	can	be	received	from	a	closed	channel,	we
can	close	a	channel	to	broadcast	notifications.

By	the	example	in	the	last	sub-section,	we	can	replace	the	three	channel	send	operations	ready	<-
struct{}{} 	in	the	last	example	with	one	channel	close	operation	close(ready) 	to	do	an	1-to-N
notifications.

1| ...

2| 			close(ready)	//	broadcast	notifications

3| ...

Surely,	we	can	also	close	a	channel	to	do	a	1-to-1	notification.	In	fact,	this	is	the	most	used	notification
way	in	Go.
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The	feature	that	infinite	values	can	be	received	from	a	closed	channel	will	be	utilized	in	many	other	use
cases	introduced	below.

Timer:	scheduled	notification

It	is	easy	to	use	channels	to	implement	one-time	timers.

A	custom	one-time	timer	implementation:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	AfterDuration(d	time.Duration)	<-	chan	struct{}	{

9| 			c	:=	make(chan	struct{},	1)

10| 			go	func()	{

11| 						time.Sleep(d)

12| 						c	<-	struct{}{}

13| 			}()

14| 			return	c

15| }

16|

17| func	main()	{

18| 			fmt.Println("Hi!")

19| 			<-	AfterDuration(time.Second)

20| 			fmt.Println("Hello!")

21| 			<-	AfterDuration(time.Second)

22| 			fmt.Println("Bye!")

23| }

In	fact,	the	After 	function	in	the	time 	standard	package	provides	the	same	functionality,	with	a	much
more	efficient	implementation.	We	should	use	that	function	instead	to	make	the	code	look	clean.

Please	note,	<-time.After(aDuration) 	will	make	the	current	goroutine	enter	blocking	state,	but	a
time.Sleep(aDuration) 	function	call	will	not.

The	use	of	<-time.After(aDuration) 	is	often	used	in	the	timeout	mechanism	which	will	be
introduced	below.

Use	Channels	as	Mutex	Locks

One	of	the	above	examples	has	mentioned	that	one-capacity	buffered	channels	can	be	used	as	one-time
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binary	semaphore Ң .	In	fact,	such	channels	can	also	be	used	as	multi-time	binary	semaphores,	a.k.a.,
mutex	locks,	though	such	mutex	locks	are	not	efficient	as	the	mutexes	provided	in	the	sync 	standard
package.

There	are	two	manners	to	use	one-capacity	buffered	channels	as	mutex	locks.

1.	 Lock	through	a	send,	unlock	through	a	receive.
2.	 Lock	through	a	receive,	unlock	through	a	send.

The	following	is	a	lock-through-send	example.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			//	The	capacity	must	be	one.

7| 			mutex	:=	make(chan	struct{},	1)

8|

9| 			counter	:=	0

10| 			increase	:=	func()	{

11| 						mutex	<-	struct{}{}	//	lock

12| 						counter++

13| 						<-mutex	//	unlock

14| 			}

15|

16| 			increase1000	:=	func(done	chan<-	struct{})	{

17| 						for	i	:=	0;	i	<	1000;	i++	{

18| 									increase()

19| 						}

20| 						done	<-	struct{}{}

21| 			}

22|

23| 			done	:=	make(chan	struct{})

24| 			go	increase1000(done)

25| 			go	increase1000(done)

26| 			<-done;	<-done

27| 			fmt.Println(counter)	//	2000

28| }

The	following	is	a	lock-through-receive	example.	It	just	shows	the	modified	part	based	on	the	above	lock-
through-send	example.

1| ...

2| func	main()	{

3| 			mutex	:=	make(chan	struct{},	1)

4| 			mutex	<-	struct{}{}	//	this	line	is	needed.

5|

§37.	Channel	Use	Cases

354



6| 			counter	:=	0

7| 			increase	:=	func()	{

8| 						<-mutex	//	lock

9| 						counter++

10| 						mutex	<-	struct{}{}	//	unlock

11| 			}

12| ...

Use	Channels	as	Counting	Semaphores

Buffered	channels	can	be	used	as	counting	semaphores Ң .	Counting	semaphores	can	be	viewed	as	multi-
owner	locks.	If	the	capacity	of	a	channel	is	N ,	then	it	can	be	viewed	as	a	lock	which	can	have	most	N
owners	at	any	time.	Binary	semaphores	(mutexes)	are	special	counting	semaphores,	each	of	binary
semaphores	can	have	at	most	one	owner	at	any	time.

Counting	semaphores	are	often	used	to	enforce	a	maximum	number	of	concurrent	requests.

Like	using	channels	as	mutexes,	there	are	also	two	manners	to	acquire	one	piece	of	ownership	of	a	channel
semaphore.

1.	 Acquire	ownership	through	a	send,	release	through	a	receive.
2.	 Acquire	ownership	through	a	receive,	release	through	a	send.

An	example	of	acquiring	ownership	through	receiving	values	from	a	channel.

1| package	main

2|

3| import	(

4| 			"log"

5| 			"time"

6| 			"math/rand"

7| )

8|

9| type	Seat	int

10| type	Bar	chan	Seat

11|

12| func	(bar	Bar)	ServeCustomer(c	int)	{

13| 			log.Print("customer#",	c,	"	enters	the	bar")

14| 			seat	:=	<-	bar	//	need	a	seat	to	drink

15| 			log.Print("++	customer#",	c,	"	drinks	at	seat#",	seat)

16| 			time.Sleep(time.Second	*	time.Duration(2	+	rand.Intn(6)))

17| 			log.Print("--	customer#",	c,	"	frees	seat#",	seat)

18| 			bar	<-	seat	//	free	seat	and	leave	the	bar

19| }

20|

21| func	main()	{
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22| 			rand.Seed(time.Now().UnixNano())

23|

24| 			//	the	bar	has	10	seats.

25| 			bar24x7	:=	make(Bar,	10)

26| 			//	Place	seats	in	an	bar.

27| 			for	seatId	:=	0;	seatId	<	cap(bar24x7);	seatId++	{

28| 						//	None	of	the	sends	will	block.

29| 						bar24x7	<-	Seat(seatId)

30| 			}

31|

32| 			for	customerId	:=	0;	;	customerId++	{

33| 						time.Sleep(time.Second)

34| 						go	bar24x7.ServeCustomer(customerId)

35| 			}

36|

37| 			//	sleeping	!=	blocking

38| 			for	{time.Sleep(time.Second)}

39| }

In	the	above	example,	only	the	customers	each	of	whom	get	a	seat	can	drink.	So	there	will	be	most	ten
customers	are	drinking	at	any	given	time.

The	last	for 	loop	in	the	main 	function	is	to	avoid	the	program	exiting.	There	is	a	better	way,	which	will
be	introduced	below,	to	do	the	job.

In	the	above	example,	although	there	will	be	most	ten	customers	are	drinking	at	any	given	time,	there	may
be	more	than	ten	customers	are	served	at	the	bar	at	the	same	time.	Some	customers	are	waiting	for	free
seats.	Although	each	customer	goroutine	consumes	much	fewer	resources	than	a	system	thread,	the	total
resources	consumed	by	a	large	number	of	goroutines	are	not	negligible.	So	it	is	best	to	create	a	customer
goroutine	only	if	there	is	an	available	seat.

1| ...	//	same	code	as	the	above	example

2|

3| func	(bar	Bar)	ServeCustomerAtSeat(c	int,	seat	Seat)	{

4| 			log.Print("customer#",	c,	"	drinks	at	seat#",	seat)

5| 			time.Sleep(time.Second	*	time.Duration(2	+	rand.Intn(6)))

6| 			log.Print("<-	customer#",	c,	"	frees	seat#",	seat)

7| 			bar	<-	seat	//	free	seat	and	leave	the	bar

8| }

9|

10| func	main()	{

11| 			rand.Seed(time.Now().UnixNano())

12|

13| 			bar24x7	:=	make(Bar,	10)

14| 			for	seatId	:=	0;	seatId	<	cap(bar24x7);	seatId++	{

15| 						bar24x7	<-	Seat(seatId)

16| 			}

17|
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18| 			for	customerId	:=	0;	;	customerId++	{

19| 						time.Sleep(time.Second)

20| 						//	Need	a	seat	to	serve	next	customer.

21| 						seat	:=	<-	bar24x7

22| 						go	bar24x7.ServeCustomerAtSeat(customerId,	seat)

23| 			}

24| 			for	{time.Sleep(time.Second)}

25| }

There	will	be	at	most	about	ten	live	customer	goroutines	coexisting	in	the	above-optimized	version.

The	manner	of	acquiring	ownership	through	sending	is	simpler	comparatively.	There	is	no	step	of	placing
seats.

1| package	main

2|

3| import	(

4| 			"log"

5| 			"time"

6| 			"math/rand"

7| )

8|

9| type	Customer	struct{id	int}

10| type	Bar	chan	Customer

11|

12| func	(bar	Bar)	ServeCustomer(c	Customer)	{

13| 			log.Print("++	customer#",	c.id,	"	starts	drinking")

14| 			time.Sleep(time.Second	*	time.Duration(3	+	rand.Intn(16)))

15| 			log.Print("--	customer#",	c.id,	"	leaves	the	bar")

16| 			<-	bar	//	leaves	the	bar	and	save	a	space

17| }

18|

19| func	main()	{

20| 			rand.Seed(time.Now().UnixNano())

21|

22| 			//	The	bar	can	serve	most	10	customers

23| 			//	at	the	same	time.

24| 			bar24x7	:=	make(Bar,	10)

25| 			for	customerId	:=	0;	;	customerId++	{

26| 						time.Sleep(time.Second	*	2)

27| 						customer	:=	Customer{customerId}

28| 						//	Wait	to	enter	the	bar.

29| 						bar24x7	<-	customer

30| 						go	bar24x7.ServeCustomer(customer)

31| 			}

32| 			for	{time.Sleep(time.Second)}

33| }
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Dialogue	(Ping-Pong)

Two	goroutines	can	dialogue	through	a	channel.	The	following	is	an	example	which	will	print	a	series	of
Fibonacci	numbers.

1| package	main

2|

3| import	"fmt"

4| import	"time"

5| import	"os"

6|

7| type	Ball	uint64

8|

9| func	Play(playerName	string,	table	chan	Ball)	{

10| 			var	lastValue	Ball	=	1

11| 			for	{

12| 						ball	:=	<-	table	//	get	the	ball

13| 						fmt.Println(playerName,	ball)

14| 						ball	+=	lastValue

15| 						if	ball	<	lastValue	{	//	overflow

16| 									os.Exit(0)

17| 						}

18| 						lastValue	=	ball

19| 						table	<-	ball	//	bat	back	the	ball

20| 						time.Sleep(time.Second)

21| 			}

22| }

23|

24| func	main()	{

25| 			table	:=	make(chan	Ball)

26| 			go	func()	{

27| 						table	<-	1	//	throw	ball	on	table

28| 			}()

29| 			go	Play("A:",	table)

30| 			Play("B:",	table)

31| }

Channel	Encapsulated	in	Channel

Sometimes,	we	can	use	a	channel	type	as	the	element	type	of	another	channel	type.	In	the	following
example,	chan	chan<-	int 	is	a	channel	type	which	element	type	is	a	send-only	channel	type	chan<-
int .

1| package	main

2|
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3| import	"fmt"

4|

5| var	counter	=	func	(n	int)	chan<-	chan<-	int	{

6| 			requests	:=	make(chan	chan<-	int)

7| 			go	func()	{

8| 						for	request	:=	range	requests	{

9| 									if	request	==	nil	{

10| 												n++	//	increase

11| 									}	else	{

12| 												request	<-	n	//	take	out

13| 									}

14| 						}

15| 			}()

16|

17| 			//	Implicitly	converted	to	chan<-	(chan<-	int)

18| 			return	requests

19| }(0)

20|

21| func	main()	{

22| 			increase1000	:=	func(done	chan<-	struct{})	{

23| 						for	i	:=	0;	i	<	1000;	i++	{

24| 									counter	<-	nil

25| 						}

26| 						done	<-	struct{}{}

27| 			}

28|

29| 			done	:=	make(chan	struct{})

30| 			go	increase1000(done)

31| 			go	increase1000(done)

32| 			<-done;	<-done

33|

34| 			request	:=	make(chan	int,	1)

35| 			counter	<-	request

36| 			fmt.Println(<-request)	//	2000

37| }

Although	here	the	encapsulation	implementation	may	be	not	the	most	efficient	way	for	the	above-
specified	example,	the	use	case	may	be	useful	for	some	other	scenarios.

Check	Lengths	and	Capacities	of	Channels

We	can	use	the	built-in	functions	len 	and	cap 	to	check	the	length	and	capacity	of	a	channel.	However,
we	seldom	do	this	in	practice.	The	reason	for	we	seldom	use	the	len 	function	to	check	the	length	of	a
channel	is	the	length	of	the	channel	may	have	changed	after	the	len 	function	call	returns.	The	reason	for
we	seldom	use	the	cap 	function	to	check	the	capacity	of	a	channel	is	the	capacity	of	the	channel	is	often
known	or	not	important.
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However,	there	do	have	some	scenarios	we	need	to	use	the	two	functions.	For	example,	sometimes,	we
want	to	receive	all	the	values	buffered	in	a	non-closed	channel	c 	which	no	ones	will	send	values	to	any
more,	then	we	can	use	the	following	code	to	receive	remaining	values.

1| //	Assume	the	current	goroutine	is	the	only

2| //	goroutine	tries	to	receive	values	from

3| //	the	channel	c	at	present.

4| for	len(c)	>	0	{

5| 			value	:=	<-c

6| 			//	use	value	...

7| }

We	can	also	use	the	try-receive	mechanism	introduced	below	to	do	the	same	job.	The	efficiencies	of	the
two	ways	are	almost	the	same.	The	advantage	of	the	try-receive	mechanism	is	the	current	goroutine	is	not
required	to	be	the	only	receiving	goroutine.

Sometimes,	a	goroutine	may	want	to	write	some	values	to	a	buffered	channel	c 	until	it	is	full	without
entering	blocking	state	at	the	end,	and	the	goroutine	is	the	only	sender	of	the	channel,	then	we	can	use	the
following	code	to	do	this	job.

1| for	len(c)	<	cap(c)	{

2| 			c	<-	aValue

3| }

Surely,	we	can	also	use	the	try-send	mechanism	introduced	below	to	do	the	same	job.

Block	the	Current	Goroutine	Forever

The	select	mechanism	is	a	unique	feature	in	Go.	It	brings	many	patterns	and	tricks	for	concurrent
programming.	About	the	code	execution	rules	of	the	select	mechanism,	please	read	the	article	channels	in
Go	(§21).

We	can	use	a	blank	select	block	select{} 	to	block	the	current	goroutine	for	ever.	This	is	the	simplest
use	case	of	the	select	mechanism.	In	fact,	some	uses	of	for	{time.Sleep(time.Second)} 	in	some
above	examples	can	be	replaced	with	select{} .

Generally,	select{} 	is	used	to	prevent	the	main	goroutine	from	exiting,	for	if	the	main	goroutine	exits,
the	whole	program	will	also	exit.

An	example:

1| package	main

2|

3| import	"runtime"

4|
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5| func	DoSomething()	{

6| 			for	{

7| 						//	do	something	...

8|

9| 						runtime.Gosched()	//	avoid	being	greedy

10| 			}

11| }

12|

13| func	main()	{

14| 			go	DoSomething()

15| 			go	DoSomething()

16| 			select{}

17| }

By	the	way,	there	are	some	other	ways	(§46)	to	make	a	goroutine	stay	in	blocking	state	for	ever.	But	the
select{} 	way	is	the	simplest	one.

Try-Send	and	Try-Receive

A	select 	block	with	one	default 	branch	and	only	one	case 	branch	is	called	a	try-send	or	try-receive
channel	operation,	depending	on	whether	the	channel	operation	following	the	case 	keyword	is	a	channel
send	or	receive	operation.

If	the	operation	following	the	case 	keyword	is	a	send	operation,	then	the	select 	block	is	called	as
try-send	operation.	If	the	send	operation	would	block,	then	the	default 	branch	will	get	executed
(fail	to	send),	otherwise,	the	send	succeeds	and	the	only	case 	branch	will	get	executed.
If	the	operation	following	the	case 	keyword	is	a	receive	operation,	then	the	select 	block	is	called
as	try-receive	operation.	If	the	receive	operation	would	block,	then	the	default 	branch	will	get
executed	(fail	to	receive),	otherwise,	the	receive	succeeds	and	the	only	case 	branch	will	get
executed.

Try-send	and	try-receive	operations	never	block.

The	standard	Go	compiler	makes	special	optimizations	for	try-send	and	try-receive	select	blocks,	their
execution	efficiencies	are	much	higher	than	multi-case	select	blocks.

The	following	is	an	example	which	shows	how	try-send	and	try-receive	work.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			type	Book	struct{id	int}

7| 			bookshelf	:=	make(chan	Book,	3)
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8|

9| 			for	i	:=	0;	i	<	cap(bookshelf)	*	2;	i++	{

10| 						select	{

11| 						case	bookshelf	<-	Book{id:	i}:

12| 									fmt.Println("succeeded	to	put	book",	i)

13| 						default:

14| 									fmt.Println("failed	to	put	book")

15| 						}

16| 			}

17|

18| 			for	i	:=	0;	i	<	cap(bookshelf)	*	2;	i++	{

19| 						select	{

20| 						case	book	:=	<-bookshelf:

21| 									fmt.Println("succeeded	to	get	book",	book.id)

22| 						default:

23| 									fmt.Println("failed	to	get	book")

24| 						}

25| 			}

26| }

The	output	of	the	above	program:

succeed	to	put	book	0

succeed	to	put	book	1

succeed	to	put	book	2

failed	to	put	book

failed	to	put	book

failed	to	put	book

succeed	to	get	book	0

succeed	to	get	book	1

succeed	to	get	book	2

failed	to	get	book

failed	to	get	book

failed	to	get	book

The	following	sub-sections	will	show	more	try-send	and	try-receive	use	cases.

Check	if	a	channel	is	closed	without	blocking	the	current	goroutine

Assume	it	is	guaranteed	that	no	values	were	ever	(and	will	be)	sent	to	a	channel,	we	can	use	the	following
code	to	(concurrently	and	safely)	check	whether	or	not	the	channel	is	already	closed	without	blocking	the
current	goroutine,	where	T 	the	element	type	of	the	corresponding	channel	type.

1| func	IsClosed(c	chan	T)	bool	{

2| 			select	{

3| 			case	<-c:

4| 						return	true
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5| 			default:

6| 			}

7| 			return	false

8| }

The	way	to	check	if	a	channel	is	closed	is	used	popularly	in	Go	concurrent	programming	to	check	whether
or	not	a	notification	has	arrived.	The	notification	will	be	sent	by	closing	the	channel	in	another	goroutine.

Peak/burst	limiting

We	can	implement	peak	limiting	by	combining	use	channels	as	counting	semaphores	and	try-send/try-
receive.	Peak-limit	(or	burst-limit)	is	often	used	to	limit	the	number	of	concurrent	requests	without
blocking	any	requests.

The	following	is	a	modified	version	of	the	last	example	in	the	use	channels	as	counting	semaphores
section.

1| ...

2| 			//	Can	serve	most	10	customers	at	the	same	time

3| 			bar24x7	:=	make(Bar,	10)

4| 			for	customerId	:=	0;	;	customerId++	{

5| 						time.Sleep(time.Second)

6| 						customer	:=	Consumer{customerId}

7| 						select	{

8| 						case	bar24x7	<-	customer:	//	try	to	enter	the	bar

9| 									go	bar24x7.ServeConsumer(customer)

10| 						default:

11| 									log.Print("customer#",	customerId,	"	goes	elsewhere")

12| 						}

13| 			}

14| ...

Another	way	to	implement	the	first-response-wins	use	case

As	mentioned	above,	we	can	use	the	select	mechanism	(try-send)	with	a	buffered	channel	which	capacity
is	one	(at	least)	to	implement	the	first-response-wins	use	case.	For	example,

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"math/rand"

6| 			"time"

7| )

8|
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9| func	source(c	chan<-	int32)	{

10| 			ra,	rb	:=	rand.Int31(),	rand.Intn(3)+1

11| 			//	Sleep	1s,	2s	or	3s.

12| 			time.Sleep(time.Duration(rb)	*	time.Second)

13| 			select	{

14| 			case	c	<-	ra:

15| 			default:

16| 			}

17| }

18|

19| func	main()	{

20| 			rand.Seed(time.Now().UnixNano())

21|

22| 			//	The	capacity	should	be	at	least	1.

23| 			c	:=	make(chan	int32,	1)

24| 			for	i	:=	0;	i	<	5;	i++	{

25| 						go	source(c)

26| 			}

27| 			rnd	:=	<-c	//	only	the	first	response	is	used

28| 			fmt.Println(rnd)

29| }

Please	note,	the	capacity	of	the	channel	used	in	the	above	example	must	be	at	least	one,	so	that	the	first
send	won't	be	missed	if	the	receiver/request	side	has	not	gotten	ready	in	time.

The	third	way	to	implement	the	first-response-wins	use	case

For	a	first-response-wins	use	case,	if	the	number	of	sources	is	small,	for	example,	two	or	three,	we	can	use
a	select 	code	block	to	receive	the	source	responses	at	the	same	time.	For	example,

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"math/rand"

6| 			"time"

7| )

8|

9| func	source()	<-chan	int32	{

10| 			//	c	must	be	a	buffered	channel.

11| 			c	:=	make(chan	int32,	1)

12| 			go	func()	{

13| 						ra,	rb	:=	rand.Int31(),	rand.Intn(3)+1

14| 						time.Sleep(time.Duration(rb)	*	time.Second)

15| 						c	<-	ra

16| 			}()

17| 			return	c
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18| }

19|

20| func	main()	{

21| 			rand.Seed(time.Now().UnixNano())

22|

23| 			var	rnd	int32

24| 			//	Blocking	here	until	one	source	responses.

25| 			select{

26| 			case	rnd	=	<-source():

27| 			case	rnd	=	<-source():

28| 			case	rnd	=	<-source():

29| 			}

30| 			fmt.Println(rnd)

31| }

Note:	if	the	channel	used	in	the	above	example	is	an	unbuffered	channel,	then	there	will	two	goroutines
hanging	for	ever	after	the	select 	code	block	is	executed.	This	is	a	memory	leak	case	(§45).

The	two	ways	introduced	in	the	current	and	the	last	sub-sections	can	also	be	used	to	do	N-to-1
notifications.

Timeout

In	some	request-response	scenarios,	for	all	kinds	of	reasons,	a	request	may	need	a	long	time	to	response,
sometimes	even	will	never	response.	For	such	cases,	we	should	return	an	error	message	to	the	client	side
by	using	a	timeout	solution.	Such	a	timeout	solution	can	be	implemented	with	the	select	mechanism.

The	following	code	shows	how	to	make	a	request	with	a	timeout.

1| func	requestWithTimeout(timeout	time.Duration)	(int,	error)	{

2| 			c	:=	make(chan	int)

3| 			//	May	need	a	long	time	to	get	the	response.

4| 			go	doRequest(c)

5|

6| 			select	{

7| 			case	data	:=	<-c:

8| 						return	data,	nil

9| 			case	<-time.After(timeout):

10| 						return	0,	errors.New("timeout")

11| 			}

12| }

Ticker

We	can	use	the	try-send	mechanism	to	implement	a	ticker.
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1| package	main

2|

3| import	"fmt"

4| import	"time"

5|

6| func	Tick(d	time.Duration)	<-chan	struct{}	{

7| 			//	The	capacity	of	c	is	best	set	as	one.

8| 			c	:=	make(chan	struct{},	1)

9| 			go	func()	{

10| 						for	{

11| 									time.Sleep(d)

12| 									select	{

13| 									case	c	<-	struct{}{}:

14| 									default:

15| 									}

16| 						}

17| 			}()

18| 			return	c

19| }

20|

21| func	main()	{

22| 			t	:=	time.Now()

23| 			for	range	Tick(time.Second)	{

24| 						fmt.Println(time.Since(t))

25| 			}

26| }

In	fact,	there	is	a	Tick 	function	in	the	time 	standard	package	provides	the	same	functionality,	with	a
much	more	efficient	implementation.	We	should	use	that	function	instead	to	make	code	look	clean	and	run
efficiently.

Rate	Limiting

One	of	above	section	has	shown	how	to	use	try-send	to	do	peak	limiting.	We	can	also	use	try-send	to	do
rate	limiting	(with	the	help	of	a	ticker).	In	practice,	rate-limit	is	often	to	avoid	quota	exceeding	and
resource	exhaustion.

The	following	shows	such	an	example	borrowed	from	the	official	Go	wiki Ң .	In	this	example,	the
number	of	handled	requests	in	any	one-minute	duration	will	not	exceed	200.

1| package	main

2|

3| import	"fmt"

4| import	"time"

5|

6| type	Request	interface{}
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7| func	handle(r	Request)	{fmt.Println(r.(int))}

8|

9| const	RateLimitPeriod	=	time.Minute

10| const	RateLimit	=	200	//	most	200	requests	in	one	minute

11|

12| func	handleRequests(requests	<-chan	Request)	{

13| 			quotas	:=	make(chan	time.Time,	RateLimit)

14|

15| 			go	func()	{

16| 						tick	:=	time.NewTicker(RateLimitPeriod	/	RateLimit)

17| 						defer	tick.Stop()

18| 						for	t	:=	range	tick.C	{

19| 									select	{

20| 									case	quotas	<-	t:

21| 									default:

22| 									}

23| 						}

24| 			}()

25|

26| 			for	r	:=	range	requests	{

27| 						<-quotas

28| 						go	handle(r)

29| 			}

30| }

31|

32| func	main()	{

33| 			requests	:=	make(chan	Request)

34| 			go	handleRequests(requests)

35| 			//	time.Sleep(time.Minute)

36| 			for	i	:=	0;	;	i++	{requests	<-	i}

37| }

In	practice,	we	often	use	rate-limit	and	peak/burst-limit	together.

Switches

From	the	article	channels	in	Go	(§21),	we	have	learned	that	sending	a	value	to	or	receiving	a	value	from	a
nil	channel	are	both	blocking	operations.	By	making	use	of	this	fact,	we	can	change	the	involved	channels
in	the	case 	operations	of	a	select 	code	block	to	affect	the	branch	selection	in	the	select 	code	block.

The	following	is	another	ping-pong	example	which	is	implemented	by	using	the	select	mechanism.	In	this
example,	one	of	the	two	channel	variables	involved	in	the	select	block	is	nil .	The	case 	branch
corresponding	the	nil	channel	will	not	get	selected	for	sure.	We	can	think	such	case 	branches	are	in	off
status.	At	the	end	of	each	loop	step,	the	on/off	statuses	of	the	two	case 	branches	are	switched.

1| package	main
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2|

3| import	"fmt"

4| import	"time"

5| import	"os"

6|

7| type	Ball	uint8

8| func	Play(playerName	string,	table	chan	Ball,	serve	bool)	{

9| 			var	receive,	send	chan	Ball

10| 			if	serve	{

11| 						receive,	send	=	nil,	table

12| 			}	else	{

13| 						receive,	send	=	table,	nil

14| 			}

15| 			var	lastValue	Ball	=	1

16| 			for	{

17| 						select	{

18| 						case	send	<-	lastValue:

19| 						case	value	:=	<-	receive:

20| 									fmt.Println(playerName,	value)

21| 									value	+=	lastValue

22| 									if	value	<	lastValue	{	//	overflow

23| 												os.Exit(0)

24| 									}

25| 									lastValue	=	value

26| 						}

27| 						//	Switch	on/off.

28| 						receive,	send	=	send,	receive

29| 						time.Sleep(time.Second)

30| 			}

31| }

32|

33| func	main()	{

34| 			table	:=	make(chan	Ball)

35| 			go	Play("A:",	table,	false)

36| 			Play("B:",	table,	true)

37| }

The	following	is	another	(non-concurrent)	example	which	is	much	simpler	and	also	demoes	the	switch
effect.	This	example	will	print	1212... 	when	running.	It	has	not	much	usefulness	in	practice.	It	is	shown
here	just	for	learning	purpose.

1| package	main

2|

3| import	"fmt"

4| import	"time"

5|

6| func	main()	{

7| 			for	c	:=	make(chan	struct{},	1);	true;	{
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8| 						select	{

9| 						case	c	<-	struct{}{}:

10| 									fmt.Print("1")

11| 						case	<-c:

12| 									fmt.Print("2")

13| 						}

14| 						time.Sleep(time.Second)

15| 			}

16| }

Control	code	execution	possibility	weights

We	can	duplicate	a	case 	branch	in	a	select 	code	block	to	increase	the	execution	possibility	weigh	of
the	corresponding	code.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			foo,	bar	:=	make(chan	struct{}),	make(chan	struct{})

7| 			close(foo);	close(bar)	//	for	demo	purpose

8| 			x,	y	:=	0.0,	0.0

9| 			f	:=	func(){x++}

10| 			g	:=	func(){y++}

11| 			for	i	:=	0;	i	<	100000;	i++	{

12| 						select	{

13| 						case	<-foo:	f()

14| 						case	<-foo:	f()

15| 						case	<-bar:	g()

16| 						}

17| 			}

18| 			fmt.Println(x/y)	//	about	2

19| }

The	possibility	of	the	f 	function	being	called	is	about	the	double	of	the	g 	function	being	called.

Select	from	dynamic	number	of	cases

Although	the	number	of	branches	in	a	select 	block	is	fixed,	we	can	use	the	functionalities	provided	in
the	reflect 	standard	package	to	construct	a	select	block	at	run	time.	The	dynamically	created	select
block	can	have	an	arbitrary	number	of	case	branches.	But	please	note,	the	reflection	way	is	less	efficient
than	the	fixed	way.
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The	reflect 	standard	package	also	provides	TrySend 	and	TryRecv 	functions	to	implement	one-case-
plus-default	select	blocks.

Data	Flow	Manipulations

This	section	will	introduce	some	data	flow	manipulation	use	cases	by	using	channels.

Generally,	a	data	flow	application	consists	of	many	modules.	Different	modules	do	different	jobs.	Each
module	may	own	one	or	several	workers	(goroutines),	which	concurrently	do	the	same	job	specified	for
that	module.	Here	is	a	list	of	some	module	job	examples	in	practice:

data	generation/collecting/loading.
data	serving/saving.
data	calculation/analysis.
data	validation/filtering.
data	aggregation/division
data	composition/decomposition.
data	duplication/proliferation.

A	worker	in	a	module	may	receive	data	from	several	other	modules	as	inputs	and	send	data	to	serve	other
modules	as	outputs.	In	other	words,	a	module	can	be	both	a	data	consumer	and	a	data	producer.	A	module
which	only	sends	data	to	some	other	modules	but	never	receives	data	from	other	modules	is	called	a
producer-only	module.	A	module	which	only	receives	data	from	some	other	modules	but	never	sends	data
to	other	modules	is	called	a	consumer-only	module.

Many	modules	together	form	a	data	flow	system.

The	following	will	show	some	data	flow	module	worker	implementations.	These	implementations	are	for
explanation	purpose,	so	they	are	very	simple	and	they	may	be	not	efficient.

Data	generation/collecting/loading

There	are	all	kinds	of	producer-only	modules.	A	producer-only	module	worker	may	produce	a	data	stream

by	loading	a	file,	reading	a	database,	or	crawling	the	web.
by	collecting	all	kinds	of	metrics	from	a	software	system	or	all	kinds	of	hardware.
by	generating	random	numbers.
etc.

Here,	we	use	a	random	number	generator	as	an	example.	The	generator	function	returns	one	result	but
takes	no	parameters.

1| import	(

2| 			"crypto/rand"
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3| 			"encoding/binary"

4| )

5|

6| func	RandomGenerator()	<-chan	uint64	{

7| 			c	:=	make(chan	uint64)

8| 			go	func()	{

9| 						rnds	:=	make([]byte,	8)

10| 						for	{

11| 									_,	err	:=	rand.Read(rnds)

12| 									if	err	!=	nil	{

13| 												close(c)

14| 									}

15| 									c	<-	binary.BigEndian.Uint64(rnds)

16| 						}

17| 			}()

18| 			return	c

19| }

In	fact,	the	random	number	generator	is	a	multi-return	future/promise.

A	data	producer	may	close	the	output	stream	channel	at	any	time	to	end	data	generating.

Data	aggregation

A	data	aggregation	module	worker	aggregates	several	data	streams	of	the	same	data	type	into	one	stream.
Assume	the	data	type	is	int64 ,	then	the	following	function	will	aggregate	an	arbitrary	number	of	data
streams	into	one.

1| func	Aggregator(inputs	...<-chan	uint64)	<-chan	uint64	{

2| 			out	:=	make(chan	uint64)

3| 			for	_,	in	:=	range	inputs	{

4| 						in	:=	in	//	this	line	is	essential

5| 						go	func()	{

6| 									for	{

7| 												out	<-	<-in	//	<=>	out	<-	(<-in)

8| 									}

9| 						}()

10| 			}

11| 			return	out

12| }

A	better	implementation	should	consider	whether	or	not	an	input	stream	has	been	closed.	(Also	valid	for
the	following	other	module	worker	implementations.)

1| func	Aggregator(inputs	...<-chan	uint64)	<-chan	uint64	{

2| 			output	:=	make(chan	uint64)

3| 			var	wg	sync.WaitGroup
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4| 			for	_,	in	:=	range	inputs	{

5| 						wg.Add(1)

6| 						in	:=	in	//	this	line	is	essential

7| 						go	func()	{

8| 									for	{

9| 												x,	ok	:=	<-in

10| 												if	ok	{

11| 															output	<-	x

12| 												}	else	{

13| 															wg.Done()

14| 												}

15| 									}

16| 						}()

17| 			}

18| 			go	func()	{

19| 						wg.Wait()

20| 						close(output)

21| 			}()

22| 			return	output

23| }

If	the	number	of	aggregated	data	streams	is	very	small	(two	or	three),	we	can	use	select 	block	to
aggregate	these	data	streams.

1| //	Assume	the	number	of	input	stream	is	two.

2| ...

3| 			output	:=	make(chan	uint64)

4| 			go	func()	{

5| 						inA,	inB	:=	inputs[0],	inputs[1]

6| 						for	{

7| 									select	{

8| 									case	v	:=	<-	inA:	output	<-	v

9| 									case	v	:=	<-	inB:	output	<-	v

10| 									}

11| 						}

12| 			}

13| ...

Data	division

A	data	division	module	worker	does	the	opposite	of	a	data	aggregation	module	worker.	It	is	easy	to
implement	a	division	worker,	but	in	practice,	division	workers	are	not	very	useful	and	seldom	used.

1| func	Divisor(input	<-chan	uint64,	outputs	...chan<-	uint64)	{

2| 			for	_,	out	:=	range	outputs	{

3| 						out	:=	out	//	this	line	is	essential

4| 						go	func()	{
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5| 									for	{

6| 												out	<-	<-input	//	<=>	out	<-	(<-input)

7| 									}

8| 						}()

9| 			}

10| }

Data	composition

A	data	composition	worker	merges	several	pieces	of	data	from	different	input	data	streams	into	one	piece
of	data.

The	following	is	a	composition	worker	example,	in	which	two	uint64 	values	from	one	stream	and	one
uint64 	value	from	another	stream	compose	one	new	uint64 	value.	Surely,	these	stream	channel
element	types	are	different	generally	in	practice.

1| func	Composer(inA,	inB	<-chan	uint64)	<-chan	uint64	{

2| 			output	:=	make(chan	uint64)

3| 			go	func()	{

4| 						for	{

5| 									a1,	b,	a2	:=	<-inA,	<-inB,	<-inA

6| 									output	<-	a1	^	b	&	a2

7| 						}

8| 			}()

9| 			return	output

10| }

Data	decomposition

Data	decomposition	is	the	inverse	process	of	data	composition.	A	decomposition	worker	function
implementation	takes	one	input	data	stream	parameter	and	returns	several	data	stream	results.	No
examples	will	be	shown	for	data	decomposition	here.

Data	duplication/proliferation

Data	duplication	(proliferation)	can	be	viewed	as	special	data	decompositions.	One	piece	of	data	will	be
duplicated	and	each	of	the	duplicated	data	will	be	sent	to	different	output	data	streams.

An	example:

1| func	Duplicator(in	<-chan	uint64)	(<-chan	uint64,	<-chan	uint64)	{

2| 			outA,	outB	:=	make(chan	uint64),	make(chan	uint64)

3| 			go	func()	{
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4| 						for	{

5| 									x	:=	<-in

6| 									outA	<-	x

7| 									outB	<-	x

8| 						}

9| 			}()

10| 			return	outA,	outB

11| }

Data	calculation/analysis

The	functionalities	of	data	calculation	and	analysis	modules	vary	and	each	is	very	specific.	Generally,	a
worker	function	of	such	modules	transforms	each	piece	of	input	data	into	another	piece	of	output	data.

For	simple	demo	purpose,	here	shows	a	worker	example	which	inverts	every	bit	of	each	transferred
uint64 	value.

1| func	Calculator(in	<-chan	uint64,	out	chan	uint64)	(<-chan	uint64)	{

2| 			if	out	==	nil	{

3| 						out	=	make(chan	uint64)

4| 			}

5| 			go	func()	{

6| 						for	{

7| 									x	:=	<-in

8| 									out	<-	^x

9| 						}

10| 			}()

11| 			return	out

12| }

Data	validation/filtering

A	data	validation	or	filtering	module	discards	some	transferred	data	in	a	stream.	For	example,	the
following	worker	function	discards	all	non-prime	numbers.

1| import	"math/big"

2|

3| func	Filter(input	<-chan	uint64,	output	chan	uint64)	<-chan	uint64	{

4| 			if	output	==	nil	{

5| 						output	=	make(chan	uint64)

6| 			}

7| 			go	func()	{

8| 						bigInt	:=	big.NewInt(0)

9| 						for	{

10| 									x	:=	<-input
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11| 									bigInt.SetUint64(x)

12| 									if	bigInt.ProbablyPrime(1)	{

13| 												output	<-	x

14| 									}

15| 						}

16| 			}()

17| 			return	output

18| }

Data	serving/saving

Generally,	a	data	serving	or	saving	module	is	the	last	or	final	output	module	in	a	data	flow	system.	Here
just	provides	a	simple	worker	which	prints	each	piece	of	data	received	from	the	input	stream.

1| import	"fmt"

2|

3| func	Printer(input	<-chan	uint64)	{

4| 			for	{

5| 						x,	ok	:=	<-input

6| 						if	ok	{

7| 									fmt.Println(x)

8| 						}	else	{

9| 									return

10| 						}

11| 			}

12| }

Data	flow	system	assembling

Now,	let's	use	the	above	module	worker	functions	to	assemble	several	data	flow	systems.	Assembling	a
data	flow	system	is	just	to	create	some	workers	of	different	modules,	and	specify	the	input	streams	for
every	worker.

Data	flow	system	example	1	(a	linear	pipeline):

1| package	main

2|

3| ...	//	the	worker	functions	declared	above.

4|

5| func	main()	{

6| 			Printer(

7| 						Filter(

8| 									Calculator(

9| 												RandomGenerator(),

10| 									),
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11| 						),

12| 			)

13| }

The	above	data	flow	system	is	depicted	in	the	following	diagram.

Data	flow	system	example	2	(a	directed	acyclic	graph	pipeline):

1| package	main

2|

3| ...	//	the	worker	functions	declared	above.

4|

5| func	main()	{

6| 			filterA	:=	Filter(RandomGenerator(),	nil)

7| 			filterB	:=	Filter(RandomGenerator(),	nil)

8| 			filterC	:=	Filter(RandomGenerator(),	nil)

9| 			filter	:=	Aggregator(filterA,	filterB,	filterC)

10| 			calculatorA	:=	Calculator(filter,	nil)

11| 			calculatorB	:=	Calculator(filter,	nil)

12| 			calculator	:=	Aggregator(calculatorA,	calculatorB)

13| 			Printer(calculator)

14| }

The	above	data	flow	system	is	depicted	in	the	following	diagram.

More	complex	data	flow	topology	may	be	arbitrary	graphs.	For	example,	a	data	flow	system	may	have
multiple	final	outputs.	But	data	flow	systems	with	cyclic-graph	topology	are	seldom	used	in	reality.

From	the	above	two	examples,	we	can	find	that	it	is	very	easy	and	intuitive	to	build	data	flow	systems
with	channels.

From	the	last	example,	we	can	find	that,	with	the	help	of	aggregators,	it	is	easy	to	implement	fan-in	and
fan-out	for	the	number	of	workers	for	a	specified	module.

In	fact,	we	can	use	a	simple	channel	to	replace	the	role	of	an	aggregator.	For	example,	the	following
example	replaces	the	two	aggregators	with	two	channels.
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1| package	main

2|

3| ...	//	the	worker	functions	declared	above.

4|

5| func	main()	{

6| 			c1	:=	make(chan	uint64,	100)

7| 			Filter(RandomGenerator(),	c1)	//	filterA

8| 			Filter(RandomGenerator(),	c1)	//	filterB

9| 			Filter(RandomGenerator(),	c1)	//	filterC

10| 			c2	:=	make(chan	uint64,	100)

11| 			Calculator(c1,	c2)	//	calculatorA

12| 			Calculator(c1,	c2)	//	calculatorB

13| 			Printer(c2)

14| }

The	modified	data	flow	system	is	depicted	in	the	following	diagram.

The	above	explanations	for	data	flow	systems	don't	consider	much	on	how	to	close	data	streams.	Please
read	this	article	(§38)	for	explanations	on	how	to	gracefully	close	channels.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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How	to	Gracefully	Close	Channels
Several	days	ago,	I	wrote	an	article	which	explains	the	channel	rules	in	Go	(§21).	That	article	got	many
votes	on	reddit Ң 	and	HN Ң ,	but	there	are	also	some	criticisms	on	Go	channel	design	details.

I	collected	some	criticisms	on	the	following	designs	and	rules	of	Go	channels:

1.	 no	easy	and	universal	ways	to	check	whether	or	not	a	channel	is	closed	without	modifying	the	status
of	the	channel.

2.	 closing	a	closed	channel	will	panic,	so	it	is	dangerous	to	close	a	channel	if	the	closers	don't	know
whether	or	not	the	channel	is	closed.

3.	 sending	values	to	a	closed	channel	will	panic,	so	it	is	dangerous	to	send	values	to	a	channel	if	the
senders	don't	know	whether	or	not	the	channel	is	closed.

The	criticisms	look	reasonable	(in	fact	not).	Yes,	there	is	really	not	a	built-in	function	to	check	whether	or
not	a	channel	has	been	closed.

There	is	indeed	a	simple	method	to	check	whether	or	not	a	channel	is	closed	if	you	can	make	sure	no
values	were	(and	will	be)	ever	sent	to	the	channel.	The	method	has	been	shown	in	the	last	article	(§37).
Here,	for	a	better	coherence,	the	method	is	listed	in	the	following	example	again.

