
Spring AMQP - Reference Documentation

1.4.0.RC1

Mark Pollack , Mark Fisher , Oleg Zhurakousky , Dave Syer ,
Gary Russell , Gunnar Hillert , Artem Bilan , Stephane Nicoll

Copyright © 2010-2014 GoPivotal, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation ii

Table of Contents

Preface .. v
I. Introduction ... 1

1. Quick Tour for the impatient ... 2
1.1. Introduction ... 2

Very, Very Quick .. 2
With XML Configuration .. 2
With Java Configuration .. 3

2. What's New ... 5
2.1. Changes in 1.4 Since 1.3 .. 5

@RabbitListener Annotation .. 5
RabbitMessagingTemplate .. 5
Listener Container 'Missing Queues Fatal' Attribute .. 5
RabbitTemplate 'ConfirmCallback' Interface ... 5
RabbitConnectionFactoryBean .. 5
CachingConnectionFactory ... 5
Log Appender .. 5
Listener Queues ... 6
RabbitTemplate: mandatory and connectionFactorySelector Expressions 6
... 6
RabbitTemplate: RecoveryCallback option ... 6
MessageConversionException ... 6
RabbitMQ 3.4 Compatibility .. 6

2.2. Changes in 1.3 Since 1.2 .. 7
Listener Concurrency ... 7
Listener Queues ... 7
Consumer Priority .. 7
Exclusive Consumer ... 7
Rabbit Admin ... 7
Direct Exchange Binding .. 7
AMQP Template .. 7
Caching Connection Factory ... 7
Binding Arguments ... 8
Routing Connection Factory .. 8
MessageBuilder and MessagePropertiesBuilder ... 8
RetryInterceptorBuilder ... 8
RepublishMessageRecoverer .. 8
Default Error Handler (Since 1.3.2) ... 8
Listener Container 'missingQueuesFatal` Property (Since 1.3.5) 8

2.3. Changes to 1.2 Since 1.1 .. 8
RabbitMQ Version .. 8
Rabbit Admin ... 8
Rabbit Template ... 9
JSON Message Converters .. 9
Automatic Declaration of Queues, etc .. 9
AMQP Remoting .. 9
Requested Heart Beats .. 9

2.4. Changes to 1.1 Since 1.0 .. 9

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation iii

General .. 9
AMQP Log4j Appender ... 10

II. Reference .. 11
3. Using Spring AMQP ... 12

3.1. AMQP Abstractions ... 12
3.2. Connection and Resource Management .. 15

Configuring the Underlying Client Connection Factory ... 17
Configuring SSL ... 17
Routing Connection Factory .. 18
Publisher Confirms and Returns .. 19

3.3. AmqpTemplate .. 19
Adding Retry Capabilities .. 20
Publisher Confirms and Returns .. 21
Messaging integration ... 22

3.4. Sending messages .. 22
Message Builder API .. 23
Publisher Confirms ... 24
Publisher Returns ... 24

3.5. Receiving messages .. 24
Polling Consumer ... 24
Asynchronous Consumer .. 26

'auto-delete' Queues ... 28
Annotation-driven listener endpoints .. 28

Enable listener endpoint annotations ... 29
Programmatic Endpoint Registration .. 29
Annotated Endpoint Method Signature .. 30
Reply Management .. 31

Threading and Asynchronous Consumers .. 32
3.6. Message Converters .. 32
3.7. Request/Reply Messaging .. 35

Message Correlation With A Reply Queue ... 36
Reply Listener Container .. 36

Spring Remoting with AMQP .. 38
3.8. Configuring the broker ... 39

Conditional Declaration ... 44
3.9. Exception Handling .. 46
3.10. Transactions .. 47

A note on Rollback of Received Messages .. 48
Using the RabbitTransactionManager .. 48

3.11. Message Listener Container Configuration .. 49
3.12. Listener Concurrency ... 53
3.13. Exclusive Consumer .. 54
3.14. Listener Container Queues ... 54
3.15. Resilience: Recovering from Errors and Broker Failures 55

Automatic Declaration of Exchanges, Queues and Bindings 55
Failures in Synchronous Operations and Options for Retry 55
Message Listeners and the Asynchronous Case .. 56
Exception Classification for Retry .. 57

3.16. Debugging ... 57
4. Erlang integration ... 58

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation iv

4.1. Introduction ... 58
4.2. Communicating with Erlang processes .. 58

Executing RPC ... 58
ErlangConverter ... 59

4.3. Exceptions .. 59
5. Sample Applications ... 60

5.1. Introduction ... 60
5.2. Hello World ... 60

Synchronous Example .. 60
Asynchronous Example .. 61

5.3. Stock Trading .. 63
III. Spring Integration - Reference ... 66

6. Spring Integration AMQP Support ... 67
6.1. Introduction ... 67
6.2. Inbound Channel Adapter .. 67
6.3. Outbound Channel Adapter .. 67
6.4. Inbound Gateway .. 67
6.5. Outbound Gateway .. 67

IV. Other Resources ... 68
7. Further Reading ... 69
Bibliography ... 70

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation v

Preface
The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging
solutions. We provide a "template" as a high-level abstraction for sending and receiving messages.
We also provide support for Message-driven POJOs. These libraries facilitate management of AMQP
resources while promoting the use of dependency injection and declarative configuration. In all of these
cases, you will see similarities to the JMS support in the Spring Framework. The project consists of both
Java and .NET versions. This manual is dedicated to the Java version. For links to the .NET version's
manual or any other project-related information visit the Spring AMQP project homepage.

http://www.springsource.org/spring-amqp

Part I. Introduction
This first part of the reference documentation is a high-level overview of Spring AMQP and the underlying
concepts and some code snippets that will get you up and running as quickly as possible.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 2

1. Quick Tour for the impatient

1.1 Introduction

This is the 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmq.com/download.html). Then
grab the spring-rabbit JAR and all its dependencies - the easiest way to do that is to declare a
dependency in your build tool, e.g. for Maven:

<dependency>

 <groupId>org.springframework.amqp</groupId>

 <artifactId>spring-rabbit</artifactId>

 <version>1.4.0.RC1</version>

</dependency>

Very, Very Quick

Using plain, imperative Java to send and receive a message:

ConnectionFactory connectionFactory = new CachingConnectionFactory();

AmqpAdmin admin = new RabbitAdmin(connectionFactory);

admin.declareQueue(new Queue("myqueue"));

AmqpTemplate template = new RabbitTemplate(connectionFactory);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

Note that there is a ConnectionFactory in the native Java Rabbit client as well. We are using the
Spring abstraction in the code above. We are relying on the default exchange in the broker (since none
is specified in the send), and the default binding of all queues to the default exchange by their name
(hence we can use the queue name as a routing key in the send). Those behaviours are defined in
the AMQP specification.

With XML Configuration

The same example as above, but externalizing the resource configuration to XML:

ApplicationContext context =

 new GenericXmlApplicationContext("classpath:/rabbit-context.xml");

AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

http://www.rabbitmq.com/download.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 3

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:rabbit="http://www.springframework.org/schema/rabbit"

 xsi:schemaLocation="http://www.springframework.org/schema/rabbit

 http://www.springframework.org/schema/rabbit/spring-rabbit.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <rabbit:connection-factory id="connectionFactory"/>

 <rabbit:template id="amqpTemplate" connection-factory="connectionFactory"/>

 <rabbit:admin connection-factory="connectionFactory"/>

 <rabbit:queue name="myqueue"/>

</beans>

The <rabbit:admin/> declaration by default automatically looks for beans of type Queue, Exchange
and Binding and declares them to the broker on behalf of the user, hence there is no need to use that
bean explicitly in the simple Java driver. There are plenty of options to configure the properties of the
components in the XML schema - you can use auto-complete features of your XML editor to explore
them and look at their documentation.

With Java Configuration

The same example again with the external configuration in Java:

ApplicationContext context =

 new AnnotationConfigApplicationContext(RabbitConfiguration.class);

AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 4

@Configuration

public class RabbitConfiguration {

 @Bean

 public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory =

 new CachingConnectionFactory("localhost");

 return connectionFactory;

 }

 @Bean

 public AmqpAdmin amqpAdmin() {

 return new RabbitAdmin(connectionFactory());

 }

 @Bean

 public RabbitTemplate rabbitTemplate() {

 return new RabbitTemplate(connectionFactory());

 }

 @Bean

 public Queue myQueue() {

 return new Queue("myqueue");

 }

}

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 5

2. What's New

2.1 Changes in 1.4 Since 1.3

@RabbitListener Annotation

POJO listeners can be annotated with @RabbitListener, enabled by @EnableRabbit or
<rabbit:annotation-driven />. Spring Framework 4.1 is required for this feature. See the section
called “Annotation-driven listener endpoints” for more information.

RabbitMessagingTemplate

A new RabbitMessagingTemplate is provided to allow users to interact with RabbitMQ using
spring-messaging Messages. It uses the RabbitTemplate internally which can be configured as
normal. Spring Framework 4.1 is required for this feature. See the section called “Messaging integration”
for more information.

Listener Container 'Missing Queues Fatal' Attribute

1.3.5 introduced the missingQueuesFatal property on the SimpleMessageListenerContainer.
This is now available on the listener container namespace element. See Section 3.11, “Message Listener
Container Configuration”.

RabbitTemplate 'ConfirmCallback' Interface

The confirm method on this interface has an additional parameter cause. When available, this
parameter will contain the reason for a negative acknowledgement (nack). See the section called
“Publisher Confirms and Returns”.

RabbitConnectionFactoryBean

A factory bean is now provided to create the underlying RabbitMQ ConnectionFactory used by the
CachingConnectionFactory. This enables configuration of SSL options using Spring's dependency
injection. See the section called “Configuring the Underlying Client Connection Factory”.

CachingConnectionFactory

The CachingConnectionFactory now allows the connectionTimeout to be set as a
property or as an attribute in the namespace. It sets the property on the underlying RabbitMQ
ConnectionFactory See the section called “Configuring the Underlying Client Connection Factory”.

Log Appender

The Logback org.springframework.amqp.rabbit.logback.AmqpAppender has been
introduced. It provides similar options like
org.springframework.amqp.rabbit.log4j.AmqpAppender. For more info see JavaDocs of
these classes.

The Log4j AmqpAppender now supports the deliveryMode property (PERSISTENT or
NON_PERSISTENT, default: PERSISTENT). Previously, all log4j messages were PERSISTENT.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 6

The appender also supports modification of the Message before sending - allowing, for example, the
addition of custom headers. Subclasses should override the postProcessMessageBeforeSend().

Listener Queues

The listener container now, by default, redeclares any missing queues during startup. A new auto-
declare attribute has been added to the <rabbit:listener-container> to prevent these
redeclarations. See the section called “'auto-delete' Queues”.

RabbitTemplate: mandatory and connectionFactorySelector Expressions

The mandatoryExpression and sendConnectionFactorySelectorExpression and
receiveConnectionFactorySelectorExpression SpEL Expressions properties have been
added to the RabbitTemplate. The mandatoryExpression is used to evaluate a mandatory
boolean value against each request message, when a ReturnCallback is in use. See the section
called “Publisher Confirms and Returns”. The sendConnectionFactorySelectorExpression
and receiveConnectionFactorySelectorExpression are used when an
AbstractRoutingConnectionFactory is provided, to determine the lookupKey for the target
ConnectionFactory at runtime on each AMQP protocol interaction operation. See the section called
“Routing Connection Factory”.

A SimpleMessageListenerContainer can be configured with a routing connection factory to
enable connection selection based on the queue names. See the section called “Routing Connection
Factory”.

RabbitTemplate: RecoveryCallback option

The recoveryCallback property has been added to be used in the retryTemplate.execute().
See the section called “Adding Retry Capabilities”.

MessageConversionException

This exception is now a subclass of AmqpException; if you have code like the following:

try {

 template.convertAndSend("foo", "bar", "baz");

}

catch (AmqpException e) {

 ...

}

catch (MessageConversionException e) {

 ...

}

The second catch block will no longer be reachable and needs to be moved above the catch-all
AmqpException catch block.

RabbitMQ 3.4 Compatibility

Now the Spring AMQP is compatible with the RabbitMQ 3.4. However Spring AMQP still keeps
the minimal RabbitMQ Client library in version 3.3.x to provide backward compatibility with legacy
applications.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 7

2.2 Changes in 1.3 Since 1.2

Listener Concurrency

The listener container now supports dynamic scaling of the number of consumers based on workload,
or the concurrency can be programmatically changed without stopping the container. See Section 3.12,
“Listener Concurrency”.

Listener Queues

The listener container now permits the queue(s) on which it is listening to be modified at runtime. Also,
the container will now start if at least one of its configured queues is available for use. See Section 3.14,
“Listener Container Queues”

This listener container will now redeclare any auto-delete queues during startup. See the section called
“'auto-delete' Queues”.

Consumer Priority

The listener container now supports consumer arguments, allowing the x-priority argument to be
set. See the section called “Asynchronous Consumer” [27].

Exclusive Consumer

The SimpleMessageListenerContainer can now be configured with a single exclusive
consumer, preventing other consumers from listening to the queue. See Section 3.13, “Exclusive
Consumer”.

Rabbit Admin

It is now possible to have the Broker generate the queue name, regardless of durable, autoDelete and
exclusive settings. See Section 3.8, “Configuring the broker”.

Direct Exchange Binding

Previously, omitting the key attribute from a binding element of a direct-exchange configuration
caused the queue or exchange to be bound with an empty string as the routing key. Now it is bound with
the the name of the provided Queue or Exchange. Users wishing to bind with an empty string routing
key need to specify key="".

AMQP Template

The AmqpTemplate now provides several synchronous receiveAndReply methods. These are
implemented by the RabbitTemplate. For more information see Section 3.5, “Receiving messages”.

The RabbitTemplate now supports configuring a RetryTemplate to attempt retries (with optional
back off policy) for when the broker is not available. For more information see the section called “Adding
Retry Capabilities”.

Caching Connection Factory

The caching connection factory can now be configured to cache Connections and their Channels
instead of using a single connection and caching just Channels. See Section 3.2, “Connection and
Resource Management”.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 8

Binding Arguments

The <exchange>'s <binding> now supports parsing of the <binding-arguments> sub-element.
The <headers-exchange>'s <binding> now can be configured with a key/value attribute pair
(to match on a single header) or with a <binding-arguments> sub-element, allowing matching on
multiple headers; these options are mutually exclusive. See Section 3.8, “Configuring the broker” [42].

Routing Connection Factory

A new SimpleRoutingConnectionFactory has been introduced, to allow configuration of
ConnectionFactories mapping to determine the target ConnectionFactory to use at runtime.
See the section called “Routing Connection Factory”.

MessageBuilder and MessagePropertiesBuilder

"Fluent APIs" for building messages and/or message properties is now provided. See the section called
“Message Builder API”.

RetryInterceptorBuilder

A "Fluent API" for building listener container retry interceptors is now provided. See the section called
“Failures in Synchronous Operations and Options for Retry”.

RepublishMessageRecoverer

This new MessageRecoverer is provided to allow publishing a failed message to another queue
(including stack trace information in the header) when retries are exhausted. See the section called
“Message Listeners and the Asynchronous Case”.

Default Error Handler (Since 1.3.2)

A default ConditionalRejectingErrorHandler has been added to the listener container. This
error handler detects message conversion problems (which are fatal) and instructs the container to
reject the message to prevent the broker from continually redelivering the unconvertible message. See
Section 3.9, “Exception Handling”.

Listener Container 'missingQueuesFatal` Property (Since 1.3.5)

The SimpleMessageListenerContainer now has a property missingQueuesFatal (default
true). Previously, missing queues were always fatal. See Section 3.11, “Message Listener Container
Configuration”.

2.3 Changes to 1.2 Since 1.1

RabbitMQ Version

Spring AMQP now using RabbitMQ 3.1.x by default (but retains compatibility with earlier versions).
Certain deprecations have been added for features no longer supported by RabbitMQ 3.1.x - federated
exchanges and the immediate property on the RabbitTemplate.

