JAKARTA EE

Jakarta Batch

Jakarta Batch Team, https://projects.eclipse.org/projects/ee4j.batch

Version 2.0, 2020-07-22

Table of Contents

1. License

1.1. Eclipse Foundation Specification License

1.1.1. Disclaimers
2. Acknowledgements
3. Foreword
4. Table of Contents

5. Introduction to Jakarta Batch
6. Applicability of Specification

7. Domain Language of Batch
7.1. Job
7.1.1. JobInstance
7.1.2. JobParameters
7.1.3. JobExecution
7.2. Step
7.2.1. StepExecution
7.3. JobOperator
7.4.Job Repository
7.5. ItemReader
7.6. ItemWriter
7.7. ItemProcessor

7.8. Chunk-oriented Processing

7.9. Batch Checkpoints
8. Job Specification Language
8.1.Job
8.1.1. Job Level Listeners

8.1.2. Job Level Exception Handling

8.1.3. Job Level Properties
8.2. Step
8.2.1. Chunk
8.2.1.1. Reader

8.2.1.1.1. Reader Properties

8.2.1.2. Processor

8.2.1.2.1. Processor Properties

8.2.1.3. Writer

8.2.1.3.1. Writer Properties
8.2.1.4. Chunk Exception Handling

© 00 00 I O U1 b W N = =

g o O Sy
© 00 00 1 1 3 O U b b R W W WN R R R R e O 0 O O O

8.2.1.4.1. Skipping Exceptions
8.2.1.4.2. Retrying Exceptions
8.2.1.4.3. Retry and Skip the Same Exception
8.2.1.4.4. Default Retry Behavior - Rollback
8.2.1.4.5. Preventing Rollback During Retry
8.2.1.5. Checkpoint Algorithm
8.2.1.5.1. Checkpoint Algorithm Properties
8.2.2. Batchlet
8.2.2.1. Batchlet Exception Handling
8.2.2.2. Batchlet Properties
8.2.3. Step Level Properties
8.2.4. Step Level Listeners
8.2.4.1. Step Level Listener Properties
8.2.5. Step Sequence
8.2.6. Step Partitioning
8.2.6.1. Partition Plan
8.2.6.2. Partition Properties
8.2.6.3. Partition Mapper
8.2.6.3.1. Mapper Properties
8.2.6.4. Partition Reducer
8.2.6.4.1. Partition Reducer Properties
8.2.6.5. Partition Collector
8.2.6.5.1. Partition Collector Properties
8.2.6.6. Partition Analyzer
8.2.6.6.1. Partition Analyzer Properties
8.2.7. Step Exception Handling
8.3. Flow
8.4. Split
8.4.1. Split Termination Processing Incomplete
8.5. Decision
8.5.1. Decision Properties
8.5.2. Decision Exception Handling
8.6. Transition Elements
8.6.1. Next Element
8.6.2. Fail Element
8.6.3. End Element
8.6.4. Stop Element
8.7. Batch and Exit Status

19
20
21
22
22
23
23
24
24
24
25
25
26
26
27
28
29
30
30
31
32
32
33
33
34
34
34
35
36
36
37
37
38
38
39
39
40
41

8.7.1. Batch and Exit Status for Steps
8.7.2. Exit Status for Partitioned Steps

8.8.Job XML Substitution

8.8.1. Substitution Processing Rules
8.8.1.1. jobParameters Substitution Operator
8.8.1.2. jobProperties Substitution Operator
8.8.1.3. systemProperties Substitution Operator
8.8.1.4. partitionPlan Substitution Operator
8.8.1.5. Substitution Expression Default
8.8.1.6. Property Resolution Rule
8.8.1.7. Undefined Target Name Rule
8.8.1.8. Job Restart Rule

8.8.2. Examples

8.9. Transitioning Rules

8.9.1. Combining Transition Elements
8.9.2. Transitioning Precedence Rules
8.9.3. Loop definition

8.9.4. Transitioning From Within Flows

8.9.5. Flow-level Transitions Undefined

9. Batch Programming Model
9.1. Steps

9.1.1. Chunk
9.1.1.1. ItemReader Interface
9.1.1.2. ItemProcessor Interface
9.1.1.3. ItemWriter Interface
9.1.1.4. CheckpointAlgorithm Interface
9.1.2. Batchlet Interface

9.2. Listeners

9.2.1. JobListener Interface

9.2.2. StepListener Interface

9.2.3. ChunkListener Interface
9.2.4. ItemReadListener Interface
9.2.5. ItemProcessListener Interface
9.2.6. ItemWriteListener Interface
9.2.7. Skip Listener Interfaces

9.2.8. RetryListener Interface

9.3. Batch Properties

9.3.1. @BatchProperty

43
44
44
435
435
46
46
46
48
48
49
49
49
50
50
51
52
52
52
54
54
54
54
56
57
60
62
64
64
66
68
70
72
74
75
77
79
79

9.3.2. Scope of property definitions for @BatchProperty Injection 81

9.4. Batch Contexts 82
9.4.1. Batch Contexts 82
9.4.1.1. Batch Context Lifecycle and Scope 83

9.5. Parallelization 83
9.5.1. PartitionMapper Interface 84
9.5.2. PartitionReducer Interface 84
9.5.3. PartitionCollector Interface 87
9.5.4. PartitionAnalyzer Interface 88
9.6. Decider Interface 90
9.7. Transactionality 92
10. Batch Runtime Specification 93
10.1. Batch Properties Reserved Namespace 93
10.2. Job Metrics 93
10.3. Job Runtime Identifiers 93
10.4. JobOperator 94
10.5. Batch Artifact Loading 94
10.6. Job XML Loading 95
10.7. Application Packaging Model 95
10.7.1. META-INF/batch.xml 95
10.7.2. META-INF/batch-jobs 96
10.8. Restart Processing 96
10.8.1. Job Parameters on Restart 97
10.8.2. Job XML Substitution during Restart 97
10.8.3. Execution Sequence on Restart — Overview 97
10.8.4. Execution Sequence on Restart — Detailed Rules 97
10.8.5. PartitionMapper on Restart 99
10.8.5.1. partitionsOverride = False 99
10.8.5.1.1. Number of Partitions Must Be Same 99
10.8.5.1.2. Partition Properties Populated From Current Plan 99
10.8.5.1.3. "Numbering" of Partitions via Partition Properties 99
10.8.5.2. partitionsOverride = True 100
10.9. Supporting Classes 100
10.9.1. JobContext 100
10.9.2. StepContext 102
10.9.3. Metric 105
10.9.4. PartitionPlan 105

10.9.5. BatchRuntime 109

10.9.6. BatchStatus 110

10.9.7. JobOperator 110
10.9.8. JobInstance 115
10.9.9. JobExecution 116
10.9.10. StepExecution 117
10.9.11. Batch Exception Classes 118

11. Job Runtime Lifecycle 119
11.1. Batch Artifact Lifecycle 119
11.2. Job Repository Artifact Lifecycle 119
11.3. Job Processsing 119
11.4. Regular Batchlet Processsing 120
11.5. Partitioned Batchlet Processsing 120
11.6. Regular Chunk Processing 121
11.7. Partitioned Chunk Processing 122
11.8. Chunk with Listeners (except RetryListener) 123
11.9. Chunk with RetryListener 125
11.10. Chunk with Custom Checkpoint Processing 127
11.11. Split Processing 129
11.12. Flow Processing 129
11.13. Stop Processing 129
12. Batch XML XSD 130
13. Job Specification Language 131
13.1. Validation Rules 131
13.2. JSL XSD 131
14. Credits 142
15. Change Log 143
15.1. Version 1.0 Revision A - Maintenance Release 143

15.1.1. Issues List 143

1.1. Eclipse Foundation Specification License

Chapter 1. License

Specification: Jakarta Batch
Version: 2.0
Status: DRAFT

Release: 2020-07-22

Copyright (c) 2018, 2020 Eclipse Foundation.

1.1. Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. https://www.eclipse.org/legal/efsl.php"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018, 2020 Eclipse Foundation. This software or document includes material copied from
or derived from Jakarta Batch 2.0."

DRAFT Jakarta Batch 1

https://www.eclipse.org/legal/efsl.php
https://jakarta.ee/specifications/batch/2.0/

1.1. Eclipse Foundation Specification License

1.1.1. Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

2 Jakarta Batch DRAFT

Chapter 2. Acknowledgements

Chapter 2. Acknowledgements

A number of individuals deserve special recognition for their contributions to forming this
specification:

* Kevin Conner

* Tim Fanelli

* Cheng Fang

* Mahesh Kannan

* Scott Kurz

* Wayne Lund

* Simon Martinelli

e Michael Minella

* Kaushik Mukherjee

* Joe Pullen

DRAFT Jakarta Batch 3

Chapter 3. Foreword

Chapter 3. Foreword

This specification describes the job specification language, Java programming model, and runtime
environment for Jakarta Batch. It is designed for use on Jakarta EE platforms, and also in other Java SE
environments. Additionally, it is designed to work with dependency injection (DI) containers without
prescribing a particular DI implementation.

4 Jakarta Batch DRAFT

Chapter 4. Table of Contents

Chapter 4. Table of Contents

DRAFT Jakarta Batch 5

Chapter 5. Introduction to Jakarta Batch

Chapter 5. Introduction to Jakarta Batch

Batch processing is a pervasive workload pattern, expressed by a distinct application organization and
execution model. It is found across virtually every industry, applied to such tasks as statement
generation, bank postings, risk evaluation, credit score calculation, inventory management, portfolio
optimization, and on and on. Nearly any bulk processing task from any business sector is a candidate
for batch processing.

Batch processing is typified by bulk-oriented, non-interactive, background execution. Frequently long-
running, it may be data or computationally intensive, execute sequentially or in parallel, and may be
initiated through various invocation models, including ad hoc, scheduled, and on-demand.

Batch applications have common requirements, including logging, checkpointing, and parallelization.
Batch workloads have common requirements, especially operational control, which allow for initiation
of, and interaction with, batch instances; such interactions include stop and restart.

6 Jakarta Batch DRAFT

Chapter 6. Applicability of Specification

Chapter 6. Applicability of Specification

This specification applies to Java SE and Jakarta EE environments. It requires Java 8 or higher.

DRAFT Jakarta Batch 7

7.1. Job

Chapter 7. Domain Language of Batch

To any experienced batch architect, the overall concepts of batch processing used by Jakarta Batch
should be familiar and comfortable. There are "Jobs" and "Steps" and developer supplied processing
units called ItemReaders and ItemWriters. However, because of the Jakarta Batch operations,
callbacks, and idioms, there are opportunities for the following:

a. significant improvement in adherence to a clear separation of concerns
b. clearly delineated architectural layers and services provided as interfaces

c. significantly enhanced extensibility

The diagram below is a simplified version of the batch reference architecture that has been used for
decades. It provides an overview of the components that make up the domain language of batch
processing. This architecture framework is a blueprint that has been proven through decades of
implementations on the last several generations of platforms (COBOL/Mainframe, C/Unix, and now
Java/anywhere). JCL and COBOL developers are likely to be as comfortable with the concepts as C, C#
and Java developers. Jakarta Batch specifies the layers, components and technical services commonly
found in robust, maintainable systems used to address the creation of simple to complex batch
applications.

I\

N T

The diagram above highlights the key concepts that make up the domain language of batch. A Job has
one to many steps, which has no more than one ItemReader, ItemProcessor, and ItemWriter. A job
needs to be launched (JobOperator), and meta data about the currently running process needs to be
stored (JobRepository).

7.1.Job

A Job is an entity that encapsulates an entire batch process. A Job will be wired together via a Job
Specification Language. However, Job is just the top of an overall hierarchy:

8 Jakarta Batch DRAFT

7.1. Job

_ &-'-"----_ The EndDﬂ'.'lay Job

*

Joblnstance
“\\ The EndOfDay Job
* for 200710505
The first atbempt at
JobExecution EndOfDay Job

for 2007/05/05

With Jakarta Batch, a Job is simply a container for Steps. It combines multiple steps that belong
logically together in a flow and allows for configuration of properties global to all steps, such as
restartability. The job configuration contains:

1. The simple name of the job
2. Definition and ordering of Steps

3. Whether or not the job is restartable

7.1.1. JobInstance

A JobInstance refers to the concept of a logical job run. Let’s consider a batch job that should be run
once at the end of the day, such as the 'EndOfDay’ job from the diagram above. There is one 'EndOfDay"
Job, but each individual run of the Job must be tracked separately. In the case of this job, there will be
one logical JobInstance per day. For example, there will be a January 1st run, and a January 2nd run. If
the January 1st run fails the first time and is run again the next day, it is still the January 1st run.
Usually this corresponds with the data it is processing as well, meaning the January 1st run processes
data for January 1st, etc. Therefore, each JobInstance can have multiple executions (JobExecution is
discussed in more detail below); one or many JobInstances corresponding to a particular Job can be
running at a given time.

The definition of a JobInstance has absolutely no bearing on the data that will be loaded. It is entirely
up to the ItemReader implementation used to determine how data will be loaded. For example, in the
EndOfDay scenario, there may be a column on the data that indicates the 'effective date' or 'schedule
date' to which the data belongs. So, the January 1st run would only load data from the 1st, and the
January 2nd run would only use data from the 2nd. Because this determination will likely be a
business decision, it is left up to the ItemReader to decide. What using the same JobInstance will
determine, however, is whether or not the 'state’' from previous executions will be available to the new
run. Using a new JobInstance will mean 'start from the beginning' and using an existing instance will
generally mean 'start from where you left off".

DRAFT Jakarta Batch 9

7.2. Step

7.1.2. JobParameters

Job parameters can be specified each time a job is started or restarted. Job parameters are
keyword/value string pairs. The JobOperator start and restart operations support the specification of
job parameters. See section 10.4 for further details on JobOperator.

7.1.3. JobExecution

A JobExecution refers to the technical concept of a single attempt to run a Job. Each time a job is
started or restarted, a new JobExecution is created, belonging to the same JobInstance.

7.2. Step

A Step is a domain object that encapsulates an independent, sequential phase of a batch job. Therefore,
every Job is composed entirely of one or more steps. A Step contains all of the information necessary to
define and control the actual batch processing. This is a necessarily vague description because the
contents of any given Step are at the discretion of the developer writing it. A Step can be as simple or
complex as the developer desires. A simple Step might load data from a file into the database,
requiring little or no code, depending upon the implementations used. A more complex Step may have
complicated business rules that are applied as part of the processing. As with Job, a Step has an
individual StepExecution that corresponds with a unique JobExecution:

_\, N

Jobinstance

\ ,

JobExecution *

StepExecution

7.2.1. StepExecution

A StepExecution represents a single attempt to execute a Step. A new StepExecution will be created
each time a Step is run, similar to JobExecution. However, if a step fails to execute because the step
before it fails, there will be no execution persisted for it. A StepExecution will only be created when its
Step is actually started.

7.3. JobOperator

JobOperator provides an interface to manage all aspects of job processing, including operational

10 Jakarta Batch DRAFT

7.4. Job Repository

commands, such as start, restart, and stop, as well as job repository related commands, such as
retrieval of job and step executions. See section 10.4 for more details about JobOperator.

7.4. Job Repository

A job repository holds information about jobs currently running and jobs that have run in the past.
The JobOperator interface provides access to this repository. The repository contains job instances, job
executions, and step executions. For further information on this content, see sections 10.9.8, 10.9.9,
10.9.10, respectively.

Note the implementation of the job repository is outside the scope of this specification.

7.5. ItemReader

ItemReader is an abstraction that represents the retrieval of input for a Step, one item at a time. An
ItemReader provides an indicator when it has exhausted the items it can supply. See section 9.1.1.1 for
more details about ItemReaders.

7.6. ItemWriter

ItemWriter is an abstraction that represents the output of a Step, one batch or chunk of items at a time.
Generally, an item writer has no knowledge of the input it will receive next, only the item that was
passed in its current invocation. See section 9.1.1.3 for more details about ItemWriters.

7.7. ItemProcessor

ItemProcessor is an abstraction that represents the business processing of an item. While the
ItemReader reads one item, and the ItemWriter writes them, the ItemProcessor provides access to
transform or apply other business processing. See section 9.1.1.2 for more details about
ItemProcessors.

7.8. Chunk-oriented Processing

Jakarta Batch specifies a 'Chunk Oriented' processing style as its primary pattern. Chunk oriented
processing refers to reading the data one item at a time, and creating 'chunks' that will be written out,
within a transaction boundary. One item is read in from an ItemReader, handed to an ItemProcessor,
and aggregated. Once the number of items read equals the commit interval, the entire chunk is written
out via the ItemWriter, and then the transaction is committed.

DRAFT Jakarta Batch 11

7.9. Batch Checkpoints

read() H :

- | MemReader | | ltemProcessor [nemwriter
exscute() ' : -
read() 5 i ;
item § i
. processiitern) .
; item I:| :

I process(item)

H wrila{items] {]

[

ExitStatus

7.9. Batch Checkpoints

For data intensive batch applications - particularly those that may run for long periods of time -
checkpoint/restart is a common design requirement. Checkpoints allow a step execution to periodically
bookmark its current progress to enable restart from the last point of consistency, following a planned
or unplanned interruption.

Checkpoints work naturally with chunk-oriented processing. The end of processing for each chunk is a
natural point for taking a checkpoint.

Jakarta Batch specifies runtime support for checkpoint/restart in a generic way that can be exploited
by any chunk-oriented batch step that has this requirement.

Since progress during a step execution is really a function of the current position of the input/output
data, natural placement of function suggests the knowledge for saving/restoring current position is a
reader/writer responsibility.

Since managing step execution is a runtime responsibility, the batch runtime must necessarily
understand step execution lifecycle, including initial start, execution end states, and restart.

Since checkpoint frequency has a direct effect on lock hold times, for lockable resources, tuning
checkpoint interval size can have a direct bearing on overall system throughput.

12 Jakarta Batch DRAFT

8.1. Job

Chapter 8. Job Specification Language

Job Specification Language (JSL) specifies a job, its steps, and directs their execution. The JSL for
Jakarta Batch is implemented with XML and will be henceforth referred to as "Job XML".

8.1.Job

The 'job' element identifies a job.

Syntax:

<job id="{name}" restartable="{true|false}">

Where:

id Specifies the logical name of the job and is used
for identification purposes. It must be a valid XML
string value. This is a required attribute.

restartable Specifies whether or not this job is restartable . It

must specify true or false. This is an optional
attribute. The default is true.

8.1.1. Job Level Listeners

Job level listeners may be configured to a job in order to intercept job execution. The listener element
may be specified as child element of the job element for this purpose. Job listener is the only listener
type that may be specified as a job level listener.

Multiple listeners may be configured on a job. However, there is no guarantee of the order in which
they are invoked.

Syntax:

<listeners>
<listener ref="{name}">

</listeners>

Where:

ref Specifies the name of a batch artifact.

DRAFT Jakarta Batch 13

8.2. Step

8.1.2. Job Level Exception Handling

Any unhandled exception thrown by a job-level listener causes the job to terminate with a batch status
of FAILED. In this context, "unhandled" simply means an exception thrown by the listener back to the
runtime implementation.

8.1.3. Job Level Properties

The 'properties’ element may be specified as a child element of the job element. It is used to expose
properties to any batch artifact belonging to the job and also to the batch runtime. Any number of
properties may be specified. Job level properties are available through the JobContext runtime object.
See section 9.4 for further information about Job Context.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
This is a required attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.2. Step

The 'step' element identifies a job step and its characteristics. Step is a child element of job. A job may
contain any number of steps. Each step may be either a chunk type step or batchlet type step. See
section 8.2.1 for information on chunk type steps and section 8.2.2 for information on batchlet type
steps.

Syntax:

<step id="{name}"
start-limit="{integer}"
allow-start-if-complete ="{true|false}"
next="{flow-id|step-id|split-id|decision-id}">

Where:

14 Jakarta Batch DRAFT

id

start-limit

allow-start-if-complete

next

8.2.1. Chunk

8.2. Step

Specifies the logical name of the step and is used
for identification purposes. It must be a valid XML
string value. This is a required attribute.

Specifies the number of times this step may be
started or restarted. It must be a valid XML
integer value. This is an optional attribute. The
default is 0, which means no limit. If the limit is
exceeded, the job is placed in the FAILED state.

Specifies whether this step is allowed to start
during job restart, even if the step completed in a
previous execution. It must be true or false. A
value of true means the step is allowed to restart.
This is an optional attribute. The default is false.

Specifies the next step, flow, split, or decision to
run after this step is complete. It must be a valid
XML string value. This is an optional attribute.
The default is this step is the last step in the job or
flow. Note: next attributes cannot be specified
such that a loop occurs among steps.

The 'chunk’ element identifies a chunk type step. It is a child element of the step element. A chunk type
step is periodically checkpointed by the batch runtime according to a configured checkpoint policy.
Items processed between checkpoints are referred to as a "chunk". A single call is made to the
ItemWriter per chunk. Each chunk is processed in a separate transaction. See section 9.7 for more
details on transactionality. A chunk that is not complete is restartable from its last checkpoint. A chunk
that is complete and belongs to a step configured with allow-start-if-complete=true runs from the

beginning when restarted.

Syntax:

<chunk checkpoint-policy="\{item|custom}"

item-count="{value}"
time-limit="{value}"
skip-Tlimit="{value}"
retry-limit="{value}" />

Where:

DRAFT

Jakarta Batch 15

8.2. Step

checkpoint-policy Specifies the checkpoint policy that governs
commit behavior for this chunk. Valid values are:
"item" or "custom". The "item" policy means the
chunk is checkpointed after a specified number of
items are processed. The "custom" policy means
the chunk is checkpointed according to a
checkpoint algorithm implementation. Specifying
"custom" requires that the checkpoint-algorithm
element is also specified. See section 8.2.1.5 for
checkpoint-algorithm. It is an optional attribute.
The default policy is "item".

item-count Specifies the number of items to process per
chunk when using the item checkpoint policy. It
must be valid XML integer. It is an optional
attribute. The default is 10. The item-count
attribute is ignored for "custom" checkpoint
policy.

time-limit Specifies the amount of time in seconds before
taking a checkpoint for the item checkpoint policy.
It must be valid XML integer. It is an optional
attribute. The default is 0, which means no limit.
When a value greater than zero is specified, a
checkpoint is taken when time-limit is reached or
item-count items have been processed, whichever
comes first. The time-limit attribute is ignored for
"custom" checkpoint policy.

skip-limit Specifies the number of exceptions a step will skip
if any configured skippable exceptions are thrown
by chunk processing. It must be a valid XML
integer value. It is an optional attribute. The
default is no limit.

retry-limit Specifies the number of times a step will retry if
any configured retryable exceptions are thrown
by chunk processing. It must be a valid XML
integer value. It is an optional attribute. The
default is no limit.

8.2.1.1. Reader

The 'reader' element specifies the item reader for a chunk step. It is a child element of the 'chunk
element. A chunk step must have one and only one item reader.

Syntax:

<reader ref="{name}"/>

16 Jakarta Batch DRAFT

8.2. Step
Where:

ref Specifies the name of a batch artifact.

8.2.1.1.1. Reader Properties

The 'properties' element may be specified as a child element of the reader element. It is used to pass
property values to a item reader. Any number of properties may be specified.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.2.1.2. Processor

The 'processor' element specifies the item processor for a chunk step. It is a child element of the
'‘chunk' element. The processor element is optional on a chunk step. Only a single processor element
may be specified.

Syntax:

<processor ref="{name}"/>

Where:

ref Specifies the name of a batch artifact.

8.2.1.2.1. Processor Properties

The 'properties' element may be specified as a child element of the processor element. It is used to pass
property values to a item processor. Any number of properties may be specified.

DRAFT Jakarta Batch 17

8.2. Step

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.2.1.3. Writer

The 'writer' element specifies the item writer for a chunk step. It is a child element of the 'chunk'’
element. A chunk type step must have one and only one item writer.

Syntax:

<writer ref="{name}"/>

Where:

ref Specifies the name of a batch artifact.

8.2.1.3.1. Writer Properties

The 'properties' element may be specified as a child element of the writer element. It is used to pass
property values to a item writer. Any number of properties may be specified.

