Spring AMQP

1.5.0.M1

Mark Pollack , Mark Fisher , Oleg Zhurakousky , Dave Syer ,
Gary Russell , Gunnar Hillert , Artem Bilan , Stéphane Nicoll

Copyright © 2010-2015 Pivotal Software Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring AMQP

Table of Contents

R = T S 1
2. INTFOAUCTION ..ottt e e ettt e e e e et et s e e e e et e e e anb b neeeeeeeene 2
2.1. Quick Tour for the IMPAtIENTcounii e e 2
10T [T 1o) o S 2
CoMPALIDIITY ovneee e 2

Very, VEry QUICKiiiiiiiii et e e e et e ean e eees 2

With XML CONfIQUIALIONccceuiiiiiii et 2

With Java Configurationcocouuiiiiiiii e e eaas 3

2.2, WNAE'S INEW .ttt ettt e et et et e e e e e et e et aa e e aa e e et e eaa e ean s 4
Changes iN 1.5 SINCE 1.4 ..o 4
spring-erlang is NO LoNger SUPPOIEAcccuuieiiiieiiiiiiiii e e e e e e 4

Empty Addresses Property in CachingConnectionFactoryccoeeveiveiineennnns 4
Properties to Control Container Queue Declaration Behaviorc.c.cccoevevvnnennnnn. 4

Class Package Changeooiiuiiiiiiiiii e e e e 4
DefaultMessagePropertieSCONVEITETo.uuiiiiiiiieei e e 5
@QueueBinding for @RabDItLISIENErc.vuiiiiiiei e 5

The reply-address for RabbitTemplateccocoiviiiiiiiiii e 5

The RabbitManagementTemplate ... 5

Listener Container Bean Names (XML)ccouuiiiiiiiiiieiiii e 5
Class-Level @RaADDItLISIENETuvviiiiiieeiiiiei e 5
SimpleMessageListenerContainer: BackOff SUPPOItccouiiiiiiiiiiiiiiiiiiiieeee, 5

Changes iN 1.4 SINCE 1.3 ..ot b e 5
@RabbitListener ANNOALIONviieeiiiiiiii e 5
RabbitMessagingTempPIate ... 6

Listener Container Missing Queues Fatal Attributeccooooiiiiiiiiniene, 6
RabbitTemplate ConfirmCallback Interfacecccooovviiiiiiiiiii e, 6
RabbitConnectioNFaCtOryBEaANcc.uiiiiiiiiiie e 6
CachingCoNNECHONFACIONYcccuuiiiiiiiiii et 6

(0T T 2Y o] o 1T o 1= PP 6

(IS = L= g @ TH = U =P 6
RabbitTemplate: mandatory and connectionFactorySelector Expressions 6

Listeners and the Routing Connection Factorycccccooviiiiiiiiiiciii e 7
RabbitTemplate: RecoveryCallback option ..o 7
MessageCoNVErSiONEXCEPLIONccouuuiiiiiiiiieeeii e 7
RabbitMQ 3.4 Compatibilityccovuiiiiie e 7
ContentTypeDelegatingMesSageCONVEITETccuuiiiiiiiiiii e e e 7

Changes iN 1.3 SINCE 1.2 ..ouuiiiiiii e 7
IR (=T =T G Odo) (o =] o Y 7

(IS = g = G @ TH = U =T 8
CONSUMET PIIOIY ..eiiiiii ettt e e b 8

EXCIUSIVE CONSUIMET ...ttt ettt ettt e e e 8

RADDIT AQMIN <.ee e et 8

Direct EXchange BiNGINGuiiiiiiiiiiii e 8

AMOP TeMPIALE .oeiiiiii e 8

Caching ConNection FACIOIYoiiiiiiiiii e e 8

Binding AFQUMENES ...couuiiiiiii et e e et e e e 8

Routing CONNECLION FACIOMY ...ccovuiiiiiicii e e e e e e e e e aae e 9

1.5.0.M1 Spring AMQP iii

Spring AMQP

MessageBuilder and MessagePropertiesBuUildercccociviiiiiiin i, 9
RetryInterceptorBUIIAEoiueiii e e e 9
RepUDIISNMESSAGERECOVEIETciiiiiiei ittt e 9
Default Error Handler (SINCE 1.3.2) ...ciuuiiiieiii e e ee e e e e e e e eaae e 9
Listener Container 'missingQueuesFatal” Property (Since 1.3.5)ccoovvviviiieiiinnnnnn. 9
Changes 10 1.2 SINCE 1.1 ..cooiuiiiiiiii ettt e e e e e eaa s 9
RabbItMQ VEISION ...t 9
RADDIT AQMIN <.ee et e 9
Rabbit TEMPIALE ... oo e 10
JSON MeESSAQE CONVEITEIS ...ouiiitieii ettt e et e e et e e e e e e et e enaeenaeens 10
Automatic Declaration of QUEUES, €ICccviiriiiiii e 10
AMOP REMOTING ..eeiiieiiii ettt e e e 10
Requested Heart BEALScccuuiiiiiiiiii e e e e e e e e e e e e e e e 10
Changes t0 1.1 SINCE 1.0 ...ttt e eanas 10
1= =T - | 10

YN 1Y@] = oo P Y o] o =T g T [T 10

T (] (] (=10 (o = PP 11
3.1. USiNg SPring AMQOP ... e 11
AMOP ADSITACTIONS . ovuiitiii i e et e et 11
TageTo 011 o] o PP PT PPN 11
MIBSSATE ... ettt 11
EXCNANGE .oniiii i 12
QUEBUIE ettt e 12
BINAING .. e 13
Connection and ReSoUrce ManagemeENtvveueieiueeiiierei e ee e e e et aeee e eaeeeens 14
TageTo 011 o] o PP PT PPN 14
Configuring the Underlying Client Connection Factorycccoveeiveviinivinnneennnnns 16

L©70] a1{To 8T aTe TS 1 16
Routing CoNNECLION FACIONYuiiiiiiiiee et 17
Publisher Confirms and REUIMNScouiiiiiii e 18

F N g To |- 0] 0] =1 = N 18
TageTo 011 o] o PP PT PPN 18
Adding Retry Capabilitiesoiiiiiiiii e 19
Publisher Confirms and RETUMScoiiiiiiiiiii e 20
MeSSagiNg INTEGIAtIONcceuniiii e e e e ea e e 21
SENAING MESSAGES ...eevuueiiiti ettt ettt ettt et b et et e et e b e e e et e eeeranas 21
] o 11 L1 1o o IR P PPTN 21
Message BUIIAEr APt 22
PUDBISher REIUINS ... e e 23
BaAICNING .euiiiii e 23
RECEIVING MESSAGES ...n ittt ettt ettt ettt et e et e et e et e e tn e e et e e et e e et e eanaees 24
T 10T [T 1o) o PN 24
o] 11T aTo I @] 1S [41 PP 24
ASYNCHIONOUS CONSUMIET ..ttt ee ettt ettt e e e et e et e et e e et e eean e 25
BatChed MESSAGESciiiiiiieiiii et 28
Annotation-driven Listener ENAPOINtScocvviiiiiiiiiii e e 28
Threading and Asynchronous CONSUMENScieuuiiiuniieiieiii et e e eennes 32
MESSAGE CONVEITEISiiiieiiie ittt ettt et et et e e e e et e e et e eanaeees 33
] o 111 1o o IR PRSPPI 33
SIMPIEMESSAGECONVEITEL ... ettt e e e e e e e aees 34

1.5.0.M1

Spring AMQP iv

Spring AMQP

JsonMessageConverter and Jackson2JsonMessageConverercccovvvvveeennnnns 34
MarshallingMesSSageCONVEITETiiiiiiii e e 35
ContentTypeDelegatingMessSageCONVEITENcc.uuiiiiiiiiie e 35

Message PropertieS CONVEIEIScvuuiieiieii e eee e e e e e e e e e e e eanaees 36

Modifying Messages - Compression and MOFEc..iiiiiiiiiiiiiiii e 36
ReqUES/REPIY MESSAGING ... cieeiinieieiii ettt ettt ettt e et e e e 37

] o [N L1 1o o IR PRSPPI 37
RabbitMQ DIreCt reply-t0ccouuiiiiiii e 38

Message Correlation With A Reply QUEUEovviiviiiiiiiiiieciei e 38

Spring Remoting With AMQP ... 40
Configuring the DIOKETi e 41

T 10T [T o) o S 41
Conditional DECIAratioNoieuuiiiiiiiiie e 46
RabbitMQ REST AP ...ttt e e e e eeeaeeaas 47
EXCeption HANAIINGcoourniiiiii et 48

QL2 10 ST T 1o PSP 49
INEFOAUCTION ..t et e e e e e e e e e eaees 49

A note on Rollback of Received MESSAJEScccuuieiiiiiiieiiiiiiieeiiie e 50

Using the RabbitTransactioNManagercc.ovevviiieiiiieiii e e 51

Message Listener Container Configurationccoceuiiiiiniiiniii e 51
LiStENET CONCUITENCY ...iiitiieeeiit ettt ettt e et e ettt e e et et e e e e et e e e e et e e e enaa e eeenes 56
EXCIUSIVE CONSUMEBT .. ittt ettt ettt et e et e e et et e e e e et e e e eaan e eeenens 57
Listener ContaiNer QUEUEScuuiiueiiiei it e e e et e e e e e e e e e e et et e et e et e et e eaeenns 57
Resilience: Recovering from Errors and Broker Failuresc.ooooiiieiiiiiiieiiiinneeenns 57

] o [N L1 1o o IR PRSPPI 57
Automatic Declaration of Exchanges, Queues and Bindingscccooceviveennnenn. 57

Failures in Synchronous Operations and Options for Retrycccoeveviiiiievennnnn. 58

Message Listeners and the Asynchronous Caseccccevvviveviincciii e, 58

Exception Classification for Retry ... 59
(D=7 o]0 To To [oo [P O P TTUPPT TSP PR 60

3.2. SaMPle APPHCALIONS ...uieei i 60
TagoTo 0T i o] o PP PP 60

[1= o Yo T ¢ o 60

] o 11 L1 1o o IR P PPTN 60
SYNChroNOUS EXAMPIEoeei e 60
ASYNChronouSs EXAmMPIeiiiiii e 61

S (o o3 QN I -V L1 Vo 63

4. Spring INtegration - REEIENCE i e 66
4.1. Spring Integration AMQP SUPPOITcoiiiieiiii e 66
1] To 11 T1 1o o IR PPN 66
INbound Channel AAPLET oo et e e 66
Outbound Channel AJAPLETiiiiiiie e 66

Ta] oo 18] o B CT= 1=z | 66
OULDOUNI GAEWAYneeiieiitee ettt et e et e et e e et et et e e et e e et e e ean e ennaaes 66

T © 1 1= g TS0 T o PR 67
0 I U =T = L= Vo LT T S 67

1.5.0.M1 Spring AMQP v

Spring AMQP

1. Preface

The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging
solutions. We provide a "template" as a high-level abstraction for sending and receiving messages.
We also provide support for Message-driven POJOs. These libraries facilitate management of AMQP
resources while promoting the use of dependency injection and declarative configuration. In all of these
cases, you will see similarities to the JMS support in the Spring Framework. For other project-related
information visit the Spring AMQP project homepage.