1| package	main

2|

3| import	"fmt"

4|

5| type	T	int

6|

7| func	IsClosed(ch	<-chan	T)	bool	{

8| 			select	{

9| 			case	<-ch:

10| 						return	true

11| 			default:

12| 			}

13|

14| 			return	false

15| }

16|

17| func	main()	{

18| 			c	:=	make(chan	T)

19| 			fmt.Println(IsClosed(c))	//	false

20| 			close(c)

21| 			fmt.Println(IsClosed(c))	//	true

22| }

As	above	mentioned,	this	is	not	a	universal	way	to	check	whether	a	channel	is	closed.
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In	fact,	even	if	there	is	a	simple	built-in	closed 	function	to	check	whether	or	not	a	channel	has	been
closed,	its	usefulness	would	be	very	limited,	just	like	the	built-in	len 	function	for	checking	the	current
number	of	values	stored	in	the	value	buffer	of	a	channel.	The	reason	is	the	status	of	the	checked	channel
may	have	changed	just	after	a	call	to	such	functions	returns,	so	that	the	returned	value	has	already	not	been
able	to	reflect	the	latest	status	of	the	just	checked	channel.	Although	it	is	okay	to	stop	sending	values	to	a
channel	ch 	if	the	call	closed(ch) 	returns	true ,	it	is	not	safe	to	close	the	channel	or	continue	sending
values	to	the	channel	if	the	call	closed(ch) 	returns	false .

The	Channel	Closing	Principle

One	general	principle	of	using	Go	channels	is	don't	close	a	channel	from	the	receiver	side	and	don't
close	a	channel	if	the	channel	has	multiple	concurrent	senders.	In	other	words,	we	should	only	close	a
channel	in	a	sender	goroutine	if	the	sender	is	the	only	sender	of	the	channel.

(Below,	we	will	call	the	above	principle	as	channel	closing	principle.)

Surely,	this	is	not	a	universal	principle	to	close	channels.	The	universal	principle	is	don't	close	(or	send
values	to)	closed	channels.	If	we	can	guarantee	that	no	goroutines	will	close	and	send	values	to	a	non-
closed	non-nil	channel	any	more,	then	a	goroutine	can	close	the	channel	safely.	However,	making	such
guarantees	by	a	receiver	or	by	one	of	many	senders	of	a	channel	usually	needs	much	effort,	and	often
makes	code	complicated.	On	the	contrary,	it	is	much	easy	to	hold	the	channel	closing	principle
mentioned	above.

Solutions	Which	Close	Channels	Rudely

If	you	would	close	a	channel	from	the	receiver	side	or	in	one	of	the	multiple	senders	of	the	channel
anyway,	then	you	can	use	the	recover	mechanism	(§13)	to	prevent	the	possible	panic	from	crashing	your
program.	Here	is	an	example	(assume	the	channel	element	type	is	T ).

1| func	SafeClose(ch	chan	T)	(justClosed	bool)	{

2| 			defer	func()	{

3| 						if	recover()	!=	nil	{

4| 									//	The	return	result	can	be	altered

5| 									//	in	a	defer	function	call.

6| 									justClosed	=	false

7| 						}

8| 			}()

9|

10| 			//	assume	ch	!=	nil	here.

11| 			close(ch)			//	panic	if	ch	is	closed

12| 			return	true	//	<=>	justClosed	=	true;	return

13| }
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This	solution	obviously	breaks	the	channel	closing	principle.

The	same	idea	can	be	used	for	sending	values	to	a	potential	closed	channel.

1| func	SafeSend(ch	chan	T,	value	T)	(closed	bool)	{

2| 			defer	func()	{

3| 						if	recover()	!=	nil	{

4| 									closed	=	true

5| 						}

6| 			}()

7|

8| 			ch	<-	value		//	panic	if	ch	is	closed

9| 			return	false	//	<=>	closed	=	false;	return

10| }

Not	only	does	the	rude	solution	break	the	channel	closing	principle,	and	data	races	might	happen	in	the
process.

Solutions	Which	Close	Channels	Politely

Many	people	prefer	using	sync.Once 	to	close	channels:

1| type	MyChannel	struct	{

2| 			C				chan	T

3| 			once	sync.Once

4| }

5|

6| func	NewMyChannel()	*MyChannel	{

7| 			return	&MyChannel{C:	make(chan	T)}

8| }

9|

10| func	(mc	*MyChannel)	SafeClose()	{

11| 			mc.once.Do(func()	{

12| 						close(mc.C)

13| 			})

14| }

Surely,	we	can	also	use	sync.Mutex 	to	avoid	closing	a	channel	multiple	times:

1| type	MyChannel	struct	{

2| 			C						chan	T

3| 			closed	bool

4| 			mutex		sync.Mutex

5| }

6|

7| func	NewMyChannel()	*MyChannel	{

8| 			return	&MyChannel{C:	make(chan	T)}
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9| }

10|

11| func	(mc	*MyChannel)	SafeClose()	{

12| 			mc.mutex.Lock()

13| 			defer	mc.mutex.Unlock()

14| 			if	!mc.closed	{

15| 						close(mc.C)

16| 						mc.closed	=	true

17| 			}

18| }

19|

20| func	(mc	*MyChannel)	IsClosed()	bool	{

21| 			mc.mutex.Lock()

22| 			defer	mc.mutex.Unlock()

23| 			return	mc.closed

24| }

These	ways	may	be	polite,	but	they	may	not	avoid	data	races.	Currently,	Go	specification	doesn't
guarantee	that	there	are	no	data	races	happening	when	a	channel	close	and	a	channel	send	operations	are
executed	concurrently.	If	a	SafeClose 	function	is	called	concurrently	with	a	channel	send	operation	to
the	same	channel,	data	races	might	happen	(though	such	data	races	generally	don't	much	harm).

Solutions	Which	Close	Channels	Gracefully

One	drawback	of	the	above	SafeSend 	function	is	that	its	calls	can't	be	used	as	send	operations	which
follow	the	case 	keyword	in	select 	blocks.	The	other	drawback	of	the	above	SafeSend 	and
SafeClose 	functions	is	that	many	people,	including	me,	would	think	the	above	solutions	by	using
panic /recover 	and	sync 	package	are	not	graceful.	Following,	some	pure-channel	solutions	without
using	panic /recover 	and	sync 	package	will	be	introduced,	for	all	kinds	of	situations.

(In	the	following	examples,	sync.WaitGroup 	is	used	to	make	the	examples	complete.	It	may	be	not
always	essential	to	use	it	in	real	practice.)

1.	M	receivers,	one	sender,	the	sender	says	"no	more	sends"	by	closing
the	data	channel

This	is	the	simplest	situation,	just	let	the	sender	close	the	data	channel	when	it	doesn't	want	to	send	more.

1| package	main

2|

3| import	(

4| 			"time"

5| 			"math/rand"

6| 			"sync"
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7| 			"log"

8| )

9|

10| func	main()	{

11| 			rand.Seed(time.Now().UnixNano())

12| 			log.SetFlags(0)

13|

14| 			//	...

15| 			const	Max	=	100000

16| 			const	NumReceivers	=	100

17|

18| 			wgReceivers	:=	sync.WaitGroup{}

19| 			wgReceivers.Add(NumReceivers)

20|

21| 			//	...

22| 			dataCh	:=	make(chan	int)

23|

24| 			//	the	sender

25| 			go	func()	{

26| 						for	{

27| 									if	value	:=	rand.Intn(Max);	value	==	0	{

28| 												//	The	only	sender	can	close	the

29| 												//	channel	at	any	time	safely.

30| 												close(dataCh)

31| 												return

32| 									}	else	{

33| 												dataCh	<-	value

34| 									}

35| 						}

36| 			}()

37|

38| 			//	receivers

39| 			for	i	:=	0;	i	<	NumReceivers;	i++	{

40| 						go	func()	{

41| 									defer	wgReceivers.Done()

42|

43| 									//	Receive	values	until	dataCh	is

44| 									//	closed	and	the	value	buffer	queue

45| 									//	of	dataCh	becomes	empty.

46| 									for	value	:=	range	dataCh	{

47| 												log.Println(value)

48| 									}

49| 						}()

50| 			}

51|

52| 			wgReceivers.Wait()

53| }
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2.	One	receiver,	N	senders,	the	only	receiver	says	"please	stop	sending
more"	by	closing	an	additional	signal	channel

This	is	a	situation	a	little	more	complicated	than	the	above	one.	We	can't	let	the	receiver	close	the	data
channel	to	stop	data	transferring,	for	doing	this	will	break	the	channel	closing	principle.	But	we	can	let
the	receiver	close	an	additional	signal	channel	to	notify	senders	to	stop	sending	values.

1| package	main

2|

3| import	(

4| 			"time"

5| 			"math/rand"

6| 			"sync"

7| 			"log"

8| )

9|

10| func	main()	{

11| 			rand.Seed(time.Now().UnixNano())

12| 			log.SetFlags(0)

13|

14| 			//	...

15| 			const	Max	=	100000

16| 			const	NumSenders	=	1000

17|

18| 			wgReceivers	:=	sync.WaitGroup{}

19| 			wgReceivers.Add(1)

20|

21| 			//	...

22| 			dataCh	:=	make(chan	int)

23| 			stopCh	:=	make(chan	struct{})

24| 						//	stopCh	is	an	additional	signal	channel.

25| 						//	Its	sender	is	the	receiver	of	channel

26| 						//	dataCh,	and	its	receivers	are	the

27| 						//	senders	of	channel	dataCh.

28|

29| 			//	senders

30| 			for	i	:=	0;	i	<	NumSenders;	i++	{

31| 						go	func()	{

32| 									for	{

33| 												//	The	try-receive	operation	is	to	try

34| 												//	to	exit	the	goroutine	as	early	as

35| 												//	possible.	For	this	specified	example,

36| 												//	it	is	not	essential.

37| 												select	{

38| 												case	<-	stopCh:

39| 															return

40| 												default:
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41| 												}

42|

43| 												//	Even	if	stopCh	is	closed,	the	first

44| 												//	branch	in	the	second	select	may	be

45| 												//	still	not	selected	for	some	loops	if

46| 												//	the	send	to	dataCh	is	also	unblocked.

47| 												//	But	this	is	acceptable	for	this

48| 												//	example,	so	the	first	select	block

49| 												//	above	can	be	omitted.

50| 												select	{

51| 												case	<-	stopCh:

52| 															return

53| 												case	dataCh	<-	rand.Intn(Max):

54| 												}

55| 									}

56| 						}()

57| 			}

58|

59| 			//	the	receiver

60| 			go	func()	{

61| 						defer	wgReceivers.Done()

62|

63| 						for	value	:=	range	dataCh	{

64| 									if	value	==	Max-1	{

65| 												//	The	receiver	of	channel	dataCh	is

66| 												//	also	the	sender	of	stopCh.	It	is

67| 												//	safe	to	close	the	stop	channel	here.

68| 												close(stopCh)

69| 												return

70| 									}

71|

72| 									log.Println(value)

73| 						}

74| 			}()

75|

76| 			//	...

77| 			wgReceivers.Wait()

78| }

As	mentioned	in	the	comments,	for	the	additional	signal	channel,	its	sender	is	the	receiver	of	the	data
channel.	The	additional	signal	channel	is	closed	by	its	only	sender,	which	holds	the	channel	closing
principle.

In	this	example,	the	channel	dataCh 	is	never	closed.	Yes,	channels	don't	have	to	be	closed.	A	channel
will	be	eventually	garbage	collected	if	no	goroutines	reference	it	any	more,	whether	it	is	closed	or	not.	So
the	gracefulness	of	closing	a	channel	here	is	not	to	close	the	channel.
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3.	M	receivers,	N	senders,	any	one	of	them	says	"let's	end	the	game"
by	notifying	a	moderator	to	close	an	additional	signal	channel

This	is	a	the	most	complicated	situation.	We	can't	let	any	of	the	receivers	and	the	senders	close	the	data
channel.	And	we	can't	let	any	of	the	receivers	close	an	additional	signal	channel	to	notify	all	senders	and
receivers	to	exit	the	game.	Doing	either	will	break	the	channel	closing	principle.	However,	we	can
introduce	a	moderator	role	to	close	the	additional	signal	channel.	One	trick	in	the	following	example	is
how	to	use	a	try-send	operation	to	notify	the	moderator	to	close	the	additional	signal	channel.

1| package	main

2|

3| import	(

4| 			"time"

5| 			"math/rand"

6| 			"sync"

7| 			"log"

8| 			"strconv"

9| )

10|

11| func	main()	{

12| 			rand.Seed(time.Now().UnixNano())

13| 			log.SetFlags(0)

14|

15| 			//	...

16| 			const	Max	=	100000

17| 			const	NumReceivers	=	10

18| 			const	NumSenders	=	1000

19|

20| 			wgReceivers	:=	sync.WaitGroup{}

21| 			wgReceivers.Add(NumReceivers)

22|

23| 			//	...

24| 			dataCh	:=	make(chan	int)

25| 			stopCh	:=	make(chan	struct{})

26| 						//	stopCh	is	an	additional	signal	channel.

27| 						//	Its	sender	is	the	moderator	goroutine	shown

28| 						//	below,	and	its	receivers	are	all	senders

29| 						//	and	receivers	of	dataCh.

30| 			toStop	:=	make(chan	string,	1)

31| 						//	The	channel	toStop	is	used	to	notify	the

32| 						//	moderator	to	close	the	additional	signal

33| 						//	channel	(stopCh).	Its	senders	are	any	senders

34| 						//	and	receivers	of	dataCh,	and	its	receiver	is

35| 						//	the	moderator	goroutine	shown	below.

36| 						//	It	must	be	a	buffered	channel.

37|

38| 			var	stoppedBy	string
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39|

40| 			//	moderator

41| 			go	func()	{

42| 						stoppedBy	=	<-toStop

43| 						close(stopCh)

44| 			}()

45|

46| 			//	senders

47| 			for	i	:=	0;	i	<	NumSenders;	i++	{

48| 						go	func(id	string)	{

49| 									for	{

50| 												value	:=	rand.Intn(Max)

51| 												if	value	==	0	{

52| 															//	Here,	the	try-send	operation	is

53| 															//	to	notify	the	moderator	to	close

54| 															//	the	additional	signal	channel.

55| 															select	{

56| 															case	toStop	<-	"sender#"	+	id:

57| 															default:

58| 															}

59| 															return

60| 												}

61|

62| 												//	The	try-receive	operation	here	is	to

63| 												//	try	to	exit	the	sender	goroutine	as

64| 												//	early	as	possible.	Try-receive	and

65| 												//	try-send	select	blocks	are	specially

66| 												//	optimized	by	the	standard	Go

67| 												//	compiler,	so	they	are	very	efficient.

68| 												select	{

69| 												case	<-	stopCh:

70| 															return

71| 												default:

72| 												}

73|

74| 												//	Even	if	stopCh	is	closed,	the	first

75| 												//	branch	in	this	select	block	might	be

76| 												//	still	not	selected	for	some	loops

77| 												//	(and	for	ever	in	theory)	if	the	send

78| 												//	to	dataCh	is	also	non-blocking.	If

79| 												//	this	is	unacceptable,	then	the	above

80| 												//	try-receive	operation	is	essential.

81| 												select	{

82| 												case	<-	stopCh:

83| 															return

84| 												case	dataCh	<-	value:

85| 												}

86| 									}
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87| 						}(strconv.Itoa(i))

88| 			}

89|

90| 			//	receivers

91| 			for	i	:=	0;	i	<	NumReceivers;	i++	{

92| 						go	func(id	string)	{

93| 									defer	wgReceivers.Done()

94|

95| 									for	{

96| 												//	Same	as	the	sender	goroutine,	the

97| 												//	try-receive	operation	here	is	to

98| 												//	try	to	exit	the	receiver	goroutine

99| 												//	as	early	as	possible.

100|												select	{

101|												case	<-	stopCh:

102|															return

103|												default:

104|												}

105|

106|												//	Even	if	stopCh	is	closed,	the	first

107|												//	branch	in	this	select	block	might	be

108|												//	still	not	selected	for	some	loops

109|												//	(and	forever	in	theory)	if	the	receive

110|												//	from	dataCh	is	also	non-blocking.	If

111|												//	this	is	not	acceptable,	then	the	above

112|												//	try-receive	operation	is	essential.

113|												select	{

114|												case	<-	stopCh:

115|															return

116|												case	value	:=	<-dataCh:

117|															if	value	==	Max-1	{

118|																		//	Here,	the	same	trick	is

119|																		//	used	to	notify	the	moderator

120|																		//	to	close	the	additional

121|																		//	signal	channel.

122|																		select	{

123|																		case	toStop	<-	"receiver#"	+	id:

124|																		default:

125|																		}

126|																		return

127|															}

128|

129|															log.Println(value)

130|												}

131|									}

132|						}(strconv.Itoa(i))

133|			}

134|
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135|			//	...

136|			wgReceivers.Wait()

137|			log.Println("stopped	by",	stoppedBy)

138|}

In	this	example,	the	channel	closing	principle	is	still	held.

Please	note	that	the	buffer	size	(capacity)	of	channel	toStop 	is	one.	This	is	to	avoid	the	first	notification
is	missed	when	it	is	sent	before	the	moderator	goroutine	gets	ready	to	receive	notification	from	toStop .

We	can	also	set	the	capacity	of	the	toStop 	channel	as	the	sum	number	of	senders	and	receivers,	then	we
don't	need	a	try-send	select 	block	to	notify	the	moderator.

1| ...

2| toStop	:=	make(chan	string,	NumReceivers	+	NumSenders)

3| ...

4| 									value	:=	rand.Intn(Max)

5| 									if	value	==	0	{

6| 												toStop	<-	"sender#"	+	id

7| 												return

8| 									}

9| ...

10| 												if	value	==	Max-1	{

11| 															toStop	<-	"receiver#"	+	id

12| 															return

13| 												}

14| ...

4.	A	variant	of	the	"M	receivers,	one	sender"	situation:	the	close
request	is	made	by	a	third-party	goroutine

Sometimes,	it	is	needed	that	the	close	signal	must	be	made	by	a	third-party	goroutine.	For	such	cases,	we
can	use	an	extra	signal	chanel	to	notify	the	sender	to	close	the	data	channel.	For	example,

1| package	main

2|

3| import	(

4| 			"time"

5| 			"math/rand"

6| 			"sync"

7| 			"log"

8| )

9|

10| func	main()	{

11| 			rand.Seed(time.Now().UnixNano())

12| 			log.SetFlags(0)
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13|

14| 			//	...

15| 			const	Max	=	100000

16| 			const	NumReceivers	=	100

17| 			const	NumThirdParties	=	15

18|

19| 			wgReceivers	:=	sync.WaitGroup{}

20| 			wgReceivers.Add(NumReceivers)

21|

22| 			//	...

23| 			dataCh	:=	make(chan	int)

24| 			closing	:=	make(chan	struct{})	//	signal	channel

25| 			closed	:=	make(chan	struct{})

26| 			

27| 			//	The	stop	function	can	be	called

28| 			//	multiple	times	safely.

29| 			stop	:=	func()	{

30| 						select	{

31| 						case	closing<-struct{}{}:

32| 									<-closed

33| 						case	<-closed:

34| 						}

35| 			}

36| 			

37| 			//	some	third-party	goroutines

38| 			for	i	:=	0;	i	<	NumThirdParties;	i++	{

39| 						go	func()	{

40| 									r	:=	1	+	rand.Intn(3)

41| 									time.Sleep(time.Duration(r)	*	time.Second)

42| 									stop()

43| 						}()

44| 			}

45|

46| 			//	the	sender

47| 			go	func()	{

48| 						defer	func()	{

49| 									close(closed)

50| 									close(dataCh)

51| 						}()

52|

53| 						for	{

54| 									select{

55| 									case	<-closing:	return

56| 									default:

57| 									}

58|

59| 									select{

60| 									case	<-closing:	return
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61| 									case	dataCh	<-	rand.Intn(Max):

62| 									}

63| 						}

64| 			}()

65|

66| 			//	receivers

67| 			for	i	:=	0;	i	<	NumReceivers;	i++	{

68| 						go	func()	{

69| 									defer	wgReceivers.Done()

70|

71| 									for	value	:=	range	dataCh	{

72| 												log.Println(value)

73| 									}

74| 						}()

75| 			}

76|

77| 			wgReceivers.Wait()

78| }

The	idea	used	in	the	stop 	function	is	learned	from	a	comment Ң 	made	by	Roger	Peppe.

5.	A	variant	of	the	"N	sender"	situation:	the	data	channel	must	be
closed	to	tell	receivers	that	data	sending	is	over

In	the	solutions	for	the	above	N-sender	situations,	to	hold	the	channel	closing	principle,	we	avoid	closing
the	data	channels.	However,	sometimes,	it	is	required	that	the	data	channels	must	be	closed	in	the	end	to
let	receivers	know	data	sending	is	over.	For	such	cases,	we	can	translate	a	N-sender	situation	to	a	one-
sender	situation	by	using	a	middle	channel.	The	middle	channel	has	only	one	sender,	so	that	we	can	close
it	instead	of	closing	the	original	data	channel.

1| package	main

2|

3| import	(

4| 			"time"

5| 			"math/rand"

6| 			"sync"

7| 			"log"

8| 			"strconv"

9| )

10|

11| func	main()	{

12| 			rand.Seed(time.Now().UnixNano())

13| 			log.SetFlags(0)

14|

15| 			//	...

16| 			const	Max	=	1000000
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17| 			const	NumReceivers	=	10

18| 			const	NumSenders	=	1000

19| 			const	NumThirdParties	=	15

20|

21| 			wgReceivers	:=	sync.WaitGroup{}

22| 			wgReceivers.Add(NumReceivers)

23|

24| 			//	...

25| 			dataCh	:=	make(chan	int)					//	will	never	be	closed

26| 			middleCh	:=	make(chan	int)			//	will	be	closed

27| 			closing	:=	make(chan	string)	//	signal	channel

28| 			closed	:=	make(chan	struct{})

29|

30| 			var	stoppedBy	string

31|

32| 			//	The	stop	function	can	be	called

33| 			//	multiple	times	safely.

34| 			stop	:=	func(by	string)	{

35| 						select	{

36| 						case	closing	<-	by:

37| 									<-closed

38| 						case	<-closed:

39| 						}

40| 			}

41| 			

42| 			//	the	middle	layer

43| 			go	func()	{

44| 						exit	:=	func(v	int,	needSend	bool)	{

45| 									close(closed)

46| 									if	needSend	{

47| 												dataCh	<-	v

48| 									}

49| 									close(dataCh)

50| 						}

51|

52| 						for	{

53| 									select	{

54| 									case	stoppedBy	=	<-closing:

55| 												exit(0,	false)

56| 												return

57| 									case	v	:=	<-	middleCh:

58| 												select	{

59| 												case	stoppedBy	=	<-closing:

60| 															exit(v,	true)

61| 															return

62| 												case	dataCh	<-	v:

63| 												}

64| 									}
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65| 						}

66| 			}()

67| 			

68| 			//	some	third-party	goroutines

69| 			for	i	:=	0;	i	<	NumThirdParties;	i++	{

70| 						go	func(id	string)	{

71| 									r	:=	1	+	rand.Intn(3)

72| 									time.Sleep(time.Duration(r)	*	time.Second)

73| 									stop("3rd-party#"	+	id)

74| 						}(strconv.Itoa(i))

75| 			}

76|

77| 			//	senders

78| 			for	i	:=	0;	i	<	NumSenders;	i++	{

79| 						go	func(id	string)	{

80| 									for	{

81| 												value	:=	rand.Intn(Max)

82| 												if	value	==	0	{

83| 															stop("sender#"	+	id)

84| 															return

85| 												}

86|

87| 												select	{

88| 												case	<-	closed:

89| 															return

90| 												default:

91| 												}

92|

93| 												select	{

94| 												case	<-	closed:

95| 															return

96| 												case	middleCh	<-	value:

97| 												}

98| 									}

99| 						}(strconv.Itoa(i))

100|			}

101|

102|			//	receivers

103|			for	range	[NumReceivers]struct{}{}	{

104|						go	func()	{

105|									defer	wgReceivers.Done()

106|

107|									for	value	:=	range	dataCh	{

108|												log.Println(value)

109|									}

110|						}()

111|			}

112|
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113|			//	...

114|			wgReceivers.Wait()

115|			log.Println("stopped	by",	stoppedBy)

116|}

More	situations?

There	should	be	more	situation	variants,	but	the	above	shown	ones	are	the	most	common	and	basic	ones.
By	using	channels	(and	other	concurrent	programming	techniques)	cleverly,	I	believe	a	solution	holding
the	channel	closing	principle	for	each	situation	variant	can	always	be	found.

Conclusion

There	are	no	situations	which	will	force	you	to	break	the	channel	closing	principle.	If	you	encounter	such
a	situation,	please	rethink	your	design	and	rewrite	you	code.

Programming	with	Go	channels	is	like	making	art.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Concurrency	Synchronization	Techniques
Provided	in	the	sync	Standard	Package
The	channel	use	cases	(§37)	article	introduces	many	use	cases	in	which	channels	are	used	to	do	data
synchronizations	among	goroutines.	In	fact,	channels	are	not	the	only	synchronization	techniques	provided
in	Go.	There	are	some	other	synchronization	techniques	supported	by	Go.	For	some	specified
circumstances,	using	the	synchronization	techniques	other	than	channel	are	more	efficient	and	readable
than	using	channels.	Below	will	introduce	the	synchronization	techniques	provided	in	the	sync 	standard
package.

The	sync 	standard	package	provides	several	types	which	can	be	used	to	do	synchronizations	for	some
specialized	circumstances	and	guarantee	some	specialized	memory	orders.	For	the	specialized
circumstances,	these	techniques	are	more	efficient,	and	look	cleaner,	than	the	channel	ways.

(Please	note,	to	avoid	abnormal	behaviors,	it	is	best	never	to	copy	the	values	of	the	types	in	the	sync
standard	package.)

The	sync.WaitGroup	Type

Each	sync.WaitGroup 	value	maintains	a	counter	internally.	The	initial	value	of	the	counter	is	zero.

The	*WaitGroup 	type	has	three	methods Ң :	Add(delta	int) ,	Done() 	and	Wait() .

For	an	addressable	WaitGroup 	value	wg ,

we	can	call	the	wg.Add(delta) 	method	to	change	the	counter	value	maintained	by	wg .
the	method	call	wg.Done() 	is	totally	equivalent	to	the	method	call	wg.Add(-1) .
if	a	call	wg.Add(delta) 	(or	wg.Done() )	modifies	the	counter	maintained	by	wg 	to	negative,
panic	will	happen.
when	a	goroutine	calls	wg.Wait() ,

if	the	counter	maintained	by	wg 	is	already	zero,	then	the	call	wg.Wait() 	can	be	viewed	as	a
no-op.
otherwise	(the	counter	is	positive),	the	goroutine	will	enter	blocking	state.	It	will	enter	running
state	again	(a.k.a.,	the	call	wg.Wait() 	returns)	when	another	goroutine	modifies	the	counter
to	zero,	generally	by	calling	wg.Done() .

Please	note	that	wg.Add(delta) ,	wg.Done() 	and	wg.Wait() 	are	shorthands	of	(&wg).Add(delta) ,
(&wg).Done() 	and	(&wg).Wait() ,	respectively.

Generally,	a	WaitGroup 	value	is	used	for	the	scenario	that	one	goroutine	waits	until	all	of	several	other
goroutines	finish	their	respective	jobs.	An	example:
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1| package	main

2|

3| import	(

4| 			"log"

5| 			"math/rand"

6| 			"sync"

7| 			"time"

8| )

9|

10| func	main()	{

11| 			rand.Seed(time.Now().UnixNano())

12|

13| 			const	N	=	5

14| 			var	values	[N]int32

15|

16| 			var	wg	sync.WaitGroup

17| 			wg.Add(N)

18| 			for	i	:=	0;	i	<	N;	i++	{

19| 						i	:=	i

20| 						go	func()	{

21| 									values[i]	=	50	+	rand.Int31n(50)

22| 									log.Println("Done:",	i)

23| 									wg.Done()	//	<=>	wg.Add(-1)

24| 						}()

25| 			}

26|

27| 			wg.Wait()

28| 			//	All	elements	are	guaranteed	to	be

29| 			//	initialized	now.

30| 			log.Println("values:",	values)

31| }

In	the	above	example,	the	main	goroutine	waits	until	all	other	N 	goroutines	have	populated	their
respective	element	value	in	values 	array.	Here	is	one	possible	output	result:

Done:	4

Done:	1

Done:	3

Done:	0

Done:	2

values:	[71	89	50	62	60]

We	can	split	the	only	Add 	method	call	in	the	above	example	into	multiple	ones.

1| ...

2| 			var	wg	sync.WaitGroup

3| 			for	i	:=	0;	i	<	N;	i++	{

4| 						wg.Add(1)	//	will	be	invoked	N	times
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5| 						i	:=	i

6| 						go	func()	{

7| 									values[i]	=	50	+	rand.Int31n(50)

8| 									wg.Done()

9| 						}()

10| 			}

11| ...

The	Wait 	method	can	be	called	in	multiple	goroutines.	When	the	counter	becomes	zero,	all	of	them	will
be	notified,	in	a	broadcast	way.

1| func	main()	{

2| 			rand.Seed(time.Now().UnixNano())

3|

4| 			const	N	=	5

5| 			var	values	[N]int32

6|

7| 			var	wgA,	wgB	sync.WaitGroup

8| 			wgA.Add(N)

9| 			wgB.Add(1)

10|

11| 			for	i	:=	0;	i	<	N;	i++	{

12| 						i	:=	i

13| 						go	func()	{

14| 									wgB.Wait()	//	wait	a	notification

15| 									log.Printf("values[%v]=%v	\n",	i,	values[i])

16| 									wgA.Done()

17| 						}()

18| 			}

19|

20| 			//	The	loop	is	guaranteed	to	finish	before

21| 			//	any	above	wg.Wait	calls	returns.

22| 			for	i	:=	0;	i	<	N;	i++	{

23| 						values[i]	=	50	+	rand.Int31n(50)

24| 			}

25| 			//	Make	a	broadcast	notification.

26| 			wgB.Done()

27| 			wgA.Wait()

28| }

A	WaitGroup 	value	can	be	reused	after	one	call	to	its	Wait 	method	returns.	But	please	note	that	each
Add 	method	call	with	a	positive	delta	that	occurs	when	the	counter	is	zero	must	happen	before	any	Wait
call	starts,	otherwise,	data	races	may	happen.

The	sync.Once	Type
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A	*sync.Once 	value	has	a	Do(f	func()) 	method,	which	takes	a	solo	parameter	with	type	func() .

For	an	addressable	Once 	value	o ,	the	method	call	o.Do() ,	which	is	a	shorthand	of	(&o).Do() ,	can	be
concurrently	executed	multiple	times,	in	multiple	goroutines.	The	arguments	of	these	o.Do() 	calls	should
(but	are	not	required	to)	be	the	same	function	value.

Among	these	o.Do 	method	calls,	only	exact	one	argument	function	will	be	invoked.	The	invoked
argument	function	is	guaranteed	to	exit	before	any	o.Do 	method	call	returns.	In	other	words,	the	code	in
the	invoked	argument	function	is	guaranteed	to	be	executed	before	any	o.Do 	method	call	returns.

Generally,	a	Once 	value	is	used	to	ensure	that	a	piece	of	code	will	be	executed	exactly	once	in	concurrent
programming.

An	example:

1| package	main

2|

3| import	(

4| 			"log"

5| 			"sync"

6| )

7|

8| func	main()	{

9| 			log.SetFlags(0)

10|

11| 			x	:=	0

12| 			doSomething	:=	func()	{

13| 						x++

14| 						log.Println("Hello")

15| 			}

16|

17| 			var	wg	sync.WaitGroup

18| 			var	once	sync.Once

19| 			for	i	:=	0;	i	<	5;	i++	{

20| 						wg.Add(1)

21| 						go	func()	{

22| 									defer	wg.Done()

23| 									once.Do(doSomething)

24| 									log.Println("world!")

25| 						}()

26| 			}

27|

28| 			wg.Wait()

29| 			log.Println("x	=",	x)	//	x	=	1

30| }

In	the	above	example,	Hello 	will	be	printed	once,	but	world! 	will	be	printed	five	times.	And	Hello 	is
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guaranteed	to	be	printed	before	all	five	world! .

The	sync.Mutex	and	sync.RWMutex	Types

Both	of	the	*sync.Mutex 	and	*sync.RWMutex 	types	implement	the	sync.Locker 	interface Ң .	So
they	both	have	two	methods,	Lock 	and	Unlock ,	to	prevent	multiple	data	users	from	using	a	piece	of	data
concurrently.

Besides	the	Lock 	and	Unlock 	methods,	the	*RWMutex 	type	has	two	other	methods,	RLock 	and
RUnlock ,	to	avoid	some	data	users	(either	writers	or	readers)	and	one	data	writer	using	a	piece	of	data	at
the	same	time	but	allow	some	data	readers	to	access	the	piece	of	data	at	the	same	time.

(Note,	here	the	terminologies	data	reader	and	data	writer	should	not	be	interpreted	from	literal.	They	are
just	used	for	explanation	purpose.	A	data	reader	might	modify	data	and	a	data	writer	might	only	read
data.)

A	Mutex 	value	is	often	called	a	mutual	exclusion	lock.	A	zero	Mutex 	value	is	an	unlocked	mutex.	A
Mutex 	value	can	only	be	locked	when	it	is	in	unlocked	status.	In	other	words,	once	an	addressable	Mutex
value	m 	is	locked	successfully	(a.k.a.,	a	m.Lock() 	method	call	returns),	a	new	attempt	by	a	goroutine	to
lock	the	Mutex 	value	will	make	the	goroutine	enter	blocking	state,	until	the	Mutex 	value	is	unlocked
(through	a	later	m.Unlock() 	call).

Please	note	that	m.Lock() 	and	m.Unlock() 	are	shorthands	of	(&m).Lock() 	and	(&m).Unlock() ,
respectively.

An	example	of	using	sync.Mutex :

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"runtime"

6| 			"sync"

7| )

8|

9| type	Counter	struct	{

10| 			m	sync.Mutex

11| 			n	uint64

12| }

13|

14| func	(c	*Counter)	Value()	uint64	{

15| 			c.m.Lock()

16| 			defer	c.m.Unlock()

17| 			return	c.n

18| }
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19|

20| func	(c	*Counter)	Increase(delta	uint64)	{

21| 			c.m.Lock()

22| 			c.n	+=	delta

23| 			c.m.Unlock()

24| }

25|

26| func	main()	{

27| 			var	c	Counter

28| 			for	i	:=	0;	i	<	100;	i++	{

29| 						go	func()	{

30| 									for	k	:=	0;	k	<	100;	k++	{

31| 												c.Increase(1)

32| 									}

33| 						}()

34| 			}

35|

36| 			//	The	loop	is	just	for	demo	purpose.

37| 			for	c.Value()	<	10000	{

38| 						runtime.Gosched()

39| 			}

40| 			fmt.Println(c.Value())	//	10000

41| }

In	the	above	example,	a	Counter 	value	uses	a	Mutex 	field	to	guarantee	that	the	n 	field	of	the	Counter
value	will	be	never	used	by	multiple	goroutines	at	the	same	time.

A	RWMutex 	value	is	often	called	a	reader+writer	mutual	exclusion	lock.	For	an	addressable	RWMutex
value	m ,	data	writers	can	acquire	the	write	lock	of	m 	through	m.Lock() 	method	calls,	and	data	readers
can	acquire	the	read	lock	of	m 	through	m.RLock() 	method	calls.	Method	calls	m.Unlock() 	and
m.RUnlock() 	are	used	to	release	the	write	and	read	locks	of	m .

Please	note	that	m.Lock() ,	m.Unlock() ,	m.RLock() 	and	m.RUnlock() 	are	shorthands	of
(&m).Lock() ,	(&m).Unlock() ,	(&m).RLock() 	and	(&m).RUnlock() ,	respectively.

For	an	addressable	RWMutex 	value	m ,	the	following	rules	exist.

A	data	writer	can	acquire	the	write	lock	of	m 	only	if	neither	of	the	read	lock	and	write	lock	of	m 	is
not	held	by	others.	In	other	words,	the	write	lock	of	m 	can	only	be	held	by	most	one	writer	at	any
given	time,	and	the	read	lock	and	write	lock	of	m 	can't	be	held	at	the	same	time.
When	the	write	lock	of	m 	is	held	by	a	data	writer,	any	newer	attempts	to	acquire	the	write	lock	or	the
read	lock	will	be	blocked	until	the	initial	write	lock	is	released.
When	the	read	lock	of	m 	is	held	by	a	data	reader,	any	newer	attempts	to	acquire	the	write	lock	will
be	blocked.	However,	newer	attempts	to	acquire	the	read	lock	will	succeed	unless	the	attempts	are
performed	after	a	blocked	attempt	to	acquire	the	write	lock	(see	the	next	rule	for	details).	In	other
words,	the	read	lock	can	be	held	by	multiple	readers	at	the	same	time.
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Assume	the	read	lock	of	the	value	m 	is	held	by	some	data	readers	now,	to	avoid	recursive	read
locking,	any	newer	attempts	to	acquire	the	read	lock	after	the	a	being	blocked	attempt	to	acquire	the
write	lock	will	be	blocked.
Assume	the	write	lock	of	the	value	m 	is	held	by	a	data	writer	now,	for	the	official	standard	Go
compiler,	to	avoid	recursive	write	locking,	the	attempts	to	acquire	the	read	lock	before	releasing	the
write	lock	will	succeed	for	sure	once	the	write	lock	is	released,	even	if	some	of	the	attempts	are
made	after	some	still	being	blocked	another	attempt	to	acquire	the	write	lock.

The	last	two	rules	are	to	ensure	both	readers	and	writers	have	chances	to	acquire	locks.

Please	note,	locks	are	bound	to	goroutines.	In	other	words,	a	lock	acquirer	might	be	not	the	holder	of	the
lock	it	acquired.	In	other	words,	a	lock	doesn't	know	which	goroutine	acquired	it,	and	any	goroutine	can
release	a	lock	which	in	acquired	status.

The	type	of	the	m 	field	of	the	Counter 	type	in	the	last	example	can	be	changed	to	sync.RWMutex ,	as	the
following	code	shows,	to	get	a	better	performance.

1| ...

2| type	Counter	struct	{

3| 			//m	sync.Mutex

4| 			m	sync.RWMutex

5| 			n	uint64

6| }

7|

8| func	(c	*Counter)	Value()	uint64	{

9| 			//c.m.Lock()

10| 			//defer	c.m.Unlock()

11| 			c.m.RLock()

12| 			defer	c.m.RUnlock()

13| 			return	c.n

14| }

15| ...

By	the	last	two	rules	mentioned	above,	the	following	program	is	very	possible	to	output	abdc .

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| 			"sync"

7| )

8|

9| func	main()	{

10| 			var	m	sync.RWMutex

11| 			go	func()	{

12| 						m.RLock()
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13| 						fmt.Print("a")

14| 						time.Sleep(time.Second)

15| 						m.RUnlock()

16| 			}()

17| 			go	func()	{

18| 						time.Sleep(time.Second	*	1	/	4)

19| 						m.Lock()

20| 						fmt.Print("b")

21| 						time.Sleep(time.Second)

22| 						m.Unlock()

23| 			}()

24| 			go	func()	{

25| 						time.Sleep(time.Second	*	2	/	4)

26| 						m.Lock()

27| 						fmt.Print("c")

28| 						m.Unlock()

29| 			}()

30| 			go	func	()	{

31| 						time.Sleep(time.Second	*	3	/	4)

32| 						m.RLock()

33| 						fmt.Print("d")

34| 						m.RUnlock()

35| 			}()

36| 			time.Sleep(time.Second	*	3)

37| 			fmt.Println()

38| }

Please	note,	the	above	example	is	only	for	explanation	purpose.	It	uses	time.Sleep 	calls	to	do
concurrency	synchronizations,	which	is	a	bad	practice	for	production	code	(§42).

sync.Mutex 	and	sync.RWMutex 	values	can	also	be	used	to	make	notifications,	though	there	are	many
other	better	ways	to	do	the	same	job.	Here	is	an	example	which	makes	a	notification	by	using	a
sync.Mutex 	value.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync"

6| 			"time"

7| )

8|

9| func	main()	{

10| 			var	m	sync.Mutex

11| 			m.Lock()

12| 			go	func()	{

13| 						time.Sleep(time.Second)

14| 						fmt.Println("Hi")

§39.	Concurrency	Synchronization	Techniques	Provided	in	the	sync	Standard	Package

401



15| 						m.Unlock()	//	make	a	notification

16| 			}()

17| 			m.Lock()	//	wait	to	be	notified

18| 			fmt.Println("Bye")

19| }

In	the	above	example,	the	text	Hi 	is	guaranteed	to	be	printed	before	the	text	Bye .	About	the	memory
order	guarantees	made	by	sync.Mutex 	and	sync.RWMutex 	values,	please	read	memory	order
guarantees	in	Go	(§41).

The	sync.Cond	Type

The	sync.Cond 	type	provides	an	efficient	way	to	do	notifications	among	goroutines.

Each	sync.Cond 	value	holds	a	sync.Locker 	field	with	name	L .	The	field	value	is	often	a	value	of	type
*sync.Mutex 	or	*sync.RWMutex .

The	*sync.Cond 	type	has	three	methods Ң ,	Wait() ,	Signal() 	and	Broadcast() .

Each	sync.Cond 	value	also	maintains	a	FIFO	(first	in	first	out)	waiting	goroutine	queue.	For	an
addressable	sync.Cond 	value	c ,

c.Wait() 	must	be	called	when	c.L 	is	locked,	otherwise,	a	c.Wait() 	will	cause	panic.	A
c.Wait() 	call	will
1.	 first	push	the	current	caller	goroutine	into	the	waiting	goroutine	queue	maintained	by	c ,
2.	 then	call	c.L.Unlock() 	to	unhold/release	the	lock	c.L .

3.	 then	make	the	current	caller	goroutine	enter	blocking	state.

(The	caller	goroutine	will	be	unblocked	by	another	goroutine	through	calling	c.Signal() 	or
c.Broadcast() 	later.)

Once	the	caller	goroutine	is	unblocked	and	enters	running	state	again,	c.L.Lock() 	will	be
called	(in	the	resumed	c.Wait() 	call)	to	try	to	acquire	and	hold	the	lock	c.L 	again,	The
c.Wait() 	call	will	exit	after	the	c.L.Lock() 	call	returns.

a	c.Signal() 	call	will	unblock	the	first	goroutine	in	(and	remove	it	from)	the	waiting	goroutine
queue	maintained	by	c ,	if	the	queue	is	not	empty.
a	c.Broadcast() 	call	will	unblock	all	the	goroutines	in	(and	remove	them	from)	the	waiting
goroutine	queue	maintained	by	c ,	if	the	queue	is	not	empty.

Please	note	that	c.Wait() ,	c.Signal() 	and	c.Broadcast() 	are	shorthands	of	(&c).Wait() ,
(&c).Signal() 	and	(&c).Broadcast() ,	respectively.
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c.Signal() 	and	c.Broadcast() 	are	often	used	to	notify	the	status	of	a	condition	is	changed,
Generally,	c.Wait() 	should	be	called	in	a	loop	of	checking	whether	or	not	a	condition	has	got	satisfied.