Syntax:

<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>

Where:

18 Jakarta Batch DRAFT

8.2. Step

name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.

value Specifies the value corresponding to the named
property. It must be a valid XML string value. This
is a required attribute.

8.2.1.4. Chunk Exception Handling

By default, when any batch artifact that is part of a chunk type step throws an exception to the Batch
Runtime, the job execution ends with a batch status of FAILED. The default behavior can be overridden
for a reader, processor, or writer artifact by configuring exceptions to skip or to retry. The default
behavior can be overridden for the entire step by configuring a transition element that matches the
step’s exit status.

8.2.1.4.1. Skipping Exceptions

The skippable-exception-classes element specifies a set of exceptions that chunk processing will skip.
This element is a child element of the chunk element. It applies to exceptions thrown from the reader,
processor, and writer batch artifacts of a chunk type step. It also applies to exceptions thrown during
checkpoint commit processing. A failed commit will be treated the same as a failed write. The total
number of skips is set by the skip-limit attribute on the chunk element. See section 8.2.1 for details on
the chunk element.

A given exception will be skipped if it "matches"” an include child element of the skippable-exception-
classes element, though this might be negated (and the exception not skipped) if it also "matches" an
exclude child element of skippable-exception-classes.

The behavior is determined by the "nearest superclass" in the class hierarchy.

To elaborate, in this context, "matches" means the following: For an include (or exclude) element C
with @class attribute value T, an exception E "matches" C when either E is of type T or E’s type is a
subclass of T.

When an exception E "matches" both one or more include and one or more exclude elements, then
there will be one type T1 among all the matching include/exclude elements such that all other distinct
matching element types are superclasses of T1 (because of Java’s single inheritance). If T1 only occurs
in a matching include element then include (skip) this exception. If T1 appears in a matching exclude
element (even if it also appears in a matching include element), then exclude (don’t skip) this
exception.

Optional Skip Listener batch artifacts can be configured to the step. A Skip Listener receives control
after a skippable exception is thrown by the reader, processor, or writer. See section 9.2.7 for details on
the Skip Listener batch interfaces.

DRAFT Jakarta Batch 19

8.2. Step

Syntax:

<skippable-exception-classes>
<include class="{class name}"/>
<exclude class="{class name}"/>
</skippable-exception-classes>

Where:

include class Specifies the class name of an exception or
exception superclass to skip. It must be a fully
qualified class name. Multiple instances of the
include element may be specified. The include
child element is optional. However, when
specified, the class attribute is required.

exclude class Specifies a class name of an exception or
exception superclass to not skip. 'Exclude class'
reduces the number of exceptions eligible to skip
as specified by 'include class'. It must be a fully
qualified class name. Multiple instances of the
exclude element may be specified. The exclude
child element is optional. However, when
specified, the class attribute is required.

Example:

<skippable-exception-classes>

<include class="java.lang.Exception"/>

<exclude class="java.io.FileNotFoundException"/>
</skippable-exception-classes>

The preceding example would skip all exceptions except java.io.FileNotFoundException, (along with
any subclasses of java.io.FileNotFoundException).

8.2.1.4.2. Retrying Exceptions

The retryable-exception-classes element specifies a set of exceptions that chunk processing will retry.
This element is a child element of the chunk element. It applies to exceptions thrown from the reader,
processor, or writer batch artifacts of a chunk type step. It also applies to exceptions thrown by
checkpoint commit processing. The total number of retry attempts is set by the retry-limit attribute on
the chunk element. See section 8.2.1 for details on the chunk element.

The list of exceptions that will be retried (or not retried) is specified in the retryable-exception-classes
element on the child include element. This list, however, may be modified using one or more child
exclude elements. The rules for deciding whether to retry or not retry a given exception when a

20 Jakarta Batch DRAFT

8.2. Step

combination of include and exclude elements are used are analogous to the rules described in the
discussion in section 8.2.1.4.1 for skipping exceptions.

Optional Retry Listener batch artifacts can be configured on the step. A Retry Listener receives control
after a retryable exception is thrown by the reader, processor, or writer. See section 9.2.8 for details on

the Retry Listener batch artifact.

Syntax:

<retryable-exception-classes>
<include class="{class name}"/>
<exclude class="{class name}"/>
</retryable-exception-classes>

Where:

include class

exclude class

Example:

<retryable-exception-classes>

<include class="java.io.IOException"/>

Specifies a class name of an exception or
exception superclass to retry. It must be a fully
qualified class name. Multiple instances of the
include element may be specified. The include
child element is optional. However, when
specified, the class attribute is required.

Specifies a class name of an exception or
exception superclass to not retry. 'Exclude class'
reduces the number of exceptions eligible for
retry as specified by 'include class'. It must be a
fully qualified class name. Multiple instances of
the include element may be specified. The exclude
child element is optional. However, when
specified, the class attribute is required.

<exclude class="java.io.FileNotFoundException"/>

</retryable-exception-classes>

The result is that all IOExceptions except FileNotFoundException (and its subclasses) would be retried.

8.2.1.4.3. Retry and Skip the Same Exception

When the same exception is specified as both retryable and skippable, retryable takes precedence over
skippable during regular processing of the chunk. While the chunk is retrying, skippable takes
precedence over retryable since the exception is already being retried.

DRAFT

Jakarta Batch 21

8.2. Step

This allows an exception to initially be retried for the entire chunk and then skipped if it recurs. When
retrying with default retry behavior (see section 8.2.1.4.4) the skips can occur for individual items,
since the retry is done with an item-count of 1.

8.2.1.4.4. Default Retry Behavior - Rollback

When a retryable exception occurs, the default behavior is for the batch runtime to rollback the
current chunk and re-process it with an item-count of 1 and a checkpoint policy of item. If the optional
ChunkListener is configured on the step, the onError method is called before rollback. The default
retry behavior can be overridden by configuring the no-rollback-exception-classes element. See section
8.2.1.4.5 for more information on specifying no-rollback exceptions.

8.2.1.4.5. Preventing Rollback During Retry

The no-rollback-exception-classes element specifies a list of exceptions that override the default
behavior of rollback for retryable exceptions. This element is a child element of the chunk element. If a
retryable exception is thrown the default behavior is to rollback before retry. If an exception is
specified as both a retryable and a no-rollback exception, then no rollback occurs and the current
operation is retried. Retry Listeners, if configured, are invoked. See section 9.2.8 for details on the
Retry Listener batch artifact.

The rules for determining whether a combination of include and exclude child elements of no-
rollback-exception-classes results in the "no rollback" behavior or not are analogous to the rules
described in the discussion in section 8.2.1.4.1 for skipping exceptions.

Syntax:

<no-rollback-exception-classes>
<include class="{class name}"/>
<exclude class="{class name}"/>
</no-rollback-exception-classes>

Where:

include class Specifies a class name of an exception or
exception superclass for which rollback will not
occur during retry processing. It must be a fully
qualified class name. Multiple instances of the
include element may be specified. The include
child element is optional. However, when
specified, the class attribute is required.

22 Jakarta Batch DRAFT

8.2. Step

exclude class Specifies a class name of an exception or
exception superclass for which rollback will occur
during retry processing. It must be a fully
qualified class name. Multiple instances of the
include element may be specified. The exclude
child element is optional. However, when
specified, the class attribute is required.

8.2.1.5. Checkpoint Algorithm

The checkpoint-algorithm element specifies an optional custom checkpoint algorithm. It is a child
element of the chunk element. It is valid when the chunk element checkpoint-policy attribute specifies
the value 'custom'. A custom checkpoint algorithm may be used to provide a checkpoint decision based
on factors other than only number of items, or amount of time. See section 9.1.1.4 for further
information about custom checkpoint algorithms.

Syntax:

<checkpoint-algorithm ref="{name}"/>

Where:

ref Specifies the name of a batch artifact.

8.2.1.5.1. Checkpoint Algorithm Properties

The 'properties' element may be specified as a child element of the checkpoint algorithm element. It is
used to pass property values to a checkpoint algorithm. Any number of properties may be specified.

Syntax:

<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>

Where:

Name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.

DRAFT Jakarta Batch 23

8.2. Step

Value Specifies the value corresponding to the named
property. It must be a valid XML string value. This
is a required attribute.

8.2.2. Batchlet

The batchlet element specifies a task-oriented batch step. It is specified as a child element of the step
element. It is mutually exclusive with the chunk element. See 9.1.2 for further details about batchlets.
Steps of this type are useful for performing a variety of tasks that are not item-oriented, such as
executing a command or doing file transfer.

Syntax:

<batchlet ref="{name}"/>

Where:

Ref Specifies the name of a batch artifact.

8.2.2.1. Batchlet Exception Handling

This section is superseded by section 8.2.7.

8.2.2.2. Batchlet Properties

The 'properties' element may be specified as a child element of the batchlet element. It is used to pass
property values to a batchlet. Any number of properties may be specified.

Syntax:

<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>

Where:

Name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.

24 Jakarta Batch DRAFT

8.2. Step

value Specifies the value corresponding to the named
property. It must be a valid XML string value. This
is a required attribute.

8.2.3. Step Level Properties

The 'properties' element may be specified as a child element of the step element. It is used to expose
properties to any step level batch artifact and also to the batch runtime. Any number of properties may
be specified. Step level properties are available through the StepContext runtime object. See section 9.4
for further information about StepContext.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
This is a required attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.
8.2.4. Step Level Listeners

Step level listeners may be configured to a job step in order to intercept step execution. The listener
element may be specified as child element of the step element for this purpose. The following listener
types may be specified according to step type:

* chunk step - step listener, item read listener, item process listener, item write listener, chunk
listener, skip listener, and retry listener

* batchlet step - step listener

Multiple listeners may be configured on a step. However, there is no guarantee of the order in which
they are invoked.

Syntax:

DRAFT Jakarta Batch 25

8.2. Step

<listeners>
<listener ref="{name}">

</listeners>

Where:
ref Specifies the name of a batch artifact.

8.2.4.1. Step Level Listener Properties

The 'properties' element may be specified as a child element of the step-level listeners element. It is
used to pass property values to a step listener. Any number of properties may be specified.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named
property. It must be a valid XML string value. This
is a required attribute.
Example:

<listener ref="{name}">

<properties>
<property name="Property1" value="Property1-Value"/>
</properties>
</listener>
8.2.5. Step Sequence

The first step, flow, or split defines the first step (flow or split) to execute for a given Job XML. "First"

26 Jakarta Batch DRAFT

8.2. Step

means first according to order of occurrence as the Job XML document is parsed from beginning to
end. The mext' attribute on the step, flow, or split defines what executes next. The next attribute may
specify a step, flow, split, or decision. For the purpose of discussing transitioning it is convenient to
group these four with the term "execution elements". The next attribute is supported on step, flow, and
split elements. Steps, flows, and decisions may also use the "next" element to specify what executes
next. The next attribute and next element may not be used in a way that allows for looping among job
execution elements.

Syntax:
<next on="{exit status}" to="{id}" />

Where:

on Specifies an exit status to match to the current
next element. It must be a valid XML string value.
Wildcards of "" and "" may be used. "" matches
zero or more characters. "" matches exactly one
character. It must match an exit status value in
order to have effect. This is a required attribute.

to Specifies the id of another step, split, flow, or
decision, which will execute next. It must be a
valid XML string value. It must match an id of
another step, split, flow, or decision in the same
job. For a step inside a flow, the id must match
another step in the same flow. This is a required
attribute.

See section 8.6 for more details about transition elements and section 8.9 for details on transitioning
rules.

8.2.6. Step Partitioning

A batch step may run as a partitioned step. A partitioned step runs as multiple instances of the same
step definition across multiple threads, one partition per thread. The number of partitions and the
number of threads is controlled through either a static specification in the Job XML or through a batch
artifact called a partition mapper. Each partition needs the ability to receive unique parameters to
instruct it which data on which to operate. Properties for each partition may be specified statically in
the Job XML or through the optional partition mapper. Since each thread runs a separate copy of the
step, chunking and checkpointing occur independently on each thread for chunk type steps.

There is an optional way to coordinate these separate units of work in a partition reducer so that
backout is possible if one or more partitions experience failure. The PartitionReducer batch artifact
provides a way to do that. A PartitionReducer provides programmatic control over logical unit of work
demarcation that scopes all partitions of a partitioned step.

DRAFT Jakarta Batch 27

8.2. Step

The partitions of a partitioned step may need to share results with a control point to decide the overall
outcome of the step. The PartitionCollector and PartitionAnalyzer batch artifact pair provide for this
need.

The 'partition' element specifies that a step is a partitioned step. The partition element is a child
element of the 'step' element. It is an optional element.

Syntax:

<partition>

Example:

The following Job XML snippet shows how to specify a partitioned step:
<step id="Step1">
<chunk .../> or <batchlet ... />

<partition .../>
</step>

8.2.6.1. Partition Plan

A partition plan defines several configuration attributes that affect partitioned step execution. A
partition plan specifies the number of partitions, the number of partitions to execute concurrently, and
the properties for each partition. A partition plan may be defined in a Job XML declaratively or
dynamically at runtime with a partition mapper.

The 'plan’ element is a child element of the 'partition' element. The 'plan’ element is mutually exclusive
with partition mapper element. See section 9.5.1 for further details on partition mapper.

Note the specification does not attempt to guarantee order of partition execution with respect to the
order within a statically or dynamically-defined plan.

Syntax:

<plan partitions="{number}" threads="{number}"/>

Where:

Partitions Specifies the number of partitions for this
partitioned step. This is a an optional attribute.
The default is 1.

28 Jakarta Batch DRAFT

8.2. Step

threads Specifies the maximum number of threads on
which to execute the partitions of this step. Note
the batch runtime cannot guarantee the requested
number of threads are available; it will use as
many as it can up to the requested maximum. This
is an optional attribute. The default is the number
of partitions.

Example:

The following Job XML snippet shows how to specify a step partitioned into 3 partitions on 2 threads:

<step id="Step1">
<chunk .../>
<partition>
<plan partitions="3" threads="2"/>
</partition>
</step>

8.2.6.2. Partition Properties

When defining a statically partitioned step, it is possible to specify unique property values to pass to
each partition directly in the Job XML using the property element. See section 9.5.1 for further
information on partition mapper.

Syntax:

<properties partition="_partition-number_">
<property name="{property-name}" value="{name-value}"/>

</properties>
Where:
partition Specifies the logical partition number to which the
specified properties apply. This must be a non-
negative integer value, starting at 0.
name Specifies a unique property name within the

current scope . It must be a valid XML string
value. If it matches a named property in the
associated batch artifact, its value is assigned to
that property. If not, it is ignored. This is a
required attribute.

DRAFT Jakarta Batch 29

8.2. Step

value Specifies the value corresponding to the named
property. It must be a valid XML string value. This
is a required attribute.

Example:

The following Job XML snippet shows a step of 2 partitions with a unique value for the property named
"filename" for each partition:

<partition>

<plan partitions="2">
<properties partition="0">
<property name="filename" value="/tmp/filel.txt"/>
</properties>
<properties partition="1">
<property name="filename" value="/tmp/file2.txt"/>
</properties>

</plan>

</partition>

8.2.6.3. Partition Mapper

The partition mapper provides a programmatic means for calculating the number of partitions and
threads for a partitioned step. The partition mapper also specifies the properties for each partition. The
mapper element specifies a reference to a PartitionMapper batch artifact; see section 9.5.1 for further
information. Note the mapper element is mutually exclusive with the plan element.

Syntax:

<mapper ref="{name}">

Where:
ref Specifies the name of a batch artifact.

Example:

<partition>
<mapper ref="MyStepPartitioner"/>
</partition>

8.2.6.3.1. Mapper Properties

The 'properties' element may be specified as a child element of the mapper element. It is used to pass

30 Jakarta Batch DRAFT

8.2. Step

property values to a PartitionMapper batch artifact. Any number of properties may be specified.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.2.6.4. Partition Reducer

A partitioned step may execute with an optional partition reducer. A partition reducer provides a kind
of unit of work demarcation around the processing of the partitions. Programmatic interception of the
partitioned step’s lifecycle is possible through the partition reducer. The reducer element specifies a
reference to a PartitionReducer batch artifact; see section 9.5.2 for further information.

The 'reducer' element is a child element of the 'partition’ element.

Syntax:

<reducer ref="{name}">

Where:
ref Specifies the name of a batch artifact.

Example:

<partition>
<reducer ref="MyStepPartitionReducer"/>
</partition>

DRAFT Jakarta Batch 31

8.2. Step

8.2.6.4.1. Partition Reducer Properties

The 'properties' element may be specified as a child element of the PartitionReducer element. It is used
to pass property values to a PartitionReducer batch artifact. Any number of properties may be
specified.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.2.6.5. Partition Collector

A Partition Collector is useful for sending intermediary results for analysis from each partition to the
step’s Partition Analyzer. A separate Partition Collector instance runs on each thread executing a
partition of the step. The collector is invoked at the conclusion of each checkpoint for chunking type
steps and again at the end of partition; it is invoked once at the end of partition for batchlet type steps.
A collector returns a Java Serializable object, which is delivered to the step’s Partition Analyzer. See
section 9.5.4 for further information about the Partition Analyzer. The collector element specifies a
reference to a PartitionCollector batch artifact; see section 9.5.3 for further information.

The 'collector' element is a child element of the "partition’ element.

Syntax:

<collector ref="{namel}">

Where:
ref Specifies the name of a batch artifact.

Example:

32 Jakarta Batch DRAFT

8.2. Step

<partition>
<collector ref="MyStepCollector"/>
</partition>

8.2.6.5.1. Partition Collector Properties

The 'properties' element may be specified as a child element of the collector element. It is used to pass
property values to a PartitionCollector batch artifact. Any number of properties may be specified.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.2.6.6. Partition Analyzer

A Partition Analyzer receives intermediary results from each partition sent via the step’s Partition
Collector. A Partition analyzer runs on the step main thread and serves as a collection point for this
data. The PartitionAnalyzer also receives control with the partition exit status for each partition, after
that partition ends. An analyzer can be used to implement custom exit status handling for the step,
based on the results of the individual partitions. The analyzer element specifies a reference to a
PartitionAnalyzer batch artifact; see section 9.5.4 for further information.

Syntax:

<analyzer ref="{name}">

Where:

ref Specifies the name of a batch artifact.

DRAFT Jakarta Batch 33

8.3. Flow

Example:

<partition>
<analyzer ref="MyStepAnalyzer"/>
</partition>

8.2.6.6.1. Partition Analyzer Properties

The 'properties' element may be specified as a child element of the analyzer element. It is used to pass
property values to a PartitionAnalyzer batch artifact. Any number of properties may be specified.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.2.7. Step Exception Handling

Any unhandled exception thrown by any step-level artifact during step processing causes the step to
terminate with a batch status of FAILED. In this context, "unhandled" means an exception thrown by
the execution of the artifact back to the runtime implementation which does not result in a skip or a
retry as described in section 8.2.1.4. See section 8.9.2 for complete details on transitioning after an
unhandled exception.

8.3. Flow

A flow defines a sequence of execution elements that execute together as a unit. When the flow is
finished, it is the entire flow that transitions to the next execution element. A flow may transition to a
step, split, decision, or another flow. A flow may contain step, flow, decision, and split execution
elements. See section 8.5 for more on decisions. See section 8.4 for more on splits. The execution
elements within a flow may only transition among themselves; they may not transition to elements

34 Jakarta Batch DRAFT

8.4. Split

outside of the flow. A flow may also contain the transition elements next, stop, fail, and end. See section
8.6 for more on transition elements.

Syntax:

<flow id="{name}"next="{flow-id|step-id|split-id|decision-id}">

<step> ... </step> ...
</flow>
Where:

id Specifies the logical name of the flow and is used
for identification purposes. It must be a valid XML
string value. This is a required attribute.

next Specifies the next step, flow, split, or decision to

run after this step is complete. It must be a valid
XML string value. This is an optional attribute.
The default is this flow is the last execution
element in the job. Note: next attributes cannot be
specified such that a loop occurs among steps.

8.4. Split

A split defines a set of flows that execute concurrently. A split may include only flow elements as
children. See section 8.3 for more on flows. Each flow runs on a separate thread. The split is finished
after all flows complete. When the split is finished, it is the entire split that transitions to the next
execution element. A split may transition to a step, flow, decision, or another split.

Syntax:

<split id="{name}"next="{flow-id|step-id|split-id|decision-id}">
<flow> ... </flow>

</split>
Where:

id Specifies the logical name of the split and is used
for identification purposes. It must be a valid XML
string value. This is a required attribute.

DRAFT Jakarta Batch 35

8.5. Decision

next Specifies the next step, flow, split, or decision to
run after this step is complete. It must be a valid
XML string value. This is an optional attribute.
The default is this split is the last execution
element in the job. Note: next attributes cannot be
specified such that a loop occurs among steps.

8.4.1. Split Termination Processing Incomplete

The effort of the initial 1.0 final release specification to define split termination processing is
recognized as incomplete. This is related to the recognition that flow transitioning is incomplete
(section 8.9.5).

As such, there is no well-defined mechanism for "passing back" status from the individual child flows
of a split and aggregating them into a status at the split level. There is, accordingly, no termination
based on the status of the constituent flows performed after a split execution.

However, the implementor must be aware that a split may have a child flow where the flow itself or a
flows child (step, decision, etc.) causes the job execution to terminate. This could be via an end, stop, or
fail transition element, or via an unhandled exception.

In such a case the job should then cease execution before transitioning past the current, containing
split, on to the next execution element.

Typically only one such element (in one single flow) would terminate job execution, with a
corresponding batch and exit status that would then be set by the implementation as the job-level
batch status and exit status, since typically the whole split would be intended to complete.

The spec does not make an effort, then, to define the outcome if more than one flow within a split
produced a terminating status. A suggestion, though, is that a FAILED batch status should be given
preference to STOPPED, which should be given preference to COMPLETED status, and a natural
corollary might be to bubble up the associate exit status as the job-level exit status as well.

8.5. Decision

A decision provides a customized way of determining sequencing among steps, flows, and splits. The
decision element may follow a step, flow, or split. A job may contain any number of decision elements.
A decision element is the target of the "next" attribute from a job-level step, flow, split, or another
decision. A decision must supply a decider batch artifact (see section 9.6). The decider’s purpose is to
decide the next transition. The decision uses any of the transition elements, stop, fail, end, and next
elements to select the next transition. See section 8.6 for further information on transition elements.
The decider return value will also be set as the current value of the job exit status, in addition to being
matched against the decisions own child transition elements to decide the next transition.

Syntax:

36 Jakarta Batch DRAFT

8.5. Decision

<decision id="{name}" ref="{ref_-_name}">

Where:
id Specifies the logical name of the decision and is
used for identification purposes. It must be a valid
XML string value. This is a required attribute.
ref Specifies the name of a batch artifact.
Example:

<decision id="AfterFlow1" ref="MyDecider">

</decision>

8.5.1. Decision Properties

The 'properties' element may be specified as a child element of the decision element. It is used to pass
property values to a decider. Any number of properties may be specified.

Syntax:
<properties>
<property name="{property-name}" value="{name-value}"/>
</properties>
Where:
name Specifies a unique property name within the
current scope. It must be a valid XML string value.
If it matches a named property in the associated
batch artifact, its value is assigned to that
property. If not, it is ignored. This is a required
attribute.
value Specifies the value corresponding to the named

property. It must be a valid XML string value. This
is a required attribute.

8.5.2. Decision Exception Handling

Any exception thrown by a batch artifact invoked during decision handling will end the job with a
batch status of FAILED. This exception is visible to job-level listeners.

DRAFT Jakarta Batch 37

8.6. Transition Elements

8.6. Transition Elements

Transition elements may be specified in the containment scope of a step, flow, or decision (but not a
split) to direct job execution sequence or to terminate job execution. There are fo ur transition
elements:

1. next - directs execution flow to the next execution element.
2. fail - causes a job to end with FAILED batch status.

3. end - causes a job to end with COMPLETED batch status.

4. stop - causes a job to end with STOPPED batch status.

Fail, end, and stop are considered "terminating elements” because they cause a job execution to
terminate.