1.5.0.M1 Spring AMQP

http://projects.spring.io/spring-amqp/

Spring AMQP

2. Introduction

This first part of the reference documentation is a high-level overview of Spring AMQP and the underlying
concepts and some code snippets that will get you up and running as quickly as possible.

2.1 Quick Tour for the impatient

Introduction
This is the 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmg.com/download.html). Then
grab the spring-rabbit JAR and all its dependencies - the easiest way to do that is to declare a
dependency in your build tool, e.g. for Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. angp</ gr oupl d>
<artifactld>spring-rabbit</artifactld>
<versi on>1. 5. 0. ML</ ver si on>

</ dependency>

And for gradle:

conpil e "org. springframework. angp: spring-rabbit:1.5.0. M

Compatibility

While the default Spring Framework version dependency is 4.1.x, Spring AMQP is generally
compatible with earlier versions of Spring Framework. Annotation-based listeners and the
Rabbi t Messagi ngTenpl at e require Spring Framework 4.1, however.

Similarly, the default angp- cl i ent version is 3.4.x but the framework is generally compatible with
earlier versions. However, of course, features that rely on newer client versions will not be available.

Very, Very Quick

Using plain, imperative Java to send and receive a message:

Connecti onFactory connectionFactory = new Cachi ngConnectionFactory();

AngpAdmi n adm n = new Rabbi t Adm n(connecti onFactory);
adm n. decl ar eQueue(new Queue("nyqueue"));

AngpTenpl ate tenpl ate = new Rabbit Tenpl at e(connect i onFactory);
t enpl at e. convert AndSend(" nyqueue", "foo");

String foo = (String) tenplate.recei veAndConvert (" myqueue");

Note that there is a Connect i onFact ory in the native Java Rabbit client as well. We are using the
Spring abstraction in the code above. We are relying on the default exchange in the broker (since none
is specified in the send), and the default binding of all queues to the default exchange by their name
(hence we can use the queue name as a routing key in the send). Those behaviours are defined in
the AMQP specification.

With XML Configuration

The same example as above, but externalizing the resource configuration to XML

1.5.0.M1 Spring AMQP 2

http://www.rabbitmq.com/download.html

Spring AMQP

Appl i cati onCont ext context =

new Generi cXm Appl i cati onCont ext ("cl asspat h:/rabbit-context.xm");
AngpTenpl ate tenpl ate = context. get Bean(AngpTenpl at e. cl ass) ;
t enpl at e. convert AndSend(" nyqueue”, "foo");

String foo = (String) tenplate.recei veAndConvert (" myqueue");

<beans xm ns="http://ww. spri ngframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: rabbit="http://ww:.springframework. org/ schema/rabbit"
xsi : schemalLocati on="http://ww. spri ngframework. or g/ schema/ rabbi t
htt p: // ww. spri ngf ramewor k. or g/ schema/ r abbi t/ spri ng-r abbi t. xsd
http://ww. spri ngfranmework. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<rabbi t: connection-factory id="connecti onFactory"/>
<rabbit:tenplate id="anmgpTenpl ate" connection-factory="connectionFactory"/>
<rabbi t:adm n connecti on-factory="connecti onFactory"/>

<rabbi t: queue name="nyqueue"/ >

</ beans>

The <r abbi t : adm n/ > declaration by default automatically looks for beans of type Queue, Exchange
and Bi ndi ng and declares them to the broker on behalf of the user, hence there is no need to use that
bean explicitly in the simple Java driver. There are plenty of options to configure the properties of the
components in the XML schema - you can use auto-complete features of your XML editor to explore
them and look at their documentation.

With Java Configuration

The same example again with the external configuration in Java:

Appl i cationCont ext context =

new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AnmgpTenpl ate tenpl ate = cont ext. get Bean(AngpTenpl at e. cl ass) ;
t enpl at e. convert AndSend(" nyqueue”, "foo");

String foo = (String) tenplate.recei veAndConvert (" myqueue");

1.5.0.M1 Spring AMQP 3

Spring AMQP

@onfi guration
public class RabbitConfiguration {

@Bean
publ i ¢ Connecti onFactory connectionFactory() {
Cachi ngConnecti onFactory connectionFactory =
new Cachi ngConnecti onFactory("l ocal host");
return connectionFactory;

}

@Bean
publ i c AmgpAdmi n angpAdm n() {
return new Rabbi t Adm n(connecti onFactory());

}

@Bean
publ i ¢ Rabbit Tenpl ate rabbitTenpl ate() {
return new Rabbit Tenpl at e(connecti onFactory());

}

@Bean
public Queue nyQueue() {
return new Queue("nyqueue");

}

2.2 What's New

Changes in 1.5 Since 1.4
spring-erlang is No Longer Supported

The spri ng-erl ang jar is no longer included in the distribution. Use the section called “RabbitMQ
REST API” instead.

Empty Addresses Property in CachingConnectionFactory

Previously, if the connection factory was configured with a host/port, but an empty String was also
supplied for addr esses, the host and port were ignored. Now, an empty addr esses String is treated
the same as a nul | , and the host/port will be used.

Properties to Control Container Queue Declaration Behavior

When the listener container consumers start, they attempt to passively declare the queues to ensure
they are available on the broker. Previously, if these declarations failed, for example because the
gueues didn't exist, or when an HA queue was being moved, the retry logic was fixed at 3 retry
attempts at 5 second intervals. If the queue(s) still do not exist, the behavior is controlled by the
m ssi ngQueuesFat al property (default true). Also, for containers configured to listen from multiple
gueues, if only a subset of queues are available, the consumer retried the missing queues on a fixed
interval of 60 seconds.

These 3 properties (declarati onRetries, fail edDecl arati onRetryl nterval,
retryDecl arationl nterval) are now configurable. See the section called “Message Listener
Container Configuration” for more information.

Class Package Change

The Rabbi t Gat eway Support class has been moved from o. s. angp. r abbi t. core. support to
0. s.angp. rabbit. core.

1.5.0.M1 Spring AMQP 4

Spring AMQP

DefaultMessagePropertiesConverter

The Def aul t MessageProperti esConverter can now be configured to determine the maximum
length of a LongSt ri ng that will be converted to a St ri ng rather than a Dat al nput St r eam The
converter has an alternative constructor that takes the value as a limit. Previously, this limit was hard-
coded at 1024 bytes. (Also available in 1.4.4).

@QueueBinding for @RabbitListener

The bi ndi ngs attribute has been added to the @Rabbi t Li st ener annotation as mutually exclusive
with the queues attribute to allow the specification of the queue, its exchange and bi ndi ng for
declaration by a Rabbi t Adm n on the Broker. See the section called “Annotation-driven Listener
Endpoints” for more information.

The reply-address for RabbitTemplate

The repl y- addr ess attribute has been added to the <rabbit-tenpl at e> component as an
alternative r epl y- queue. See the section called “Request/Reply Messaging” for more information.
(Also available in 1.4.4 as a setter on the Rabbi t Tenpl at e).

The RabbitManagementTemplate

The Rabbi t Managenent Tenpl at e has been introduced to monitor and configure the RabbitMQ
Broker using the REST API provided by its Management Plugin. See the section called “RabbitMQ
REST API” for more information.

Listener Container Bean Names (XML)

The i d attribute on the <l i st ener - cont ai ner/ > element is deprecated and ignored. Starting with
this release, the i d on the <l i st ener/ > child element is used alone to name the listener container
bean. Normal Spring bean name overrides are applied; if a later <l i st ener/ > is parsed with the same
i d as an existing bean, the new definition will override the existing one. Previously, bean names were
composed from the ids of the <l i st ener - cont ai ner/ > and <l i st ener/ > elements.

Class-Level @RabbitListener

The @Rabbi t Li st ener annotation can now be applied at the class level. Together with the new
@rabbi t Handl er method annotation, this allows the handler method to be selected based on payload
type. See the section called “Multi-Method Listeners” for more information.

SimpleMessageListenerContainer: BackOff support

The Si npl eMessageli st ener Cont ai ner can now be supplied with a BackOf f instance for
consuner startup recovery. See the section called “Message Listener Container Configuration” for
more information.

Changes in 1.4 Since 1.3
@RabbitListener Annotation

POJO listeners can be annotated with @Rabbi t Li st ener, enabled by @nabl eRabbit or
<rabbi t: annot ati on-driven />. Spring Framework 4.1 is required for this feature. See the section
called “Annotation-driven Listener Endpoints” for more information.

1.5.0.M1 Spring AMQP 5

https://www.rabbitmq.com/management.html

Spring AMQP

RabbitMessagingTemplate

A new Rabbi t Messagi ngTenpl at e is provided to allow users to interact with RabbitMQ using
spring- messagi ng Message's. It uses the " RabbitTenpl ate internally which can be
configured as normal. Spring Framework 4.1 is required for this feature. See the section called
“Messaging integration” for more information.

Listener Container Missing Queues Fatal Attribute

1.3.5introduced the m ssi ngQueuesFat al property on the Si npl eMessagelLi st ener Cont ai ner.
This is now available on the listener container namespace element. See the section called “Message
Listener Container Configuration”.

RabbitTemplate ConfirmCallback Interface

The confirm method on this interface has an additional parameter cause. When available, this
parameter will contain the reason for a negative acknowledgement (nack). See the section called
“Publisher Confirms and Returns”.

RabbitConnectionFactoryBean

A factory bean is now provided to create the underlying RabbitMQ Connect i onFact or y used by the
Cachi ngConnect i onFact ory. This enables configuration of SSL options using Spring’s dependency
injection. See the section called “Configuring the Underlying Client Connection Factory”.