In	an	idiomatic	sync.Cond 	use	case,	generally,	one	goroutine	waits	for	changes	of	a	certain	condition,
and	some	other	goroutines	change	the	condition	and	send	notifications.	Here	is	an	example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"math/rand"

6| 			"sync"

7| 			"time"

8| )

9|

10| func	main()	{

11| 			rand.Seed(time.Now().UnixNano())

12|

13| 			const	N	=	10

14| 			var	values	[N]string

15|

16| 			cond	:=	sync.NewCond(&sync.Mutex{})

17| 			cond.L.Lock()

18|

19| 			for	i	:=	0;	i	<	N;	i++	{

20| 						d	:=	time.Second	*	time.Duration(rand.Intn(10))	/	10

21| 						go	func(i	int)	{

22| 									time.Sleep(d)	//	simulate	a	workload

23|

24| 									//	Changes	must	be	made	when

25| 									//	cond.L	is	locked.

26| 									cond.L.Lock()

27| 									values[i]	=	string('a'	+	i)

28|

29| 									//	Notify	when	cond.L	lock	is	acquired.

30| 									cond.Broadcast()

31| 									cond.L.Unlock()

32|

33| 									//	"cond.Broadcast()"	can	also	be	put

34| 									//	here,	when	cond.L	lock	is	released.

35| 									//cond.Broadcast()

36| 						}(i)

37| 			}

38|

39| 			//	This	function	must	be	called	when

40| 			//	cond.L	is	locked.

41| 			checkCondition	:=	func()	bool	{

42| 						fmt.Println(values)
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43| 						for	i	:=	0;	i	<	N;	i++	{

44| 									if	values[i]	==	""	{

45| 												return	false

46| 									}

47| 						}

48| 						return	true

49| 			}

50| 			for	!checkCondition()	{

51| 						//	Must	be	called	when	cond.L	is	locked.

52| 						cond.Wait()

53| 			}

54| 			cond.L.Unlock()

55| }

One	possible	output:

[									]

[					f				]

[		c			f				]

[		c			f		h		]

[	b	c			f		h		]

[a	b	c			f		h		j]

[a	b	c			f	g	h	i	j]

[a	b	c		e	f	g	h	i	j]

[a	b	c	d	e	f	g	h	i	j]

For	there	is	only	one	goroutine	(the	main	goroutine)	waiting	to	be	unblocked	in	this	example,	the
cond.Broadcast() 	call	can	be	replaced	with	cond.Signal() .	As	the	comments	suggest,
cond.Broadcast() 	and	cond.Signal() 	are	not	required	to	be	called	when	cond.L 	is	locked.

To	avoid	data	races,	each	of	the	ten	parts	of	the	user	defined	condition	should	only	be	modified	when
cond.L 	is	locked.	The	checkCondition 	function	and	the	cond.Wait 	method	should	be	also	called
when	cond.L 	is	locked.

In	fact,	for	the	above	specified	example,	the	cond.L 	field	can	also	be	a	*sync.RWMutex 	value,	and	each
of	the	ten	parts	of	the	user	defined	condition	can	be	modified	when	the	read	lock	of	cond.L 	is	held,	just
as	the	following	code	shows:

1| ...

2| 			cond	:=	sync.NewCond(&sync.RWMutex{})

3| 			cond.L.Lock()

4|

5| 			for	i	:=	0;	i	<	N;	i++	{

6| 						d	:=	time.Second	*	time.Duration(rand.Intn(10))	/	10

7| 						go	func(i	int)	{

8| 									time.Sleep(d)

9| 									cond.L.(*sync.RWMutex).RLock()
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10| 									values[i]	=	string('a'	+	i)

11| 									cond.L.(*sync.RWMutex).RUnlock()

12| 									cond.Signal()

13| 						}(i)

14| 			}

15| ...

In	the	above	example,	the	sync.RWMutex 	value	is	used	unusually.	Its	read	lock	is	held	by	some
goroutines	which	modify	array	elements,	and	its	write	lock	is	used	by	the	main	goroutine	to	read	array
elements.

The	user	defined	condition	monitored	by	a	Cond 	value	can	be	a	void.	For	such	cases,	the	Cond 	value	is
used	for	notifications	purely.	For	example,	the	following	program	will	print	abc 	or	bac .

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync"

6| )

7|

8| func	main()	{

9| 			wg	:=	sync.WaitGroup{}

10| 			wg.Add(1)

11| 			cond	:=	sync.NewCond(&sync.Mutex{})

12| 			cond.L.Lock()

13| 			go	func()	{

14| 						cond.L.Lock()

15| 						go	func()	{

16| 									cond.L.Lock()

17| 									cond.Broadcast()

18| 									cond.L.Unlock()

19| 						}()

20| 						cond.Wait()

21| 						fmt.Print("a")

22| 						cond.L.Unlock()

23| 						wg.Done()

24| 			}()

25| 			cond.Wait()

26| 			fmt.Print("b")

27| 			cond.L.Unlock()

28| 			wg.Wait()

29| 			fmt.Println("c")

30| }

If	it	needs,	multiple	sync.Cond 	values	can	share	the	same	sync.Locker .	However,	such	cases	are	rare
in	practice.
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(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Atomic	Operations	Provided	in	The
sync/atomic	Standard	Package
Atomic	operations	are	more	primitive	than	other	synchronization	techniques.	They	are	lockless	and
generally	implemented	directly	at	hardware	level.	In	fact,	they	are	often	used	in	implementing	other
synchronization	techniques.

Please	note,	many	examples	below	are	not	concurrent	programs.	They	are	just	for	demonstration	and
explanation	purposes,	to	show	how	to	use	the	atomic	functions	provided	in	the	sync/atomic 	standard
package.

Overview	of	Atomic	Operations	Provided	in	Go

The	sync/atomic 	standard	package	provides	the	following	five	atomic	functions	for	an	integer	type	T ,
where	T 	must	be	any	of	int32 ,	int64 ,	uint32 ,	uint64 	and	uintptr .

1| func	AddT(addr	*T,	delta	T)(new	T)

2| func	LoadT(addr	*T)	(val	T)

3| func	StoreT(addr	*T,	val	T)

4| func	SwapT(addr	*T,	new	T)	(old	T)

5| func	CompareAndSwapT(addr	*T,	old,	new	T)	(swapped	bool)

For	example,	the	following	five	functions	are	provided	for	type	int32 .

1| func	AddInt32(addr	*int32,	delta	int32)(new	int32)

2| func	LoadInt32(addr	*int32)	(val	int32)

3| func	StoreInt32(addr	*int32,	val	int32)

4| func	SwapInt32(addr	*int32,	new	int32)	(old	int32)

5| func	CompareAndSwapInt32(addr	*int32,	old,	new	int32)	(swapped	bool)

The	following	four	atomic	functions	are	provided	for	(safe)	pointer	types.	As	Go	1	doesn't	support	custom
generic	now,	these	functions	are	implemented	through	the	unsafe	pointer	type	(§25)	unsafe.Pointer
(the	Go	counterpart	of	C	void* ).

1| func	LoadPointer(addr	*unsafe.Pointer)	(val	unsafe.Pointer)

2| func	StorePointer(addr	*unsafe.Pointer,	val	unsafe.Pointer)

3| func	SwapPointer(addr	*unsafe.Pointer,	new	T)	(old	unsafe.Pointer)

4| func	CompareAndSwapPointer(addr	*unsafe.Pointer,

5| 												old,	new	unsafe.Pointer)	(swapped	bool)

There	is	not	an	AddPointer 	function	for	pointers,	as	Go	pointers	don't	support	arithmetic	operations.

The	sync/atomic 	standard	package	also	provides	a	type	Value .	Its	corresponding	pointer	type	*Value
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has	two	methods,	Load 	and	Store .	A	Value 	value	can	be	used	to	atomically	load	and	store	values	of
any	type.

1| func	(v	*Value)	Load()	(x	interface{})

2| func	(v	*Value)	Store(x	interface{})

The	remaining	of	this	article	shows	some	examples	on	how	to	use	the	atomic	operations	provided	in	Go.

Atomic	Operations	for	Integers

The	following	example	shows	how	to	do	the	add 	atomic	operation	on	an	int32 	value	by	using	the
AddInt32 	function.	In	this	example,	1000	new	concurrent	goroutines	are	created	by	the	main	goroutine.
Each	of	the	new	created	goroutine	increases	the	integer	n 	by	one.	Atomic	operations	guarantee	that	there
are	no	data	races	among	these	goroutines.	In	the	end,	1000 	is	guaranteed	to	be	printed.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync"

6| 			"sync/atomic"

7| )

8|

9| func	main()	{

10| 			var	n	int32

11| 			var	wg	sync.WaitGroup

12| 			for	i	:=	0;	i	<	1000;	i++	{

13| 						wg.Add(1)

14| 						go	func()	{

15| 									atomic.AddInt32(&n,	1)

16| 									wg.Done()

17| 						}()

18| 			}

19| 			wg.Wait()

20|

21| 			fmt.Println(atomic.LoadInt32(&n))	//	1000

22| }

The	StoreT 	and	LoadT 	atomic	functions	are	often	used	to	implement	the	setter	and	getter	methods	of
(the	corresponding	pointer	type	of)	a	type	if	the	values	of	the	type	need	to	be	used	concurrently.	For
example,

1| type	Page	struct	{

2| 			views	uint32

3| }

4|
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5| func	(page	*Page)	SetViews(n	uint32)	{

6| 			atomic.StoreUint32(&page.views,	n)

7| }

8|

9| func	(page	*Page)	Views()	uint32	{

10| 			return	atomic.LoadUint32(&page.views)

11| }

For	a	signed	integer	type	T 	(int32 	or	int64 ),	the	second	argument	for	a	call	to	the	AddT 	function	can
be	a	negative	value,	to	do	an	atomic	decrease	operation.	But	how	to	do	atomic	decrease	operations	for
values	of	an	unsigned	type	T ,	such	as	uint32 ,	uint64 	and	uintptr?	There	are	two	circumstances	for
the	second	unsigned	arguments.

1.	 For	an	unsigned	variable	v 	of	type	T ,	-v 	is	legal	in	Go.	So	we	can	just	pass	-v 	as	the	second
argument	of	an	AddT 	call.

2.	 For	a	positive	constant	integer	c ,	-c 	is	illegal	to	be	used	as	the	second	argument	of	an	AddT 	call
(where	T 	denotes	an	unsigned	integer	type).	We	can	used	^T(c-1) 	as	the	second	argument	instead.

This	^T(v-1) 	trick	also	works	for	an	unsigned	variable	v ,	but	^T(v-1) 	is	less	efficient	than	T(-v) .

In	the	trick	^T(c-1) ,	if	c 	is	a	typed	value	and	its	type	is	exactly	T ,	then	the	form	can	shortened	as	^(c-
1) .

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync/atomic"

6| )

7|

8| func	main()	{

9| 			var	(

10| 						n	uint64	=	97

11| 						m	uint64	=	1

12| 						k	int				=	2

13| 			)

14| 			const	(

15| 						a								=	3

16| 						b	uint64	=	4

17| 						c	uint32	=	5

18| 						d	int				=	6

19| 			)

20|

21| 			show	:=	fmt.Println

22| 			atomic.AddUint64(&n,	-m)
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23| 			show(n)	//	96	(97	-	1)

24| 			atomic.AddUint64(&n,	-uint64(k))

25| 			show(n)	//	94	(95	-	2)

26| 			atomic.AddUint64(&n,	^uint64(a	-	1))

27| 			show(n)	//	91	(94	-	3)

28| 			atomic.AddUint64(&n,	^(b	-	1))

29| 			show(n)	//	87	(91	-	4)

30| 			atomic.AddUint64(&n,	^uint64(c	-	1))

31| 			show(n)	//	82	(87	-	5)

32| 			atomic.AddUint64(&n,	^uint64(d	-	1))

33| 			show(n)	//	76	(82	-	6)

34| 			x	:=	b;	atomic.AddUint64(&n,	-x)

35| 			show(n)	//	72	(76	-	4)

36| 			atomic.AddUint64(&n,	^(m	-	1))

37| 			show(n)	//	71	(72	-	1)

38| 			atomic.AddUint64(&n,	^uint64(k	-	1))

39| 			show(n)	//	69	(71	-	2)

40| }

A	SwapT 	function	call	is	like	a	StoreT 	function	call,	but	returns	the	old	value.

A	CompareAndSwapT 	function	call	only	applies	the	store	operation	when	the	current	value	matches	the
passed	old	value.	The	bool 	return	result	of	the	CompareAndSwapT 	function	call	indicates	whether	or	not
the	store	operation	is	applied.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync/atomic"

6| )

7|

8| func	main()	{

9| 			var	n	int64	=	123

10| 			var	old	=	atomic.SwapInt64(&n,	789)

11| 			fmt.Println(n,	old)	//	789	123

12| 			swapped	:=	atomic.CompareAndSwapInt64(&n,	123,	456)

13| 			fmt.Println(swapped)	//	false

14| 			fmt.Println(n)							//	789

15| 			swapped	=	atomic.CompareAndSwapInt64(&n,	789,	456)

16| 			fmt.Println(swapped)	//	true

17| 			fmt.Println(n)							//	456

18| }

Please	note,	up	to	now	(Go	1.13),	atomic	operations	for	64-bit	words,	a.k.a.,	int64	and	uint64	values,
require	the	64-bit	words	must	be	8-byte	aligned	in	memory.	Please	read	memory	layout	(§44)	for	details.
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Atomic	Operations	for	Pointers

Above	has	mentioned	that	there	are	four	functions	provided	in	the	sync/atomic 	standard	package	to	do
atomic	pointer	operations,	with	the	help	of	unsafe	pointers.

From	the	article	type-unsafe	pointers	(§25),	we	learn	that,	in	Go,	values	of	any	pointer	type	can	be
explicitly	converted	to	unsafe.Pointer ,	and	vice	versa.	So	values	of	*unsafe.Pointer 	type	can	also
be	explicitly	converted	to	unsafe.Pointer ,	and	vice	versa.

The	following	example	is	not	a	concurrent	program.	It	just	shows	how	to	do	atomic	pointer	operations.	In
this	example,	T 	can	be	an	arbitrary	type.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync/atomic"

6| 			"unsafe"

7| )

8|

9| type	T	struct	{a,	b,	c	int}

10| var	pT	*T

11|

12| func	main()	{

13| 			var	unsafePPT	=	(*unsafe.Pointer)(unsafe.Pointer(&pT))

14| 			var	ta,	tb	T

15| 			//	store

16| 			atomic.StorePointer(

17| 						unsafePPT,	unsafe.Pointer(&ta))

18| 			//	load

19| 			pa1	:=	(*T)(atomic.LoadPointer(unsafePPT))

20| 			fmt.Println(pa1	==	&ta)	//	true

21| 			//	swap

22| 			pa2	:=	atomic.SwapPointer(

23| 						unsafePPT,	unsafe.Pointer(&tb))

24| 			fmt.Println((*T)(pa2)	==	&ta)	//	true

25| 			//	compare	and	swap

26| 			b	:=	atomic.CompareAndSwapPointer(

27| 						unsafePPT,	pa2,	unsafe.Pointer(&tb))

28| 			fmt.Println(b)	//	false

29| 			b	=	atomic.CompareAndSwapPointer(

30| 						unsafePPT,	unsafe.Pointer(&tb),	pa2)

31| 			fmt.Println(b)	//	true

32| }

Yes,	it	is	quite	verbose	to	use	the	pointer	atomic	functions.	In	fact,	not	only	are	the	uses	verbose,	they	are
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also	not	protected	by	the	Go	1	compatibility	guidelines Ң ,	for	these	uses	require	to	import	the	unsafe
standard	package.

Personally,	I	think	the	possibility	is	small	that	the	legal	pointer	value	atomic	operations	used	in	the	above
example	will	become	illegal	later.	Even	if	they	become	illegal	later,	the	go	fix 	command	in	the	official
Go	SDK	should	fix	them	with	a	later	alternative	new	legal	way.	But,	this	is	just	my	opinion,	which	is	not
authoritative.

If	you	do	worry	about	the	future	legality	of	the	pointer	atomic	operations	used	in	the	above	example,	you
can	use	the	atomic	operations	introduced	in	the	next	section	for	pointers,	though	the	to	be	introduced
operations	are	less	efficient	than	the	ones	introduced	in	the	current	section.

Atomic	Operations	for	Values	of	Arbitrary	Types

The	Value 	type	provided	in	the	sync/atomic 	standard	package	can	be	used	to	atomically	load	and	store
values	of	any	type.

Type	*Value 	has	two	methods,	Load 	and	Store .	Add 	and	Swap 	methods	are	not	available	for	type
*Value .

The	input	parameter	type	and	output	result	type	of	the	Load 	and	Store 	methods	are	both	interface{} .
So	a	call	of	the	Store 	can	take	a	value	of	any	type.	But	for	an	addressable	Value 	value	v ,	once	the
v.Store() 	(a	shorthand	of	(&v).Store() )	call	has	ever	been	called,	then	the	subsequent	v.Store()
calls	must	also	take	argument	values	of	the	same	concrete	type	as	the	argument	of	the	first	v.Store()
call,	otherwise,	panic	will	occur.	A	nil 	interface	argument	will	also	make	the	v.Store() 	call	panic.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync/atomic"

6| )

7|

8| func	main()	{

9| 			type	T	struct	{a,	b,	c	int}

10| 			var	ta	=	T{1,	2,	3}

11| 			var	v	atomic.Value

12| 			v.Store(ta)

13| 			var	tb	=	v.Load().(T)

14| 			fmt.Println(tb)							//	{1	2	3}

15| 			fmt.Println(ta	==	tb)	//	true

16|

17| 			v.Store("hello")	//	will	panic
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18| }

In	fact,	we	can	also	use	the	atomic	pointer	functions	explained	in	the	last	section	to	do	atomic	operations
for	values	of	any	type,	with	one	more	level	indirection.	Both	ways	have	their	respective	advantages	and
disadvantages.	Which	way	should	be	used	depends	on	the	requirements	in	practice.

Memory	Order	Guarantee	Made	by	Atomic	Operations	in
Go

For	easy	using,	Go	atomic	operations	provided	in	the	sync/atomic 	standard	package	are	designed
without	any	relations	to	memory	ordering.	At	least	the	official	documentation	doesn't	specify	any	memory
order	guarantees	made	by	the	sync/atomic 	standard	package.	Please	read	Go	memory	model	(§41)	for
details.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Memory	Order	Guarantees	in	Go

About	Memory	Ordering

Many	compilers	(at	compile	time)	and	CPU	processors	(at	run	time)	often	make	some	optimizations	by
adjusting	the	instruction	orders,	so	that	the	instruction	execution	orders	may	differ	from	the	orders
presented	in	code.	Instruction	ordering	is	also	often	called	memory	ordering Ң .

Surely,	instruction	reordering	can't	be	arbitrary.	The	basic	requirement	for	a	reordering	inside	a	specified
goroutine	is	the	reordering	must	not	be	detectable	by	the	goroutine	itself	if	the	goroutine	doesn't	share	data
with	other	goroutines.	In	other	words,	from	the	perspective	of	such	a	goroutine,	it	can	think	its	instruction
execution	order	is	always	the	same	as	the	order	specified	by	code,	even	if	instruction	reordering	really
happens	inside	it.

However,	if	some	goroutines	share	some	data,	then	instruction	reordering	happens	inside	one	of	these
goroutine	may	be	observed	by	the	others	goroutines,	and	affect	the	behaviors	of	all	these	goroutines.
Sharing	data	between	goroutines	is	common	in	concurrent	programming.	If	we	ignore	the	results	caused
by	instruction	reordering,	the	behaviors	of	our	concurrent	programs	might	compiler	and	CPU	dependent,
and	often	abnormal.

Here	is	an	unprofessional	Go	program	which	doesn't	consider	instruction	reordering.	the	program	is
expanded	from	an	example	in	the	official	documentation	Go	1	memory	model Ң .

1| package	main

2|

3| import	"log"

4| import	"runtime"

5|

6| var	a	string

7| var	done	bool

8|

9| func	setup()	{

10| 			a	=	"hello,	world"

11| 			done	=	true

12| 			if	done	{

13| 						log.Println(len(a))	//	always	12	once	printed

14| 			}

15| }

16|

17| func	main()	{

18| 			go	setup()

19|

20| 			for	!done	{

21| 						runtime.Gosched()
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22| 			}

23| 			log.Println(a)	//	expected	to	print:	hello,	world

24| }

The	behavior	of	this	program	is	very	possible	as	we	expect,	a	hello,	world 	text	will	be	printed.
However,	the	behavior	of	this	program	is	compiler	and	CPU	dependent.	If	the	program	is	compiled	with	a
different	compiler,	or	with	a	later	compiler	version,	or	it	runs	on	a	different	architecture,	the	hello,
world 	text	might	not	be	printed,	or	a	text	different	from	hello,	world 	might	be	printed.	The	reason	is
compilers	and	CPUs	may	exchange	the	execution	orders	of	the	first	two	lines	in	the	setup 	function,	so
the	final	effect	of	the	setup 	function	may	become	to

1| func	setup()	{

2| 			done	=	true

3| 			a	=	"hello,	world"

4| 			if	done	{

5| 						log.Println(len(a))

6| 			}

7| }

The	setup 	goroutine	in	the	above	program	is	unable	to	observe	the	reordering,	so	the
log.Println(len(a)) 	line	will	always	print	12 	(if	this	line	gets	executed	before	the	program	exits).
However,	the	main	goroutine	may	observe	the	reordering,	which	is	why	the	printed	text	might	be	not
hello,	world .

Besides	the	problem	of	ignoring	memory	reordering,	there	are	data	races	in	the	program.	There	are	not	any
synchronizations	made	in	using	the	variable	a 	and	done .	So,	the	above	program	is	a	showcase	full	of
concurrent	programming	mistakes.	A	professional	Go	programmer	should	not	make	these	mistakes.

We	can	use	the	go	build	-race 	command	provided	in	Go	SDK	to	build	a	program,	then	we	can	run	the
outputted	executable	to	check	whether	or	not	there	are	data	races	in	the	program.

Go	Memory	Model

Sometimes,	we	need	to	ensure	that	the	execution	of	some	code	lines	in	a	goroutine	must	happen	before	(or
after)	the	execution	of	some	code	lines	in	another	goroutine	(from	the	view	of	either	of	the	two
goroutines),	to	keep	the	correctness	of	a	program.	Instruction	reordering	may	cause	some	troubles	for	such
circumstances.	How	should	we	do	to	prevent	certain	possible	instruction	reordering?

Different	CPU	architectures	provide	different	fence	instructions	to	prevent	different	kinds	of	instruction
reordering.	Some	programming	languages	provide	corresponding	functions	to	insert	these	fence
instructions	in	code.	However,	understanding	and	correctly	using	the	fence	instructions	raises	the	bar	of
concurrent	programming.

The	design	philosophy	of	Go	is	to	use	as	fewer	features	as	possible	to	support	as	more	use	cases	as
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possible,	at	the	same	time	to	ensure	a	good	enough	overall	code	execution	efficiency.	So	Go	built-in	and
standard	packages	don't	provide	direct	ways	to	use	the	CPU	fence	instructions.	In	fact,	CPU	fence
instructions	are	used	in	implementing	all	kinds	of	synchronization	techniques	supported	in	Go.	So,	we
should	use	these	synchronization	techniques	to	ensure	expected	code	execution	orders.

The	remaining	of	the	current	article	will	list	some	guaranteed	(and	non-guaranteed)	code	execution	orders
in	Go,	which	are	mentioned	or	not	mentioned	in	Go	1	memory	model Ң 	and	other	official	Go
documentation.

In	the	following	descriptions,	if	we	say	event	A 	is	guaranteed	to	happen	before	event	B ,	it	means	any	of
the	goroutines	involved	in	the	two	events	will	observe	that	any	of	the	statements	presented	before	event	A
in	source	code	will	be	executed	before	any	of	the	statements	presented	after	event	B 	in	source	code.	For
other	irrelevant	goroutines,	the	observed	orders	may	be	different	from	the	just	described.

The	creation	of	a	goroutine	happens	before	the	execution	of	the
goroutine

In	the	following	function,	the	assignment	x,	y	=	123,	789 	will	be	executed	before	the	call
fmt.Println(x) ,	and	the	call	fmt.Println(x) 	will	be	executed	before	the	call	fmt.Println(y) .

1| var	x,	y	int

2| func	f1()	{

3| 			x,	y	=	123,	789

4| 			go	func()	{

5| 						fmt.Println(x)

6| 						go	func()	{

7| 									fmt.Println(y)

8| 						}()

9| 			}()

10| }

However,	the	execution	orders	of	the	three	in	the	following	function	are	not	deterministic.	There	are	data
races	in	this	function.

1| var	x,	y	int

2| func	f2()	{

3| 			go	func()	{

4| 						//	Might	print	0,	123,	or	some	others.

5| 						fmt.Println(x)

6| 			}()

7| 			go	func()	{

8| 						//	Might	print	0,	789,	or	some	others.

9| 						fmt.Println(y)

10| 			}()

11| 			x,	y	=	123,	789
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12| }

Channel	operations	related	order	guarantees

Go	1	memory	model	lists	the	following	three	channel	related	order	guarantees.

1.	 The	nth	successful	send	to	a	channel	happens	before	the	nth	successful	receive	from	that	channel
completes,	no	matter	that	channel	is	buffered	or	unbuffered.

2.	 The	nth	successful	receive	from	a	channel	with	capacity	m	happens	before	the	(n+m)th	successful
send	to	that	channel	completes.	In	particular,	if	that	channel	is	unbuffered	(m	==	0 ),	the	nth
successful	receive	from	that	channel	happens	before	the	nth	successful	send	on	that	channel
completes.

3.	 The	closing	of	a	channel	happens	before	a	receive	completes	if	the	receive	returns	a	zero	value
because	the	channel	is	closed.

In	fact,	the	completion	of	the	nth	successful	send	to	a	channel	and	the	completion	of	the	nth	successful
receive	from	the	same	channel	are	the	same	event.

Here	is	an	example	show	some	guaranteed	code	execution	orders	in	using	an	unbuffered	channel.

1| func	f3()	{

2| 			var	a,	b	int

3| 			var	c	=	make(chan	bool)

4|

5| 			go	func()	{

6| 						a	=	1

7| 						c	<-	true

8| 						if	b	!=	1	{	//	impossible

9| 									panic("b	!=	1")	//	will	never	happen

10| 						}

11| 			}()

12|

13| 			go	func()	{

14| 						b	=	1

15| 						<-c

16| 						if	a	!=	1		{	//	impossible

17| 									panic("a	!=	1")	//	will	never	happen

18| 						}

19| 			}()

20| }

Here,	for	the	two	new	created	goroutines,	the	following	orders	are	guaranteed:

the	execution	of	the	assignment	b	=	1 	absolutely	ends	before	the	evaluation	of	the	condition	b	!=
1 .
the	execution	of	the	assignment	a	=	1 	absolutely	ends	before	the	evaluation	of	the	condition	a	!=
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1 .

So	the	two	calls	to	panic 	in	the	above	example	will	never	get	executed.	However,	the	panic 	calls	in	the
following	example	may	get	executed.

1| func	f4()	{

2| 			var	a,	b,	x,	y	int

3| 			c	:=	make(chan	bool)

4|

5| 			go	func()	{

6| 						a	=	1

7| 						c	<-	true

8| 						x	=	1

9| 			}()

10|

11| 			go	func()	{

12| 						b	=	1

13| 						<-c

14| 						y	=	1

15| 			}()

16|

17| 			//	Many	data	races	are	in	this	goroutine.

18| 			//	Don't	write	code	as	such.

19| 			go	func()	{

20| 						if	x	==	1	{

21| 									if	a	!=	1	{	//	possible

22| 												panic("a	!=	1")	//	may	happen

23| 									}

24| 									if	b	!=	1	{	//	possible

25| 												panic("b	!=	1")	//	may	happen

26| 									}

27| 						}

28|

29| 						if	y	==	1	{

30| 									if	a	!=	1	{	//	possible

31| 												panic("a	!=	1")	//	may	happen

32| 									}

33| 									if	b	!=	1	{	//	possible

34| 												panic("b	!=	1")	//	may	happen

35| 									}

36| 						}

37| 			}()

38| }

Here,	for	the	third	goroutine,	which	is	irrelevant	to	the	operations	on	channel	c .	It	will	not	be	guaranteed
to	observe	the	orders	observed	by	the	first	two	new	created	goroutines.	So,	any	of	the	four	panic 	calls
may	get	executed.
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In	fact,	most	compiler	implementations	do	guarantee	the	four	panic 	calls	in	the	above	example	will	never
get	executed,	however,	the	Go	official	documentation	never	makes	such	guarantees.	So	the	code	in	the
above	example	is	not	cross-compiler	or	cross-compiler-version	compatible.	We	should	stick	to	the	Go
official	documentation	to	write	professional	Go	code.

Here	is	an	example	using	a	buffered	channel.

1| func	f5()	{

2| 			var	k,	l,	m,	n,	x,	y	int

3| 			c	:=	make(chan	bool,	2)

4|

5| 			go	func()	{

6| 						k	=	1

7| 						c	<-	true

8| 						l	=	1

9| 						c	<-	true

10| 						m	=	1

11| 						c	<-	true

12| 						n	=	1

13| 			}()

14|

15| 			go	func()	{

16| 						x	=	1

17| 						<-c

18| 						y	=	1

19| 			}()

20| }

The	following	orders	are	guaranteed:

the	execution	of	k	=	1 	ends	before	the	execution	of	y	=	1 .
the	execution	of	x	=	1 	ends	before	the	execution	of	n	=	1 .

However,	the	execution	of	x	=	1 	is	not	guaranteed	to	happen	before	the	execution	of	l	=	1 	and	m	=	1 ,
and	the	execution	of	l	=	1 	and	m	=	1 	is	not	guaranteed	to	happen	before	the	execution	of	y	=	1 .

The	following	is	an	example	on	channel	closing.	In	this	example,	the	execution	of	k	=	1 	is	guaranteed	to
end	before	the	execution	of	y	=	1 ,	but	not	guaranteed	to	end	before	the	execution	of	x	=	1 ,

1| func	f6()	{

2| 			var	k,	x,	y	int

3| 			c	:=	make(chan	bool,	1)

4|

5| 			go	func()	{

6| 						c	<-	true

7| 						k	=	1

8| 						close(c)
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9| 			}()

10|

11| 			go	func()	{

12| 						<-c

13| 						x	=	1

14| 						<-c

15| 						y	=	1

16| 			}()

17| }

Mutex	related	order	guarantees

The	followings	are	the	mutex	related	order	guarantees	in	Go.

1.	 For	an	addressable	value	m 	of	type	Mutex 	or	RWMutex 	in	the	sync 	standard	package,	the	nth
successful	m.Unlock() 	method	call	happens	before	the	(n+1)th	m.Lock() 	method	call	returns.

2.	 For	an	addressable	value	rw 	of	type	RWMutex ,	if	its	nth	rw.Lock() 	method	call	has	returned,	then
its	successful	nth	rw.Unlock() 	method	call	happens	before	the	return	of	any	rw.RLock() 	method
call	which	is	guaranteed	to	happen	after	the	nth	rw.Lock() 	method	call	returns.

3.	 For	an	addressable	value	rw 	of	type	RWMutex ,	if	its	nth	rw.RLock() 	method	call	has	returned,
then	its	mth	successful	rw.RUnlock() 	method	call,	where	m	<=	n ,	happens	before	the	return	of
any	rw.Lock() 	method	call	which	is	guaranteed	to	happen	after	the	nth	rw.RLock() 	method	call
returns.

In	the	following	example,	the	following	orders	are	guaranteed:

the	execution	of	a	=	1 	ends	before	the	execution	of	b	=	1 .
the	execution	of	m	=	1 	ends	before	the	execution	of	n	=	1 .
the	execution	of	x	=	1 	ends	before	the	execution	of	y	=	1 .

1| func	fab()	{

2| 			var	a,	b	int

3| 			var	l	sync.Mutex	//	or	sync.RWMutex

4|

5| 			l.Lock()

6| 			go	func()	{

7| 						l.Lock()

8| 						b	=	1

9| 						l.Unlock()

10| 			}()

11| 			go	func()	{

12| 						a	=	1

13| 						l.Unlock()

14| 			}()

15| }
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16|

17| func	fmn()	{

18| 			var	m,	n	int

19| 			var	l	sync.RWMutex

20|

21| 			l.RLock()

22| 			go	func()	{

23| 						l.Lock()

24| 						n	=	1

25| 						l.Unlock()

26| 			}()

27| 			go	func()	{

28| 						m	=	1

29| 						l.RUnlock()

30| 			}()

31| }

32|

33| func	fxy()	{

34| 			var	x,	y	int

35| 			var	l	sync.RWMutex

36|

37| 			l.Lock()

38| 			go	func()	{

39| 						l.RLock()

40| 						y	=	1

41| 						l.RUnlock()

42| 			}()

43| 			go	func()	{

44| 						x	=	1

45| 						l.Unlock()

46| 			}()

47| }

Note,	in	the	following	code,	by	the	official	Go	documentation,	the	execution	of	p	=	1 	is	not	guaranteed
to	end	before	the	execution	of	q	=	1 ,	though	most	compilers	do	make	such	guarantees.

1| var	p,	q	int

2| func	fpq()	{

3| 			var	l	sync.Mutex

4| 			p	=	1

5| 			l.Lock()

6| 			l.Unlock()

7| 			q	=	1

8| }

Order	guarantees	made	by	sync.WaitGroup 	values
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At	a	given	time,	assume	the	counter	maintained	by	an	addressable	sync.WaitGroup 	value	wg 	is	not
zero.	If	there	is	a	group	of	wg.Add(n) 	method	calls	invoked	after	the	given	time,	and	we	can	make	sure
that	only	the	last	returned	call	among	the	group	of	calls	will	modify	the	counter	maintained	by	wg 	to	zero,
then	each	of	the	group	of	calls	is	guaranteed	to	happen	before	the	return	of	a	wg.Wait 	method	call	which
is	invoked	after	the	given	time.

Note,	wg.Done() 	is	equivalent	to	wg.Add(-1) .

Please	read	the	explanations	for	the	sync.WaitGroup 	type	(§39)	to	get	how	to	use	sync.WaitGroup
values.

Order	guarantees	made	by	sync.Once 	values

Please	read	the	explanations	for	the	sync.Once 	type	(§39)	to	get	the	order	guarantees	made	by
sync.Once 	values	and	how	to	use	sync.Once 	values.

Order	guarantees	made	by	sync.Cond 	values

It	is	some	hard	to	make	a	clear	description	for	the	order	guarantees	made	by	sync.Cond 	values.	Please
read	the	explanations	for	the	sync.Cond 	type	(§39)	to	get	how	to	use	sync.Cond 	values.

Atomic	operations	related	order	guarantees

None	of	Go's	official	documentation	mentions	what	memory	order	guarantees	are	made	by	the	atomic
synchronization	technique.	However,	in	the	implementation	of	the	standard	Go	compiler,	there	are	exactly
some	memory	order	guarantees	made	by	atomic	operations.	The	standard	packages	rely	extensively	on	the
guarantees	provided	by	atomic	operations.

The	following	program	always	prints	1 ,	if	it	is	compiled	with	the	standard	Go	compiler	1.13.

1| package	main

2|

3| import	"fmt"

4| import	"sync/atomic"

5| import	"runtime"

6|

7| func	main()	{

8| 			var	a,	b	int32	=	0,	0

9|

10| 			go	func()	{

11| 						atomic.StoreInt32(&a,	1)

12| 						atomic.StoreInt32(&b,	1)
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13| 			}()

14|

15| 			for	{

16| 						if	n	:=	atomic.LoadInt32(&b);	n	==	1	{

17| 									//	The	following	line	always	prints	1.

18| 									fmt.Println(atomic.LoadInt32(&a))

19| 									break

20| 						}

21| 						runtime.Gosched()

22| 			}

23| }

Here,	the	main	goroutine	will	always	observe	that	the	modification	of	a 	ends	before	the	modification	of
b .	However,	the	guarantees	made	by	atomic	operations	are	never	written	down	in	the	Go	specification	and
any	other	official	Go	documentation.	If	you	want	to	write	cross-compiler	and	cross-compiler-version
compatible	Go	code,	the	safe	advice	is,	don't	rely	on	atomic	to	guarantee	memory	orderings	in	general
Go	programming.	There	is	an	issue Ң 	on	how	these	guarantees	should	be	written	down.	But,	up	to	now
(Go	1.13),	the	decision	has	not	been	made	yet.

Please	read	this	article	(§40)	to	get	how	to	do	atomic	operations.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Common	Concurrent	Programming	Mistakes
Go	is	a	language	supporting	built-in	concurrent	programming.	By	using	the	go 	keyword	to	create
goroutines	(light	weight	threads)	and	by	using	(§37)	channels	(§21)	and	other	concurrency	(§40)
synchronization	techniques	(§39)	provided	in	Go,	concurrent	programming	becomes	easy,	flexible	and
enjoyable.

One	the	other	hand,	Go	doesn't	prevent	Go	programmers	from	making	some	concurrent	programming
mistakes	which	are	caused	by	either	carelessnesses	or	lacking	of	experiences.	The	remaining	of	the	current
article	will	show	some	common	mistakes	in	Go	concurrent	programming,	to	help	Go	programmers	avoid
making	such	mistakes.

No	Synchronizations	When	Synchronizations	Are	Needed

Code	lines	might	be	not	executed	by	their	appearance	order	(§41).

There	are	two	mistakes	in	the	following	program.

First,	the	read	of	b 	in	the	main	goroutine	and	the	write	of	b 	in	the	new	goroutine	might	cause	data
races.
Second,	the	condition	b	==	true 	can't	ensure	that	a	!=	nil 	in	the	main	goroutine.	Compilers
and	CPUs	may	make	optimizations	by	reordering	instructions	(§41)	in	the	new	goroutine,	so	the
assignment	of	b 	may	happen	before	the	assignment	of	a 	at	run	time,	which	makes	that	slice	a 	is
still	nil 	when	the	elements	of	a 	are	modified	in	the	main	goroutine.

1| package	main

2|

3| import	(

4| 			"time"

5| 			"runtime"

6| )

7|

8| func	main()	{

9| 			var	a	[]int	//	nil

10| 			var	b	bool		//	false

11|

12| 			//	a	new	goroutine

13| 			go	func	()	{

14| 						a	=	make([]int,	3)

15| 						b	=	true	//	write	b

16| 			}()

17|

18| 			for	!b	{	//	read	b

§42.	Common	Concurrent	Programming	Mistakes

424



19| 						time.Sleep(time.Second)

20| 						runtime.Gosched()

21| 			}

22| 			a[0],	a[1],	a[2]	=	0,	1,	2	//	might	panic

23| }

The	above	program	may	run	well	on	one	computer,	but	may	panic	on	another	one,	or	it	runs	well	when	it
is	compiled	by	one	compiler,	but	panics	when	another	compiler	is	used.

We	should	use	channels	or	the	synchronization	techniques	provided	in	the	sync 	standard	package	to
ensure	the	memory	orders.	For	example,

1| package	main

2|

3| func	main()	{

4| 			var	a	[]int	=	nil

5| 			c	:=	make(chan	struct{})

6|

7| 			go	func	()	{

8| 						a	=	make([]int,	3)

9| 						c	<-	struct{}{}

10| 			}()

11|

12| 			<-c

13| 			//	The	next	line	will	not	panic	for	sure.

14| 			a[0],	a[1],	a[2]	=	0,	1,	2

15| }

Use	time.Sleep	Calls	to	Do	Synchronizations

Let's	view	a	simple	example.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			var	x	=	123

10|

11| 			go	func()	{

12| 						x	=	789	//	write	x

13| 			}()

14|

15| 			time.Sleep(time.Second)
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16| 			fmt.Println(x)	//	read	x

17| }

We	expect	this	program	to	print	789 .	In	fact,	it	really	prints	789 ,	almost	always,	in	running.	But	is	it	a
program	with	good	synchronization?	No!	The	reason	is	Go	runtime	doesn't	guarantee	the	write	of	x
happens	before	the	read	of	x 	for	sure.	Under	certain	conditions,	such	as	most	CPU	resources	are
consumed	by	some	other	computation-intensive	programs	running	on	the	same	OS,	the	write	of	x 	might
happen	after	the	read	of	x .	This	is	why	we	should	never	use	time.Sleep 	calls	to	do	synchronizations	in
formal	projects.

Let's	view	another	example.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| var	x	=	0

9|

10| func	main()	{

11| 			var	num	=	123

12| 			var	p	=	&num

13|

14| 			c	:=	make(chan	int)

15|

16| 			go	func()	{

17| 						c	<-	*p	+	x

18| 			}()

19|

20| 			time.Sleep(time.Second)

21| 			num	=	789

22| 			fmt.Println(<-c)

23| }

What	do	you	expect	the	program	will	output?	123 ,	or	789?	In	fact,	the	output	is	compiler	dependent.	For
the	standard	Go	compiler	1.13,	it	is	very	possible	the	program	will	output	123 .	But	in	theory,	it	might
output	789 ,	or	another	unexpected	number.

Now,	let's	change	c	<-	*p	+	x 	to	c	<-	*p 	and	run	the	program	again,	you	will	find	the	output
becomes	to	789 	(for	the	standard	Go	compiler	1.13).	Again,	the	output	is	compiler	dependent.

Yes,	there	are	data	races	in	the	above	program.	The	expression	*p 	might	be	evaluated	before,	after,	or
when	the	assignment	num	=	789 	is	processed.	The	time.Sleep 	call	can't	guarantee	the	evaluation	of
*p 	happens	before	the	assignment	is	processed.
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For	this	specified	example,	we	should	store	the	value	to	be	sent	in	a	temporary	value	before	creating	the
new	goroutine	and	send	the	temporary	value	instead	in	the	new	goroutine	to	remove	the	data	races.

1| ...

2| 			tmp	:=	*p

3| 			go	func()	{

4| 						c	<-	tmp

5| 			}()

6| ...

Leave	Goroutines	Hanging

Hanging	goroutines	are	the	goroutines	staying	in	blocking	state	for	ever.	There	are	many	reasons	leading
goroutines	into	hanging.	For	example,

a	goroutine	tries	to	receive	a	value	from	a	channel	which	no	more	other	goroutines	will	send	values
to.
a	goroutine	tries	to	send	a	value	to	nil	channel	or	to	a	channel	which	no	more	other	goroutines	will
receive	values	from.
a	goroutine	is	dead	locked	by	itself.
a	group	of	goroutines	are	dead	locked	by	each	other.
a	goroutine	is	blocked	when	executing	a	select 	code	block	without	default 	branch,	and	all	the
channel	operations	following	the	case 	keywords	in	the	select 	code	block	keep	blocking	for	ever.