Rabbit Admin

The RabbitAdmin now provides an option to allow exchange, queue, and binding declarations to
continue when a declaration fails. Previously, all declarations stopped on a failure. By setting ignore-

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 9

declaration-exceptions, such exceptions are logged (WARN), but further declarations continue.
An example where this might be useful is when a queue declaration fails because of a slightly different
ttl setting would normally stop other declarations from proceeding.

The RabbitAdmin now provides an additional method getQueueProperties(). This can be used to
determine if a queue exists on the broker (returns null for a non-existent queue). In addition, the current
number of messages in the queue, as well as the current number of consumers is returned.

Rabbit Template

Previously, when using the ...sendAndReceive() methods were used with a fixed reply queue, two
custom headers were used for correlation data and to retain/restore reply queue information. With this
release, the standard message property correlationId is used by default, although the user can
specifiy a custom property to use instead. In addition, nested replyTo information is now retained
internally in the template, instead of using a custom header.

The immediate property is deprecated; users must not set this property when using RabbitMQ 3.0.x
or greater.

JSON Message Converters

A Jackson 2.x MessageConverter is now provided, along with the existing converter that uses
Jackson 1.x.

Automatic Declaration of Queues, etc

Previously, when declaring queues, exchanges and bindings, it was not possible to define which
connection factory was used for the declarations, each RabbitAdmin would declare all components
using its connection.

Starting with this release, it is now possible to limit declarations to specific RabbitAdmin instances.
See the section called “Conditional Declaration”.

AMQP Remoting

Facilities are now provided for using Spring Remoting techniques, using AMQP as the transport for the
RPC calls. For more information see the section called “Spring Remoting with AMQP”

Requested Heart Beats

Several users have asked for the underlying client connection factory's requestedHeartBeats
property to be exposed on the Spring AMQP CachingConnectionFactory. This is now available;
previously, it was necessary to configure the AMQP client factory as a separate bean and provide a
reference to it in the CachingConnectionFactory.

2.4 Changes to 1.1 Since 1.0

General

Spring-AMQP is now built using gradle.

Adds support for publisher confirms and returns.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 10

Adds support for HA queues, and broker failover.

Adds support for Dead Letter Exchanges/Dead Letter Queues.

AMQP Log4j Appender

Adds an option to support adding a message id to logged messages.

Adds an option to allow the specification of a Charset name to be used when converting Strings
to byte[].

Part II. Reference
This part of the reference documentation details the various components that comprise Spring AMQP.
The main chapter covers the core classes to develop an AMQP application. This part also includes a
chapter on integration with Erlang and a chapter about the sample applications.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 12

3. Using Spring AMQP

In this chapter, we will explore the interfaces and classes that are the essential components for
developing applications with Spring AMQP.

3.1 AMQP Abstractions

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution. These
modules are: spring-amqp, spring-rabbit and spring-erlang. The 'spring-amqp' module contains the
org.springframework.amqp.core package. Within that package, you will find the classes that
represent the core AMQP "model". Our intention is to provide generic abstractions that do not rely on
any particular AMQP broker implementation or client library. End user code will be more portable across
vendor implementations as it can be developed against the abstraction layer only. These abstractions
are then used implemented by broker-specific modules, such as 'spring-rabbit'. For the 1.0 release there
is only a RabbitMQ implementation however the abstractions have been validated in .NET using Apache
Qpid in addition to RabbitMQ. Since AMQP operates at the protocol level in principle the RabbitMQ
client can be used with any broker that supports the same protocol version, but we do not test any other
brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification
already. If you are not, then have a look at the resources listed in Part IV, “Other Resources”

Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when
performing an operation such as ' basicPublish ', the content is passed as a byte-array argument
and additional properties are passed in as separate arguments. Spring AMQP defines a Message class
as part of a more general AMQP domain model representation. The purpose of the Message class is
to simply encapsulate the body and properties within a single instance so that the API can in turn be
simpler. The Message class definition is quite straightforward.

public class Message {

 private final MessageProperties messageProperties;

 private final byte[] body;

 public Message(byte[] body, MessageProperties messageProperties) {

 this.body = body;

 this.messageProperties = messageProperties;

 }

 public byte[] getBody() {

 return this.body;

 }

 public MessageProperties getMessageProperties() {

 return this.messageProperties;

 }

}

The MessageProperties interface defines several common properties such as 'messageId',
'timestamp', 'contentType', and several more. Those properties can also be extended with user-defined
'headers' by calling the setHeader(String key, Object value) method.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 13

Exchange

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to.
Each Exchange within a virtual host of a broker will have a unique name as well as a few other properties:

public interface Exchange {

 String getName();

 String getExchangeType();

 boolean isDurable();

 boolean isAutoDelete();

 Map<String, Object> getArguments();

}

As you can see, an Exchange also has a 'type' represented by constants defined in ExchangeTypes.
The basic types are: Direct, Topic, Fanout, and Headers. In the core package you will find
implementations of the Exchange interface for each of those types. The behavior varies across these
Exchange types in terms of how they handle bindings to Queues. For example, a Direct exchange allows
for a Queue to be bound by a fixed routing key (often the Queue's name). A Topic exchange supports
bindings with routing patterns that may include the '*' and '#' wildcards for 'exactly-one' and 'zero-or-
more', respectively. The Fanout exchange publishes to all Queues that are bound to it without taking
any routing key into consideration. For much more information about these and the other Exchange
types, check out Part IV, “Other Resources”.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange that
has no name. All Queues that are declared will be bound to that default Exchange with their
names as routing keys. You will learn more about the default Exchange's usage within Spring
AMQP in Section 3.3, “AmqpTemplate”.

Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like
the various Exchange classes, our implementation is intended to be an abstract representation of this
core AMQP type.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 14

public class Queue {

 private final String name;

 private volatile boolean durable;

 private volatile boolean exclusive;

 private volatile boolean autoDelete;

 private volatile Map<String, Object> arguments;

 /**

 * The queue is durable, non-exclusive and non auto-delete.

 *

 * @param name the name of the queue.

 */

 public Queue(String name) {

 this(name, true, false, false);

 }

 // Getters and Setters omitted for brevity

Notice that the constructor takes the Queue name. Depending on the implementation, the admin
template may provide methods for generating a uniquely named Queue. Such Queues can be useful
as a "reply-to" address or other temporary situations. For that reason, the 'exclusive' and 'autoDelete'
properties of an auto-generated Queue would both be set to 'true'.

Note
See the section on queues in Section 3.8, “Configuring the broker” for information about declaring
queues using namespace support, including queue arguments.

Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings
that connect Queues to Exchanges are critical for connecting those producers and consumers via
messaging. In Spring AMQP, we define a Binding class to represent those connections. Let's review
the basic options for binding Queues to Exchanges.

You can bind a Queue to a DirectExchange with a fixed routing key.

new Binding(someQueue, someDirectExchange, "foo.bar")

You can bind a Queue to a TopicExchange with a routing pattern.

new Binding(someQueue, someTopicExchange, "foo.*")

You can bind a Queue to a FanoutExchange with no routing key.

new Binding(someQueue, someFanoutExchange)

We also provide a BindingBuilder to facilitate a "fluent API" style.

Binding b = BindingBuilder.bind(someQueue).to(someTopicExchange).with("foo.*");

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 15

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a static
import for the 'bind()' method.

By itself, an instance of the Binding class is just holding the data about a connection. In other words,
it is not an "active" component. However, as you will see later in Section 3.8, “Configuring the broker”,
Binding instances can be used by the AmqpAdmin class to actually trigger the binding actions on the
broker. Also, as you will see in that same section, the Binding instances can be defined using Spring's
@Bean-style within @Configuration classes. There is also a convenient base class which further
simplifies that approach for generating AMQP-related bean definitions and recognizes the Queues,
Exchanges, and Bindings so that they will all be declared on the AMQP broker upon application startup.

The AmqpTemplate is also defined within the core package. As one of the main components involved in
actual AMQP messaging, it is discussed in detail in its own section (see Section 3.3, “AmqpTemplate”).

3.2 Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our "spring-
rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the ConnectionFactory
interface. The responsibility of a ConnectionFactory implementation is to provide an
instance of org.springframework.amqp.rabbit.connection.Connection which is a wrapper
for com.rabbitmq.client.Connection. The only concrete implementation we provide is
CachingConnectionFactory which, by default, establishes a single connection proxy that can be
shared by the application. Sharing of the connection is possible since the "unit of work" for messaging
with AMQP is actually a "channel" (in some ways, this is similar to the relationship between a Connection
and a Session in JMS). As you can imagine, the connection instance provides a createChannel
method. The CachingConnectionFactory implementation supports caching of those channels, and
it maintains separate caches for channels based on whether they are transactional or not. When creating
an instance of CachingConnectionFactory, the 'hostname' can be provided via the constructor.
The 'username' and 'password' properties should be provided as well. If you would like to configure
the size of the channel cache (the default is 1), you could call the setChannelCacheSize() method
here as well.

Starting with version 1.3, the CachingConnectionFactory can be configured to cache connections
as well as just channels. In this case, each call to createConnection() creates a new connection
(or retrieves an idle one from the cache). Closing a connection returns it to the cache (if the cache
size has not been reached). Channels created on such connections are cached too. The use of
separate connections might be useful in some environments, such as consuming from an HA cluster,
in conjunction with a load balancer, to connect to different cluster members.

Important

When the cache mode is CONNECTION, automatic declaration of queues etc. (See the section
called “Automatic Declaration of Exchanges, Queues and Bindings”) is NOT supported.

Also, at the time of writing, the rabbitmq-client library creates a fixed thread pool for each
connection (5 threads) by default. When using a large number of connections, you should

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 16

consider setting a custom executor on the CachingConnectionFactory. Then, the same
executor will be used by all connections and its threads can be shared. The executor's thread
pool should be unbounded, or set appropriately for the expected utilization (usually, at least one
thread per connection). If multiple channels are created on each connection then the pool size
will affect the concurrency, so a variable (or simple cached) thread pool executor would be most
suitable.

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("somehost");

connectionFactory.setUsername("guest");

connectionFactory.setPassword("guest");

Connection connection = connectionFactory.createConnection();

When using XML, the configuration might look like this:

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

 <constructor-arg value="somehost"/>

 <property name="username" value="guest"/>

 <property name="password" value="guest"/>

</bean>

Note
There is also a SingleConnectionFactory implementation which is only available in the unit
test code of the framework. It is simpler than CachingConnectionFactory since it does not
cache channels, but it is not intended for practical usage outside of simple tests due to its lack of
performance and resilience. If you find a need to implement your own ConnectionFactory for
some reason, the AbstractConnectionFactory base class may provide a nice starting point.

A ConnectionFactory can be created quickly and conveniently using the rabbit namespace:

<rabbit:connection-factory id="connectionFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you. The
created instance will be a CachingConnectionFactory. Keep in mind that the default cache size for
channels is 1. If you want more channels to be cached set a larger value via the 'channelCacheSize'
property. In XML it would look like this:

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

 <constructor-arg value="somehost"/>

 <property name="username" value="guest"/>

 <property name="password" value="guest"/>

 <property name="channelCacheSize" value="25"/>

</bean>

And with the namespace you can just add the 'channel-cache-size' attribute:

<rabbit:connection-factory

 id="connectionFactory" channel-cache-size="25"/>

The default cache mode is CHANNEL, but you can configure it to cache connections instead; in this
case, we use connection-cache-size:

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 17

<rabbit:connection-factory

 id="connectionFactory" cache-mode="CONNECTION" connection-cache-size="25"/>

Host and port attributes can be provided using the namespace

<rabbit:connection-factory

 id="connectionFactory" host="somehost" port="5672"/>

Alternatively, if running in a clustered environment, use the addresses attribute.

<rabbit:connection-factory

 id="connectionFactory" addresses="host1:5672,host2:5672"/>

Configuring the Underlying Client Connection Factory

The CachingConnectionFactory uses an instance of the Rabbit client ConnectionFactory; a
number of configuration properties are passed through (host, port, userName, password,
requestedHeartBeat, connectionTimeout for example) when setting the equivalent property
on the CachingConnectionFactory . To set other properties (clientProperties for example),
define an instance of the rabbit factory and provide a reference to it using the appropriate constructor
of the CachingConnectionFactory. When using the namespace as described above, provide a
reference to the configured factory in the connection-factory attribute. For convenience, a factory
bean is provided to assist in configuring the connection factory in a Spring application context, as
discussed in the next section.

<rabbit:connection-factory

 id="connectionFactory" connection-factory="rabbitConnectionFactory"/>

Configuring SSL

Starting with version 1.4, a convenient RabbitConnectionFactoryBean is provided to enable
convenient configuration of SSL properties on the underlying client connection factory, using
dependency injection. Other setters simply delegate to the underlying factory. Previously you had to
configure the SSL options programmatically.

<rabbit:connection-factory id="rabbitConnectionFactory"

 connection-factory="clientConnectionFactory"

 host="${host}"

 port="${port}"

 virtual-host="${vhost}"

 username="${username}" password="${password}" />

<bean id="clientConnectionFactory"

 class="org.springframework.xd.dirt.integration.rabbit.RabbitConnectionFactoryBean">

 <property name="useSSL" value="true" />

 <property name="sslPropertiesLocation" value="file:/secrets/rabbitSSL.properties"/>

</bean>

Refer to the RabbitMQ Documentation for information about configuring SSL. Omit the
sslPropertiesLocation property to connect over SSL without certificate validation. When using
certificate validation, the property is a Spring Resource pointing to a properties file containing the
following keys:

https://www.rabbitmq.com/ssl.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 18

keyStore=file:/secret/keycert.p12

trustStore=file:/secret/trustStore

keyStore.passPhrase=secret

trustStore.passPhrase=secret

The keyStore and truststore are Spring Resources pointing to the stores. Typically this properties
file will be secured by the operating system with the application having read access.

Routing Connection Factory

Starting with version 1.3, the AbstractRoutingConnectionFactory has been introduced.
This provides a mechanism to configure mappings for several ConnectionFactories and
determine a target ConnectionFactory by some lookupKey at runtime. Typically, the
implementation checks a thread-bound context. For convenience, Spring AMQP provides the
SimpleRoutingConnectionFactory, which gets the current thread-bound lookupKey from the
SimpleResourceHolder:

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.SimpleRoutingConnectionFactory">

 <property name="targetConnectionFactories">

 <map>

 <entry key="#{connectionFactory1.virtualHost}" ref="connectionFactory1"/>

 <entry key="#{connectionFactory2.virtualHost}" ref="connectionFactory2"/>

 </map>

 </property>

</bean>

<rabbit:template id="template" connection-factory="connectionFactory" />

public class MyService {

 @Autowired

 private RabbitTemplate rabbitTemplate;

 public void service(String vHost, String payload) {

 SimpleResourceHolder.bind(rabbitTemplate.getConnectionFactory(), vHost);

 rabbitTemplate.convertAndSend(payload);

 SimpleResourceHolder.unbind(rabbitTemplate.getConnectionFactory());

 }

}

It is important to unbind the resource after use. For more information see the JavaDocs of
AbstractRoutingConnectionFactory.

Starting with version 1.4, the RabbitTemplate supports the SpEL
sendConnectionFactorySelectorExpression and
receiveConnectionFactorySelectorExpression properties, which are evaluated on each
AMQP protocol interaction operation (send, sendAndReceive, receive or receiveAndReply),
resolving to a lookupKey value for the provided AbstractRoutingConnectionFactory. Bean
references, such as "@vHostResolver.getVHost(#root)" can be used in the expression. For
send operations, the Message to be sent is the root evaluation object; for receive operations, the
queueName is the root evaluation object.

The routing algorithm is: If the selector expression is null, or is evaluated to null, or the provided
ConnectionFactory isn't an instance of AbstractRoutingConnectionFactory, everything

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 19

works as before, relying on the provided ConnectionFactory implementation. The same occurs if
the evaluation result isn't null, but there is no target ConnectionFactory for that lookupKey and
the AbstractRoutingConnectionFactory is configured with lenientFallback = true. Of
course, in the case of an AbstractRoutingConnectionFactory it does fallback to its routing
implementation based on determineCurrentLookupKey(). But, if lenientFallback = false,
an IllegalStateException is thrown.

