
CQRS and
Event Sourcing

with Event Horizon

1looplab.se

Todays Agenda

● CQRS

● Event Sourcing

● Break!

● Event Horizon

● Case: TodoMVC

● Case: Rapideye by Great Beyond

2looplab.se

Max Ekman, Looplab AB

● Owner & Software Engineer

● Consulting firm

● System Architecture

● Cloud and Backend

● Golang

● Google Cloud Platform

● Scrum

3looplab.se

CQRS

4looplab.se

What is CQRS?

Command and Query Responsibility Segregation

Different requirements for viewing and modifying data

Simple in practice, but steep learning curve

The Bible: http://cqrs.nu/Faq

5looplab.se

Domain

Describes a real business domain

Encapsulates business logic

Uses non-tech terminology

Bounded context - a fairly independent part of a business

6looplab.se

Entities and Aggregates

An item in the domain

Has a unique ID

Items can have the same properties as other items

Aggregates encapsulate the logic for a single entity

Stores the items for later queries

7looplab.se

Commands

Describes an action that should happen - e.g. BuyItem

The CUD in CRUD - create, update, delete

Contains all info about the action - ID, Who bought it, when etc.

Processed by an Aggregate

Succeeds or fails, decided by the Aggregate

Validated before it even gets to the Aggregate

8looplab.se

Query Engine

Read only access to entities

The R in CRUD - read

Projected by the aggregate or a dedicated projector

Multiple read models per aggregate allowed and encuraged

Sometimes called materialized views

9looplab.se

10looplab.se

Client

DB

Aggregate Query Engine

Command Entity

Command side Read side

Pros and Cons

+ Separation of concerns
+ Full control over data mutation
+ Easy to validate actions
+ Uses domain terminology
+ Creates a clear API
- More complex, at least in the beginning
- Harder to iterate UI, usually
- Can be too strict

11looplab.se

Event Sourcing

12looplab.se

What is Event Sourcing?

Describes what happens in a domain as continuous timeline

Traditionally only the latest state is known

Tracks the history of everything

Enables data replay, undo/redo, diffs etc.

More complex

13looplab.se

Events

Describes an event that has happened - e.g. ItemBought

Contains all info about the what happened - ID, Who bought it, when etc.

Processed by event handlers - store data, send mails etc.

Handling should preferably never fail - but it does happen

14looplab.se

Projections

The process of transforming events to a state

In practice it does CRUD to the read models

Allows re-projecton of events

Flexibility when migrating models

15looplab.se

Observers

Useful for passive reactions to events

Sending mail and other notifications are typical examples

Can be used to notify clients and UIs about changes

16looplab.se

17looplab.se

Client

Event DB

Aggregate Query Engine

Command Entity

Event

Projector DB

Command side Read side

Pros and Cons

+ Full history of all data
+ Multiple projections/views
+ Easy to do undo/redo, audit logs etc.
+ Reactions on events; mail etc.
+ Uses domain terminology
- Migrations are hard, really hard
- Events that can fail are tricky to do correctly
- Even higher complexity, lots of moving parts

18looplab.se

Break!

19looplab.se

Event Horizon

20looplab.se

21looplab.se

github.com/looplab/eventhorizon

Project Overview

A toolkit of components

Written in Golang

Not tied to specific DBs or other infrastructure

3-4 years old, but not API stable or feature complete yet

Fairly mature drivers for MongoDB and Redis

22looplab.se

Components

Basic types - Command, Event, UUID, handler interfaces like http.Handler

Event storage

Read model repository

Aggregate handling

Projection

Utilities

23looplab.se

Commands

type Command interface {

AggregateID() UUID // Which entity to target.

AggregateType() AggregateType // What part of the domain to act on.

CommandType() CommandType // What to do to the entity.

}

24looplab.se

Commands, cont.

type Create struct {

ID eh.UUID `json:"id"`

Brand string `json:"brand"`

}

func (c *Create) AggregateType() eh.AggregateType { return “car” }

func (c *Create) AggregateID() eh.UUID { return c.ID }

func (c *Create) CommandType() eh.CommandType { return “create” }

25looplab.se

Events

type Event interface {

EventType() EventType // What happened.

Data() EventData // All data about what happened.

Timestamp() time.Time // When it happened.

...

}

26looplab.se

Events, cont.

type Event interface {

...

AggregateType() AggregateType // In which part of the domain.

AggregateID() UUID // Which entity did it happen to.

Version() int // Where in the timeline did it happen.

}

27looplab.se

Events, cont.

Created = eh.EventType("car:created")

type CreatedData struct {

Brand string `json:"brand" bson:"brand"`

}

28looplab.se

Aggregate

type Aggregate struct {...}

// Transforms commands into events.

func (a *Aggregate) HandleCommand(ctx context.Context, cmd eh.Command) error

// Updates the aggregate state from events.

func (a *Aggregate) ApplyEvent(ctx context.Context, event eh.Event) error

29looplab.se

Model

type Car struct {

ID int `json:"id" bson:"id"`

Brand string `json:"brand" bson:"brand"`

}

func (c *Car) EntityID() eh.UUID { return c.ID }

30looplab.se

Projector

type Projector struct {...}

// Projects an event onto an entity, returning the modified entity.

func (p *Projector) Project(ctx context.Context,

event eh.Event, entity eh.Entity)

(eh.Entity, error)

31looplab.se

Roadmap

More drivers, GCP Datastore and Pub/Sub

Less complex setup of domains

Easier to understand async event handling (actor model?)

Production utilities; migration, reply etc.

Production hardening

32looplab.se

Case: TodoMVC

33looplab.se

Intro

Domain overview

System overview

Demo

Further reading

34looplab.se

Overview

The classic TodoMVC from todomvc.com

Frontend in Elm!

Event driven UI

Backend using both CQRS and event sourcing

Uses three new HTTP utilities for Event Horizon

Uses MongoDB for storage and a in-process event bus

35looplab.se

Domain

Commands - Create, AddItem, SetItemDescription, CheckItem etc.

Events - Created, ItemAdded, ItemDescriptionSet, ItemChecked etc.

Aggregate and Projector

Model:

TodoList - One list, singleton in the example

TodoItem - One for each checkable row

36looplab.se

Demo!

37looplab.se

Case: Rapideye
by Great Beyond

38looplab.se

Great Beyond - greatbeyond.se

Hybrid agency doing web, film, print etc.

Helps actors in society to communicate

Activism in Sthlm - political and non-political campaigns, strategy

Tech in GBG - organization tools, hosting, digital campaigns

39looplab.se

Rapideye

A organization management tool

Handles members, communications, campaigns etc.

Modular system

Sold B2B according to client demands

Currently in use by a few clients

Beta tested as call center app in Kyrkovalet 2017

40looplab.se

41looplab.se

Benefits of CQRS / ES

Free auditlog of all events

Reactive UI, across browsers and devices

Domain terminology understandable by non-tech people

Easy to do notifications, mail etc.

42looplab.se

Challanges

Migrations!

System efficiency with large data sets

Complexity

43looplab.se

Thanks!
hello@looplab.se

44looplab.se