CachingConnectionFactory

The Cachi ngConnecti onFactory now allows the connectionTi neout to be set as a
property or as an attribute in the namespace. It sets the property on the underlying RabbitMQ
Connect i onFact ory See the section called “Configuring the Underlying Client Connection Factory”.

Log Appender

The Logback org. springframework. amgp. rabbit. | ogback. AmgpAppender has been
introduced. It provides similar options like
org. spri ngfranmewor k. angp. rabbi t. | og4j . AngpAppender . For more info see JavaDocs of
these classes.

The Log4j AmgpAppender now supports the deliveryMdde property (PERSI STENT or
NON_PERSI STENT, default: PERSI STENT). Previously, all log4j messages were PERSISTENT.

The appender also supports modification of the Message before sending - allowing, for example, the
addition of custom headers. Subclasses should override the post Pr ocessMessageBef or eSend() .

Listener Queues

The listener container now, by default, redeclares any missing queues during startup. A new aut o-
decl ar e attribute has been added to the <rabbit:|i stener-container> to prevent these
redeclarations. See the section called “auto-delete Queues”.

RabbitTemplate: mandatory and connectionFactorySelector Expressions

The nandatoryExpression and sendConnecti onFactorySel ect or Expression and
recei veConnect i onFact or ySel ect or Expressi on SpEL Expression’s properties

1.5.0.M1 Spring AMQP 6

Spring AMQP

have been added to t he " Rabbi t Tenpl ate. The nandat or yExpressi on
is wused to evaluate a mandatory boolean value against each request
message, when a ReturnCallback is in use. See the section called
“Publisher Confirms and Returns”. The sendConnecti onFact orySel ect or Expressi on
and recei veConnect i onFact or ySel ect or Expr essi on are used when an
Abst ract Rout i ngConnect i onFact ory is provided, to determine the | ookupKey for the target
Connect i onFact ory at runtime on each AMQP protocol interaction operation. See the section called
“Routing Connection Factory”.

Listeners and the Routing Connection Factory

A Si npl eMessageli st ener Cont ai ner can be configured with a routing connection factory to
enable connection selection based on the queue names. See the section called “Routing Connection
Factory”.

RabbitTemplate: RecoveryCallback option

The recover yCal | back property has been added to be used inthe r et ryTenpl at e. execut e().
See the section called “Adding Retry Capabilities”.

MessageConversionException

This exception is now a subclass of AngpExcept i on; if you have code like the following:

try {
tenpl at e. convert AndSend("foo", "bar", "baz");

}
catch (AngpException e) {

}

catch (MessageConversi onException e) {

}

The second catch block will no longer be reachable and needs to be moved above the catch-all
AnmgpExcept i on catch block.

RabbitMQ 3.4 Compatibility

Spring AMQP is now compatible with the RabbitMQ 3.4, including direct reply-to; see the section called
“Compatibility” and the section called “RabbitMQ Direct reply-to” for more information.

ContentTypeDelegatingMessageConverter

The Cont ent TypeDel egati ngMessageConverter has been introduced to select the
MessageConvert er to use, based on the cont ent Type property in the MessagePr operti es. See
the section called “Message Converters” for more information.

Changes in 1.3 Since 1.2
Listener Concurrency

The listener container now supports dynamic scaling of the number of consumers based on workload,
or the concurrency can be programmatically changed without stopping the container. See the section
called “Listener Concurrency”.

1.5.0.M1 Spring AMQP 7

Spring AMQP

Listener Queues

The listener container now permits the queue(s) on which it is listening to be modified at runtime. Also,
the container will now start if at least one of its configured queues is available for use. See the section
called “Listener Container Queues”

This listener container will now redeclare any auto-delete queues during startup. See the section called
“auto-delete Queues”.

Consumer Priority

The listener container now supports consumer arguments, allowing the x- pri ori ty argument to be
set. See the section called “Asynchronous Consumer”.

Exclusive Consumer

The Si nmpl eMessageli st ener Cont ai ner can now be configured with a single excl usive
consumer, preventing other consumers from listening to the queue. See the section called “Exclusive
Consumer”,

Rabbit Admin

It is now possible to have the Broker generate the queue name, regardless of durable, autoDelete and
exclusive settings. See the section called “Configuring the broker”.

Direct Exchange Binding

Previously, omitting the key attribute from a bi ndi ng element of a di r ect - exchange configuration
caused the queue or exchange to be bound with an empty string as the routing key. Now it is bound with
the the name of the provided Queue or Exchange. Users wishing to bind with an empty string routing
key need to specify key="".

AMQP Template

The AngpTenpl at e now provides several synchronous r ecei veAndRepl y methods. These are
implemented by the Rabbit Tenpl at e. For more information see the section called “Receiving
messages”.

The Rabbi t Tenpl at e now supports configuring a Ret r yTenpl at e to attempt retries (with optional
back off policy) for when the broker is not available. For more information see the section called “Adding
Retry Capabilities”.

Caching Connection Factory

The caching connection factory can now be configured to cache "Connection’s and their "Channel’s
instead of using a single connection and caching just "Channel’s. See the section called “Connection
and Resource Management”.

Binding Arguments

The <exchange>'s <bi ndi ng> now supports parsing of the <bi ndi ng- ar gunent s> sub-element.
The <header s- exchange>'s <bi ndi ng> now can be configured with a key/ val ue attribute pair
(to match on a single header) or with a <bi ndi ng- ar gunent s> sub-element, allowing matching on
multiple headers; these options are mutually exclusive. See the section called “Introduction”.

1.5.0.M1 Spring AMQP 8

Spring AMQP

Routing Connection Factory

A new Sinpl eRouti ngConnecti onFactory has been introduced, to allow configuration of
Connect i onFact ori es mapping to determine the target Connect i onFact ory to use at runtime.
See the section called “Routing Connection Factory”.

MessageBuilder and MessagePropertiesBuilder

"Fluent APIs" for building messages and/or message properties is now provided. See the section called
“Message Builder API”.

RetryInterceptorBuilder

A "Fluent API" for building listener container retry interceptors is now provided. See the section called
“Failures in Synchronous Operations and Options for Retry”.

RepublishMessageRecoverer

This new MessageRecover er is provided to allow publishing a failed message to another queue
(including stack trace information in the header) when retries are exhausted. See the section called
“Message Listeners and the Asynchronous Case”.

Default Error Handler (Since 1.3.2)

A default Condi ti onal Rej ecti ngEr r or Handl er has been added to the listener container. This
error handler detects message conversion problems (which are fatal) and instructs the container to
reject the message to prevent the broker from continually redelivering the unconvertible message. See
the section called “Exception Handling”.

Listener Container 'missingQueuesFatal” Property (Since 1.3.5)

The Si npl eMessageli st ener Cont ai ner now has a property m ssi ngQueuesFat al (default
t rue). Previously, missing queues were always fatal. See the section called “Message Listener
Container Configuration”.

Changes to 1.2 Since 1.1
RabbitMQ Version

Spring AMQP now using RabbitMQ 3.1.x by default (but retains compatibility with earlier versions).
Certain deprecations have been added for features no longer supported by RabbitMQ 3.1.x - federated
exchanges and the i medi at e property on the Rabbi t Tenpl at e.

Rabbit Admin

The Rabbi t Adni n now provides an option to allow exchange, queue, and binding declarations to
continue when a declaration fails. Previously, all declarations stopped on a failure. By setting i gnor e-
decl ar at i on- excepti ons, such exceptions are logged (WARN), but further declarations continue.
An example where this might be useful is when a queue declaration fails because of a slightly different
tt 1 setting would normally stop other declarations from proceeding.

The Rabbi t Adm n now provides an additional method get QueuePr operti es() . This can be usedto
determine if a queue exists on the broker (returns null for a non-existent queue). In addition, the current
number of messages in the queue, as well as the current number of consumers is returned.

1.5.0.M1 Spring AMQP 9

Spring AMQP

Rabbit Template

Previously, when using the . . . sendAndRecei ve() methods were used with a fixed reply queue, two
custom headers were used for correlation data and to retain/restore reply queue information. With this
release, the standard message property correl ati onl d is used by default, although the user can
specifiy a custom property to use instead. In addition, nested r epl yTo information is now retained
internally in the template, instead of using a custom header.

The i medi at e property is deprecated; users must not set this property when using RabbitMQ 3.0.x
or greater.

JSON Message Converters

A Jackson 2.x MessageConverter is now provided, along with the existing converter that uses
Jackson 1.x.

Automatic Declaration of Queues, etc

Previously, when declaring queues, exchanges and bindings, it was not possible to define which
connection factory was used for the declarations, each Rabbi t Adm n would declare all components
using its connection.

Starting with this release, it is now possible to limit declarations to specific Rabbi t Adm n instances.
See the section called “Conditional Declaration”.

AMQP Remoting

Facilities are now provided for using Spring Remoting techniques, using AMQP as the transport for the
RPC calls. For more information see the section called “Spring Remoting with AMQP”

Requested Heart Beats

Several users have asked for the underlying client connection factory’s r equest edHear t Beat s
property to be exposed on the Spring AMQP Cachi ngConnect i onFact ory. This is now available;
previously, it was necessary to configure the AMQP client factory as a separate bean and provide a
reference to it in the Cachi ngConnect i onFact ory.

Changes to 1.1 Since 1.0

General

Spring-AMQP is now built using gradle.

Adds support for publisher confirms and returns.

Adds support for HA queues, and broker failover.

Adds support for Dead Letter Exchanges/Dead Letter Queues.
AMQP Log4j Appender

Adds an option to support adding a message id to logged messages.

Adds an option to allow the specification of a Char set name to be used when converting String s
to “byte[].

1.5.0.M1 Spring AMQP 10

Spring AMQP

3. Reference

This part of the reference documentation details the various components that comprise Spring AMQP.
The main chapter covers the core classes to develop an AMQP application. This part also includes a
chapter about the sample applications.

3.1 Using Spring AMQP

In this chapter, we will explore the interfaces and classes that are the essential components for
developing applications with Spring AMQP.