The Namespace support also provides the send-connection-factory-selector-

expression and receive-connection-factory-selector-expression attributes on the
<rabbit:template> component.

Also starting with version 1.4, you can configure a routing connection factory in a
SimpleMessageListenerContainer. In that case, the list of queue names is used as the lookup
key. For example, if you configure the container with setQueueNames("foo, bar"), the lookup key
will be "[foo,bar]" (no spaces).

Publisher Confirms and Returns

Confirmed and returned messages are supported by setting the CachingConnectionFactory's
publisherConfirms and publisherReturns properties to 'true' respectively.
When these options are set, Channels created by the factory are wrapped in an
PublisherCallbackChannel which is used to facilitate the callbacks. When such a channel is
obtained, the client can register a PublisherCallbackChannel.Listener with the Channel.
The PublisherCallbackChannel implementation contains logic to route a confirm/return to the
appropriate listener.

These features are explained further in the following sections.

Tip
For some more background information, please see the following blog post by the RabbitMQ
team titled Introducing Publisher Confirms.

3.3 AmqpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects,
Spring AMQP provides a "template" that plays a central role. The interface that defines the main
operations is called AmqpTemplate. Those operations cover the general behavior for sending and
receiving Messages. In other words, they are not unique to any implementation, hence the "AMQP" in
the name. On the other hand, there are implementations of that interface that are tied to implementations
of the AMQP protocol. Unlike JMS, which is an interface-level API itself, AMQP is a wire-level protocol.
The implementations of that protocol provide their own client libraries, so each implementation of
the template interface will depend on a particular client library. Currently, there is only a single
implementation: RabbitTemplate. In the examples that follow, you will often see usage of an
"AmqpTemplate", but when you look at the configuration examples, or any code excerpts where
the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AmqpTemplate interface defines all of the basic operations for sending and
receiving Messages. We will explore Message sending and reception, respectively, in the two sections
that follow.

http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 20

Adding Retry Capabilities

Starting with version 1.3 you can now configure the RabbitTemplate to use a RetryTemplate to
help with handling problems with broker connectivity. Refer to the spring-retry project for complete
information; the following is just one example that uses an exponential back off policy and the default
SimpleRetryPolicy which will make three attempts before throwing the exception to the caller.

Using the XML namespace:

<rabbit:template id="template" connection-factory="connectionFactory" retry-

template="retryTemplate"/>

<bean id="retryTemplate" class="org.springframework.retry.support.RetryTemplate">

 <property name="backOffPolicy">

 <bean class="org.springframework.retry.backoff.ExponentialBackOffPolicy">

 <property name="initialInterval" value="500" />

 <property name="multiplier" value="10.0" />

 <property name="maxInterval" value="10000" />

 </bean>

 </property>

</bean>

Using @Configuration:

@Bean

public AmqpTemplate rabbitTemplate();

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 RetryTemplate retryTemplate = new RetryTemplate();

 ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy();

 backOffPolicy.setInitialInterval(500);

 backOffPolicy.setMultiplier(10.0);

 backOffPolicy.setMaxInterval(10000);

 retryTemplate.setBackOffPolicy(backOffPolicy);

 template.setRetryTemplate(retryTemplate);

 return template;

}

Starting with version 1.4, in addition to the retryTemplate property, the
recoveryCallback option is supported on the RabbitTemplate. It is used as a second
argument for the RetryTemplate.execute(RetryCallback<T, E> retryCallback,

RecoveryCallback<T>recoveryCallback).

Note
The RecoveryCallback is somewhat limited in that the retry context only contains the
lastThrowable field. For more sophisticated use cases, you should use an external
RetryTemplate so that you can convey additional information to the RecoveryCallback via
the context's attributes:

https://github.com/spring-projects/spring-retry

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 21

retryTemplate.execute(

 new RetryCallback<Object, Exception>() {

 @Override

 public Object doWithRetry(RetryContext context) throws Exception {

 context.setAttribute("message", message);

 return rabbitTemplate.convertAndSend(exchange, routingKey, message);

 }

 }, new RecoveryCallback<Object>() {

 @Override

 public Object recover(RetryContext context) throws Exception {

 Object message = context.getAttribute("message");

 Throwable t = context.getLastThrowable();

 // Do something with message

 return null;

 }

 });

}

In this case, you would not inject a RetryTemplate into the RabbitTemplate.

Publisher Confirms and Returns

The RabbitTemplate implementation of AmqpTemplate supports Publisher Confirms and Returns.

For returned messages, the template's mandatory property must be set to 'true', and it requires
a CachingConnectionFactory that has its publisherReturns property set to true (see the
section called “Publisher Confirms and Returns”). Returns are sent to to the client by it registering
a RabbitTemplate.ReturnCallback by calling setReturnCallback(ReturnCallback

callback). The callback must implement this method:

void returnedMessage(Message message, int replyCode, String replyText,

 String exchange, String routingKey);

Only one ReturnCallback is supported by each RabbitTemplate.

For Publisher Confirms (aka Publisher Acknowledgements), the template requires a
CachingConnectionFactory that has its publisherConfirms property set to true. Confirms
are sent to to the client by it registering a RabbitTemplate.ConfirmCallback by calling
setConfirmCallback(ConfirmCallback callback). The callback must implement this method:

Note
When a rabbit template send operation completes, the channel is closed; this would preclude the
reception of confirms or returns in the case when the connection factory cache is full (when there
is space in the cache, the channel is not physically closed and the returns/confirms will proceed
as normal). When the cache is full, the framework defers the close for up to 5 seconds, in order to
allow time for the confirms/returns to be received. When using confirms, the channel will be closed
when the last confirm is received. When using only returns, the channel will remain open for the
full 5 seconds. It is generally recommended to set the connection factory's channelCacheSize
to a large enough value so that the channel on which a message is published is returned to the
cache instead of being closed.

void confirm(CorrelationData correlationData, boolean ack, String cause);

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 22

The CorrelationData is an object supplied by the client when sending the original message. This is
described further in the next section. The ack is true for an ack and false for a nack. For nacks, the
cause may contain a reason for the nack, if it is available when the nack is generated. An example is
when sending a message to a non-existent exchange. In that case the broker closes the channel; the
reason for the closure is included in the cause. cause was added in version 1.4.

Only one ConfirmCallback is supported by a RabbitTemplate.

Messaging integration

Starting with version 1.4 RabbitMessagingTemplate, built on top of RabbitTemplate,
provides an integration with the Spring Framework messaging abstraction, i.e.
org.springframework.messaging.Message. This allows you to create the message to send in
generic manner.

3.4 Sending messages

When sending a Message, one can use any of the following methods:

void send(Message message) throws AmqpException;

void send(String routingKey, Message message) throws AmqpException;

void send(String exchange, String routingKey, Message message) throws AmqpException;

We can begin our discussion with the last method listed above since it is actually the most explicit. It
allows an AMQP Exchange name to be provided at runtime along with a routing key. The last parameter
is the callback that is responsible for actual creating of the Message instance. An example of using this
method to send a Message might look this this:

amqpTemplate.send("marketData.topic", "quotes.nasdaq.FOO",

 new Message("12.34".getBytes(), someProperties));

The "exchange" property can be set on the template itself if you plan to use that template instance to
send to the same exchange most or all of the time. In such cases, the second method listed above may
be used instead. The following example is functionally equivalent to the previous one:

amqpTemplate.setExchange("marketData.topic");

amqpTemplate.send("quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting
only the Message may be used:

amqpTemplate.setExchange("marketData.topic");

amqpTemplate.setRoutingKey("quotes.nasdaq.FOO");

amqpTemplate.send(new Message("12.34".getBytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method
parameters will always override the template's default values. In fact, even if you do not explicitly set
those properties on the template, there are always default values in place. In both cases, the default is
an empty String, but that is actually a sensible default. As far as the routing key is concerned, it's not
always necessary in the first place (e.g. a Fanout Exchange). Furthermore, a Queue may be bound to
an Exchange with an empty String. Those are both legitimate scenarios for reliance on the default empty
String value for the routing key property of the template. As far as the Exchange name is concerned, the

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 23

empty String is quite commonly used because the AMQP specification defines the "default Exchange"
as having no name. Since all Queues are automatically bound to that default Exchange (which is a
Direct Exchange) using their name as the binding value, that second method above can be used for
simple point-to-point Messaging to any Queue through the default Exchange. Simply provide the queue
name as the "routingKey" - either by providing the method parameter at runtime:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange

template.send("queue.helloWorld", new Message("Hello World".getBytes(), someProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to a single
Queue, the following is perfectly reasonable:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange

template.setRoutingKey("queue.helloWorld"); // but we'll always send to this Queue

template.send(new Message("Hello World".getBytes(), someProperties));

Message Builder API

Starting with version 1.3, a message builder API is provided by the MessageBuilder and
MessagePropertiesBuilder; they provides a convenient "fluent" means of creating a message or
message properties:

Message message = MessageBuilder.withBody("foo".getBytes())

 .setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)

 .setMessageId("123")

 .setHeader("bar", "baz")

 .build();

or

MessageProperties props = MessagePropertiesBuilder.newInstance()

 .setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)

 .setMessageId("123")

 .setHeader("bar", "baz")

 .build();

Message message = MessageBuilder.withBody("foo".getBytes())

 .andProperties(props)

 .build();

Each of the properties defined on the MessageProperies can be set. Other methods include
setHeader(String key, String value), removeHeader(String key), removeHeaders(),
and copyProperties(MessageProperties properties). Each property setting method has
a set*IfAbsent() variant. In the cases where a default initial value exists, the method is named
set*IfAbsentOrDefault().

Five static methods are provided to create an initial message builder:

public static MessageBuilder withBody(byte[] body) ❶

public static MessageBuilder withClonedBody(byte[] body) ❷

public static MessageBuilder withBody(byte[] body, int from, int to) ❸

public static MessageBuilder fromMessage(Message message) ❹

public static MessageBuilder fromClonedMessage(Message message) ❺

http://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/MessageProperties.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 24

❶ The message created by the builder will have a body that is a direct reference to the argument.

❷ The message created by the builder will have a body that is a new array containing a copy of bytes
in the argument.

❸ The message created by the builder will have a body that is a new array containing the range of
bytes from the argument. See Arrays.copyOfRange() for more details.

❹ The message created by the builder will have a body that is a direct reference to the body of the
argument. The argument's properties are copied to a new a MessageProperties object.

❺ The message created by the builder will have a body that is a new array containing a copy of the
argument's body. The argument's properties are copied to a new a MessageProperties object.

Three static methods are provided to create an initial message properties builder:

public static MessagePropertiesBuilder newInstance() ❶

public static MessagePropertiesBuilder fromProperties(MessageProperties properties) ❷

public static MessagePropertiesBuilder fromClonedProperties(MessageProperties

 properties) ❸

❶ A new message properties object is initialized with default values.

❷ The builder is initialized with, and build() will return, the provided properties object.

❸ The argument's properties are copied to a new a MessageProperties object.

Publisher Confirms

With the RabbitTemplate implementation of AmqpTemplate, each of the send() methods has an
overloaded version that takes an additional CorrelationData object. When publisher confirms are
enabled, this object is returned in the callback described in Section 3.3, “AmqpTemplate”. This allows
the sender to correlate a confirm (ack or nack) with the sent message.

Publisher Returns

When the template's mandatory property is 'true' returned messages are provided by the callback
described in Section 3.3, “AmqpTemplate”.

Starting with version 1.4 the RabbitTemplate supports the SpEL mandatoryExpression property,
which is evaluated against each request message, as the root evaluation object, resolving to a boolean
value. Bean references, such as "@myBean.isMandatory(#root)" can be used in the expression.

3.5 Receiving messages

Message reception is always a bit more complicated than sending. The reason is that there are two
ways to receive a Message. The simpler option is to poll for a single Message at a time with a polling
method call. The more complicated yet more common approach is to register a listener that will receive
Messages on-demand, asynchronously. We will look at an example of each approach in the next two
sub-sections.

Polling Consumer

The AmqpTemplate itself can be used for polled Message reception. If no message is available, null
is returned immediately; there is no blocking. There are two simple 'receive' methods available. As with

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 25

the Exchange on the sending side, there is a method that requires a default queue property having been
set directly on the template itself, and there is a method that accepts a queue parameter at runtime.

Message receive() throws AmqpException;

Message receive(String queueName) throws AmqpException;

Just like in the case of sending messages, the AmqpTemplate has some convenience methods for
receiving POJOs instead of Message instances, and implementations will provide a way to customize
the MessageConverter used to create the Object returned:

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

Similar to sendAndReceive methods, beginning with version 1.3, the AmqpTemplate has several
convenience receiveAndReply methods for synchronously receiving, processing and replying to
messages:

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback)

 throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S> callback)

 throws AmqpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,

 String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S> callback,

 String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,

 ReplyToAddressCallback<S> replyToAddressCallback) throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S> callback,

 ReplyToAddressCallback<S> replyToAddressCallback) throws AmqpException;

The AmqpTemplate implementation takes care of the 'receive' and 'reply' phases. In most cases
you should provide only an implementation of ReceiveAndReplyCallback to perform some
business logic for the received message and build a reply object or message, if needed. Note, a
ReceiveAndReplyCallback may return null. In this case no reply is sent and receiveAndReply
works like the receive method. This allows the same queue to be used for a mixture of messages,
some of which may not need a reply.

Automatic message (request and reply) conversion is applied only if the provided callback is not
an instance of ReceiveAndReplyMessageCallback - which provides a raw message exchange
contract.

The ReplyToAddressCallback is useful for cases requiring custom logic to determine the replyTo
address at runtime against the received message and reply from the ReceiveAndReplyCallback.
By default, replyTo information in the request message is used to route the reply.

The following is an example of POJO-based receive and reply...

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 26

boolean received =

 this.template.receiveAndReply(ROUTE, new ReceiveAndReplyCallback<Order, Invoice>()

 {

 public Invoice handle(Order order) {

 return processOrder(order);

 }

 });

if (received) {

 log.info("We received an order!");

}

Asynchronous Consumer

Important

Spring AMQP also supports annotated-listener endpoints through the use of the
@RabbitListener annotation and provides an open infrastructure to register endpoints
programmatically. This is by far the most convenient way to setup an asynchronous consumer,
see the section called “Annotation-driven listener endpoints” for more details.

For asynchronous Message reception, a dedicated component (not the AmqpTemplate) is involved.
That component is a container for a Message consuming callback. We will look at the container and its
properties in just a moment, but first we should look at the callback since that is where your application
code will be integrated with the messaging system. There are a few options for the callback starting with
an implementation of the MessageListener interface:

public interface MessageListener {

 void onMessage(Message message);

}

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use
the ChannelAwareMessageListener. It looks similar but with an extra parameter:

public interface ChannelAwareMessageListener {

 void onMessage(Message message, Channel channel) throws Exception;

}

If you prefer to maintain a stricter separation between your application logic and the messaging API,
you can rely upon an adapter implementation that is provided by the framework. This is often referred
to as "Message-driven POJO" support. When using the adapter, you only need to provide a reference
to the instance that the adapter itself should invoke.

MessageListenerAdapter listener = new MessageListenerAdapter(somePojo);

 listener.setDefaultListenerMethod("myMethod");

You can subclass the adapter and provide an implementation of getListenerMethodName() to
dynamically select different methods based on the message.