Except	sometimes	we	deliberately	let	the	main	goroutine	in	a	program	hanging	to	avoid	the	program
exiting,	most	other	hanging	goroutine	cases	are	unexpected.	It	is	hard	for	Go	runtime	to	judge	whether	or
not	a	goroutine	in	blocking	state	is	hanging	or	stays	in	blocking	state	temporarily,	so	Go	runtime	will
never	release	the	resources	consumed	by	a	hanging	goroutine.

In	the	first-response-wins	(§37)	channel	use	case,	if	the	capacity	of	the	channel	which	is	used	a	future	is
not	large	enough,	some	slower	response	goroutines	will	hang	when	trying	to	send	a	result	to	the	future
channel.	For	example,	if	the	following	function	is	called,	there	will	be	4	goroutines	stay	in	blocking	state
for	ever.

1| func	request()	int	{

2| 			c	:=	make(chan	int)

3| 			for	i	:=	0;	i	<	5;	i++	{

4| 						i	:=	i

5| 						go	func()	{

6| 									c	<-	i	//	4	goroutines	will	hang	here.

7| 						}()

8| 			}

9| 			return	<-c

10| }
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To	avoid	the	four	goroutines	hanging,	the	capacity	of	channel	c 	must	be	at	least	4 .

In	the	second	way	to	implement	the	first-response-wins	(§37)	channel	use	case,	if	the	channel	which	is
used	as	a	future/promise	is	an	unbuffered	channel,	like	the	following	code	shows,	it	is	possible	that	the
channel	receiver	will	miss	all	responses	and	hang.

1| func	request()	int	{

2| 			c	:=	make(chan	int)

3| 			for	i	:=	0;	i	<	5;	i++	{

4| 						i	:=	i

5| 						go	func()	{

6| 									select	{

7| 									case	c	<-	i:

8| 									default:

9| 									}

10| 						}()

11| 			}

12| 			return	<-c	//	might	hang	here

13| }

The	reason	why	the	receiver	goroutine	might	hang	is	that	if	the	five	try-send	operations	all	happen	before
the	receive	operation	<-c 	is	ready,	then	all	the	five	try-send	operations	will	fail	to	send	values	so	that	the
caller	goroutine	will	never	receive	a	value.

Changing	the	channel	c 	as	a	buffered	channel	will	guarantee	at	least	one	of	the	five	try-send	operations
succeed	so	that	the	caller	goroutine	will	never	hang	in	the	above	function.

Copy	Values	of	the	Types	in	the	sync	Standard	Package

In	practice,	values	of	the	types	(except	the	Locker 	interface	values)	in	the	sync 	standard	package	should
never	be	copied.	We	should	only	copy	pointers	of	such	values.

The	following	is	bad	concurrent	programming	example.	In	this	example,	when	the	Counter.Value
method	is	called,	a	Counter 	receiver	value	will	be	copied.	As	a	field	of	the	receiver	value,	the	respective
Mutex 	field	of	the	Counter 	receiver	value	will	also	be	copied.	The	copy	is	not	synchronized,	so	the
copied	Mutex 	value	might	be	corrupted.	Even	if	it	is	not	corrupted,	what	it	protects	is	the	use	of	the
copied	field	n ,	which	is	meaningless	generally.

1| import	"sync"

2|

3| type	Counter	struct	{

4| 			sync.Mutex

5| 			n	int64

6| }

7|
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8| //	This	method	is	okay.

9| func	(c	*Counter)	Increase(d	int64)	(r	int64)	{

10| 			c.Lock()

11| 			c.n	+=	d

12| 			r	=	c.n

13| 			c.Unlock()

14| 			return

15| }

16|

17| //	The	method	is	bad.	When	it	is	called,

18| //	the	Counter	receiver	value	will	be	copied.

19| func	(c	Counter)	Value()	(r	int64)	{

20| 			c.Lock()

21| 			r	=	c.n

22| 			c.Unlock()

23| 			return

24| }

We	should	change	the	receiver	type	of	the	Value 	method	to	the	pointer	type	*Counter 	to	avoid	copying
sync.Mutex 	values.

The	go	vet 	command	provided	in	the	official	Go	SDK	will	report	potential	bad	value	copies.

Call	the	sync.WaitGroup.Add	Method	at	Wrong	Places

Each	sync.WaitGroup 	value	maintains	a	counter	internally,	The	initial	value	of	the	counter	is	zero.	If
the	counter	of	a	WaitGroup 	value	is	zero,	a	call	to	the	Wait 	method	of	the	WaitGroup 	value	will	not
block,	otherwise,	the	call	blocks	until	the	counter	value	becomes	zero.

To	make	the	uses	of	WaitGroup 	value	meaningful,	when	the	counter	of	a	WaitGroup 	value	is	zero,	the
next	call	to	the	Add 	method	of	the	WaitGroup 	value	must	happen	before	the	next	call	to	the	Wait
method	of	the	WaitGroup 	value.

For	example,	in	the	following	program,	the	Add 	method	is	called	at	an	improper	place,	which	makes	that
the	final	printed	number	is	not	always	100 .	In	fact,	the	final	printed	number	of	the	program	may	be	an
arbitrary	number	in	the	range	[0,	100) .	The	reason	is	none	of	the	Add 	method	calls	are	guaranteed	to
happen	before	the	Wait 	method	call,	which	causes	none	of	the	Done 	method	calls	are	guaranteed	to
happen	before	the	Wait 	method	call	returns.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"sync"

6| 			"sync/atomic"
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7| )

8|

9| func	main()	{

10| 			var	wg	sync.WaitGroup

11| 			var	x	int32	=	0

12| 			for	i	:=	0;	i	<	100;	i++	{

13| 						go	func()	{

14| 									wg.Add(1)

15| 									atomic.AddInt32(&x,	1)

16| 									wg.Done()

17| 						}()

18| 			}

19|

20| 			fmt.Println("Wait	...")

21| 			wg.Wait()

22| 			fmt.Println(atomic.LoadInt32(&x))

23| }

To	make	the	program	behave	as	expected,	we	should	move	the	Add 	method	calls	out	of	the	new
goroutines	created	in	the	for 	loop,	as	the	following	code	shown.

1| ...

2| 			for	i	:=	0;	i	<	100;	i++	{

3| 						wg.Add(1)

4| 						go	func()	{

5| 									atomic.AddInt32(&x,	1)

6| 									wg.Done()

7| 						}()

8| 			}

9| ...

Use	Channels	as	Futures/Promises	Improperly

From	the	article	channel	use	cases	(§37),	we	know	that	some	functions	will	return	channels	as	futures
(§37).	Assume	fa 	and	fb 	are	two	such	functions,	then	the	following	call	uses	future	arguments
improperly.

1| doSomethingWithFutureArguments(<-fa(),	<-fb())

In	the	above	code	line,	the	generations	of	the	two	arguments	are	processed	sequentially,	instead	of
concurrently.

We	should	modify	it	as	the	following	to	process	them	concurrently.

1| ca,	cb	:=	fa(),	fb()

2| doSomethingWithFutureArguments(<-ca,	<-cb)
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Close	Channels	Not	From	the	Last	Active	Sender	Goroutine

A	common	mistake	made	by	Go	programmers	is	closing	a	channel	when	there	are	still	some	other
goroutines	will	potentially	send	values	to	the	channel	later.	When	such	a	potential	send	(to	the	closed
channel)	really	happens,	a	panic	might	occur.

This	mistake	was	ever	made	in	some	famous	Go	projects,	such	as	this	bug Ң 	and	this	bug Ң 	in	the
kubernetes	project.

Please	read	this	article	(§38)	for	explanations	on	how	to	safely	and	gracefully	close	channels.

Do	64-bit	Atomic	Operations	on	Values	Which	Are	Not
Guaranteed	to	Be	8-byte	Aligned

Up	to	now	(Go	1.13),	the	address	of	the	value	involved	in	a	64-bit	atomic	operation	is	required	to	be	8-
byte	aligned.	Failure	to	do	so	may	make	the	current	goroutine	panic.	For	the	standard	Go	compiler,	such
failure	can	only	happen	on	32-bit	architectures Ң .	Please	read	memory	layouts	(§44)	to	get	how	to
guarantee	the	addresses	of	64-bit	word	8-byte	aligned	on	32-bit	OSes.

Not	Pay	Attention	to	Too	Many	Resources	Are	Consumed
by	Calls	to	the	time.After	Function

The	After 	function	in	the	time 	standard	package	returns	a	channel	for	delay	notification	(§37).	The
function	is	convenient,	however	each	of	its	calls	will	create	a	new	value	of	the	time.Timer 	type.	The
new	created	Timer 	value	will	keep	alive	in	the	duration	specified	by	the	passed	argument	to	the	After
function.	If	the	function	is	called	many	times	in	a	certain	period,	there	will	be	many	alive	Timer 	values
accumulated	so	that	much	memory	and	computation	is	consumed.

For	example,	if	the	following	longRunning 	function	is	called	and	there	are	millions	of	messages	coming
in	one	minute,	then	there	will	be	millions	of	Timer 	values	alive	in	a	certain	small	period	(several
seconds),	even	if	most	of	these	Timer 	values	have	already	become	useless.

1| import	(

2| 			"fmt"

3| 			"time"

4| )

5|

6| //	The	function	will	return	if	a	message

7| //	arrival	interval	is	larger	than	one	minute.

8| func	longRunning(messages	<-chan	string)	{

9| 			for	{
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10| 						select	{

11| 						case	<-time.After(time.Minute):

12| 									return

13| 						case	msg	:=	<-messages:

14| 									fmt.Println(msg)

15| 						}

16| 			}

17| }

To	avoid	too	many	Timer 	values	being	created	in	the	above	code,	we	should	use	(and	reuse)	a	single
Timer 	value	to	do	the	same	job.

1| func	longRunning(messages	<-chan	string)	{

2| 			timer	:=	time.NewTimer(time.Minute)

3| 			defer	timer.Stop()

4|

5| 			for	{

6| 						select	{

7| 						case	<-timer.C:	//	expires	(timeout)

8| 									return

9| 						case	msg	:=	<-messages:

10| 									fmt.Println(msg)

11|

12| 									//	This	"if"	block	is	important.

13| 									if	!timer.Stop()	{

14| 												<-timer.C

15| 									}

16| 						}

17|

18| 						//	Reset	to	reuse.

19| 						timer.Reset(time.Minute)

20| 			}

21| }

Note,	the	if 	code	block	is	used	to	discard/drain	a	possible	timer	notification	which	is	sent	in	the	small
period	when	executing	the	second	branch	code	block.

Use	time.Timer	Values	Incorrectly

An	idiomatic	use	example	of	time.Timer 	values	has	been	shown	in	the	last	section.	Some	explanations:

the	Stop 	method	of	a	*Timer 	value	returns	false 	if	the	corresponding	Timer 	value	has	already
expired	or	been	stopped.	If	the	Stop 	method	returns	false ,	and	we	know	the	Timer 	value	has	not
been	stopped	yet,	then	the	Timer 	value	must	have	already	expired.
after	a	Timer 	value	is	stopped,	its	C 	channel	field	can	only	contain	most	one	timeout	notification.
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we	should	take	out	the	timeout	notification,	if	it	hasn't	been	taken	out,	from	a	timeout	Timer 	value
after	the	Timer 	value	is	stopped	and	before	resetting	and	reusing	the	Timer 	value.	This	is	the
meaningfulness	of	the	if 	code	block	in	the	example	in	the	last	section.

The	Reset 	method	of	a	*Timer 	value	must	be	called	when	the	corresponding	Timer 	value	has	already
expired	or	been	stopped,	otherwise,	a	data	race	may	occur	between	the	Reset 	call	and	a	possible
notification	send	to	the	C 	channel	field	of	the	Timer 	value.

If	the	first	case 	branch	of	the	select 	block	is	selected,	it	means	the	Timer 	value	has	already	expired,
so	we	don't	need	to	stop	it,	for	the	sent	notification	has	already	been	taken	out.	However,	we	must	stop	the
timer	in	the	second	branch	to	check	whether	or	not	a	timeout	notification	exists.	If	it	does	exist,	we	should
drain	it	before	reusing	the	timer,	otherwise,	the	notification	will	be	fired	immediately	in	the	next	loop	step.

For	example,	the	following	program	is	very	possible	to	exit	in	about	one	second,	instead	of	ten	seconds.
And	more	importantly,	the	program	is	not	data	race	free.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"time"

6| )

7|

8| func	main()	{

9| 			start	:=	time.Now()

10| 			timer	:=	time.NewTimer(time.Second/2)

11| 			select	{

12| 			case	<-timer.C:

13| 			default:

14| 						//	Most	likely	go	here.

15| 						time.Sleep(time.Second)

16| 			}

17| 			//	Potential	data	race	in	the	next	line.

18| 			timer.Reset(time.Second	*	10)

19| 			<-timer.C

20| 			fmt.Println(time.Since(start))	//	about	1s

21| }

A	time.Timer 	value	can	be	leaved	in	non-stopping	status	when	it	is	not	used	any	more,	but	it	is
recommended	to	stop	it	in	the	end.

It	is	bug	prone	and	not	recommended	to	use	a	time.Timer 	value	concurrently	among	multiple
goroutines.

We	should	not	rely	on	the	return	value	of	a	Reset 	method	call.	The	return	result	of	the	Reset 	method
exists	just	for	compatibility	purpose.
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(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Memory	Blocks
Go	is	a	language	which	supports	automatic	memory	management,	such	as	automatic	memory	allocation
and	automatic	garbage	collection.	So	Go	programmers	can	do	programming	without	handling	the
underlying	verbose	memory	management.	This	ont	only	brings	much	convenience	and	saves	Go
programmers	lots	of	time,	but	also	helps	Go	programmers	avoid	many	careless	bugs.

Although	knowing	the	underlying	memory	management	implementation	details	is	not	necessary	for	Go
programmers	to	write	Go	code,	understanding	some	concepts	and	being	aware	of	some	facts	in	the
memory	management	implementation	by	the	standard	Go	compiler	and	runtime	is	very	helpful	for	Go
programmers	to	write	high	quality	Go	code.

This	article	will	explain	some	concepts	and	list	some	facts	of	the	implementation	of	memory	block
allocation	and	garbage	collection	by	the	standard	Go	compiler	and	runtime.	Other	aspects,	such	as
memory	apply	and	memory	release	in	memory	management,	will	not	be	touched	in	this	article.

Memory	Blocks

A	memory	block	is	a	continuous	memory	segment	to	host	value	parts	(§17)	at	run	time.	Different	memory
blocks	may	have	different	sizes,	to	host	different	value	parts.	One	memory	block	may	host	multiple	value
parts	at	the	same	time,	but	each	value	part	can	only	be	hosted	within	one	memory	block,	no	matter	how
large	the	size	of	that	value	part	is.	In	other	words,	for	any	value	part,	it	never	crosses	memory	blocks.

There	are	many	reasons	when	one	memory	block	may	host	multiple	value	parts.	Some	of	them:

a	struct	value	often	have	several	fields.	So	when	a	memory	block	is	allocated	for	a	struct	value,	the
memory	block	will	also	host	(the	direct	parts	of)	these	field	values.
an	array	values	often	have	many	elements.	So	when	a	memory	block	is	allocated	for	a	array	value,
the	memory	block	will	also	host	(the	direct	parts	of)	the	array	element	values.
the	underlying	element	sequences	of	two	slices	may	be	hosted	on	the	same	memory	block,	the	two
element	sequences	even	can	overlap	with	each	other.

A	Value	References	the	Memory	Blocks	Which	Host	Its
Value	Parts

We	have	known	that	a	value	part	can	reference	another	value	part.	Here,	we	extend	the	reference
definition	by	saying	a	memory	block	is	referenced	by	all	the	value	parts	it	hosts.	So	if	a	value	part	v 	is
referenced	by	another	value	part,	then	the	other	value	will	also	reference	the	memory	block	hosting	v ,
indirectly.

When	Will	Memory	Blocks	Be	Allocated?
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When	Will	Memory	Blocks	Be	Allocated?

In	Go,	memory	blocks	may	be	allocated	but	not	limited	at	following	situations:

explicitly	call	the	new 	and	make 	built-in	functions.	A	new 	call	will	always	allocate	exact	one
memory	block.	A	make 	call	will	allocate	more	than	one	memory	blocks	to	host	the	direct	part	and
underlying	part(s)	of	the	created	slice,	map	or	channel	value.
create	maps,	slices	and	anonymous	functions	with	corresponding	literals.	More	than	one	memory
blocks	may	be	allocated	in	each	of	the	processes.
declare	variables.
assign	non-interface	values	to	interface	values	(when	the	non-interface	value	is	not	a	pointer	value).
concatenate	non-constant	strings.
convert	strings	to	byte	or	rune	slices,	and	vice	versa,	except	some	special	compiler	optimization
cases	(§19).
convert	integers	to	strings.
call	the	built-in	append 	function	(when	the	capacity	of	the	base	slice	is	not	large	enough).
add	a	new	key-element	entry	pair	into	a	map	(when	the	underlying	hash	table	needs	to	be	resized).

Where	Will	Memory	Blocks	Be	Allocated	On?

For	every	Go	program	compiled	by	the	official	standard	Go	compiler,	at	run	time,	each	goroutine	will
maintain	a	stack,	which	is	a	memory	segment.	It	acts	as	a	memory	pool	for	some	memory	blocks	to	be
allocated	from/on.	The	initial	stack	size	of	each	goroutine	is	small	(about	2k	bytes	on	64-bit	systems).	The
stack	size	will	grow	and	shrink	as	needed	in	goroutine	running.

(Please	note,	for	the	standard	Go	compiler,	there	is	a	limit	of	stack	size	each	goroutine	can	have.	For
standard	Go	compiler	1.11,	the	default	maximum	stack	size	is	1	GB	on	64-bit	systems,	and	250	MB	on	32-
bit	systems.	We	can	call	the	SetMaxStack 	function	in	the	runtime/debug 	standard	package	to	change
the	size.)

Memory	blocks	can	be	allocated	on	stacks.	Memory	blocks	allocated	on	the	stack	of	a	goroutine	can	only
be	used	(referenced)	in	the	goroutine	internally.	They	are	goroutine	localized	resources.	They	are	not	safe
to	be	referenced	crossing	goroutines.	A	goroutine	can	access	or	modify	the	value	parts	hosted	on	a
memory	block	allocated	on	the	stack	of	the	goroutine	without	using	any	data	synchronization	techniques.

Heap	is	a	singleton	in	each	program.	It	is	a	virtual	concept.	If	a	memory	block	is	not	allocated	on	any
goroutine	stack,	then	we	say	the	memory	block	is	allocated	on	heap.	Value	parts	hosted	on	memory	blocks
allocated	on	heap	can	be	used	by	multiple	goroutines.	In	other	words,	they	can	be	used	concurrently.	Their
uses	should	be	synchronized	when	needed.

Heap	is	a	conservative	place	to	allocate	memory	blocks	on.	If	compilers	detect	a	memory	block	will	be
referenced	crossing	goroutines	or	can't	easily	confirm	whether	or	not	the	memory	block	is	safe	to	be	put
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on	the	stack	of	a	goroutine,	then	the	memory	block	will	be	allocated	on	heap	at	run	time.	This	means	some
values	can	be	safely	allocated	on	stacks	may	be	also	allocated	on	heap.

In	fact,	stacks	are	not	essential	for	Go	programs.	Go	compiler/runtime	can	allocate	all	memory	block	on
heap.	Supporting	stacks	is	just	to	make	Go	programs	run	more	efficiently:

allocating	memory	blocks	on	stacks	is	much	faster	than	on	heap.
memory	blocks	allocated	on	a	stack	don't	need	to	be	garbage	collected.
stack	memory	blocks	are	more	CPU	cache	friendly	than	heap	ones.

If	a	memory	block	is	allocated	somewhere,	we	can	also	say	the	value	parts	hosted	on	the	memory	block
are	allocated	on	the	same	place.

If	some	value	parts	of	a	local	variable	declared	in	a	function	is	allocated	on	heap,	we	can	say	the	value
parts	(and	the	variable)	escape	to	heap.	By	using	the	official	Go	SDK,	we	can	run	go	build	-gcflags
-m 	to	check	which	local	values	(value	parts)	will	escape	to	heap	at	run	time.	As	mentioned	above,	the
current	escape	analyzer	in	the	standard	Go	compiler	is	still	not	perfect,	many	local	value	parts	can	be
allocated	on	stacks	safely	will	still	escape	to	heap.

An	active	value	part	allocated	on	heap	still	in	use	must	be	referenced	by	at	least	one	value	part	allocated
on	a	stack.	If	a	value	escaping	to	heap	is	a	declared	local	variable,	and	assume	its	type	is	T ,	Go	runtime
will	create	(a	memory	block	for)	an	implicit	pointer	of	type	*T 	on	the	stack	of	the	current	goroutine.	The
value	of	the	pointer	stores	the	address	of	the	memory	block	allocated	for	the	variable	on	heap	(a.k.a.,	the
address	of	the	local	variable	of	type	T ).	Go	compiler	will	also	replace	all	uses	of	the	variable	with	the
dereferences	of	the	pointer	value	at	compile	time.	The	*T 	pointer	value	on	stack	may	be	marked	as	dead
since	a	later	time,	so	the	reference	relation	from	it	to	the	T 	value	on	heap	will	disappear.	The	reference
relation	from	the	*T 	value	on	stack	to	the	T 	value	on	heap	plays	an	important	role	in	the	garbage
collection	process	which	will	be	described	below.

Similarly,	we	can	view	each	package-level	variable	is	allocated	on	heap,	and	the	variable	is	referenced	by
an	implicit	pointer	which	is	allocated	on	a	global	memory	zone.	In	fact,	the	implicit	pointer	references	the
direct	part	of	the	package-level	variable,	and	the	direct	part	of	the	variable	references	some	other	value
parts.

A	memory	block	allocated	on	heap	may	be	referenced	by	multiple	value	parts	allocated	on	different	stacks
at	the	same	time.

Some	facts:

if	a	field	of	a	struct	value	escapes	to	heap,	then	the	whole	struct	value	will	also	escape	to	heap.
if	an	element	of	an	array	value	escapes	to	heap,	then	the	whole	array	value	will	also	escape	to	heap.
if	an	element	of	a	slice	value	escapes	to	heap,	then	all	the	elements	of	the	slice	will	also	escape	to
heap.
if	a	value	(part)	v 	is	referenced	by	a	value	(part)	which	escapes	to	heap,	then	the	value	(part)	v 	will
also	escape	to	heap.
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A	memory	block	created	by	calling	new 	function	may	be	allocated	on	heap	or	stacks.	This	is	different	to
C++.

When	the	size	of	a	goroutine	stack	changes,	a	new	memory	segment	will	be	allocated	for	the	stack.	So	the
memory	blocks	allocated	on	the	stack	will	very	likely	be	moved,	or	their	addresses	will	change.
Consequently,	the	pointers,	which	must	be	also	allocated	on	the	stack,	referencing	these	memory	blocks
also	need	to	be	modified	accordingly.

When	Can	a	Memory	Block	Be	Collected?

Memory	blocks	allocated	for	direct	parts	of	package-level	variables	will	never	be	collected.

The	stack	of	a	goroutine	will	be	collected	as	a	whole	when	the	goroutine	exits.	So	there	is	no	need	to
collect	the	memory	blocks	allocated	on	stacks,	individually,	one	by	one.	Stacks	are	not	collected	by	the
garbage	collector.

For	a	memory	block	allocated	on	heap,	it	can	be	safely	collected	only	if	it	is	no	longer	referenced	(either
directly	or	indirectly)	by	all	the	value	parts	allocated	on	goroutine	stacks	and	the	global	memory	zone.	We
call	such	memory	blocks	as	unused	memory	blocks.	Unused	memory	blocks	on	heap	will	be	collected	by
the	garbage	collector.

Here	is	an	example	to	show	when	some	memory	blocks	can	be	collected:

1| package	main

2|

3| var	p	*int

4|

5| func	main()	{

6| 			done	:=	make(chan	bool)

7| 			//	"done"	will	be	used	in	main	and	the	following

8| 			//	new	goroutine,	so	it	will	be	allocated	on	heap.

9|

10| 			go	func()	{

11| 						x,	y,	z	:=	123,	456,	789

12| 						_	=	z		//	z	can	be	allocated	on	stack	safely.

13| 						p	=	&x	//	For	x	and	y	are	both	ever	referenced

14| 						p	=	&y	//	by	the	global	p,	so	they	will	be	both

15| 													//	allocated	on	heap.

16|

17| 						//	Now,	x	is	not	referenced	by	anyone,	so

18| 						//	its	memory	block	can	be	collected	now.

19|

20| 						p	=	nil

21| 						//	Now,	y	is	als	not	referenced	by	anyone,

22| 						//	so	its	memory	block	can	be	collected	now.
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23|

24| 						done	<-	true

25| 			}()

26|

27| 			<-done

28| 			//	Now	the	above	goroutine	exits,	the	done	channel

29| 			//	is	not	used	any	more,	a	smart	compiler	may

30| 			//	think	it	can	be	collected	now.

31|

32| 			//	...

33| }

Sometimes,	smart	compilers,	such	as	the	standard	Go	compiler,	may	make	some	optimizations	so	that
some	references	are	removed	earlier	than	we	expect.	Here	is	such	an	example.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			//	Assume	the	length	of	the	slice	is	so	large

7| 			//	that	its	elements	must	be	allocated	on	heap.

8| 			bs	:=	make([]byte,	1	<<	31)

9|

10| 			//	A	smart	compiler	can	detect	that	the

11| 			//	underlying	part	of	the	slice	bs	will	never	be

12| 			//	used	later,	so	that	the	underlying	part	of	the

13| 			//	slice	bs	can	be	garbage	collected	safely	now.

14|

15| 			fmt.Println(len(bs))

16| }

Please	read	value	parts	(§17)	to	learn	the	internal	structures	of	slice	values.

By	the	way,	sometimes,	we	may	hope	the	slice	bs 	is	guaranteed	to	not	being	garbage	collected	until
fmt.Println 	is	called,	then	we	can	use	a	runtime.KeepAlive 	function	call	to	tell	garbage	collectors
that	the	slice	bs 	and	the	value	parts	referenced	by	it	are	still	in	use.

For	example,

1| package	main

2|

3| import	"fmt"

4| import	"runtime"

5|

6| func	main()	{

7| 			bs	:=	make([]int,	1000000)

8|
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9| 			fmt.Println(len(bs))

10|

11| 			//	A	runtime.KeepAlive(bs)	call	is	also

12| 			//	okay	for	this	specified	example.

13| 			runtime.KeepAlive(&bs)

14| }

runtime.KeepAlive 	function	calls	are	often	needed	if	unsafe	pointers	(§25)	are	involved.

How	Are	Unused	Memory	Blocks	Detected?

The	current	standard	Go	compiler	(version	1.13)	uses	a	concurrent,	tri-color,	mark-sweep	garbage
collector.	Here	this	article	will	only	make	a	simple	explanation	for	the	algorithm.

A	garbage	collection	(GC)	process	is	divided	into	two	phases,	the	mark	phase	and	the	sweep	phase.	In	the
mark	phase,	the	collector	(a	group	of	goroutines	actually)	uses	the	tri-color	algorithm	to	analyze	which
memory	blocks	are	unused.

The	following	quote	is	token	from	a	Go	blog	article Ң ,	in	which	an	objects	is	either	value	parts	or
memory	blocks.

At	the	start	of	a	GC	cycle	all	objects	are	white.	The	GC	visits	all	roots,	which	are	objects	directly	accessible	by	the	application

such	as	globals	and	things	on	the	stack,	and	colors	these	grey.	The	GC	then	chooses	a	grey	object,	blackens	it,	and	then	scans

it	for	pointers	to	other	objects.	When	this	scan	finds	a	pointer	to	a	white	object,	it	turns	that	object	grey.	This	process	repeats

until	there	are	no	more	grey	objects.	At	this	point,	white	objects	are	known	to	be	unreachable	and	can	be	reused.

About	why	the	algorithm	uses	three	colors	instead	of	two	colors,	please	search	"write	barrier	golang"	for
details.	Here	only	provides	two	references:	eliminate	STW	stack	re-scanning Ң 	and	mbarrier.go Ң .

In	the	sweep	phase,	the	marked	unused	memory	blocks	will	be	collected.

The	GC	algorithm	is	a	non-compacting	one,	so	it	will	not	move	memory	blocks	to	rearrange	them.

When	Will	an	Unused	Memory	Block	Be	Collected?

Unused	heap	memory	blocks	are	viewed	as	garbage	by	Go	runtime	and	will	be	collected	to	reuse	or
release	memory.	The	garbage	collector	is	not	always	running.	It	will	start	when	a	threshold	is	satisfied.	So
an	unused	memory	block	may	be	not	collected	immediately	when	it	becomes	unused.	Instead,	it	will	be
collected	eventually.	Currently	(Go	1.13),	the	threshold	is	controlled	by	GOGC	environment	variable Ң :

The	GOGC	variable	sets	the	initial	garbage	collection	target	percentage.	A	collection	is	triggered	when	the	ratio	of	freshly

allocated	data	to	live	data	remaining	after	the	previous	collection	reaches	this	percentage.	The	default	is	GOGC=100.	Setting

GOGC=off	disables	the	garbage	collector	entirely.

The	value	of	this	environment	variable	determines	the	frequency	of	garbage	collecting,	and	it	can	be
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modified	at	run	time	by	calling	runtime/debug.SetGCPercent Ң 	function.	Smaller	values	lead	to	more
frequent	garbage	collections.	A	negative	percentage	disables	automatical	garbage	collection.

A	garbage	collection	process	can	also	be	started	manually	by	calling	the	runtime.GC Ң 	function.

An	unused	memory	block	may	not	be	released	to	OS	immediately	after	it	is	collected,	so	that	it	can	be
reused	for	new	some	value	parts.	Don't	worry,	the	official	Go	runtime	is	much	less	memory	greedy	than
most	Java	runtimes.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)

§43.	Memory	Blocks

441

https://golang.org/pkg/runtime/debug/#SetGCPercent
https://golang.org/pkg/runtime/#GC
https://go101.org
https://www.tapirgames.com/


Memory	Layouts
This	articles	will	introduce	type	alignment	and	size	guarantees	in	Go.	It	is	essential	to	know	the	guarantees
to	estimate	the	sizes	of	struct	types	and	properly	use	the	64-bit	functions	in	sync/atomic 	standard
package.

Go	is	a	C	family	language,	so	many	concepts	talked	in	this	article	are	shared	with	C	language.

Type	Alignment	Guarantees	in	Go

Type	alignment	guarantees	are	also	called	value	address	alignment	guarantees.	If	the	alignment	guarantee
of	a	type	T 	is	N ,	then	the	address	of	every	value	of	type	T 	must	be	a	multiple	of	N 	at	run	time.	We	can
also	say	the	addresses	of	addressable	values	of	type	T 	are	guaranteed	to	be	N-byte	aligned.

In	fact,	each	type	has	two	alignment	guarantees,	one	is	for	when	it	is	used	as	field	types	of	other	(struct)
types,	the	other	is	for	other	cases	(when	it	is	used	for	a	variable	declaration,	array	element	type,	etc).	We
call	the	former	one	the	field	alignment	guarantee	of	that	type,	and	call	the	latter	one	the	general	alignment
guarantee	of	that	type.

For	a	type	T ,	we	can	call	unsafe.Alignof(t) 	to	get	its	general	alignment	guarantee,	where	t 	is	a	non-
field	value	of	type	T ,	and	call	unsafe.Alignof(x.t) 	to	get	its	field	alignment	guarantee,	where	x 	is	a
struct	value	and	t 	is	a	field	value	of	type	T .

Calls	to	the	functions	in	the	unsafe 	standard	code	packages	are	always	evaluated	at	compile	time.

At	run	time,	for	a	value	t 	of	type	T ,	we	can	call	reflect.TypeOf(t).Align() 	to	get	the	general
alignment	guarantee	of	type	T ,	and	call	reflect.TypeOf(t).FieldAlign() 	to	get	the	field	alignment
guarantee	of	type	T .

For	the	current	standard	Go	compiler	(version	1.13),	the	field	alignment	guarantee	and	the	general
alignment	guarantee	of	a	type	are	always	equal.	For	gccgo	compiler,	the	statement	is	false.

Go	specification	only	mentions	a	little	on	type	alignment	guarantees Ң :

The	following	minimal	alignment	properties	are	guaranteed:

1.	For	a	variable	 x 	of	any	type:	 unsafe.Alignof(x) 	is	at	least	 1 .

2.	For	a	variable	 x 	of	struct	type:	 unsafe.Alignof(x) 	is	the	largest	of	all	the	values	 unsafe.Alignof(x.f) 	for	each	field

f 	of	 x ,	but	at	least	 1 .

3.	For	a	variable	 x 	of	array	type:	 unsafe.Alignof(x) 	is	the	same	as	the	alignment	of	a	variable	of	the	array's	element	type.

So	Go	specification	doesn't	specify	the	exact	alignment	guarantees	for	any	types.	It	just	specifies	some
minimal	requirements.
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For	the	same	compiler,	the	exact	type	alignment	guarantees	may	be	different	between	different
architectures	and	between	different	compiler	versions.	For	the	current	version	(1.13)	of	the	standard	Go
compiler,	the	alignment	guarantees	are	listed	here.

type																						alignment	guarantee

------																				------

bool,	byte,	uint8,	int8			1

uint16,	int16													2

uint32,	int32													4

float32,	complex64								4

arrays																				depend	on	element	types

structs																			depend	on	field	types

other	types															size	of	a	native	word

Here,	the	size	of	a	native	word	(or	machine	word)	is	4-byte	on	32-bit	architectures	and	8-byte	on	64-bit
architectures.

This	means,	for	the	current	version	of	the	standard	Go	compiler,	the	alignment	guarantees	of	other	types
may	be	either	4 	or	8 ,	depends	on	different	build	target	architectures.	This	is	also	true	for	gccgo.

Generally,	we	don't	need	to	care	about	the	value	address	alignments	in	Go	programming,	except	that	we
want	to	optimizing	memory	consumption,	or	write	portable	programs	which	using	the	64-bit	functions
from	sync/atomic 	package.	Please	read	the	following	two	sections	for	details.

Type	Sizes	and	Structure	Padding

Go	specification	only	makes	following	type	size	guarantees Ң :

type																				size	in	bytes

------																		------

byte,	uint8,	int8							1

uint16,	int16											2

uint32,	int32,	float32		4

uint64,	int64											8

float64,	complex64						8

complex128														16

uint,	int															implementation-specific,

																								generally	4	on	32-bit

																								architectures,	and	8	on

																								64-bit	architectures.

uintptr																	implementation-specific,

																								large	enough	to	store

																								the	uninterpreted	bits

																								of	a	pointer	value.

Go	specification	doesn't	make	value	size	guarantees	for	other	kinds	of	types.	The	full	list	of	sizes	of
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different	types	settled	by	the	standard	Go	compiler	are	listed	in	value	copy	costs	(§34).

The	standard	Go	compiler	(and	gccgo)	will	ensure	the	size	of	values	of	a	type	is	a	multiple	of	the
alignment	guarantee	of	the	type.

To	satisfy	type	alignment	guarantees	mentioned	in	the	previous	section,	Go	compilers	may	pad	some	bytes
between	fields	of	struct	values.	This	makes	the	value	size	of	a	struct	type	may	be	not	a	simple	sum	of	the
sizes	of	all	fields	of	the	type.

The	following	is	an	example	showing	how	bytes	are	padded	between	struct	fields.	We	have	already
learned	that

the	alignment	guarantee	and	size	of	the	built-in	type	int8 	are	both	one	byte.
the	alignment	guarantee	and	size	of	the	built-in	type	int16 	are	both	two	bytes.
the	size	of	the	built-in	type	int64 	is	8	bytes,	the	alignment	guarantee	of	type	int64 	is	4	bytes	on
32-bit	architectures	and	8	bytes	on	64-bit	architectures.
the	alignment	guarantees	of	the	types	T1 	and	T2 	are	their	respective	largest	field	alignment
guarantees,	a.k.a.,	the	alignment	guarantee	of	the	int64 	field.	So	their	alignment	guarantees	are
both	4	bytes	on	32-bit	architectures	and	8	bytes	on	64-bit	architectures.
the	sizes	of	the	types	T1 	and	T2 	must	be	multiples	of	their	respective	alignment	guarantees,	a.k.a.,
4N	bytes	on	32-bit	architectures	and	8N	bytes	on	64-bit	architectures.

1| type	T1	struct	{

2| 			a	int8

3|

4| 			//	On	64-bit	architectures,	to	make	field	b

5| 			//	8-byte	aligned,	7	bytes	need	to	be	padded

6| 			//	here.	On	32-bit	architectures,	to	make

7| 			//	field	b	4-byte	aligned,	3	bytes	need	to	be

8| 			//	padded	here.

9|

10| 			b	int64

11| 			c	int16

12|

13| 			//	To	make	the	size	of	type	T1	be	a	multiple

14| 			//	of	the	alignment	guarantee	of	T1,	on	64-bit

15| 			//	architectures,	6	bytes	need	to	be	padded

16| 			//	here,	and	on	32-bit	architectures,	2	bytes

17| 			//	need	to	be	padded	here.

18| }

19| //	The	size	of	T1	is	24	(=	1	+	7	+	8	+	2	+	6)

20| //	bytes	on	64-bit	architectures	and	is	16

21| //	(=	1	+	3	+	8	+	2	+	2)	on	32-bit	architectures.

22|

23| type	T2	struct	{

24| 			a	int8
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25|

26| 			//	To	make	field	c	2-byte	aligned,	one	byte

27| 			//	needs	to	be	padded	here	on	both	64-bit

28| 			//	and	32-bit	architectures.

29|

30| 			c	int16

31|

32| 			//	On	64-bit	architectures,	to	make	field	b

33| 			//	8-byte	aligned,	4	bytes	need	to	be	padded

34| 			//	here.	On	32-bit	architectures,	field	b	is

35| 			//	already	4-byte	aligned,	so	no	bytes	need

36| 			//	to	be	padded	here.

37|

38| 			b	int64

39| }

40| //	The	size	of	T2	is	16	(=	1	+	1	+	2	+	4	+	8)

41| //	bytes	on	64-bit	architectures,	and	is	12

42| //	(=	1	+	1	+	2	+	8)	on	32-bit	architectures.

Although	T1 	and	T2 	have	the	same	field	set,	their	sizes	are	different.

One	interesting	fact	for	the	standard	Go	compiler	is	that	sometimes	zero	sized	fields	may	affect	structure
padding.	Please	read	this	question	in	the	unofficial	Go	FAQ	(§51)	for	details.

The	Alignment	Requirement	for	64-bit	Word	Atomic
Operations

64-bit	words	mean	values	of	types	whose	underlying	types	are	int64 	or	uint64 .

The	article	atomic	operations	(§40)	mentions	a	fact	that	64-bit	atomic	operations	on	a	64-bit	word	require
the	address	of	the	64-bit	word	must	be	8-byte	aligned.	This	is	not	a	problem	for	the	current	64-bit
architectures	supported	by	the	standard	Go	compiler,	because	64-bit	words	on	these	64-bit	architectures
are	always	8-byte	aligned.

However,	on	32-bit	architectures,	the	alignment	guarantee	made	by	the	standard	Go	compiler	for	64-bit
words	is	only	4	bytes.	64-bit	atomic	operations	on	a	64-bit	word	which	is	not	8-byte	aligned	will	panic	at
runtime.	Worse,	on	very	old	CPU	architectures,	64-bit	atomic	functions	are	not	supported.

At	the	end	of	the	sync/atomic 	documentation Ң ,	it	mentions:

On	x86-32,	the	64-bit	functions	use	instructions	unavailable	before	the	Pentium	MMX.	

On	non-Linux	ARM,	the	64-bit	functions	use	instructions	unavailable	before	the	ARMv6k	core.	

On	both	ARM	and	x86-32,	it	is	the	caller's	responsibility	to	arrange	for	64-bit	alignment	of	64-bit	words	accessed	atomically.
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The	first	word	in	a	variable	or	in	an	allocated	struct,	array,	or	slice	can	be	relied	upon	to	be	64-bit	aligned.

So,	things	are	not	very	bad	for	two	reasons.

1.	 The	very	old	CPU	architectures	are	not	mainstream	architectures	nowadays.	If	a	program	needs	to
do	synchronization	for	64-bit	words	on	these	architectures,	there	are	other	synchronization
techniques	(§39)	to	rescue.

2.	 On	other	not-very-old	32-bit	architectures,	there	are	some	ways	to	ensure	some	64-bit	words	are
relied	upon	to	be	64-bit	aligned.

The	ways	are	described	as	the	first	(64-bit)	word	in	a	variable	or	in	an	allocated	struct,	array,	or	slice
can	be	relied	upon	to	be	64-bit	aligned.	What	does	the	word	allocated	mean?	We	can	think	an	allocated
value	as	a	declared	variable,	a	value	returned	the	built-in	make 	function,	or	the	value	referenced	by	a
value	returned	by	the	built-in	new 	function.	If	a	slice	value	derives	from	an	allocated	array	and	the	first
element	of	the	slice	is	the	first	element	of	the	array,	then	the	slice	value	can	also	be	viewed	as	an	allocated
value.

The	description	of	which	64-bit	words	can	be	relied	upon	to	be	64-bit	aligned	on	32-bit	architectures	is
some	conservative.	There	are	more	64-bit	words	which	can	be	relied	upon	to	be	8-byte	aligned.	In	fact,	if
the	first	element	of	an	array	or	slice	which	element	type	is	a	64-bit	word	type	can	be	relied	upon	to	be	64-
bit	aligned,	then	all	elements	in	the	array/slice	can	also	be	accessed	atomically.	It	is	just	some	subtle	and
verbose	to	make	a	simple	clear	description	to	include	all	the	64-bit	words	can	be	relied	upon	to	be	64-bit
aligned	on	32-bit	architectures,	so	the	official	documentation	just	makes	a	conservative	description.

Here	is	an	example	which	lists	some	64-bit	words	which	are	safe	or	unsafe	to	be	accessed	atomically	on
both	64-bit	and	32-bit	architectures.

1| type	(

2| 			T1	struct	{

3| 						v	uint64

4| 			}

5|

6| 			T2	struct	{

7| 						_	int16

8| 						x	T1

9| 						y	*T1

10| 			}

11|

12| 			T3	struct	{

13| 						_	int16

14| 						x	[6]int64

15| 						y	*[6]int64

16| 			}

17| )

18|

19| var	a	int64				//	a	is	safe
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20| var	b	T1							//	b.v	is	safe

21| var	c	[6]int64	//	c[0]	is	safe

22|

23| var	d	T2	//	d.x.v	is	unsafe

24| var	e	T3	//	e.x[0]	is	unsafe

25|

26| func	f()	{

27| 			var	f	int64											//	f	is	safe

28| 			var	g	=	[]int64{5:	0}	//	g[0]	is	safe

29|

30| 			var	h	=	e.x[:]	//	h[0]	is	unsafe

31|

32| 			//	Here,	d.y.v	and	e.y[0]	are	both	safe,

33| 			//	for	*d.y	and	*e.y	are	both	allocated.