8.6.1. Next Element

The next element is used to transition execution to the next execution element. Multiple next elements
may be specified in the current containment scope. Syntax:

<next on="{exit status}" to="{step id_|_flow id_|_split id}"/>

Where:

on Specifies the exit status value that activates this
end element. It must be a valid XML string value.
Wildcards of "" and "" may be used. "" matches
zero or more characters. "" matches exactly one
character. It must match an exit status value in
order to have effect. This is a required attribute.

to Specifies the execution element to which to
transition after this decision. It must be a valid
XML string value. This is a required attribute.
Note: the to value cannot specify the next
execution element such that a loop occurs in the
batch job.

Example:

<step id="Step1">
<next on="*" to="Step2"/>
</step>

38 Jakarta Batch DRAFT

8.6. Transition Elements

8.6.2. Fail Element

The fail element is used to terminate the job at the conclusion of the current step or flow. The job batch
status is set to FAILED. This does not, however, directly affect the batch status of the step containing
the fail element. Multiple fail elements may be specified in the current containment scope. The fail
element is supported as a child of the step, flow, and decision elements.

Syntax:

<fail on="{exit status}" exit-status="{exit status}"/>

Where:

on Specifies the exit status value that activates this
fail element. It must be a valid XML string value.
Wildcards of "" and "" may be used. "" matches
zero or more characters. "" matches exactly one
character. It must match an exit status value in
order to have effect. This is a required attribute.

exit-status Specifies the new exit status for the job. It must be
a valid XML string value. This is an optional
attribute. If not specified, the job-level exit status
is unchanged. This attribute does not directly
change any step exit status (particularly the step
which contains this fail element).

Example:

<step id="Step1">
<fail on="FAILED" exit-status="EARLY COMPLETION"/>
</step>

8.6.3. End Element

The end element is used to terminate the job at the current step. The job batch status is set to
COMPLETED. This does not, however, directly affect the batch status of the step containing the end
element. Multiple end elements may be specified in the current containment scope. The end element is
supported as a child of the step, flow, and decision elements.

Syntax:

<end on="{exit status}" exit-status="{exit status}"/>

DRAFT Jakarta Batch 39

8.6. Transition Elements

Where:

on Specifies the exit status value that activates this
end element. It must be a valid XML string value.
Wildcards of "" and "" may be used. "" matches
zero or more characters. "" matches exactly one
character. It must match an exit status value in
order to have effect. This is a required attribute.

exit-status Specifies the new exit status for the job. It must be
a valid XML string value. This is an optional
attribute. If not specified, the job-level exit status
is unchanged. This attribute does not directly
change any step exit status (particularly the step
which contains this end element).

Example:

<step id="Step1">
<end on="COMPLETED" exit-status="EARLY COMPLETION">
</step>

8.6.4. Stop Element

The stop element is used to terminate the job after the current step or flow. If the stop element matches
the exit status, the job-level batch status is then set to STOPPED. This does not, however, directly affect
the batch status of the step containing the . Multiple stop elements may be specified in the current
containment scope. The stop element is supported as a child of step, flow, and decision elements.

<stop on="{exit status}" exit-status="{exit status}" restart="{step id_|_flow id_|_split
id}"/>

Where:

on Specifies the exit status value that activates this
end element. It must be a valid XML string value.
Wildcards of "" and "" may be used. "" matches
zero or more characters. "" matches exactly one
character. It must match an exit status value in
order to have effect. This is a required attribute.

40 Jakarta Batch DRAFT

8.7. Batch and Exit Status

exit-status Specifies the exit status for the job. It must be a
valid XML string value. This is an optional
attribute. If not specified, the job-level exit status
is unchanged. This attribute does not directly
change any step exit status (particularly the step
which contains this stop element).

restart Specifies the job-level step, flow, or split at which
to restart when the job is restarted. It must be a
valid XML string value. This is an optional
attribute.

Example:

<step id="Step1">
<stop on="COMPLETED" restart="step2"/>
</step>

8.7. Batch and Exit Status

Batch execution reflects a sequence of state changes, culminating in an end state after a job has
terminated. These state changes apply to the entire job as a whole, as well as to each step within the
job. These state changes are exposed through the programming model as status values. There is both a
runtime status value, called "batch status", as well as a user-defined value, called "exit status".

A job and each step in a job end with a batch status and exit status value. Batch status is set by the
batch runtime; exit status may be set through the Job XML or by the batch application. The exit status
for a job and a step will be initially set to null. At the time that the job or step completes execution, if
the exit status is equal to null, it will then be set by the runtime implementation to the string value of
the batch status, which will be its final value. The batch and exit status values are available in the
JobContext and StepContext runtime objects, and the exit status can be set explicitly via any batch
artifact. The overall batch and exit status for the job are available through the JobOperator interface.
Batch and exit status values are strings. The following batch status values are defined:

Value Meaning

STARTING Batch job has been passed to the batch runtime
for execution through the JobOperator interface
start or restart operation. A step has a status of
STARTING before it actually begins execution.

STARTED Batch job has begun execution by the batch
runtime. A step has a status of STARTED once it
has begun execution.

DRAFT Jakarta Batch 41

8.7. Batch and Exit Status

STOPPING Batch job has been requested to stop through the

JobOperator interface stop operation or by a
<stop> element in the Job XML. A step has a status
of STOPPING as soon as JobOperator.stop receives
control.

STOPPED Batch job has been stopped through the

JobOperator interface stop operation or by a
<stop> element in the Job XML. A step has a status
of STOPPED once it has actually been stopped by
the batch runtime.

FAILED Batch job has ended due to an unresolved

exception or by a <fail> element in the Job XML. A
step has a status of FAILED under the same
conditions.

COMPLETED Batch job has ended normally or by an <end>

element in the Job XML. A step has a status of
COMPLETED under the same conditions.

ABANDONED Batch job has been marked abandoned through

the JobOperator interface abandon operation. An
abandoned job is still visible through the

JobOperator interface, but is not running, nor can
it be restarted. It exists only as a matter of history.

A job execution will end under the following conditions:

1.

3.

A job-level execution element (step, flow, or split) finishes execution, without specifying a "next"
attribute and without the exit status matching any transition elements. (See section 8.9.2 for
details). In this case, the batch status is set to COMPLETED.

A step throws an exception to the batch runtime that does not match skip or retry criteria, with the
exit status not matching any transition elements. In this case, the batch status is set to FAILED. (See
section 8.9.2 for details). In the case of partitioned or concurrent (split) step execution, all other
still-running parallel instances are allowed to complete before the job ends with FAILED batch
status.

A step, flow, or decision terminates execution with a stop, end, or fail element. In this case, the
batch status is STOPPED, COMPLETED, or FAILED, respectively .

The batch and exit status of the job is set as follows:

1.

42

Batch status is initially set to STARTING by the batch runtime. Immediately before starting the first
step, the batch runtime sets the batch status to STARTED .

Exit status can be overridden by any artifact by invoking the exit status setter method on the
JobContext object.

Exit status can be overridden by a decision element.

Exit status can be overridden by a terminating transition element on a step, flow, or split. See

Jakarta Batch DRAFT

8.7. Batch and Exit Status

section 8.6.

5. Final batch status is set by the batch runtime depending on the outcome of the job. See table above.
Exit status is set to the final batch status if it was not overridden by any of the override means
described earlier in this list. Note the last override to set exit status during the course of job
execution takes precedence over all others.

In addition to these conditions and events which are well-defined by this specification, it is also
recognized that the runtime may be forced to make another transition of job and step batch status.

For example, a JVM hang may cause a job to appear in STARTED state even though it is no longer
running. The specification forbids running multiple executions of a given job instance at the same
time. In order to recover and allow restart it is expect that a batch runtime implementation might
provide a mechanism to automatically or through user intervention mark the appropriate job and step
execution(s) as FAILED (i.e. set the batch status as FAILED).

The details are left entirely to the implementation, we are just recognizing here that this is a valid state
transition.

8.7.1. Batch and Exit Status for Steps

Step batch status is set initially, and then again at the conclusion of the step, by the batch runtime. Step
exi-statusisinttialy-setto-the—same—value-asbateh—statas: Step exit status may be set by any batch
artifact configured to the step by invoking the exit status setter method in the StepContext object. See
section 9.4 for further information about the StepContext object. Setting the step exit status does not
alter the execution of the current step, but rather, is available to influence the execution of subsequent
steps via transition elements (see 8.6) and deciders (see 9.6). If no batch artifact sets the exit status, the
batch runtime will default the value to the string form of the batch status value of the step when step
execution completes. An important point to note is that transition elements do not affect the batch and
exit status of their containing step (for a step with one or more child transition elements), but only
potentially affect the batch and exit status of the job.

Example:

<step 1d="FS1">

<batchlet >
<next on="RCO" />
<fail on="RC4" exit-status="BAD"/>
<fail on="RC8" />

</step>

Suppose for the above example JSL snippet, FS1s batchlet executes normally with an exit status of
"RC4". Then step FS1s batch status will end up as COMPLETED, and FS1s exit status will end up as
"RC4". The jobs batch status will end up as FAILED and the jobs exit status will end up as "BAD".
Likewise, if the batchlet completes with an exit status of "RC8" the steps batch and exit status will be
COMPLETED and "RC8", respectively, while the jobs batch and exit status will be FAILED and "FAILED"

DRAFT Jakarta Batch 43

8.8. Job XML Substitution

(assuming the job exit status hasnt been set and defaults in this case).

Note the implications for restart processing. For example, a completed step wont re-run just because
the step includes a transition element failing the job on the original step executions exit status. See
section 10.8 for more on restart processing.

8.7.2. Exit Status for Partitioned Steps

The exit status for a partitioned step follows the same rules as for a regular step except for an exit
status set by batch artifacts processing individual partitions . This means any batch artifact running on
the main thread of the partitioned step can set the steps exit status via the exit status setter method on
the StepContext object , the same as for a non-partitioned step.E.g. a steps partition analyzer, partition
reducer, or step listener could each potentially set the steps exit status in this simple manner (since
each of these artifacts run on the initial thread, not the threads processing an individual partition). If
the exit status is not set it defaults to batch status at the end of step execution , the same as for a non-
partitioned step.

For a partitioned batchlet, each thread processing a partition may return a separate exit status.
However, these exit status values are ignored unless a partition analyzer is used to coalesce these
separate exit status values into a final exit status value for the step.

The batch runtime maintains a StepContext clone per partition. For a partitioned batchlet or chunk,
any batch artifact running on any of the threads processing a partition would merely set a separate
exit status through the StepContext clone. These exit status values are ignored unless a partition
analyzer is used to coalesce these separate exit status values into a final exit status value for the step.

8.8. Job XML Substitution

Job XML supports substitution as part of any attribute value. The following expression language is
supported on all attributes:

44 Jakarta Batch DRAFT

8.8. Job XML Substitution

<attribute-value> ::= ' " ' <principle-value-expression>[<default-expression>] ' " '
<principle-value-expression> ::= <value-expression>
<value-expression> ::= "#\{"<operator-expression>"}" | <string-literal>[<value-

expression>]

<default-expression> ::= ":" <value-expression> ";"

<operator-expression> ::= <operator1> | <operator2> | <operator3> |<operator4d> |
<operatorb>

<operator1> ::= "jobParameters" "[" <target-name> "]"

<operator2> ::= "jobProperties" "[" <target-name> "]"

<operator3> ::= "systemProperties" "[" <target-name> "]"

<operator4> ::= "partitionPlan" "[" <target-name> "]"

<target-npame> ::= " ' " <string-literal> " ' "

<string-literal> is a valid XML string value.

8.8.1. Substitution Processing Rules

Substitution expressions are processed for both initial job start and on job restart. All substitution
expressions must be resolved before the job can be started or restarted, except for the partitionPlan
operator, which has deferred resolution - see section 8.8.1.4 for more on that. After substitution
expression resolution, the resultant XML document must be checked for validity, according to the
guidelines outlined in section 13, Job Specification Language XSD.

A substitution expression may reference a job parameter or a job property by specifying the name of
the parameter or property through a substitution expression operator. This name is referred to
generally in substitution expression syntax as a "target name". There are four substitution operators:

1. jobParameters - specifies to use a named parameter from the job parameters.
2. jobProperties - specifies to use a named property from among the job’s properties.
3. systemProperties - specifies to use a named property from the system properties.

4. partitionPlan - specifies to use a named property from the partition plan of a partitioned step.

8.8.1.1. jobParameters Substitution Operator

The jobParameters substitution operator resolves to the value of the job parameter with the specified

DRAFT Jakarta Batch 45

8.8. Job XML Substitution
target name.

8.8.1.2. jobProperties Substitution Operator

The jobProperties substitution operator resolves to the value of the job property with the specified
target name. This property is found by recursively searching from the innermost containment scope
(this includes earlier properties within the current scope) to the outermost scope until a property with
the specified target name is found.

E.g. The batch runtime would attempt resolution of the jobProperties operator specification in each of
the two following reader property definitions by first searching for earlier property definitions within
the reader properties collection, then the step properties collection (there are none in this example),
then the job properties collection (if any). The search stops at the first occurrence of the specified
target name.

<job id="job1">
<properties>
<property name="filestem" value="postings"/>
<property name="outputlog" value="jobmessages"/>
</properties>
<step id="step1">
<chunk>
<reader ref="MyReader">
<properties>
<property name="infile.name" value="#\{jobProperties['filestem']}.txt"/>
<property name="outputlog" value="readermessages"/>
<property name="outfile.name" value="#\{jobProperties['outputlog']}.txt"/>
</properties>
</reader>
</chunk>
</step>
</job>

The resolved value for reader property "infile.name" would be "postings.txt".

The resolved value for reader property "outfile.name" would be "readermessages.txt".

8.8.1.3. systemProperties Substitution Operator

The systemProperties substitution operator resolves to the value of the system property with the
specified target name.

8.8.1.4. partitionPlan Substitution Operator

The partitionPlan substitution operator resolves to the value of the partition plan property with the
specified target name from the PartitionPlan returned by the PartitionMapper. Partition plan

46 Jakarta Batch DRAFT

8.8. Job XML Substitution

properties are in scope only for the step to which the partition plan is defined. The partitionPlan
operator is resolved separately for each partition before the partition execution begins.

E.g. Given job, job1:

<job id="job1">
<step id="step1">
<chunk>
<reader ref="MyReader>
<properties>
<property name="infile.name" value="file#\{partitionPlan['myPartitionNumber']}.txt
"s
<property name="outfile.name" value="#\{partitionPlan['outFile']}"/>
</properties>
</reader>
<writer ref="MyWriter"/>
</chunk>
<partition>
<mapper ref="MyMapper "/>
</partition>
</step>
</job>

And MyMapper implementation:

DRAFT Jakarta Batch 47

8.8. Job XML Substitution

public class MyMapper implements PartitionMapper \{
public PartitionPlan mapPartitions() \{
PartitionPlanImpl pp= new PartitionPlanImpl();
pp.setPartitions(2);

Properties p@= new Properties();
p0.setProperty("myPartitionNumber", "0");
p0.setProperty("outFile", "outFileA.txt");

Properties p1= new Properties();
pl.setProperty("myPartitionNumber", "1");
pl.setProperty("outFile", "outFileB.txt");

Properties[] partitionProperties= new Properties[2];
partitionProperties[0]= p@;

partitionProperties[1]= p1;
pp.setPartitionProperties(partitionProperties);

return pp;

The stepl chunk would run as two partitions, with the itemReader property "infile.name" resolved to
"file0.txt" and "filel.txt" for partitions 0 and 1, respectively. Also, itemReader property "outfile.name"
would resolve to "outFileA.txt", and "outFileB.txt" for partitions 0 and 1, respectively.

8.8.1.5. Substitution Expression Default

Substitutions expressions may include a default value using the ":" operator. The default is applied if

nn

the substitution’s principle value expression resolves to the empty string "".

8.8.1.6. Property Resolution Rule

Properties specified by a substitution operator must be defined before they can be used in a
substitution expression.

Examples:
Resolvable Property Reference

The batch runtime will resolve a substitution reference to a property that occurs before it is
referenced. In the following example, property "infile.name" is defined before it is used to form the
value of property "tmpfile.name". This is a resolvable reference.E.g.

48 Jakarta Batch DRAFT

8.8. Job XML Substitution

<property name="infile.name" value="in.txt" />
<property name="tmpfile.name" value="#\{jobProperties['infile.name']}.tmp" />

The batch runtime resolves a resolvable reference with the resolved value of the specified property
reference.
Unresolvable Property Reference

The batch runtime will not resolve a substitution reference to a property whose first occurrence is
after it is referenced. In the following example, property "infile.name" is defined after it is used to form
the value of property "tmpfile.name". This is a unresolvable reference.E.g.

<property name="tmpfile.name" value="1in.txt#\{jobProperties[infile.name]}" />
<property name="infile.name" value="in.txt" />

The batch runtime resolves an unresolvable reference in XML to the empty string "".

8.8.1.7. Undefined Target Name Rule

A substitution expression operator that specifies an undefined target name is assigned the empty
string in XML.

8.8.1.8. Job Restart Rule

Job Parameters may be specified on job restart. Substitution expression resolution occurs on each
restart. This makes it possible for new values to be used in Job XML attributes during job restart. While
all substitution expressions resolve the same way on restart as on initial start, there is a special rule for
the number of partitions in a partitioned step:

The number of partitions in a partition plan

The batch runtime determines the number of partitions in a partitioned step the first time the step is
attempted. The batch runtime remembers that decision and applies it to that step on the next job
execution, once the previous job execution is restarted. The decision cannot be altered by a
substitution expression. The decision can be altered, however, through a PartitionMapper artifact by
specifying the "override" option in the PartitionPlan object. See section 10.9.4 for details on the
PartitionPlan class.

8.8.2. Examples
<property name="infile.name" value="in.txt" />

Resolved property: infile.name="in.txt"

DRAFT Jakarta Batch 49

8.9. Transitioning Rules

<property name="infile.name" value="#\{jobParameters['infile.name']}" />
Resolved property: infile.name= value of infile.name job parameter

<property name="infile.name" value="#\{systemProperties['infile.name']}" />
Resolved property: infile.name= value of infile.name system property

<property name="infile.name" value="#\{jobProperties['infile.name']}" />
Resolved property: infile.name= value of infile.name job property

<property name="infile.name" value="#\{partitionPlan['infile.name']}" />
Resolved property: infile.name= value of infile.name from partition plan for the current partition

<property name="infile.name" value="#\{jobParameters['infile.name']}:in.txt;" />

Resolved property: infilename = value of infilename job parameter or "in.txt" if infilename job
parameter is unspecified.

8.9. Transitioning Rules

8.9.1. Combining Transition Elements

Any combination of transition elements can be included at the end of a step, flow, or decision
definition. Combinations can include zero, one, or more than one instance of a single type of execution
element,E.g. next.

Transition elements are evaluated in sequential order as they occur within the JSL document. L.e. the
appropriate exit status is compared with the on attribute value of the first transition element in the
sequence and, if it matches, then the corresponding transition is perfomed, and the rest of the
transition elements are ignored. If not, the second transition element is evaluated, etc.

Example:

50 Jakarta Batch DRAFT

8.9. Transitioning Rules

<step id="Step1">

<next on="RC@" to="Step2"/>

<next on="RC4" to="Step3"/>

<end on="RC4" exit-status="DONE"/>

<fail on="*"/> <!-- Matches anything, so only makes sense as last transition element-->
</step>

8.9.2. Transitioning Precedence Rules

The transition elements are always "evaluated" first, and if a match is found, execution transitions
accordingly (either to another execution element or the job is stopped or failed).

If a match is not found among the transition elements (which would always be the case if there are no
transition elements), then transition proceeds as follows:

1. If execution resulted in an unhandled exception, then the job ends with batch status of FAILED.

2. If execution ended normally, and the execution element whose execution is completing contains a
next attribute, then execution transitions to the element named by this next attribute value.

3. If execution ended normally, and the execution element whose execution is completing does not
contain a next attribute, then the job ends normally (with COMPLETED batch status). For
transitioning from a step within a flow, this statement doesnt apply. See section 8.9.4 for details.

The following examples illustrate how the above rules might be employed:
Example 1: Transition to Step2, unless exit status of RC_ABORT seen, in which case fail the job
<step id="Step1" next="Step2">

<fail on="RC_ABORT" exit-status="ABORTED"/>
</step>

Example 2: Transition to Step2, but if exception thrown, transition to RecoveryStep.

<step id="Step1" next="Step2">

<!-- Assumes step exit status defaults to step batch status (FAILED)-->
<next on="FAILED" to="RecoveryStep"/>

<fail on="*"/>

</step>

Note that the second example shows it is possible for a job to executed to COMPLETED status, even
though a constituent step ends with FAILED batch status (See section 8.2.7).

DRAFT Jakarta Batch 51

8.9. Transitioning Rules

8.9.3. Loop definition

The specification prohibits next and to attribute values that result in a "loop". More precisely, this
means that no execution element can be transitioned to twice within a single job execution.

This wording is purposely written this way rather than merely saying no execution element can be
executed twice within a single job execution. Say "step1" executed to completion during an initial
execution which ultimately failed, and upon restart we transitioned past "stepl" without executing it
since it had already completed, but we subsequently transitioned (back) to "step1". This may only be a
single execution of "step1" during a single job execution, but it still violates the looping prohibition.

The runtime may detect potential loops in an initial validation phase, as described in section 13.1, or
may only detect loops once they occur.

8.9.4. Transitioning From Within Flows

1. As mentioned in section 8.3, an execution element which is a child of a flow may only transition to
another execution element within the same flow. The flows transition elements, however, would
transition execution to the next execution element at the level of the execution scope containing
the flow ,E.g. the job.

2. For terminating transitions (stop, end, fail) as well as failures caused by unhandled exceptions, it is
the entire job execution which is terminated. It is not just the case that the flow alone is somehow
failed or ended yet with another level of transitioning occurring at the containing (e.g. job) level.

a. Note: transition via next outside of the flow is not permitted. If this is not detected during job
validation (see section 13.1), then at runtime the job execution will end at this point with batch
status of FAILED.

3. When a child of a flow completes normally, and when there are no matching transition elements as
well as no next attribute at the level of this child of a flow, then the flow ends.

Another way of stating rules #2 and #3 in this section would be to say that all the rules in section 8.9.2
apply to transitions within flows (i.e. among children of flows) and are effective at the job level, except
for rule #3 in section 8.9.2 (this case does not necessarily end the job).

See the example at the end of section 8.9.5 for further clarification.

8.9.5. Flow-level Transitions Undefined

It is recognized that the specification is incomplete with respect to how exactly flow transition
elements are evaluated. Though the list in section 10.8.4 has an assertion in rule 3.e. that suggests using
the exit status of the last contained execution element as a flow-level exit status, this does not seem to
be a complete definition. For example, what if the last execution element within the flow is a split

This might be rectified in a later revision of this specification. In the meantime it is suggested to avoid
using flow-level transition elements in light of this ambiguity.

52 Jakarta Batch DRAFT

8.9. Transitioning Rules

On the other hand, a transition from a flow via the next attribute of the flow element is well-defined at
the current spec level, and is suggested.

Example:

<flow id="Flow1" next="StepX">
<step 1d="FS1">
<next on="RC1" to="FS2A"/>
<next on="RC2" to="FS2B"/>
<!-- TLLEGAL - would be illegal, since one can only transition within the flow
<next on="RC3" to="StepX"/>
-->
</step>
<step i1d="FS2A" >
<fail on="FAILED"/> <!-- FAILS job, doesn't "fail flow"-->
</step>
<step id="FS2B" >
<fail on="FAILED"/> <!-- FAILS job, doesn't "fail flow"-->
</step>
<next on="F*" to="StepY"/> <!-- UNDEFINED -->
</flow>
<step id="StepX">

As noted in the comments inline, this example makes the following points:

* that a child of a flow can only transition to another child of the same flow (Item 1. in section 8.9.4)
+ that a terminating transition terminates the job, not just the flow somehow (Item 2. in section 8.9.4)

* that a transition element which is a direct child of the flow itself is currently UNDEFINED (section
8.9.5)

DRAFT Jakarta Batch 53

9.1. Steps

Chapter 9. Batch Programming Model

The batch programming model is described by interfaces, abstract classes, and field annotations.
Interfaces define the essential contract between batch applications and the batch runtime. Most
interfaces have a corresponding abstract class that provides default implementations of certain
methods for developer convenience.