AMQP Abstractions

Introduction

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution.
These modules are: spring-amqgp, and spring-rabbit. The spring-amgp module contains the
or g. spri ngframewor k. anmgp. cor e package. Within that package, you will find the classes that
represent the core AMQP "model". Our intention is to provide generic abstractions that do not rely on
any particular AMQP broker implementation or client library. End user code will be more portable across
vendor implementations as it can be developed against the abstraction layer only. These abstractions
are then used implemented by broker-specific modules, such as spring-rabbit. There is currently only a
RabbitMQ implementation; however the abstractions have been validated in .NET using Apache Qpid
in addition to RabbitMQ. Since AMQP operates at the protocol level in principle, the RabbitMQ client
can be used with any broker that supports the same protocol version, but we do not test any other
brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification. If
you are not, then have a look at the resources listed in Chapter 5, Other Resources

Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when
performing an operation such as basi cPubl i sh(), the content is passed as a byte-array argument
and additional properties are passed in as separate arguments. Spring AMQP defines a Message class
as part of a more general AMQP domain model representation. The purpose of the Message class is
to simply encapsulate the body and properties within a single instance so that the API can in turn be
simpler. The Message class definition is quite straightforward.

public class Message {
private final MessageProperties nessageProperties;
private final byte[] body;

public Message(byte[] body, MessageProperties messageProperties) {
t hi s. body = body;
this. nessageProperti es = nmessageProperties;

}

public byte[] getBody() {
return this. body;

}

publ i c MessageProperties get MessageProperties() {
return this.nnessageProperties;

}

1.5.0.M1 Spring AMQP 11

Spring AMQP

The MessageProperti es interface defines several common properties such as messageld,
timestamp, contentType, and several more. Those properties can also be extended with user-defined
headers by calling the set Header (Stri ng key, Object val ue) method.

Exchange

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to.
Each Exchange within a virtual host of a broker will have a uniqgue name as well as a few other properties:

public interface Exchange {
String getNanme();
String get ExchangeType();
bool ean i sDurabl e();
bool ean i sAut oDel ete();

Map<String, Object> getArgunments();

As you can see, an Exchange also has a type represented by constants defined in ExchangeTypes.
The basic types are: Di rect, Topi c, Fanout, and Headers. In the core package you will find
implementations of the Exchange interface for each of those types. The behavior varies across these
Exchange types in terms of how they handle bindings to Queues. For example, a Direct exchange
allows for a Queue to be bound by a fixed routing key (often the Queue’s name). A Topic exchange
supports bindings with routing patterns that may include the * and # wildcards for exactly-one and zero-
or-more, respectively. The Fanout exchange publishes to all Queues that are bound to it without taking
any routing key into consideration. For much more information about these and the other Exchange
types, check out Chapter 5, Other Resources.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange that has
no name. All Queues that are declared will be bound to that default Exchange with their names
as routing keys. You will learn more about the default Exchange’s usage within Spring AMQP in
the section called “AmgpTemplate”.

Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like
the various Exchange classes, our implementation is intended to be an abstract representation of this
core AMQP type.

1.5.0.M1 Spring AMQP 12

Spring AMQP

public class Queue {
private final String nane;
private vol atile bool ean durabl e;
private vol atile bool ean excl usi ve;
private vol atile bool ean autoDel ete;

private volatile Map<String, Object> argunents;

/**
* The queue is durabl e, non-exclusive and non auto-del ete.
*
* @aram narme the nane of the queue.
*/
public Queue(String nanme) {
this(nane, true, false, false);

}

/'l Getters and Setters onmitted for brevity

Notice that the constructor takes the Queue name. Depending on the implementation, the admin
template may provide methods for generating a uniquely named Queue. Such Queues can be useful
as a "reply-to" address or other temporary situations. For that reason, the exclusive and autoDelete
properties of an auto-generated Queue would both be set to true.

Note
See the section on queues in the section called “Configuring the broker” for information about
declaring queues using namespace support, including queue arguments.

Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings
that connect Queues to Exchanges are critical for connecting those producers and consumers via
messaging. In Spring AMQP, we define a Bi ndi ng class to represent those connections. Let’s review
the basic options for binding Queues to Exchanges.

You can bind a Queue to a DirectExchange with a fixed routing key.

new Bi ndi ng(someQueue, soneDirect Exchange, "foo.bar")

You can bind a Queue to a TopicExchange with a routing pattern.

new Bi ndi ng(someQueue, soneTopi cExchange, "foo.*")

You can bind a Queue to a FanoutExchange with no routing key.

new Bi ndi ng(someQueue, someFanout Exchange)

We also provide a Bi ndi ngBui | der to facilitate a "fluent API" style.

‘ Bi nding b = Bi ndi ngBui | der. bi nd(someQueue) . t o(soneTopi cExchange) . wi th("foo.*");

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a static
import for the bind() method.

1.5.0.M1 Spring AMQP 13

Spring AMQP

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it is
not an "active" component. However, as you will see later in the section called “Configuring the broker”,
Binding instances can be used by the AngpAdni n class to actually trigger the binding actions on the
broker. Also, as you will see in that same section, the Binding instances can be defined using Spring’s
@ean-style within @onf i gur ati on classes. There is also a convenient base class which further
simplifies that approach for generating AMQP-related bean definitions and recognizes the Queues,
Exchanges, and Bindings so that they will all be declared on the AMQP broker upon application startup.

The AngpTenpl at e is also defined within the core package. As one of the main components
involved in actual AMQP messaging, it is discussed in detail in its own section (see the section called
“AmgpTemplate”).

Connection and Resource Management

Introduction

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our "spring-
rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the Connect i onFact ory
interface. The responsibility of a ConnectionFactory implementation is to provide an
instance of or g. spri ngf ramewor k. angp. r abbi t . connecti on. Connect i on which is a wrapper
for comrabbitng.client.Connection. The only concrete implementation we provide is
Cachi ngConnect i onFact or y which, by default, establishes a single connection proxy that can be
shared by the application. Sharing of the connection is possible since the "unit of work" for messaging
with AMQP is actually a "channel” (in some ways, this is similar to the relationship between a Connection
and a Session in JMS). As you can imagine, the connection instance provides a cr eat eChannel

method. The Cachi ngConnect i onFact or y implementation supports caching of those channels, and
it maintains separate caches for channels based on whether they are transactional or not. When creating
an instance of Cachi ngConnect i onFact or y, the hostname can be provided via the constructor. The
username and password properties should be provided as well. If you would like to configure the size of
the channel cache (the default is 1), you could call the set Channel CacheSi ze() method here as well.

Starting with version 1.3, the Cachi ngConnect i onFact or y can be configured to cache connections
as well as just channels. In this case, each call to cr eat eConnecti on() creates a new connection
(or retrieves an idle one from the cache). Closing a connection returns it to the cache (if the cache
size has not been reached). Channels created on such connections are cached too. The use of
separate connections might be useful in some environments, such as consuming from an HA cluster,
in conjunction with a load balancer, to connect to different cluster members.

Important

When the cache mode is CONNECTI ON, automatic declaration of queues etc. (See the section
called “Automatic Declaration of Exchanges, Queues and Bindings”) is NOT supported.

Also, at the time of writing, the r abbi t ng- cl i ent library creates a fixed thread pool for each
connection (5 threads) by default. When using a large number of connections, you should consider
setting a custom execut or on the Cachi ngConnecti onFact ory. Then, the same executor
will be used by all connections and its threads can be shared. The executor’s thread pool should

1.5.0.M1 Spring AMQP 14

Spring AMQP

be unbounded, or set appropriately for the expected utilization (usually, at least one thread per
connection). If multiple channels are created on each connection then the pool size will affect the
concurrency, so a variable (or simple cached) thread pool executor would be most suitable.

It is important to understand that the cache size is (by default) not a limit, but merely the number of
channels that can be cached. With a cache size of, say, 10, any number of channels can actually be in
use. If more than 10 channels are being used and they are all returned to the cache, 10 will go in the
cache; the remainder will be physically closed.

Starting with version 1.4.2, the Cachi ngConnectionFactory has a property
channel Checkout Ti meout . When this property is greater than zero, the channel CacheSi ze
becomes a limit on the number of channels that can be created on a connection. If the limit is reached,
calling threads will block until a channel is available or this timeout is reached, in which case a
AmgpTi meout Except i on is thrown.

Warning

Channels used within the framework (e.g. Rabbi t Tenpl at e) will be reliably returned to the
cache. If you create channels outside of the framework, (e.g. by accessing the connection(s)
directly and invoking cr eat eChannel ()), you must return them (by closing) reliably, perhaps in
afinal | y block, to avoid running out of channels.

Cachi ngConnecti onFactory connectionFactory = new Cachi ngConnecti onFact ory("sonmehost")
connecti onFactory. set User nane(" guest ")
connecti onFact ory. set Passwor d(" guest");

Connection connection = connectionFactory. createConnection();

When using XML, the configuration might look like this:

<bean id="connecti onFactory"
cl ass="org. springframewor k. angp. rabbi t. connecti on. Cachi ngConnecti onFactory">
<constructor-arg val ue="sonehost"/ >
<property name="username" val ue="guest"/>
<property name="password" val ue="guest"/>
</ bean>

Note

There is also a Si ngl eConnect i onFact or y implementation which is only available in the unit
test code of the framework. It is simpler than Cachi ngConnect i onFact ory since it does not
cache channels, but it is not intended for practical usage outside of simple tests due to its lack of
performance and resilience. If you find a need to implement your own Connect i onFact ory for
some reason, the Abst r act Connect i onFact ory base class may provide a nice starting point.

A Connect i onFact ory can be created quickly and conveniently using the rabbit namespace:

<rabbi t: connection-factory i d="connecti onFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you. The
created instance will be a Cachi ngConnect i onFact ory. Keep in mind that the default cache size
for channels is 1. If you want more channels to be cached set a larger value via the channelCacheSize
property. In XML it would look like this:

1.5.0.M1 Spring AMQP 15

Spring AMQP

<bean id="connecti onFactory"
cl ass="org. springfranmewor k. angp. rabbi t. connecti on. Cachi ngConnecti onFact ory">
<constructor-arg val ue="sonmehost"/ >
<property name="username" val ue="guest"/>
<property name="password" val ue="guest"/>
<property name="channel CacheSi ze" val ue="25"/>
</ bean>

And with the namespace you can just add the channel-cache-size attribute:

<rabbi t: connecti on-factory
i d="connectionFactory" channel -cache-si ze="25"/>

The default cache mode is CHANNEL, but you can configure it to cache connections instead; in this
case, we use connect i on- cache- si ze:

<rabbi t: connecti on-factory
i d="connect i onFactory" cache- node="CONNECTI ON' connecti on-cache-si ze="25"/>

Host and port attributes can be provided using the namespace

<rabbi t: connecti on-factory
i d="connecti onFactory" host="sonehost" port="5672"/>

Alternatively, if running in a clustered environment, use the addresses attribute.