34| 			d.y	=	new(T1)

35| 			e.y	=	&[6]int64{}

36|

37| 			_,	_,	_	=	f,	g,	h

38| }

39|

40| //	In	fact,	all	elements	in	c,	g	and	e.y.v	are

41| //	safe	to	be	accessed	atomically,	though	Go

42| //	official	documentation	never	makes	the	guarantees.

If	a	64-bit	word	field	(generally	the	first	one)	of	a	struct	type	will	be	accessed	atomically	in	code,	we
should	always	use	allocated	values	of	the	struct	type	to	guarantee	the	atomically	accessed	fields	always
can	be	relied	upon	to	be	8-byte	aligned	on	32-bit	architectures.	When	this	struct	type	is	used	as	the	type	of
a	field	of	another	struct	type,	we	should	arrange	the	field	as	the	first	field	of	the	other	struct	type,	and
always	use	allocated	values	of	the	other	struct	type.

Sometimes,	if	we	can't	make	sure	whether	or	not	a	64-bit	word	can	be	accessed	atomically,	we	can	use	a
value	of	type	[15]byte 	to	determine	the	address	for	the	64-bit	word	at	run	time.	For	example,

1| package	mylib

2|

3| import	(

4| 			"unsafe"

5| 			"sync/atomic"

6| )

7|

8| type	Counter	struct	{

9| 			x	[15]byte	//	instead	of	"x	uint64"

10| }

11|

12| func	(c	*Counter)	xAddr()	*uint64	{

13| 			//	The	return	must	be	8-byte	aligned.

14| 			return	(*uint64)(unsafe.Pointer(

15| 						uintptr(unsafe.Pointer(&c.x))	+	8	-
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16| 						uintptr(unsafe.Pointer(&c.x))%8))

17| }

18|

19| func	(c	*Counter)	Add(delta	uint64)	{

20| 			p	:=	c.xAddr()

21| 			atomic.AddUint64(p,	delta)

22| }

23|

24| func	(c	*Counter)	Value()	uint64	{

25| 			return	atomic.LoadUint64(c.xAddr())

26| }

By	using	this	solution,	the	Counter 	type	can	be	embedded	in	other	user	types	freely	and	safely,	even	on
32-bit	architectures.	The	drawback	of	this	solution	is	there	are	seven	bytes	being	wasted	for	every	value	of
Counter 	type	and	it	uses	unsafe	pointers.	The	sync 	standard	package	uses	a	[3]uint32 	value	to	do
this	trick	instead Ң .	This	trick	assumes	that	the	alignment	guarantee	of	the	uint32 	type	is	a	multiple	of	4
bytes.	The	assumption	is	true	for	both	the	standard	Go	compiler	and	gccgo	compiler.	However,	it	might	be
false	for	another	third-party	Go	compiler Ң .

Russ	Cox	has	proposed	that	the	addresses	of	64-bit	words	should	always	be	8-byte	aligned Ң ,	on	either
64-bit	or	32-bit	architectures,	to	make	Go	programming	simpler.	Currently	(Go	1.13),	this	proposal	hasn't
been	adopted	yet.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Memory	Leaking	Scenarios
When	programming	in	a	language	supporting	auto	garbage	collection,	generally	we	don't	need	care	about
memory	leaking	problems,	for	the	runtime	will	collect	unused	memory	regularly.	However,	we	do	need	to
be	aware	of	some	special	scenarios	which	may	cause	kind-of	or	real	memory	leaking.	The	remaining	of
the	current	article	will	list	several	such	scenarios.

Kind-of	Memory	Leaking	Caused	by	Substrings

Go	specification	doesn't	specify	whether	or	not	the	result	string	and	base	string	involved	in	a	substring
expression	should	share	the	same	underlying	memory	block	(§43)	to	host	the	underlying	byte	sequences
(§19)	of	the	two	strings.	The	standard	Go	compiler/runtime	does	let	them	share	the	same	underlying
memory	block.	This	is	a	good	design,	which	is	both	memory	and	CPU	consuming	wise.	But	it	may	cause
kind-of	memory	leaking	sometimes.

For	example,	after	the	demo 	function	in	the	following	example	is	called,	there	will	be	about	1M	bytes
memory	leaking	(kind	of),	until	the	package-level	variable	s0 	is	modified	again	elsewhere.

1| var	s0	string	//	a	package-level	variable

2|

3| //	A	demo	purpose	function.

4| func	f(s1	string)	{

5| 			s0	=	s1[:50]

6| 			//	Now,	s0	shares	the	same	underlying	memory	block

7| 			//	with	s1.	Although	s1	is	not	alive	now,	but	s0

8| 			//	is	still	alive,	so	the	memory	block	they	share

9| 			//	couldn't	be	collected,	though	there	are	only	50

10| 			//	bytes	used	in	the	block	and	all	other	bytes	in

11| 			//	the	block	become	unavailable.

12| }

13|

14| func	demo()	{

15| 			s	:=	createStringWithLengthOnHeap(1	<<	20)	//	1M	bytes

16| 			f(s)

17| }

To	avoid	this	kind-of	memory	leaking,	we	can	convert	the	substring	to	a	[]byte 	value	then	convert	the
[]byte 	value	back	to	string .

1| func	f(s1	string)	{

2| 			s0	=	string([]byte(s1[:50]))

3| }

The	drawback	of	the	above	way	to	avoid	the	kind-of	memory	leaking	is	there	are	two	50-byte	duplicates
which	happen	in	the	conversion	process,	one	of	them	is	unnecessary.
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which	happen	in	the	conversion	process,	one	of	them	is	unnecessary.

We	can	make	use	of	one	of	the	optimizations	(§19)	made	by	the	standard	Go	compiler	to	avoid	the
unnecessary	duplicate,	with	a	small	extra	cost	of	one	byte	memory	wasting.

1| func	f(s1	string)	{

2| 			s0	=	("	"	+	s1[:50])[1:]

3| }

The	disadvantage	of	the	above	way	is	the	compiler	optimization	may	become	invalid	later,	and	the
optimization	may	be	not	available	from	other	compilers.

The	third	way	to	avoid	the	kind-of	memory	leaking	is	to	utilize	the	strings.Builder 	supported	since
Go	1.10.

1| import	"strings"

2|

3| func	f(s1	string)	{

4| 			var	b	strings.Builder

5| 			b.Grow(50)

6| 			b.WriteString(s1[:50])

7| 			s0	=	b.String()

8| }

The	disadvantage	of	the	third	way	is	it	is	a	little	verbose	(by	comparing	to	the	first	two	ways).	A	good
news	is,	since	Go	1.12,	we	can	call	the	Repeat 	function	with	the	count 	argument	as	1 	in	the	strings
standard	package	to	clone	a	string.	Since	Go	1.12,	the	underlying	implementation	of	strings.Repeat
will	make	use	of	strings.Builder ,	to	avoid	one	unnecessary	duplicate.

Kind-of	Memory	Leaking	Caused	by	Subslices

Similarly	to	substrings,	subslices	may	also	cause	kind-of	memory	leaking.	In	the	following	code,	after	the
g 	function	is	called,	most	memory	occupied	by	the	memory	block	hosting	the	elements	of	s1 	will	be	lost
(if	no	more	values	reference	the	memory	block).

1| var	s0	[]int

2|

3| func	g(s1	[]int)	{

4| 			//	Assume	the	length	of	s1	is	much	larger	than	30.

5| 			s0	=	s1[len(s1)-30:]

6| }

If	we	want	to	avoid	the	kind-of	memory	leaking,	we	must	duplicate	the	30	elements	for	s0 ,	so	that	the
aliveness	of	s0 	will	not	prevent	the	memory	block	hosting	the	elements	of	s1 	from	being	collected.

1| func	g(s1	[]int)	{
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2| 			s0	=	append([]int(nil),	s1[len(s1)-30:]...)

3| 			//	Now,	the	memory	block	hosting	the	elements

4| 			//	of	s1	can	be	collected	if	no	other	values

5| 			//	are	referencing	the	memory	block.

6| }

Kind-of	Memory	Leaking	Caused	by	Not	Resetting	Pointers
in	Lost	Slice	Elements

In	the	following	code,	after	the	h 	function	is	called,	the	memory	block	allocated	for	the	first	and	the	last
elements	of	slice	s 	will	get	lost.

1| func	h()	[]*int	{

2| 			s	:=	[]*int{new(int),	new(int),	new(int),	new(int)}

3| 			//	do	something	with	s	...

4|

5| 			return	s[1:3:3]

6| }

As	long	as	the	returned	slice	is	still	alive,	it	will	prevent	any	elements	of	s 	from	being	collected,	which	in
consequence	prevents	the	two	memory	blocks	allocated	for	the	two	int 	values	referenced	by	the	first	and
the	last	elements	of	s 	from	being	collected.

If	we	want	to	avoid	such	kind-of	memory	leaking,	we	must	reset	the	pointers	stored	in	the	lost	elements.

1| func	h()	[]*int	{

2| 			s	:=	[]*int{new(int),	new(int),	new(int),	new(int)}

3| 			//	do	something	with	s	...

4|

5| 			//	Reset	pointer	values.

6| 			s[0],	s[len(s)-1]	=	nil,	nil

7| 			return	s[1:3:3]

8| }

We	often	need	to	reset	the	pointers	for	some	old	slice	elements	in	slice	element	deletion	operations	(§18).

Real	Memory	Leaking	Caused	by	Hanging	Goroutines

Sometimes,	some	goroutines	in	a	Go	program	may	stay	in	blocking	state	for	ever.	Such	goroutines	are
called	hanging	goroutines.	Go	runtime	will	not	kill	hanging	goroutines,	so	the	resources	allocated	for	(and
the	memory	blocks	referenced	by)	the	hanging	goroutines	will	never	get	garbage	collected.

There	are	two	reasons	why	Go	runtime	will	not	kill	hanging	goroutines.	One	is	that	sometimes	it	is	hard
for	Go	runtime	to	judge	whether	or	not	a	blocking	goroutine	will	be	blocked	for	ever.	The	other	is
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sometimes	we	deliberately	make	a	goroutine	hanging.	For	example,	sometimes	we	may	let	the	main
goroutine	of	a	Go	program	hang	to	avoid	the	program	exiting.

We	should	avoid	hanging	goroutines	which	are	caused	by	some	logic	mistakes	in	code	design.

Real	Memory	Leaking	Caused	by	Not	Stopping
time.Ticker	Values	Which	Are	Not	Used	Any	More

When	a	time.Timer 	value	is	not	used	any	more,	it	will	be	garbage	collected	after	some	time.	But	this	is
not	true	for	a	time.Ticker 	value.	We	should	stop	a	time.Ticker 	value	when	it	is	not	used	any	more.

Real	Memory	Leaking	Caused	by	Using	Finalizers
Improperly

Setting	a	finalizer	for	a	value	which	is	a	member	of	a	cyclic	reference	group	may	prevent	all	memory
blocks	allocated	for	the	cyclic	reference	group	from	being	collected Ң .	This	is	real	memory	leaking,	not
kind	of.

For	example,	after	the	following	function	is	called	and	exits,	the	memory	blocks	allocated	for	x 	and	y 	are
not	guaranteed	to	be	garbage	collected	in	future	garbage	collecting.

1| func	memoryLeaking()	{

2| 			type	T	struct	{

3| 						v	[1<<20]int

4| 						t	*T

5| 			}

6|

7| 			var	finalizer	=	func(t	*T)	{

8| 							fmt.Println("finalizer	called")

9| 			}

10|

11| 			var	x,	y	T

12|

13| 			//	The	SetFinalizer	call	makes	x	escape	to	heap.

14| 			runtime.SetFinalizer(&x,	finalizer)

15|

16| 			//	The	following	line	forms	a	cyclic	reference

17| 			//	group	with	two	members,	x	and	y.

18| 			//	This	causes	x	and	y	are	not	collectable.

19| 			x.t,	y.t	=	&y,	&x	//	y	also	escapes	to	heap.

20| }

So,	please	avoid	setting	finalizers	for	values	in	a	cyclic	reference	group.
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By	the	way,	we	shouldn't	use	finalizers	as	object	destructors	(§51).

Kind-of	Resource	Leaking	by	Deferring	Function	Calls

Please	read	this	article	(§29)	for	details.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)

§45.	Memory	Leaking	Scenarios

453

https://go101.org
https://www.tapirgames.com/


Some	Simple	Summaries
Index

Types	whose	values	may	have	indirect	underlying	parts.
Types	which	values	can	be	used	as	arguments	of	built-in	len 	function	(and	cap ,	close ,	delete ,
make 	functions).
Comparison	of	built-in	container	types.
Types	which	values	can	be	represented	with	composite	literals	(T{...} ).
Value	sizes	of	all	kinds	of	types.
Types	which	zero	values	can	be	represented	with	nil .
Types	we	can	implement	methods	for.
Types	which	can	be	embedded	in	struct	types.
Functions	whose	calls	will/may	be	evaluated	at	compile	time.
Values	that	can't	be	taken	addresses.
Types	which	don't	support	comparisons.
Which	code	elements	are	allowed	to	be	declared	but	not	used.
Named	source	code	elements	which	can	be	declared	together	within	() .
Named	source	code	elements	which	can	be	declared	both	inside	functions	and	outside	any	functions.
Expressions	which	evaluation	results	may	contain	optional	additional	values.
Ways	to	block	the	current	goroutine	forever	by	using	the	channel	mechanism.
Ways	to	concatenate	strings.
Optimizations	made	by	the	standard	Go	compiler.
Run-time	panic	and	crash	cases.

Types	whose	values	may	have	indirect	underlying	parts

Types	whose	values	may	have	indirect	underlying	parts:

string	types
function	types
slice	types
map	types
channel	types
interface	types

The	answer	is	based	on	the	implementation	of	the	standard	Go	compiler/runtime.	In	fact,	whether	or	not
function	values	may	have	indirect	underlying	parts	is	hardly	to	prove,	and	string	values	and	interface
values	should	be	viewed	as	values	without	indirect	underlying	parts	in	logic.	Please	read	value	parts	(§17)
for	details.
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Types	which	values	can	be	used	as	arguments	of	built-in
len	function	(and	cap,	close,	delete,	make	functions)

len cap close deletemake
string Yes
array

(and	array	pointer)YesYes

slice YesYes Yes
map Yes Yes Yes

channel YesYes Yes Yes

Values	of	above	types	can	also	be	ranged	over	in	for-range	loops.

Types	which	values	can	be	used	as	arguments	of	built-in	function	len 	can	be	called	container	types	in
broad	sense.

Comparison	of	built-in	container	types

Type
Can	New	Elements
Be	Added	into

Values?

Are	Elements	of
Values

Replaceable?

Are	Elements	of
Values

Addressable?

Will	Element
Accesses	Modify
Value	Lengths?

May	Values
Have

Underlying
Parts

string No No No No Yes(1)

array No Yes(2) Yes(2) No No
slice No(3) Yes Yes No Yes
map Yes Yes No No Yes

channel Yes(4) No No Yes Yes

(1)	For	the	standard	Go	compiler/runtime.	
(2)	For	addressable	array	values	only.	
(3)	Generally,	a	slice	value	are	modified	by	assigned	another	slice	value	to	it	by	overwriting	it.	Here,	such
cases	are	not	viewed	as	"add	new	elements".	In	fact,	slice	lengths	can	also	be	modified	separately	by
calling	the	reflect.SetLen 	function.	Increase	the	length	of	a	slice	by	this	way	is	kind	of	adding	new
elements	into	the	slice.	But	the	reflect.SetLen 	function	is	slow,	so	it	is	rarely	used.	
(4)	For	buffered	channels	which	are	still	not	full.

Types	which	values	can	be	represented	with	composite
literals	(T{...})

Values	of	the	following	four	kinds	of	types	can	be	represented	with	composite	literals:

Type	(T ) Is	T{} 	a	Zero	Value	of	T?
struct Yes
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struct Yes

array Yes

slice No
(zero	value	is	nil )

map No
(zero	value	is	nil )

Value	sizes	of	all	kinds	of	types

Please	read	value	copy	cost	(§34)	for	details.

Types	which	zero	values	can	be	represented	with	nil

The	zero	values	of	the	following	types	can	be	represented	with	nil .

Type	(T ) Size	of	T(nil)
pointer 1	word
slice 3	words
map 1	word

channel 1	word
function 1	word
interface 2	words

The	above	listed	sizes	are	for	the	standard	Go	compiler.	One	word	means	4	bytes	on	32-bit	architectures
and	8	bytes	on	64-bit	architectures.	and	the	indirect	underlying	parts	(§17)	of	a	value	don't	contribute	to
the	size	of	the	value.

The	size	of	a	zero	value	of	a	type	is	the	same	as	any	other	values	of	the	same	type.

Types	we	can	implement	methods	for

Please	read	methods	in	Go	(§22)	for	details.

Types	which	can	be	embedded	in	struct	types

Please	read	which	types	can	be	embedded	(§24)	for	details.

Functions	whose	calls	will/may	be	evaluated	at	compile	time

If	a	function	call	is	evaluated	at	compile	time,	its	return	results	must	be	constants.
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Function Return	Type Are	Calls	Always	Evaluated	at	Compile	Time?

unsafe.Sizeof
uintptr Yes,	always.unsafe.Alignof

unsafe.Offsetof

len

int

Not	always.	

From	Go	specification Ң :

the	expression	len(s) 	is	constant	if	s 	is	a	string	constant.
the	expressions	len(s) 	and	cap(s) 	are	constants	if	the
type	of	s 	is	an	array	or	pointer	to	an	array	and	the	expression
s 	does	not	contain	channel	receives	or	(non-constant)
function	calls.

cap

real The	result	is	an
untyped	value.	Its
default	type	is
float64 .

Not	always.	

From	Go	spec Ң :	the	expressions	real(s) 	and	imag(s) 	are
constants	if	s 	is	a	complex	constant.imag

complex

The	result	is	an
untyped	value.	Its
default	type	is
complex128 .

Not	always.	

From	Go	spec Ң :	the	expression	complex(sr,	si) 	is	constant
if	both	sr 	and	si 	are	numeric	constants.

Addressable	and	unaddressable	values

Please	read	this	FAQ	item	(§51)	to	get	which	values	are	addressable	or	unaddressable.

Types	which	don't	support	comparisons

Please	read	this	FAQ	item	(§51)	to	get	which	values	are	addressable	or	unaddressable.

Which	code	elements	are	allowed	to	be	declared	but	not
used

Allowed	to	Be	Declared	but	Not	Used?
import No
type Yes

variable Yes	for	package-level	variables.	
No	for	local	variables	(for	the	standard	compiler).

constant Yes
function Yes
label No
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Named	source	code	elements	which	can	be	declared
together	within	()

Following	source	code	elements	(of	the	same	kind)	can	be	declared	together	within	() :

import
type
variable
constant

Functions	can't	be	declared	together	within	() .	Also	labels.

Named	source	code	elements	which	can	be	declared	both
inside	functions	and	outside	any	functions

Following	named	source	code	elements	can	be	declared	both	inside	functions	and	outside	any	functions:

type
variable
constant

Imports	must	be	declared	before	declarations	of	other	elements	(and	after	the	package	clause).

Functions	can	only	be	declared	outside	any	functions.	Anonymous	functions	can	be	defined	inside	other
function	bodies,	but	such	definitions	are	not	function	declarations.

Labels	must	be	declared	inside	functions.

Expressions	which	evaluation	results	may	contain	optional
additional	values

The	evaluation	results	of	the	following	expressions	may	contain	optional	additional	values:

Syntax
Meaning	of	The	Optional
Value	(ok 	in	the	syntax

examples)

Will	Omitting	the	Optional
Result	Affect	Program

Behavior?
map

element
access

e,	ok	=	aMap[key]
whether	or	not	the	accessed	key

is	present	in	the	map No

channel
value
receive

e,	ok	=	<-	aChannel

whether	or	not	the	received
value	was	sent	before	the

channel	was	closed
No

type whether	or	not	the	dynamic Yes
(when	the	optional	bool	result
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type
assertion

v,	ok	=	anInterface.(T)

whether	or	not	the	dynamic
type	of	the	interface	value
matches	the	asserted	type

(when	the	optional	bool	result
is	omitted,	a	panic	occurs	if

the	assertion	fails.)

Ways	to	block	the	current	goroutine	forever	by	using	the
channel	mechanism

Without	importing	any	package,	we	can	use	the	following	ways	to	make	the	current	goroutine	enter	(and
stay	in)	blocking	state	forever:

1.	 send	a	value	to	a	channel	which	no	ones	will	receive	values	from

make(chan	struct{})	<-	struct{}{}

//	or

make(chan<-	struct{})	<-	struct{}{}

2.	 receive	a	value	from	a	never-closed	channel	which	no	values	have	been	and	will	be	sent	to

<-make(chan	struct{})

//	or

<-make(<-chan	struct{})

//	or

for	range	make(<-chan	struct{})	{}

3.	 receive	a	value	from	(or	send	a	value	to)	a	nil	channel

chan	struct{}(nil)	<-	struct{}{}

//	or

<-chan	struct{}(nil)

//	or

for	range	chan	struct{}(nil)	{}

4.	 use	a	bare	select	block

select{}

Ways	to	concatenate	strings

Please	read	strings	in	Go	(§19)	for	details.

Optimizations	made	by	the	standard	Go	compiler

Please	read	the	Go	101	wiki	article Ң 	for	this	summary.
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Run-time	panic	and	crash	cases

Please	read	the	Go	101	wiki	article Ң 	for	this	summary.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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nils	in	Go
nil 	is	a	frequently	used	and	important	predeclared	identifier	in	Go.	It	is	the	literal	representation	of	zero
values	of	many	kinds	of	types.	Many	new	Go	programmers	with	experiences	of	some	other	popular
languages	may	view	nil 	as	the	counterpart	of	null 	(or	NULL )	in	other	languages.	This	is	partly	right,
but	there	are	many	differences	between	nil 	in	Go	and	null 	(or	NULL )	in	other	languages.

The	remaining	of	this	article	will	list	all	kinds	of	facts	and	details	related	to	nil .

nil	Is	a	Predeclared	Identifier	in	Go

We	can	use	nil 	without	declaring	it.

nil	Can	Represent	Zero	Values	of	Many	Types

In	Go,	nil 	can	represent	zero	values	of	the	following	kinds	of	types:

pointer	types	(including	type-unsafe	ones).
map	types.
slice	types.
function	types.
channel	types.
interface	types.

Predeclared	nil	Has	Not	a	Default	Type

Each	of	other	predeclared	identifiers	in	Go	has	a	default	type.	For	example,

the	default	types	of	true 	and	false 	are	both	bool 	type.
the	default	type	of	iota 	is	int .

But	the	predeclared	nil 	has	not	a	default	type,	though	it	has	many	possible	types.	In	fact,	the	predeclared
nil 	is	the	only	untyped	value	who	has	not	a	default	type	in	Go.	There	must	be	sufficient	information	for
compiler	to	deduce	the	type	of	a	nil 	from	context.

Example:

1| package	main

2|

3| func	main()	{
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4| 			//	There	must	be	sufficient	information	for

5| 			//	compiler	to	deduce	the	type	of	a	nil	value.

6| 			_	=	(*struct{})(nil)

7| 			_	=	[]int(nil)

8| 			_	=	map[int]bool(nil)

9| 			_	=	chan	string(nil)

10| 			_	=	(func())(nil)

11| 			_	=	interface{}(nil)

12|

13| 			//	This	lines	are	equivalent	to	the	above	lines.

14| 			var	_	*struct{}	=	nil

15| 			var	_	[]int	=	nil

16| 			var	_	map[int]bool	=	nil

17| 			var	_	chan	string	=	nil

18| 			var	_	func()	=	nil

19| 			var	_	interface{}	=	nil

20|

21| 			//	This	following	line	doesn't	compile.

22| 			var	_	=	nil

23| }

Predeclared	nil	Is	Not	a	Keyword	in	Go

The	predeclared	nil 	can	be	shadowed.

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			nil	:=	123

7| 			fmt.Println(nil)	//	123

8|

9| 			//	The	following	line	fails	to	compile,

10| 			//	for	nil	represents	an	int	value	now

11| 			//	in	this	scope.

12| 			var	_	map[string]int	=	nil

13| }

(BTW,	null 	and	NULL 	in	many	other	languages	are	also	not	keywords.)

The	Sizes	of	Nil	Values	With	Types	of	Different	Kinds	May
Be	Different
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The	memory	layouts	of	all	values	of	a	type	are	always	the	same.	nil	values	of	the	type	are	not	exceptions
(assume	the	zero	values	of	the	type	can	be	represented	as	nil ).	The	size	of	a	nil	value	is	always	the	same
as	the	sizes	of	non-nil	values	whose	types	are	the	same	as	the	nil	value.	But	nil	values	of	different	kinds	of
types	may	have	different	sizes.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"unsafe"

6| )

7|

8| func	main()	{

9| 			var	p	*struct{}	=	nil

10| 			fmt.Println(	unsafe.Sizeof(	p	)	)	//	8

11|

12| 			var	s	[]int	=	nil

13| 			fmt.Println(	unsafe.Sizeof(	s	)	)	//	24

14|

15| 			var	m	map[int]bool	=	nil

16| 			fmt.Println(	unsafe.Sizeof(	m	)	)	//	8

17|

18| 			var	c	chan	string	=	nil

19| 			fmt.Println(	unsafe.Sizeof(	c	)	)	//	8

20|

21| 			var	f	func()	=	nil

22| 			fmt.Println(	unsafe.Sizeof(	f	)	)	//	8

23|

24| 			var	i	interface{}	=	nil

25| 			fmt.Println(	unsafe.Sizeof(	i	)	)	//	16

26| }

The	sizes	are	compiler	and	architecture	dependent.	The	above	printed	results	are	for	64-bit	architectures
and	the	standard	Go	compiler.	For	32-bit	architectures,	the	printed	sizes	will	be	half.

For	the	standard	Go	compiler,	the	sizes	of	two	values	of	different	types	of	the	same	kind	whose	zero
values	can	be	represented	as	the	predeclared	nil 	are	always	the	same.	For	example,	the	sizes	of	all	values
of	all	different	slice	types	are	the	same.

Two	Nil	Values	of	Two	Different	Types	May	Be	Not
Comparable

For	example,	the	two	comparisons	in	the	following	example	both	fail	to	compile.	The	reason	is,	in	each
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comparison,	neither	operand	can	be	implicitly	converted	to	the	type	of	the	other.

1| //	Compilation	failure	reason:	mismatched	types.

2| var	_	=	(*int)(nil)	==	(*bool)(nil)									//	error

3| var	_	=	(chan	int)(nil)	==	(chan	bool)(nil)	//	error

Please	read	comparison	rules	in	Go	(§48)	to	get	which	two	values	can	be	compared	with	each	other.	Typed
nil 	values	are	not	exceptions	of	the	comparison	rules.

The	code	lines	in	the	following	example	all	compile	okay.

1| type	IntPtr	*int

2| //	The	underlying	of	type	IntPtr	is	*int.

3| var	_	=	IntPtr(nil)	==	(*int)(nil)

4|

5| //	Every	type	in	Go	implements	interface{}	type.

6| var	_	=	(interface{})(nil)	==	(*int)(nil)

7|

8| //	Values	of	a	directional	channel	type	can	be

9| //	converted	to	the	bidirectional	channel	type

10| //	which	has	the	same	element	type.

11| var	_	=	(chan	int)(nil)	==	(chan<-	int)(nil)

12| var	_	=	(chan	int)(nil)	==	(<-chan	int)(nil)

Two	Nil	Values	of	the	Same	Type	May	Be	Not	Comparable

In	Go,	map,	slice	and	function	types	don't	support	comparison.	Comparing	two	values,	including	nil
values,	of	an	incomparable	types	is	illegal.	The	following	comparisons	fail	to	compile.

1| var	_	=	([]int)(nil)	==	([]int)(nil)

2| var	_	=	(map[string]int)(nil)	==	(map[string]int)(nil)

3| var	_	=	(func())(nil)	==	(func())(nil)

But	any	values	of	the	above	mentioned	incomparable	types	can	be	compared	with	the	bare	nil 	identifier.

1| //	The	following	lines	compile	okay.

2| var	_	=	([]int)(nil)	==	nil

3| var	_	=	(map[string]int)(nil)	==	nil

4| var	_	=	(func())(nil)	==	nil

Two	Nil	Values	May	Be	Not	Equal

If	one	of	the	two	compared	nil	values	is	an	interface	value	and	the	other	is	not,	assume	they	are
comparable,	then	the	comparison	result	is	always	false .	The	reason	is	the	non-interface	value	will	be
converted	to	the	type	of	the	interface	value	(§23)	before	making	the	comparison.	The	converted	interface
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value	has	a	concrete	dynamic	type	but	the	other	interface	value	has	not.	That	is	why	the	comparison	result
is	always	false .

Example:

fmt.Println(	(interface{})(nil)	==	(*int)(nil)	)	//	false

Retrieving	Elements	From	Nil	Maps	Will	Not	Panic

Retrieving	element	from	a	nil	map	value	will	always	return	a	zero	element	value.

For	example:

1| fmt.Println(	(map[string]int)(nil)["key"]	)	//	0

2| fmt.Println(	(map[int]bool)(nil)[123]	)					//	false

3| fmt.Println(	(map[int]*int64)(nil)[123]	)			//	<nil>

It	Is	Legal	to	Range	Over	Nil	Channels,	Maps,	Slices,	and
Array	Pointers

The	number	of	loop	steps	by	iterate	nil	maps	and	slices	is	zero.

The	number	of	loop	steps	by	iterate	a	nil	array	pointer	is	the	length	of	its	corresponding	array	type.
(However,	if	the	length	of	the	corresponding	array	type	is	not	zero,	and	the	second	iteration	is	neither
ignored	nor	omitted,	the	iteration	will	panic	at	run	time.)

Ranging	over	a	nil	channel	will	block	the	current	goroutine	for	ever.

For	example,	the	following	code	will	print	0 ,	1 ,	2 ,	3 	and	4 ,	then	block	for	ever.	Hello ,	world 	and
Bye 	will	never	be	printed.

1| for	range	[]int(nil)	{

2| 			fmt.Println("Hello")

3| }

4|

5| for	range	map[string]string(nil)	{

6| 			fmt.Println("world")

7| }

8|

9| for	i	:=	range	(*[5]int)(nil)	{

10| 			fmt.Println(i)

11| }

12|

13| for	range	chan	bool(nil)	{	//	block	here

14| 			fmt.Println("Bye")
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15| }

Invoking	Methods	Through	Non-Interface	Nil	Receiver
Arguments	Will	Not	Panic

Example:

1| package	main

2|

3| type	Slice	[]bool

4|

5| func	(s	Slice)	Length()	int	{

6| 			return	len(s)

7| }

8|

9| func	(s	Slice)	Modify(i	int,	x	bool)	{

10| 			s[i]	=	x	//	panic	if	s	is	nil

11| }

12|

13| func	(p	*Slice)	DoNothing()	{

14| }

15|

16| func	(p	*Slice)	Append(x	bool)	{

17| 			*p	=	append(*p,	x)	//	panic	if	p	is	nil

18| }

19|

20| func	main()	{

21| 			//	The	following	selectors	will	not	cause	panics.

22| 			_	=	((Slice)(nil)).Length

23| 			_	=	((Slice)(nil)).Modify

24| 			_	=	((*Slice)(nil)).DoNothing

25| 			_	=	((*Slice)(nil)).Append

26|

27| 			//	The	following	two	lines	will	also	not	panic.

28| 			_	=	((Slice)(nil)).Length()

29| 			((*Slice)(nil)).DoNothing()

30|

31| 			//	The	following	two	lines	will	panic.	But	panics

32| 			//	will	not	be	triggered	at	the	time	of	invoking

33| 			//	the	methods.	They	will	be	triggered	on

34| 			//	dereferencing	nil	pointers	in	the	method	bodies.

35| 			/*

36| 			((Slice)(nil)).Modify(0,	true)

37| 			((*Slice)(nil)).Append(true)

38| 			*/

39| }
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In	fact,	the	above	implementation	of	the	Append 	method	is	not	perfect,	it	should	be	modified	as	the
following	one.

1| func	(p	*Slice)	Append(x	bool)	{

2| 			if	p	==	nil	{

3| 						*p	=	[]bool{x}

4| 						return

5| 			}

6| 			*p	=	append(*p,	x)

7| }

*new(T)	Results	a	Nil	T	Value	if	the	Zero	Value	of	Type	T
Is	Represented	With	the	Predeclared	nil	Identifier

Example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			fmt.Println(*new(*int)	==	nil)									//	true

7| 			fmt.Println(*new([]int)	==	nil)								//	true

8| 			fmt.Println(*new(map[int]bool)	==	nil)	//	true

9| 			fmt.Println(*new(chan	string)	==	nil)		//	true

10| 			fmt.Println(*new(func())	==	nil)							//	true

11| 			fmt.Println(*new(interface{})	==	nil)		//	true

12| }

Summary

In	Go,	for	simplicity	and	convenience,	nil 	is	designed	as	an	identifier	which	can	be	used	to	represent	the
zero	values	of	some	kinds	of	types.	It	is	not	a	single	value.	It	can	represent	many	values	with	different
memory	layouts.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Value	Conversion,	Assignment	and	Comparison
Rules	in	Go
This	article	will	list	all	the	value	comparison,	conversion	and	comparison	rules	in	Go.

Value	Conversion	Rules

In	Go,	if	a	value	v 	can	be	explicitly	converted	to	type	T ,	the	conversion	can	be	represented	as	the	form
(T)(v) .	For	most	cases,	in	particular	T 	is	a	type	name	(an	identifier),	the	form	can	be	simplified	to
T(v) .

One	fact	we	should	know	is,	when	it	says	a	value	x 	can	be	implicitly	converted	to	a	type	T ,	then	it	means
x 	can	also	be	explicitly	converted	to	type	T .

1.	the	apparent	conversion	rule

If	two	types	denote	the	identical	type,	then	their	values	can	be	implicitly	converted	to	either	type	of	the
two.
For	example,

values	of	type	byte 	and	uint8 	can	be	converted	to	each	other.
values	of	type	rune 	and	int32 	can	be	converted	to	each	other.
values	of	type	[]byte 	and	[]uint8 	can	be	converted	to	each	other.

Nothing	more	to	explain	about	this	rule,	whether	you	think	this	case	involves	conversions	or	not.

2.	underlying	type	related	conversion	rules

Given	a	non-interface	value	x 	and	a	non-interface	type	T ,	assume	the	type	of	x 	is	Tx ,

if	Tx 	and	T 	share	the	same	underlying	type	(§14)	(ignoring	struct	tags),	then	x 	can	be	explicitly
converted	to	T .
if	either	Tx 	or	T 	is	a	non-defined	type	(§14)	and	their	underlying	types	are	identical	(considering
struct	tags),	then	x 	can	be	implicitly	converted	to	T .
if	Tx 	and	T 	have	different	underlying	types,	but	both	Tx 	and	T 	are	non-defined	pointer	types	and
their	base	types	share	the	same	underlying	type	(ignoring	struct	tags),	then	x 	can	(and	must)	be
explicitly	converted	to	T .

(Note,	the	two	ignoring	struct	tags	occurrences	have	taken	effect	since	Go	1.8.)
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An	example:

1| package	main

2|

3| func	main()	{

4| 			//	[]int,	IntSlice	and	MySlice	share

5| 			//	the	same	underlying	type:	[]int

6| 			type	IntSlice	[]int

7| 			type	MySlice		[]int

8|

9| 			var	s		=	[]int{}

10| 			var	is	=	IntSlice{}

11| 			var	ms	=	MySlice{}

12| 			var	x	struct{n	int	`foo`}

13| 			var	y	struct{n	int	`bar`}

14|

15| 			//	The	two	implicit	conversions	both	doesn't	work.

16| 			/*

17| 			is	=	ms	//	error

18| 			ms	=	is	//	error

19| 			*/

20|

21| 			//	Must	use	explicit	conversions	here.

22| 			is	=	IntSlice(ms)

23| 			ms	=	MySlice(is)

24| 			x	=	struct{n	int	`foo`}(y)

25| 			y	=	struct{n	int	`bar`}(x)

26|

27| 			//	Implicit	conversions	are	okay	here.

28| 			s	=	is

29| 			is	=	s

30| 			s	=	ms

31| 			ms	=	s

32| }

Pointer	related	conversion	example:

1| package	main

2|

3| func	main()	{

4| 			type	MyInt	int

5| 			type	IntPtr	*int

6| 			type	MyIntPtr	*MyInt

7|

8| 			var	pi	=	new(int)		//	the	type	of	pi	is	*int

9| 			//	ip	and	pi	have	the	same	underlying	type,

10| 			//	and	the	type	of	pi	is	non-defined,	so

11| 			//	the	implicit	conversion	works.
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12| 			var	ip	IntPtr	=	pi

13|

14| 			//	var	_	*MyInt	=	pi	//	can't	convert	implicitly

15| 			var	_	=	(*MyInt)(pi)	//	ok,	must	explicitly

16|

17| 			//	Values	of	*int	can't	be	converted	to	MyIntPtr

18| 			//	directly,	but	can	indirectly.

19| 			/*

20| 			var	_	MyIntPtr	=	pi		//	can't	convert	implicitly

21| 			var	_	=	MyIntPtr(pi)	//	can't	convert	explicitly

22| 			*/

23| 			var	_	MyIntPtr	=	(*MyInt)(pi)		//	ok

24| 			var	_	=	MyIntPtr((*MyInt)(pi))	//	ok

25|

26| 			//	Values	of	IntPtr	can't	be	converted	to

27| 			//	MyIntPtr	directly,	but	can	indirectly.

28| 			/*

29| 			var	_	MyIntPtr	=	ip		//	can't	convert	implicitly

30| 			var	_	=	MyIntPtr(ip)	//	can't	convert	explicitly

31| 			*/

32| 			var	_	MyIntPtr	=	(*MyInt)((*int)(ip))		//	ok

33| 			var	_	=	MyIntPtr((*MyInt)((*int)(ip)))	//	ok

34| }

3.	channel	specific	conversion	rule

Assume	Tx 	is	a	bidirectional	channel	type,	T 	is	also	a	channel	type	(bidirectional	or	not),	if	Tx 	and	T
have	the	identical	element	type,	and	either	Tx 	or	T 	is	a	non-defined	type,	then	x 	can	be	implicitly
converted	to	T .
Example:

1| package	main

2|

3| func	main()	{

4| 			type	C	chan	string

5| 			type	C1	chan<-	string

6| 			type	C2	<-chan	string

7|

8| 			var	ca	C

9| 			var	cb	chan	string

10|

11| 			cb	=	ca	//	ok,	same	underlying	type

12| 			ca	=	cb	//	ok,	same	underlying	type

13|

14| 			//	The	4	lines	compile	okay	for	this	3rd	rule.

15| 			var	_,	_	chan<-	string	=	ca,	cb	//	ok

§48.	Value	Conversion,	Assignment	and	Comparison	Rules	in	Go

470



16| 			var	_,	_	<-chan	string	=	ca,	cb	//	ok

17| 			var	_	C1	=	cb																			//	ok

18| 			var	_	C2	=	cb																			//	ok

19|

20| 			//	Values	of	C	can't	be	converted

21| 			//	to	C1	and	C2	directly.

22| 			/*

23| 			var	_	=	C1(ca)	//	compile	error

24| 			var	_	=	C2(ca)	//	compile	error

25| 			*/

26|

27| 			//	Values	of	C	can	be	converted

28| 			//	to	C1	and	C2	indirectly.

29| 			var	_	=	C1((chan<-	string)(ca))	//	ok

30| 			var	_	=	C2((<-chan	string)(ca))	//	ok

31| 			var	_	C1	=	(chan<-	string)(ca)		//	ok

32| 			var	_	C2	=	(<-chan	string)(ca)		//	ok

33| }

4.	interface	implementation	related	conversion	rules

Given	a	value	x 	and	an	interface	type	I ,	if	the	type	(or	the	default	type)	of	x 	is	Tx 	and	Tx 	implements
I ,	then	x 	can	be	implicitly	converted	to	type	I .	The	conversion	result	is	an	interface	value	(of	type	I ),
which	boxes

a	copy	of	x ,	if	Tx 	is	a	non-interface	type;
a	copy	of	the	dynamic	value	of	x ,	if	Tx 	is	an	interface	type.

Given	an	interface	value	x 	with	its	dynamic	type	as	T ,	x 	can	be	safely	converted	to	type	T 	through	the
type	assertion	syntax	x.(T) .
Given	an	interface	value	x 	and	an	interface	type	I ,	if	the	dynamic	type	of	x 	implements	I ,	then	x 	can	be
safely	converted	to	I 	through	the	type	assertion	syntax	x.(I) .

Please	read	interfaces	in	Go	(§23)	for	details	and	examples.

5.	untyped	value	conversion	rule

An	untyped	value	can	be	implicitly	converted	to	type	T ,	if	the	untyped	value	can	represent	as	values	of
type	T .
Example:

1| package	main

2|

3| func	main()	{
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4| 			var	_	[]int	=	nil

5| 			var	_	map[string]int	=	nil

6| 			var	_	chan	string	=	nil

7| 			var	_	func()()	=	nil

8| 			var	_	*bool	=	nil

9| 			var	_	interface{}	=	nil

10|

11| 			var	_	int	=	123.0

12| 			var	_	float64	=	123

13| 			var	_	int32	=	1.23e2

14| 			var	_	int8	=	1	+	0i

15| }

6.	constants	conversion	rule

(This	rule	is	some	overlapped	with	the	last	one.)

Generally,	converting	a	constant	still	yields	a	constant	as	result.	(Except	converting	a	constant	string	to
byte	slice	or	rune	slice	described	in	the	below	8th	rules.)

Given	a	constant	value	x 	and	a	type	T ,	if	x 	is	representable	as	a	value	of	type	T ,	then	x 	can	be	explicitly
converted	to	T .	In	particular	if	x 	is	an	untyped	value,	then	x 	can	be	implicitly	converted	to	T .
Example:

1| package	main

2|

3| func	main()	{

4| 			const	I	=	123

5| 			const	I1,	I2	int8	=	0x7F,	-0x80

6| 			const	I3,	I4	int8	=	I,	0.0

7|

8| 			const	F	=	0.123456789

9| 			const	F32	float32	=	F

10| 			const	F32b	float32	=	I

11| 			const	F64	float64	=	F

12| 			const	F64b	=	float64(I3)	//	must	be	explicitly

13|

14| 			const	C1,	C2	complex64	=	F,	I

15| 			const	I5	=	int(C2)	//	must	be	explicitly

16| }

7.	non-constant	number	conversion	rules

Non-constant	floating-point	and	integer	values	can	be	explicitly	converted	to	any	floating-point	and
integer	types.
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Non-constant	complex	values	can	be	explicitly	converted	to	any	complex	types.
Note,

Complex	non-constant	values	can't	be	converted	to	floating-point	and	integer	types.
Floating-point	and	integer	non-constant	values	can't	be	converted	to	complex	types.
Data	overflow	and	rounding	are	allowed	in	non-constant	number	conversions.	When	converting	a
floating-point	non-constant	number	to	an	integer,	the	fraction	is	discarded	(truncation	towards	zero).