9.1. Steps

A batch step is either chunk or batchlet.

9.1.1. Chunk

A chunk type step performs item-oriented processing using a reader-processor-writer batch pattern
and does checkpointing.

9.1.1.1. ItemReader Interface

An ItemReader is used to read items for a chunk step. ItemReader is one of the three batch artifact
types that comprise a chunk type step. The other two are ItemProcessor and ItemWriter.

The ItemReader interface may be used to implement an ItemReader batch artifact:

ItemReader.java
package jakarta.batch.api.chunk;
import java.io.Serializable;

/*
* TtemReader defines the batch artifact that reads
* items for chunk processing.
*/
public interface ItemReader {
/**
* The open method prepares the reader to read items
* The input parameter represents the last checkpoint
* for this reader in a given job instance. The
* checkpoint data is defined by this reader and is
* provided by the checkpointInfo method. The checkpoint
* data provides the reader whatever information it needs
* to resume reading items upon restart. A checkpoint value
* of null is passed upon initial start.

* @param checkpoint specifies the last checkpoint
* @throws Exception is thrown for any errors.

54 Jakarta Batch DRAFT

*/
public void open(Serializable checkpoint) throws Exception;

/**

* The close method marks the end of use of the

* TtemReader. The reader is free to do any cleanup
* necessary.

* @throws Exception is thrown for any errors.

*/

public void close() throws Exception;

/**

* The readItem method returns the next item

* for chunk processing.

It returns null to in dicate no more items, which
also means the current chunk will be committed and
* the step will end.

* @return next item or null

* @throws Exception is thrown for any errors.

*/

public Object readItem() throws Exception;

*
*

/**

*

The checkpointInfo method returns the current

* checkpoint data for this reader. It is

* called before a chunk checkpoint is committed.

* @return checkpoint data

* @throws Exception is thrown for any errors.

*/

public Serializable checkpointInfo() throws Exception;

}

DRAFT

9.1. Steps

Jakarta Batch 55

9.1. Steps
AbstractlitemReader.java

package jakarta.batch.api.chunk;
import java.io.Serializable;
public abstract class AbstractItemReader implements ItemReader

{

public void open(Serializable checkpoint)throws Exception {

}

public void close()throws Exception {

}

public abstract Object readItem() throws Exception;

public Serializable checkpointInfo() throws Exception {
return null;

}

9.1.1.2. ItemProcessor Interface

An ItemProcessor is used to process items for a chunk step. ItemProcessor is one of the three batch
artifact types that comprise a chunk type step. An ItemProcessor is an optional artifact on a chunk type
step. The other two are ItemReader and ItemWTriter.

The ItemProcessor interface may be used to implement an ItemProcessor batch artifact:

56 Jakarta Batch DRAFT

ItemProcessor.java

package jakarta.batch.api.chunk;

/**

* TtemProcessor is used in chunk processing
* to operate on an input item and produce
* an output item.

*

*/

public interface ItemProcessor {

/**

* The processItem method is part of a chunk

* step. It accepts an input item from an

* jtem reader and returns an item that gets

* passed onto the item writer. Returning null

* indicates that the item should not be continued

* to be processed. This effectively enables processItem
* to filter out unwanted input items.

* @param item specifies the input item to process.

* @return output item to write.

* @throws Exception thrown for any errors.

*/

public Object processItem(Object item) throws Exception;

9.1.1.3. ItemWriter Interface

9.1. Steps

An ItemWriter is used to write a list of output items for a chunk step. ItemWriter is one of the three
batch artifact types that comprise a chunk type step. The other two are ItemProcessor and ItemReader.

The ItemWriter interface may be used to implement an ItemWriter batch artifact:

ItemWriter.java

package jakarta.batch.api.chunk;
import java.io.Serializable;
import java.util.List;

/**

*

* TtemWriter defines the batch artifact that writes to a

* 11

*

*/

st of items for chunk processing.

public interface ItemWriter {

DRAFT

/**

* The open method prepares the writer to write items.
*

Jakarta Batch 57

9.1. Steps

*

*

*

*

*
*
*

*/

public void open(Serializable checkpoint) throws Exception;

/'k
*
*

*

*
*/
pu
/*

er
*/

public void writeltems(List<Object> items) throws Exception;

/*
*
*
*
*

*
*/
pu

The input parameter represents the last checkpoint

for this writer in a given job instance. The

checkpoint data is defined by this writer and is
provided by the checkpointInfo method. The checkpoint
data provides the writer whatever information it needs
to resume writing items upon restart. A checkpoint value
of null is passed upon initial start.

@param checkpoint specifies the last checkpoint
@throws Exception is thrown for any errors.

*

The close method marks the end of use of the
ItemWriter. The writer is free to do any cleanup
necessary.

@throws Exception is thrown for any errors.

blic void close() throws Exception;

*

The writeltems method writes a list of item

for the current chunk.

@param items specifies the list of items to write.
This may be an empty list (e.g. if all the

items have been filtered out by the
ItemProcessor).

@throws Exception is thrown for any

rors.

*

The checkpointInfo method returns the current
checkpoint data for this writer. It is

called before a chunk checkpoint is committed.
@return checkpoint data

@throws Exception is thrown for any errors.

blic Serializable checkpointInfo() throws Exception;

AbstractitemWriter.java

packag
import
import
/**

* The

e jakarta.batch.api.chunk;
java.io.Serializable;
java.util.List;

AbstractItemWriter provides default implementations

58 Jakarta Batch

DRAFT

9.1. Steps

* of not commonly implemented methods.

*/
public abstract class AbstractItemWriter implements ItemWriter
{
/**
* Qverride this method if the ItemWriter requires
* any open time processing.
* The default implementation does nothing.
*
* @param last checkpoint for this ItemReader
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public void open(Serializable checkpoint) throws Exception {
}
/**
* Qverride this method if the ItemWriter requires
* any close time processing.
* The default implementation does nothing.
*
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public void close() throws Exception {
}
/**
* Implement write logic for the ItemWriter in this
* method.
*
* @param items specifies the list of items to write.
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public abstract void writeItems(List<Object> items) throws
Exception;
/**
* Qverride this method if the ItemWriter supports
* checkpoints.
* The default implementation returns null.
*
* @return checkpoint data
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public Serializable checkpointInfo() throws Exception {
return null;
}
}

DRAFT Jakarta Batch 59

9.1. Steps

9.1.1.4. CheckpointAlgorithm Interface

A CheckpointAlgorithm implements a custom checkpoint policy for a chunk step. The
CheckpointAlgorithm interface may be used to implement an CheckpointAlgorithm batch artifact:

CheckpointAlgorithm.java

package jakarta.batch.api.chunk;

/**

* CheckpointAlgorithm provides a custom checkpoint

* policy for chunk steps.

*

*/

public interface CheckpointAlgorithm {
/**
* The checkpointTimeout is invoked at the beginning of a new
* checkpoint interval for the purpose of establishing the checkpoint
* timeout.

It is invoked before the next chunk transaction begins. This

method returns an integer value, which is the timeout value

(expressed in seconds) which will be used for the next chunk

transaction.

This method is useful to automate the setting of the

checkpoint timeout based on factors known outside the job

definition.

A value of '@' signifies no maximum established by this

CheckpointAlgorithm, i.e. the maximum permissible timeout allowed by

the runtime environment.

* @return the timeout interval (expressed in seconds)

* to use for the next checkpoint interval

* @throws Exception thrown for any errors.

*/

public int checkpointTimeout() throws Exception;

/**

* The beginCheckpoint method is invoked before the

* next checkpoint interval begins (before the next

* chunk transaction begins).

* @throws Exception thrown for any errors.

*/

public void beginCheckpoint() throws Exception;

/**

* The isReadyToCheckpoint method is invoked by

the batch runtime after each item is processed

to determine if now is the time to checkpoint

the current chunk.

@return boolean indicating whether or not

to checkpoint now.

@throws Exception thrown for any errors.

*

* X

*

* X % F

*

* X

*

60 Jakarta Batch DRAFT

*/

public boolean isReadyToCheckpoint() throws Exception;
/'k'k

* The endCheckpoint method is invoked after the

* last checkpoint is taken (after the chunk

* transaction is committed).

* @throws Exception thrown for any errors.

*/

public void endCheckpoint() throws Exception;

AbstractCheckpointAlgorithm.java

package jakarta.batch.api.chunk;

/**

* The AbstractCheckpointAlgorithm provides default
* implementations of less commonly implemented
* methods.

*/

public abstract class AbstractCheckpointAlgorithm implements

CheckpointAlgorithm {

DRAFT

/**

* Override this method if the CheckpointAlgorithm

* establishes a checkpoint timeout.

* The default implementation returns @, which means

* the maximum permissible timeout allowed by the

* runtime environment.

*

* @return the timeout interval (expressed in seconds)

* to use for the next checkpoint interval

* @throws Exception (or subclass) if an error occurs.

*/

@0verride

public int checkpointTimeout() throws Exception {
return 0;

Iy

/**

* Qverride this method for the CheckpointAlgorithm

* to do something before a checkpoint interval

* begins (before the next chunk transaction begins).

* The default implementation does nothing.

*

* @throws Exception (or subclass) if an error occurs.

*/

@0verride

public void beginCheckpoint() throws Exception {

}

9.1. Steps

Jakarta Batch 61

9.1. Steps

/**

* Implement logic in this method

* to decide if a checkpoint should be taken now.

*

* @return boolean indicating whether or not

* to checkpoint now.

* @throws Exception (or subclass) if an error occurs.
*/

@0verride

public abstract boolean isReadyToCheckpoint() throws Exception;
/**

* Qverride this method for the CheckpointAlgorithm

* to do something after a checkpoint is taken (after
* the chunk transaction is committed).

* The default implementation does nothing.

*

@throws Exception (or subclass) if an error occurs.
*/

@0verride

public void endCheckpoint() throws Exception {

}

9.1.2. Batchlet Interface

A Batchlet-type step implements a roll your own batch pattern. This batch pattern is invoked once,
runs to completion, and returns an exit status.

The Batchlet interface may be used to implement a Batchlet batch artifact:

62 Jakarta Batch DRAFT

Batchlet.java

package jakarta.batch.api;

/**

<p>

the

A batchlet is type of batch step
that can be used for any type of
background processing that does not
explicitly call for a chunk oriented
approach.

A well-behaved batchlet responds
to stop requests by implementing

stop method.

public interface Batchlet {

/**

*
*
*
*
*

*

*

*/

The process method does the work

of the batchlet. If this method
throws an exception, the batchlet
step ends with a batch status of
FAILED.

@return exit status string

@throws Exception if an error occurs.

public String process() throws Exception;
/**

*

*

*

* X % F

*/

The stop method is invoked by the batch
runtime as part of JobOperator.stop()
method processing. This method is invoked
on a thread other than the thread on which
the batchlet process method is running.

@throws Exception if an error occurs.

public void stop() throws Exception;

DRAFT

9.1. Steps

Jakarta Batch 63

9.2. Listeners
AbstractBatchlet.java

package jakarta.batch.api;

/**

* The AbstractBatchlet provides default

* implementations of less commonly implemented methods.

*/
public abstract class AbstractBatchlet implements Batchlet {
/**
* Implement process logic for the Batchlet in this
* method.
*
* @return exit status string
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public abstract String process() throws Exception;
/**
* Qverride this method if the Batchlet will
* end in response to the JobOperator.stop()
* operation.
* The default implementation does nothing.
*
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public void stop() throws Exception {
}
}
Q A well designed batchlet stops gracefully when the JobOperator.stop operation is

invoked. See section 11.13 for further information about stop processing.

9.2. Listeners

Use Listeners to interpose on batch execution.

9.2.1. JobListener Interface

A job listener receives control before and after a job execution runs, and also if an exception is thrown
during job processing. The JobListener interface may be used to implement an JobListener batch
artifact:

64 Jakarta Batch DRAFT

JobListener.java

package jakarta.batch.api.listener;

/**

* JobListener intercepts job execution.

*

*/

public interface JobListener {

DRAFT

/**

* The beforeJob method receives control
* before the job execution begins.

* @throws Exception throw if an error occurs.

*/

public void beforeJob() throws Exception;
/**

* The afterJob method receives control

* after the job execution ends.

* @throws Exception throw if an error occurs.

*
/
public void afterJob() throws Exception;

9.2. Listeners

Jakarta Batch 65

9.2. Listeners

AbstractjobListener.java

package jakarta.batch.api.listener;

/**

* The AbstractJobListener provides default

* implementations of less commonly implemented methods.

*/
public abstract class AbstractJoblListener implements JobListener
{
/**
* Override this method if the JoblListener
* will do something before the job begins.
* The default implementation does nothing.
*
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public void beforeJob() throws Exception {
}
/**
* Qverride this method if the JoblListener
* will do something after the job ends.
* The default implementation does nothing.
*
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public void afterJob() throws Exception {
}
}

9.2.2. StepListener Interface

A step listener can receive control before and after a step runs, and also if an exception is thrown
during step processing. The StepListener interface may be used to implement an StepListener batch
artifact:

66 Jakarta Batch DRAFT

StepListener.java

package jakarta.batch.api.listener;

/**

* SteplListener intercepts step execution.

*

*/

public interface SteplListener {

DRAFT

/**

* The beforeStep method receives control
* before a step execution begins.

* @throws Exception throw if an error occurs.

*/

public void beforeStep() throws Exception;
/**

* The afterStep method receives control

* after a step execution ends.

* @throws Exception throw if an error occurs.

*
/
public void afterStep() throws Exception;

9.2. Listeners

Jakarta Batch 67

9.2. Listeners

AbstractStepListener.java

package jakarta.batch.api.listener;
/**
* The AbstractSteplListener provides default
* implementations of less commonly implemented methods.
*/
public abstract class AbstractSteplListener implements
StepListener {
/**
* Qverride this method if the SteplListener
* will do something before the step begins.
* The default implementation does nothing.

*

* @throws Exception (or subclass) if an error occurs.
*/

@Override

public void beforeStep() throws Exception {

}

/**
* Qverride this method if the Steplistener

* will do something after the step ends.

* The default implementation does nothing.
*

* @throws Exception (or subclass) if an error occurs.
*/
@Override

public void afterStep() throws Exception {
}

9.2.3. ChunkListener Interface

A chunk listener can receive control at the beginning and the end of chunk, and upon an exception
thrown back to the runtime implementation. The ChunkListener interface may be used to implement a
ChunkListener batch artifact:

68 Jakarta Batch DRAFT

9.2. Listeners

ChunkListener.java

package jakarta.batch.api.chunk.listener;
/**

* ChunkListener intercepts chunk processing.
*
*/
public interface ChunkListener {
/**
* The beforeChunk method receives control
* before processing of the next
* chunk begins. This method is invoked
* in the same transaction as the chunk
* processing.
* @throws Exception throw if an error occurs.
*/
public void beforeChunk() throws Exception;
/**
* The onError method receives control
before the chunk transaction is rolled back.
Note afterChunk is not invoked in this case.
@param ex specifies the exception that
caused the roll back.
@throws Exception throw if an error occurs.

* X % F

*

*/

public void onError(Exception ex) throws Exception;
/'k*

* The afterChunk method receives control

* after processing of the current

* chunk ends. This method is invoked

* in the same transaction as the chunk

* processing.

* @throws Exception throw if an error occurs.
*/

public void afterChunk() throws Exception;

DRAFT Jakarta Batch 69

9.2. Listeners

AbstractChunkListener.java

package jakarta.batch.api.chunk.listener;

/**

* The AbstractChunkListener provides default

* implementations of less commonly implemented methods.
*/

public abstract class AbstractChunkListener implements
ChunkListener {

/**

* Qverride this method if the ChunkListener

* will do something before the chunk begins.

* The default implementation does nothing.

*

* @throws Exception (or subclass) if an error occurs.

*/

@0verride

public void beforeChunk() throws Exception {

}

/**

* Override this method if the ChunkListener will do
something before the chunk transaction is rolled back.
* Note afterChunk is not invoked in this case.

* @param ex specifies the exception that

* caused the roll back.

* @throws Exception (or subclass) throw if an error occurs.
*/

@0verride

public void onError(Exception ex) throws Exception {

}

/**

* Qverride this method if the ChunkListener

* will do something after the chunk ends.

* The default implementation does nothing.
*

*

* @throws Exception (or subclass) if an error occurs.
*/

@0verride

public void afterChunk() throws Exception {

}

9.2.4. ItemReadListener Interface

An item read listener can receive control before and after an item is read by an item reader, and also if
the reader throws an exception. The ItemReadListener interface may be used to implement an
ItemReadListener batch artifact:

70 Jakarta Batch DRAFT

ItemReadListener.java

package jakarta.batch.api.chunk.listener;

/**

* TtemReadlListener intercepts item reader
* processing.

*

*/

public interface ItemReadlListener {

DRAFT

/**

* The beforeRead method receives control

* before an item reader is called to read the next item.

* @throws Exception is thrown if an error occurs.

*/

public void beforeRead() throws Exception;

/**

* The afterRead method receives control after an item

* reader reads an item. The method receives the item read as
* an input.

* @param item specifies the item read by the item reader.

* @throws Exception is thrown if an error occurs.

*/

public void afterRead(Object item) throws Exception;

/**

* The onReadError method receives control after an item reader
throws an exception in the readItem method.

This method receives the exception as an input.

*

* @throws Exception is thrown if an error occurs.
*/
public void onReadError(Exception ex) throws Exception;

@param ex specifies the exception that occurred in the item reader.

9.2. Listeners

Jakarta Batch 71

9.2. Listeners

AbstractitemReadListener.java

package jakarta.batch.api.chunk.listener;
/**
* The AbstractItemReadlListener provides default
* implementations of less commonly implemented methods.
*/
public abstract class AbstractItemReadlListener implements
ItemReadListener {
/**
* Override this method if the ItemReadlListener
* will do something before the item is read.
* The default implementation does nothing.
*
* @throws Exception (or subclass) if an error occurs.
*/
@Override
public void beforeRead() throws Exception {
}
/**
* OQverride this method if the ItemReadlListener
* will do something after the item is read.
* The default implementation does nothing.
*
* @throws Exception (or subclass) if an error occurs.
*/
@Override
public void afterRead(Object item) throws Exception {
}
/**
* OQverride this method if the ItemReadlListener
* will do something when the ItemReader readItem
* method throws an exception.
* The default implementation does nothing.

*

@throws Exception (or subclass) if an error occurs.

*/

@0verride

public void onReadError(Exception ex) throws Exception {

}

9.2.5. ItemProcessListener Interface

An item processor listener can receive control before and after an item is processed by an item
processor, and also if the processor throws an exception. The ItemProcessListener interface may be
used to implement an ItemProcessListener batch artifact:

72 Jakarta Batch DRAFT

9.2. Listeners

ItemProcessListener.java

package jakarta.batch.api.chunk.listener;
/**

* TtemProcessListener intercepts item processing.
*
*/
public interface ItemProcessListener {

/**

* The beforeProcess method receives control before

* an item processor is called to process the next item.

* The method receives the item to be processed as an input.

* @param item specifies the item about to be processed.

* @throws Exception if an error occurs.

*/

public void beforeProcess(Object item) throws Exception;

/**

* The afterProcess method receives control after an item

* processor processes an item. The method receives the item processed
and the result item as an input.
@param item specifies the item processed by the item processor.
@param result specifies the item to pass to the item writer.
@throws Exception if an error occurs.

* X % F

*/

public void afterProcess(Object item, Object result) throws
Exception;

/'k*

* The onProcessError method receives control after an

* jtem processor processItem throws an exception. The method

* receives the item sent to the item processor as input.

* @param item specifies the item the processor attempted to process.
* @param ex specifies the exception thrown by the item processor.
@throws Exception if an error occurs

*

*/
public void onProcessError(Object item, Exception ex) throws
Exception;

AbstractitemProcessListener.java

package jakarta.batch.api.chunk.listener;
/**
* The AbstractItemProcessListener provides default

* implementations of less commonly implemented methods.
*

*/
public abstract class AbstractItemProcessListener implements

DRAFT Jakarta Batch

73

9.2. Listeners

ItemProcesslListener {
/**
* QOverride this method if the ItemProcesslListener
* will do something before the item is processed.
* The default implementation does nothing.
*
* @param item specifies the item about to be processed.
* @throws Exception (or subclass) if an error occurs.
*/
@0verride
public void beforeProcess(Object item) throws Exception {
}
/**
* Qverride this method if the ItemProcesslListener
* will do something after the item is processed.
* The default implementation does nothing.

* @param item specifies the item about to be processed.
* @param result specifies the item to pass to the item writer.
@throws Exception (or subclass) if an error occurs.

*

*/

@0verride

public void afterProcess(Object item, Object result) throws
Exception {

}

/**

* Qverride this method if the ItemProcessListener

* will do something when the ItemProcessor processItem

* method throws an exception.

* The default implementation does nothing.

* @param item specifies the item about to be processed.

* @param ex specifies the exception thrown by the item processor.
* @throws Exception (or subclass) if an error occurs.

*/

@0verride

public void onProcessError(Object item, Exception ex) throws
Exception {

}

9.2.6. ItemWriteListener Interface

A item write listener can receive control before and after an item is written by an item writer, and also
if the writer throws an exception. The ItemWriteListener interface may be used to implement an
ItemWTriteListener batch artifact:

74 Jakarta Batch DRAFT

9.2. Listeners

ItemWriteListener.java

package jakarta.batch.api.chunk.listener;

import java.util.List;

/**

* TtemWritelistener intercepts item writer

* processing.

*

*/

public interface ItemWritelListener {
/**
* The beforeWrite method receives control before
* an item writer is called to write its items. The
* method receives the list of items sent to the item
* writer as an input.
* @param items specifies the items about to be

* written.

* @throws Exception is thrown if an error occurs.

*/

public void beforeWrite(List<Object> items) throws Exception;
/**

* The afterWrite method receives control after an

* jtem writer writes its items. The method receives the

* 1list of items sent to the item writer as an input.

* @param items specifies the items written by the item writer.
* @throws Exception is thrown if an error occurs.

*/

public void afterWrite(List<Object> items) throws Exception;
/**

* The onWriteError method receives control after an

* jtem writer writeltems throws an exception. The method

* receives the list of items sent to the item writer as input.
* @param items specifies the items which the item writer

* attempted to write.

* @param ex specifies the exception thrown by the item

* writer.

* @throws Exception is thrown if an error occurs.

*/

public void onWriteError(List<Object> items, Exception ex) throws
Exception;

9.2.7. SKkip Listener Interfaces

A skip listener can receive control when a skippable exception is thrown from an item reader,
processor, or writer. Three interfaces are provided to implement these listeners:

DRAFT Jakarta Batch 75

9.2. Listeners

SkipReadListener.java

package jakarta.batch.api.chunk.listener;
/**

* SkipReadListener intercepts skippable
* itemReader exception handling.

*/
public interface SkipReadlListener {
/**
* The onSkipReadItem method receives control
* when a skippable exception is thrown from an
* TtemReader readItem method. This method receives the
* exception as an input.
* @param ex specifies the exception thrown by the ItemReader.
* @throws Exception is thrown if an error occurs.
*/
public void onSkipReadItem(Exception ex) throws Exception;
¥

SkipProcessListener.java

package jakarta.batch.api.chunk.listener;
/**

* SkipProcessListener intercepts skippable
* jtemProcess exception handling.

