CQRS anad
Event Sourcing

with Event Horizon

Todays Agenda
e CQRS
e FEvent Sourcing
e Break!
e Event Horizon
e (ase: TodoMVC

e (ase: Rapideye by Great Beyond

looplab.se

Max Ekman, Looplab AB

Owner & Software Engineer
Consulting firm

System Architecture

Cloud and Backend

Golang

Google Cloud Platform

Scrum

looplab.se

What is CQRS?

Command and Query Responsibility Segregation
Different requirements for viewing and modifying data
Simple in practice, but steep learning curve

The Bible: http://cqrs.nu/Faq

looplab.se

Domain

Describes a real business domain
Encapsulates business logic

Uses non-tech terminology

Bounded context - a fairly independent part of a business

looplab.se

Entities and Aggregates

An item in the domain

Has a unique ID

Items can have the same properties as other items
Aggregates encapsulate the logic for a single entity

Stores the items for later queries

looplab.se

Commands

Describes an action that should happen - e.g. Buyltem

The CUD in CRUD - create, update, delete

Contains all info about the action - ID, Who bought it, when etc.
Processed by an Aggregate

Succeeds or fails, decided by the Aggregate

Validated before it even gets to the Aggregate

looplab.se

Query Engine

Read only access to entities

The Rin CRUD - read

Projected by the aggregate or a dedicated projector
Multiple read models per aggregate allowed and encuraged

Sometimes called materialized views

looplab.se

Command side | Read side
I
Client
[
I .
Command | Entity
I
|
Aggregate : Query Engine
: Y
I
1

looplab.se

DB

Y

10

Pros and Cons

Separation of concerns

Full control over data mutation

Easy to validate actions

Uses domain terminology

Creates a clear API

- More complex, at least in the beginning
- Harder to iterate Ul, usually

- Can be too strict

+ + 4+ + +

looplab.se

11

Event Sourcing

looplab.se 12

What is Event Sourcing?

Describes what happens in a domain as continuous timeline
Traditionally only the latest state is known

Tracks the history of everything

Enables data replay, undo/redo, diffs etc.

More complex

looplab.se

13

Events

Describes an event that has happened - e.g. ItemBought
Contains all info about the what happened - ID, Who bought it, when etc.
Processed by event handlers - store data, send mails etc.

Handling should preferably never fail - but it does happen

looplab.se

Projections

The process of transforming events to a state
In practice it does CRUD to the read models
Allows re-projecton of events

Flexibility when migrating models

looplab.se

15

Observers

Useful for passive reactions to events
Sending mail and other notifications are typical examples

Can be used to notify clients and Uls about changes

looplab.se

looplab.se

Command side : Read side
Client
I .
1 Command : I Entity
|
| :
Aggregate | Query Engine
|
|
Event |
|
|
4> ' <>
cvent DB Projector “

17

Pros and Cons

Full history of all data

Multiple projections/views

Easy to do undo/redo, audit logs etc.
Reactions on events; mail etc.

Uses domain terminology

- Migrations are hard, really hard

- Events that can fail are tricky to do correctly
- Even higher complexity, lots of moving parts

+ + 4+ + +

looplab.se

looplab.se 19

FEvent Horizon

looplab.se 20

000 (< Bl ® & GitHub, Inc. ¢S ©

looplab.se

github.com/looplab/eventhorizon

looplab/eventhorizon: CQRS/ES toolkit for Go

O This repository Sear Pull requests Issues Marketplace Explore
| looplab / eventhorizon @ Unwatch~ 22 Y Unstar =~ 412 YFork 58
<> Code Issues 37 Pull requests 1 Projects 0 Wiki Insights Settings
CQRSJES toolkit for Go Edit
go cars ddd event-horizon event-sourcing domain-driven-design google-cloud aws Manage topics
{D 324 commits P 1 branch © 0 releases 42 9 contributors sfs Apache-2.0

21

Project Overview

A toolkit of components

Written in Golang

Not tied to specific DBs or other infrastructure

3-4 years old, but not API stable or feature complete yet

Fairly mature drivers for MongoDB and Redis

looplab.se

22

Components

Basic types - Command, Event, UUID, handler interfaces like http.Handler
Event storage

Read model repository

Aggregate handling

Projection

Utilities

looplab.se

23

Commands

type Command interface {
AggregateID() UUID
AggregateType() AggregateType

CommandType() CommandType

looplab.se

// Which entity to target.
// What part of the domain to act on.