Now that you've seen the various options for the Message-listening callback, we can turn our attention
to the container. Basically, the container handles the "active" responsibilities so that the listener
callback can remain passive. The container is an example of a "lifecycle" component. It provides
methods for starting and stopping. When configuring the container, you are essentially bridging the
gap between an AMQP Queue and the MessageListener instance. You must provide a reference
to the ConnectionFactory and the queue name or Queue instance(s) from which that listener

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 27

should consume Messages. Here is the most basic example using the default implementation,
SimpleMessageListenerContainer :

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

container.setConnectionFactory(rabbitConnectionFactory);

container.setQueueNames("some.queue");

container.setMessageListener(new MessageListenerAdapter(somePojo));

As an "active" component, it's most common to create the listener container with a bean definition so
that it can simply run in the background. This can be done via XML:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">

 <rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>

</rabbit:listener-container>

Or, you may prefer to use the @Configuration style which will look very similar to the actual code snippet
above:

@Configuration

public class ExampleAmqpConfiguration {

 @Bean

 public SimpleMessageListenerContainer messageListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(rabbitConnectionFactory());

 container.setQueueName("some.queue");

 container.setMessageListener(exampleListener());

 return container;

 }

 @Bean

 public ConnectionFactory rabbitConnectionFactory() {

 CachingConnectionFactory connectionFactory =

 new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

 }

 @Bean

 public MessageListener exampleListener() {

 return new MessageListener() {

 public void onMessage(Message message) {

 System.out.println("received: " + message);

 }

 };

 }

}

Starting with RabbitMQ Version 3.2, the broker now supports consumer priority (see http://
www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/). This is enabled by
setting the x-priority argument on the consumer. The SimpleMessageListenerContainer now
supports setting consumer arguments:

container.setConsumerArguments(Collections. <String, Object> singletonMap("x-priority",

 Integer.valueOf(10)));

For convenience, the namespace provides the priority attribute on the listener element:

http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 28

<rabbit:listener-container connection-factory="rabbitConnectionFactory">

 <rabbit:listener queues="some.queue" ref="somePojo" method="handle" priority="10" />

</rabbit:listener-container>

Starting with version 1.3 the queue(s) on which the container is listening can be modified at runtime;
see Section 3.14, “Listener Container Queues”.

'auto-delete' Queues

When a container is configured to listen to auto-delete queue(s), or the queue has an x-expires
option or the Time-To-Live policy is configured on the Broker, the queue is removed by the broker when
the container is stopped (last consumer is cancelled). Before version 1.3, the container could not be
restarted because the queue was missing; the RabbitAdmin only automatically redeclares queues etc,
when the connection is closed/opens, which does not happen when the container is stopped/started.

Starting with version 1.3, the container will now use a RabbitAdmin to redeclare any missing queues
during startup.

You can also use conditional declaration (the section called “Conditional Declaration”) together with an
auto-startup="false" admin to defer queue declaration until the container is started.

<rabbit:queue id="otherAnon" declared-by="containerAdmin" />

<rabbit:direct-exchange name="otherExchange" auto-delete="true" declared-

by="containerAdmin">

 <rabbit:bindings>

 <rabbit:binding queue="otherAnon" key="otherAnon" />

 </rabbit:bindings>

</rabbit:direct-exchange>

<rabbit:listener-container id="container2" auto-startup="false">

 <rabbit:listener id="listener2" ref="foo" queues="otherAnon" admin="containerAdmin" />

</rabbit:listener-container>

<rabbit:admin id="containerAdmin" connection-factory="rabbitConnectionFactory"

 auto-startup="false" />

In this case, the queue and exchange are declared by containerAdmin which has auto-
startup="false" so the elements are not declared during context initialization. Also, the container
is not started for the same reason. When the container is later started, it uses it's reference to
containerAdmin to declare the elements.

Annotation-driven listener endpoints

Starting with version 1.4, the easiest way to receive a message asynchronously is to use the annotated
listener endpoint infrastructure. In a nutshell, it allows you to expose a method of a managed bean as
a Rabbit listener endpoint.

@Component

public class MyService {

 @RabbitListener(queues = "myQueue")

 public void processOrder(String data) { ... }

}

http://www.rabbitmq.com/ttl.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 29

The idea of the example above is that, whenever a message is available on the
org.springframework.amqp.core.Queue "myQueue", the processOrder method is invoked
accordingly (in this case, with the payload of the message).

The annotated endpoint infrastructure creates a message listener container behind the scenes for each
annotated method, using a RabbitListenerContainerFactory.

Enable listener endpoint annotations

To enable support for @RabbitListener annotations add @EnableRabbit to one of your
@Configuration classes.

@Configuration

@EnableRabbit

public class AppConfig {

 @Bean

 public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {

 SimpleRabbitListenerContainerFactory factory = new

 SimpleRabbitListenerContainerFactory();

 factory.setConnectionFactory(connectionFactory());

 factory.setConcurrentConsumers(3);

 factory.setMaxConcurrentConsumers(10);

 return factory;

 }

}

By default, the infrastructure looks for a bean named rabbitListenerContainerFactory as the
source for the factory to use to create message listener containers. In this case, and ignoring the
RabbitMQ infrastructure setup, the processOrder method can be invoked with a core poll size of 3
threads and a maximum pool size of 10 threads.

It is possible to customize the listener container factory to use per annotation or an explicit default can be
configured by implementing the RabbitListenerConfigurer interface. The default is only required
if at least one endpoint is registered without a specific container factory. See the javadoc for full details
and examples.

If you prefer XML configuration, use the <rabbit:annotation-driven> element.

<rabbit:annotation-driven/>

<bean id="rabbitListenerContainerFactory"

 class="org.springframework.amqp.rabbit.config.SimpleRabbitListenerContainerFactory">

 <property name="connectionFactory" ref="connectionFactory"/>

 <property name="concurrentConsumers" value="3"/>

 <property name="maxConcurrentConsumers" value="10"/>

</bean>

Programmatic Endpoint Registration

RabbitListenerEndpoint provides a model of a Rabbit endpoint and is responsible for configuring
the container for that model. The infrastructure allows you to configure endpoints programmatically in
addition to the ones that are detected by the RabbitListener annotation.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 30

@Configuration

@EnableRabbit

public class AppConfig implements RabbitListenerConfigurer {

 @Override

 public void configureRabbitListeners(RabbitListenerEndpointRegistrar registrar) {

 SimpleRabbitListenerEndpoint endpoint = new SimpleRabbitListenerEndpoint();

 endpoint.setQueueNames("anotherQueue");

 endpoint.setMessageListener(message -> {

 // processing

 });

 registrar.registerEndpoint(endpoint);

 }

}

In the example above, we used SimpleRabbitListenerEndpoint which provides the actual
MessageListener to invoke but you could just as well build your own endpoint variant describing a
custom invocation mechanism.

It should be noted that you could just as well skip the use of @RabbitListener altogether and only
register your endpoints programmatically through RabbitListenerConfigurer.

Annotated Endpoint Method Signature

So far, we have been injecting a simple String in our endpoint but it can actually have a very flexible
method signature. Let’s rewrite it to inject the Order with a custom header:

@Component

public class MyService {

 @RabbitListener(queues = "myQueue")

 public void processOrder(Order order, @Header("order_type") String orderType) {

 ...

 }

}

These are the main elements you can inject in listener endpoints:

• The raw org.springframework.amqp.core.Message.

• The com.rabbitmq.client.Channel on which the message was received

• The org.springframework.messaging.Message representing the incoming AMQP message.
Note that this message holds both the custom and the standard headers (as defined by
AmqpHeaders).

• @Header-annotated method arguments to extract a specific header value, including standard AMQP
headers.

• @Headers-annotated argument that must also be assignable to java.util.Map for getting access
to all headers.

• A non-annotated element that is not one of the supported types (i.e. Message and Channel) is
considered to be the payload. You can make that explicit by annotating the parameter with @Payload.
You can also turn on validation by adding an extra @Valid.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 31

The ability to inject Spring’s Message abstraction is particularly useful to benefit from all the information
stored in the transport-specific message without relying on transport-specific API.

@RabbitListener(queues = "myQueue")

public void processOrder(Message<Order> order) { ... }

Handling of method arguments is provided by DefaultMessageHandlerMethodFactory which can
be further customized to support additional method arguments. The conversion and validation support
can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @Valid and configure the necessary validator as follows:

@Configuration

@EnableRabbit

public class AppConfig implements RabbitListenerConfigurer {

 @Override

 public void configureRabbitListeners(RabbitListenerEndpointRegistrar registrar) {

 registrar.setMessageHandlerMethodFactory(myHandlerMethodFactory());

 }

 @Bean

 public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {

 DefaultMessageHandlerMethodFactory factory = new

 DefaultMessageHandlerMethodFactory();

 factory.setValidator(myValidator());

 return factory;

 }

}

Reply Management

The existing support in MessageListenerAdapter already allows your method to have a non-void
return type. When that’s the case, the result of the invocation is encapsulated in a message sent either in
the address specified in the ReplyToAddress header of the original message or in the default address
configured on the listener. That default address can now be set using the @SendTo annotation of the
messaging abstraction.

Assuming our processOrder method should now return an OrderStatus, it is possible to write it as
follow to automatically send a reply:

@RabbitListener(destination = "myQueue")

@SendTo("status")

public OrderStatus processOrder(Order order) {

 // order processing

 return status;

}

If you need to set additional headers in a transport-independent manner, you could return a Message
instead, something like:

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 32

@RabbitListener(destination = "myQueue")

@SendTo("status")

public Message<OrderStatus> processOrder(Order order) {

 // order processing

 return MessageBuilder

 .withPayload(status)

 .setHeader("code", 1234)

 .build();

}

The @SendTo value is assumed as a reply exchange and routingKey pair following the pattern
exchange/routingKey, where one of those parts can be omitted. The valid values are:

• foo/bar - the replyTo exchange and routingKey.

• foo/ - the replyTo exchange and default (empty) routingKey.

• bar or /bar - the replyTo routingKey and default (empty) exchange.

• / or empty - the replyTo default exchange and default routingKey.

Also @SendTo can be used without a value attribute. This case is equal to an empty sendTo pattern.
@SendTo is only used if the inbound message does not have a replyToAddress property.

Threading and Asynchronous Consumers

A number of different threads are involved with asynchronous consumers.

Threads from the TaskExecutor configured in the SimpleMessageListener are used to invoke
the MessageListener when a new message is delivered by RabbitMQ Client. If not configured, a
SimpleAsyncTaskExecutor is used. If a pooled executor is used, ensure the pool size is sufficient
to handle the configured concurrency.

The Executor configured in the CachingConnectionFactory is passed into the RabbitMQ
Client when creating the connection, and its threads are used to deliver new messages to the listener
container. At the time of writing, if this is not configured, the client uses an internal thread pool executor
with a pool size of 5.

The RabbitMQ client uses a ThreadFactory to create threads for low-level I/O (socket) operations.
To modify this factory, you need to configure the underlying RabbitMQ ConnectionFactory, as
discussed in the section called “Configuring the Underlying Client Connection Factory”.

3.6 Message Converters

The AmqpTemplate also defines several methods for sending and receiving Messages that will
delegate to a MessageConverter. The MessageConverter itself is quite straightforward. It provides
a single method for each direction: one for converting to a Message and another for converting from a
Message. Notice that when converting to a Message, you may also provide properties in addition to the
object. The "object" parameter typically corresponds to the Message body.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 33

public interface MessageConverter {

 Message toMessage(Object object, MessageProperties messageProperties)

 throws MessageConversionException;

 Object fromMessage(Message message) throws MessageConversionException;

}

The relevant Message-sending methods on the AmqpTemplate are listed below. They are simpler than
the methods we discussed previously because they do not require the Message instance. Instead, the
MessageConverter is responsible for "creating" each Message by converting the provided object to
the byte array for the Message body and then adding any provided MessageProperties.

void convertAndSend(Object message) throws AmqpException;

void convertAndSend(String routingKey, Object message) throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message)

 throws AmqpException;

void convertAndSend(Object message, MessagePostProcessor messagePostProcessor)

 throws AmqpException;

void convertAndSend(String routingKey, Object message,

 MessagePostProcessor messagePostProcessor) throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message,

 MessagePostProcessor messagePostProcessor) throws AmqpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies
on the template's "queue" property having been set.

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

Note
The MessageListenerAdapter mentioned in the section called “Asynchronous Consumer”
also uses a MessageConverter.

SimpleMessageConverter

The default implementation of the MessageConverter strategy is called
SimpleMessageConverter. This is the converter that will be used by an instance of RabbitTemplate
if you do not explicitly configure an alternative. It handles text-based content, serialized Java objects,
and simple byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain"), it will also check for the
content-encoding property to determine the charset to be used when converting the Message body
byte array to a Java String. If no content-encoding property had been set on the input Message, it will
use the "UTF-8" charset by default. If you need to override that default setting, you can configure an
instance of SimpleMessageConverter, set its "defaultCharset" property and then inject that into a
RabbitTemplate instance.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 34

If the content-type property value of the input Message is set to "application/x-java-serialized-object", the
SimpleMessageConverter will attempt to deserialize (rehydrate) the byte array into a Java object.
While that might be useful for simple prototyping, it's generally not recommended to rely on Java
serialization since it leads to tight coupling between the producer and consumer. Of course, it also rules
out usage of non-Java systems on either side. With AMQP being a wire-level protocol, it would be
unfortunate to lose much of that advantage with such restrictions. In the next two sections, we'll explore
some alternatives for passing rich domain object content without relying on Java serialization.

For all other content-types, the SimpleMessageConverter will return the Message body content
directly as a byte array.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the SimpleMessageConverter likewise
deals with byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the
case of byte arrays, there is nothing to convert), and it will set the content-type property accordingly. If
the Object to be converted does not match one of those types, the Message body will be null.

JsonMessageConverter and Jackson2JsonMessageConverter

As mentioned in the previous section, relying on Java serialization is generally not recommended. One
rather common alternative that is more flexible and portable across different languages and platforms
is JSON (JavaScript Object Notation). Two implementations are available and can be configured
on any RabbitTemplate instance to override its usage of the SimpleMessageConverter
default. The JsonMessageConverter which uses the org.codehaus.jackson 1.x library and
Jackson2JsonMessageConverter which uses the com.fasterxml.jackson 2.x library.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <property name="connectionFactory" ref="rabbitConnectionFactory"/>

 <property name="messageConverter">

 <bean class="org.springframework.amqp.support.converter.JsonMessageConverter">

 <!-- if necessary, override the DefaultClassMapper -->

 <property name="classMapper" ref="customClassMapper"/>

 </bean>

 </property>

</bean>

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <property name="connectionFactory" ref="rabbitConnectionFactory"/>

 <property name="messageConverter">

 <bean class="org.springframework.amqp.support.converter.Jackson2JsonMessageConverter">

 <!-- if necessary, override the DefaultClassMapper -->

 <property name="classMapper" ref="customClassMapper"/>

 </bean>

 </property>

</bean>

As shown above, the JsonMessageConverter and Jackson2JsonMessageConverter uses
a DefaultClassMapper by default. Type information is added to (and retrieved from) the
MessageProperties. If an inbound message does not contain type information in the
MessageProperties, but you know the expected type, you can configure a static type using the
defaultType property

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 35

<bean id="jsonConverterWithDefaultType"

 class="o.s.amqp.support.converter.JsonMessageConverter">

 <property name="classMapper">

 <bean class="org.springframework.amqp.support.converter.DefaultClassMapper">

 <property name="defaultType" value="foo.PurchaseOrder"/>

 </bean>

 </property>

</bean>

<bean id="jsonConverterWithDefaultType"

 class="o.s.amqp.support.converter.Jackson2JsonMessageConverter">

 <property name="classMapper">

 <bean class="org.springframework.amqp.support.converter.DefaultClassMapper">

 <property name="defaultType" value="foo.PurchaseOrder"/>

 </bean>

 </property>

</bean>

MarshallingMessageConverter

Yet another option is the MarshallingMessageConverter. It delegates to the Spring OXM library's
implementations of the Marshaller and Unmarshaller strategy interfaces. You can read more about
that library here. In terms of configuration, it's most common to provide the constructor argument only
since most implementations of Marshaller will also implement Unmarshaller.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <property name="connectionFactory" ref="rabbitConnectionFactory"/>

 <property name="messageConverter">

 <bean class="org.springframework.amqp.support.converter.MarshallingMessageConverter">

 <constructor-arg ref="someImplemenationOfMarshallerAndUnmarshaller"/>

 </bean>

 </property>

</bean>

3.7 Request/Reply Messaging

The AmqpTemplate also provides a variety of sendAndReceive methods that accept the same
argument options that you have seen above for the one-way send operations (exchange, routingKey,
and Message). Those methods are quite useful for request/reply scenarios since they handle the
configuration of the necessary "reply-to" property before sending and can listen for the reply message
on an exclusive Queue that is created internally for that purpose.