*/
public interface SkipProcessListener {
/**
* The onSkipProcessItem method receives control when
* 3 skippable exception is thrown from an ItemProcess
* processItem method.
* This method receives the exception and the item to process
* 3as an input.
* @param item specifies the item passed to the ItemProcessor.
* @param ex specifies the exception thrown by the
* TtemProcessor.
* @throws Exception is thrown if an error occurs.
*/
public void onSkipProcessItem(Object item, Exception ex) throws
Exception;
}

76 Jakarta Batch DRAFT

9.2. Listeners

SkipWriteListener.java

package jakarta.batch.api.chunk.listener;
import java.util.List;
/**
* SkipWritelListener intercepts skippable
* jtemWriter exception handling.
*/
public interface SkipWritelListener {
/**
* The onSkipWriteItems method receives control when a
* skippable exception is thrown from an ItemWriter
* writeltems method. This
* method receives the exception and the items that were
* skipped as an input.
* @param items specifies the list of item passed to the
* jtem writer.
* @param ex specifies the exception thrown by the
* TtemWriter.
* @throws Exception is thrown if an error occurs.
*/
public void onSkipWriteItem(List<Object> items, Exception ex)
throws Exception;

9.2.8. RetryListener Interface

A retry listener can receive control when a retryable exception is thrown from an item reader,
processor, or writer. Three interfaces are provided to implement these listeners:

DRAFT Jakarta Batch 77

9.2. Listeners

RetryReadListener.java

package jakarta.batch.api.chunk.listener;

/**

* RetryReadlListener intercepts retry processing for
* an ItemReader.

*/

public interface RetryReadlListener {

/**

* The onRetryReadException method receives control

* when a retryable exception is thrown from an ItemReader

* readItem method.

* This method receives the exception as input. This method
receives control in the same checkpoint scope as the
ItemReader. If this method throws a an exception, the job
ends in the FAILED state.

* @param ex specifies the exception thrown by the item

* reader.

* @throws Exception is thrown if an error occurs.

*/

public void onRetryReadException(Exception ex) throws Exception;

*

RetryProcessListener.java

package jakarta.batch.api.chunk.listener;

/**

* RetryProcessListener intercepts retry processing for
* an ItemProcessor.

*

*/

public interface RetryProcessListener {
/'k*
* The onRetryProcessException method receives control
* when a retryable exception is thrown from an ItemProcessor
* processItem method. This method receives the exception and the item
* being processed as inputs. This method receives control in same
* checkpoint scope as the ItemProcessor. If this method
* throws a an exception, the job ends in the FAILED state.
* @param item specifies the item passed to the ItemProcessor.
* @param ex specifies the exception thrown by the ItemProcessor.
* @throws Exception is thrown if an error occurs.
*/
public void onRetryProcessException(Object item, Exception ex)
throws Exception;

}

78 Jakarta Batch DRAFT

9.3. Batch Properties

RetryWriteListener.java

package jakarta.batch.api.chunk.listener;

import java.util.List;

/**

* RetryWriteListener intercepts retry processing for

* an ItemWriter.
*

*/
public interface RetryWritelListener {
/**
* The onRetryWriteException method receives control when a
* retryable exception is thrown from an ItemWriter writeltems
* method. This method receives the exception and the list of items
* being written as inputs.
* This method receives control in same checkpoint scope as the
* TtemWriter. If this method throws a an exception, the job ends
* in the FAILED state.
* @param items specify the items passed to an item writer.
* @param ex specifies the exception thrown by an item
* writer.
* @throws Exception is thrown if an error occurs.
*/
public void onRetryWriteException(List<Object> items, Exception ex)
throws Exception;

9.3. Batch Properties

Batch applications need a way to receive parameters when a job is initiated for execution. Properties
can be defined by batch programming model artifacts, then have values passed to them when a job is
initiated. Batch properties are string values.

Note batch properties are visible only in the scope in which they are defined (see Section 9.3.2).
However batch properties values can be formed from other properties according to Job XML
Substitution Rules. See section 8.8 for further information on substitution.

9.3.1. @BatchProperty

The @BatchProperty annotation identifies a class field injection as a batch property. A batch property
has a name (name) and default value. The @BatchProperty may be used on a class field for any class
identified as a batch programming model artifact -E.g. ItemReader, ItemProcessor, JobListener, etc..

@BatchProperty must be used with the standard @Inject annotation (jakarta.inject.Inject).
@BatchProperty is used to assign batch artifact property values from Job XML to the batch artifact
itself.

DRAFT Jakarta Batch 79

9.3. Batch Properties

A field annotated with the @BatchProperty annotation must not be static and must not be final.

Note: the batch runtime must ensure @Inject works with @BatchProperty, whether or not the
execution environment includes an implementation of Jakarta Dependency Injection. The batch
properties must always be injected, and depending on the specific dependency injection technology
used, other injections may or may not also be supported.

Syntax:

package: jakarta.batch.api

@Inject @BatchProperty(name="<property-name>") String <field-name>;

Where:
<property-name> is the optional name of this batch property. The
default is the Java field name.
<field-name> is the field name of the batch property.
BatchProperty.java

package jakarta.batch.api;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import jakarta.enterprise.util.Nonbinding;

import jakarta.inject.Qualifier;

/**

* Annotation used by batch artifacts to declare a
* field which is injectable via a JSL-defined value
* (possibly leveraging Job XML substitutions).

*

*/

@Qualifier

@Target({
ElementType._FIELD_, ElementType._METHOD_,
ElementType._PARAMETER_

}

)

@Retention(RetentionPolicy._RUNTIME_)
public @interface BatchProperty {
@Nonbinding
public String name() default "";

80 Jakarta Batch DRAFT

9.3. Batch Properties

The value of the annotated field is assigned by the batch runtime if a corresponding property element
with a matching name is specified in the JSL in the scope that applies to the batch artifact in question.
If the JSL property value resolves to the empty string (either explicitly set to the empty string literal or
resolving to an empty string via property substitution — see section 8.8), no assignment is made and the
resulting value is undefined by the batch specification. The resulting value might simply be the Java
default value, however using various dependency injection technologies may produce different results.
The resultant behavior may be defined by the particular dependency injection technology used in the
runtime environment and so is outside the scope of this specification. Example:

import jakarta.inject.Inject;
import jakarta.batch.api.BatchProperty;
public class MyItemReaderImpl {

String fname;

Behavior:
When the batch runtime instantiates the batch artifact (item reader in this example), it assigns the

value of the property with name equal to fname provided in the job XML to the corresponding
@BatchProperty field named fname. If no value is defined in JSL, the Java default (null) is assigned or
some other default is provided by a particular dependency injection technology.

9.3.2. Scope of property definitions for @BatchProperty Injection

The rules governing the definition of properties for injection via @BatchProperty deserve some extra
explanation and an example.

For a given artifact, the only properties that are injectable via @BatchProperty are those which are
defined at the level of the artifact itself (i.e. as children of the "properties" element which is in turn a
child of the very element defining the artifact: batchlet, reader, listener, etc.).

In particular, just because an artifact definition is contained (at some level of nesting) within a job
element and (for most artifacts) within a step element as well, it is NOT the case that the job properties
and step properties are themselves injectable into that artifact via @BatchProperty. This is the case
even though these job and step properties are available for resolving the artifact-level property
definitions via the jobProperties substitution mechanism (see section 8.8.1.2) .

The following example should make this more clear:

DRAFT Jakarta Batch 81

9.4. Batch Contexts
Example JSL

<job>
<properties>
<property name="x" value="xVal"/>

<step id="step1">

<batchlet ref="MyBatchlet">
<properties>
<property name="y" value="#\{jobProperties['x"']}"/>
</properties>

Example Java (MyBatchlet from JSL above):

// WONT WORK! - There is no property 'x' in scope for this injection
(name="x");

// WILL WORK — Gets value 'xVal'
(name="y");

9.4. Batch Contexts

Context objects are supplied by the batch runtime and provide important functions to a batch
application. Contexts provide information about the running batch job, provide a place for a batch job
to store interim values, and provide a way for the batch application to communicate important
information back to the batch runtime. Contexts can be injected into an application as member
variables. There is a context for both job and step. The job context represents the entire job. The step
context represents the current step executing within the job.

9.4.1. Batch Contexts

Batch artifact access to batch contexts is by injection using the standard @Inject annotation
(jakarta.inject.Inject). A field into which a batch context is injected must not be static and must not be
final. E.g.:

@Inject JobContext _jctxt;

@Inject StepContext _sctxt;

The batch runtime is responsible to ensure the correct context object is injected according to the job or
step currently executing.

82 Jakarta Batch DRAFT

9.5. Parallelization

Note: the batch runtime must ensure @Inject works with JobContext and StepContext, whether or not
the execution environment includes an implementation of Jakarta Dependency Injection. The batch
contexts must always be injected, and depending on the specific dependency injection technology used,
other injections may or may not also be supported. See section 10.9.1 for definition of JobContext class.
See section 10.9.2 for definition of StepContext class.

9.4.1.1. Batch Context Lifecycle and Scope

A batch context has thread affinity and is visible only to the batch artifacts executing on that particular
thread. A batch context injected field may be null when out of scope. Each context type has a distinct
scope and lifecycle as follows:

1. JobContext

There is one JobContext per job execution. It exists for the life of a job. There is a distinct
JobContext for each sub-thread of a parallel execution (e.g. partitioned step).

2. StepContext

There is one StepContext per step execution. It exists for the life of the step. For a partitioned step,
there is one StepContext for the parent step/thread; there is a distinct StepContext for each sub-
thread and each StepContext has its own distinct persistent user data for each sub-thread.

9.5. Parallelization

Batch jobs may be configured to run some of their steps in parallel. There are two supported
parallelization models:

1. Partitioned:

In the partitioned model, a step is configured to run as multiple instances across multiple threads.
Each thread runs the same step or flow. This model is logically equivalent to launching multiple
instances of the same step. It is intended that each partition processes a different range of the input
items.

The partitioned model includes several optional batch artifacts to enable finer control over parallel
processing:

a. PartitionMapper provides a programmatic means for calculating the number of partitions and
unique properties for each.

b. PartitionReducer provides a unit of work demarcation around partition processing.

c. PartitionCollector provides a means for merging interrim results from individual partitions.

d. PartitionAnalyzer provides a means to gather interrim and final results from individual
partitions for single point of control processing and decision making.

2. Concurrent:

DRAFT Jakarta Batch 83

9.5. Parallelization

In the concurrent model, the flows defined by a split are configured to run concurrently on
multiple threads, one flow per thread.

9.5.1. PartitionMapper Interface

A partition mapper receives control at the start of a partitioned execution. The partition mapper is
responsible to provide unique batch properties for each partition. The PartitionMapper interface may
be used to implement a PartitionMapper batch artifact:

PartitionMapper.java

package jakarta.batch.api.partition;

import jakarta.batch.api.partition.PartitionPlan;

/**

* PartitionMapper receives control at the start of a partitioned
* execution. A PartitionMapper is responsible to provide unique

* batch properties for each partition.
*

*/
public interface PartitionMapper {

/**

* The mapPartitions method that receives control at the

* start of partitioned step processing. The method

* returns a PartitionPlan, which specifies the batch properties
* for each partition.

* @return partition plan for a partitioned step.

* @throws Exception is thrown if an error occurs.

*/

public PartitionPlan mapPartitions() throws Exception;

See section 10.9.4 for details on the PartitionPlan result value type.

The PartitionMapper, when defined, is invoked upon every execution, including restarted executions.
For a full discussion of the behavior on restart, including how to override particular details of the
PartitionPlan built by the previous execution, see section 10.8.5.

9.5.2. PartitionReducer Interface

A partition reducer provides a unit of work demarcation across partitions. It is not a JTA transaction;
no resources are enlisted. Rather, it provides transactional flow semantics to facilitate finalizing merge
or compensation logic. The PartitionReducer interface may be used to implement an PartitionReducer
batch artifact:

PartitionReducer.java

84 Jakarta Batch DRAFT

9.5. Parallelization

package jakarta.batch.api.partition;

/**

*

PartitionReducer provides unit of work demarcation across
* partitions. It is not a JTA transaction; no resources are
* enlisted. Rather, it provides transactional flow semantics
* to facilitate finalizing merge or compensation logic.

*

public interface PartitionReducer {
public enum PartitionStatus {
COMMIT_, _ROLLBACK
}
/'k'k
* The beginPartitionedStep method receives
* control at the start of partition processing.
* It receives control before the PartitionMapper
* is invoked and before any partitions are started.
* @throws Exception is thrown if an error occurs.
*/
public void beginPartitionedStep() throws Exception;
/**
* The beforePartitionedStepCompletion method
* receives control at the end of partitioned
* step processing. It receives control after all
* partitions have completed. It does not receive
* control if the PartitionReducer is rolling back.
* @throws Exception is thrown if an error occurs.
*/
public void beforePartitionedStepCompletion() throws Exception;

/**

* The rollbackPartitionedStep method receives

* control if the runtime is rolling back a partitioned

* step. Any partition threads still running are

* allowed to complete before this method is invoked. This method
* receives control if any of the following conditions

* are true:

* <p>

*

<1i>0ne or more partitions end with a Batch Status of
STOPPED or FAILED.</1i>

Any of the following partitioned step callbacks
throw an exception:</1i>

PartitionMapper</1i>

PartitionReducer</1i>

PartitionCollector</1i>
PartitionAnalyzer</1i>

* X

* % % * X

*

DRAFT Jakarta Batch

85

9.5. Parallelization

* <1i>A job with partitioned steps is restarted.</1i>

*

* @throws Exception is thrown if an error occurs.

*/

public void rollbackPartitionedStep() throws Exception;

/**

* The afterPartitionedStepCompletion method receives control

at the end of a partition processing. It receives a status

value that identifies the outcome of the partition processing.
The status string value is either "COMMIT" or "ROLLBACK".

@param status specifies the outcome of the partitioned step. Values
* are "COMMIT" or "ROLLBACK".

* @throws Exception is thrown if an error occurs.

*/

public void afterPartitionedStepCompletion(PartitionStatus status)
throws Exception;

*
*
*
*

AbstractPartitionReducer.java

package jakarta.batch.api.partition;
/**
* The AbstractPartitionReducer provides default
* implementations of less commonly implemented methods.
*/
public abstract class AbstractPartitionReducer implements
PartitionReducer {
/**
* Qverride this method to take action before

* partitioned step processing begins.
*

*

@throws Exception is thrown if an error occurs.

*/

@0verride

public void beginPartitionedStep() throws Exception {
Iy

/**

* Override this method to take action before

* normal partitioned step processing ends.
*

*

@throws Exception is thrown if an error occurs.

*/

@0verride

public void beforePartitionedStepCompletion() throws Exception {
}

/**

* Qverride this method to take action when a

86 Jakarta Batch DRAFT

9.5. Parallelization

* partitioned step is rolling back.
*

* @throws Exception is thrown if an error occurs.

*/

@0verride

public void rollbackPartitionedStep() throws Exception {
}

/**

* OQverride this method to take action after

* partitioned step processing ends.
*

* @param status specifies the outcome of the partitioned step.

* Values are "COMMIT" or "ROLLBACK".

* @throws Exception is thrown if an error occurs.

*/

@0verride

public void afterPartitionedStepCompletion(PartitionStatus status)
throws Exception {

}

9.5.3. PartitionCollector Interface

A partition collector provides a way to send data from individual partitions to a single point of control
running on the parent thread. The PartitionAnalyzer is used to receive and process this data. See
section 9.5.4 for further information about the PartitionAnalyzer. The PartitionCollector interface may
be used to implement an PartitionCollector batch artifact:

DRAFT Jakarta Batch 87

9.5. Parallelization

PartitionCollector.java

package jakarta.batch.api.partition;

import java.io.Serializable;

/**

* PartitionCollector provides a way to pass data from

* individual partitions to a single point of control running on
* the step's parent thread. The PartitionAnalyzer is used to

* receive and process this data.
*

*/
public interface PartitionCollector {
/**
* The collectPartitionData method receives control
* periodically during partition processing.
* This method receives control on each thread processing
* 3 partition as follows:
* <p>
*
* for a chunk type step, it receives control after
* every chunk checkpoint and then one last time at the
* end of the partition;
</1i>
* for a batchlet type step, it receives control once
* at the end of the batchlet.</1i>
*
* <p>
* Note the collector is not called if the partition
* terminates due to an unhandled exception.
* <p>
* @return an Serializable object to pass to the
* PartitionAnalyzer.
* @throws Exception is thrown if an error occurs.
*/
public Serializable collectPartitionData() throws Exception;

9.5.4. PartitionAnalyzer Interface

A partition analyzer receives control to process data and final results from partitions. If a partition
collector is configured on the step, the partition analyzer receives control to process the data and
results from the partition collector. While a separate partition collector instance is invoked on each
thread processing a partition, the partition analyzer runs on a single, consistent thread each time it is
invoked. The PartitionAnalyzer interface may be used to implement an PartitionAnalyzer batch
artifact:

88 Jakarta Batch DRAFT

PartitionAnalyzer.java

package jakarta.batch.api.partition;
import java.io.Serializable;
import jakarta.batch.runtime.BatchStatus;

/**

the
the

LR T R I S R

*/

PartitionAnalyzer receives control to process
data and final results from each partition. If
a PartitionCollector is configured on the step,

PartitionAnalyzer receives control to process
data and results from the partition collector.

While a separate PartitionCollector instance is
invoked on each thread processing a step partition,

a single PartitionAnalyzer instance runs on a single,
consistent thread each time it is invoked.

public interface PartitionAnalyzer {
/**

*

The analyzeCollectorData method receives

* control each time a Partition collector sends
* its payload. It receives the

* Serializable object from the collector as an

* input.

* @param data specifies the payload sent by a

* PartitionCollector.

* @throws Exception is thrown if an error occurs.
*/

public void analyzeCollectorData(Serializable data) throws
Exception;

/**

*
*
*
*
*

*

*/

The analyzeStatus method receives control each time a
partition ends. It receives the batch and exit
status strings of the partition as inputs.

@param batchStatus specifies the batch status of a partition.

@param exitStatus specifies the exit status of a partition.
@throws Exception is thrown if an error occurs.

public void analyzeStatus(BatchStatus batchStatus, String
exitStatus) throws Exception;

DRAFT

9.5. Parallelization

Jakarta Batch 89

9.6. Decider Interface

AbstractPartitionAnalyzer.java

package jakarta.batch.api.partition;
import java.io.Serializable;
import jakarta.batch.runtime.BatchStatus;

/**

* The AbstractPartitionAnalyzer provides default
* implementations of less commonly implemented methods.

*/

public abstract class AbstractPartitionAnalyzer implements
PartitionAnalyzer {

9.6.

/**

* Qverride this method to analyze PartitionCollector payloads.
*

* @param data specifies the payload sent by the

* PartitionCollector.

* @throws Exception is thrown if an error occurs.

*/

@0verride

public void analyzeCollectorData(Serializable data) throws
Exception {

}

/**

* Qverride this method to analyze partition end status.

* @param batchStatus specifies the batch status of a partition.
* @param exitStatus specifies the exit status of a partition.
* @throws Exception is thrown if an error occurs.

*/

@0verride

public void analyzeStatus(BatchStatus batchStatus, String
exitStatus)

throws Exception {

}

Decider Interface

A decider may be used to determine batch exit status and sequencing between steps, splits, and flows
in a Job XML. The decider returns a String value which becomes the exit status value on which the
decision chooses the next transition. The Decider interface may be used to implement an Decider batch
artifact:

90 Jakarta Batch DRAFT

Decider.java

package jakarta.batch.api;
import jakarta.batch.runtime.StepExecution;

/**

* A Decider receives control as part of a decision element

* 0%k X X X *

*/

in @ job. It is used to direct execution flow during job
processing. It returns an exit status that updates the
current job execution's exit status. This exit status
value also directs the execution transition based on
next, end, stop, fail child elements configured on the
same decision element as the decider.

public interface Decider {
/**

*

*

*

* X % F X

* X

*

* X

* % X * X X

*

*

*/

The decide method sets a new exit status for a job.

It receives an array of StepExecution objects as input.
These StepExecution objects represent the execution
element that transitions to this decider as follows:

<p>

Step</1i>

<p>

When the transition is from a step, the decide method
receives the StepExecution corresponding

to the step as input.

Split</1i>

<p>

When the transition is from a split, the decide method
receives a StepExecution from each flow defined to the split
as input.

Flow</1i>

<p>

When the transition is from a flow, the decide method
receives a StepExecution corresponding

to the last execution element that completed in the flow.
This will be a single StepExecution if the last element
was a step and multiple StepExecutions if the last element
was a split.

@param executions specifies the StepExecution(s) of the preceding
element.

@return updated job exit status

@throws Exception is thrown if an error occurs.

public String decide(StepExecution[] executions) throws Exception;

DRAFT

9.6. Decider Interface

Jakarta Batch 91

9.7. Transactionality

9.7. Transactionality

Chunk type check points are transactional. When running on a Jakarta EE platform, the batch runtime
uses global transactions. In a Java SE or other environment, the batch runtime may use global
transactions if available, otherwise the transactional behavior is undefined.

Global transaction timeout is configurable at step-level with a step-level property:
jakarta.transaction.global.timeout (seconds) - default is 180 (seconds)

Example:

<step id="MyGlobalStep">

<properties>
<property name="jakarta.transaction.global.timeout" value="600"/>
</properties>

</step>

92 Jakarta Batch DRAFT

10.1. Batch Properties Reserved Namespace

Chapter 10. Batch Runtime Specification

10.1. Batch Properties Reserved Namespace

The batch runtime supports properties at job, step, partition, and artifact level. The property name
prefix, 'jakarta.batch’, is reserved for use by the batch runtime, as prescribed by this specification and
future revisions of same. Applications and specification implementations must not define properties
for their own use that begin with this prefix. Applications that do so risk undefined behavior.

10.2. Job Metrics

The batch runtime supports the following chunk-type step metrics:

1. readCount - the number of items successfully read.

® N e G s w N

writeCount - the number of items successfully written.

filterCount - the number of items filtered by ItemProcessor.

commitCount - the number of transactions committed.

rollbackCount - the number of transactions rolled back.

readSkipCount - the number of skippable exceptions thrown by the ItemReader.
processSkipCount - the number of skippable exceptions thrown by the ItemProcessor.

writeSkipCount - the number of skippable exceptions thrown by the ItemWriter.

These metrics are available through the StepExecution runtime object. See section 10.9.10 for further

information on StepExecution.

10.3. Job Runtime Identifiers

Job runtime artifacts are uniquely defined at runtime with the following operational identifiers:

instanceld

executionld

DRAFT

Is a long that represents an instance of a job. A
new job instance is created everytime a job is
started with the JobOperator "start" method.

Is a long that represents the next attempt to run a
particular job instance. A new execution is
created the first time a job is started and
everytime thereafter when an existing job
execution is restarted with the JobOperator
"restart" method. Note there can be no more than
one executionld in the STARTED state at one time
for a given job instance.

Jakarta Batch 93

10.4. JobOperator

stepExecutionld Is a long that represents the attempt to execute a
particular step within a job execution.

Note instanceld, executionld, and stepExecutionld are all globally unique values within a job
repository. See section 7.4 for explanation of job repository.

10.4. JobOperator

The JobOperator interface provides a set of operations to start, stop, restart, and inspect jobs. See 10.9.6
for detailed description of this interface. The JobOperator interface is accessible via a factory pattern:

JobOperator jobOper = BatchRuntime.getJobOperator();

See section 10.9.5 for details on the BatchRuntime class.

10.5. Batch Artifact Loading

All batch artifacts comprising a batch application are loadable by the following loaders in the order
specified:

1. Implementation-specific loader

The batch runtime implementation _may_provide an implementation-specific means by which
batch artifacts references in a Job XML (i.e. via the 'ref=' attribute) are resolved to an
implementation class and instantiated. When the batch runtime resolves a batch artifact reference
to an instance the implementation-specific mechanism (if one exists) is attempted first. The loader
must return an instance or null.

An example of an implementation-specific loader might be CDI or Spring DI.
2. Archive loader

If an implementation-specific mechanism does not exist or fails toresolve a batch artifact reference
(returns null), then the batch runtime implementation must resolve the reference with an archive
loader. The implementation must provide an archive loader that resolves the reference by looking
up the reference in a batch.xml file, which maps reference name to implementation class name.
The loader must return an instance or null.

The batch.xml file is packaged by the developer with the application under the ‘META-INF’ directory
(‘WEB-INF/classes/META-INF’ for .war files).