<rabbi t: connection-factory
i d="connecti onFact ory" addresses="host 1: 5672, host 2: 5672"/ >

Configuring the Underlying Client Connection Factory

The Cachi ngConnect i onFact ory uses an instance of the Rabbit client Connecti onFactory; a
number of configuration properties are passed through (host, port, userNane, password,
request edHeart Beat, connecti onTi neout for example) when setting the equivalent property
on the Cachi ngConnecti onFact ory. To set other properties (cl i ent Properti es for example),
define an instance of the rabbit factory and provide a reference to it using the appropriate constructor
of the Cachi ngConnect i onFact ory. When using the namespace as described above, provide a
reference to the configured factory in the connect i on-f act or y attribute. For convenience, a factory
bean is provided to assist in configuring the connection factory in a Spring application context, as
discussed in the next section.

<rabbi t: connecti on-factory
i d="connectionFactory" connection-factory="rabbitConnecti onFactory"/>

Configuring SSL

Starting with version 1.4, a convenient Rabbi t Connect i onFact or yBean is provided to enable
convenient configuration of SSL properties on the underlying client connection factory, using
dependency injection. Other setters simply delegate to the underlying factory. Previously you had to
configure the SSL options programmatically.

1.5.0.M1 Spring AMQP 16

Spring AMQP

<rabbi t: connection-factory id="rabbitConnectionFactory"
connection-factory="client Connecti onFact ory"
host ="${ host } "
port="${port}"
virtual - host ="${vhost}"
user nanme="${user nane}" password="${password}" />

<bean id="client Connecti onFactory"
class="org. springframework. xd. dirt.integration.rabbit.RabbitConnecti onFact oryBean">
<property nanme="useSSL" val ue="true" />
<property name="ssl PropertiesLocation" value="file:/secrets/rabbitSSL.properties"/>
</ bean>

Refer to the RabbitMQ Documentation for information about configuring SSL. Omit the
ssl PropertiesLocati on property to connect over SSL without certificate validation. When using
certificate validation, the property is a Spring Resour ce pointing to a properties file containing the

following keys:

keyStore=file:/secret/keycert.pl2
trustStore=file:/secret/trustStore
keySt or e. passPhr ase=secr et

trust St ore. passPhrase=secr et

The keySt oreandt r ust st or e are Spring Resour ces pointing to the stores. Typically this properties

file will be secured by the operating system with the application having read access.

Routing Connection Factory

Starting with version 1.3, the Abstract Routi ngConnecti onFactory has been introduced.
This provides a mechanism to configure mappings for several ConnectionFactories and

determine a target ConnectionFactory by some | ookupKey at runtime. Typically,

the

implementation checks a thread-bound context. For convenience, Spring AMQP provides the
Si npl eRout i ngConnect i onFact ory, which gets the current thread-bound | ookupKey from the

Si npl eResour ceHol der :

<bean id="connecti onFactory"
cl ass="org. springframewor k. angp. rabbi t. connecti on. Si npl eRout i ngConnecti onFact ory" >
<property nane="t ar get Connecti onFactories">
<map>
<entry key="#{connectionFactoryl.virtual Host}" ref="connectionFactoryl"/>
<entry key="#{connectionFactory2.virtual Host}" ref="connectionFactory2"/>
</ map>
</ property>
</ bean>

<rabbit:tenplate id="tenpl ate" connection-factory="connectionFactory" />

public class MyService {

@\ut owi red
private RabbitTenpl ate rabbit Tenpl ate;

public void service(String vHost, String payl oad) {
Si npl eResour ceHol der. bi nd(rabbi t Tenpl at e. get Connecti onFactory(), vHost);
rabbi t Tenpl at e. conver t AndSend(payl oad) ;
Si npl eResour ceHol der . unbi nd(rabbi t Tenpl at e. get Connecti onFactory());

}

}
It is important to unbind the resource after use. For more information see the JavaDocs of
Abst ract Rout i ngConnect i onFact ory.
1.5.0.M1 Spring AMQP 17

https://www.rabbitmq.com/ssl.html

Spring AMQP

Starting with version 1.4, the Rabbi t Tenpl at e supports the SpEL
sendConnect i onFact or ySel ect or Expr essi on and
recei veConnect i onFact or ySel ect or Expr essi on properties, which are evaluated on each
AMQP protocol interaction operation (send, sendAndRecei ve, recei ve or recei veAndRepl y),
resolving to a | ookupKey value for the provided Abstract Routi ngConnecti onFact ory. Bean
references, such as " @Host Resol ver. get VHost (#root)" can be used in the expression. For
send operations, the Message to be sent is the root evaluation object; for r ecei ve operations, the
gueueName is the root evaluation object.

The routing algorithm is: If the selector expression is nul | , or is evaluated to nul | , or the provided
Connecti onFactory isn't an instance of Abstract Routi ngConnecti onFact ory, everything
works as before, relying on the provided Connecti onFact ory implementation. The same occurs if
the evaluation result isn't nul | , but there is no target Connect i onFact ory for that | ookupKey and
the Abstract Routi ngConnecti onFact ory is configured with | eni ent Fal | back = true. Of
course, in the case of an Abst r act Rout i ngConnecti onFact ory it does fallback to its r out i ng
implementation based on det er mi neCur r ent LookupKey() . But, if | eni ent Fal | back = fal se,
anl || egal St at eExcepti on is thrown.

The Namespace support also provides the send-connection-factory-selector-
expression and recei ve-connection-factory-sel ector-expressi on attributes on the
<rabbi t: t enpl at e> component.

Also starting with version 1.4, you can configure a routing connection factory in a
Si npl eMessageli st ener Cont ai ner . In that case, the list of queue names is used as the lookup
key. For example, if you configure the container with set QueueNanes("f oo, bar"), the lookup key
will be "[f 00, bar]" (no spaces).

Publisher Confirms and Returns

Confirmed and returned messages are supported by setting the Cachi ngConnecti onFact ory's
publ i sher Confi rns and publ i sher Ret ur ns properties to 'true' respectively.

When these options are set, Channel s created by the factory are wrapped in an
Publ i sher Cal | backChannel , which is used to facilitate the callbacks. When such a channel is
obtained, the client can register a Publ i sher Cal | backChannel . Li st ener with the Channel .
The Publ i sher Cal | backChannel implementation contains logic to route a confirm/return to the
appropriate listener. These features are explained further in the following sections.

Tip

For some more background information, please see the following blog post by the RabbitMQ team
titled Introducing Publisher Confirms.

AmgpTemplate
Introduction

As with many other high-level abstractions provided by the Spring Framework and related projects,
Spring AMQP provides a "template" that plays a central role. The interface that defines the main
operations is called AngpTenpl at e. Those operations cover the general behavior for sending and
receiving Messages. In other words, they are not unique to any implementation, hence the "AMQP" in
the name. On the other hand, there are implementations of that interface that are tied to implementations

1.5.0.M1 Spring AMQP 18

http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

Spring AMQP

of the AMQP protocol. Unlike JMS, which is an interface-level API itself, AMQP is a wire-level protocol.
The implementations of that protocol provide their own client libraries, so each implementation of
the template interface will depend on a particular client library. Currently, there is only a single
implementation: Rabbi t Tenpl at e. In the examples that follow, you will often see usage of an
"AmgpTemplate”, but when you look at the configuration examples, or any code excerpts where
the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AmgpTenpl at e interface defines all of the basic operations for sending and
receiving Messages. We will explore Message sending and reception, respectively, in the two sections
that follow.

Adding Retry Capabilities

Starting with version 1.3 you can now configure the Rabbi t Tenpl at e to use a RetryTenpl at e to
help with handling problems with broker connectivity. Refer to the spring-retry project for complete
information; the following is just one example that uses an exponential back off policy and the default
Si npl eRet r yPol i cy which will make three attempts before throwing the exception to the caller.

Using the XML namespace:

<rabbit:tenplate id="tenpl ate" connection-factory="connecti onFactory" retry-tenplate="retryTenpl ate"/>

<bean id="retryTenpl ate" class="org.springframework.retry.support.RetryTenpl ate">
<property nanme="backCf f Policy">
<bean cl ass="org. springfranmework.retry. backoff. Exponenti al BackCf f Pol i cy" >
<property name="initiallnterval" val ue="500" />
<property name="multiplier" value="10.0" />
<property name="maxl nterval " val ue="10000" />
</ bean>
</ property>
</ bean>

Using @onf i gur ati on:

@Bean
publ ic AmgpTenpl ate rabbit Tenpl ate();
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
RetryTenpl ate retryTenpl ate = new RetryTenpl ate();
Exponent i al BackCf f Pol i cy backCOf f Pol i cy = new Exponenti al BackOf f Pol i cy();
backO f Pol i cy. setlnitiallnterval (500);
backOf f Pol i cy. setMul tiplier(10.0);
backO f Pol i cy. set Max| nt erval (10000) ;
retryTenpl at e. set BackOf f Pol i cy(backOf f Pol i cy);
tenpl ate. set RetryTenpl ate(retryTenpl ate);
return tenpl ate;

Starting with version 1.4, in addition to the retryTenplate property, the
recoveryCal | back option is supported on the Rabbit Tenpl ate. It is used as a second
argument for the RetryTenpl ate. execute(RetryCall back<T, E> retryCall back,
RecoveryCal | back<T>r ecoveryCal | back).

Note

The RecoveryCal | back is somewhat limited in that the retry context only contains the
| ast Thr owabl e field. For more sophisticated use cases, you should use an external
Ret r yTenpl at e so that you can convey additional information to the Recover yCal | back via
the context’s attributes:

1.5.0.M1 Spring AMQP 19

https://github.com/spring-projects/spring-retry

Spring AMQP

retryTenpl at e. execut e(
new RetryCal | back<Obj ect, Exception>() {

@verride

public Object doWthRetry(RetryContext context) throws Exception {
context.setAttribute("nessage", nessage);
return rabbitTenpl at e. convert AndSend(exchange, routingKey, nessage);

}
}, new RecoveryCal | back<Cbj ect >() {

@verride
public Object recover(RetryContext context) throws Exception {
Obj ect nmessage = context.getAttribute("nmessage");
Throwabl e t = context.getLast Throwabl e();
/1 Do sonething with nessage
return null;

1)

In this case, you would not inject a Ret r yTenpl at e into the Rabbi t Tenpl at e.
Publisher Confirms and Returns
The Rabbi t Tenpl at e implementation of AngpTenpl at e supports Publisher Confirms and Returns.