An	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	a,	b	=	1.6,	-1.6	//	both	are	float64

7| 			fmt.Println(int(a),	int(b))	//	1	-1

8|

9| 			var	i,	j	int16	=	0x7FFF,	-0x8000

10| 			fmt.Println(int8(i),	uint16(j))	//	-1	32768

11|

12| 			var	c1	complex64	=	1	+	2i

13| 			var	_	=	complex128(c1)

14| }

8.	string	related	conversion	rules

If	the	type	(or	default	type)	of	a	value	is	an	integer	type,	then	the	value	can	be	explicitly	converted	to
string	types.
A	string	value	can	be	explicitly	converted	to	a	slice	type	whose	underlying	type	is	[]byte 	(a.k.a.,
[]uint8 ),	and	vice	versa.
A	string	value	can	be	explicitly	converted	to	a	slice	type	whose	underlying	type	is	[]rune 	(a.k.a.,
[]int32 ),	and	vice	versa.

Please	read	strings	in	Go	(§19)	for	details	and	examples.

9.	unsafe	pointers	related	conversion	rules

A	pointer	value	of	any	type	can	be	explicitly	converted	to	a	type	whose	underlying	type	is
unsafe.Pointer ,	and	vice	versa.
An	uintptr	value	can	be	explicitly	converted	to	a	type	whose	underlying	type	is	unsafe.Pointer ,	and
vice	versa.

Please	read	type-unsafe	pointers	in	Go	(§25)	for	details	and	examples.
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Value	Assignment	Rules

Assignments	can	be	viewed	as	implicit	conversions.	Implicit	conversion	rules	are	listed	among	all
conversion	rules	in	the	last	section.

Besides	these	rules,	the	destination	values	in	assignments	must	be	addressable	values,	map	index
expressions,	or	the	blank	identifier.

In	an	assignment,	the	source	value	is	copied	to	the	destination	value.	Precisely	speaking,	the	direct	part
(§17)	of	the	source	value	is	copied	to	the	destination	value.

Note,	parameter	passing	and	result	returning	are	both	value	assignments	actually.

Value	Comparison	Rules

Go	specification	states Ң :

In	any	comparison,	the	first	operand	must	be	assignable	to	the	type	of	the	second	operand,	or	vice
versa.

So,	the	comparison	rule	is	much	like	the	assignment	rule.	In	other	words,	two	values	are	comparable	if	one
of	them	can	be	implicitly	converted	to	the	type	of	the	other.	Right?	Almost,	for	there	is	an	exception	for
the	above	basic	comparison	rule.

If	one	of	the	two	operands	in	a	comparison	is	an	interface	value,	and	the	other	operand	is	a	non-
interface	value	of	an	incomparable	type	(§14)	(which	should	implement	the	former	operand
interface	type),	then	the	comparison	is	invalid,	even	if	the	non-interface	value	can	be	implicitly
converted	to	the	interface	type.

Note,	although	values	of	slice/map/function	types	don't	support	comparisons,	they	can	be	compared	with
untyped	nil	values	(a.k.a.,	bare	nil 	identifiers).

The	above	described	basic	rules	don't	cover	all	cases.	What	about	if	both	of	the	two	operands	in	a
comparison	are	untyped	(constant)	values?	The	additional	rules	are	simple:

untyped	boolean	values	can	be	compared	with	untyped	boolean	values.
untyped	numeric	values	can	be	compared	with	untyped	numeric	values.
untyped	string	values	can	be	compared	with	untyped	string	values.

The	results	of	comparing	two	untyped	numeric	values	obey	intuition.

Note,	an	untyped	nil	value	can't	be	compared	with	another	untyped	nil	value.

Any	comparison	results	an	untyped	boolean	value.
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The	following	example	shows	some	incomparable	types	related	comparisons.

1| package	main

2|

3| //	Some	variables	of	incomparable	types.

4| var	s	[]int

5| var	m	map[int]int

6| var	f	func()()

7| var	t	struct	{x	[]int}

8| var	a	[5]map[int]int

9|

10| func	main()	{

11| 			//	The	following	lines	fail	to	compile.

12| 			/*

13| 			_	=	s	==	s

14| 			_	=	m	==	m

15| 			_	=	f	==	f

16| 			_	=	t	==	t

17| 			_	=	a	==	a

18| 			_	=	nil	==	nil

19| 			_	=	s	==	interface{}(nil)

20| 			_	=	m	==	interface{}(nil)

21| 			_	=	f	==	interface{}(nil)

22| 			*/

23|

24| 			//	The	following	lines	compile	okay.

25| 			_	=	s	==	nil

26| 			_	=	m	==	nil

27| 			_	=	f	==	nil

28| 			_	=	123	==	interface{}(nil)

29| 			_	=	true	==	interface{}(nil)

30| 			_	=	"abc"	==	interface{}(nil)

31| }

How	Are	Two	Values	Compared?

Assume	two	values	are	comparable,	and	they	have	the	same	type	T .	(If	they	have	different	types,	one	of
them	must	be	implicitly	convertible	to	the	type	of	the	other.	Here	we	don't	consider	the	cases	in	which
both	the	two	values	are	untyped.)

1.	 If	T 	is	a	boolean	type,	then	the	two	values	are	equal	only	if	they	are	both	true 	or	both	false .
2.	 If	T 	is	an	integer	type,	then	the	two	values	are	equal	only	if	they	have	the	same	representation	in

memory.
3.	 If	T 	is	a	floating-point	type,	then	the	two	values	are	equal	only	if	any	of	the	following	conditions	is

satisfied:
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they	are	both	+Inf .
they	are	both	-Inf .
each	of	them	is	either	-0.0 	or	+0.0 .
they	are	both	not	NaN 	and	they	have	the	same	bytes	representations	in	memory.

4.	 If	T 	is	a	complex	type,	then	the	two	values	are	equal	only	if	their	real	parts	(as	floating-point	values)
and	imaginary	parts	(as	floating-point	values)	are	both	equal.

5.	 If	T 	is	a	pointer	type	(either	safe	or	unsafe),	then	the	two	values	are	equal	only	if	the	memory
addresses	stored	in	them	are	equal.

6.	 If	T 	is	a	channel	type,	the	two	channel	values	are	equal	if	they	both	reference	the	same	underlying
internal	channel	structure	value	or	they	are	both	nil	channels.

7.	 If	T 	is	a	struct	type,	then	each	pair	of	the	corresponding	fields	of	the	two	struct	values	will	be
compared	(§16).

8.	 If	T 	is	an	array	type,	then	each	pair	of	the	corresponding	elements	of	the	two	array	values	will	be
compared	(§18).

9.	 If	T 	is	an	interface	type,	please	read	how	two	interface	values	are	compared	(§23).
10.	 If	T 	is	a	string	type,	please	read	how	two	string	values	are	compared	(§19).

Please	note,	comparing	two	interfaces	with	the	same	incomparable	dynamic	type	produces	a	panic.	The
following	is	an	example	in	which	some	panics	will	occur	in	comparisons.

1| package	main

2|

3| func	main()	{

4| 			type	T	struct	{

5| 						a	interface{}

6| 						b	int

7| 			}

8| 			var	x	interface{}	=	[]int{}

9| 			var	y	=	T{a:	x}

10| 			var	z	=	[3]T{{a:	y}}

11|

12| 			//	Each	of	the	following	line	can	produce	a	panic.

13| 			_	=	x	==	x

14| 			_	=	y	==	y

15| 			_	=	z	==	z

16| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Syntax/Semantics	Exceptions	in	Go
This	article	will	list	all	kinds	of	syntax/semantics	exceptions	in	Go.	Some	of	these	exceptions	are	syntactic
sugars	to	make	programming	convenient,	some	are	caused	built-in	generic	privileges,	some	exists	for
history	reasons,	and	some	exists	for	other	reasons	in	logic.

Nested	function	calls

The	basic	rule:

If	the	number	of	the	return	results	of	a	function	call	is	not	zero,	and	the	return	results	can	be	used
as	the	whole	arguments	of	another	function	call,	then	the	former	function	call	can	be	nested	in	the
latter	function	call,	the	former	nested	call	can't	mix	up	with	other	arguments	of	the	latter	nesting
call.

Sugar:

If	a	function	call	returns	exactly	one	result,	then	the	function	call	can	be	always	be	used	as	a
single-value	argument	in	other	function	calls,	the	single-result	function	call	can	mix	up	with	other
arguments	of	the	nesting	function	calls.

Exception:

For	the	standard	Go	compiler	(but	not	for	gccgo),	the	basic	rule	doesn't	apply	to	nesting	calls	to
built-in	print 	and	println 	functions.	Calls	to	these	functions	can't	nest	multi-result	function
calls	as	arguments.

(The	above	exception	will	be	removed	from	Go	SDK	1.15 Ң .)

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| )

6|

7| func	f0()	float64	{return	1}

8| func	f1()	(float64,	float64)	{return	1,	2}

9| func	f2(float64,	float64)	{}

10| func	f3(float64,	float64,	float64)	{}

11| func	f4()(x,	y	[]int)	{return}

12| func	f5()(x	map[int]int,	y	int)	{return}

13|

14| type	I	interface	{m()(float64,	float64)}

15| type	T	struct{}

16| func	(T)	m()(float64,	float64)	{return	1,	2}
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17|

18| func	main()	{

19| 			//	These	lines	compile	okay.

20| 			f2(f0(),	123)

21| 			f2(f1())

22| 			fmt.Println(f1())

23| 			_	=	complex(f1())

24| 			_	=	complex(T{}.m())

25| 			f2(I(T{}).m())

26|

27| 			//	These	lines	don't	compile.

28| 			/*

29| 			f3(123,	f1())

30| 			f3(f1(),	123)

31| 			println(f1())

32| 			*/

33|

34| 			//	The	following	3	lines	compiles	okay

35| 			//	only	since	Go	SDK	1.13.

36| 			copy(f4())

37| 			delete(f5())

38| 			_	=	complex(I(T{}).m())

39| }

Select	struct	fields

The	basic	rule:

Pointer	values	have	no	fields.

Sugar:

We	can	select	the	fields	of	a	struct	value	through	pointers	of	the	struct	value.

Example:

1| package	main

2|

3| type	T	struct	{

4| 			x	int

5| }

6|

7| func	main()	{

8| 			var	t	T

9| 			var	p	=	&t

10|

11| 			p.x	*=	2

12| 			//	The	above	line	is	a	sugar	of	the	following	line.

13| 			(*p).x	*=	2

14| }

§49.	Syntax/Semantics	Exceptions	in	Go

478



Receiver	arguments	of	method	calls

The	basic	rule:

The	methods	explicitly	declared	for	type	*T 	are	not	methods	of	type	T 	for	sure.

Sugar:

Although	the	methods	explicitly	defined	on	type	*T 	are	not	methods	of	type	T ,	addressable
values	of	type	T 	can	be	used	as	the	receiver	arguments	of	calls	to	these	methods.

Example:

1| package	main

2|

3| type	T	struct	{

4| 			x	int

5| }

6|

7| func	(pt	*T)	Double()	{

8| 			pt.x	*=	2

9| }

10|

11| func	main()	{

12| 			//	T{3}.Double()	//	This	line	fails	to	compile.

13|

14| 			var	t	=	T{3}

15|

16| 			t.Double()	//	t.x	==	6	now

17| 			//	The	above	line	is	a	sugar	of	the	following	line.

18| 			(&t).Double()	//	t.x	==	12	now

19| }

Take	addresses	of	composite	literal	values

The	basic	rule:

Literal	values	are	unaddressable	and	unaddressable	values	can't	be	taken	addresses.

Sugar:

Although	composite	literal	values	are	not	addressable,	they	can	be	taken	addresses	explicitly.

Please	read	structs	(§16)	and	containers	(§18)	for	details.

Selectors	on	defined	one-Level	pointers
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The	basic	rule:

Generally,	selectors	can't	be	used	on	values	of	defined	(§14)	pointer	types.

Sugar:

If	x 	is	a	value	of	a	defined	one-level	pointer	type,	and	selector	(*x).f 	is	a	legal	selector,	then
the	x.f 	is	also	a	legal	selector,	it	can	be	viewed	as	a	shorthand	of	(*x).f .

Selectors	can	never	be	used	on	values	of	multi-level	pointer	types,	no	matter	whether	the	multi-level
pointer	types	are	defined	or	not.

Exception	of	the	sugar:

The	sugar	is	only	valid	if	f 	denotes	a	struct	field,	it	is	not	valid	if	f 	denotes	a	method.

Example:

1| package	main

2|

3| type	T	struct	{

4| 			x	int

5| }

6|

7| func	(T)	y()	{

8| }

9|

10| type	P	*T

11| type	PP	**T	//	a	multi-level	pointer	type

12|

13| func	main()	{

14| 			var	t	T

15| 			var	p	P	=	&t

16| 			var	pt	=	&t			//	type	of	pt	is	*T

17| 			var	ppt	=	&pt	//	type	of	ppt	is	**T

18| 			var	pp	PP	=	ppt

19| 			_	=	pp

20|

21| 			_	=	(*p).x	//	legal

22| 			_	=	p.x				//	also	legal	(for	x	is	a	field)

23|

24| 			_	=	(*p).y	//	legal

25| 			//	_	=	p.y	//	illegal	(for	y	is	a	method)

26|

27| 			//	Following	ones	are	all	illegal.

28| 			/*

29| 			_	=	ppt.x

30| 			_	=	ppt.y

31| 			_	=	pp.x

32| 			_	=	pp.y

33| 			*/
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34| }

The	addressability	of	a	container	and	its	elements

The	basic	rule:

If	a	container	is	addressable,	then	its	elements	are	also	addressable.

Exception:

Elements	of	a	map	are	always	unaddressable,	even	if	the	map	itself	is	addressable.

Sugar:

Elements	of	a	slice	are	always	addressable,	even	if	the	slice	itself	is	not	addressable.

Example:

1| package	main

2|

3| func	main()	{

4| 			var	m	=	map[string]int{"abc":	123}

5| 			_	=	&m	//	okay

6|

7| 			//	The	exception:

8| 			//	p	=	&m["abc"]	//	error:	map	elements	are	unaddesable

9|

10| 			//	The	sugar:

11| 			f	:=	func()	[]int	{	//	return	results	are	unaddressable

12| 						return	[]int{0,	1,	2}

13| 			}

14| 			//	_	=	&f()	//	error:	f()	is	unaddressable

15| 			_	=	&f()[2]	//	okay

16| }

Modify	unaddressable	values

The	basic	rule:

Unaddressable	values	can't	be	modified.	In	other	words,	unaddressable	values	shouldn't	appear	in
assignments	as	destination	values.

Exception:

Although	map	element	values	are	unaddressable,	they	can	be	modified	and	appear	in	assignments
as	destination	values.	(But	map	elements	can't	be	modified	partially,	they	can	only	be	overwritten
wholly,	a.k.a.,	replaced.)

Example:

1| package	main

2|
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3| func	main()	{

4| 			type	T	struct	{

5| 						x	int

6| 			}

7|

8| 			var	mt	=	map[string]T{"abc":	{123}}

9| 			//	Map	elements	are	unaddressable.

10| 			//	_	=	&mt["abc"]	//	error

11| 			//	Partial	modification	is	not	allowed.

12| 			//	mt["abc"].x	=	456	//	error

13| 			//	It	is	ok	to	replace	a	map	element	as	a	whole.

14| 			mt["abc"]	=	T{x:	789}

15| }

Function	Parameters

The	basic	rule:

Each	parameter	is	a	value	of	some	type.

Exception:

The	first	parameters	of	the	built-in	make 	and	new 	functions	are	types.

Function	names	in	one	package

The	basic	rule:

Names	of	declared	functions	can't	be	duplicated	in	one	package.

Exception:

There	can	be	multiple	functions	declared	with	names	as	init 	(and	types	as	func() ).

Function	calls

The	basic	rule:

Functions	whose	names	are	not	the	blank	identifier	can	be	called	in	user	code.

Exception:

init 	functions	can't	be	called	in	user	code.

Functions	being	used	as	values

The	basic	rule:
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Declared	functions	can	be	used	as	function	values.

Exception	1:

None	of	the	built-in	functions,	which	declared	in	the	builtin 	and	unsafe 	standard	packages,
can	be	used	as	function	values.

Exception	2:

init 	functions	can	not	be	used	as	function	values.

Example:

1| package	main

2|

3| import	"fmt"

4| import	"unsafe"

5|

6| func	init()	{}

7|

8| func	main()	{

9| 			//	These	ones	are	okay.

10| 			var	_	=	main

11| 			var	_	=	fmt.Println

12|

13| 			//	These	ones	fail	to	compile.

14| 			var	_	=	panic

15| 			var	_	=	unsafe.Sizeof

16| 			var	_	=	init

17| }

Discard	return	values	of	function	calls

The	basic	rule:

The	return	values	of	a	function	call	can	be	discarded	all	together.

Exception:

The	return	values	of	calls	to	the	built-in	functions	which	are	declared	in	the	builtin 	and
unsafe 	standard	packages,	can't	be	discarded,	if	the	called	function	has	return	results.

Exception	in	exception:

The	return	values	of	a	call	to	the	built-in	copy 	and	recover 	functions	can	be	all	discarded,	even
if	the	two	functions	have	return	results.

Declared	variables

The	basic	rule:

Declared	variables	are	always	addressable.
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Exception:

The	predeclared	nil Ң 	variable	is	not	addressable.

So,	nil 	is	an	immutable	variable.

Argument	passing

The	basic	rule:

An	argument	can	be	passed	to	the	corresponding	function	parameter	only	if	the	argument	is
assignable	to	the	corresponding	function	parameter	type.

Sugar:

If	the	first	slice	argument	of	a	copy 	and	append 	function	call	is	a	byte	slice,	then	the	second
argument	can	be	a	string,	whereas	a	string	value	is	not	assignable	to	the	second	parameter	type
(also	a	byte	slice).	(For	an	append 	call,	assume	the	second	argument	is	passed	with	the	form
arg... .)

Example:

1| package	main

2|

3| func	main()	{

4| 			var	bs	=	[]byte{1,	2,	3}

5| 			var	s	=	"xyz"

6|

7| 			copy(bs,	s)

8| 			//	The	above	line	is	a	sugar	(and	an	optimization)

9| 			//	for	the	following	line.

10| 			copy(bs,	[]byte(s))

11|

12| 			bs	=	append(bs,	s...)

13| 			//	The	above	line	is	a	sugar	(and	an	optimization)

14| 			//	for	the	following	line.

15| 			bs	=	append(bs,	[]byte(s)...)

16| }

Comparisons

The	basic	rule:

Map,	slice	and	function	types	don't	support	comparison.

Exception:

Map,	slice	and	function	values	can	be	compared	to	the	predeclared	untyped	nil 	identifier.

Example:
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1| package	main

2|

3| func	main()	{

4| 			var	s1	=	[]int{1,	2,	3}

5| 			var	s2	=	[]int{7,	8,	9}

6| 			//_	=	s1	==	s2	//	error:	slice	values	can't	be	compared

7| 			_	=	s1	==	nil	//	ok

8| 			_	=	s2	==	nil	//	ok

9|

10| 			var	m1	=	map[string]int{}

11| 			var	m2	=	m1

12| 			//	_	=	m1	==	m2	//	error:	map	values	can't	be	compared

13| 			_	=	m1	==	nil

14| 			_	=	m2	==	nil

15|

16| 			var	f1	=	func(){}

17| 			var	f2	=	f1

18| 			//	_	=	f1	==	f2	//	error:	functions	can't	be	compared

19| 			_	=	f1	==	nil

20| 			_	=	f2	==	nil

21| }

Comparisons	2

The	basic	rule:

If	a	value	is	assignable	to	the	type	of	another	value,	then	the	two	values	can	be	compared.

Exception:

The	values	of	a	non-interface	incomparable	type	can't	be	compared	to	values	of	an	interface	type,
even	if	the	non-interface	incomparable	type	implements	the	interface	type	(so	values	of	the	non-
interface	incomparable	type	are	assignable	to	the	interface	type).

Please	read	comparison	rules	(§48)	for	examples.

Blank	composite	literals

The	basic	rule:

If	the	values	of	a	type	T 	can	be	represented	with	composite	literals,	then	T{} 	is	its	zero	value.

Exception:

For	a	map	or	a	slice	type	T ,	T{} 	isn't	its	zero	value.	Its	zero	value	is	represented	with	nil .

Example:

1| package	main

2|
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3| import	"fmt"

4|

5| func	main()	{

6| 			//	new(T)	returns	the	address	of	a	zero	value	of	type	T.

7|

8| 			type	T0	struct	{

9| 						x	int

10| 			}

11| 			fmt.Println(	T0{}	==	*new(T0)	)	//	true

12| 			type	T1	[5]int

13| 			fmt.Println(	T1{}	==	*new(T1)	)	//	true

14|

15| 			type	T2	[]int

16| 			fmt.Println(	T2{}	==	nil	)	//	false

17| 			type	T3	map[int]int

18| 			fmt.Println(	T3{}	==	nil	)	//	false

19| }

Container	element	iterations

The	basic	rule:

Only	container	values	can	be	ranged,	the	iterated	values	are	container	elements.	The	element
key/index	will	also	be	returned	alongside	of	each	iterated	element.

Exception	1:

The	iterated	values	are	runes	if	the	ranged	containers	are	strings,	instead	of	the	byte	elements	of
strings.

Exception	2:

The	element	index	(order)	will	not	be	returned	alongside	of	each	iterated	element	when	iterating
channels.

Sugar:

Array	pointers	can	also	be	ranged	to	iterate	array	elements,	though	pointers	are	not	containers.

Methods	of	built-in	types

The	basic	rule:

Generally,	built-in	types	have	no	methods.

Exception:

The	built-in	error 	type	has	a	Error()	string 	method.

Types	of	values
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The	basic	rule:

Each	value	has	either	a	type	or	a	default	type.

Exception:

Untyped	nil 	has	neither	a	type	nor	a	default	type.

Constant	values

The	basic	rule:

Constant	values	never	change.	Constant	can	be	assigned	to	variables.

Exception:

Predeclared	iota 	is	a	built-in	constant	which	is	bound	with	0 ,	but	its	value	is	not	constant.	Its
value	will	start	from	0 	and	increase	one	constant	specification	by	constant	specification	in	a
constant	declaration,	though	the	increments	happen	at	compile	time.

Exception	2:

iota 	can	only	be	used	within	constant	declarations.	It	can't	be	assigned	to	variables	in	variable
declarations.

Behavior	change	caused	by	discarding	the	optional
evaluation	results	of	expressions

The	basic	rule:

Whether	or	not	the	optional	evaluation	result	of	an	expression	is	present	will	not	affect	program
behavior.

Exception:

Missing	the	optional	result	value	in	a	type	assertion	will	make	current	goroutine	panic	if	the	type
assertion	fails.

Example:

1| package	main

2|

3| func	main()	{

4| 			var	ok	bool

5|

6| 			var	m	=	map[int]int{}

7| 			_,	ok	=	m[123]	//	will	not	panic

8| 			_	=	m[123]					//	will	not	panic

9|

10| 			var	c	=	make(chan	int,	2)

11| 			c	<-	123

12| 			close(c)
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13| 			_,	ok	=	<-c	//	will	not	panic

14| 			_	=	<-c					//	will	not	panic

15|

16| 			var	v	interface{}	=	"abc"

17| 			_,	ok	=	v.(int)	//	will	not	panic

18| 			_	=	v.(int)					//	will	panic!

19| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Go	Details	101
Index:

Code	package	related	details:
A	package	can	be	imported	more	than	once	in	a	source	file.
The	comment	//	import	"x.y.z/mypkg" 	following	package	mypkg 	is	meaningful	for
the	standard	Go	compiler.

Control	flow	related	details:
The	default 	branch	in	switch 	and	select 	blocks	can	be	put	before	all	case 	branches,
after	all	case 	branches,	or	between	case 	branches.
The	numeric	constant	case	expressions	in	a	switch 	block	can't	be	duplicate,	but	boolean	ones
can.
The	switch	expressions	in	switch 	block	are	always	evaluated	to	typed	values.
The	default	switch	expression	of	a	switch 	block	is	a	typed	value	true 	of	the	predeclared
type	bool .
Sometimes,	the	open	brace	{ 	of	an	explicit	code	block	can	be	put	on	the	next	line.
Some	case 	branch	blocks	must	be	explicit.
Nested	deferred	function	calls	can	modify	return	result	values	of	nesting	functions.
Some	recover 	calls	may	be	no-ops.
Exit	a	program	with	a	os.Exit 	function	call	and	exit	a	goroutine	with	a	runtime.Goexit
function	call.

Operator	related	details:
The	precedence	of	the	increment	operator	++ 	and	the	decrement	-- 	is	lower	than	the
dereference	operator	* 	and	the	address-taken	operator	& ,	which	are	lower	than	the	property
selection	operator	. 	in	selectors.
The	type	deduction	rule	for	the	left	untyped	operand	of	a	bit-shift	operation	depends	on
whether	or	not	the	right	operand	is	a	constant.

Pointer	related	details:
Values	of	two	pointer	types	with	different	underlying	types	can	be	converted	to	each	other	if
the	base	types	of	their	underlying	types	share	the	same	underlying	type.
Addresses	of	different	zero-sized	values	may	be	equal,	or	not.
The	base	type	of	a	pointer	type	may	be	the	pointer	type	itself.
A	detail	about	selector	shorthands.

Container	related	details:
Sometimes,	nested	composite	literals	can	be	simplified.
In	some	scenarios,	it	is	ok	to	use	array	pointers	as	arrays.
Retrieving	elements	from	nil	maps	will	not	panic.	The	result	is	a	zero	element	value.
Deleting	an	entry	from	a	nil	map	will	not	panic.	It	is	a	no-op.
The	result	slice	of	an	append 	function	call	may	share	some	elements	with	the	original	slice,
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or	not.
The	length	of	a	subslice	may	be	larger	than	the	base	slice	the	subslice	derives	from.
Deriving	a	subslice	from	a	nil	slice	is	ok	if	all	the	indexes	used	in	the	subslice	expression	are
zero.	The	result	subslice	is	also	a	nil	slice.
Ranging	over	a	nil	maps	or	a	nil	slices	is	ok,	it	is	a	no-op.
Range	over	a	nil	array	pointer	is	ok	if	the	second	iteration	variable	is	ignored	or	omitted.
The	length	and	capacity	of	a	slice	can	be	modified	separately.
The	indexes	in	slice	and	array	composite	literals	must	be	constants	and	non-negative.
The	constant	indexes	or	keys	in	slice/array/map	composite	literals	can't	be	duplicate.
Elements	of	unaddressable	arrays	are	also	unaddressable,	but	elements	of	unaddressable	slices
are	always	addressable.
It	is	ok	to	derive	subslices	from	unaddressable	slices,	but	not	ok	from	unaddressable	arrays.	It
is	ok	to	take	addresses	for	elements	of	unaddressable	slices,	but	not	ok	for	elements	of
unaddressable	arrays.
Putting	entries	with	NaN 	as	keys	to	a	map	is	like	putting	the	entries	in	a	black	hole.
The	capacity	of	the	result	slice	of	a	conversion	from	a	string	to	byte/rune	slice	may	be	larger
than	the	length	of	the	result	slice.
For	a	slice	s ,	the	loop	for	i	=	range	s	{...} 	is	not	equivalent	to	the	loop	for	i	=	0;
i	<	len(s);	i++	{...} .

Function	and	method	related	details:
A	multi-result	function	call	can't	mix	with	other	expressions	when	the	call	is	used	as	the
sources	in	an	assignment	or	the	arguments	of	another	function	call.
Some	function	calls	are	evaluated	at	compile	time.
Each	method	corresponds	to	an	implicit	function.

Interface	related	details:
Comparing	two	interface	values	with	the	same	dynamic	incomparable	type	produces	a	panic.
Type	assertions	can	be	used	to	convert	a	value	of	an	interface	type	to	another	interface	type,
even	if	the	former	interface	type	doesn't	implement	the	latter	one.
Whether	or	not	the	second	optional	result	of	a	failed	type	assertion	is	present	will	affect	the
behavior	of	the	type	assertion.
Two	error 	values	returned	by	two	errors.New 	calls	with	the	same	argument	are	not	equal.

Channel	related	details:
Receive-only	channels	can't	be	closed.
Sending	a	value	to	a	closed	channel	is	viewed	as	a	non-blocking	operation,	and	this	operation
causes	a	panic.

More	type	and	value	related	details:
Types	can	be	declared	within	function	bodies.
For	the	standard	compiler,	zero-sized	fields	in	a	struct	may	be	treated	as	one-byte-sized	value.
NaN	!=	NaN,	Inf	==	Inf.
Non-exported	method	names	and	struct	field	names	from	different	packages	are	viewed	as
different	names.

Miscellanies:
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Parentheses	are	required	in	several	rare	scenarios	to	make	code	compile	okay.
Stack	overflow	is	unrecoverable.
Some	expression	evaluation	orders	in	Go	are	compiler	implementation	dependent.

Standard	packages	related:
The	results	of	reflect.DeepEqual(x,	y) 	and	x	==	y 	may	be	different.
The	reflect.Value.Bytes() 	method	returns	a	[]byte 	value,	which	element	type,	byte ,
might	be	not	the	same	as	the	Go	slice	value	represented	by	the	receiver	parameter.
We	should	use	os.IsNotExist(err) 	instead	of	err	==	os.ErrNotExist 	to	check
whether	or	not	a	file	exists.
The	flag 	standard	package	treats	boolean	command	flags	differently	than	number	and	string
flags.
[Sp|Fp|P]rintf 	functions	support	positional	arguments.

A	package	can	be	imported	more	than	once	in	a	source	file.

A	Go	source	file	can	imports	the	same	package	multiple	times,	but	the	import	names	must	be	different.
These	same-package	imports	reference	the	same	package	instance.

For	example:

1| package	main

2|

3| import	"fmt"

4| import	"io"

5| import	inout	"io"

6|

7| func	main()	{

8| 			fmt.Println(&inout.EOF	==	&io.EOF)	//	true

9| }

The	comment	//	import	"x.y.z/mypkg"	following
package	mypkg	is	meaningful	for	the	standard	Go
compiler.

For	example,	when	the	source	files	importing	this	package	are	compiled	by	the	standard	Go	compiler,	the
import	path	of	the	following	package	must	be	"x.y.z/mypkg" .

1| package	mypkg	//	import	"x.y.z/mypkg"

2| ...

However,	since	Go	SDK	1.11,	the	restriction	doesn't	apply	for	modules	based	and	vendored	packages Ң .
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The	default	branch	in	switch	and	select	blocks	can	be
put	before	all	case	branches,	after	all	case	branches,	or
between	case	branches.

For	example:

1| 			switch	n	:=	rand.Intn(3);	n	{

2| 			case	0:	fmt.Println("n	==	0")

3| 			case	1:	fmt.Println("n	==	1")

4| 			default:	fmt.Println("n	==	2")

5| 			}

6|

7| 			switch	n	:=	rand.Intn(3);	n	{

8| 			default:	fmt.Println("n	==	2")

9| 			case	0:	fmt.Println("n	==	0")

10| 			case	1:	fmt.Println("n	==	1")

11| 			}

12|

13| 			switch	n	:=	rand.Intn(3);	n	{

14| 			case	0:	fmt.Println("n	==	0")

15| 			default:	fmt.Println("n	==	2")

16| 			case	1:	fmt.Println("n	==	1")

17| 			}

18|

19| 			var	x,	y	chan	int

20|

21| 			select	{

22| 			case	<-x:

23| 			case	y	<-	1:

24| 			default:

25| 			}

26|

27| 			select	{

28| 			case	<-x:

29| 			default:

30| 			case	y	<-	1:

31| 			}

32|

33| 			select	{

34| 			default:

35| 			case	<-x:

36| 			case	y	<-	1:

37| 			}

The	numeric	constant	case	expressions	in	a	switch	block
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can't	be	duplicate,	but	boolean	ones	can.

For	example,	the	following	program	fails	to	compile.

1| package	main

2|

3| func	main()	{

4| 			switch	123	{

5| 			case	123:

6| 			case	123:	//	error:	duplicate	case

7| 			}

8| }

But	the	following	program	compiles	okay.

1| package	main

2|

3| func	main()	{

4| 			switch	false	{

5| 			case	false:

6| 			case	false:

7| 			}

8| }

For	reasons,	please	read	this	issue Ң .	The	behavior	is	compiler	dependent.	In	fact,	the	standard	Go
compiler	also	doesn't	allow	duplicate	string	case	expressions,	but	gccgo	allows.

The	switch	expressions	in	switch	block	are	always
evaluated	to	typed	values.

For	example,	the	switch	expression	123 	in	the	following	switch 	block	is	viewed	as	a	value	of	int
instead	of	an	untyped	integer.	So	the	following	program	fails	to	compile.

1| package	main

2|

3| func	main()	{

4| 			switch	123	{

5| 			case	int64(123):		//	error:	mismatched	types

6| 			case	uint32(789):	//	error:	mismatched	types

7| 			}

8| }

The	default	switch	expression	of	a	switch	block	is	a	typed
value	true	of	the	predeclared	type	bool.
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For	example,	the	following	program	will	print	true .

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			switch	{	//	<=>	switch	true	{

7| 			case	true:		fmt.Println("true")

8| 			case	false:	fmt.Println("false")

9| 			}

10| }

Sometimes,	the	open	brace	{	of	an	explicit	code	block	can
be	put	on	the	next	line.

For	example:

1| package	main

2|

3| func	main()	{

4| 			var	i	=	0

5| Outer:

6| 			for

7| 			{	//	okay	on	the	next	line

8| 						switch

9| 						{	//	okay	on	the	next	line

10| 						case	i	==	5:

11| 									break	Outer

12| 						default:

13| 									i++

14| 						}

15| 			}

16| }

What	result	will	the	following	program	print?	true 	or	false?	The	answer	is	true .	Please	read	line
break	rules	in	Go	(§28)	for	reasons.

1| package	main

2|

3| import	"fmt"

4|

5| func	False()	bool	{

6| 			return	false

7| }

8|
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9| func	main()	{

10| 			switch	False()

11| 			{

12| 			case	true:		fmt.Println("true")

13| 			case	false:	fmt.Println("false")

14| 			}

15| }

Some	case	branch	blocks	must	be	explicit.

For	example,	the	following	program	fails	to	compile.

1| func	demo(n,	m	int)	(r	int)	{

2| 			switch	n	{

3| 			case	123:

4| 						if	m	>	0	{

5| 									goto	End

6| 						}

7| 						r++

8|

9| 						End:	//	syntax	error:	missing	statement	after	label

10| 			default:

11| 						r	=	1

12| 			}

13| 			return

14| }

To	make	it	compile	okay,	the	case 	branch	code	block	should	be	explicit:

1| func	demo(n,	m	int)	(r	int)	{

2| 			switch	n	{

3| 			case	123:	{

4| 						if	m	>	0	{

5| 									goto	End

6| 						}

7| 						r++

8|

9| 						End:

10| 			}

11| 			default:

12| 						r	=	1

13| 			}

14| 			return

15| }

Alternatively,	we	can	let	a	semicolon	follow	the	label	End: :
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1| func	demo(n,	m	int)	(r	int)	{

2| 			switch	n	{

3| 			case	123:

4| 						if	m	>	0	{

5| 									goto	End

6| 						}

7| 						r++

8|

9| 						End:;

10| 			default:

11| 						r	=	1

12| 			}

13| 			return

14| }

Please	read	line	break	rules	in	Go	(§28)	for	reasons.

A	nested	deferred	function	calls	can	modify	return	result
values	of	its	innermost	nesting	function.

For	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	F()	(r	int)	{

6| 			defer	func()	{

7| 						r	=	789

8| 			}()

9|

10| 			return	123	//	<=>	r	=	123;	return

11| }

12|

13| func	main()	{

14| 			fmt.Println(F())	//	789

15| }

Some	recover	calls	may	be	no-ops.

We	should	call	the	recover 	function	at	the	right	places.	Please	read	the	right	places	to	call	the	built-in
recover 	function	(§31)	for	details.

Exit	a	program	with	a	os.Exit	function	call	and	exit	a
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goroutine	with	a	runtime.Goexit	function	call.

We	can	exit	a	program	from	any	function	by	calling	the	os.Exit 	function.	An	os.Exit 	function	call
takes	an	int 	code	as	argument	and	returns	the	code	to	operating	system.

An	example:

1| //	exit-example.go

2| package	main

3|

4| import	"os"

5| import	"time"

6|

7| func	main()	{

8| 			go	func()	{

9| 						time.Sleep(time.Second)

10| 						os.Exit(1)

11| 			}()

12| 			select{}

13| }

Run	it:

$	go	run	a.go

exit	status	1

$	echo	$?

1

We	can	make	a	goroutine	exit	by	calling	the	runtime.Goexit 	function.	The	runtime.Goexit 	function
has	no	parameters.

In	the	following	example,	the	Java 	word	will	not	be	printed.

1| package	main

2|

3| import	"fmt"

4| import	"runtime"

5|

6| func	main()	{

7| 			c	:=	make(chan	int)

8| 			go	func()	{

9| 						defer	func()	{c	<-	1}()

10| 						defer	fmt.Println("Go")

11| 						func()	{

12| 									defer	fmt.Println("C")

13| 									runtime.Goexit()

14| 						}()
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15| 						fmt.Println("Java")

16| 			}()

17| 			<-c

18| }

The	precedence	of	the	increment	operator	++	and	the
decrement	--	is	lower	than	the	dereference	operator	*	and
the	address-taken	operator	&,	which	are	lower	than	the
property	selection	operator	.	in	selectors.

For	example:

1| package	main

2|

3| import	"fmt"

4|

5| type	T	struct	{

6| 			x	int

7| 			y	*int

8| }

9|

10| func	main()	{

11| 			var	t	T

12| 			p	:=	&t.x	//	<=>	p	:=	&(t.x)

13| 			fmt.Printf("%T\n",	p)	//	*int

14|

15| 			*p++	//	<=>	(*p)++

16| 			*p--	//	<=>	(*p)--

17|

18| 			t.y	=	p

19| 			a	:=	*t.y	//	<=>	*(t.y)

20| 			fmt.Printf("%T\n",	a)	//	int

21| }

The	type	deduction	rule	for	the	left	untyped	operand	of	a
bit-shift	operation	depends	on	whether	or	not	the	right
operand	is	a	constant.

1| package	main

2|

3| func	main()	{

4| }

5|
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6| const	M		=	2

7| //	Compiles	okay.	1.0	is	deduced	as	an	int	value.

8| var	_	=	1.0	<<	M

9|

10| var	N	=	2

11| //	Fails	to	compile.	1.0	is	deduced	as	a	float64	value.

12| var	_	=	1.0	<<	N

Please	read	this	article	(§8)	for	reasons.

Values	of	two	pointer	types	with	different	underlying	types
can	be	converted	to	each	other	if	the	base	types	of	their
underlying	types	share	the	same	underlying	type.

An	example:

1| package	main

2|

3| type	MyInt	int64

4| type	Ta				*int64

5| type	Tb				*MyInt

6|

7| func	main()	{

8| 			var	a	Ta

9| 			var	b	Tb

10|

11| 			//	Direct	conversion	is	not	allowed.

12| 			//a	=	Ta(b)	//	error

13|

14| 			//	But	indirect	conversion	is	possible.

15| 			y	:=	(*MyInt)(b)

16| 			x	:=	(*int64)(y)

17| 			a	=	x											//	<=>	the	next	line

18| 			a	=	(*int64)(y)	//	<=>	the	next	line

19| 			a	=	(*int64)((*MyInt)(b))

20| 			_	=	a

21| }

Addresses	of	different	zero-sized	values	may	be	equal,	or
not.

Whether	or	not	the	addresses	of	two	zero-sized	values	are	equal	is	compiler	and	compiler	version
dependent.
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1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			a	:=	struct{}{}

7| 			b	:=	struct{}{}

8| 			x	:=	struct{}{}

9| 			y	:=	struct{}{}

10| 			m	:=	[10]struct{}{}

11| 			n	:=	[10]struct{}{}

12| 			o	:=	[10]struct{}{}

13| 			p	:=	[10]struct{}{}

14|

15| 			fmt.Println(&x,	&y,	&o,	&p)

16|

17| 			//	For	the	standard	Go	compiler	(1.13),

18| 			//	x,	y,	o	and	p	escape	to	heap,	but

19| 			//	a,	b,	m	and	n	are	allocated	on	stack.

20|

21| 			fmt.Println(&a	==	&b)	//	false

22| 			fmt.Println(&x	==	&y)	//	true

23| 			fmt.Println(&a	==	&x)	//	false

24|

25| 			fmt.Println(&m	==	&n)	//	false

26| 			fmt.Println(&o	==	&p)	//	true

27| 			fmt.Println(&n	==	&p)	//	false

28| }

The	outputs	indicated	in	the	above	code	are	for	the	standard	Go	compiler	1.13.

The	base	type	of	a	pointer	type	may	be	the	pointer	type
itself.

An	example:

1| package	main

2|

3| func	main()	{

4| 			type	P	*P

5| 			var	p	P

6| 			p	=	&p

7| 			p	=	**************p

8| }

Similarly,
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the	element	type	of	a	slice	type	can	be	the	slice	type	itself,
the	element	type	of	a	map	type	can	be	the	map	type	itself,
the	element	type	of	a	channel	type	can	be	the	channel	type	itself,
and	the	argument	and	result	types	of	a	function	type	can	be	the	function	type	itself.

1| package	main

2|

3| func	main()	{

4| 			type	S	[]S

5| 			type	M	map[string]M

6| 			type	C	chan	C

7| 			type	F	func(F)	F

8|

9| 			s	:=	S{0:nil}

10| 			s[0]	=	s

11| 			m	:=	M{"Go":	nil}

12| 			m["Go"]	=	m

13| 			c	:=	make(C,	3)

14| 			c	<-	c;	c	<-	c;	c	<-	c

15| 			var	f	F

16| 			f	=	func(F)F	{return	f}

17|

18| 			_	=	s[0][0][0][0][0][0][0][0]

19| 			_	=	m["Go"]["Go"]["Go"]["Go"]

20| 			<-<-<-c

21| 			f(f(f(f(f))))

22| }

A	detail	about	selector	shorthands.

For	a	pointer	value,	which	type	is	either	defined	or	not,	if	the	base	type	of	its	(pointer)	type	is	a	struct	type,
then	we	can	select	the	fields	of	the	struct	value	referenced	by	the	pointer	value	through	the	pointer	value.
However,	if	the	type	of	the	pointer	value	is	a	defined	type,	then	we	can't	select	the	methods	of	the	struct
value	referenced	by	the	pointer	value	through	the	pointer	value.

1| package	main

2|

3| type	T	struct	{

4| 			x	int

5| }

6| func	(T)	m(){}	//	T	has	one	method.

7|

8| type	P	*T		//	a	defined	one-level	pointer	type.

9| type	PP	*P	//	a	defined	two-level	pointer	type.