See 10.7.1 for more about the batch.xml file.

3. Thread Context Class Loader

94 Jakarta Batch DRAFT

10.6. Job XML Loading

If the archive loader fails to resolve a batch artifact reference (returns null), then the batch runtime
implementation must resolve the reference by treating the reference as a class name and loading it
through the thread context class loader. The loader must return an instance or null.

10.6. Job XML Loading

Job XML is specified by name on the JobOperator.start command (see 10.9.6) to start a job.
All Job XML references are loadable by the following loaders in the order specified:
1. implementation-specific loader

The batch runtime implementation _must_provide an implementation-specific means by which Job
XML references are resolved to a Job XML document.

The purpose of an implementation-specific loader is to enable Job XMLloading from outside of the
application archive, such as from a repository, file system, remote cache, or elsewhere.

2. archive loader

If the implementation-specific mechanism does fails to resolve a Job XML reference, then the batch
runtime implementation must resolve the reference with an archive loader. The implementation
must provide an archive loader that resolves the reference by looking up the reference from the
META-INF/batch-jobs directory.

Job XML documents may be packaged by the developer with the application under the ‘META-
INF/batch-jobs’ directory (' WEB-INF/classes/META-INF " /batch-jobs' for .war files).

See 10.7.2 for more about the META-INF/batch-jobs.

10.7. Application Packaging Model

The batch artifacts that comprise a batch application requiring no unique packaging. They may be
packaged in a standard jar file or can be included inside any Java archive type, as supported by the
target execution platform in question.E.g. batch artifacts may be included in wars, EJB jars, etc, so long
as they exist in the class loader scope of the program initiating the batch jobs (i.e. using the
JobOperator start method).

10.7.1. META-INF/batch.xml

A batch application may use the archive loader (see section 10.5) to load batch artifacts. The
application can direct artifact loading by supplying an optional batch.xml file. The batch.xml file must
be stored under the META-INF directory. For .jar files it is the standard META-INF directory. For .war files
it is the WEB-INF/classes/META-INF directory. The format and content of the batch.xml file follows:

DRAFT Jakarta Batch 95

10.8. Restart Processing

<batch-artifacts xmlns="https://jakarta.ee/xml/ns/jakartaee">
<ref id="<reference-name>" class="<impl-class-name>" />
</batch-artifacts>

Where:
<reference-name> Specifies the reference name of the batch artifact.
This is the value that is specified on the ref=
attribute of the Job XML.
<impl-class-name> Specifies the fully qualified class name of the
batch artifact implementation.
Notes:

1. If an implementation-specific loader is used (see 10.5) any artifact it loads takes precedence over
artifacts specified in batch.xml.

2. Use of batch.xml to load batch artifacts requires the availability of a zero-argument constructor
(either a default constructor or an explicitly-defined, no-arg constructor).

10.7.2. META-INF/batch-jobs

A batch application may use the archive loader (see section 10.6) to load Job XML documents. The
application does this by storing the Job XML documents under the META-INF/batch-jobs directory. For
Jar files the batch-jobs directory goes under the standard META-INF directory. For .war files it goes
under the WEB-INF/classes/META-INF directory. Note Job XML documents are valid only in the batch-jobs
directory: sub-directories are ignored. Job XML documents stored under META-INF/batch-jobs are
named with the convention ‘<name>.xml,Where:

<name> Specifies the name of a Job XML. This is the value
that is specified on the JobOperator.start
command.

.xml Specifies required file type of a Job XML file under

META-INF/batch-jobs.

Note if an implementation-specific loader (see 10.6) loads a Job XML document that document takes
precedence over documents stored under META-INF/batch-jobs.

10.8. Restart Processing

The JobOperator restart method is used to restart a JobExecution. A JobExecution is eligible for restart
if:

e Its batch status is STOPPED or FAILED.

96 Jakarta Batch DRAFT

10.8. Restart Processing

* It is the most recent JobExecution.

10.8.1. Job Parameters on Restart

Job parameter values are not remembered from one execution to the next. All Job Parameter
substitution during job restart is performed based exclusively on the job parameters specified on that
restart.

10.8.2. Job XML Substitution during Restart

See section 8.8.1.8 Job Restart Rule.

10.8.3. Execution Sequence on Restart — Overview
On the initial execution of a JobInstance, the sequence of execution is essentially:

1. Start at initial execution element
2. Execute the current execution element
3. Either:
a. Transition to next execution element (and go to step 2. above) OR
b. Terminate execution
On a restart, i.e. a subsequent execution of a JobInstance, the sequence of execution is similar, but the

batch implementation must, in addition, determine which steps it does and does not need to re-
execute.

So on a restart, the sequence of execution looks like:

1. Start at restart position
2. Decide whether or not to execute (or re-execute) the current execution element
3. Either:
a. Transition to next execution element (and go to step 2. above) OR
b. Terminate execution
So it follows that for restart we need: a definition of where in the job definition to begin; rules for
deciding whether or not to execute the current execution element; and rules for performing

transitioning, especially taking into account that all steps relevant to transitioning may not have
executed on this (restart) execution. These rules are provided below.

10.8.4. Execution Sequence on Restart — Detailed Rules

Upon restart, the job is processed as follows:

DRAFT Jakarta Batch 97

10.8. Restart Processing

1. Job XML Substitution is performed (see section 8.8).
2. Start by setting the current position to the restart position. The restart position is either:

a. the execution element identified by the <stop> elements "restart" attribute if that is how the
previous execution ended; else

b. the initial execution element determined the same as upon initial job start, as described in
section 8.2.5 Step Sequence;

3. Determine if the current execution element should re-execute:

a. If the current execution element is a COMPLETED step that specifies allow-restart-if-
complete=false, then transition based on the exit status for this step from the previous
completed execution. If the transition is a next transition, then repeat step 3 here with the value
of next as the new, "current" execution element. Or, if the transition is a terminating transition
such as end, stop, or fail, then terminate the restart execution accordingly.

b. If the current execution element is a COMPLETED step that specifies allow-restart-if-
complete=true, then re-run the step and transition based on the new exit status from the new
step execution. As above, either repeat step 3 with the next execution element or terminate the
new execution as the transition element

c. If the current execution element is a STOPPED or FAILED step then restart the step and
transition based on the exit status from the new step execution.+

Note if the step is a partitioned step, only the partitions that did not complete previously are
restarted. This behavior may be overridden via a PartitionMapper (see section 10.8.5). Note for
a partitioned step, the checkpoints and persistent user data are loaded from the persistent store
on a per-partition basis (this is not a new rule, but a fact implied by the discussion of
checkpoints in section 8.2.6 and the Step Context in section 9.4.1.1, which is summarized here
for convenience).

d. If the current execution element is a decision, execute the decision (i.e. execute the Decider)
unconditionally. The Deciders "decide" method is passed a StepExecution array as a parameter.
This array will be populated with the most-recently completed StepExecution(s) for each
corresponding step.E.g. some StepExecution(s) may derive from previous job executions and
some from the current restart (execution). A single decision following a split could even have a
mix of old, new StepExecution(s) in the same array.

e. If the current execution element is a flow, transition to the first execution element in the flow
and perform step 3 with this as the current element. When restart processing of the flow has
completed, then follow the same rules which apply during the original execution (see section
8.9) to transition at the flow level to the next execution element, and repeat step 3 with that
element as the current element.

Note the same rules regarding transitioning within a flow during an original execution apply
during restart processing as well.

f. If the current execution element is a split, proceed in parallel for each flow in the split. For each

98 Jakarta Batch DRAFT

10.8. Restart Processing

flow, repeat step 3 with the flow element as the current element. When all flows in the split
have been processed, follow the split’s transition to the next execution element and repeat step
3 with that element as the current element.

10.8.5. PartitionMapper on Restart

When the PartitionMapper is invoked at the beginning of a step which has been executed within a
previous job execution, the first and most important decision for the mapper implementor to make is
whether or not to keep the previous partitions or to begin the new execution with new partition
definitions.

This decision is communicated to the batch implementation via the 'partitionsOverride' property of the
PartitionPlan built by the mapper, i.e. the result of PartitionPlan’s getPartitionsOverride() method.

This property directs whether or not the partitions used in the previous execution of this step will or
will be used (i.e. the relevant data carried forward and applied) within the current execution of this
step. (As a consequence, the value of this property has no real meaning when the mapper is first called
on the first execution of this step).

10.8.5.1. partitionsOverride = False

Three rules apply in the case where override is set to 'false’:

10.8.5.1.1. Number of Partitions Must Be Same

The key idea here is that the mapper must build a partition plan with the same number of partitions
that were used in the previous execution of this step. As a consequence, it is an error for the partition
plan to return (via getPartitions()) a different number than the number of partitions established by the
plan the last time this step was executed.

10.8.5.1.2. Partition Properties Populated From Current Plan

Though the number of partitions in the previous plan is persisted, the Properties[] returned by the
previous PartitionPlan’s getPartitionProperties() is not. On a new execution of this step, it is the current
return value of PartitionPlan#getPartitionProperties() which is used to populate the pool of potential
"‘partitionPlan’ substitutions (see section 8.8.1.4).

10.8.5.1.3. "Numbering" of Partitions via Partition Properties

Upon execution of this step, the batch implementation will associate each element of the Properties|]
returned by PartitionPlan#getPartitionProperties() with a single partition, in order to potentially
resolve 'partitionPlan’ substitutions (see section 8.8.1.4) for a single partition. During the course of
execution of each partition, the batch implementation will capture data such as checkpoint values,
persistent user data, etc.

Upon a new execution of this step during restart, the batch implementation must ensure that a similar
mapping occurs. That 1is, the elements of the new Properties[] returned by the

DRAFT Jakarta Batch 99

10.9. Supporting Classes

PartitionPlan#getPartitionProperties() built by the mapper must be mapped to the partitions in the
same order as the earlier elements of the earlier Properties[] were mapped (for resolving
‘partitionPlan’ substitutions).

E.g., the following must hold:

Earlier Execution:

partitionPlanProps[] = mapper.getPartitionPlan().getPartitionProperties();
partitionPlanProps[@] ---maps to---> partition leaving off at checkpoints RO, W@

partitionPlanProps[1] ---maps to---> partition leaving off at checkpoints R1, W1
Current Execution:

newPartitionPlanProps[] = mapper.getPartitionPlan().qgetPartitionProperties();
newPartitionPlanProps[@] ---maps to---> partition resuming at checkpoints RO, W@

newPartitionPlanProps [1] ---maps to---> partition resuming at checkpoints R1, W1

In the shorthand above, "maps to" simply means that the Properties object on the left is used to
potentially resolve the 'partitionPlan’ substitutions for the give partition, before it executes as
described.

10.8.5.2. partitionsOverride = True

In this case, all partition execution data: checkpoints, persistent user data, etc. from the earlier
execution are discarded, and the new PartitionPlan built by the new execution of the PartitionMapper
may define either the same or a different number of partitions; the new P artitionPlan’s
getPartitionProperties() return value will be used to resolve 'partitionPlan’ substitutions.

10.9. Supporting Classes

10.9.1. JobContext

JobContext.java

package jakarta.batch.runtime.context;
/**

*

* A JobContext provides information about the current
* job execution.

100 Jakarta Batch DRAFT

*

*/

import java.util.Properties;
import jakarta.batch.runtime.BatchStatus;
public interface JobContext

{

DRAFT

/**

* Get job name

* @return value of 'id' attribute from <job>

*/

public String getJobName();

/**

* The getTransientUserData method returns a transient data object
* belonging to the current Job XML execution element.

* @return user-specified type

*/

public Object getTransientUserData();

/**

* The setTransientUserData method stores a transient data object into
* the current batch context.

* @param data is the user-specified type

*/

public void setTransientUserData(Object data);

/**

* The getInstanceId method returns the current job's instance
* id.

* @return job instance id

*/

public long getInstanceId();

/**

* The getExecutionId method returns the current job's current
* execution 1id.

* @return job execution id

*/

public long getExecutionId();

/**

* The getProperties method returns the job level properties

* specified in a job definition.

<p>

A couple notes:

*

* <1i> There is no quarantee that the same Properties object instance
* is always returned in the same (job) scope.

* <1i> Besides the properties which are defined in JSL within a child
* <

propertieségt;

element of a <

jobé>

*
*

10.9. Supporting Classes

Jakarta Batch 101

10.9. Supporting Classes

element, the batch

* runtime implementation may choose to include additional,

* implementation-defined properties.

*

*

* @return job level properties

*/

public Properties getProperties();

/**

* The getBatchStatus method simply returns the batch status value * set
by the batch runtime into the job context.

* @return batch status string

*/

public BatchStatus getBatchStatus();

/**

* The getExitStatus method simply returns the exit status value stored
* into the job context through the setExitStatus method or null.

* @return exit status string

*/

public String getExitStatus();

/**

* The setExitStatus method assigns the user-specified exit status for
* the current job. When the job ends, the exit status of the job is

* the value specified through setExitStatus. If setExitStatus was not
* called or was called with a null value, then the exit status

* defaults to the batch status of the job.

* @param status string

*/

public void setExitStatus(String status);

10.9.2. StepContext

StepContext.java

package jakarta.batch.runtime.context;
import java.io.Serializable;

import java.util.Properties;

import jakarta.batch.runtime.BatchStatus;

import jakarta.batch.runtime.Metric;
/**

*

* A StepContext provides information about the current step

* of a job execution.
*

*/
public interface StepContext

102 Jakarta Batch DRAFT

DRAFT

/**

* Get step name

* @return value of 'id' attribute from <step>

*

*/

public String getStepName();

/'k'k

* The getTransientUserData method returns a transient data object
* belonging to the current Job XML execution element.

* @return user-specified type

*/

public Object getTransientUserData();

/**

* The setTransientUserData method stores a transient data object into
* the current batch context.

* @param data is the user-specified type

*/

public void setTransientUserData(Object data);

/'k'k

* The getStepExecutionId method returns the current step's
* execution id.

* @return step execution id

*/

public long getStepExecutionId();

/**

* The getProperties method returns the step

level properties

* specified in a job definition.

* <p>

* A couple notes:

*

* <1i> There is no quarantee that the same Properties object instance
* is always returned in the same (step) scope.

*

<1i> Besides the properties which are defined in JSL within a child
* <

propertieségt;

element of a <

stepéqt;

element, the batch

* runtime implementation may choose to include additional,
* implementation-defined properties.

*

* @return step level properties

*/

public Properties getProperties();

/**

* The getPersistentUserData method returns a persistent data object

10.9. Supporting Classes

Jakarta Batch

103

10.9. Supporting Classes

*

belonging to the current step. The user data type must implement
* java.util.Serializable. This data is saved as part of a step's
checkpoint. For a step that does not do checkpoints, it is saved
after the step ends. It is available upon restart.

* @return user-specified type

*/

public Serializable getPersistentUserData();

/'k*

*
*

* The setPersistentUserData method stores a persistent data object

* into the current step. The user data type must implement

* java.util.Serializable. This data is saved as part of a step's

* checkpoint. For a step that does not do checkpoints, it is saved

* after the step ends. It is available upon restart.

* @param data is the user-specified type

*/

public void setPersistentUserData(Serializable data);

/**

* The getBatchStatus method returns the current batch status of the

* current step. This value is set by the batch runtime and changes as
* the batch status changes.

* @return batch status string

*/

public BatchStatus getBatchStatus();

/**

* The getExitStatus method simply returns the exit status value stored
* into the step context through the setExitStatus method or null.

* @return exit status string

*/

public String getExitStatus();

/**

* The setExitStatus method assigns the user-specified exit status for
the current step. When the step ends, the exit status of the step is
the value specified through setExitStatus. If setExitStatus was not
called or was called with a null value, then the exit status
defaults to the batch status of the step.

* @param status string

*/

public void setExitStatus(String status);

/'k*

* The getException method returns the last exception thrown from a

* step level batch artifact to the batch runtime.

* @return the last exception

*/

public Exception getException();

/**

* The getMetrics method returns an array of step level metrics. These
* are things like commits, skips, etc.

* @see jakarta.batch.runtime.metric.Metric for definition of standard

104 Jakarta Batch DRAFT

10.9. Supporting Classes

* metrics.
* @return metrics array
*/
public Metric[] getMetrics();
}
10.9.3. Metric
Metric.java

package jakarta.batch.runtime;
/**

*
* The Metric interface defines job metrics recorded by
* the batch runtime.
*
*/
public interface Metric
{
public enum MetricType
{
READ_COUNT_, _WRITE_COUNT_,
_COMMIT_COUNT_,
_ROLLBACK_COUNT_, _READ_SKIP_COUNT_, _PROCESS_SKIP_COUNT_,
_FILTER_COUNT_,
_WRITE_SKIPCOUNT
}
/**
* The getName method returns the metric type.
* @return metric type.
*/
public MetricType getType();
/**
* The getValue method returns the metric value.
* @return metric value.
*/
public long getValue();

10.9.4. PartitionPlan

PartitionPlan.java

package jakarta.batch.api.partition;

/**

*

DRAFT Jakarta Batch 105

10.9. Supporting Classes

PartitionPlan is a helper class that carries partition processing
information set by the @PartitionMapper method.

A PartitionPlan contains:

number of partition instances </1i>

number of threads on which to execute the partitions</1li>
substitution properties for each Partition (which can be
referenced using the <i>#

[aon TEE T T R N R N R

partitionPlan['propertyName']
}
</i>
* syntax. </1i>
*
*/
import java.util.Properties;
public interface PartitionPlan
{
/'k*
* Set number of partitions.
* @param count specifies the partition count
*/
public void setPartitions(int count);
/**
* Specify whether or not to override the partition
count from the previous job execution. This applies
only to step restart .
<p>
When false is specified, the
partition count from the previous job execution is used
and any new value set for partition count in the current run
is ignored. In addition, partition results from the previous
job execution are remembered, and only incomplete partitions
are reprocessed.
<p>
When true is specified, the partition count from the current run
is used and all results from past partitions are discarded. Any

*
*
*
*

* % X * X X

*

*

* resource cleanup or back out of work done in the previous run is the
* responsibility of the application. The PartitionReducer artifact's

* rollbackPartitionedStep method is invoked during restart before any
* partitions begin processing to provide a cleanup hook.

*/

public void setPartitionsOverride(boolean override);

/**

* Return current value of partition override setting.
* @return override setting.
*/

106 Jakarta Batch DRAFT

DRAFT

public boolean getPartitionsOverride();
/**
* Set maximum number of threads requested to use to run
* partitions for this step. A value of '@' requests the batch
* implementation to use the partition count as the thread
* count. Note the batch runtime is not required to use
* this full number of threads;
it may not have this many
* available, and may use less.
*
* @param count specifies the requested thread count
*/
public void setThreads(int count);
/**
* Sets array of substitution Properties objects for the set of
Partitions.
* @param props specifies the Properties object array
* @see PartitionPlan#igetPartitionProperties()
*/
public void setPartitionProperties(Properties[] props);
/**
* Gets count of Partitions.
* @return Partition count
*/
public int getPartitions();
/**
* Gets maximum number of threads requested to use to run
* partitions for this step. A value of '@' requests the batch
* implementation to use the partition count as the thread
* count. Note the batch runtime is not required to use
* this full number of threads;
it may not have this many
* available, and may use less.
*
* @return requested thread count
*/
public int getThreads();
/**
* Gets array of Partition Properties objects for Partitions.
* <p>
* These can be used in Job XML substitution using
* substitution expressions with the syntax:
* <i>#
{
partitionPlan['propertyName"']
}
</1>
* <p>

10.9. Supporting Classes

Jakarta Batch 107

10.9. Supporting Classes

* Each element of the Properties array returned can

* be used to resolving substitutions for a single partition.

* In the typical use case, each Properties element will

* have a similar set of property names, with a

* substitution potentially resolving to the corresponding
* value for each partition.

* @return Partition Properties object array
*/

public Properties[]
getPartitionProperties();

PartitionPlanImpljava

package jakarta.batch.api.partition;
import java.util.Properties;
/**
* The PartitionPlanImpl class provides a basic implementation
* of the PartitionPlan interface.
*/
public class PartitionPlanImpl implements PartitionPlan
{
private int partitions= 0;
private boolean override= *false*;
private int threads= 0;
Properties[] partitionProperties= null;
@0verride
public void setPartitions(int count)
{
partitions= count;
// default thread count to partition count
if (threads == 0) threads= count;
}
@0verride
public void setThreads(int count)
{
threads= count;
}
@0verride
public void setPartitionsOverride(boolean override)
{
this.override= override;
}
@0verride
public boolean getPartitionsOverride()

{

108 Jakarta Batch

DRAFT

10.9. Supporting Classes

return override;

}
public void setPartitionProperties(Properties[] props)
{
partitionProperties= props;
}
public int getPartitions()
{
return partitions;
}
public int getThreads()
{
return threads;
}
public Properties[] getPartitionProperties()
{
return partitionProperties;
}

10.9.5. BatchRuntime

DRAFT Jakarta Batch 109

10.9. Supporting Classes
BatchRuntime.java

package jakarta.batch.runtime;

/**

* The BatchRuntime represents the batch

* runtime environment.

*

*/

import jakarta.batch.operations.JobOperator;

/**

* BatchRuntime represents the Jakarta Batch Runtime.

* It provides factory access to the JobOperator interface.
*

*/
public class BatchRuntime
{
/**
* The getJobOperator factory method returns
* an instance of the JobOperator interface.
* @return JobOperator instance.
*/
public static JobOperator getJobOperator() { ... }
}
10.9.6. BatchStatus
BatchStatus.java

package jakarta.batch.runtime;

/**

* BatchStatus enum defines the batch status values

* possible for a job.
*

*
/
public enum BatchStatus
{
STARTING_, _STARTED_, _STOPPING_,
STOPPED, _FAILED_, _COMPLETED_, _ABANDONED_
}
10.9.7. JobOperator
JobOperator.java

package jakarta.batch.operations;

110 Jakarta Batch DRAFT

10.9. Supporting Classes

import java.util.list;

import java.util.Set;

import java.util.Properties;

import jakarta.batch.runtime.JobExecution;

import jakarta.batch.runtime.JobInstance;

import jakarta.batch.runtime.StepExecution;

/**

JobOperator provide the interface for operating on batch jobs.
Through the JobOperator a program can start, stop, and restart jobs.
It can additionally inspect job history, to discover what jobs
are currently running and what jobs have previously run.

*

The JobOperator interface imposes no security constraints. However,
the implementer is free to limit JobOperator methods with a security
scheme of its choice. The implementer should terminate any method
that is limited by the security scheme with a JobSecurityException.

E O I R T N R

*/
public interface JobOperator
{

/**

* Returns a set of all job names known to the batch runtime.
*

* @return a set of job names.

* @throws JobSecurityException

*/

public Set<String> getJobNames() throws JobSecurityException;

/**

* Returns number of instances of a job with a particular name.
*

* @param jobName

* specifies the name of the job.

* @return count of instances of the named job.

* @throws NoSuchJobException

* @throws JobSecurityException

*/

public int getJobInstanceCount(String jobName) throws
NoSuchJobException,

JobSecurityException;

/**

* Returns all JobInstances belonging to a job with a particular name
* in reverse chronological order.

@param jobName

specifies the job name.

@param start

specifies the relative starting number (zero based) to
* return from the

DRAFT Jakarta Batch 111

10.9. Supporting Classes

*

maximal list of job instances.

* @param count

specifies the number of job instances to return from the

starting position of the maximal list of job instances.

@return list of JobInstances.

@throws NoSuchJobException

* @throws JobSecurityException

*/

public List<JobInstance> getJobInstances(String jobName, int start,

int count)throws NoSuchJobException, JobSecurityException;
/**

* * X

*

* Returns execution ids for job instances with the specified
* name that have running executions.

*

@param jobName

specifies the job name.

* @return a list of execution ids.

* @throws NoSuchJobException

* @throws JobSecurityException

*/

public List<Long> getRunningExecutions(String jobName) throws

NoSuchJobException, JobSecurityException;
/**

*
*

* Returns job parameters for a specified job instance. These are the
* key/value pairs specified when the instance was originally created
* by the start method.