For returned messages, the template’s mandat ory property must be set to true, and it requires
a Cachi ngConnecti onFact ory that has its publ i sher Ret ur ns property set to true (see the
section called “Publisher Confirms and Returns”). Returns are sent to to the client by it registering
a Rabbit Tenpl ate. ReturnCal | back by calling setReturnCall back(ReturnCall back
cal | back) . The callback must implement this method:

voi d returnedMessage(Message nessage, int replyCode, String replyText,
String exchange, String routingKey);

Only one Ret ur nCal | back is supported by each Rabbi t Tenpl at e.

For Publisher Confirms (aka Publisher Acknowledgements), the template requires a
Cachi ngConnecti onFact ory that has its publ i sher Confirms property set to true. Confirms
are sent to to the client by it registering a Rabbit Tenpl at e. Confi rntCal | back by calling
set Confi rnCal | back(ConfirnCal | back cal | back) . The callback mustimplement this method:

void confirm(Correl ati onData correl ati onData, bool ean ack, String cause);

The Correl ati onDat a is an object supplied by the client when sending the original message. The
ack is true for an ack and false for a nack. For nack s, the cause may contain a reason for the nack,
if it is available when the nack is generated. An example is when sending a message to a non-existent
exchange. In that case the broker closes the channel; the reason for the closure is included in the cause.
cause was added in version 1.4.

Only one Confi r nmCal | back is supported by a Rabbi t Tenpl at e.

Note

When a rabbit template send operation completes, the channel is closed; this would preclude the
reception of confirms or returns in the case when the connection factory cache is full (when there
is space in the cache, the channel is not physically closed and the returns/confirms will proceed
as normal). When the cache is full, the framework defers the close for up to 5 seconds, in order to
allow time for the confirms/returns to be received. When using confirms, the channel will be closed

1.5.0.M1 Spring AMQP 20

Spring AMQP

when the last confirm is received. When using only returns, the channel will remain open for the
full 5 seconds. It is generally recommended to set the connection factory’s channel CacheSi ze
to a large enough value so that the channel on which a message is published is returned to the
cache instead of being closed.

Messaging integration

Starting with version 1.4 Rabbit Messagi ngTenpl ate, built on top of Rabbit Tenpl at e,
provides an integration with the Spring Framework messaging abstraction, i.e.
org. spri ngfranmewor k. nessagi ng. Message. This allows you to create the message to send in
generic manner.

Sending messages

Introduction

When sending a Message, one can use any of the following methods:

voi d send(Message nessage) throws AngpExcepti on;
void send(String routingkey, Message nessage) throws AnmgpException;

voi d send(String exchange, String routingKey, Message nessage) throws AngpExcepti on;

We can begin our discussion with the last method listed above since it is actually the most explicit. It
allows an AMQP Exchange name to be provided at runtime along with a routing key. The last parameter
is the callback that is responsible for actual creating of the Message instance. An example of using this
method to send a Message might look this this:

angpTenpl at e. send(" mar ket Dat a. t opi ¢c", "quotes. nasdaqg. FOO',
new Message("12.34".getBytes(), soneProperties));

The "exchange" property can be set on the template itself if you plan to use that template instance to
send to the same exchange most or all of the time. In such cases, the second method listed above may
be used instead. The following example is functionally equivalent to the previous one:

angpTenpl at e. set Exchange(" mar ket Data. topi c");
angpTenpl at e. send(" quot es. nasdaq. FOO', new Message("12.34". get Bytes(), soneProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting
only the Message may be used:

angpTenpl at e. set Exchange(" nar ket Dat a. t opi ¢");
angpTenpl at e. set Rout i ngKey(" quot es. nasdaq. FOO") ;
amypTenpl at e. send(new Message("12. 34". get Byt es(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method
parameters will always override the template’s default values. In fact, even if you do not explicitly set
those properties on the template, there are always default values in place. In both cases, the default is
an empty String, but that is actually a sensible default. As far as the routing key is concerned, it's not
always necessary in the first place (e.g. a Fanout Exchange). Furthermore, a Queue may be bound to
an Exchange with an empty String. Those are both legitimate scenarios for reliance on the default empty
String value for the routing key property of the template. As far as the Exchange name is concerned, the
empty String is quite commonly used because the AMQP specification defines the "default Exchange”
as having no name. Since all Queues are automatically bound to that default Exchange (which is a
Direct Exchange) using their name as the binding value, that second method above can be used for

1.5.0.M1 Spring AMQP 21

Spring AMQP

simple point-to-point Messaging to any Queue through the default Exchange. Simply provide the queue
name as the "routingKey" - either by providing the method parameter at runtime:

Rabbi t Tenpl ate tenplate = new RabbitTenplate(); // using default no-name Exchange
tenpl at e. send(" queue. hel | oWorl d", new Message("Hello Wrld".getBytes(), someProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to a single
Queue, the following is perfectly reasonable:

Rabbi t Tenpl ate tenplate = new RabbitTenplate(); // using default no-name Exchange
tenpl at e. set Rout i ngKey("queue. hel l oworld"); // but we'll always send to this Queue
tenpl at e. send(new Message("Hell o Worl d". getBytes(), someProperties));

Message Builder API

Starting with version 1.3, a message builder API is provided by the MessageBuil der and
MessagePr operti esBui | der; they provides a convenient "fluent" means of creating a message or
message properties:

Message nmessage = MessageBuil der.w t hBody("foo". getBytes())
. set Cont ent Type(MessageProperti es. CONTENT_TYPE_TEXT_PLAI N)
. set Messagel d("123")

. set Header ("bar", "baz")
.bui 1 d();

or

MessageProperties props = MessageProperti esBuil der. newl nst ance()
. set Cont ent Type(MessageProperti es. CONTENT_TYPE_TEXT_PLAI N)
. set Messagel d("123")
. set Header ("bar", "baz")
Lbuild();

Message nessage = MessageBui |l der. wi t hBody("foo". get Bytes())
.andPr operti es(props)
.build();

Each of the properties defined on the MessageProperies can be set. Other methods include
set Header (String key, String val ue),renoveHeader (String key),renoveHeaders(),
and copyProperties(MessageProperties properties). Each property setting method has
a set*I f Absent () variant. In the cases where a default initial value exists, the method is hamed
set*| f Absent Or Def aul t ().

Five static methods are provided to create an initial message builder:

public static MessageBuil der withBody(byte[] body) O

public static MessageBuil der withC onedBody(byte[] body) O

public static MessageBuilder withBody(byte[] body, int from int to) O
public static MessageBuilder fromvessage(Message nessage) O

public static MessageBuil der fronCl onedMessage(Message nessage) O

O The message created by the builder will have a body that is a direct reference to the argument.

0 The message created by the builder will have a body that is a new array containing a copy of bytes
in the argument.

0 The message created by the builder will have a body that is a new array containing the range of
bytes from the argument. See Arr ays. copyOf Range() for more details.

1.5.0.M1 Spring AMQP 22

http://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/MessageProperties.html

Spring AMQP

0 The message created by the builder will have a body that is a direct reference to the body of the
argument. The argument’s properties are copied to a new MessagePr operti es object.

0 The message created by the builder will have a body that is a new array containing a copy of the
argument’s body. The argument’s properties are copied to a new MessagePr operti es object.

public static MessagePropertiesBuilder new nstance() O
public static MessagePropertiesBuil der fronProperties(MessageProperties properties) O

public static MessagePropertiesBuilder fronC onedProperties(MessageProperties properties) O

O A new message properties object is initialized with default values.
O The builder is initialized with, and bui | d() will return, the provided properties object.,
0 The argument’s properties are copied to a new MessagePr operti es object.

With the Rabbi t Tenpl at e implementation of AngpTenpl at e, each of the send() methods has an
overloaded version that takes an additional Cor r el at i onDat a object. When publisher confirms are
enabled, this object is returned in the callback described in the section called “AmgpTemplate”. This
allows the sender to correlate a confirm (ack or nack) with the sent message.

Publisher Returns

When the template’s mandat ory property is true returned messages are provided by the callback
described in the section called “AmgpTemplate”.

Starting with version 1.4 the Rabbi t Tenpl at e supports the SpEL mandat or yExpr essi on property,
which is evaluated against each request message, as the root evaluation object, resolving to a bool ean
value. Bean references, such as " @ryBean. i sMandat or y(#r oot)" can be used in the expression.

Batching

Starting with version 1.4.2, the Bat chi ngRabbi t Tenpl at e has been introduced. This is a subclass
of Rabbi t Tenpl at e with an overridden send method that batches messages according to the
Bat chi ngSt r at egy; only when a batch is complete is the message sent to RabhitMQ.

public interface BatchingStrategy {
MessageBat ch addToBat ch(Stri ng exchange, String routingKey, Message nessage);
Dat e next Rel ease();

Col | ecti on<MessageBat ch> rel easeBat ches();

Caution

Batched data is held in memory; unsent messages can be lost in the event of a system failure.

A Si npl eBat chi ngSt r at egy is provided. It supports sending messages to a single exchange/routing
key. It has properties:

* bat chSi ze - the number of messages in a batch before it is sent

e bufferLimt -the maximum size of the batched message; this will preempt the bat chSi ze if
exceeded, and cause a partial batch to be sent

1.5.0.M1 Spring AMQP 23

Spring AMQP

e tineout -atime after which a partial batch will be sent when there is no new activity adding messages
to the batch

The Si npl eBat chi ngSt r at egy formats the batch by preceding each embedded message with a 4
byte binary length. This is communicated to the receiving system by setting the spri ngBat chFor nat
message property to | engt hHeader 4.

Important

Batched messages are automatically de-batched by listener containers (using the
spri ngBat chFor nat message header). Rejecting any message from a batch will cause the
entire batch to be rejected.

Receiving messages
Introduction

Message reception is always a little more complicated than sending. There are two ways to receive a
Message. The simpler option is to poll for a single Message at a time with a polling method call. The
more complicated yet more common approach is to register a listener that will receive Messages on-
demand, asynchronously. We will look at an example of each approach in the next two sub-sections.

Polling Consumer

The AngpTenpl at e itself can be used for polled Message reception. If no message is available, nul |
is returned immediately; there is no blocking. There are two simple receive methods available. As with
the Exchange on the sending side, there is a method that requires a default queue property having been
set directly on the template itself, and there is a method that accepts a queue parameter at runtime.