10|

11| func	main()	{
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12| 			var	t	T

13| 			var	tp	=	&t

14| 			var	tpp	=	&tp

15| 			var	p	P	=	tp

16| 			var	pp	PP	=	&p

17| 			tp.x	=	12		//	okay

18| 			p.x	=	34			//	okay

19| 			pp.x	=	56		//	error:	type	PP	has	no	field	or	method	x

20| 			tpp.x	=	78	//	error:	type	**T	has	no	field	or	method	x

21|

22| 			tp.m()		//	okay.	Type	*T	also	has	a	"m"	method.

23| 			p.m()			//	error:	type	P	has	no	field	or	method	m

24| 			pp.m()		//	error:	type	PP	has	no	field	or	method	m

25| 			tpp.m()	//	error:	type	**T	has	no	field	or	method	m

26| }

Sometimes,	nested	composite	literals	can	be	simplified.

Please	read	nested	composite	literals	can	be	simplified	(§18)	for	details.

In	some	scenarios,	it	is	ok	to	use	array	pointers	as	arrays.

Please	read	use	array	pointers	as	arrays	(§18)	for	details.

Retrieving	elements	from	nil	maps	will	not	panic.	The	result
is	a	zero	element	value.

For	example,	the	Foo1 	and	the	Foo2 	functions	are	equivalent,	but	the	function	Foo2 	is	much	tidier	than
the	function	Foo1 .

1| func	Foo1(m	map[string]int)	int	{

2| 			if	m	!=	nil	{

3| 						return	m["foo"]

4| 			}

5| 			return	0

6| }

7|

8| func	Foo2(m	map[string]int)	int	{

9| 			return	m["foo"]

10| }

Deleting	an	entry	from	a	nil	map	will	not	panic.	It	is	a	no-
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op.

For	example,	the	following	program	will	not	panic.

1| package	main

2|

3| func	main()	{

4| 			var	m	map[string]int	//	nil

5| 			delete(m,	"foo")

6| }

The	result	slice	of	an	append	function	call	may	share	some
elements	with	the	original	slice,	or	not.

Please	read	append	and	delete	container	elements	(§18)	for	details.

The	length	of	a	subslice	may	be	larger	than	the	base	slice
the	subslice	derives	from.

For	example,

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			s	:=	make([]int,	3,	9)

7| 			fmt.Println(len(s))	//	3

8| 			s2	:=	s[2:7]

9| 			fmt.Println(len(s2))	//	5

10| }

Please	read	derive	slices	from	arrays	and	slices	(§18)	for	details.

Deriving	a	subslice	from	a	nil	slice	is	ok	if	all	the	indexes
used	in	the	subslice	expression	are	zero.	The	result	subslice
is	also	a	nil	slice.

For	example,	the	following	program	will	not	panic	at	run	time.

1| package	main

§50.	Go	Details	101

503



2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	x	[]int	//	nil

7| 			a	:=	x[:]

8| 			b	:=	x[0:0]

9| 			c	:=	x[:0:0]

10| 			//	Print	three	"true".

11| 			fmt.Println(a	==	nil,	b	==	nil,	c	==	nil)

12| }

Please	read	derive	slices	from	arrays	and	slices	(§18)	for	details.

Ranging	over	a	nil	maps	or	a	nil	slices	is	ok,	it	is	a	no-op.

For	example,	the	following	program	compiles	okay.

1| package	main

2|

3| func	main()	{

4| 			var	s	[]int	//	nil

5| 			for	range	s	{

6| 			}

7|

8| 			var	m	map[string]int	//	nil

9| 			for	range	m	{

10| 			}

11| }

Range	over	a	nil	array	pointer	is	ok	if	the	second	iteration
variable	is	ignored	or	omitted.

For	example,	the	following	program	will	print	01234 .

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	a	*[5]int	//	nil

7| 			for	i,	_	:=	range	a	{

8| 						fmt.Print(i)

9| 			}

10| }
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The	length	and	capacity	of	a	slice	can	be	modified
separately.

We	can	modify	the	length	and	capacity	of	a	slice	separately	through	the	reflection	way.	Please	read
modify	the	length	and	capacity	properties	of	a	slice	individually	(§18)	for	details.

The	indexes	in	slice	and	array	composite	literals	must	be
constants	and	non-negative.

For	example,	the	following	code	fails	to	compile.

1| var	k	=	1

2| //	error:	index	must	be	non-negative	integer	constant

3| var	x	=	[2]int{k:	1}

4| //	error:	index	must	be	non-negative	integer	constant

5| var	y	=	[]int{k:	1}

Note,	the	keys	in	map	composite	literals	are	not	required	to	be	constants.

The	constant	indexes	or	keys	in	slice/array/map	composite
literals	can't	be	duplicate.

For	example,	the	following	code	fails	to	compile.

1| //	error:	duplicate	index	in	array	literal:	1

2| var	a	=	[]bool{0:	false,	1:	true,	1:	true}

3| //	error:	duplicate	index	in	array	literal:	0

4| var	b	=	[...]string{0:	"foo",	1:	"bar",	0:	"foo"}

5| //	error:	duplicate	key	"foo"	in	map	literal

6| var	c	=	map[string]int{"foo":	1,	"foo":	2}

This	feature	can	be	used	to	assert	some	conditions	at	compile	time	(§52).

Elements	of	unaddressable	arrays	are	also	unaddressable,
but	elements	of	unaddressable	slices	are	always
addressable.

The	reason	is	the	elements	of	an	array	value	and	the	array	will	be	stored	in	the	same	memory	block	when
the	array	is	stored	in	memory.	But	the	situation	is	different	for	slices	(§51).
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An	example:

1| package	main

2|

3| func	main()	{

4| 			//	Container	composite	literals	are	unaddressable.

5|

6| 			//	It	is	ok	to	take	slice	literal	element	addresses.

7| 			_	=	&[]int{1}[0]	//	ok

8| 			//	Cannot	take	addresses	of	array	literal	elements.

9| 			_	=	&[5]int{}[0]	//	error

10|

11| 			//	It	is	ok	to	modify	slice	literal	elements.

12| 			[]int{1,2,3}[1]	=	9		//	ok

13| 			//	Cannot	modify	array	literal	elements.

14| 			[3]int{1,2,3}[1]	=	9	//	error

15| }

It	is	ok	to	derive	subslices	from	unaddressable	slices,	but
not	ok	from	unaddressable	arrays.

The	reason	is	the	same	as	the	last	detail.

An	example:

1| package	main

2|

3| func	main()	{

4| 			//	Map	elements	are	unaddressable	in	Go.

5|

6| 			//	The	following	lines	compile	okay.	Deriving

7| 			//	slices	from	unaddressable	slices	is	allowed.

8| 			_	=	[]int{6,	7,	8,	9}[1:3]

9| 			var	ms	=	map[string][]int{"abc":	{0,	1,	2,	3}}

10| 			_	=	ms["abc"][1:3]

11|

12| 			//	The	following	lines	fail	to	compile.	Deriving

13| 			//	slices	from	unaddressable	arrays	is	not	allowed.

14| 			/*

15| 			_	=	[...]int{6,	7,	8,	9}[1:3]	//	error

16| 			var	ma	=	map[string][4]int{"abc":	{0,	1,	2,	3}}

17| 			_	=	ma["abc"][1:3]		//	error

18| 			*/

19| }

Putting	entries	with	NaN	as	keys	to	a	map	is	like	putting	the
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entries	in	a	black	hole.

This	reason	is	NaN	!=	NaN ,	which	is	another	detail	will	be	described	below.	Before	Go	1.12,	the
elements	with	NaN 	as	keys	can	only	be	found	out	in	a	for-range 	loop,	Since	Go	1.12,	the	elements	with
NaN 	as	keys	can	also	be	printed	out	by	fmt.Print 	alike	functions.

1| package	main

2|

3| import	"fmt"

4| import	"math"

5|

6| func	main()	{

7| 			var	a	=	math.NaN()

8| 			fmt.Println(a)	//	NaN

9|

10| 			var	m	=	map[float64]int{}

11| 			m[a]	=	123

12| 			v,	present	:=	m[a]

13| 			fmt.Println(v,	present)	//	0	false

14| 			m[a]	=	789

15| 			v,	present	=	m[a]

16| 			fmt.Println(v,	present)	//	0	false

17|

18| 			fmt.Println(m)	//	map[NaN:789	NaN:123]

19| 			delete(m,	a)			//	no-op

20| 			fmt.Println(m)	//	map[NaN:789	NaN:123]

21|

22| 			for	k,	v	:=	range	m	{

23| 						fmt.Println(k,	v)

24| 			}

25| 			//	the	above	loop	outputs:

26| 			//	NaN	123

27| 			//	NaN	789

28| }

Please	note,	before	Go	1.12,	the	two	fmt.Println(m) 	calls	both	printed	map[NaN:<nil>	NaN:
<nil>] .

The	capacity	of	the	result	slice	of	a	conversion	from	a	string
to	byte/rune	slice	may	be	larger	than	the	length	of	the	result
slice.

We	should	not	assume	the	length	and	the	capacity	of	the	result	slice	are	always	equal.
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In	the	following	example,	if	the	last	fmt.Println 	line	is	removed,	the	outputs	of	the	two	lines	before	it
print	the	same	value	32 ,	otherwise,	one	print	32 	and	one	print	8 	(for	the	standard	Go	compiler	1.13).

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			s	:=	"a"

7| 			x	:=	[]byte(s)														//	len(s)	==	1

8| 			fmt.Println(cap([]byte(s)))	//	32

9| 			fmt.Println(cap(x))									//	8

10| 			fmt.Println(x)

11| }

Some	buggy	code	will	be	written Ң 	if	we	assume	the	length	and	the	capacity	of	the	result	slice	are	always
equal.

For	a	slice	s,	the	loop	for	i	=	range	s	{...}	is	not
equivalent	to	the	loop	for	i	=	0;	i	<	len(s);	i++
{...}.

The	respective	final	values	of	the	iteration	variable	i 	may	be	different	for	the	two	loops.

1| package	main

2|

3| import	"fmt"

4|

5| var	i	int

6|

7| func	fa(s	[]int,	n	int)	int	{

8| 			i	=	n

9| 			for	i	=	0;	i	<	len(s);	i++	{}

10| 			return	i

11| }

12|

13| func	fb(s	[]int,	n	int)	int	{

14| 			i	=	n

15| 			for	i	=	range	s	{}

16| 			return	i

17| }

18|

19| func	main()	{

20| 			s	:=	[]int{2,	3,	5,	7,	11,	13}

21| 			fmt.Println(fa(s,	-1),	fb(s,	-1))	//	6	5
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22| 			s	=	nil

23| 			fmt.Println(fa(s,	-1),	fb(s,	-1))	//	0	-1

24| }

A	multi-result	function	call	can't	mix	with	other	expressions
when	the	call	is	used	as	the	sources	in	an	assignment	or	the
arguments	of	another	function	call.

Please	read	use	function	calls	as	expressions	(§20)	for	details.

Some	function	calls	are	evaluated	at	compile	time.

Please	read	some	function	calls	are	evaluated	at	compile	time	(§20)	for	details.

Each	method	corresponds	to	an	implicit	function.

Please	read	each	Method	Corresponds	to	an	Implicit	Function	(§22)	for	details.

Comparing	two	interface	values	with	the	same	dynamic
incomparable	type	produces	a	panic.

For	example:

1| package	main

2|

3| func	main()	{

4| 			var	x	interface{}	=	[]int{}

5| 			_	=	x	==	x	//	panic

6| }

Type	assertions	can	be	used	to	convert	a	value	of	an
interface	type	to	another	interface	type,	even	if	the	former
interface	type	doesn't	implement	the	latter	one.

For	example:

1| package	main

2|

3| type	Foo	interface	{
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4| 			foo()

5| }

6|

7| type	T	int

8| func	(T)	foo()	{}

9|

10| func	main()	{

11| 			var	x	interface{}	=	T(123)

12| 			//	The	following	two	lines	fails	to	compile,	for	the

13| 			//	same	reason:	interface{}	does	not	implement	Foo.

14| 			/*

15| 			var	_	Foo	=	x			//	error

16| 			var	_	=	Foo(x)		//	error

17| 			*/

18| 			//	But	the	following	line	compiles	and	runs	okay.

19| 			var	_	=	x.(Foo)	//	okay

20| }

Whether	or	not	the	second	optional	result	of	a	type
assertion	is	present	will	affect	the	behavior	of	the	type
assertion.

If	the	second	optional	result	presents	in	a	failed	type	assertion,	the	type	assertion	will	not	produce	a	panic.
Otherwise,	a	panic	will	occur.	For	example:

1| package	main

2|

3| func	main()	{

4| 			var	x	interface{}	=	true

5|

6| 			//	Assertion	fails,	but	doesn't	cause	a	panic.

7| 			_,	_	=	x.(int)

8|

9| 			//	Assertion	fails,	which	causes	a	panic.

10| 			_	=	x.(int)

11| }

Two	error	values	returned	by	two	errors.New	calls	with
the	same	argument	are	not	equal.

The	reason	is	the	errors.New 	function	will	copy	the	input	string	argument	and	use	a	pointer	to	the
copied	string	as	the	dynamic	value	of	the	returned	error 	value.	Two	different	calls	will	produce	two
different	pointers.
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1| package	main

2|

3| import	"fmt"

4| import	"errors"

5|

6| func	main()	{

7| 			notfound	:=	"not	found"

8| 			a,	b	:=	errors.New(notfound),	errors.New(notfound)

9| 			fmt.Println(a	==	b)	//	false

10| }

Receive-only	channels	can't	be	closed.

For	example,	the	following	code	fails	to	compile.

1| package	main

2|

3| func	main()	{

4| }

5|

6| func	foo(c	<-chan	int)	{

7| 			close(c)	//	error:	cannot	close	receive-only	channel

8| }

Sending	a	value	to	a	closed	channel	is	viewed	as	a	non-
blocking	operation,	and	this	operation	causes	a	panic.

For	example,	in	the	following	program,	when	the	second	case 	branch	gets	selected,	it	will	produce	a
panic	at	run	time.

1| package	main

2|

3| func	main()	{

4| 			var	c	=	make(chan	bool)

5| 			close(c)

6| 			select	{

7| 			case	<-c:

8| 			case	c	<-	true:	//	panic:	send	on	closed	channel

9| 			default:

10| 			}

11| }

Types	can	be	declared	within	function	bodies.
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Types	can	be	declared	in	function	bodies.	For	example,

1| package	main

2|

3| func	main()	{

4| 			type	T	struct{}

5| 			type	S	=	[]int

6| }

For	the	standard	compiler,	zero-sized	fields	in	a	struct	may
be	treated	as	one-byte-sized	value.

Please	read	this	FAQ	item	(§51)	for	details.

NaN	!=	NaN,	Inf	==	Inf.

This	follows	IEEE-754	standard	and	is	consistent	with	most	other	programming	languages:

1| package	main

2|

3| import	"fmt"

4| import	"math"

5|

6| func	main()	{

7| 			var	a	=	math.Sqrt(-1.0)

8| 			fmt.Println(a)						//	NaN

9| 			fmt.Println(a	==	a)	//	false

10|

11| 			var	x	=	0.0

12| 			var	y	=	1.0	/	x

13| 			var	z	=	2.0	*	y

14| 			fmt.Println(y,	z,	y	==	z)	//	+Inf	+Inf	true

15| }

Non-exported	method	names	and	struct	field	names	from
different	packages	are	viewed	as	different	names.

For	example,	if	the	following	types	are	declared	in	package	foo :

1| package	foo

2|

3| type	I	=	interface	{

4| 			about()	string
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5| }

6|

7| type	S	struct	{

8| 			a	string

9| }

10|

11| func	(s	S)	about()	string	{

12| 			return	s.a

13| }

and	the	following	types	are	declared	in	package	bar :

1| package	bar

2|

3| type	I	=	interface	{

4| 			about()	string

5| }

6|

7| type	S	struct	{

8| 			a	string

9| }

10|

11| func	(s	S)	about()	string	{

12| 			return	s.a

13| }

then,

values	of	the	two	respective	types	S 	from	the	two	packages	can't	be	converted	to	each	other.
the	two	respective	interface	types	S 	from	the	two	packages	denote	two	distinct	method	sets.
type	foo.S 	doesn't	implement	the	interface	type	bar.I .
type	bar.S 	doesn't	implement	the	interface	type	foo.I .

1| package	main

2|

3| import	"包2/foo"

4| import	"包2/bar"

5|

6| func	main()	{

7| 			var	x	foo.S

8| 			var	y	bar.S

9| 			var	_	foo.I	=	x

10| 			var	_	bar.I	=	y

11|

12| 			//	The	following	lines	fail	to	compile.

13| 			x	=	foo.S(y)

14| 			y	=	bar.S(x)

15| 			var	_	foo.I	=	y
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16| 			var	_	bar.I	=	x

17| }

Parentheses	are	required	in	several	rare	scenarios	to	make
code	compile	okay.

For	example:

1| package	main

2|

3| type	T	struct{x,	y	int}

4|

5| func	main()	{

6| 			//	Each	of	the	following	three	lines	makes	code

7| 			//	fail	to	compile.	Some	"{}"s	confuse	compilers.

8| 			/*

9| 			if	T{}	==	T{123,	789}	{}

10| 			if	T{}	==	(T{123,	789})	{}

11| 			if	(T{})	==	T{123,	789}	{}

12| 			var	_	=	func()(nil)	//	nil	is	viewed	as	a	type

13| 			*/

14|

15| 			//	We	must	add	parentheses	like	the	following

16| 			//	two	lines	to	make	code	compile	okay.

17| 			if	(T{}	==	T{123,	789})	{}

18| 			if	(T{})	==	(T{123,	789})	{}

19| 			var	_	=	(func())(nil)	//	nil	is	viewed	as	a	value

20| }

Stack	overflow	is	not	panic.

For	the	current	main	stream	Go	compilers,	stack	overflows	are	fatal	errors.	Once	a	stack	overflow
happens,	the	whole	program	will	crash	without	recovery	ways.

1| package	main

2|

3| func	f()	{

4| 			f()

5| }

6|

7| func	main()	{

8| 			defer	func()	{

9| 						recover()	//	helpless	to	avoid	program	crashing

10| 			}()

11| 			f()
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12| }

the	running	result:

runtime:	goroutine	stack	exceeds	1000000000-byte	limit

fatal	error:	stack	overflow

runtime	stack:

...

About	more	crash	cases,	please	read	this	wiki	article Ң .

Some	expression	evaluation	orders	in	Go	are	compiler
implementation	dependent.

Please	read	expression	evaluation	orders	in	Go	(§33)	for	details.

The	results	of	reflect.DeepEqual(x,	y)	and	x	==	y
may	be	different.

The	function	call	reflect.DeepEqual(x,	y) 	will	always	return	false 	if	the	types	of	its	two
arguments	are	different,	whereas	x	==	y 	may	return	true 	even	if	the	types	of	the	two	operands	are
different.

The	second	difference	is	a	DeepEqual 	call	with	two	pointer	argument	values	of	the	same	type	returns
whether	or	not	the	two	respective	values	referenced	by	the	two	pointers	are	deep	equal.	So	the	call	might
return	true 	even	if	the	two	pointers	are	not	equal.

The	third	difference	is	the	result	of	a	DeepEqual 	call	may	be	not	correct	if	the	compared	two	arguments
are	in	the	same	cyclic	reference	chain.

The	fourth	difference	is,	the	function	call	reflect.DeepEqual(x,	y) 	is	not	expected	to	panic
generally,	whereas	x	==	y 	will	panic	if	the	two	operands	are	both	interface	values	and	their	dynamic
types	are	identical	and	incomparable.

An	example	showing	these	differences:

1| package	main

2|

3| import	"fmt"

4| import	"reflect"

5|

6| func	main()	{

7| 			type	Book	struct	{page	int}
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8| 			x	:=	struct	{page	int}{123}

9| 			y	:=	Book{123}

10| 			fmt.Println(reflect.DeepEqual(x,	y))	//	false

11| 			fmt.Println(x	==	y)																		//	true

12|

13| 			z	:=	Book{123}

14| 			fmt.Println(reflect.DeepEqual(&z,	&y))	//	true

15| 			fmt.Println(&z	==	&y)																		//	false

16|

17| 			type	T	struct{p	*T}

18| 			t	:=	&T{&T{nil}}

19| 			t.p.p	=	t	//	form	a	cyclic	reference	chain.

20| 			fmt.Println(reflect.DeepEqual(t,	t.p))	//	true

21| 			fmt.Println(t	==	t.p)																		//	false

22|

23| 			var	f1,	f2	func()	=	nil,	func(){}

24| 			fmt.Println(reflect.DeepEqual(f1,	f1))	//	true

25| 			fmt.Println(reflect.DeepEqual(f2,	f2))	//	false

26|

27| 			var	a,	b	interface{}	=	[]int{1,	2},	[]int{1,	2}

28| 			fmt.Println(reflect.DeepEqual(a,	b))	//	true

29| 			fmt.Println(a	==	b)																		//	panic

30| }

Note,	if	the	two	arguments	of	a	DeepEqual 	call	are	both	function	values,	then	the	call	returns	true 	only
if	the	two	function	arguments	are	both	nil	and	their	types	are	identical.

So,	to	compare	values	of	a	type	by	using	reflect.DeepEqual ,	a	programmer	needs	to	understand	the
structure	definition	of	the	type	well.

The	reflect.Value.Bytes()	method	returns	a	[]byte
value,	which	element	type,	byte,	might	be	not	the	same	as
the	Go	slice	value	represented	by	the	receiver	parameter.

Assume	the	underlying	type	of	a	defined	type	MyByte 	is	the	predeclared	type	byte ,	we	know	that	Go
type	system	forbids	the	conversions	between	[]MyByte 	and	[]byte 	values.	However,	it	looks	the
implementation	of	the	method	Bytes 	of	the	reflect.Value 	type	partially	violates	this	restriction
unintentionally,	by	allowing	converting	a	[]MyByte 	value	to	[]byte .

Example:

1| package	main

2|

3| import	"bytes"

4| import	"fmt"
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5| import	"reflect"

6|

7| type	MyByte	byte

8|

9| func	main()	{

10| 			var	mybs	=	[]MyByte{'a',	'b',	'c'}

11| 			var	bs	[]byte

12|

13| 			//	bs	=	[]byte(mybs)	//	this	line	fails	to	compile

14|

15| 			v	:=	reflect.ValueOf(mybs)

16| 			bs	=	v.Bytes()	//	okay.	Violating	Go	type	system.

17| 			fmt.Println(bytes.HasPrefix(bs,	[]byte{'a',	'b'}))	//	true

18|

19| 			bs[1],	bs[2]	=	'r',	't'

20| 			fmt.Printf("%s	\n",	mybs)	//	art

21| }

But	it	looks	the	violation	is	not	harmful.	On	the	contrary,	it	makes	some	benefits.	For	example,	with	this
violation,	we	can	use	the	functions	in	the	bytes 	standard	package	for	the	[]MyByte 	values.

Note,	the	reflect.Value.Bytes() 	method	might	be	removed	later Ң .

We	should	use	os.IsNotExist(err)	instead	of	err	==
os.ErrNotExist	to	check	whether	or	not	a	file	exists.

Using	err	==	os.ErrNotExist 	may	miss	errors.

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"os"

6| )

7|

8| func	main()	{

9| 			_,	err	:=	os.Stat("a-nonexistent-file.abcxyz")

10| 			fmt.Println(os.IsNotExist(err))				//	true

11| 			fmt.Println(err	==	os.ErrNotExist)	//	false

12| }

For	projects	only	support	Go	1.13+,	errors.Is(err,	os.ErrNotExist) 	is	more	recommended	to	be
used	to	check	whether	or	not	a	file	exists.

1| package	main

2|
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3| import	(

4| 			"errors"

5| 			"fmt"

6| 			"os"

7| )

8|

9| func	main()	{

10| 			_,	err	:=	os.Stat("a-nonexistent-file.abcxyz")

11| 			fmt.Println(errors.Is(err,	os.ErrNotExist))	//	true

12| }

The	flag	standard	package	treats	boolean	command	flags
differently	than	integer	and	string	flags.

There	are	three	forms	to	pass	flag	options.

1.	 -flag ,	for	boolean	flags	only.
2.	 -flag=x ,	for	any	flag.
3.	 -flag	x ,	for	non-boolean	flags	only.

And	please	note	that,	a	boolean	flag	with	the	first	form	is	viewed	as	the	last	flag,	all	items	following	it	are
viewed	as	arguments.

1| package	main

2|

3| import	"fmt"

4| import	"flag"

5|

6| var	b	=	flag.Bool("b",	true,	"a	boolean	flag")

7| var	i	=	flag.Int("i",	123,	"an	integer	flag")

8| var	s	=	flag.String("s",	"hi",	"a	string	flag")

9|

10| func	main()	{

11| 			flag.Parse()

12| 			fmt.Print("b=",	*b,	",	i=",	*i,	",	s=",	*s,	"\n")

13| 			fmt.Println("arguments:",	flag.Args())

14| }

If	we	run	the	following	program	with	the	below	shown	flags	and	arguments

./exampleProgram	-b	false	-i	789	-s	bye	arg0	arg1

the	output	will	be

b=true,	i=123,	s=hi

arguments:	[false	-i	789	-s	bye	arg0	arg1]
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This	output	is	obviously	not	what	we	expect.

We	should	pass	the	flags	and	arguments	like

./exampleProgram	-b=false	-i	789	-s	bye	arg0	arg1

or

./exampleProgram	-i	789	-s	bye	-b	arg0	arg1

to	get	the	output	we	expect:

b=true,	i=789,	s=bye

arguments:	[arg0	arg1]

[Sp|Fp|P]rintf	functions	support	positional	arguments.

The	following	program	will	print	coco .

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			//	The	next	line	prints:	coco

7| 			fmt.Printf("%[2]v%[1]v%[2]v%[1]v",	"o",	"c")

8| }

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Go	FAQ	101
(This	is	an	unofficial	Go	FAQ.	The	official	one	is	here Ң .)

Index:

compiler	and	runtime
What	does	the	compile	error	message	non-name	***	on	left	side	of	:= 	mean?
What	does	the	compile	error	message	unexpected	newline,	expecting	{	after	if
clause 	mean?
What	does	the	compiler	error	message	declared	and	not	used 	mean?
Does	Go	runtime	maintain	the	iteration	orders	for	maps?
Will	Go	compilers	do	padding	to	ensure	field	alignments	for	struct	types?
Why	does	the	final	field	of	a	zero-sized	type	in	a	struct	contribute	to	the	size	of	the	struct
sometimes?
Is	new(T) 	a	sugar	of	var	t	T;	(&t)?
What	does	the	runtime	error	message	all	goroutines	are	asleep	-	deadlock 	mean?
Are	64-bit	integer	values	guaranteed	to	be	64-bit	aligned	so	that	they	can	be	accessed
atomically?
Are	assignments	of	values	atomic	operations?
Is	every	zero	value	composed	of	a	sequence	of	zero	bytes	in	memory?
Does	the	standard	Go	compiler	support	function	inline?
Can	I	use	finalizers	as	object	destructors?

standard	packages
How	to	get	the	number	of	days	of	any	month	by	using	as	few	code	lines	as	possible?
What	is	the	difference	between	the	function	call	time.Sleep(d) 	and	the	channel	receive
operation	<-time.After(d)?
Calls	of	the	TrimLeft 	and	TrimRight 	functions	in	the	strings 	and	bytes 	standard
packages	often	return	unexpected	results,	are	there	bugs	in	these	function	implementations?
What	are	the	differences	between	the	fmt.Print 	and	fmt.Println 	functions?
Is	there	any	difference	between	the	log.Print 	and	log.Println 	functions?
Are	fmt.Print ,	fmt.Println 	and	fmt.Printf 	functions	synchronized?
What	are	the	differences	between	the	built-in	print /println 	functions	and	the
corresponding	print	functions	in	the	fmt 	and	log 	standard	packages?
What	is	the	difference	between	the	random	numbers	produced	by	the	math/rand 	standard
package	and	the	crypto/rand 	standard	package?
Why	isn't	there	a	math.Round 	function?

type	system
Which	types	don't	support	comparisons?
Why	aren't	two	nil 	values	equal	sometimes?
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Why	don't	type	[]T1 	and	[]T2 	share	the	same	underlying	type	even	if	the	two	different	types
T1 	and	T2 	share	the	same	underlying	type?
Which	values	can	and	which	values	can't	be	taken	addresses?
Why	are	map	elements	not	addressable?
Why	elements	of	a	non-nil	slice	are	always	addressable,	even	if	the	slice	is	unaddressable?
For	any	non-pointer	non-interface	defined	type	T ,	why	is	the	method	set	of	*T 	always	a	super
set	of	the	method	set	of	T ,	but	not	vice	versa?
Which	types	can	we	implement	methods	for?
How	to	declare	immutable	values	in	Go?
Why	isn't	there	a	built-in	set 	container	type?
What	is	byte?	What	is	rune?	How	to	convert	[]byte 	and	[]rune 	values	to	strings?
How	to	manipulate	pointer	values	atomically?

others
What	does	iota 	mean?
Why	isn't	there	a	built-in	closed 	function	to	check	whether	or	not	a	channel	is	closed?
Is	it	safe	for	a	function	to	return	pointers	of	local	variables?
What	does	the	word	gopher	mean	in	Go	community?

What	does	the	compile	error	message	non-name	***	on
left	side	of	:=	mean?

Up	to	now	(Go	1.13),	there	is	a	mandatory	rule Ң 	for	short	variable	declarations:

All	items	at	the	left	side	of	:= 	must	be	pure	identifiers Ң 	and	at	least	one	of	them	must	be	a	new
variable	name.

This	means	container	elements	(x[i] ),	struct	fields	(x.f ),	pointer	dereferences	(*p )	and	qualified
identifiers	(aPackage.Value )	can't	appear	at	the	left	side	of	:= .

Currently,	there	is	an	open	issue Ң 	(which	was	merged	with	a	more	related	one Ң )	for	this	problem.	It
looks	Go	authors	want	to	leave	this	problem	unresolved	until	Go	2.0.

What	does	the	compile	error	message	unexpected
newline,	expecting	{	...	mean?

In	Go,	we	can't	break	a	code	line	at	an	arbitrary	position.	Please	read	line	break	rules	in	Go	(§28)	for
details.	By	the	rules,	generally,	it	is	not	okay	to	break	code	lines	just	before	the	open	brackets.

For	example,	the	following	code

1| if	true
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2| {

3| }

4|

5| for	i	:=	0;	i	<	10;	i++

6| {

7| }

8|

9| var	_	=	[]int

10| {

11| 			1,	2,	3

12| }

will	be	interpreted	as

1| if	true;

2| {

3| }

4|

5| for	i	:=	0;	i	<	10;	i++;

6| {

7| }

8|

9| var	_	=	[]int;

10| {

11| 			1,	2,	3;

12| }

Go	compilers	will	report	an	error	for	each	open	bracket	{ .	To	avoid	these	errors,	we	should	rewrite	the
above	code	as	the	following.

1| if	true	{

2| }

3|

4| for	i	:=	0;	i	<	10;	i++	{

5| }

6|

7| var	_	=	[]int	{

8| 			1,	2,	3,

9| }

What	does	the	compiler	error	message	declared	and	not
used	mean?

For	the	standard	Go	compiler,	each	variable	declared	in	local	code	blocks	must	be	used	as	a	r-value	(right-
hand-side	value)	for	at	least	once.
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So	the	following	code	fails	to	compile.

1| func	f(x	bool)	{

2| 			var	y	=	1	//	y	declared	but	not	used	(as	r-values)

3| 			if	x	{

4| 						y	=	2	//	here	y	is	used	as	a	left-hand-side	value

5| 			}

6| }

Does	Go	runtime	maintain	the	iteration	orders	for	maps?

No.	Go	1	specification Ң 	says	the	iteration	order	over	a	map	is	not	specified	and	is	not	guaranteed	to	be
the	same	from	one	iteration	to	the	next.	For	the	standard	Go	compiler,	the	map	iteration	orders	are	some
randomized.	If	you	require	a	stable	iteration	order	for	a	map	you	must	maintain	the	order	by	yourself.
Please	read	Go	maps	in	action Ң 	for	more	information.

However,	please	note,	since	Go	1.12,	the	entry	order	in	the	print	result	of	the	print	functions	in	standard
packages	are	always	ordered.

Will	Go	compilers	do	padding	to	ensure	field	alignments	for
struct	types?

At	least	for	the	standard	Go	compiler	and	gccgo,	the	answer	is	yes.	How	many	bytes	will	be	padded	is	OS
and	compiler	dependent.	Please	read	memory	layouts	(§44)	for	details.

Go	Compilers	will	not	rearrange	struct	fields	to	minimize	struct	value	sizes.	Doing	this	may	cause	some
unexpected	results.	However,	programmers	can	minimize	padding	by	reordering	the	fields	manually.

Why	does	the	final	field	of	a	zero-sized	type	in	a	struct
contribute	to	the	size	of	the	struct	sometimes?

In	the	current	standard	Go	runtime	implementation,	if	a	memory	block	is	referenced	by	at	least	one	active
pointer,	then	the	memory	block	will	not	be	viewed	as	garbage	and	will	not	be	collected	for	sure.

All	the	fields	of	an	addressable	struct	value	can	be	taken	addresses.	If	the	size	of	the	final	field	in	a	non-
zero-sized	struct	value	is	zero,	then	taking	the	address	of	the	final	field	in	the	struct	value	will	return	an
address	which	is	beyond	the	allocated	memory	block	for	the	struct	value.	The	returned	address	may	point
to	another	allocated	memory	block	which	closely	follows	the	one	allocated	for	the	non-zero-sized	struct
value.	As	long	as	the	returned	address	is	stored	in	an	active	pointer	value,	the	other	allocated	memory
block	will	not	get	garbage	collected,	which	may	cause	memory	leaking.

To	avoid	the	problems,	the	standard	Go	compiler	will	ensure	that	taking	the	address	of	the	final	field	in	a
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non-zero-sized	struct	will	never	return	an	address	which	is	beyond	the	allocated	memory	block	for	the
struct.	The	standard	Go	compiler	implements	this	by	padding	some	bytes	after	the	final	zero-sized	field
when	needed.

If	the	types	of	all	fields	in	a	struct	type	are	zero-sized	(so	the	struct	is	also	a	zero-sized	type),	then	there	is
no	need	to	pad	bytes	in	the	struct,	for	the	standard	Go	compiler	treats	zero-sized	memory	blocks	specially.

An	example:

1| package	main

2|

3| import	(

4| 			"unsafe"

5| 			"fmt"

6| )

7|

8| func	main()	{

9| 			type	T1	struct	{

10| 						a	struct{}

11| 						x	int64

12| 			}

13| 			fmt.Println(unsafe.Sizeof(T1{}))	//	8

14|

15| 			type	T2	struct	{

16| 						x	int64

17| 						a	struct{}

18| 			}

19| 			fmt.Println(unsafe.Sizeof(T2{}))	//	16

20| }

Is	new(T)	a	sugar	of	var	t	T;	(&t)?

Generally	we	can	think	so,	though	there	would	some	subtle	differences	between	the	two,	depending	on
compiler	implementations.	The	memory	block	allocated	by	new 	may	be	either	on	stack	or	on	heap.

What	does	the	runtime	error	message	all	goroutines
are	asleep	-	deadlock	mean?

The	word	asleep	is	not	accurate	here,	it	means	in	blocking	state	in	fact.

As	a	blocking	goroutine	can	only	be	unblocked	by	another	goroutine,	if	all	goroutines	in	a	program	enter
blocking	state,	then	all	of	they	will	stay	in	blocking	state	for	ever.	This	means	the	program	is	deadlocked.
A	normal	running	program	is	never	expected	to	be	deadlocked,	so	the	standard	Go	runtime	makes	the
program	crash	and	exit.
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Are	64-bit	integer	values	guaranteed	to	be	64-bit	aligned	so
that	they	can	be	accessed	atomically?

The	addresses	passed	to	the	64-bit	functions	in	sync/atomic 	package	must	be	64-bit	aligned,	otherwise,
calls	to	these	functions	may	panic	at	run	time.

For	the	standard	Go	compiler	and	gccgo	compiler,	on	64-bit	architectures,	64-bit	integers	are	guaranteed
to	be	64-bit	aligned.	So	they	can	be	always	accessed	atomically	without	any	problems.

On	32-bit	architectures,	64-bit	integers	are	only	guaranteed	to	be	32-bit	aligned.	So	accessing	many	64-bit
integers	atomically	may	cause	panics.	However,	there	are	some	ways	to	guarantee	some	64-bit	integers	to
be	relied	upon	to	be	64-bit	aligned.	Please	read	memory	layouts	in	Go	(§44)	for	details.

Are	assignments	of	values	atomic	operations?

No	for	the	standard	Go	compiler,	even	if	the	sizes	of	the	assigned	values	are	native	words.

Please	read	the	official	question Ң 	for	more	details.

Is	every	zero	value	composed	of	a	sequence	of	zero	bytes	in
memory?

For	most	types,	this	is	true.	In	fact,	this	is	compiler	dependent.	For	example,	for	the	standard	Go	compiler,
the	statement	is	wrong	for	some	zero	values	of	string	types.

Evidence:

1| package	main

2|

3| import	(

4| 			"unsafe"

5| 			"fmt"

6| )

7|

8| func	main()	{

9| 			var	s1	string

10| 			fmt.Println(s1	==	"")	//	true

11| 			fmt.Println(*(*uintptr)(unsafe.Pointer(&s1)))	//	0

12| 			var	s2	=	"abc"[0:0]

13| 			fmt.Println(s2	==	"")	//	true

14| 			fmt.Println(*(*uintptr)(unsafe.Pointer(&s2)))	//	4869856

15| 			fmt.Println(s1	==	s2)	//	true

16| }
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Inversely,	for	all	the	architectures	the	standard	Go	compiler	currently	supports,	if	all	bytes	in	a	value	are
zero,	then	the	value	must	be	a	zero	value	of	its	type.	However,	Go	specification	doesn't	guarantee	this.	I
have	heard	of	that	on	some	very	old	processors,	nil	pointers	are	not	zero	in	memory.

Does	the	standard	Go	compiler	support	function	inline?

Yes,	the	standard	Go	compiler	supports	function	inline.	The	compiler	will	inline	short	leaf	functions,
automatically.	Leaf	functions	are	the	functions	which	doesn't	contain	function	calls.	The	specific	inline
rules	may	change	from	version	to	version.

Currently	(Go	SDK	1.13),	for	the	standard	Go	compiler,

there	is	no	explicit	ways	to	specify	which	functions	should	be	inlined	in	user	programs.
although	-gcflags	"-l" 	build	option	can	prevent	any	functions	being	inlined,	there	is	no	formal
ways	to	avoid	specified	functions	being	inlined	in	user	programs.	There	are	two	informal	ways	(both
of	them	might	become	invalid	for	future	standard	Go	compiler	versions):
1.	 you	can	add	a	line	//go:noinline 	directive	before	a	function	declaration	to	avoid	the

function	being	inlined.
2.	 as	functions	containing	loop	blocks	will	not	be	inlined,	you	can	add	a	for	false	{} 	line	in	a

function	to	avoid	the	function	being	inlined.	(This	way	may	become	invalid	later Ң .)

Can	I	use	finalizers	as	object	destructors?

In	Go	programs,	we	can	set	a	finalizer	function	for	an	object	by	using	the	runtime.SetFinalizer
function.	Generally,	the	finalizer	function	will	be	called	before	the	object	is	garbage	collected.	But
finalizers	are	never	intended	to	be	used	as	destructors	of	objects.	The	finalizers	set	by
runtime.SetFinalizer 	are	not	guaranteed	to	run.	So	you	shouldn't	rely	on	finalizers	for	your	program
correctness.

The	main	intention	of	finalizers	is	for	libraries	maintainers	to	make	extra	efforts	to	remedy	the	damage
caused	by	libraries	users	don't	use	the	libraries	correctly.	For	example,	in	a	program,	if	we	use	the
os.Open 	to	open	many	files	but	forget	to	close	them	after	using	them,	then	the	program	will	hold	many
file	descriptors	until	the	program	exits.	This	is	resource	leak.	To	avoid	the	program	holding	too	many	file
descriptors,	the	maintainers	of	the	os 	package	will	set	a	finalizer	on	the	every	created	os.File 	object.
The	finalizer	will	close	the	file	descriptor	stored	in	the	os.File 	object.	As	above	mentioned,	the
finalizers	are	not	guaranteed	to	be	called.	They	are	just	used	to	make	the	extent	of	resource	leak	as	small
as	possible.

Please	note,	some	finalizers	will	never	get	called	for	sure,	and	sometimes	setting	finalizers	improperly	will
prevent	some	objects	from	being	garbage	collected.	Please	read	the	runtime.SetFinalizer	function
documentation Ң 	to	get	more	details.
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How	to	get	the	number	of	days	of	any	month	by	using	as
few	code	lines	as	possible?

Assume	the	input	year	is	a	nature	year	and	the	input	month	is	also	a	nature	month	(January	is	1).

days	:=	time.Date(year,	month+1,	0,	0,	0,	0,	0,	time.UTC).Day()

For	Go	time	APIs,	the	usual	month	range	is	[1,	12] 	and	the	start	day	of	each	month	is	1 .	The	start	time
of	a	month	m 	in	year	y 	is	time.Date(y,	m,	1,	0,	0,	0,	0,	time.UTC) .

The	arguments	passed	to	time.Date 	can	be	outside	their	usual	ranges	and	will	be	normalized	during	the
conversion.	For	example,	January	32	will	be	converted	to	February	1.

Here	are	some	time.Date 	use	examples	in	Go:

1| package	main

2|

3| import	(

4| 			"time"

5| 			"fmt"

6| )

7|

8| func	main()	{

9| 			//	2017-02-01	00:00:00	+0000	UTC

10| 			fmt.Println(time.Date(2017,	1,	32,	0,	0,	0,	0,	time.UTC))

11|

12| 			//	2017-01-31	23:59:59.999999999	+0000	UTC

13| 			fmt.Println(time.Date(2017,	1,	32,	0,	0,	0,	-1,	time.UTC))

14|

15| 			//	2017-01-31	00:00:00	+0000	UTC

16| 			fmt.Println(time.Date(2017,	2,	0,	0,	0,	0,	0,	time.UTC))

17|

18| 			//	2016-12-31	00:00:00	+0000	UTC

19| 			fmt.Println(time.Date(2016,	13,	0,	0,	0,	0,	0,	time.UTC))

20|

21| 			//	2017-02-01	00:00:00	+0000	UTC

22| 			fmt.Println(time.Date(2016,	13,	32,	0,	0,	0,	0,	time.UTC))

23| }

What	is	the	difference	between	the	function	call
time.Sleep(d)	and	the	channel	receive	operation	<-
time.After(d)?

The	two	will	both	pause	the	current	goroutine	execution	for	a	certain	duration.	The	difference	is	the
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function	call	time.Sleep(d) 	will	let	the	current	goroutine	enter	sleeping	sub-state,	but	still	stay	in
running	state	(§13),	whereas,	the	channel	receive	operation	<-time.After(d) 	will	let	the	current
goroutine	enter	blocking	state.