Similar request/reply methods are also available where the MessageConverter is applied to both
the request and reply. Those methods are named convertSendAndReceive. See the Javadoc of
AmqpTemplate for more detail.

By default, a new temporary queue is used for each reply. However, a single reply queue can be
configured on the template, which can be more efficient, and also allows you to set arguments on that
queue. In this case, however, you must also provide a <reply-listener/> sub element. This element
provides a listener container for the reply queue, with the template being the listener. All of the
Section 3.11, “Message Listener Container Configuration” attributes allowed on a <listener-container/>
are allowed on the element, except for connection-factory and message-converter, which are inherited
from the template's configuration.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 36

<rabbit:template id="amqpTemplate"

 connection-factory="connectionFactory" reply-queue="replies">

 <rabbit:reply-listener/>

</rabbit:template>

While the container and template share a connection factory, they do not share a channel and therefore
requests and replies are not performed within the same transaction (if transactional).

Message Correlation With A Reply Queue

When using a fixed reply queue, it is necessary to provide correlation data so that replies can be
correlated to requests. See RabbitMQ Remote Procedure Call (RPC). By default, the standard
correlationId property will be used to hold the correlation data. However, if you wish to use a custom
propertry to hold correlation data, you can set the correlation-key attribute on the <rabbit-template/
>. Explicitly setting the attribute to correlationId is the same as omitting the attribute. Of course,
the client and server must use the same header for correlation data.

Note
Spring AMQP version 1.1 used a custom property spring_reply_correlation for this data.
If you wish to revert to this behavior with the current version, perhaps to maintain compatibility
with another application using 1.1, you must set the attribute to spring_reply_correlation.

Reply Listener Container

When using a fixed reply queue, a SimpleListenerContainer is used to receive the replies;
with the RabbitTemplate being the MessageListener. When defining a template with the
<rabbit:template/> namespace element, as shown above, the parser defines the container and
wires in the template as the listener.

Note
When the template does not use a fixed replyQueue, a listener container is not needed.

If you define your RabbitTemplate as a <bean/>, or using an @Configuration class to define it
as an @Bean, or when creating the template programmatically, you will need to define and wire up the
reply listener container yourself. If you fail to do this, the template will never receive the replies and will
eventually time out and return null as the reply to a call to a sendAndReceive method.

Important
When wiring the reply listener and template yourself, it is important to ensure that the template's
replyQueue and the container's queues (or queueNames) properties refer to the same queue.
The template inserts the reply queue into the outbound message replyTo property.

The following are examples of how to manually wire up the beans.

http://www.rabbitmq.com/tutorials/tutorial-six-java.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 37

<bean id="amqpTemplate" class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <constructor-arg ref="connectionFactory" />

 <property name="exchange" value="foo.exchange" />

 <property name="routingKey" value="foo" />

 <property name="replyQueue" ref="replyQ" />

 <property name="replyTimeout" value="600000" />

</bean>

<bean class="org.springframework.amqp.rabbit.listener.SimpleMessageListenerContainer">

 <constructor-arg ref="connectionFactory" />

 <property name="queues" ref="replyQ" />

 <property name="messageListener" ref="amqpTemplate" />

</bean>

<rabbit:queue id="replyQ" name="my.reply.queue" />

 @Bean

 public RabbitTemplate amqpTemplate() {

 RabbitTemplate rabbitTemplate = new RabbitTemplate(connectionFactory());

 rabbitTemplate.setMessageConverter(msgConv());

 rabbitTemplate.setReplyQueue(replyQueue());

 rabbitTemplate.setReplyTimeout(60000);

 return rabbitTemplate;

 }

 @Bean

 public SimpleMessageListenerContainer replyListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(connectionFactory());

 container.setQueues(replyQueue());

 container.setMessageListener(amqpTemplate());

 return container;

 }

 @Bean

 public Queue replyQueue() {

 return new Queue("my.reply.queue");

 }

A complete example of a RabbitTemplate wired with a fixed reply queue, together with a "remote"
listener container that handles the request and returns the reply is shown in this test case.

Important

When the reply times out (replyTimeout), the sendAndReceive() methods return null.

Prior to version 1.3.6, late replies for timed out messages were simply logged. Now, if a late reply
is received, it is rejected (the template throws an AmqpRejectAndDontRequeueException).
If the reply queue is configured to send rejected messages to a dead letter exchange, the reply
can be retrieved for later analysis. Simply bind a queue to the configured dead letter exchange
with a routing key equal to the reply queue's name.

Refer to the RabbitMQ Dead Letter Documentation for more information about configuring dead
lettering. You can also take a look at the FixedReplyQueueDeadLetterTests test case for
an example.

https://github.com/spring-projects/spring-amqp/tree/master/spring-rabbit/src/test/java/org/springframework/amqp/rabbit/listener/JavaConfigFixedReplyQueueTests.java
https://www.rabbitmq.com/dlx.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 38

Spring Remoting with AMQP

The Spring Framework has a general remoting capability, allowing Remote Procedure Calls (RPC)
using various transports. Spring-AMQP supports a similar mechanism with a AmqpProxyFactoryBean
on the client and a AmqpInvokerServiceExporter on the server. This provides RPC over AMQP.
On the client side, a RabbitTemplate is used as described above; on the server side, the invoker
(configured as a MessageListener) receives the message, invokes the configured service, and
returns the reply using the inbound message's replyTo information.

The client factory bean can be injected into any bean (using its serviceInterface); the client can
then invoke methods on the proxy, resulting in remote execution over AMQP.

Note

With the default MessageConverters, the method paramters and returned value must be
instances of Serializable.

On the server side, the AmqpInvokerServiceExporter has both AmqpTemplate and
MessageConverter properties. Currently, the template's MessageConverter is not used.
If you need to supply a custom message converter, then you should provide it using the
messageConverter property. On the client side, a custom message converter can be
added to the AmqpTemplate which is provided to the AmqpProxyFactoryBean using its
amqpTemplate property.

Sample client and server configurations are shown below.

<bean id="client"

 class="org.springframework.amqp.remoting.client.AmqpProxyFactoryBean">

 <property name="amqpTemplate" ref="template" />

 <property name="serviceInterface" value="foo.ServiceInterface" />

</bean>

<rabbit:connection-factory id="connectionFactory" />

<rabbit:template id="template" connection-factory="connectionFactory" reply-timeout="2000"

 routing-key="remoting.binding" exchange="remoting.exchange" />

<rabbit:admin connection-factory="connectionFactory" />

<rabbit:queue name="remoting.queue" />

<rabbit:direct-exchange name="remoting.exchange">

 <rabbit:bindings>

 <rabbit:binding queue="remoting.queue" key="remoting.binding" />

 </rabbit:bindings>

</rabbit:direct-exchange>

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/remoting.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 39

<bean id="listener"

 class="org.springframework.amqp.remoting.service.AmqpInvokerServiceExporter">

 <property name="serviceInterface" value="foo.ServiceInterface" />

 <property name="service" ref="service" />

 <property name="amqpTemplate" ref="template" />

</bean>

<bean id="service" class="foo.ServiceImpl" />

<rabbit:connection-factory id="connectionFactory" />

<rabbit:template id="template" connection-factory="connectionFactory" />

<rabbit:queue name="remoting.queue" />

<rabbit:listener-container connection-factory="connectionFactory">

 <rabbit:listener ref="listener" queue-names="remoting.queue" />

</rabbit:listener-container>

Important
The AmqpInvokerServiceExporter can only process properly formed messages, such as
those sent from the AmqpProxyFactoryBean. If it receives a message that it cannot interpret, a
serialized RuntimeException will be sent as a reply. If the message has no replyToAddress
property, the message will be rejected and permanently lost if no Dead Letter Exchange has
been configured.

3.8 Configuring the broker

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and
Bindings on the broker. These operations which are portable from the 0.8 specification and higher are
present in the AmqpAdmin interface in the org.springframework.amqp.core package. The RabbitMQ
implementation of that class is RabbitAdmin located in the org.springframework.amqp.rabbit.core
package.

The AmqpAdmin interface is based on using the Spring AMQP domain abstractions and is shown below:

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 40

public interface AmqpAdmin {

 // Exchange Operations

 void declareExchange(Exchange exchange);

 void deleteExchange(String exchangeName);

 // Queue Operations

 Queue declareQueue();

 String declareQueue(Queue queue);

 void deleteQueue(String queueName);

 void deleteQueue(String queueName, boolean unused, boolean empty);

 void purgeQueue(String queueName, boolean noWait);

 // Binding Operations

 void declareBinding(Binding binding);

 void removeBinding(Binding binding);

 Properties getQueueProperties(String queueName);

}

The no-arg declareQueue() method defines a queue on the broker whose name is automatically
generated. The additional properties of this auto-generated queue are exclusive=true,
autoDelete=true, and durable=false.

The declareQueue(Queue queue) method takes a Queue object and returns the name of the
declared queue. This is useful if you wish the broker to generate the queue's name. This is in contrast
to an AnonymousQueue where the framework generates a unique (UUID) name and sets durable to
false and exlusive, autoDelete to true. If the provided Queue's name property is an empty
String, the Broker declares the queue with a generated name and that name is returned to the caller.
The Queue object itself is not changed. This functionality can only be used programmatically by invoking
the RabbitAdmin directly. It is not supported for auto-declaration by the admin by defining a queue
declaratively in the application context. A <rabbit:queue/> with an empty, or missing, name will
always create an AnonymousQueue. This is because the name will change if redeclared due to a
connection failure. Declarative queues must have fixed names because they might be referenced
elsewhere in the context, for example, in a listener:

<rabbit:listener-container>

 <rabbit:listener ref="listener" queue-names="#{someQueue.name}" />

</rabbit:listener-container>

See the section called “Automatic Declaration of Exchanges, Queues and Bindings”.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring
XML would look like this:

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:admin id="amqpAdmin" connection-factory="connectionFactory"/>

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 41

When the CachingConnectionFactory cache mode is CHANNEL (the default), the RabbitAdmin
implementation does automatic lazy declaration of Queues, Exchanges and Bindings declared in
the same ApplicationContext. These components will be declared as son as a Connection is
opened to the broker. There are some namespace features that make this very convenient, e.g. in the
Stocks sample application we have:

<rabbit:queue id="tradeQueue"/>

<rabbit:queue id="marketDataQueue"/>

<fanout-exchange name="broadcast.responses"

 xmlns="http://www.springframework.org/schema/rabbit">

 <bindings>

 <binding queue="tradeQueue"/>

 </bindings>

</fanout-exchange>

<topic-exchange name="app.stock.marketdata"

 xmlns="http://www.springframework.org/schema/rabbit">

 <bindings>

 <binding queue="marketDataQueue" pattern="${stocks.quote.pattern}"/>

 </bindings>

</topic-exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names
generated by the framework, not by the broker) and refer to them by ID. We can also declare Queues
with explicit names, which also serve as identifiers for their bean definitions in the context. E.g.

<rabbit:queue name="stocks.trade.queue"/>

Tip
You can provide both an id and a name attribute. This allows you to refer to the queue (for
example in a binding) by an id that is independent of the queue name. It also allows standard
Spring features such as property placeholders, and SpEL expressions for the queue name; these
features are not available when using the name as the bean identifier.

Queues can be configured with additional arguments, for example, 'x-message-ttl' or 'x-ha-policy'. Using
the namespace support, they are provided in the form of a Map of argument name/argument value pairs,
using the <rabbit:queue-arguments> element.

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-ha-policy" value="all"/>

 </rabbit:queue-arguments>

</rabbit:queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs
to be provided.

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments value-type="java.lang.Long">

 <entry key="x-message-ttl" value="100"/>

 </rabbit:queue-arguments>

</rabbit:queue>

When providing arguments of mixed types, the type is provided for each entry element:

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 42

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-message-ttl">

 <value type="java.lang.Long">100</value>

 </entry>

 <entry key="x-ha-policy" value="all"/>

 </rabbit:queue-arguments>

</rabbit:queue>

With Spring Framework 3.2 and later, this can be declared a little more succinctly:

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-message-ttl" value="100" value-type="java.lang.Long"/>

 <entry key="x-ha-policy" value="all"/>

 </rabbit:queue-arguments>

</rabbit:queue>

Important

The RabbitMQ broker will not allow declaration of a queue with mismatched arguments. For
example, if a queue already exists with no time to live argument, and you attempt to declare
it with, say, key="x-message-ttl" value="100", an exception will be thrown.

By default, the RabbitAdmin will immediately stop processing all declarations when any
exception occurs; this could cause downstream issues - such as a listener container failing to
initialize because another queue (defined after the one in error) is not declared.

This behavior can be modified by setting the ignore-declaration-failures attribute to
true on the RabbitAdmin. This option instructs the RabbitAdmin to log the exception, and
continue declaring other elements.

Starting with version 1.3 the HeadersExchange can be configured to match on multiple headers; you
can also specify whether any or all headers must match:

<rabbit:headers-exchange name="headers-test">

 <rabbit:bindings>

 <rabbit:binding queue="bucket">

 <rabbit:binding-arguments>

 <entry key="foo" value="bar"/>

 <entry key="baz" value="qux"/>

 <entry key="x-match" value="all"/>

 </rabbit:binding-arguments>

 </rabbit:binding>

 </rabbit:bindings>

</rabbit:headers-exchange>

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample
application, where there is the @Configuration class AbstractStockRabbitConfiguration
which in turn has RabbitClientConfiguration and RabbitServerConfiguration subclasses. The code for
AbstractStockRabbitConfiguration is shown below

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 43

@Configuration

public abstract class AbstractStockAppRabbitConfiguration {

 @Bean

 public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory =

 new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

 }

 @Bean

 public RabbitTemplate rabbitTemplate() {

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 template.setMessageConverter(jsonMessageConverter());

 configureRabbitTemplate(template);

 return template;

 }

 @Bean

 public MessageConverter jsonMessageConverter() {

 return new JsonMessageConverter();

 }

 @Bean

 public TopicExchange marketDataExchange() {

 return new TopicExchange("app.stock.marketdata");

 }

 // additional code omitted for brevity

}

In the Stock application, the server is configured using the following @Configuration class:

@Configuration

public class RabbitServerConfiguration extends AbstractStockAppRabbitConfiguration {

 @Bean

 public Queue stockRequestQueue() {

 return new Queue("app.stock.request");

 }

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. There is no binding
of the TopicExchange to a queue in the server configuration, as that is done in the client application.
The stock request queue however is automatically bound to the AMQP default exchange - this behavior
is defined by the specification.

The client @Configuration class is a little more interesting and is shown below.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 44

@Configuration

public class RabbitClientConfiguration extends AbstractStockAppRabbitConfiguration {

 @Value("${stocks.quote.pattern}")

 private String marketDataRoutingKey;

 @Bean

 public Queue marketDataQueue() {

 return amqpAdmin().declareQueue();

 }

 /**

 * Binds to the market data exchange. Interested in any stock quotes

 * that match its routing key.

 */

 @Bean

 public Binding marketDataBinding() {

 return BindingBuilder.bind(

 marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

 }

 // additional code omitted for brevity

}

The client is declaring another queue via the declareQueue() method on the AmqpAdmin, and it binds
that queue to the market data exchange with a routing pattern that is externalized in a properties file.

Conditional Declaration

By default, all queues, exchanges, and bindings are declared by all RabbitAdmin instances (that
have auto-startup="true") in the application context.

Note
Starting with the 1.2 release, it is possible to conditionally declare these elements. This is
particularly useful when an application connects to multiple brokers and needs to specify with
which broker(s) a particular element should be declared.