Message receive() throws AmgpException;

Message receive(String queueNane) throws AngpException;

Just like in the case of sending messages, the AngpTenpl at e has some convenience methods for
receiving POJOs instead of Message instances, and implementations will provide a way to customize
the MessageConvert er used to create the Obj ect returned:

Obj ect recei veAndConvert () throws AngpExcepti on;

Obj ect recei veAndConvert (String queueNane) throws AngpException;
Similar to sendAndRecei ve methods, beginning with version 1.3, the AngpTenpl at e has several

convenience r ecei veAndRepl y methods for synchronously receiving, processing and replying to
messages:

1.5.0.M1 Spring AMQP 24

Spring AMQP

<R, S> bool ean recei veAndRepl y(Recei veAndRepl yCal | back<R, S> cal | back)
t hrows AngpExcepti on;

<R, S> bool ean recei veAndRepl y(String queueNane, Recei veAndRepl yCal | back<R, S> cal | back)
t hrows AnmgpExcepti on;

<R, S> bool ean recei veAndRepl y(Recei veAndRepl yCal | back<R, S> cal | back,
String repl yExchange, String repl yRouti ngKey) throws AngpExcepti on;

<R, S> bool ean recei veAndRepl y(String queueNane, Recei veAndRepl yCal | back<R, S> cal | back,
String repl yExchange, String replyRoutingKey) throws AngpException;

<R, S> bool ean recei veAndRepl y(Recei veAndRepl yCal | back<R, S> cal | back,
Repl yToAddr essCal | back<S> repl yToAddr essCal | back) throws AngpExcepti on;

<R, S> bool ean recei veAndRepl y(String queueNane, Recei veAndRepl yCal | back<R, S> cal | back,
Repl yToAddr essCal | back<S> repl yToAddr essCal | back) throws AngpExcepti on;

The AngpTenpl at e implementation takes care of the receive and reply phases. In most cases
you should provide only an implementation of Recei veAndRepl yCal | back to perform some
business logic for the received message and build a reply object or message, if needed. Note, a
Recei veAndRepl yCal | back may return nul | . In this case no reply is sent and r ecei veAndRepl y
works like the r ecei ve method. This allows the same queue to be used for a mixture of messages,
some of which may not need a reply.

Automatic message (request and reply) conversion is applied only if the provided callback is not
an instance of Recei veAndRepl yMessageCal | back - which provides a raw message exchange
contract.

The Repl yToAddr essCal | back is useful for cases requiring custom logic to determine the r epl yTo
address at runtime against the received message and reply from the Recei veAndRepl yCal | back.
By default, r epl yTo information in the request message is used to route the reply.

The following is an example of POJO-based receive and reply...

bool ean received =
this.tenpl ate. recei veAndRepl y(ROUTE, new Recei veAndRepl yCal | back<Order, |nvoice>() {

public Invoice handl e(Order order) {
return processOrder(order);
}
b
if (received) {
log.info("We received an order!");

}

Asynchronous Consumer

Important

Spring AMQP also supports annotated-listener endpoints through the use of the
@Rrabbi t Li st ener annotation and provides an open infrastructure to register endpoints
programmatically. This is by far the most convenient way to setup an asynchronous consumer,
see the section called “Annotation-driven Listener Endpoints” for more details.

For asynchronous Message reception, a dedicated component (not the AnmgpTenpl at e) is involved.
That component is a container for a Message consuming callback. We will look at the container and its
properties in just a moment, but first we should look at the callback since that is where your application
code will be integrated with the messaging system. There are a few options for the callback starting with
an implementation of the MessagelLi st ener interface:

1.5.0.M1 Spring AMQP 25

Spring AMQP

public interface Messageli stener {
voi d onMessage(Message nessage);

}

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use
the Channel Awar eMessageli st ener . It looks similar but with an extra parameter:

public interface Channel Anar eMessageli stener {
voi d onMessage(Message nessage, Channel channel) throws Excepti on;

}

If you prefer to maintain a stricter separation between your application logic and the messaging API,
you can rely upon an adapter implementation that is provided by the framework. This is often referred
to as "Message-driven POJO" support. When using the adapter, you only need to provide a reference
to the instance that the adapter itself should invoke.

Messageli st ener Adapter |istener = new Messageli st ener Adapt er (sonePoj o) ;
i stener. setDefaul tListenerMethod("nmyMethod");

You can subclass the adapter and provide an implementation of get Li st ener Met hodNane() to
dynamically select different methods based on the message.

Now that you've seen the various options for the Message-listening callback, we can turn our attention
to the container. Basically, the container handles the "active" responsibilities so that the listener
callback can remain passive. The container is an example of a "lifecycle" component. It provides
methods for starting and stopping. When configuring the container, you are essentially bridging the
gap between an AMQP Queue and the Messageli st ener instance. You must provide a reference
to the Connecti onFact ory and the queue name or Queue instance(s) from which that listener
should consume Messages. Here is the most basic example using the default implementation,
Si npl eMessageli st ener Cont ai ner :

Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(rabbi t Connecti onFactory);

cont ai ner. set QueueNanes("sone. queue");

cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (sonePoj 0)) ;

As an "active" component, it's most common to create the listener container with a bean definition so
that it can simply run in the background. This can be done via XML:

<rabbit:|istener-container connection-factory="rabbitConnecti onFactory">
<rabbit:listener queues="sone.queue" ref="sonePojo" nethod="handle"/>
</rabbit:|istener-container>

Or, you may prefer to use the @Configuration style which will look very similar to the actual code snippet
above:

1.5.0.M1 Spring AMQP 26

Spring AMQP

@onfi guration
public class Exanpl eAngpConfi guration {

@Bean
publ i c Si npl eMessageli st ener Cont ai ner nessageli st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(rabbi t Connecti onFactory());
cont ai ner. set QueueNane(" sone. queue") ;
cont ai ner. set Messageli st ener (exanpl eLi stener());
return container;

}

@Bean
publ i c ConnectionFactory rabbitConnectionFactory() {
Cachi ngConnecti onFactory connectionFactory =
new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User nane("guest ") ;
connecti onFact ory. set Passwor d("guest");
return connectionFactory;

}

@Bean
publi c Messageli stener exanpl eLi stener() {
return new Messagelistener() {
public void onMessage(Message nessage) {
Systemout.println("received: " + nmessage);

}

Starting with RabbitMQ Version 3.2, the broker now supports consumer priority (see Using Consumer
Priorities with RabbitMQ). This is enabled by setting the x- pri ori t y argument on the consumer. The
Si npl eMessageli st ener Cont ai ner now supports setting consumer arguments:

cont ai ner . set Consuner Ar gunent s(Col | ecti ons.
<String, Object> singletonMap("x-priority", Integer.valueOX(10)));

For convenience, the namespace provides the pri ori ty attribute on the | i st ener element:

<rabbit:|istener-container connection-factory="rabbitConnecti onFactory">
<rabbit:|istener queues="sone.queue" ref="sonmePoj 0" nethod="handle" priority="10" />
</rabbit:|istener-container>

Starting with version 1.3 the queue(s) on which the container is listening can be modified at runtime;
see the section called “Listener Container Queues”.

auto-delete Queues

When a container is configured to listen to aut o- del et e queue(s), or the queue has an x- expi r es
option or the Time-To-Live policy is configured on the Broker, the queue is removed by the broker when
the container is stopped (last consumer is cancelled). Before version 1.3, the container could not be
restarted because the queue was missing; the Rabbi t Admi n only automatically redeclares queues etc,
when the connection is closed/opens, which does not happen when the container is stopped/started.

Starting with version 1.3, the container will now use a Rabbi t Adni n to redeclare any missing queues
during startup.

You can also use conditional declaration (the section called “Conditional Declaration”) together with an
aut o- startup="fal se" admin to defer queue declaration until the container is started.

1.5.0.M1 Spring AMQP 27

http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
http://www.rabbitmq.com/ttl.html

Spring AMQP

<rabbi t: queue id="otherAnon" decl ared- by="cont ai ner Addm n" />

<rabbi t: di rect-exchange name="ot her Exchange" auto-del ete="true" decl ared- by="cont ai ner Adm n" >
<r abbi t: bi ndi ngs>
<rabbi t: bi ndi ng queue="ot her Anon" key="ot her Anon" />
</ rabbi t: bi ndi ngs>
</rabbit:direct-exchange>

<rabbit:|istener-container id="container2" auto-startup="false">
<rabbit:listener id="listener2" ref="foo" queues="otherAnon" adm n="contai ner Adm n" />
</rabbit:|istener-container>

<rabbi t:adm n id="contai ner Adm n" connecti on-factory="rabbitConnecti onFact ory"
aut o-startup="fal se" />

In this case, the queue and exchange are declared by cont ai ner Adm n which has aut o-
startup="fal se" so the elements are not declared during context initialization. Also, the container
is not started for the same reason. When the container is later started, it uses it's reference to
cont ai ner Admi n to declare the elements.

Batched Messages

Batched messages are automatically de-batched by listener containers (using the
spri ngBat chFor mat message header). Rejecting any message from a batch will cause the entire
batch to be rejected. See the section called “Batching” for more information about batching.

Annotation-driven Listener Endpoints
Introduction

Starting with version 1.4, the easiest way to receive a message asynchronously is to use the annotated
listener endpoint infrastructure. In a nutshell, it allows you to expose a method of a managed bean as
a Rabbit listener endpoint.

@onponent
public class MyService {

@Rabbi t Li st ener (queues = "nyQueue")
public void processOrder(String data) {

}

The idea of the example above is that, whenever a message is available on the
org. spri ngfranmewor k. angp. cor e. Queue "myQueue", the processO der method is invoked
accordingly (in this case, with the payload of the message).

The annotated endpoint infrastructure creates a message listener container behind the scenes for each
annotated method, using a Rabbi t Li st ener Cont ai ner Fact ory.

In the example above, myQueue must already exist and be bound to some exchange. Starting with
version 1.5, the queue can be declared and bound automatically, as long as a Rabbi t Admi n exists
in the application context.