// What to do to the entity.

24

Commands, cont.

type Create struct {
ID eh.UUID “json:"id""
Brand string "json:"brand"’
}
func (c *Create) AggregateType() eh.AggregateType { return “car” }
func (c *Create) AggregateID() eh.UUID { return c.ID }

func (c *Create) CommandType() eh.CommandType { return “create” }

looplab.se

25

Events

type Event interface {
EventType() EventType
Data() EventData

Timestamp() time.Time

looplab.se

// What happened.

// All data about what happened.

// When it happened.

26

Events, cont.

type Event interface {
AggregateType() AggregateType

AggregateID() UUID

Version() 1int

looplab.se

// In which part of the domain.

// Which entity did it happen to.

// Where in the timeline did it happen.

27

Events, cont.

Created = eh.EventType("car:created")

type CreatedData struct {

Brand string "json:"brand" bson:"brand"®

looplab.se

28

Aggregate
type Aggregate struct {...}

// Transforms commands into events.

func (a *Aggregate) HandleCommand(ctx context.Context, cmd eh.Command) error

// Updates the aggregate state from events.

func (a *Aggregate) ApplyEvent(ctx context.Context, event eh.Event) error

looplab.se

29

Model

type Car struct {
ID int "json:"id" bson:"id""
Brand string " json:"brand" bson:"brand"®

}

func (c *Car) EntityID() eh.UUID { return c.ID }

looplab.se

30

Projector

type Projector struct {...}

// Projects an event onto an entity, returning the modified entity.
func (p *Projector) Project(ctx context.Context,
event eh.Event, entity eh.Entity)

(eh.Entity, error)

looplab.se

31

Roadmap

More drivers, GCP Datastore and Pub/Sub
Less complex setup of domains

Easier to understand async event handling (actor model?)
Production utilities; migration, reply etc.

Production hardening

looplab.se

32

Case: TodoMVC

Intro

Domain overview
System overview
Demo

Further reading

looplab.se

34

Overview

The classic TodoMVC from todomvc.com
Frontend in EIm!

Event driven Ul

Backend using both CQRS and event sourcing
Uses three new HTTP utilities for Event Horizon

Uses MongoDB for storage and a in-process event bus

looplab.se

35

Domain

Commands - Create, AddItem, SetltemDescription, Checkltem etc.

Events - Created, ltemAdded, ItemDescriptionSet, ltemChecked etc.

Aggregate and Projector

Model;

TodolList - One list, singleton in the example

Todoltem - One for each checkable row

looplab.se

36

||||||||||

Case: Rapideye

by Great Beyond

looplab.se 38

Great Beyon d - greatbeyond.se

Hybrid agency doing web, film, print etc.
Helps actors in society to communicate
Activism in Sthim - political and non-political campaigns, strategy

Tech in GBG - organization tools, hosting, digital campaigns

looplab.se

39

Rapideye

A organization management tool

Handles members, communications, campaigns etc.

Modular system

Sold B2B according to client demands
Currently in use by a few clients

Beta tested as call center app in Kyrkovalet 2017

looplab.se

40

o000 < @

Contacts contact management

& demo.rapideye-stage.com

o
«

99 ollth)lc me

Kontakter

4 Alla kontakter
¥ Alla med e-mail
R, Alla med telefon

Mina favoriter

Dynamiska listor

Statiska listor
Goteborg
Maindal

Boras

Skovde

Uddevalla

il BEIEIEE

looplab.se

o Alla kontakter

Namn

Max Ekman

Lily Robinson

James Smith

Daniel Williams

Sofia Moore

Emily Williams

Alexander Miller

Emily Jones

Matthew Harris

Madison Garcia

Ethan Robinson

‘Addison Harris

Sophia Wilson

‘Aiden Johnson

Andrew Williams

Noah Thompson

William Martin

Looplab AB

Max Ekman

& Looplab AB - Owner
i Male

%

¥y Markera som favorit *D) Historik

Looplab AB - Owner

E Male

Kontaktdata

max@looplab.se ©

Behérighet

Agare

All v

Listor
& Redigera

Taggar

Nyckelvarden

41

Benefits of CQRS / ES

Free auditlog of all events
Reactive Ul, across browsers and devices
Domain terminology understandable by non-tech people

Easy to do notifications, mail etc.

looplab.se

42

Challanges

Migrations!
System efficiency with large data sets

Complexity

looplab.se

43

Thanks!

hello@looplab.se

looplab.se 44