The classes representing these elements implement Declarable which has two methods:
shouldDeclare() and getDeclaringAdmins(). The RabbitAdmin uses these methods to
determine whether a particular instance should actually process the declarations on its Connection.

The properties are available as attributes in the namespace, as shown in the following examples.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 45

<rabbit:admin id="admin1" connection-factory="CF1" />

<rabbit:admin id="admin2" connection-factory="CF2" />

<rabbit:queue id="declaredByBothAdminsImplicitly" />

<rabbit:queue id="declaredByBothAdmins" declared-by="admin1, admin2" />

<rabbit:queue id="declaredByAdmin1Only" declared-by="admin1" />

<rabbit:queue id="notDeclaredByAny" auto-declare="false" />

<rabbit:direct-exchange name="direct" declared-by="admin1, admin2">

 <rabbit:bindings>

 <rabbit:binding key="foo" queue="bar"/>

 </rabbit:bindings>

</rabbit:direct-exchange>

Note
The auto-declare attribute is true by default and if the declared-by is not supplied (or is
empty) then all RabbitAdmins will declare the object (as long as the admin's auto-startup
attribute is true; the default).

Similarly, you can use Java-based @Configuration to achieve the same effect. In this example, the
components will be declared by admin1 but not admin2:

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 46

@Bean

public RabbitAdmin admin() {

 RabbitAdmin rabbitAdmin = new RabbitAdmin(cf1());

 rabbitAdmin.afterPropertiesSet();

 return rabbitAdmin;

}

@Bean

public RabbitAdmin admin2() {

 RabbitAdmin rabbitAdmin = new RabbitAdmin(cf2());

 rabbitAdmin.afterPropertiesSet();

 return rabbitAdmin;

}

@Bean

public Queue queue() {

 Queue queue = new Queue("foo");

 queue.setAdminsThatShouldDeclare(admin());

 return queue;

}

@Bean

public Exchange exchange() {

 DirectExchange exchange = new DirectExchange("bar");

 exchange.setAdminsThatShouldDeclare(admin());

 return exchange;

}

@Bean

public Binding binding() {

 Binding binding = new Binding("foo", DestinationType.QUEUE, exchange().getName(), "foo",

 null);

 binding.setAdminsThatShouldDeclare(admin());

 return binding;

}

3.9 Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For example,
there are a lot of cases where IOExceptions may be thrown. The RabbitTemplate,
SimpleMessageListenerContainer, and other Spring AMQP components will catch those Exceptions
and convert into one of the Exceptions within our runtime hierarchy. Those are defined in the
'org.springframework.amqp' package, and AmqpException is the base of the hierarchy.

When a listener throws an exception, it is wrapped in a ListenerExecutionFailedException and,
normally the message is rejected and requeued by the broker. Setting defaultRequeueRejected
to false will cause messages to be discarded (or routed to a dead letter exchange). As discussed
in the section called “Message Listeners and the Asynchronous Case”, the listener can throw an
AmqpRejectAndDontRequeueException to conditionally control this behavior.

However, there is a class of errors where the listener cannot control the behavior. When a message
that cannot be converted is encountered (for example an invalid content_encoding header),
the MessageConversionException is thrown before the message reaches user code. With
defaultRequeueRejected set to true (default), such messages would be redelivered over and
over. Before version 1.3.2, users needed to write a custom ErrorHandler, as discussed in Section 3.9,
“Exception Handling” to avoid this situation.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 47

Starting with version 1.3.2, the default ErrorHandler is now a
ConditionalRejectingErrorHandler which will reject (and not requeue) messages that fail
with a MessageConversionException. An instance of this error handler can be configured
with a FatalExceptionStrategy so users can provide their own rules for conditional message
rejection, e.g. a delegate implementation to the BinaryExceptionClassifier from Spring
Retry (the section called “Message Listeners and the Asynchronous Case”). In addition, the
ListenerExecutionFailedException now has a failedMessage property which can be used in
the decision. If the FatalExceptionStrategy.isFatal() method returns true, the error handler
throws an AmqpRejectAndDontRequeueException. The default FatalExceptionStrategy logs a
warning message.

3.10 Transactions

The Spring Rabbit framework has support for automatic transaction management in the synchronous
and asynchronous use cases with a number of different semantics that can be selected declaratively,
as is familiar to existing users of Spring transactions. This makes many if not most common messaging
patterns very easy to implement.

There are two ways to signal the desired transaction semantics to the framework. In both the
RabbitTemplate and SimpleMessageListenerContainer there is a flag channelTransacted
which, if true, tells the framework to use a transactional channel and to end all operations
(send or receive) with a commit or rollback depending on the outcome, with an exception
signaling a rollback. Another signal is to provide an external transaction with one of Spring's
PlatformTransactionManager implementations as a context for the ongoing operation. If there
is already a transaction in progress when the framework is sending or receiving a message, and the
channelTransacted flag is true, then the commit or rollback of the messaging transaction will be
deferred until the end of the current transaction. If the channelTransacted flag is false, then no
transaction semantics apply to the messaging operation (it is auto-acked).

The channelTransacted flag is a configuration time setting: it is declared and processed once when
the AMQP components are created, usually at application startup. The external transaction is more
dynamic in principle because the system responds to the current Thread state at runtime, but in practice
is often also a configuration setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with RabbitTemplate the external transaction is provided by the caller,
either declaratively or imperatively according to taste (the usual Spring transaction model). An example
of a declarative approach (usually preferred because it is non-invasive), where the template has been
configured with channelTransacted=true:

@Transactional

public void doSomething() {

 String incoming = rabbitTemplate.receiveAndConvert();

 // do some more database processing...

 String outgoing = processInDatabaseAndExtractReply(incoming);

 rabbitTemplate.convertAndSend(outgoing);

}

A String payload is received, converted and sent as a message body inside a method marked as
@Transactional, so if the database processing fails with an exception, the incoming message will be
returned to the broker, and the outgoing message will not be sent. This applies to any operations with the
RabbitTemplate inside a chain of transactional methods (unless the Channel is directly manipulated
to commit the transaction early for instance).

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 48

For asynchronous use cases with SimpleMessageListenerContainer if an external transaction is
needed it has to be requested by the container when it sets up the listener. To signal that an external
transaction is required the user provides an implementation of PlatformTransactionManager to
the container when it is configured. For example:

@Configuration

public class ExampleExternalTransactionAmqpConfiguration {

 @Bean

 public SimpleMessageListenerContainer messageListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(rabbitConnectionFactory());

 container.setTransactionManager(transactionManager());

 container.setChannelTransacted(true);

 container.setQueueName("some.queue");

 container.setMessageListener(exampleListener());

 return container;

 }

}

In the example above, the transaction manager is added as a dependency injected from another bean
definition (not shown), and the channelTransacted flag is also set to true. The effect is that if
the listener fails with an exception the transaction will be rolled back, and the message will also be
returned to the broker. Significantly, if the transaction fails to commit (e.g. a database constraint error,
or connectivity problem), then the AMQP transaction will also be rolled back, and the message will
be returned to the broker. This is sometimes known as a Best Efforts 1 Phase Commit, and is a very
powerful pattern for reliable messaging. If the channelTransacted flag was set to false in the example
above, which is the default, then the external transaction would still be provided for the listener, but all
messaging operations would be auto-acked, so the effect is to commit the messaging operations even
on a rollback of the business operation.

A note on Rollback of Received Messages

AMQP transactions only apply to messages and acks sent to the broker, so when there is a rollback
of a Spring transaction and a message has been received, what Spring AMQP has to do is not just
rollback the transaction, but also manually reject the message (sort of a nack, but that's not what the
specification calls it). The action taken on message rejection is independent of transactions and depends
on the defaultRequeueRejected property (default true). For more information about rejecting
failed messages, see the section called “Message Listeners and the Asynchronous Case”.

For more information about RabbitMQ transactions, and their limitations, refer to RabbitMQ Broker
Semantics.

Note
Prior to RabbitMQ 2.7.0, such messages (and any that are unacked when a channel is closed
or aborts) went to the back of the queue on a Rabbit broker, since 2.7.0, rejected messages go
to the front of the queue, in a similar manner to JMS rolled back messages.

Using the RabbitTransactionManager

The RabbitTransactionManager is an alternative to executing Rabbit operations within, and
synchronized with, external transactions. This Transaction Manager is an implementation of the
PlatformTransactionManager interface and should be used with a single Rabbit ConnectionFactory.

http://www.rabbitmq.com/semantics.html
http://www.rabbitmq.com/semantics.html
http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 49

Important
This strategy is not able to provide XA transactions, for example in order to share transactions
between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources
via ConnectionFactoryUtils.getTransactionalResourceHolder(ConnectionFactory,
boolean) instead of a standard Connection.createChannel() call with subsequent Channel
creation. When using Spring's RabbitTemplate, it will autodetect a thread-bound Channel and
automatically participate in it.

With Java Configuration you can setup a new RabbitTransactionManager using:

@Bean

public RabbitTransactionManager rabbitTransactionManager() {

 return new RabbitTransactionManager(connectionFactory);

}

If you prefer using XML configuration, declare the following bean in your XML Application Context file:

<bean id="rabbitTxManager"

 class="org.springframework.amqp.rabbit.transaction.RabbitTransactionManager">

 <property name="connectionFactory" ref="connectionFactory"/>

</bean>

3.11 Message Listener Container Configuration

There are quite a few options for configuring a SimpleMessageListenerContainer related to
transactions and quality of service, and some of them interact with each other.

The table below shows the container property names and their equivalent attribute names
(in parentheses) when using the namespace to configure a <rabbit:message-listener-
container/>

. Some properties are not exposed by the namespace; indicated by N/A for the attribute.

Table 3.1. Configuration options for a message listener container

Property
(Attribute)

Description

channelTransacted
(channel-transacted)

Boolean flag to signal that all messages should be
acknowledged in a transaction (either manually or
automatically)

acknowledgeMode
(acknowledge)

NONE = no acks will be sent (incompatible with
channelTransacted=true). RabbitMQ calls this
"autoack" because the broker assumes all messages
are acked without any action from the consumer.
MANUAL = the listener must acknowledge all messages
by calling Channel.basicAck(). AUTO = the
container will acknowledge the message automatically,
unless the MessageListener throws an exception.
Note that acknowledgeMode is complementary to
channelTransacted - if the channel is transacted then the

http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 50

Property
(Attribute)

Description

broker requires a commit notification in addition to the ack.
This is the default mode. See also txSize.

transactionManager
(transaction-manager)

External transaction manager for the operation of the
listener. Also complementary to channelTransacted - if
the Channel is transacted then its transaction will be
synchronized with the external transaction.

prefetchCount
(prefetch)

The number of messages to accept from the broker in one
socket frame. The higher this is the faster the messages
can be delivered, but the higher the risk of non-sequential
processing. Ignored if the acknowledgeMode is NONE.
This will be increased, if necessary, to match the txSize.

shutdownTimeout
(N/A)

When a container shuts down (e.g. if its enclosing
ApplicationContext is closed) it waits for in-flight
messages to be processed up to this limit. Defaults to 5
seconds. After the limit is reached, if the channel is not
transacted messages will be discarded.

txSize
(transaction-size)

When used with acknowledgeMode AUTO, the container
will attempt to process up to this number of messages
before sending an ack (waiting for each one up to the
receive timeout setting). This is also when a transactional
channel is committed. If the prefetchCount is less than
the txSize, it will be increased to match the txSize.

receiveTimeout
(receive-timeout)

The maximum time to wait for each message. If
acknowledgeMode=NONE this has very little effect - the
container just spins round and asks for another message.
It has the biggest effect for a transactional Channel
with txSize > 1, since it can cause messages already
consumed not to be acknowledged until the timeout
expires.

autoStartup
(auto-startup)

Flag to indicate that the container should start when
the ApplicationContext does (as part of the
SmartLifecycle callbacks which happen after all beans
are initialized). Defaults to true, but set it to false if your
broker might not be available on startup, and then call
start() later manually when you know the broker is
ready.

phase
(phase)

When autoStartup is true, the lifecycle phase within which
this container should start and stop. The lower the value
the earlier this container will start and the later it will stop.
The default is Integer.MAX_VALUE meaning the container
will start as late as possible and stop as soon as possible.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 51

Property
(Attribute)

Description

adviceChain
(advice-chain)

An array of AOP Advice to apply to the listener execution.
This can be used to apply additional cross cutting concerns
such as automatic retry in the event of broker death. Note
that simple re-connection after an AMQP error is handled
by the CachingConnectionFactory, as long as the
broker is still alive.

taskExecutor
(task-executor)

A reference to a Spring TaskExecutor (or standard JDK
1.5+ Executor) for executing listener invokers. Default is
a SimpleAsyncTaskExecutor, using internally managed
threads.

errorHandler
(error-handler)

A reference to an ErrorHandler strategy for handling
any uncaught Exceptions that may occur during
the execution of the MessageListener. Default:
ConditionalRejectingErrorHandler

concurrentConsumers
(concurrency)

The number of concurrent consumers to initially start for
each listener. See Section 3.12, “Listener Concurrency”.

maxConcurrentConsumers
(max-concurrency)

The maximum number of concurrent consumers to start,
if needed, on demand. Must be greater than or equal
to 'concurrentConsumers'. See Section 3.12, “Listener
Concurrency”.

startConsumerMinInterval
(min-start-interval)

The time in milliseconds which must elapse before each
new consumer is started on demand. See Section 3.12,
“Listener Concurrency”. Default 10000 (10 seconds).

stopConsumerMinInterval
(min-stop-interval)

The time in milliseconds which must elapse before a
consumer is stopped, since the last consumer was
stopped, when an idle consumer is detected. See
Section 3.12, “Listener Concurrency”. Default 60000 (1
minute).

consecutiveActiveTrigger
(min-consecutive-active)

The minimum number of consecutive messages received
by a consumer, without a receive timeout occurring, when
considering starting a new consumer. Also impacted by
'txSize'. See Section 3.12, “Listener Concurrency”. Default
10.

consecutiveIdleTrigger
(min-consecutive-idle)

The minimum number of receive timeouts a consumer
must experience before considering stopping a consumer.
Also impacted by 'txSize'. See Section 3.12, “Listener
Concurrency”. Default 10. .

connectionFactory
(connection-factory)

A reference to the connectionFactory; when configuring
using the XML namespace, the default referenced bean
name is "rabbitConnectionFactory".

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 52

Property
(Attribute)

Description

defaultRequeueRejected
(requeue-rejected)

Determines whether messages that are rejected because
the listener threw an exception should be requeued or not.
Default 'true'.

recoveryInterval
(recovery-interval)

Determines the time in milliseconds between attempts to
start a consumer if it fails to start for non-fatal reasons.
Default '5000'.

exclusive
(exclusive)

Determines whether the single consumer in this container
has exclusive access to the queue(s). The concurrency
of the container must be 1 when this is true. If another
consumer has exclusive access, the container will attempt
to recover the consumer, according to the recovery-
interval. When using the namespace, this attribute
appears on the <rabbit:listener/> element along with the
queue names. Default 'false'.

rabbitAdmin
(admin)

When a listener container listens to at least one auto-
delete queue and it is found to be missing during startup,
the container uses a RabbitAdmin to declare the queue
and any related bindings and exchanges. If such elements
are configured to use conditional declaration (see the
section called “Conditional Declaration”), the container
must use the admin that was configured to declare those
elements. Specify that admin here; only required when
using auto-delete queues with conditional declaration. If
you do not wish the auto-delete queue(s) to be declared
until the container is started, set auto-startup to false
on the admin. Defaults to a RabbitAdmin that will declare
all non-conditional elements.

missingQueuesFatal
(missing-queues-fatal)

Starting with version 1.3.5,
SimpleMessageListenerContainer has this new
property.

When set to true (default), if none of the configured
queues are available on the broker, it is considered fatal.
This causes the application context to fail to initialize
during startup; also, when the queues are deleted while the
container is running, the consumers make 3 attempts to
connect to the queues (at 5 second intervals) and stop the
container if these attempts fail.