Calls	of	the	TrimLeft	and	TrimRight	functions	in	the
strings	and	bytes	standard	packages	often	return
unexpected	results,	are	there	bugs	in	these	function
implementations?

Aha,	maybe	there	are	bugs	in	the	implementations,	but	none	are	confirmed	now.	If	the	return	results	are
unexpected,	it	is	more	possible	that	your	expectations	are	not	correct.

There	are	many	trim	functions	in	strings 	and	bytes 	standard	packages.	These	functions	can	be
categorized	into	two	groups:

1.	 Trim ,	TrimLeft ,	TrimRight ,	TrimSpace ,	TrimFunc ,	TrimLeftFunc ,	TrimRightFunc .
These	functions	will	trim	all	leading	or	trailing	UTF-8-encoded	Unicode	code	points	(a.k.a.	runes)
which	satisfy	the	specified	or	implied	conditions	(TrimSpace 	implies	to	trim	all	kinds	of	white
spaces).	Each	of	the	leading	or	trailing	runes	will	be	checked	until	one	doesn't	satisfy	the	specified
or	implied	conditions.

2.	 TrimPrefix ,	TrimSuffix .	The	two	functions	will	trim	the	specified	prefix	or	suffix	substrings	(or
subslices)	as	a	whole.

Some Ң 	programmers Ң 	misused Ң 	the Ң 	TrimLeft 	and	TrimRight 	functions	as	TrimPrefix 	and
TrimSuffix 	functions	when	they	use	the	trim	functions	the	first	time.	Certainly,	the	return	results	are
very	possible	not	as	expected.

Example:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"strings"

6| )

7|

8| func	main()	{

9| 			var	s	=	"abaay森z众xbbab"

10| 			o	:=	fmt.Println

11| 			o(strings.TrimPrefix(s,	"ab"))	//	aay森z众xbbab

12| 			o(strings.TrimSuffix(s,	"ab"))	//	abaay森z众xbb

13| 			o(strings.TrimLeft(s,	"ab"))			//	y森z众xbbab

14| 			o(strings.TrimRight(s,	"ab"))		//	abaay森z众x
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15| 			o(strings.Trim(s,	"ab"))							//	y森z众x

16| 			o(strings.TrimFunc(s,	func(r	rune)	bool	{

17| 						return	r	<	128	//	trim	all	ascii	chars

18| 			}))	//	森z众

19| }

What	are	the	differences	between	the	fmt.Print	and
fmt.Println	functions?

The	fmt.Println 	function	will	always	write	a	space	between	two	adjacent	arguments,	whereas	the
fmt.Print 	function	will	write	a	space	between	two	adjacent	arguments	only	if	both	of	(the	concrete
values	of)	the	two	adjacent	arguments	are	not	strings.

Another	difference	is	fmt.Println 	will	write	a	newline	character	in	the	end,	but	the	fmt.Print
function	will	not.

Is	there	any	difference	between	the	log.Print	and
log.Println	functions?

The	difference	between	the	log.Print 	and	log.Println 	functions	is	the	sams	as	the	first	difference
between	the	fmt.Print 	and	fmt.Println 	functions	described	in	the	last	question.

Both	of	the	two	functions	will	write	a	newline	character	in	the	end.

Are	fmt.Print,	fmt.Println	and	fmt.Printf	functions
synchronized?

No,	these	functions	are	not	synchronized.	Please	use	the	corresponding	functions	in	the	log 	standard
package	instead	when	synchronizations	are	needed.	You	can	call	log.SetFlags(0) 	to	remove	the	prefix
from	each	log	line.

What	are	the	differences	between	the	built-in
print/println	functions	and	the	corresponding	print
functions	in	the	fmt	and	log	standard	packages?

Besides	the	difference	mentioned	in	the	last	question,	there	are	some	other	differences	between	the	three
sets	of	functions.
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1.	 The	built-in	print /println 	functions	will	write	to	the	standard	error.	The	print	functions	in	the
fmt 	standard	package	will	write	to	the	standard	output.	The	print	functions	in	the	log 	standard
package	will	write	to	the	standard	error	by	default,	whereas	which	can	be	configured	through	the
log.SetOutput 	function.

2.	 Calls	to	the	built-in	print /println 	functions	can't	take	array	and	struct	arguments.
3.	 For	an	argument	of	a	composite	type,	the	built-in	print /println 	functions	write	the	addresses	of

the	underlying	value	parts	of	the	argument,	whereas	the	print	functions	in	the	fmt 	and	log 	standard
packages	try	to	write	the	value	literal	of	the	dynamic	values	of	the	interface	arguments.

4.	 Currently	(Go	SDK	1.13),	for	the	standard	Go	compiler,	calls	to	the	built-in	print /println
functions	will	not	make	the	values	referenced	by	the	arguments	of	the	calls	escape	to	heap,	whereas
the	print	functions	in	the	fmt 	and	log 	standard	packages	will.

5.	 If	an	argument	has	a	String()	string 	or	Error()	string 	method,	the	print	functions	in	the
fmt 	and	log 	standard	packages	will	try	to	call	that	method	when	writing	the	argument,	whereas	the
built-in	print /println 	functions	will	ignore	methods	of	arguments.

6.	 The	built-in	print /println 	functions	are	not	guaranteed	to	exist	in	future	Go	versions.

What	is	the	difference	between	the	random	numbers
produced	by	the	math/rand	standard	package	and	the
crypto/rand	standard	package?

The	pseudo	random	numbers	produced	by	the	math/rand 	standard	package	are	deterministic	for	a	given
seed.	The	produced	random	numbers	are	not	good	for	security-sensitive	contexts.	For	cryptographical
security	purpose,	we	should	use	the	pseudo	random	numbers	produced	by	the	crypto/rand 	standard
package.

Why	isn't	there	a	math.Round	function?

There	is	a	math.Round 	function,	but	only	since	Go	1.10.	Two	new	functions,	math.Round 	and
math.RoundToEven 	have	been	added	since	Go	1.10.

Before	Go	1.10,	there	is	a	long	time	in	disputing Ң 	whether	or	not	the	math.Round 	function	should	be
added	to	standard	package	or	not.	In	the	end,	the	proposal	is	adopted.

Which	types	don't	support	comparisons?

Following	types	don't	support	comparisons:

map
slice
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function
struct	types	containing	incomparable	fields
array	types	with	incomparable	element	types

Types	which	don't	support	comparisons	can't	be	used	as	the	key	type	of	map	types.

Please	note,

although	map,	slice	and	function	types	don't	support	comparisons,	their	values	can	be	compared	to
the	bare	nil 	identifier.
comparing	two	interface	values	(§23)	with	will	panic	at	run	time	if	the	two	dynamic	types	of	the	two
interface	values	are	identical	and	incomparable.

On	why	slice,	map	and	function	types	don't	support	comparison,	please	read	this	answer Ң 	in	the	official
Go	FAQ.

Why	aren't	two	nil	values	equal	sometimes?

(The	answer Ң 	in	the	official	Go	FAQ	may	also	answer	this	question.)

An	interface	value	can	be	viewed	as	a	box	which	is	used	to	encapsulate	non-interface	values.	Only	values
whose	types	implement	the	type	of	the	interface	value	can	be	boxed	(encapsulated)	into	the	interface
value.	In	Go,	there	are	several	kinds	of	types	whose	zero	values	are	represented	as	the	predeclared
identifier	nil .	An	interface	value	boxing	nothing	is	a	zero	interface	value,	a.k.a,	a	nil	interface	value.
However	an	interface	value	boxing	a	nil	non-interface	value	doesn't	box	nothing,	so	it	is	not,	and	doesn't
equal	to,	a	nil	interface	value.

When	comparing	a	nil	interface	value	and	a	nil	non-interface	value	(assume	they	can	be	compared),	the	nil
non-interface	value	will	be	converted	to	the	type	of	the	nil	interface	value	before	doing	the	comparison.
The	conversion	result	is	an	interface	value	boxing	a	copy	of	the	non-interface	value.	The	result	interface
value	doesn't	box	nothing,	so	it	is	not,	or	doesn't	equal	to,	the	nil	interface	value.

Please	read	interfaces	in	Go	(§23)	and	nils	in	Go	(§47)	for	detailed	explanations.

For	example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	pi	*int	=	nil

7| 			var	pb	*bool	=	nil

8| 			var	x	interface{}	=	pi

9| 			var	y	interface{}	=	pb
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10| 			var	z	interface{}	=	nil

11|

12| 			fmt.Println(x	==	y)			//	false

13| 			fmt.Println(x	==	nil)	//	false

14| 			fmt.Println(y	==	nil)	//	false

15| 			fmt.Println(x	==	z)			//	false

16| 			fmt.Println(y	==	z)			//	false

17| }

Why	don't	type	[]T1	and	[]T2	share	the	same	underlying
type	even	if	the	two	different	types	T1	and	T2	share	the
same	underlying	type?

(It	looks	the	official	Go	FAQ	also	added	a	similar	question Ң 	not	long	ago.)

In	Go,	values	of	a	slice	type	can	be	converted	to	another	slice	type	without	using	the	unsafe 	mechanisms
(§25)	only	if	the	two	slice	types	share	the	same	underlying	type	(§14).	(This	article	(§48)	lists	the	full	list
of	value	conversion	rules.)

The	underlying	type	of	a	non-defined	composite	type	is	the	composite	type	itself.	So	even	if	two	different
types	T1 	and	T2 	share	the	same	underlying	type,	type	[]T1 	and	[]T2 	are	still	different	types,	so	their
underlying	types	are	also	different,	which	means	values	of	one	of	them	can't	be	converted	to	the	other.

The	reasons	for	the	underlying	types	of	[]T1 	and	[]T2 	are	not	same	are:

the	request	of	converting	values	of	[]T1 	and	[]T2 	to	each	other	is	not	strong	in	practice.
to	make	underlying	type	tracing	rule	(§14)	simpler.

The	same	reasons	are	also	valid	for	other	composite	types.	For	example,	type	map[T]T1 	and	map[T]T2
also	don't	share	the	same	underlying	type	even	if	T1 	and	T2 	share	the	same	underlying	type.

It	is	possible	that	values	of	type	[]T1 	can	be	converted	to	[]T2 	by	using	the	unsafe 	mechanisms,	but
generally	this	is	not	recommended:

1| package	main

2|

3| import	(

4| 			"fmt"

5| 			"unsafe"

6| )

7|

8| func	main()	{

9| 			type	MyInt	int

10|

11| 			var	a	=	[]int{7,	8,	9}
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12| 			var	b	=	*(*[]MyInt)(unsafe.Pointer(&a))

13| 			b[0]=	123

14| 			fmt.Println(a)	//	[123	8	9]

15| 			fmt.Println(b)	//	[123	8	9]

16| 			fmt.Printf("%T	\n",	a)	//	[]int

17| 			fmt.Printf("%T	\n",	b)	//	[]main.MyInt

18| }

Which	values	can	and	which	values	can't	be	taken
addresses?

Following	values	can't	be	taken	addresses:

bytes	in	strings
map	elements
dynamic	values	of	interface	values	(exposed	by	type	assertions)
constant	values	(including	named	constants	and	literals)
package	level	functions
methods	(used	as	function	values)
intermediate	values

function	calls
explicit	value	conversions
all	sorts	of	operations,	excluding	pointer	dereference	operations,	but	including:

channel	receive	operations
sub-string	operations
sub-slice	operations
addition,	subtraction,	multiplication,	and	division,	etc.

Please	note,	there	is	a	syntax	sugar,	&T{} ,	in	Go.	It	is	a	short	form	of	tmp	:=	T{};	(&tmp) .
So	&T{} 	is	legal	doesn't	mean	the	literal	T{} 	is	addressable.

Following	values	can	be	taken	addresses:

variables
fields	of	addressable	structs
elements	of	addressable	arrays
elements	of	any	slices	(whether	the	slices	are	addressable	or	not)
pointer	dereference	operations

Why	are	map	elements	unaddressable?

The	main	reason	is	making	map	elements	addressable	means	the	address	of	a	map	element	must	not	be
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changed	in	its	life	cycle.	This	prevents	Go	compilers	using	more	efficient	algorithms	to	implement	map.
For	the	standard	Go	compiler,	the	internal	addresses	of	map	elements	may	be	changed	at	run	time.

Why	elements	of	a	non-nil	slice	are	always	addressable,
even	if	the	slice	is	unaddressable?

The	internal	type	for	slices	is	a	struct	like

1| struct	{

2| 			//	elements	references	an	element	sequence.

3| 			elements	unsafe.Pointer

4| 			length			int

5| 			capacity	int

6| }

Each	slice	indirectly	references	an	underlying	element	sequence	internally.	Although	a	non-nil	slice	is	not
addressable,	its	internal	element	sequence	is	always	allocated	somewhere	and	must	be	addressable.	Taking
addresses	of	elements	of	a	slice	is	taking	the	addresses	of	elements	of	the	internal	element	sequence
actually.	This	is	why	elements	of	unaddressable	non-nil	slices	are	always	addressable.

For	any	non-pointer	non-interface	defined	type	T,	why	is
the	method	set	of	*T	always	a	super	set	of	the	method	set	of
T,	but	not	vice	versa?

In	Go,	for	convenience,

a	value	of	type	T 	can	call	methods	defined	on	type	*T ,	but	only	if	the	value	of	T 	are	addressable.
Compilers	will	take	the	address	of	the	T 	value	automatically	before	calling	the	pointer	receiver
methods.	For	not	any	values	of	type	T 	are	addressable,	not	any	values	of	type	T 	are	capable	of
calling	methods	defined	on	type	*T .	This	convenience	is	just	a	sugar,	not	an	intrinsic	rule.
a	value	of	type	*T 	can	always	call	methods	defined	on	type	T .	This	is	because	it	is	always	legal	to
dereference	a	pointer	value.	This	convenience	is	not	only	a	sugar,	but	also	an	intrinsic	rule.

So	it	is	much	reasonable	that	the	method	set	of	*T 	is	always	a	super	set	of	the	method	set	of	T ,	but	not
vice	versa.

In	fact,	you	can	think	that,	for	every	method	declared	on	type	T ,	an	implicit	method	with	the	same	name
and	the	same	signature	is	automatically	declared	on	type	*T .	Please	read	methods	(§22)	for	details.

1| func	(t	T)	MethodX(v0	ParamType0,	...)	(ResultType0,	...)	{

2| 			...

3| }
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4|

5| //	An	implicit	method	of	*T	is	automatically	defined	as

6| func	(pt	*T)	MethodX(v0	ParamType0,	...)	(ResultType0,	...)	{

7| 			return	(*pt).MethodX(v0,	...)

8| }

Please	read	this	answer Ң 	in	the	official	Go	FAQ	to	get	more	explanations.

Which	types	can	we	implement	methods	for?

Please	read	methods	in	Go	(§22)	for	details.

How	to	declare	immutable	values	in	Go?

There	are	three	immutable	value	definitions:

1.	 the	values	which	have	no	addresses	(so	they	are	not	addressable).
2.	 the	values	which	have	addresses	but	are	not	addressable	(their	addresses	are	not	allowed	to	be	taken

in	syntax).
3.	 the	values	which	are	addressable	but	their	values	are	not	allowed	to	be	modified	in	syntax.

In	Go,	up	to	now	(Go	1.13),	there	are	no	values	satisfy	the	third	definition.	In	other	words,	the	third
definition	is	not	supported.

Name	constant	values	satisfy	the	first	definition.

Methods	and	package-level	functions	can	also	viewed	as	declared	immutable	values.	They	satisfy	the
second	definition.	String	elements	(bytes)	also	satisfy	the	second	definition.

There	are	no	ways	to	declare	other	custom	immutable	named	values	in	Go.

Why	isn't	there	a	built-in	set	container	type?

Sets	are	just	maps	but	don't	care	about	element	values.	In	Go,	map[Tkey]struct{} 	is	often	used	as	a	set
type.

What	is	byte?	What	is	rune?	How	to	convert	[]byte	and
[]rune	values	to	strings?

In	Go,	byte 	is	an	alias	of	type	uint8 .	In	other	words,	byte 	and	uint8 	are	the	same	identical	type.	The
same	relation	is	for	rune 	and	int32 .
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A	rune 	often	is	used	to	store	a	Unicode	code	point.

[]byte 	and	[]rune 	values	can	be	explicitly	and	directly	converted	to	strings,	and	vice	versa.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	s0	=	"Go"

7|

8| 			var	bs	=	[]byte(s0)

9| 			var	s1	=	string(bs)

10|

11| 			var	rs	=	[]rune(s0)

12| 			var	s2	=	string(rs)

13|

14| 			fmt.Println(s0	==	s1)	//	true

15| 			fmt.Println(s0	==	s2)	//	true

16| }

About	more	on	strings,	please	read	strings	in	Go	(§19).

How	to	manipulate	pointer	values	atomically?

Example:

1| import	(

2| 			"unsafe"

3| 			"sync/atomic"

4| )

5|

6| type	T	int	//	just	a	demo

7|

8| var	p	*T

9|

10| func	demo(newP	*T)	{

11| 			//	load

12| 			var	_	=	(*T)(atomic.LoadPointer(

13| 						(*unsafe.Pointer)(unsafe.Pointer(&p)),

14| 						))

15|

16| 			//	store

17| 			atomic.StorePointer(

18| 						(*unsafe.Pointer)(unsafe.Pointer(&p)),

19| 						unsafe.Pointer(newP),

20| 						)
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21|

22|

23| 			//	swap

24| 			var	oldP	=	(*T)(atomic.SwapPointer(

25| 						(*unsafe.Pointer)(unsafe.Pointer(&p)),

26| 						unsafe.Pointer(newP),

27| 						))

28|

29| 			//	compare	and	swap

30| 			var	swapped	=	atomic.CompareAndSwapPointer(

31| 						(*unsafe.Pointer)(unsafe.Pointer(&p)),

32| 						unsafe.Pointer(oldP),

33| 						unsafe.Pointer(newP),

34| 						)

35|

36| 			_	=	swapped

37| }

Yes,	now	it	is	much	verbose	to	use	the	pointer	atomic	functions.

What	does	iota	mean?

Iota	is	the	ninth	letter	of	the	Greek	alphabet.	In	Go,	iota 	is	used	in	constant	declarations.	In	each	constant
declaration	group,	its	value	is	N 	in	the	Nth	constant	specification	in	that	constant	declaration	group.

Why	isn't	there	a	built-in	closed	function	to	check
whether	or	not	a	channel	is	closed?

The	reason	is	the	usefulness	of	such	function	is	very	limited.	The	return	result	of	a	call	to	such	function
may	be	not	able	to	reflect	the	latest	status	of	the	input	channel	argument.	So	it	is	not	a	good	idea	to	make
decisions	relying	on	the	return	result.

If	you	do	need	such	a	function,	it	would	be	effortless	to	write	one	by	yourself.	Please	read	this	article
(§38)	to	get	how	to	write	closed 	functions	and	how	to	avoid	using	such	a	function.

Is	it	safe	for	a	function	to	return	pointers	of	local	variables?

Yes,	it	is	absolutely	safe	in	Go.

Go	compilers	which	support	stack	will	do	escape	analysis.	For	the	standard	Go	compiler,	if	the	escape
analyzer	thinks	a	memory	block	will	only	be	used	in	current	function	call	for	sure,	it	will	allocate	the
memory	block	on	stack,	otherwise,	then	the	memory	block	will	be	allocated	on	heap.	Please	read	memory
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block	(§43)	for	more	information.

What	does	the	word	gopher	mean	in	Go	community?

In	Go	community,	a	gopher	means	a	Go	programmer.	This	nickname	may	be	originated	from	the	fact	that
Go	language	adopted	a	cartoon	gopher Ң 	as	the	mascot.	BTW,	the	cartoon	gopher	is	designed	by	Renee
French,	who	is	the	wife	of	the	(first)	Go	project	leader,	Rob	Pike.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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Go	Tips	101
Index

How	to	force	package	users	to	use	struct	composite	literals	with	field	names?
How	to	make	a	struct	type	incomparable?
Don't	use	value	assignments	with	expressions	interacting	with	each	other.
How	to	simulate	for	i	in	0..N 	in	some	other	languages?
We	should	reset	the	pointers	in	the	element	slots	which	are	freed	up	in	all	kinds	of	slice
manipulations	to	avoid	memory	leaking	if	we	can't	make	sure	if	the	freed-up	element	slots	will	be
reused	later.
Values	of	some	types	in	standard	packages	are	not	expected	to	be	copied.
We	can	use	the	memclr	optimization	to	reset	some	contiguous	elements	in	an	array	or	slice.
How	to	check	if	a	value	has	a	method	without	importing	the	reflect 	package?
How	to	efficiently	and	perfectly	clone	a	slice?
We	should	use	the	three-index	subslice	form	at	some	scenarios.
Use	anonymous	functions	to	make	some	deferred	function	calls	be	executed	earlier.
Make	sure	and	show	a	custom	defined	type	implements	a	specified	interface	type.
Some	compile-time	assertion	tricks.
How	to	declare	maximum	int	and	uint	constants?
How	to	detect	native	word	size	at	compile	time?
How	to	guarantee	that	the	64-bit	value	operated	by	a	64-bit	atomic	function	call	is	always	64-bit
aligned	on	32-bit	architectures?
Avoid	boxing	large-size	values	into	interface	values.
Make	optimizations	by	using	BCE	(bounds	check	elimination).

How	to	force	package	users	to	use	struct	composite	literals
with	field	names?

Package	developers	can	put	a	non-exported	zero-size	field	in	a	struct	type	definition,	so	that	compilers	will
forbid	package	users	using	composite	literals	with	some	field	items	but	without	field	names	to	create
values	of	the	struct	type.

An	example:

1| //	foo.go

2| package	foo

3|

4| type	Config	struct	{

5| 			_				[0]int

6| 			Name	string

7| 			Size	int
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8| }

1| //	main.go

2| package	main

3|

4| import	"foo"

5|

6| func	main()	{

7| 			//_	=	foo.Config{[0]int{},	"bar",	123}	//	error

8| 			_	=	foo.Config{Name:	"bar",	Size:	123}	//	compile	ok

9| }

Please	try	not	to	place	the	zero-size	non-exported	field	as	the	last	field	in	the	struct,	for	doing	so	might
enlarge	the	size	of	the	struct	type	(§51).

How	to	make	a	struct	type	incomparable?

Sometimes,	we	want	to	avoid	a	custom	struct	type	being	used	a	map	key	types,	then	we	can	put	a	field	of	a
non-exported	zero-size	incomparable	type	in	a	struct	type	to	make	the	struct	type	incomparable.	For
example:

1| package	main

2|

3| type	T	struct	{

4| 			dummy								[0]func()

5| 			AnotherField	int

6| }

7|

8| var	x	map[T]int	//	compile	error:	invalid	map	key	type	T

9|

10| func	main()	{

11| 			var	a,	b	T

12| 			_	=	a	==	b	//	compile	error:	invalid	operation:

13| }

Don't	use	value	assignments	with	expressions	interacting
with	each	other.

Currently	(Go	1.13),	there	are	some	evaluation	orders	in	a	multi-value	assignment	are	unspecified Ң
when	the	expressions	involved	in	the	multi-value	assignment	interact	with	each	other.	So	try	to	split	a
multi-value	assignment	into	multiple	single	value	assignments	if	there	are,	or	you	can't	make	sure	whether
or	not	there	are,	dependencies	between	the	involved	expressions.

In	fact,	in	some	bad-written	single-value	assignments,	there	are	also	expression	evaluation	order
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ambiguities.	For	example,	the	following	program	might	print	[7	0	9] ,	[0	8	9] ,	or	[7	8	9] ,
depending	on	compiler	implementations.

1| package	main

2|

3| import	"fmt"

4|

5| var	a	=	&[]int{1,	2,	3}

6| var	i	int

7| func	f()	int	{

8| 			i	=	1

9| 			a	=	&[]int{7,	8,	9}

10| 			return	0

11| }

12|

13| func	main()	{

14| 			//	The	evaluation	order	of	"a",	"i"

15| 			//	and	"f()"	is	unspecified.

16| 			(*a)[i]	=	f()

17| 			fmt.Println(*a)

18| }

In	other	words,	a	function	call	in	a	value	assignment	may	the	evaluation	results	of	the	non-function-call
expressions	in	the	same	assignment.	Please	read	evaluation	orders	in	Go	(§33)	for	details.

How	to	simulate	for	i	in	0..N	in	some	other	languages?

We	can	range	over	an	array	with	zero-size	element	or	a	nil	array	pointer	to	simulate	such	a	loop.	For
example:

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			const	N	=	5

7|

8| 			for	i	:=	range	[N]struct{}{}	{

9| 						fmt.Println(i)

10| 			}

11| 			for	i	:=	range	[N][0]int{}	{

12| 						fmt.Println(i)

13| 			}

14| 			for	i	:=	range	(*[N]int)(nil)	{

15| 						fmt.Println(i)

16| 			}
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17| }

We	should	reset	the	pointers	in	the	element	slots	which	are
freed	up	in	all	kinds	of	slice	manipulations	to	avoid	memory
leaking	if	we	can't	make	sure	if	the	freed-up	element	slots
will	be	reused	later.

Please	read	how	to	delete	slice	elements	(§18)	and	kind-of	memory	leaking	caused	by	not	resetting
pointers	in	dead	slice	elements	(§45)	for	details.

Values	of	some	types	in	standard	packages	are	not	expected
to	be	copied.

Values	of	the	bytes.Buffer 	type,	strings.Builder 	type	and	the	types	in	the	sync 	standard	package
are	not	recommended	to	be	copied.	(They	really	should	not	be	copied,	though	it	is	no	problems	to	copy
them	under	some	specified	circumstances.)

The	implementation	of	strings.Builder 	will	detect	invalid	strings.Builder 	value	copies.	Once
such	a	copy	is	found,	panic	will	occur.	For	example:

1| package	main

2|

3| import	"strings"

4|

5| func	main()	{

6| 			var	b	strings.Builder

7| 			b.WriteString("hello	")

8| 			var	b2	=	b

9| 			b2.WriteString("world!")	//	panic	here

10| }

Copying	values	of	the	types	in	the	sync 	standard	package	will	be	warned	by	the	go	vet 	command
provided	in	Go	SDK.

1| //	demo.go

2| package	demo

3|

4| import	"sync"

5|

6| func	f(m	sync.Mutex)	{	//	warning

7| 			m.Lock()

8| 			defer	m.Unlock()

9| 			//	do	something	...
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10| }

$	go	vet	demo.go

./demo.go:5:	f	passes	lock	by	value:	sync.Mutex

Copying	bytes.Buffer 	values	will	never	be	detected	at	run	time	nor	by	the	go	vet 	command.	Just	be
careful	not	to	do	this.

We	can	use	the	memclr	optimization	to	reset	some
contiguous	elements	in	an	array	or	slice.

Please	read	the	memclr 	optimization	(§18)	for	details.

How	to	check	if	a	value	has	a	method	without	importing	the
reflect	package?

Use	the	way	in	the	following	example.	(Assume	the	prototype	of	the	method	needed	to	be	checked	is
M(int)	string .)

1| package	main

2|

3| import	"fmt"

4|

5| type	A	int

6| type	B	int

7| func	(b	B)	M(x	int)	string	{

8| 			return	fmt.Sprint(b,	":	",	x)

9| }

10|

11| func	check(v	interface{})	bool	{

12| 			_,	has	:=	v.(interface{M(int)	string})

13| 			return	has

14| }

15|

16| func	main()	{

17| 			var	a	A	=	123

18| 			var	b	B	=	789

19| 			fmt.Println(check(a))	//	false

20| 			fmt.Println(check(b))	//	true

21| }

How	to	efficiently	and	perfectly	clone	a	slice?
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Please	read	this	wiki	article Ң 	and	this	wiki	article Ң 	for	details.

We	should	use	the	three-index	subslice	form	at	some
scenarios.

Assume	a	package	provides	a	func	NewX(...Option)	*X 	function,	and	the	implementation	of	this
function	will	merge	the	input	options	with	some	internal	default	options,	then	the	following
implementation	is	not	recommended.

1| func	NewX(opts	...Option)	*X	{

2| 			options	:=	append(opts,	defaultOpts...)

3| 			//	Use	the	merged	options	to	build	and	return	a	X.

4| 			//	...

5| }

The	reason	why	the	above	implementation	is	not	recommended	is	the	append 	call	may	modify	the
underlying	Option 	sequence	of	the	argument	opts .	For	most	scenarios,	it	is	not	a	problem.	But	for	some
special	scenarios,	it	may	cause	some	unexpected	results.

To	avoid	modifying	the	underlying	Option 	sequence	of	the	input	argument,	we	should	use	the	following
way	instead.

1| func	NewX(opts	...Option)	*X	{

2| 			opts	=	append(opts[:len(opts):len(opts)],	defaultOpts...)

3| 			//	Use	the	merged	options	to	build	and	return	a	X.

4| 			//	...

5| }

On	the	other	hand,	for	the	callers	of	the	NewX 	function,	it	is	not	a	good	idea	to	think	and	rely	on	the	NewX
function	will	not	modify	the	underlying	elements	of	the	passed	slice	arguments,	so	it	is	best	to	pass	these
arguments	with	the	three-index	subslice	form.

Another	scenario	at	which	we	should	use	three-index	subslice	form	is	mentioned	in	this	wiki	article Ң .

One	drawback	of	three-index	subslice	forms	is	they	are	some	verbose.	In	fact,	I	ever	made	a	proposal Ң
to	make	it	less	verbose,	but	it	was	declined.

Use	anonymous	functions	to	make	some	deferred	function
calls	be	executed	earlier.

Please	read	this	article	(§29)	for	details.
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Make	sure	and	show	a	custom	defined	type	implements	a
specified	interface	type.

We	can	assign	a	value	of	the	custom	defined	type	to	a	variable	of	type	of	the	specified	interface	type	to
make	sure	the	custom	type	implements	the	specified	interface	type,	and	more	importantly,	to	show	the
custom	type	is	intended	to	implement	which	interface	types.	Sometimes,	writing	docs	in	runnable	code	is
much	better	than	in	comments.

1| package	myreader

2|

3| import	"io"

4|

5| type	MyReader	uint16

6|

7| func	NewMyReader()	*MyReader	{

8| 			var	mr	MyReader

9| 			return	&mr

10| }

11|

12| func	(mr	*MyReader)	Read(data	[]byte)	(int,	error)	{

13| 			switch	len(data)	{

14| 			default:

15| 						*mr	=	MyReader(data[0])	<<	8	|	MyReader(data[1])

16| 						return	2,	nil

17| 			case	2:

18| 						*mr	=	MyReader(data[0])	<<	8	|	MyReader(data[1])

19| 			case	1:

20| 						*mr	=	MyReader(data[0])

21| 			case	0:

22| 			}

23| 			return	len(data),	io.EOF

24| }

25|

26| //	Any	of	the	following	three	lines	ensures

27| //	type	*MyReader	implements	io.Reader.

28| var	_	io.Reader	=	NewMyReader()

29| var	_	io.Reader	=	(*MyReader)(nil)

30| func	_()	{_	=	io.Reader(nil).(*MyReader)}

Some	compile-time	assertion	tricks.

Besides	the	above	one,	there	are	more	compile-time	assertion	tricks.

Several	ways	to	guarantee	a	constant	N 	is	not	smaller	than	another	constant	M 	at	compile	time:
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1| //	Any	of	the	following	lines	can	guarantee	N	>=	M

2| func	_(x	[]int)	{_	=	x[N-M]}

3| func	_(){_	=	[]int{N-M:	0}}

4| func	_([N-M]int){}

5| var	_	[N-M]int

6| const	_	uint	=	N-M

7| type	_	[N-M]int

8|

9| //	If	M	and	N	are	guaranteed	to	be	positive	integers.

10| var	_	uint	=	N/M	-	1

One	more	way	which	is	stolen	from	@lukechampine Ң .	It	makes	use	of	the	rule	that	duplicate	constant
keys	can't	appear	in	the	same	composite	literal	(§18).

var	_	=	map[bool]struct{}{false:	struct{}{},	N>=M:	struct{}{}}

The	above	way	looks	some	verbose	but	it	is	more	general.	It	can	be	used	to	assert	any	conditions.	It	can	be
less	verbose	but	needs	a	little	more	(negligible)	memory:

var	_	=	map[bool]int{false:	0,	N>=M:	1}

Similarly,	ways	to	assert	two	integer	constants	are	equal	to	each	other:

1| var	_	[N-M]int;	var	_	[M-N]int

2| type	_	[N-M]int;	type	_	[M-N]int

3| const	_,	_	uint	=	N-M,	M-N

4| func	_([N-M]int,	[M-N]int)	{}

5|

6| var	_	=	map[bool]int{false:	0,	M==N:	1}

7|

8| var	_	=	[1]int{M-N:	0}	//	the	only	valid	index	is	0

9| var	_	=	[1]int{}[M-N]		//	the	only	valid	index	is	0

10|

11| var	_	[N-M]int	=	[M-N]int{}

The	last	line	is	also	inspired	by	one	of	Luke	Champine's	tweets.

Ways	of	how	to	assert	a	constant	string	is	not	blank:

1| type	_	[len(aStringConstant)-1]int

2| var	_	=	map[bool]int{false:	0,	aStringConstant	!=	"":	1}

3| var	_	=	aStringConstant[:1]

4| var	_	=	aStringConstant[0]

5| const	_	=	1/len(aStringConstant)

The	last	line	is	stolen	from	Jan	Mercl's	clever	idea Ң .

Sometimes,	to	avoid	package-level	variables	consuming	too	much	memory,	we	can	put	assertion	code	in	a
function	declared	with	the	blank	identifier.	For	example,
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1| func	_()	{

2| 			var	_	=	map[bool]int{false:	0,	N>=M:	1}

3| 			var	_	[N-M]int

4| }

How	to	declare	maximum	int	and	uint	constants?

1| const	MaxUint	=	^uint(0)

2| const	MaxInt	=	int(^uint(0)	>>	1)

How	to	detect	native	word	size	at	compile	time?

This	tip	is	Go	unrelated.

1| const	Is64bitArch	=	^uint(0)	>>	63	==	1

2| const	Is32bitArch	=	^uint(0)	>>	63	==	0

3| const	WordBits	=	32	<<	(^uint(0)	>>	63)	//	64	or	32

How	to	guarantee	that	the	64-bit	value	operated	by	a	64-bit
atomic	function	call	is	always	64-bit	aligned	on	32-bit
architectures?

Please	read	Go	value	memory	layouts	(§44)	for	details.

Avoid	boxing	large-size	values	into	interface	values.

When	a	non-interface	value	is	assigned	to	an	interface	value,	a	copy	of	the	non-interface	value	will	be
boxed	into	the	interface	value.	The	copy	cost	depends	on	the	size	of	the	non-interface	value.	The	larger	the
size,	the	higher	the	copy	cost.	So	please	try	to	avoid	boxing	large-size	values	into	interface	values.

In	the	following	example,	the	costs	of	the	latter	two	print	calls	are	much	lower	than	the	former	two.

1| package	main

2|

3| import	"fmt"

4|

5| func	main()	{

6| 			var	a	[1000]int

7|

8| 			//	This	cost	of	the	two	lines	is	high.

9| 			fmt.Println(a)																			//	a	is	copied
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10| 			fmt.Printf("Type	of	a:	%T\n",	a)	//	a	is	copied

11|

12| 			//	The	cost	of	the	two	lines	is	low.

13| 			fmt.Printf("%v\n",	a[:])

14| 			fmt.Println("Type	of	a:",	fmt.Sprintf("%T",	&a)[1:])

15| }

About	value	sizes	of	different	types,	please	read	value	copy	costs	in	Go	(§34).

Optimize	Go	code	by	making	use	of	BCE	(bounds	check
elimination).

Please	read	this	article	(§35)	to	get	what	is	BCE	and	how	well	BCE	is	supported	by	the	standard	Go
compiler	now.

Here,	another	example	is	provided:

1| package	main

2|

3| import	(

4| 			"strings"

5| 			"testing"

6| )

7|

8| func	NumSameBytes_1(x,	y	string)	int	{

9| 			if	len(x)	>	len(y)	{

10| 						x,	y	=	y,	x

11| 			}

12| 			for	i	:=	0;	i	<	len(x);	i++	{

13| 						if	x[i]	!=	y[i]	{

14| 									return	i

15| 						}

16| 			}

17| 			return	len(x)

18| }

19|

20| func	NumSameBytes_2(x,	y	string)	int	{

21| 			if	len(x)	>	len(y)	{

22| 						x,	y	=	y,	x

23| 			}

24| 			if	len(x)	<=	len(y)	{	//	more	code	but	more	efficient

25| 						for	i	:=	0;	i	<	len(x);	i++	{

26| 									if	x[i]	!=	y[i]	{	//	bound	check	eliminated

27| 												return	i

28| 									}

29| 						}
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30| 			}

31| 			return	len(x)

32| }

33|

34| var	x	=	strings.Repeat("hello",	100)	+	"	world!"

35| var	y	=	strings.Repeat("hello",	99)	+	"	world!"

36|

37| func	BenchmarkNumSameBytes_1(b	*testing.B)	{

38| 			for	i	:=	0;	i	<	b.N;	i++	{

39| 						_	=	NumSameBytes_1(x,	y)

40| 			}

41| }

42|

43| func	BenchmarkNumSameBytes_2(b	*testing.B)	{

44| 			for	i	:=	0;	i	<	b.N;	i++	{

45| 						_	=	NumSameBytes_2(x,	y)

46| 			}

47| }

In	the	above	example,	function	NumSameBytes_2 	is	more	efficient	than	function	NumSameBytes_1 .	The
benchmark	result:

BenchmarkNumSameBytes_1-4						10000000										669	ns/op

BenchmarkNumSameBytes_2-4						20000000										450	ns/op

Please	note,	there	are	many	small	improvements	in	each	main	release	of	the	standard	Go	compiler	(gc).
The	trick	used	in	the	above	example	doesn't	work	for	Go	SDK	versions	earlier	than	1.11.	And	future	gc
versions	may	become	smarter	so	that	the	trick	will	become	unnecessary.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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More	Go	Related	Topics
Go	101	articles	mainly	focus	on	syntax	and	semantics	in	Go.	There	are	some	other	Go	related	topics	which
are	not	covered	in	Go	101.	The	remaining	of	the	current	article	will	make	simple	introductions	to	those
topics	and	provide	some	web	links	for	readers	to	dig	more	into	them.

Profiling,	Tests	and	Benchmarks

We	can	use	go	test 	command	in	the	official	SDK	to	run	tests	and	benchmarks.	Test	source	file	names
must	end	with	_test.go .	The	official	Go	SDK	also	supports	profiling	Go	programs.	Please	read	the
following	articles	for	more	details.

The	testing	standard	package Ң .
Using	subtests	and	sub-benchmarks Ң .
go	test 	command	options Ң .
Profiling	Go	programs Ң .

gccgo

gccgo Ң 	is	another	Go	compiler	maintained	by	the	Go	core	team.	It	is	mainly	used	to	verify	the
correctness	of	the	standard	Go	compiler	(gc).	We	can	use	the	-compiler=gccgo 	build	option	in	several
official	Go	SDK	commands	to	use	the	gccgo	compiler	instead	of	the	gc	compiler.	For	example,	go	run	-
compiler=gccgo	main.go .	This	option	requires	the	gccgo	program	is	installed.	Once	the	gccgo
program	is	installed,	we	can	also	use	the	gccgo 	command	directly	to	compile	Go	code Ң .

Go	Assembly

Go	functions	can	be	implemented	with	Go	assembly	language.	Go	assembly	language	is	a	cross-
architectures	(though	not	100%)	assembly	language.	Go	assembly	language	is	often	used	to	implement
some	functions	which	are	critical	for	Go	program	execution	performances.

For	more	details,	please	follow	the	following	links.

A	quick	guide	to	Go's	assembler Ң
The	Design	of	the	Go	assembler Ң

Cross-Platform	Compiling
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The	standard	Go	compiler	supports	cross-platform	compiling.	By	setting	the	GOOS 	and	GOARCH
environments	before	running	the	go	build 	command,	we	can	build	a	Windows	executable	on	a	Linux
machine,	and	vice	versa.	Please	read	the	following	articles	for	details.

Building	windows	go	programs	on	linux Ң .
The	current	supported	target	operating	systems	and	compilation	architectures Ң .

In	particular,	since	Go	1.11,	the	official	Go	SDK	starts	to	support	WebAssembly	as	a	new	kind	of
GOARCH.	Please	read	this	wiki	article Ң 	for	details.

cgo

We	can	call	C	code	from	Go	code,	and	vice	versa,	through	the	cgo	mechanism.	Please	follow	the
following	links	for	details.

cgo	official	documentation Ң
C?	Go?	Cgo! Ң
cgo	on	Go	wiki Ң

It	is	possible	to	use	C++	libraries	through	cgo	by	wrapping	C++	libraries	as	C	functions.

Please	note	that	using	cgo	in	code	may	make	it	is	hard	to	maintain	cross-platform	compatibility	of	Go
programs,	and	the	calls	between	Go	and	C	code	are	some	less	efficient	than	Go-Go	and	C-C	calls.

Build	Constraints	(Tags)

We	can	use	build	constraints Ң 	to	let	compilers	build	source	files	selectively.	A	build	constraint	is	also
called	a	build	tag.	A	build	constraint	can	appear	as	a	comment	line	like	//	+build	constraints 	or
appear	as	the	suffix	in	the	base	name	of	a	source	file.

Compiler	Directives

The	standard	Go	compiler	supports	several	compiler	directives Ң .	A	directive	appears	as	a	comment	line
like	//directive	args .	The	most	used	compiler	directive	in	practice	may	be	the	go:generate Ң
directive.

System	Calls

We	can	make	system	calls	by	call	the	functions	exported	by	the	syscall 	standard	package.	Please
beware	that,	different	from	other	standard	packages,	the	functions	in	the	syscall 	standard	package	are
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operating	system	dependent.

The	go/*	Standard	Packages

The	go/* 	standard	packages	provide	functionalities	of	parsing	Go	source	files,	which	are	very	useful	to
write	custom	Go	tools.	Please	read	go/types :	The	Go	Type	Checker Ң 	and	package	documentation Ң
for	how	to	use	these	packages.

More	Build	Modes

The	go	build 	command	in	the	official	Go	SDK	supports	several	build	modes.	Please	run	go	help
buildmode 	to	show	the	available	build	modes	or	read	the	explanations	for	-buildmode	option Ң 	instead.
Except	the	default	build	mode,	the	most	used	build	mode	may	be	the	plugin	build	mode.	We	can	use	the
functions	in	the	plugin 	standard	package Ң 	to	load	and	use	the	Go	plugin	files	outputted	by	using	the
plugin	build	mode.

(The	Go	101	book	is	provided	as	free	ebooks.	This	book	is	still	being	improved	frequently
from	time	to	time.	Please	visit	go101.org Ң 	to	get	the	latest	version	of	this	book.	BTW,

Tapir,	the	author	of	the	book,	has	developed	several	fun	games.	You	can	visit
tapirgames.com Ң 	to	get	more	information	about	these	games.	Hope	you	enjoy	them.)
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