*
* @param executionId

* specifies the execution from which to retrieve the

* parameters.

* @return a Properties object containing the key/value job parameter
* pairs.

* @throws NoSuchJobExecutionException

* @throws JobSecurityException

*/

public Properties getParameters(long executionId)

throws NoSuchJobExecutionException, JobSecurityException;

/**

* Creates a new job instance and starts the first execution of that
* instance, which executes asynchronously.

* Note the Job XML describing the job is first searched for by name
according to a means prescribed by the batch runtime implementation.
This may vary by implementation. If the Job XML is not found by that
means, then the batch runtime must search for the specified Job XML
as a resource from the ‘META-INF/batch-jobs' directory based on the
current class loader. Job XML files under ‘META-INF/batch-jobs®
directory follow a naming convention of "name".xml where "name" is

* % % * X

*

112 Jakarta Batch DRAFT

DRAFT

* the value of the jobXMLName parameter (see below).

*

@param jobXMLName

specifies the name of the Job XML describing the job.
@param jobParameters

specifies the keyword/value pairs for attribute
substitution in the Job XML.

* @return executionId for the job execution.

* @throws JobStartException

* @throws JobSecurityException

*/

public long start(String jobXMLName, Properties jobParameters)
throws

JobStartException, JobSecurityException;

/'k'k

*

*

*

* Restarts a failed or stopped job instance, which executes

* asynchronously.
*

*

@param executionld

specifies the execution to to restart. This execution
must be the most recent execution that ran.
@param restartParameters

specifies the keyword/value pairs for attribute
substitution in the Job XML.

@return new executionld

@throws JobExecutionAlreadyCompleteException
@throws NoSuchJobExecutionException

@throws JobExecutionNotMostRecentException,

* @throws JobRestartException

* @throws JobSecurityException

*/

public long restart(long executionId, Properties
restartParameters)

throws JobExecutionAlreadyCompleteException,
NoSuchJobExecutionException,
JobExecutionNotMostRecentException,
JobRestartException,

JobSecurityException;
/**

o T S

* X

*

*
*

* Request a running job execution stops. This

* method notifies the job execution to stop

* and then returns. The job execution normally
stops and does so asynchronously. Note
JobOperator cannot quarantee the jobs stops:

it is possible a badly behaved batch application
does not relinquish control.

<p>

Note for partitioned batchlet steps the Batchlet

* % % * X

*

10.9. Supporting Classes

Jakarta Batch 113

10.9. Supporting Classes

*

stop method is invoked on each thread actively
* processing a partition.

* X

@param executionld

specifies the job execution to stop.
The job execution must be running.
@throws NoSuchJobExecutionException
@throws JobExecutionNotRunningException
@throws JobSecurityException

*

*

*

*

*

*/

public void stop(long executionId) throws
NoSuchJobExecutionException,
JobExecutionNotRunningException, JobSecurityException;
/**

* Set batch status to ABANDONED. The instance must have
* no running execution.

* <p>

* Note that ABANDONED executions cannot be restarted.

*

@param executionId

specifies the job execution to abandon.

* @throws NoSuchJobExecutionException

* @throws JobExecutionIsRunningException

* @throws JobSecurityException

*/

public void abandon(long executionId) throws
NoSuchJobExecutionException,
JobExecutionIsRunningException, JobSecurityException;

/**

* Return the job instance for the specified execution id.
*

@param executionId

specifies the job execution.

* @return job instance

* @throws NoSuchJobExecutionException

* @throws JobSecurityException

*/

public JobInstance getJobInstance(long executionId) throws

NoSuchJobExecutionException, JobSecurityException;
/**

*
*

* Return all job executions belonging to the specified job instance.
*

*

@param jobInstance

specifies the job instance.
@return list of job executions
@throws NoSuchJobInstanceException
@throws JobSecurityException

*

*

*/

114 Jakarta Batch DRAFT

public List<JobExecution> getJobExecutions(JobInstance instance)
throws

NoSuchJobInstanceException, JobSecurityException;
/**

* Return job execution for specified execution id
*

* @param executionld

* specifies the job execution.

* @return job execution

* @throws NoSuchJobExecutionException

@throws JobSecurityException

*

*

/

public JobExecution getJobExecution(long executionId) throws
NoSuchJobExecutionException, JobSecurityException;

/**

* Return StepExecutions for specified execution id.

* @param executionId

* specifies the job execution.

* @return step executions (order not guaranteed)

@throws NoSuchJobExecutionException

* @throws JobSecurityException

*/

public List<StepExecution> getStepExecutions(long jobExecutionId)
throws NoSuchJobExecutionException, JobSecurityException;

*

10.9.8. JobInstance

JobInstance.java

package jakarta.batch.runtime;
public interface JobInstance

{

DRAFT

/**

* @Get unique id for this JobInstance.

* @return instance id

*/

public long getInstanceId();

/**

* Get job name.

* @return value of 'id' attribute from <job>
*/

public String getJobName();

10.9. Supporting Classes

Jakarta Batch 115

10.9. Supporting Classes

10.9.9. JobExecution

JobExecution.java

package jakarta.batch.runtime;
import java.util.Date;
import java.util.Properties;
public interface JobExecution
{
/**
* @Get unique id for this JobExecution.
* @return execution id
*/
public long getExecutionId();
/**
* Get job name.
* @return value of 'id' attribute from <job>
*/
public String getJobName();
/**
* @Get batch status of this execution.
* @return batch status value.
*/
public BatchStatus getBatchStatus();
/**
* Get time execution entered STARTED status.
* @return date (time)
*/
public Date getStartTime();
/**
* @Get time execution entered end status: COMPLETED, STOPPED, FAILED
* @return date (time)
*/
public Date getEndTime();
/**
* @Get execution exit status.
* @return exit status.
*/
public String getExitStatus();
/**
* Get time execution was created.
* @return date (time)
*/
public Date getCreateTime();
/**
* Get time execution was last updated.
* @return date (time)
*/

116 Jakarta Batch DRAFT

public Date getlLastUpdatedTime();

/**

* Get job parameters for this execution.
* @return job parameters

*/

public Properties getJobParameters();

10.9.10. StepExecution

StepExecution.java

package jakarta.batch.runtime;
import java.util.Date;

import java.io.Serializable;
public interface StepExecution

{

DRAFT

/**

* @Get unique id for this StepExecution.
* @return StepExecution id

*/

public long getStepExecutionId();

/**

* Get step name.

* @return value of 'id' attribute from <step>
*/

public String getStepName();

/**

* @Get batch status of this step execution.
* @return batch status.

*/

public BatchStatus getBatchStatus();
/**

* @Get time this step started.

* @return date (time)

*/

public Date getStartTime();

/**

* Get time this step ended.

* @return date (time)

*/

public Date getEndTime();

/**

* Get exit status of step.

* @return exit status

*/

public String getExitStatus();

10.9. Supporting Classes

Jakarta Batch 117

10.9. Supporting Classes

/**

* Get persistent user data.

* <p>

* For a partitioned step, this returns

* the persistent user data of the

* <code>StepContext</code> of the "top-level"

* or main thread (the one the <code>PartitionAnalyzer</code>, etc.
* execute on). It does not return the persistent user
* data of the partition threads.

* @return persistent data

*/

public Serializable

getPersistentUserData ();

/**

* Get step metrics

* @return array of metrics

*/

public Metric[] getMetrics();

10.9.11. Batch Exception Classes

This specification defines batch exception classes in package jakarta.batch.operations. Note all batch
exceptions are direct subclasses of base class BatchRuntimeException, which itself is a direct subclass
of java.lang.RuntimeException. The following batch exception classes are defined:
JobExecutionAlreadyCompleteException

JobExecutionIsRunningException

JobExecutionNotMostRecentException

JobExecutionNotRunningException

JobRestartException

JobSecurityException

JobStartException

NoSuchJobException

© ® N o ok w o

NoSuchJobExecutionException

—
e

NoSuchjobInstanceException

118 Jakarta Batch DRAFT

11.1. Batch Artifact Lifecycle

Chapter 11. Job Runtime Lifecycle

The following sections describe an ordered flow of artifact method invocations. Simple symbols are
used to denote actions as follows:

Symbol Meaning

<action> An action performed by the batch runtime.

<->method Invocation of a batch artifact method by the batch
runtime.

[method] Optional method.

/| comment Comment to clarify behavior.

LABEL: Label used for flow control comments.

11.1. Batch Artifact Lifecycle

All batch artifacts are instantiated prior to their use in the scope in which they are declared in the Job
XML and are valid for the life of their containing scope. There are three scopes that pertain to artifact
lifecycle: job, step, and step-partition.

One artifact per Job XML reference is instantiated. In the case of a partitioned step, one artifact per Job
XML reference per partition is instantiated. This means job level artifacts are valid for the life of the
job. Step level artifacts are valid for the life of the step. Step level artifacts in a partition are valid for
the life of the partition.

No artifact instance may be shared across concurrent scopes. The same instance must be used in the
applicable scope for a specific Job XML reference.

11.2. Job Repository Artifact Lifecycle

All job repository artifacts are created by the batch runtime during job processing and exist until
deleted by an implementation provided means.

11.3. Job Processsing

<Create JobContext>
. <Store job level properties in JobContext>

. <->[JobListener.beforejob...] // thread A

1.

2

3

4. <processs execution elements>

5. <->[JobListener.afterjob...] // thread A
6

. <Destroy JobContext>

DRAFT Jakarta Batch 119

11.4. Regular Batchlet Processsing

11.4. Regular Batchlet Processsing

<Create StepContext>
<Store step level properties in StepContext>
. <->[StepListener.beforeStep...] // thread A

. <-> Batchlet.process // thread A

1.

2.

3

4

5. // if stop issued:
6. <->[Batchlet.stop] // thread B, StepContext is available
7. <->[StepListener.afterStep...] // thread A

8. <Store StepContext persistent area>

9

. <Destroy StepContext>

11.5. Partitioned Batchlet Processsing

1. <Create StepContext>
2. <Store step level properties in StepContext>
3. <->[StepListener.beforeStep...] // thread A
4. <->[PartitionReducer.beginPartitionedStep] // thread A
5. <->[PartitionMapper.mapPartitions] // thread A
6. // per partition:
a. <->Batchlet.process // thread Px
b. //if stop issued:
c. <->[Batchlet.stop] // thread Py, StepContext is available
d. <->[PartitionCollector.collectPartitionData] // thread Px
7. /[when collector payload arrives:
8. <->[PartitionAnalyzer.analyzeCollectorData] // thread A
9. // when partition ends:
10. <->[PartitionAnalyzer.analyzeStatus] // thread A
11. // if rollback condition occurs:
12. < ->[PartitionReducer.rollbackPartitionedStep] // thread A
13. <->[PartitionReducer.beforePartitionedStepCompletion] // thread A
14. <->[PartitionReducer.afterPartitionedStepCompletion] // thread A
15. <- >[StepListener.afterStep...] // thread A

16. <Store StepContext persistent area>

120 Jakarta Batch DRAFT

11.6. Regular Chunk Processing

17. <Destroy StepContext>

11.6. Regular Chunk Processing

<Create StepContext>

<Store step level properties in StepContext>
< - >[StepListener.beforeStep...] // thread A
[<begin transaction>]
<->ItemReader.open // thread A
<->[temWriter.open // thread A

[<commit transaction>]

// chunk processing:

© ® N e ok w o

<repeat until no more items (i.e. while readItem hasn’t returned 'null’) > \{
a. <begin checkpoint interval [<begin chunk transaction>]>
b. <repeat until checkpoint criteria reached OR readItem returns nul1> \{
1. <->ItemReader.readltem // thread A
ii. //if readItem returns non-null
A. <->ItemProcessor.processitem // thread A
B. //if processltem returns non-null, <add item to writeltems buffer>
c }
d. //if at least one non-null value has been successfully read inthe present chunk
L. <->ItemWriter.writeltems // thread A

e. <->[ItemReader.checkpointInfo] // thread A

=h

<->[ItemWTriter.checkpointInfo] // thread A
g. <Store StepContext persistent area>
h. [<commit chunk transaction>]

10. }

11. [<begin transaction>]

12. <->ItemWriter.close // thread A

13. <->ItemReader.close // thread A

14. [<commit transaction>]

15. <->[StepListener.afterStep...] // thread A

16. <Store StepContext persistent area>

DRAFT Jakarta Batch 121

11.7. Partitioned Chunk Processing

17. <Destroy StepContext>

11.7. Partitioned Chunk Processing

<Create StepContext>
<Store step level properties in StepContext>
< - >[StepListener.beforeStep...] // thread A

< - >[PartitionReducer.beginPartitionedStep] // thread A

S

<->[PartitionMapper.mapPartitions] // thread A
// per partition - on thread Px:

a. [<begin transaction>]
b. <->ItemReader.open // thread Px
c. <->ItemWriter.open // thread Px
d. [<commit transaction>]
e. <repeat until no more items (i.e. while readItem hasn’t returned 'null’) > \{
i. <begin checkpoint interval [<begin chunk transaction>]>
ii. <repeat until checkpoint criteria reached OR readItem returns null"> \{
A. <->ItemReader.readItem // thread Px
B. //if readItem returns non-null
I. <->ItemProcessor.processitem // thread Px
II. //if processltem returns non-null, <add item to writeltems buffer>
iii. }

iv. //if at least one non-null value has been successfully read in this partition of the present
chunk

A. <->ItemWriter.writeltems // thread Px

<

<->[ItemReader.checkpointInfo] // thread Px
< - >[ItemWriter.checkpointInfo] // thread Px
<Store (partition-local) StepContext persistent area>

[<commit chunk transaction>]

¥ B B s

< ->[PartitionCollector.collectPartitionData] // thread Px
£}

g. [<begin transaction>]

h. <->ItemWriter.close // thread Px

i. <->ItemReader.close // thread Px

122 Jakarta Batch DRAFT

11.8. Chunk with Listeners (except RetryListener)

j. [<commit transaction>]
[<begin transaction>] // thread A
// Actions 9-12 run continuously until all partitions end.

/| when collector payload arrives:

© © N o

<->[PartitionAnalyzer.analyzeCollectorData] // thread A

10. // when partition ends:

11. <->[PartitionAnalyzer.analyzeStatus] // thread A

12. // Remaining actions run after all partitions end:

13. // if rollback condition occurs:

14. <->[PartitionReducer.rollbackPartitionedStep] // thread A

15. [<rollback transaction >]

16. // else not rollback

17. <->[PartitionReducer.beforePartitionedStepCompletion] // thread A
18. [<commit transaction>] // thread A

19. <->[PartitionReducer.afterPartitionedStepCompletion] // thread A
20. <->[StepListener.afterStep...] // thread A

21. <Store StepContext persistent area>

22. <Destroy StepContext>

11.8. Chunk with Listeners (except RetryListener)

=

<Create StepContext>

<Store step level properties in StepContext>
<->[StepListener.beforeStep...] // thread A
[<begin transaction>]
<->[temReader.open // thread A
<->ItemWriter.open // thread A

[<commit transaction>]

// chunk processing:

© ©® N o ok WD

<repeat until no more items (i.e. while readItem hasn’t returned 'null’) > \{
a. <begin checkpoint interval [<begin chunk transaction>]>
b. <->[ChunkListener.beforeChunk] // thread A

c. <repeat until checkpoint criteria reached OR readltem returns null> {

DRAFT Jakarta Batch 123

11.8. Chunk with Listeners (except RetryListener)

E:

iv.

<

d }

e. //if at least one non-null value has been successfully read in the present chunk
i

iv.

Vi.

=h

Z @

-

¥ B B s

< ->[ItemReadListener.beforeRead] // thread A
<->ItemReader.readItem // thread A
<->[ItemReadListener.afterRead] // thread A

/[or:

{

<->[ItemReadListener.onReadError] // thread A
<->[SkipListener.onSkipReadItem] // thread A

}

/[if readItem returns non-null

A. <->[ItemProcessListener.beforeProcess] // thread A
<->[temProcessor.processitem // thread A

< - >[ItemProcessListener.afterProcess] // thread A
//if processItem returns non-null,< add item to writeltems buffer>
/[or:

{

< ->[ItemProcessListener.onProcessError] // thread A

h @ m Mm99 o w

< - >[SkipListener.onSkipProcessltem] // thread A
I}

< ->[ItemWriteListener.beforeWrite] // thread A
<->ItemWriter.writeltems // thread A

< - >[ItemWriteListener.afterWrite] // thread A

/[or:

{

<->[ItemWriteListener.onWriteError] // thread A
< ->[SkipListener.onSkipWriteltems] // thread A

}

< ->[ChunkListener.afterChunk] // thread A
<->[ItemReader.checkpointInfo] // thread A
<->[ItemWriter.checkpointInfo] // thread A

<Store StepContext persistent area>

124 Jakarta Batch

DRAFT

11.9. Chunk with RetryListener

j. [<commit chunk transaction>]
10. }
11. [<begin transaction>]
12. <->ItemWriter.close // thread A
13. <->ItemReader.close // thread A
14. [<commit transaction>]
15. <->[StepListener.afterStep...] // thread A
16. <Store StepContext persistent area>

17. <Destroy StepContext>

11.9. Chunk with RetryListener

Note rollback processing is also depicted in this section.

<Create StepContext>

<Store step level properties in StepContext>
<->[StepListener.beforeStep...] // thread A
[<begin transaction>]
<->[temReader.open // thread A
<->ItemWriter.open // thread A

[<commit transaction>]

// chunk processing:

© ©® N o ok W e

<repeat until no more items (i.e. while readItem hasn’t returned 'null’) > \{
a. SlL:
b. <begin checkpoint interval [<begin chunk transaction>]>
c. <repeat until checkpoint criteria reached OR readltem returns 'null> \{
L S2:
ii. <->ItemReader.readltem // thread A
iii. //if exception

iv. < ->[ItemReadListener.onReadErrror] // thread A

v. <->[RetryReadListener.onRetryReadException] // thread A
vi. //if retryable exception

Vii. /[if no-rollback exception

Viil. resume S2:

DRAFT Jakarta Batch 125

11.9. Chunk with RetryListener

IX. /[else
X. <end repeat>
xi. /else
xii. <end repeat>
xiii. S3:

xiv. // if readItem returns non-null
Xv. <->ItemProcessor.processltem // thread A

xvi. //if exception

XVii. < ->[ItemProcessListener.onProcessErrror] // thread A

XViil. <->[RetryProcessListener.onRetryProcessException] // thread A
XiX. /[if retryable exception
XX. // if no-rollback exception
XX resume S3:

XXil. /] else

XXili. <end repeat>

XXiv. /] else

XXV. <end repeat>

xxvi. // if processitem returns non-null, <add item to writeltems buffer>
d. }
e. // if rollback exception, execute rollback procedure (below) and resume at S1 with item-count=1
f. S4:
g. // if at least one non-null value has been successfully read in the present chunk
h. <->ItemWriter.writeltems (buffer) / thread A

i. //if exception

. < ->[ItemWriteListener.onWriteErrror] // thread A

k. <->[RetryWriteListener.onRetryWriteException] // thread A

L /[if retryable exception
m. // if no-rollback exception

n. resume S4:

0. /] else

p- execute rollback procedure (below) and resume S1:

q. // else execute rollback procedure (below) and resume S1:

126 Jakarta Batch DRAFT

11.10. Chunk with Custom Checkpoint Processing

r. <->[ItemReader.checkpointinfo] // thread A

S. <->[ItemWriter.checkpointInfo] // thread A

t. <Store StepContext persistent area> // thread A
u. S5:

V. [<commit chunk transaction>]// thread A
w. // if exception

X. //if retryable exception

y. // if no-rollback exception:
Z. resume S5:
aa. /] else
ab. execute rollback procedure (below) and resume S1:

ac. /| else execute rollback procedure (below) and resume S1:
10. }
11. [<begin transaction>]
12. <->ItemWriter.close // thread A
13. <->ItemReader.close // thread A
14. [<commit transaction>]
15. <->[StepListener.afterStep...] // thread A
16. <Store StepContext persistent area>

17. <Destroy StepContext>
Rollback Procedure

<->[temWriter.close // thread A

<->[temReader.close // thread A

[ChunkListener.onError] // thread A

[rollback transaction]

[<begin transaction>]

<->[temWriter.open // thread A, pass last committed checkpoint info

<->ItemReader.open // thread A, pass last committed checkpoint info

® N e ok WM

[<commit transaction>]

11.10. Chunk with Custom Checkpoint Processing

1. <Create StepContext>

DRAFT Jakarta Batch 127

11.10. Chunk with Custom Checkpoint Processing

10.
11.
12.
13.
14.

© ©® N e ok LW D

<Store step level properties in StepContext>
<->[StepListener.beforeStep...] // thread A
[<begin transaction>]
<->[temReader.open // thread A
<->ItemWriter.open // thread A
[<commit transaction>]
// chunk processing:
<repeat until no more items (i.e. while readItem hasn’t returned 'null’) > \{
a. [

b. <->[CheckpointAlgorithm.checkpointTimeout]] // thread A

c. <->[CheckpointAlgorithm.beginCheckpoint] // thread A

d. <begin checkpoint interval [<begin chunk transaction>]>

e]

f. <repeat until isReadyToCheckpoint returns 'true' OR readItem returns null> \{

I. <->ItemReader.readltem // thread A
ii. //if readItem returns non-null
A. <->ItemProcessor.processitem // thread A
B. //if processltem returns non-null, <add item to writeltems buffer>
iii. <->CheckpointAlgorithm.isReadyToCheckpoint // thread A
g}
h. //if at least one non-null value has been successfully read in the present chunk
I <->ItemWriter.writeltems // thread A

L. <->[ItemReader.checkpointInfo] // thread A

j. <->[ItemWriter.checkpointInfo] // thread A

k. <Store StepContext persistent area>

L. [<commit chunk transaction>]
m. <->[CheckpointAlgorithm.endCheckpoint] // thread A
}
[<begin transaction>]
<->ItemWriter.close // thread A
<->ItemReader.close // thread A

[<commit transaction>]

128 Jakarta Batch

DRAFT

11.11. Split Processing

15. <->[StepListener.afterStep...] // thread A
16. <Store StepContext persistent area>

17. <Destroy StepContext>

11.11. Split Processing

1. // For each flow:

2. <run flow> // thread Fx

11.12. Flow Processing

1. // For each split or step:

2. <run split or step> // thread Xy

11.13. Stop Processing

The JobOperator.stop operation stops a running job execution. If a step is running at the time the stop
is invoked, the batch runtime takes the following actions:

Chunk Step

The job and step batch status is marked STOPPING. Note the batch runtime cannot guarantee the step
actually exits. The batch runtime attempts to interrupt the read/process/write chunk processing loop.
The batch runtime allows the step to finish processing the current item. This means the current item is
read, processed if a processor is configured, and all currently buffered items, if any, including the
current item, are written. If the batch artifacts configured on the chunk type step return to the batch
runtime, as expected, the job and step batch status is marked STOPPED.

Batchlet Step

The job and step batch status is marked STOPPING. The batch runtime invokes the batchlet’s stop
method. Note the batch runtime cannot guarantee the batchlet actually exits. But a well behaved
batchlet will. If the batchlet returns to the batch runtime, the job and step batch status is marked
STOPPED.

Note for partitioned batchlet steps the Batchlet stop method is invoked on each thread actively
processing a partition.

DRAFT Jakarta Batch 129

Chapter 12. Batch XML XSD

Chapter 12. Batch XML XSD

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="https://jakarta.ee/xml/ns/jakartaee"
xmlns:jbatch="https://jakarta.ee/xml/ns/jakartaee" version="2.0">
<xs:element name="batch-artifacts"
type="jbatch:BatchArtifacts" />
<xs:complexType name="BatchArtifacts">
<XS:sequence>
<xs:element name="ref" type="jbatch:BatchArtifactRef"
minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="BatchArtifactRef">
<xs:attribute name="id" use="required" type="xs:string" />
<xs:attribute name="class" use="required"
type="xs:string" />
</xs:complexType>
</xs:schema>

130 Jakarta Batch DRAFT

13.1. Validation Rules

Chapter 13. Job Specification Language

Jobs are described by a declarative Job Specification Language (JSL) defined by an XML schema, also
known informally as Job XML.