This was not configurable in previous versions.

When set to false, after making the 3 attempts,
the container will go into recovery mode, as with
other problems, such as the broker being down. The

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 53

Property
(Attribute)

Description

container will attempt to recover according to the
recoveryInterval property. During each recovery
attempt, each consumer will again try 3 times to passively
declare the queues at 5 second intervals. This process will
continue indefinitely.

You can also use a properties bean to set the property
globally for all containers, as follows:

<util:properties id="spring.amqp.global.properties">

 <prop key="smlc.missing.queues.fatal">false</

prop>

</util:properties>

This global property will not be applied to any containers
that have an explicit missingQueuesFatal property set.

autoDeclare (auto-declare) Starting with version 1.4,
SimpleMessageListenerContainer has this new
property.

When set to true (default), the container will redeclare all
AMQP objects (Queues, Exchanges, Bindings), if it detects
that at least one of its queues is missing during startup,
perhaps because it's an auto-delete or an expired
queue, but the redeclaration will proceed if the queue is
missing for any reason. To disable this behavior, set this
property to false. Note that the container will fail to start if
all of its queues are missing.

3.12 Listener Concurrency

By default, the listener container will start a single consumer which will receive messages from the
queue(s).

When examining the table in the previous section, you will see a number of properties/attributes that
control concurrency. The simplest is concurrentConsumers, which simply creates that (fixed) number
of consumers which will concurrently process messages.

Prior to version 1.3.0, this was the only setting available and the container had to be stopped and started
again to change the setting.

Since version 1.3.0, you can now dynamically adjust the concurrentConsumers property. If it is
changed while the container is running, consumers will be added or removed as necessary to adjust
to the new setting.

In addition, a new property maxConcurrentConsumers has been added and the container
will dynamically adjust the concurrency based on workload. This works in conjunction
with four additional properties: consecutiveActiveTrigger, startConsumerMinInterval,

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 54

consecutiveIdleTrigger, stopConsumerMinInterval. With the default settings, the algorithm
to increase consumers works as follows:

If the maxConcurrentConsumers has not been reached and an existing consumer is active for 10
consecutive cycles AND at least 10 seconds has elapsed since the last consumer was started, a new
consumer is started. A consumer is considered active if it received at least one message in txSize *
receiveTimeout milliseconds.

With the default settings, the algorithm to decrease consumers works as follows:

If there are more than concurrentConsumers running and a consumer detects 10 consecutive
timeouts (idle) AND the last consumer was stopped at least 60 seconds ago, a consumer will be stopped.
The timeout depends on the receiveTimeout and the txSize properties. A consumer is considered
idle if it receives no messages in txSize * receiveTimeout milliseconds. So, with the default timeout
(1 second) and a txSize of 4, stopping a consumer will be considered after 40 seconds of idle time
(4 timeouts correspond to 1 idle detection).

Note
Practically, consumers will only be stopped if the whole container is idle for some time. This is
because the broker will share its work across all the active consumers.

3.13 Exclusive Consumer

Also starting with version 1.3, the listener container can be configured with a single exclusive consumer;
this prevents other containers from consuming from the queue(s) until the current consumer is cancelled.
The concurrency of such a container must be 1.

When using exclusive consumers, other containers will attempt to consume from the queue(s) according
to the recoveryInterval property, and log a WARNing if the attempt fails.

3.14 Listener Container Queues

Version 1.3 introduced a number of improvements for handling multiple queues in a listener container.

The container must be configured to listen on at least one queue; this was the case previously too, but
now queues can be added and removed at runtime. The container will recycle (cancel and re-create)
the consumers when any pre-fetched messages have been processed. See methods addQueues,
addQueueNames, removeQueues and removeQueueNames. When removing queues, at least one
queue must remain.

A consumer will now start if any of its queues are available - previously the container would stop if any
queues were unavailable. Now, this is only the case if none of the queues are available. If not all queues
are available, the container will attempt to passively declare (and consume from) the missing queue(s)
every 60 seconds.

Also, if a consumer receives a cancel from the broker (for example if a queue is deleted) the consumer
will attempt to recover and the recovered consumer will continue to process messages from any other
configured queues. Previously a cancel on one queue cancelled the entire consumer and eventually
the container would stop due to the missing queue.

If you wish to permanently remove a queue, you should update the container before or after deleting to
queue, to avoid future attempts to consume from it.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 55

3.15 Resilience: Recovering from Errors and Broker Failures

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with
recovery and automatic re-connection in the event of a protocol error or broker failure. We have seen
all the relevant components already in this guide, but it should help to bring them all together here and
call out the features and recovery scenarios individually.

The primary reconnection features are enabled by the CachingConnectionFactory

itself. It is also often beneficial to use the RabbitAdmin auto-declaration features. In
addition, if you care about guaranteed delivery, you probably also need to use the
channelTransacted flag in RabbitTemplate and SimpleMessageListenerContainer

and also the AcknowledgeMode.AUTO (or manual if you do the acks yourself) in the
SimpleMessageListenerContainer.

Automatic Declaration of Exchanges, Queues and Bindings

The RabbitAdmin component can declare exchanges, queues and bindings on startup. It does this
lazily, through a ConnectionListener, so if the broker is not present on startup it doesn't matter. The
first time a Connection is used (e.g. by sending a message) the listener will fire and the admin features
will be applied. A further benefit of doing the auto declarations in a listener is that if the connection is
dropped for any reason (e.g. broker death, network glitch, etc.) they will be applied again the next time
they are needed.

Note
Queues declared this way must have fixed names; either explicitly declared, or generated by the
framework for AnonymousQueues. Anonymous queues are non-durable, exclusive, and auto-
delete.

Important
Automatic declaration is only performed when the CachingConnectionFactory cache mode
is CHANNEL (the default). This limitation exists because exlusive and auto-delete queues are
bound to the connection.

Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using RabbitTemplate
(for instance), then Spring AMQP will throw an AmqpException (usually but not always
AmqpIOException). We don't try to hide the fact that there was a problem, so you have to be able to
catch and respond to the exception. The easiest thing to do if you suspect that the connection was lost,
and it wasn't your fault, is to simply try the operation again. You can do this manually, or you could look
at using Spring Retry to handle the retry (imperatively or declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the
parameters of the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP
also provides some convenience factory beans for creating Spring Retry interceptors in a convenient
form for AMQP use cases, with strongly typed callback interfaces for you to implement custom
recovery logic. See the Javadocs and properties of StatefulRetryOperationsInterceptor and
StatelessRetryOperationsInterceptor for more detail. Stateless retry is appropriate if there is
no transaction or if a transaction is started inside the retry callback. Note that stateless retry is simpler to
configure and analyse than stateful retry, but it is not usually appropriate if there is an ongoing transaction
which must be rolled back or definitely is going to roll back. A dropped connection in the middle of a

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 56

transaction should have the same effect as a rollback, so for reconnection where the transaction is
started higher up the stack, stateful retry is usually the best choice.

Starting with version 1.3, a builder API is provided to aid in assembling these interceptors using Java
(or in @Configuration classes), for example:

@Bean

public StatefulRetryOperationsInterceptor interceptor() {

 return RetryInterceptorBuilder.stateful()

 .maxAttempts(5)

 .backOffOptions(1000, 2.0, 10000) // initialInterval, multiplier, maxInterval

 .build();

}

Only a subset of retry capabilities can be configured this way; more advanced features would need the
configuration of a RetryTemplate as a Spring bean. See the Spring Retry Javadocs for complete
information about available policies and their configuration.

Message Listeners and the Asynchronous Case

If a MessageListener fails because of a business exception, the exception is handled by the message
listener container and then it goes back to listening for another message. If the failure is caused by a
dropped connection (not a business exception), then the consumer that is collecting messages for the
listener has to be cancelled and restarted. The SimpleMessageListenerContainer handles this
seamlessly, and it leaves a log to say that the listener is being restarted. In fact it loops endlessly trying
to restart the consumer, and only if the consumer is very badly behaved indeed will it give up. One side
effect is that if the broker is down when the container starts, it will just keep trying until a connection
can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need more
thought and some custom configuration, especially if transactions and/or container acks are in use. Prior
to 2.8.x, RabbitMQ had no definition of dead letter behaviour, so by default a message that is rejected
or rolled back because of a business exception can be redelivered ad infinitum. To put a limit in the
client on the number of re-deliveries, one choice is a StatefulRetryOperationsInterceptor in
the advice chain of the listener. The interceptor can have a recovery callback that implements a custom
dead letter action: whatever is appropriate for your particular environment.

Another alternative is to set the container's rejectRequeued property to false. This causes all failed
messages to be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering the
message to a Dead Letter Exchange.

Or, you can throw a AmqpRejectAndDontRequeueException; this prevents message requeuing,
regardless of the setting of the defaultRequeueRejected property.

Often, a combination of both techniques will be used. Use a
StatefulRetryOperationsInterceptor in the advice chain, where it's MessageRecover throws
an AmqpRejectAndDontRequeueException. The MessageRecover is called when all retries have
been exhausted. The default MessageRecoverer simply consumes the errant message and emits a
WARN message. In which case, the message is ACK'd and won't be sent to the Dead Letter Exchange,
if any.

Starting with version 1.3, a new RepublishMessageRecoverer is provided, to allow publishing of
failed messages after retries are exhausted:

http://static.springsource.org/spring-retry/docs/api/current/

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 57

@Bean

RetryOperationsInterceptor interceptor() {

 return RetryInterceptorBuilder.stateless()

 .withMaxAttempts(5)

 .setRecoverer(new RepublishMessageRecoverer(amqpTemplate(), "bar", "baz"))

 .build();

}

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The
default configuration will retry for all exceptions. Given that user exceptions will be wrapped in a
ListenerExecutionFailedException we need to ensure that the classification examines the
exception causes. The default classifier just looks at the top level exception.

Since Spring Retry 1.0.3, the BinaryExceptionClassifier has a property traverseCauses
(default false). When true it will traverse exception causes until it finds a match or there is no cause.

To use this classifier for retry, use a SimpleRetryPolicy created with the constructor that takes the
max attempts, the Map of Exceptions and the boolean (traverseCauses), and inject this policy into
the RetryTemplate.

3.16 Debugging

Spring AMQP provides extensive logging, especially at DEBUG level.

If you wish to monitor the AMQP protocol between the application and broker, you could use a tool
such as WireShark, which has a plugin to decode the protocol. Alternatively the RabbitMQ java client
comes with a very useful class Tracer. When run as a main, by default, it listens on port 5673 and
connects to port 5672 on localhost. Simply run it, and change your connection factory configuration to
connect to port 5673 on localhost. It displays the decoded protocol on the console. Refer to the Tracer
javadocs for more information.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 58

4. Erlang integration

4.1 Introduction

There is an open source project called JInterface that provides a way for Java applications to
communicate with an Erlang process. The API is very low level and rather tedious to use and throws
checked exceptions. The Spring Erlang module makes accessing functions in Erlang from Java easy,
often they can be one liners.

4.2 Communicating with Erlang processes

Executing RPC

The interface ErlangOperations is the high level API for interacting with an Erlang process.

public interface ErlangOperations {

 <T> T execute(ConnectionCallback<T> action) throws OtpException;

 OtpErlangObject executeErlangRpc(String module, String function, OtpErlangList args)

 throws OtpException;

 OtpErlangObject executeErlangRpc(String module, String function,

 OtpErlangObject... args) throws OtpException;

 OtpErlangObject executeRpc(String module, String function, Object... args)

 throws OtpException;

 Object executeAndConvertRpc(String module, String function,

 ErlangConverter converterToUse, Object... args) throws OtpException;

 // Sweet!

 Object executeAndConvertRpc(String module, String function, Object... args)

 throws OtpException;

}

The class that implements this interface is called ErlangTemplate. There are a few convenience
methods, most notably executeAndConvertRpc, as well as the execute method which gives
you access to the 'native' API of the JInterface project. For simple functions, you can invoke
executeAndConvertRpc with the appropriate Erlang module name, function, and arguments in a one-
liner. For example, here is the implementation of the RabbitBrokerAdmin method 'DeleteUser'

@ManagedOperation

public void deleteUser(String username) {

 erlangTemplate.executeAndConvertRpc(

 "rabbit_access_control", "delete_user", username.getBytes());

}

As the JInterface library uses specific classes such as OtpErlangDouble and OtpErlangString to
represent the primitive types in Erlang RPC calls, there is a converter class that works in concert with
ErlangTemplate that knows how to translate from Java primitive types to their Erlang class equivalents.
You can also create custom converters and register them with the ErlangTemplate to handle more
complex data format translations.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 59

ErlangConverter

The ErlangConverter interface is shown below.

public interface ErlangConverter {

 /**

 * Convert a Java object to a Erlang data type.

 * @param object the object to convert

 * @return the Erlang data type

 * @throws ErlangConversionException in case of conversion failure

 */

 OtpErlangObject toErlang(Object object) throws ErlangConversionException;

 /**

 * Convert from a Erlang data type to a Java object.

 * @param erlangObject the Erlang object to convert

 * @return the converted Java object

 * @throws ErlangConversionException in case of conversion failure

 */

 Object fromErlang(OtpErlangObject erlangObject) throws ErlangConversionException;

 /**

 * The return value from executing the Erlang RPC.

 */

 Object fromErlangRpc(String module, String function, OtpErlangObject erlangObject)

 throws ErlangConversionException;

}

4.3 Exceptions

The JInterface checked exception hierarchy is translated into a parallel runtime exception hierarchy
when executing operations through ErlangTemplate.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 60

5. Sample Applications

5.1 Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello World"
example that demonstrates both synchronous and asynchronous message reception. It provides an
excellent starting point for acquiring an understanding of the essential components. The second sample
is based on a stock-trading use case to demonstrate the types of interaction that would be common in
real world applications. In this chapter, we will provide a quick walk-through of each sample so that you
can focus on the most important components. The samples are both Maven-based, so you should be
able to import them directly into any Maven-aware IDE (such as SpringSource Tool Suite).

5.2 Hello World

The Hello World sample demonstrates both synchronous and asynchronous message reception. You
can import the 'spring-rabbit-helloworld' sample into the IDE and then follow the discussion below.

Synchronous Example

Within the 'src/main/java' directory, navigate to the 'org.springframework.amqp.helloworld' package.
Open the HelloWorldConfiguration class and notice that it contains the @Configuration annotation at
class-level and some @Bean annotations at method-level. This is an example of Spring's Java-based
configuration. You can read more about that here.

@Bean

public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory =

 new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

}

The configuration also contains an instance of RabbitAdmin, which by default looks for any beans of
type Exchange, Queue, or Binding and then declares them on the broker. In fact, the "helloWorldQueue"
bean that is generated in HelloWorldConfiguration is an example simply because it is an instance of
Queue.

@Bean

public Queue helloWorldQueue() {

 return new Queue(this.helloWorldQueueName);

}

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue's
name set as its "queue" property (for receiving Messages) and for its "routingKey" property (for sending
Messages).

Now that we've explored the configuration, let's look at the code that actually uses these components.
First, open the Producer class from within the same package. It contains a main() method where the
Spring ApplicationContext is created.

https://github.com/SpringSource/spring-amqp-samples
http://www.springsource.org/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 61

public static void main(String[] args) {

 ApplicationContext context =

 new AnnotationConfigApplicationContext(RabbitConfiguration.class);

 AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);

 amqpTemplate.convertAndSend("Hello World");

 System.out.println("Sent: Hello World");

}

As you can see in the example above, the AmqpTemplate bean is retrieved and used for sending a
Message. Since the client code should rely on interfaces whenever possible, the type is AmqpTemplate
rather than RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance
of RabbitTemplate, relying on the interface means that this code is more portable (the configuration
can be changed independently of the code). Since the convertAndSend() method is invoked, the
template will be delegating to its MessageConverter instance. In this case, it's using the default
SimpleMessageConverter, but a different implementation could be provided to the "rabbitTemplate"
bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means
it will be sharing the "rabbitTemplate" bean. That's why we configured that template with both a
"routingKey" (for sending) and "queue" (for receiving). As you saw in Section 3.3, “AmqpTemplate”, you
could instead pass the 'routingKey' argument to the send method and the 'queue' argument to the receive
method. The Consumer code is basically a mirror image of the Producer, calling receiveAndConvert()
rather than convertAndSend().

public static void main(String[] args) {

 ApplicationContext context =

 new AnnotationConfigApplicationContext(RabbitConfiguration.class);

 AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);

 System.out.println("Received: " + amqpTemplate.receiveAndConvert());

}

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello
World" in the console output.

Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a slightly
more advanced but significantly more powerful option. With a few modifications, the Hello World sample
can provide an example of asynchronous reception, a.k.a. Message-driven POJOs. In fact, there is a
sub-package that provides exactly that: org.springframework.amqp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it
creates a "connectionFactory" and "rabbitTemplate" bean. This time, since the configuration is dedicated
to the message sending side, we don't even need any Queue definitions, and the RabbitTemplate only
has the 'routingKey' property set. Recall that messages are sent to an Exchange rather than being sent
directly to a Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are
bound to that default Exchange with their name as the routing key. That is why we only need to provide
the routing key here.

public RabbitTemplate rabbitTemplate() {

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 template.setRoutingKey(this.helloWorldQueueName);

 return template;

}

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 62

Since this sample will be demonstrating asynchronous message reception, the producing side
is designed to continuously send messages (if it were a message-per-execution model like the
synchronous version, it would not be quite so obvious that it is in fact a message-driven consumer).
The component responsible for sending messages continuously is defined as an inner class within the
ProducerConfiguration. It is configured to execute every 3 seconds.

static class ScheduledProducer {

 @Autowired

 private volatile RabbitTemplate rabbitTemplate;

 private final AtomicInteger counter = new AtomicInteger();

 @Scheduled(fixedRate = 3000)

 public void sendMessage() {

 rabbitTemplate.convertAndSend("Hello World " + counter.incrementAndGet());

 }

}

You don't need to understand all of the details since the real focus should be on the receiving side (which
we will cover momentarily). However, if you are not yet familiar with Spring 3.0 task scheduling support,
you can learn more here. The short story is that the "postProcessor" bean in the ProducerConfiguration
is registering the task with a scheduler.

Now, let's turn to the receiving side. To emphasize the Message-driven POJO behavior will start with
the component that is reacting to the messages. The class is called HelloWorldHandler.

public class HelloWorldHandler {

 public void handleMessage(String text) {

 System.out.println("Received: " + text);

 }

}

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any
interfaces, and it doesn't even contain any imports. It is being "adapted" to the MessageListener
interface by the Spring AMQP MessageListenerAdapter. That adapter can then be configured
on a SimpleMessageListenerContainer. For this sample, the container is created in the
ConsumerConfiguration class. You can see the POJO wrapped in the adapter there.

@Bean

public SimpleMessageListenerContainer listenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(connectionFactory());

 container.setQueueName(this.helloWorldQueueName);

 container.setMessageListener(new MessageListenerAdapter(new HelloWorldHandler()));

 return container;

}

The SimpleMessageListenerContainer is a Spring lifecycle component and will start automatically by
default. If you look in the Consumer class, you will see that its main() method consists of nothing more
than a one-line bootstrap to create the ApplicationContext. The Producer's main() method is also a
one-line bootstrap, since the component whose method is annotated with @Scheduled will also start
executing automatically. You can start the Producer and Consumer in any order, and you should see
messages being sent and received every 3 seconds.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 63

5.3 Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World
sample. However, the configuration is very similar - just a bit more involved. Since we've walked through
the Hello World configuration in detail, here we'll focus on what makes this sample different. There is
a server that pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe to
the market data feed by binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdaq.*"). The
other main feature of this demo is a request-reply "stock trade" interaction that is initiated by the client
and handled by the server. That involves a private "replyTo" Queue that is sent by the client within the
order request Message itself.

The Server's core configuration is in the RabbitServerConfiguration class
within the org.springframework.amqp.rabbit.stocks.config.server package. It extends the
AbstractStockAppRabbitConfiguration. That is where the resources common to the Server and Client(s)
are defined, including the market data Topic Exchange (whose name is 'app.stock.marketdata') and the
Queue that the Server exposes for stock trades (whose name is 'app.stock.request'). In that common
configuration file, you will also see that a JsonMessageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on
the RabbitTemplate so that it does not need to provide that exchange name with every call to send a
Message. It does this within an abstract callback method defined in the base configuration class.

public void configureRabbitTemplate(RabbitTemplate rabbitTemplate) {

 rabbitTemplate.setExchange(MARKET_DATA_EXCHANGE_NAME);

}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case,
because it will be bound to the default no-name exchange with its own name as the routing key. As
mentioned earlier, the AMQP specification defines that behavior.

@Bean

public Queue stockRequestQueue() {

 return new Queue(STOCK_REQUEST_QUEUE_NAME);

}

Now that you've seen the configuration of the Server's AMQP resources, navigate to the
'org.springframework.amqp.rabbit.stocks' package under the 'src/test/java' directory. There you will see
the actual Server class that provides a main() method. It creates an ApplicationContext based on the
'server-bootstrap.xml' config file. In there you will see the scheduled task that publishes dummy market
data. That configuration relies upon Spring 3.0's "task" namespace support. The bootstrap config file
also imports a few other files. The most interesting one is 'server-messaging.xml' which is directly under
'src/main/resources'. In there you will see the "messageListenerContainer" bean that is responsible for
handling the stock trade requests. Finally have a look at the "serverHandler" bean that is defined in
"server-handlers.xml" (also in 'src/main/resources'). That bean is an instance of the ServerHandler class
and is a good example of a Message-driven POJO that is also capable of sending reply Messages.
Notice that it is not itself coupled to the framework or any of the AMQP concepts. It simply accepts a
TradeRequest and returns a TradeResponse.

public TradeResponse handleMessage(TradeRequest tradeRequest) { ... }

Now that we've seen the most important configuration and code for the Server, let's
turn to the Client. The best starting point is probably RabbitClientConfiguration within the

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 64

'org.springframework.amqp.rabbit.stocks.config.client' package. Notice that it declares two queues
without providing explicit names.

@Bean

public Queue marketDataQueue() {

 return amqpAdmin().declareQueue();

}

@Bean

public Queue traderJoeQueue() {

 return amqpAdmin().declareQueue();

}

Those are private queues, and unique names will be generated automatically. The first generated
queue is used by the Client to bind to the market data exchange that has been exposed by the Server.
Recall that in AMQP, consumers interact with Queues while producers interact with Exchanges. The
"binding" of Queues to Exchanges is what instructs the broker to deliver, or route, messages from a
given Exchange to a Queue. Since the market data exchange is a Topic Exchange, the binding can
be expressed with a routing pattern. The RabbitClientConfiguration declares that with a Binding object,
and that object is generated with the BindingBuilder's fluent API.

@Value("${stocks.quote.pattern}")

private String marketDataRoutingKey;

@Bean

public Binding marketDataBinding() {

 return BindingBuilder.bind(

 marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

}

Notice that the actual value has been externalized in a properties file ("client.properties" under src/main/
resources), and that we are using Spring's @Value annotation to inject that value. This is generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making
changes to the routing pattern used for binding. Let's try that now.

Start by running org.springframework.amqp.rabbit.stocks.Server and then
org.springframework.amqp.rabbit.stocks.Client. You should see dummy quotes for NASDAQ stocks
because the current value associated with the 'stocks.quote.pattern' key in client.properties is
'app.stock.quotes.nasdaq.*'. Now, while keeping the existing Server and Client running, change that
property value to 'app.stock.quotes.nyse.*' and start a second Client instance. You should see that the
first client is still receiving NASDAQ quotes while the second client receives NYSE quotes. You could
instead change the pattern to get all stocks or even an individual ticker.

The final feature we'll explore is the request-reply interaction from the Client's perspective. Recall
that we have already seen the ServerHandler that is accepting TradeRequest objects and returning
TradeResponse objects. The corresponding code on the Client side is RabbitStockServiceGateway in
the 'org.springframework.amqp.rabbit.stocks.gateway' package. It delegates to the RabbitTemplate in
order to send Messages.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 65

public void send(TradeRequest tradeRequest) {

 getRabbitTemplate().convertAndSend(tradeRequest, new MessagePostProcessor() {

 public Message postProcessMessage(Message message) throws AmqpException {

 message.getMessageProperties().setReplyTo(new Address(defaultReplyToQueue));

 try {

 message.getMessageProperties().setCorrelationId(

 UUID.randomUUID().toString().getBytes("UTF-8"));

 }

 catch (UnsupportedEncodingException e) {

 throw new AmqpException(e);

 }

 return message;

 }

 });

}

Notice that prior to sending the message, it sets the "replyTo" address. It's providing the queue that was
generated by the "traderJoeQueue" bean definition shown above. Here's the @Bean definition for the
StockServiceGateway class itself.

@Bean

public StockServiceGateway stockServiceGateway() {

 RabbitStockServiceGateway gateway = new RabbitStockServiceGateway();

 gateway.setRabbitTemplate(rabbitTemplate());

 gateway.setDefaultReplyToQueue(traderJoeQueue());

 return gateway;

}

If you are no longer running the Server and Client, start them now. Try sending a request with the format
of '100 TCKR'. After a brief artificial delay that simulates "processing" of the request, you should see a
confirmation message appear on the Client.

Part III. Spring Integration - Reference
This part of the reference documentation provides a quick introduction to the AMQP support within the
Spring Integration project.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 67

6. Spring Integration AMQP Support

6.1 Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon
the Spring AMQP project. Those adapters are developed and released in the Spring Integration
project. In Spring Integration, "Channel Adapters" are unidirectional (one-way) whereas "Gateways"
are bidirectional (request-reply). We provide an inbound-channel-adapter, outbound-channel-adapter,
inbound-gateway, and outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation will be available
as part of the Spring Integration distribution. As a taster, we just provide a quick overview of the main
features here.

6.2 Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel-adapter>

<amqp:inbound-channel-adapter channel="fromAMQP"

 queue-names="some.queue"

 connection-factory="rabbitConnectionFactory"/>

6.3 Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A 'routing-key'
may optionally be provided in addition to the exchange name.

<amqp:outbound-channel-adapter channel="toAMQP"

 exchange-name="some.exchange"

 routing-key="foo"

 amqp-template="rabbitTemplate"/>

6.4 Inbound Gateway

To receive an AMQP Message from a Queue, and respond to its reply-to address, configure an
<inbound-gateway>.

<amqp:inbound-gateway request-channel="fromAMQP"

 reply-channel="toAMQP"

 queue-names="some.queue"

 connection-factory="rabbitConnectionFactory"/>

6.5 Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from a remote client, configure
an <outbound-gateway>. A 'routing-key' may optionally be provided in addition to the exchange name.

<amqp:outbound-gateway request-channel="toAMQP"

 reply-channel="fromAMQP"

 exchange-name="some.exchange"

 routing-key="foo"

 amqp-template="rabbitTemplate"/>

http://www.springsource.org/spring-integration

Part IV. Other Resources
In addition to this reference documentation, there exist a number of other resources that may help you
learn about AMQP.

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 69

7. Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course
the authoritative source of information, and the Spring AMQP code should be very easy to understand
for anyone who is familiar with the spec. Our current implementation of the RabbitMQ support is based
on their 2.8.x version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1
document.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started
page. Since that is currently the only supported implementation for Spring AMQP, we also recommend
that as a general starting point for all broker-related concerns.

Finally, be sure to visit the Spring AMQP Forum if you have questions or suggestions. With this first GA
release, we are looking forward to a lot of community feedback!

http://www.amqp.org/resources/download
http://www.rabbitmq.com/how.html
http://forum.springsource.org/forumdisplay.php?f=74

Spring AMQP

1.4.0.RC1
Spring AMQP - Reference

Documentation 70

Bibliography
[jinterface-00] Ericsson AB. jinterface User Guide. Ericson AB . 2000.

http://www.erlang.org/doc/apps/jinterface/jinterface.pdf

	Spring AMQP - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Quick Tour for the impatient
	1.1 Introduction
	Very, Very Quick
	With XML Configuration
	With Java Configuration

	2. What's New
	2.1 Changes in 1.4 Since 1.3
	@RabbitListener Annotation
	RabbitMessagingTemplate
	Listener Container 'Missing Queues Fatal' Attribute
	RabbitTemplate 'ConfirmCallback' Interface
	RabbitConnectionFactoryBean
	CachingConnectionFactory
	Log Appender
	Listener Queues
	RabbitTemplate: mandatory and connectionFactorySelector Expressions
	
	RabbitTemplate: RecoveryCallback option
	MessageConversionException
	RabbitMQ 3.4 Compatibility

	2.2 Changes in 1.3 Since 1.2
	Listener Concurrency
	Listener Queues
	Consumer Priority
	Exclusive Consumer
	Rabbit Admin
	Direct Exchange Binding
	AMQP Template
	Caching Connection Factory
	Binding Arguments
	Routing Connection Factory
	MessageBuilder and MessagePropertiesBuilder
	RetryInterceptorBuilder
	RepublishMessageRecoverer
	Default Error Handler (Since 1.3.2)
	Listener Container 'missingQueuesFatal` Property (Since 1.3.5)

	2.3 Changes to 1.2 Since 1.1
	RabbitMQ Version
	Rabbit Admin
	Rabbit Template
	JSON Message Converters
	Automatic Declaration of Queues, etc
	AMQP Remoting
	Requested Heart Beats

	2.4 Changes to 1.1 Since 1.0
	General
	AMQP Log4j Appender

	Part II. Reference
	3. Using Spring AMQP
	3.1 AMQP Abstractions
	Message
	Exchange
	Queue
	Binding

	3.2 Connection and Resource Management
	Configuring the Underlying Client Connection Factory
	Configuring SSL
	Routing Connection Factory
	Publisher Confirms and Returns

	3.3 AmqpTemplate
	Adding Retry Capabilities
	Publisher Confirms and Returns
	Messaging integration

	3.4 Sending messages
	Message Builder API
	Publisher Confirms
	Publisher Returns

	3.5 Receiving messages
	Polling Consumer
	Asynchronous Consumer
	'auto-delete' Queues

	Annotation-driven listener endpoints
	Enable listener endpoint annotations
	Programmatic Endpoint Registration
	Annotated Endpoint Method Signature
	Reply Management

	Threading and Asynchronous Consumers

	3.6 Message Converters
	SimpleMessageConverter
	Converting From a Message
	Converting To a Message

	JsonMessageConverter and Jackson2JsonMessageConverter
	MarshallingMessageConverter

	3.7 Request/Reply Messaging
	Message Correlation With A Reply Queue
	Reply Listener Container

	Spring Remoting with AMQP

	3.8 Configuring the broker
	Conditional Declaration

	3.9 Exception Handling
	3.10 Transactions
	A note on Rollback of Received Messages
	Using the RabbitTransactionManager

	3.11 Message Listener Container Configuration
	3.12 Listener Concurrency
	3.13 Exclusive Consumer
	3.14 Listener Container Queues
	3.15 Resilience: Recovering from Errors and Broker Failures
	Automatic Declaration of Exchanges, Queues and Bindings
	Failures in Synchronous Operations and Options for Retry
	Message Listeners and the Asynchronous Case
	Exception Classification for Retry

	3.16 Debugging

	4. Erlang integration
	4.1 Introduction
	4.2 Communicating with Erlang processes
	Executing RPC
	ErlangConverter

	4.3 Exceptions

	5. Sample Applications
	5.1 Introduction
	5.2 Hello World
	Synchronous Example
	Asynchronous Example

	5.3 Stock Trading

	Part III. Spring Integration - Reference
	6. Spring Integration AMQP Support
	6.1 Introduction
	6.2 Inbound Channel Adapter
	6.3 Outbound Channel Adapter
	6.4 Inbound Gateway
	6.5 Outbound Gateway

	Part IV. Other Resources
	7. Further Reading
	Bibliography