13.1. Validation Rules

The batch runtime must perform schema validation during JobOperator start processing before the
start method returns to the caller. A schema validation error results in JobStartException. The
implementation has two choices for handling semantic errors in the JSL:

1. Do semantic validation during JobOperator start processing before returning to the caller. If there
is a semantic validation error, the implementation must throw JobStartException.

2. Do semantic validation after job execution begins. If a semantic validation error occurs, the
implementation must end the job in the FAILED state. The implementation is advised to log
sufficient error information to enable problem resolution.

Typical semantic validation the batch runtime should detect and handle include, but is not limited to:

1. no executable elements
2. non-existent transitions (e.g. next="value" where "value" does not exist)

3. cycles among next values (e.g. stepl:next=step2; step2:next=step1)
13.2. JSL XSD

<xml version="1.0" encoding="UTF-8">
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="https://jakarta.ee/xml/ns/jakartaee"
xmlns:jsl="https://jakarta.ee/xml/ns/jakartaee" version="2.0">
<xs:annotation>
<xs:documentation>
Job Specification Language (JSL) specifies a job,
its steps, and directs their execution.
JSL also can be referred to as "Job XML".
</xs:documentation>
</xs:annotation>

<xs:simpleType name="batchVersionType">
<xs:annotation>

<xs:documentation>

Defines a decimal type used for versioning documents

DRAFT Jakarta Batch 131

13.2. JSL XSD

defined via this scheam. Intended to be identical

to the "dewey-versionType" dewey decimal restriction
type defined in
https://jakarta.ee/xml/ns/jakartaee/jakartaee_9.xsd
but without the need to include that schema definition
file.

</xs:documentation>
</xs:annotation>

<xs:restriction base="xs:token">
<xs:pattern value="\.?[0-9]+(\.[0-9]+)*"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="artifactRef">
<xs:annotation>
<xs:documentation>
This is a helper type. Though it is not otherwise
called out by this name
in the specification, it captures the fact
that the xs:string value refers
to a batch artifact, across numerous
other JSL type definitions.
</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string" />
</xs:simpleType>
<xs:complexType name="Job">
<xs:annotation>
<xs:documentation>
The type of a job definition, whether concrete or
Abstract. This is the type of the root element of any JSL document.
</xs:documentation>
</xs:annotation>
<XS:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
The job-level properties, which are accessible
via the JobContext.getProperties() API in a batch
Artifact.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="listeners" type="jsl:Listeners"
minOccurs="0" maxOccurs="1">

132 Jakarta Batch DRAFT

13.2. JSL XSD

<xs:annotation>
<xs:documentation>
Note that "listeners" sequence order in XML does
not imply order of execution by
The batch runtime, per the
specification.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="decision" type="jsl:Decision" />
<xs:element name="flow" type="jsl:Flow" />
<xs:element name="split" type="jsl:Split" />
<xs:element name="step" type="jsl:Step" />
</xs:choice>
</Xs:sequence>
<xs:attribute name="version" use="required"
type="jsl:batchVersionType" fixed="2.0" />
<xs:attribute name="id" use="required" type="xs:ID" />
<xs:attribute name="restartable" use="optional"
type="xs:string" />
</xs:complexType>
<xs:element name="job" type="jsl:Job">
<xs:annotation>
<xs:documentation>
The definition of an job, whether concrete or
Abstract. This is the
type of the root element of any JSL document.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="Listener">
<Xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="Split">
<XS:sequence>
<xs:element name="flow" type="jsl:Flow" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="id" use="required" type="xs:ID" />
<xs:attribute name="next" use="optional"
type="xs:string" />
</xs:complexType>

DRAFT Jakarta Batch 133

13.2. JSL XSD

<xs:complexType name="Flow">
<Xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="decision" type="jsl:Decision" />
<xs:element name="flow" type="jsl:Flow" />
<xs:element name="split" type="jsl:Split" />
<xs:element name="step" type="jsl:Step" />
</xs:choice>
<xs:group ref="jsl:TransitionElements" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="1id" use="required" type="xs:ID" />
<xs:attribute name="next" use="optional"
type="xs:string" />
</xs:complexType>
<xs:group name="TransitionElements">
<xs:annotation>
<xs:documentation>
This grouping provides allows for the reuse of the
'end', 'fail', 'next', 'stop' element sequences which
may appear at the end of a 'step', 'flow', 'split' or 'decision'.
The term 'TransitionElements' does not formally appear in the spec, it
is
A schema convenience.
</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="end" type="jsl:End" />
<xs:element name="fail" type="jsl:Fail" />
<xs:element name="next" type="jsl:Next" />
<xs:element name="stop" type="jsl:Stop" />
</xs:choice>
</Xs:group>
<xs:complexType name="Decision">
<xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />
<xs:group ref="jsl:TransitionElements" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="1id" use="required" type="xs:ID" />
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:attributeGroup name="TerminatingAttributes">
<xs:attribute name="on" use="required" type="xs:string" />
<xs:attribute name="exit-status" use="optional"
type="xs:string" />

134 Jakarta Batch DRAFT

13.2. JSL XSD

</xs:attributeGroup>
<xs:complexType name="Fail">
<xs:attributeGroup ref="jsl:TerminatingAttributes" />
</xs:complexType>
<xs:complexType name="End">
<xs:attributeGroup ref="jsl:TerminatingAttributes" />
</xs:complexType>
<xs:complexType name="Stop">
<xs:attributeGroup ref="jsl:TerminatingAttributes" />
<xs:attribute name="restart" use="optional"
type="xs:string" />
</xs:complexType>
<xs:complexType name="Next">
<xs:attribute name="on" use="required" type="xs:string" />
<xs:attribute name="to" use="required" type="xs:string" />
</xs:complexType>
<xs:complexType name="CheckpointAlgorithm">
<Xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="ExceptionClassFilter">
<Xs:sequence>
<xs:element name="include" minOccurs="0"
max0Occurs="unbounded">
<xs:complexType>
<Xs:sequence />
<xs:attribute name="class" use="required"
type="xs:string" />
</xs:complexType>
</xs:element>
<xs:element name="exclude" minOccurs="0"
max0Occurs="unbounded">
<xs:complexType>
<xs:sequence />
<xs:attribute name="class" use="required"
type="xs:string" />
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="Step">
<xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />

DRAFT Jakarta Batch 135

13.2. JSL XSD

<xs:element name="listeners" type="jsl:Listeners"
minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
Note that "listeners" sequence order in XML does
not imply order of execution by
The batch runtime, per the
specification.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="1">
<xs:element name="batchlet" type="jsl:Batchlet" />
<xs:element name="chunk" type="jsl:Chunk" />
</xs:choice>
<xs:element name="partition" type="jsl:Partition"
minOccurs="0" maxOccurs="1" />
<xs:group ref="jsl:TransitionElements" minOccurs="0"
max0ccurs="unbounded" />
</xs:sequence>
<xs:attribute name="id" use="required" type="xs:ID" />
<xs:attribute name="start-limit" use="optional"
type="xs:string" />
<xs:attribute name="allow-start-if-complete"
use="optional" type="xs:string" />
<xs:attribute name="next" use="optional"
type="xs:string" />
</xs:complexType>
<xs:complexType name="Batchlet">
<Xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="Chunk">
<XS:sequence>
<xs:element name="reader" type="jsl:ItemReader" />
<xs:element name="processor" type="jsl:ItemProcessor"
minOccurs="0" maxOccurs="1" />
<xs:element name="writer" type="jsl:ItemWriter" />
<xs:element name="checkpoint-algorithm"
type="jsl:CheckpointAlgorithm" minOccurs="0" maxOccurs="1" />
<xs:element name="skippable-exception-classes"
type="jsl:ExceptionClassFilter" minOccurs="0" maxOccurs="1" />
<xs:element name="retryable-exception-classes"
type="jsl:ExceptionClassFilter" minOccurs="@" maxOccurs="1" />

136 Jakarta Batch DRAFT

13.2. JSL XSD

<xs:element name="no-rollback-exception-classes"
type="jsl:ExceptionClassFilter" minOccurs="0" maxOccurs="1" />
</xs:sequence>
<xs:attribute name="checkpoint-policy" use="optional"
type="xs:string">
<xs:annotation>
<xs:documentation>
Specifies the checkpoint policy that governs
commit behavior for this chunk.
Valid values are: "item" or
"custom". The "item" policy means the
chunk is checkpointed after a
specified number of items are
processed. The "custom" policy means
The chunk is checkpointed
According to a checkpoint algorithm
implementation. Specifying
"custom" requires that the
checkpoint-algorithm element is also
specified. It is an optional
Attribute. The default policy is
"item". However, we chose not to define
A schema-specified default for this attribute.
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="1item-count" use="optional"
type="xs:string">
<xs:annotation>
<xs:documentation>
Specifies the number of items to process per chunk
when using the item
checkpoint policy. It must be valid XML integer.
It is an optional
Attribute. The default is 10. The item-count
Attribute is ignored
for "custom" checkpoint policy. However, to
make it easier for implementations to support JSL inheritance
we abstain from defining a schema-specified default for this
Attribute.
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="time-limit" use="optional"
type="xs:string">
<xs:annotation>
<xs:documentation>
Specifies the amount of time in seconds before

DRAFT Jakarta Batch 137

13.2. JSL XSD

taking a checkpoint for the
item checkpoint policy. It must be valid
XML integer. It is an
optional attribute. The default is @, which
means no limit. However, to
make it easier for implementations to
support JSL inheritance
we abstain from defining a schema-specified
default for this attribute.
When a value greater than zero is
specified, a checkpoint is taken when
time-1limit is reached or
item-count items have been processed,
whichever comes first. The
time-1limit attribute is ignored for
"custom" checkpoint policy.
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="skip-limit" use="optional"
type="xs:string">
<xs:annotation>
<xs:documentation>

Specifies the number of exceptions a step will

skip if any configured
skippable exceptions are thrown by chunk
processing. It must be a
valid XML integer value. It is an optional
Attribute. The default
is no limit.
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="retry-limit" use="optional"
type="xs:string">
<xs:annotation>
<xs:documentation>

Specifies the number of times a step will retry if

Any configured retryable
exceptions are thrown by chunk processing.
It must be a valid XML
integer value. It is an optional attribute.
The default is no
limit.
</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>

138 Jakarta Batch

DRAFT

13.2. JSL XSD

<xs:complexType name="ItemReader">
<Xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />
</xs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="ItemProcessor">
<xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />
</Xxs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="ItemWriter">
<Xs:sequence>
<xs:element name="properties" type="jsl:Properties"
minOccurs="0" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="Property">
<xs:attribute name="name" type="xs:string"
use="required" />
<xs:attribute name="value" type="xs:string"
use="required" />
</xs:complexType>
<xs:complexType name="Properties">
<xs:sequence>
<xs:element name="property" type="jsl:Property"
maxOccurs="unbounded" minOccurs="0" />
</Xs:sequence>
<xs:attribute name="partition" use="optional"
type="xs:string" />
</xs:complexType>
<xs:complexType name="Listeners">
<Xs:sequence>
<xs:element name="listener" type="jsl:Listener"
max0ccurs="unbounded" minOccurs="0" />
</Xs:sequence>
</xs:complexType>
<xs:complexType name="Partition">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="1">
<xs:element name="mapper" type="jsl:PartitionMapper" />

DRAFT Jakarta Batch 139

13.2. JSL XSD

<xs:element name="plan" type="jsl:PartitionPlan" />

</xs:choice>

<xs:element name="collector" type="jsl:Collector"
minOccurs="0" maxOccurs="1" />

<xs:element name="analyzer" type="jsl:Analyzer"
minOccurs="0" maxOccurs="1" />

<xs:element name="reducer" type="jsl:PartitionReducer"

minOccurs="0" maxOccurs="1" />
</Xs:sequence>
</xs:complexType>
<xs:complexType name="PartitionPlan">
<xs:sequence>
<xs:element name="properties" type="jsl:Properties’
minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="partitions" use="optional"
type="xs:string" />
<xs:attribute name="threads" use="optional"
type="xs:string" />
</xs:complexType>
<xs:complexType name="PartitionMapper">
<xs:sequence>
<xs:element name="properties" type="jsl:Properties’
minOccurs="0" maxOccurs="1" />
</Xxs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="Collector">
<Xs:sequence>
<xs:element name="properties" type="jsl:Properties'
minOccurs="0" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="Analyzer">
<Xs:sequence>
<xs:element name="properties" type="jsl:Properties'
minOccurs="0" maxOccurs="1" />
</xs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
<xs:complexType name="PartitionReducer">
<xs:sequence>
<xs:element name="properties" type="jsl:Properties’
minOccurs="0" maxOccurs="1" />

140 Jakarta Batch

DRAFT

13.2. JSL XSD

</Xxs:sequence>
<xs:attribute name="ref" use="required"
type="jsl:artifactRef" />
</xs:complexType>
</xs:schema>

DRAFT Jakarta Batch 141

Chapter 14. Credits

Chapter 14. Credits

Section 7 Domain Language of Batch, was adapted from Spring Batch Reference Documentation:

http://static.springsource.org/spring-batch/trunk/reference/html-single/index.html

142 Jakarta Batch DRAFT

http://static.springsource.org/spring-batch/trunk/reference/html-single/index.html

Chapter 15. Change Log

15.1. Version 1.0 Revision A -

15.1.1. Issues List

15.1. Version 1.0 Revision A - Maintenance Release

Maintenance Release

Following these links will show each original issue on our official spec issues tracking list. In most

cases the bug report contains the complete text of
case.

5389

4827

5490

5431

5498

5370

5583

5372
5691
5690

5374
4830
4865
5533

5780

5373

DRAFT

the spec delta or addition, but not in every single

In Sec. 10.7.1, should we have said we require a
"no-arg" explicit or implicit constructor rather
than a "default constructor"

SPEC: Misspoke on collector role on exit status

Clarify JobContext/StepContext properties; fix TCK
to not depend on writable Properties

ItemProcessListener#onProcessError has javadoc
from ItemProcessListener#afterProcess

Add "mark FAILED" to BatchStatus state
transitions

Spec is unclear whether JobOperator methods
may/must execute synchronously or not (with TCK
implications)

CheckpointAlgorithm needs to specify timeunit
(seconds) and other javadoc fixes

Evaluation order of multiple transition elements
"Looping" should be clarified

Flow/Split transitioning & termination not fully
defined

Details of exception handling (by container)
8.6.1 Transition Next Element
SPEC Partition Plan example confusing

stop/end/fail exit-status should affect job exit
status, not step (as claimed in spec).

Spec should clarify StepExecution values passed to
Decider on a restart

Co-existence of transition elements with @next
attribute PLUS behavior if no transition element
@on is matched

Jakarta Batch 143

https://java.net/bugzilla/show_bug.cgiid=5389
https://java.net/bugzilla/show_bug.cgiid=4827
https://java.net/bugzilla/show_bug.cgiid=5490
https://java.net/bugzilla/show_bug.cgiid=5431
https://java.net/bugzilla/show_bug.cgiid=5498
https://java.net/bugzilla/show_bug.cgiid=5370
https://java.net/bugzilla/show_bug.cgiid=5583
https://java.net/bugzilla/show_bug.cgiid=5372
https://java.net/bugzilla/show_bug.cgiid=5691
https://java.net/bugzilla/show_bug.cgiid=5690
https://java.net/bugzilla/show_bug.cgiid=5374
https://java.net/bugzilla/show_bug.cgiid=4830
https://java.net/bugzilla/show_bug.cgiid=4865
https://java.net/bugzilla/show_bug.cgiid=5533
https://java.net/bugzilla/show_bug.cgiid=5780
https://java.net/bugzilla/show_bug.cgiid=5373

15.1. Version 1.0 Revision A - Maintenance Release

5375

4866

5746

5911

5873

5919

5875

5403

144 Jakarta Batch

Spec contradicts itself when talking about
uninitialized exit status (TCK assumes 'null')

SPEC Partition Properties example has a invalid
tag

@Inject @BatchProperty should work for job level
properties

Clarify partition restart processing, PartitionPlan
properties, and persistent user data for
partitioned steps.

Clarify when
CheckpointAlgorithm#beginCheckpoint is invoked

Spec doesn’t fully describe PartitionPlan override
and the use of PartitionMapper

When the first readItem() in a chunk return null’,
is this a zero-item chunk or is this not a new
chunk after all

Spec unclear on skipping part of an Exception
hierarchy

DRAFT

https://java.net/bugzilla/show_bug.cgiid=5375
https://java.net/bugzilla/show_bug.cgiid=4866
https://java.net/bugzilla/show_bug.cgiid=5746
https://java.net/bugzilla/show_bug.cgiid=5911
https://java.net/bugzilla/show_bug.cgiid=5873
https://java.net/bugzilla/show_bug.cgiid=5919
https://java.net/bugzilla/show_bug.cgiid=5875
https://java.net/bugzilla/show_bug.cgiid=5403

	Jakarta Batch
	Table of Contents
	Chapter 1. License
	1.1. Eclipse Foundation Specification License
	1.1.1. Disclaimers

	Chapter 2. Acknowledgements
	Chapter 3. Foreword
	Chapter 4. Table of Contents
	Chapter 5. Introduction to Jakarta Batch
	Chapter 6. Applicability of Specification
	Chapter 7. Domain Language of Batch
	7.1. Job
	7.1.1. JobInstance
	7.1.2. JobParameters
	7.1.3. JobExecution

	7.2. Step
	7.2.1. StepExecution

	7.3. JobOperator
	7.4. Job Repository
	7.5. ItemReader
	7.6. ItemWriter
	7.7. ItemProcessor
	7.8. Chunk-oriented Processing
	7.9. Batch Checkpoints

	Chapter 8. Job Specification Language
	8.1. Job
	8.1.1. Job Level Listeners
	8.1.2. Job Level Exception Handling
	8.1.3. Job Level Properties

	8.2. Step
	8.2.1. Chunk
	8.2.1.1. Reader
	8.2.1.1.1. Reader Properties

	8.2.1.2. Processor
	8.2.1.2.1. Processor Properties

	8.2.1.3. Writer
	8.2.1.3.1. Writer Properties

	8.2.1.4. Chunk Exception Handling
	8.2.1.4.1. Skipping Exceptions
	8.2.1.4.2. Retrying Exceptions
	8.2.1.4.3. Retry and Skip the Same Exception
	8.2.1.4.4. Default Retry Behavior - Rollback
	8.2.1.4.5. Preventing Rollback During Retry

	8.2.1.5. Checkpoint Algorithm
	8.2.1.5.1. Checkpoint Algorithm Properties

	8.2.2. Batchlet
	8.2.2.1. Batchlet Exception Handling
	8.2.2.2. Batchlet Properties

	8.2.3. Step Level Properties
	8.2.4. Step Level Listeners
	8.2.4.1. Step Level Listener Properties

	8.2.5. Step Sequence
	8.2.6. Step Partitioning
	8.2.6.1. Partition Plan
	8.2.6.2. Partition Properties
	8.2.6.3. Partition Mapper
	8.2.6.3.1. Mapper Properties

	8.2.6.4. Partition Reducer
	8.2.6.4.1. Partition Reducer Properties

	8.2.6.5. Partition Collector
	8.2.6.5.1. Partition Collector Properties

	8.2.6.6. Partition Analyzer
	8.2.6.6.1. Partition Analyzer Properties

	8.2.7. Step Exception Handling

	8.3. Flow
	8.4. Split
	8.4.1. Split Termination Processing Incomplete

	8.5. Decision
	8.5.1. Decision Properties
	8.5.2. Decision Exception Handling

	8.6. Transition Elements
	8.6.1. Next Element
	8.6.2. Fail Element
	8.6.3. End Element
	8.6.4. Stop Element

	8.7. Batch and Exit Status
	8.7.1. Batch and Exit Status for Steps
	8.7.2. Exit Status for Partitioned Steps

	8.8. Job XML Substitution
	8.8.1. Substitution Processing Rules
	8.8.1.1. jobParameters Substitution Operator
	8.8.1.2. jobProperties Substitution Operator
	8.8.1.3. systemProperties Substitution Operator
	8.8.1.4. partitionPlan Substitution Operator
	8.8.1.5. Substitution Expression Default
	8.8.1.6. Property Resolution Rule
	8.8.1.7. Undefined Target Name Rule
	8.8.1.8. Job Restart Rule

	8.8.2. Examples

	8.9. Transitioning Rules
	8.9.1. Combining Transition Elements
	8.9.2. Transitioning Precedence Rules
	8.9.3. Loop definition
	8.9.4. Transitioning From Within Flows
	8.9.5. Flow-level Transitions Undefined

	Chapter 9. Batch Programming Model
	9.1. Steps
	9.1.1. Chunk
	9.1.1.1. ItemReader Interface
	9.1.1.2. ItemProcessor Interface
	9.1.1.3. ItemWriter Interface
	9.1.1.4. CheckpointAlgorithm Interface

	9.1.2. Batchlet Interface

	9.2. Listeners
	9.2.1. JobListener Interface
	9.2.2. StepListener Interface
	9.2.3. ChunkListener Interface
	9.2.4. ItemReadListener Interface
	9.2.5. ItemProcessListener Interface
	9.2.6. ItemWriteListener Interface
	9.2.7. Skip Listener Interfaces
	9.2.8. RetryListener Interface

	9.3. Batch Properties
	9.3.1. @BatchProperty
	9.3.2. Scope of property definitions for @BatchProperty Injection

	9.4. Batch Contexts
	9.4.1. Batch Contexts
	9.4.1.1. Batch Context Lifecycle and Scope

	9.5. Parallelization
	9.5.1. PartitionMapper Interface
	9.5.2. PartitionReducer Interface
	9.5.3. PartitionCollector Interface
	9.5.4. PartitionAnalyzer Interface

	9.6. Decider Interface
	9.7. Transactionality

	Chapter 10. Batch Runtime Specification
	10.1. Batch Properties Reserved Namespace
	10.2. Job Metrics
	10.3. Job Runtime Identifiers
	10.4. JobOperator
	10.5. Batch Artifact Loading
	10.6. Job XML Loading
	10.7. Application Packaging Model
	10.7.1. META-INF/batch.xml
	10.7.2. META-INF/batch-jobs

	10.8. Restart Processing
	10.8.1. Job Parameters on Restart
	10.8.2. Job XML Substitution during Restart
	10.8.3. Execution Sequence on Restart – Overview
	10.8.4. Execution Sequence on Restart – Detailed Rules
	10.8.5. PartitionMapper on Restart
	10.8.5.1. partitionsOverride = False
	10.8.5.1.1. Number of Partitions Must Be Same
	10.8.5.1.2. Partition Properties Populated From Current Plan
	10.8.5.1.3. "Numbering" of Partitions via Partition Properties

	10.8.5.2. partitionsOverride = True

	10.9. Supporting Classes
	10.9.1. JobContext
	10.9.2. StepContext
	10.9.3. Metric
	10.9.4. PartitionPlan
	10.9.5. BatchRuntime
	10.9.6. BatchStatus
	10.9.7. JobOperator
	10.9.8. JobInstance
	10.9.9. JobExecution
	10.9.10. StepExecution
	10.9.11. Batch Exception Classes

	Chapter 11. Job Runtime Lifecycle
	11.1. Batch Artifact Lifecycle
	11.2. Job Repository Artifact Lifecycle
	11.3. Job Processsing
	11.4. Regular Batchlet Processsing
	11.5. Partitioned Batchlet Processsing
	11.6. Regular Chunk Processing
	11.7. Partitioned Chunk Processing
	11.8. Chunk with Listeners (except RetryListener)
	11.9. Chunk with RetryListener
	11.10. Chunk with Custom Checkpoint Processing
	11.11. Split Processing
	11.12. Flow Processing
	11.13. Stop Processing

	Chapter 12. Batch XML XSD
	Chapter 13. Job Specification Language
	13.1. Validation Rules
	13.2. JSL XSD

	Chapter 14. Credits
	Chapter 15. Change Log
	15.1. Version 1.0 Revision A - Maintenance Release
	15.1.1. Issues List