1.5.0.M1 Spring AMQP 28

Spring AMQP

@Conponent
public class MyService {

@Rabbi t Li st ener (bi ndi ngs = @ueueBi ndi ng(
val ue = @ueue(value = "nyQueue", durable = "true"),
exchange = @xchange(val ue = "auto. exch"),
key = "orderRouti ngKey")

)
public void processOrder(String data) {

}

@Rabbi t Li st ener (bi ndi ngs = @ueueBi ndi ng(
val ue = @ueue(),
exchange = @xchange(val ue = "auto. exch"),
key = "invoi ceRouti ngKey")

)

public void processlnvoi ce(String data) {

}

In the first example, a queue nyQueue will be declared automatically (durable) together with the
exchange, if needed, and bound to the exchange with the routing key. In the second example, an
anonymous (exclusive, auto-delete) queue will be declared and bound. Multiple QueueBi ndi ng entries
can be provided, allowing the listener to listen to multiple queues.

Enable listener endpoint annotations

To enable support for @Rabbi tLi stener annotations add @nabl eRabbit to one of your
@confi gur ati on classes.

@onfi guration
@:nabl eRabbi t
public class AppConfig {

@Bean
publ i c Si npl eRabbi t Li st ener Cont ai ner Fact ory rabbi tLi stener Cont ai ner Factory() {
Si npl eRabbi t Li st ener Cont ai ner Factory factory = new Si npl eRabbi t Li st ener Cont ai ner Factory();
factory. set Connect i onFact or y(connecti onFactory());
factory. set Concurrent Consuner s(3);
factory. set MaxConcur r ent Consuner s(10) ;
return factory;

By default, the infrastructure looks for a bean named r abbi t Li st ener Cont ai ner Fact ory as the
source for the factory to use to create message listener containers. In this case, and ignoring the
RabbitMQ infrastructure setup, the pr ocessOr der method can be invoked with a core poll size of 3
threads and a maximum pool size of 10 threads.

Itis possible to customize the listener container factory to use per annotation or an explicit default can be
configured by implementing the Rabbi t Li st ener Conf i gur er interface. The default is only required
if at least one endpoint is registered without a specific container factory. See the javadoc for full details
and examples.

If you prefer XML configuration, use the <r abbi t : annot ati on- dri ven> element.

1.5.0.M1 Spring AMQP 29

Spring AMQP

<rabbi t: annot ati on-driven/>

<bean id="rabbitListenerContai ner Fact ory"
cl ass="org. spri ngframewor k. angp. rabbi t. confi g. Si npl eRabbi t Li st ener Cont ai ner Factory" >
<property nanme="connecti onFactory" ref="connecti onFactory"/>
<property name="concurrent Consuners" val ue="3"/>
<property name="maxConcurrent Consuners" val ue="10"/>
</ bean>

Programmatic Endpoint Registration

Rabbi t Li st ener Endpoi nt provides a model of a Rabbit endpoint and is responsible for configuring
the container for that model. The infrastructure allows you to configure endpoints programmatically in
addition to the ones that are detected by the Rabbi t Li st ener annotation.

@confi guration
@nabl eRabbi t
public class AppConfig inplenents RabbitListenerConfigurer {

@verride
public void configureRabbitListeners(RabbitListenerEndpoi nt Regi strar registrar) {
Si npl eRabbi t Li st ener Endpoi nt endpoi nt = new Si npl eRabbi t Li st ener Endpoi nt () ;
endpoi nt . set QueueNanes(" anot her Queue");
endpoi nt. set Messageli st ener (nmessage -> {
/'l processing
5D

regi strar.regi sterEndpoi nt (endpoint);

In the example above, we used Si npl eRabbi t Li st ener Endpoi nt which provides the actual
Messageli st ener to invoke but you could just as well build your own endpoint variant describing a
custom invocation mechanism.

It should be noted that you could just as well skip the use of @Rabbi t Li st ener altogether and only
register your endpoints programmatically through RabbitListenerConfigurer.

Annotated Endpoint Method Signature

So far, we have been injecting a simple String in our endpoint but it can actually have a very flexible
method signature. Let’s rewrite it to inject the Or der with a custom header:

@Conponent
public class MyService {

@Rabbi t Li st ener (queues = "nyQueue")
public void processOrder (O der order, @deader("order_type") String orderType) {

}

These are the main elements you can inject in listener endpoints:
The raw or g. spri ngf r anewor k. angp. cor e. Message.
The com r abbi t ng. cl i ent. Channel on which the message was received

The org. spri ngf ramewor k. nessagi ng. Message representing the incoming AMQP message.
Note that this message holds both the custom and the standard headers (as defined by AngpHeader s).

@1eader -annotated method arguments to extract a specific header value, including standard AMQP
headers.

1.5.0.M1 Spring AMQP 30

Spring AMQP

@1eader s-annotated argument that must also be assignable to j ava. uti | . Map for getting access
to all headers.

A non-annotated element that is not one of the supported types (i.e. Message and Channel) is
considered to be the payload. You can make that explicit by annotating the parameter with @ay!| oad.
You can also turn on validation by adding an extra @/al i d.

The ability to inject Spring’s Message abstraction is particularly useful to benefit from all the information
stored in the transport-specific message without relying on transport-specific API.

@Rabbi t Li st ener (queues = "nyQueue")
public void processO der(Message<Order> order) { ...
}

Handling of method arguments is provided by Def aul t MessageHand| er Met hodFact or y which can
be further customized to support additional method arguments. The conversion and validation support
can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @/al i d and configure the necessary validator as follows:

@onfi guration
@Enabl eRabbi t
public class AppConfig inplenments RabbitListenerConfigurer {

@verride
public void configureRabbitListeners(RabbitListenerEndpoi nt Regi strar registrar) {
regi strar. set MessageHandl er Met hodFact or y(myHandl er Met hodFactory());

}

@Bean

publ i ¢ Def aul t MessageHandl er Met hodFact ory nyHandl er Met hodFactory() {
Def aul t MessageHandl er Met hodFactory factory = new Def aul t MessageHandl er Met hodFact ory() ;
factory. setValidator(nyValidator());
return factory;

Reply Management

The existing support in Messageli st ener Adapt er already allows your method to have a non-void
return type. When that's the case, the result of the invocation is encapsulated in a message sent either in
the address specified in the Repl yToAddr ess header of the original message or in the default address
configured on the listener. That default address can now be set using the @endTo annotation of the
messaging abstraction.

Assuming our pr ocessOr der method should now return an Or der St at us, it is possible to write it as
follow to automatically send a reply:

@Rrabbi t Li st ener (destinati on = "nyQueue")
@endTo("status")
public OrderStatus processOrder (O der order) {
/'l order processing
return status;

If you need to set additional headers in a transport-independent manner, you could return a Message
instead, something like:

1.5.0.M1 Spring AMQP 31

Spring AMQP

@Rabbi t Li st ener (destination = "nmyQueue")
@endTo(" st at us")
publ i c Message<Order St at us> processOrder (Order order) {
/'l order processing
return MessageBui |l der
. Wi t hPayl oad(st at us)
. set Header ("code", 1234)
Lbuild();

The @endTo value is assumed as a reply exchange and r out i ngKey pair following the pattern
exchange/ r out i ngKey, where one of those parts can be omitted. The valid values are:

f oo/ bar - the replyTo exchange and routingKey.

f oo/ -the replyTo exchange and default (empty) routingKey.

bar or/ bar - the replyTo routingKey and default (empty) exchange.
/ or empty - the replyTo default exchange and default routingKey.

Also @endTo can be used without a val ue attribute. This case is equal to an empty sendTo pattern.
@sendTo is only used if the inbound message does not have ar epl yToAddr ess property.

Multi-Method Listeners

Starting with version 1.5, the @Rabbi t Li st ener annotation can now be specified at the class level.
Together with the new @Rabbi t Handl er annotation, this allows a single listener to invoke different
methods, based on the payload type of the incoming message. This is best described using an example:

@Rabbi t Li st ener (queues = "sonmeQueue")
public class MiltilListenerBean {

@Rabbi t Handl er
public String bar(Bar bar) {

}

@Rrabbi t Handl er
public String baz(Baz baz) {

}

@Rabbi t Handl er
public String qux(@eader ("angp_recei vedRouti ngkey") String rk, @Payload Qux qux) {

}

In this case, the individual @Rabbi t Handl er methods are invoked if the converted payload is a Bar ,
Baz or Qux. It is important to understand that the system must be able to identify a unique method
based on the payload type. The type is checked for assignability to a single parameter that has no
annotations, or is annotated with the @ay| oad annotation. Notice that the same method signatures
apply as discussed in the method-level @Rabbi t Li st ener described above.

Threading and Asynchronous Consumers
A number of different threads are involved with asynchronous consumers.

Threads from the TaskExecut or configured in the Si npl eMessageli st ener are used to invoke
the MessagelLi st ener when a new message is delivered by Rabbi t MQ Cl i ent . If not configured, a

1.5.0.M1 Spring AMQP 32

Spring AMQP

Si npl eAsyncTaskExecut or is used. If a pooled executor is used, ensure the pool size is sufficient
to handle the configured concurrency.

The Executor configured in the Cachi ngConnecti onFactory is passed into the Rabbi t MQ
d i ent when creating the connection, and its threads are used to deliver new messages to the listener
container. At the time of writing, if this is not configured, the client uses an internal thread pool executor
with a pool size of 5.

The Rabbi t MQ cl i ent usesaThr eadFact ory to create threads for low-level I/O (socket) operations.
To modify this factory, you need to configure the underlying RabbitMQ Connecti onFact ory, as
discussed in the section called “Configuring the Underlying Client Connection Factory”.

Message Converters
Introduction

The AngpTenpl at e also defines several methods for sending and receiving Messages that will
delegate to a MessageConvert er. The MessageConver t er itself is quite straightforward. It provides
a single method for each direction: one for converting to a Message and another for converting from a
Message. Notice that when converting to a Message, you may also provide properties in addition to the
object. The "object" parameter typically corresponds to the Message body.

public interface MessageConverter {

Message toMessage(Obj ect object, MessageProperties nessageProperti es)
throws MessageConver si onExcepti on;

bj ect fromvessage(Message nessage) throws MessageConversi onExcepti on;

The relevant Message-sending methods on the AngpTenpl at e are listed below. They are simpler than
the methods we discussed previously because they do not require the Message instance. Instead, the
MessageConvert er is responsible for "creating” each Message by converting the provided object to
the byte array for the Message body and then adding any provided MessagePr operti es.

voi d convert AndSend(Cbj ect nessage) throws AnmgpExcepti on;
voi d convert AndSend(String routingKey, Cbject nessage) throws AngpExcepti on;

voi d convertAndSend(String exchange, String routingKey, Object nessage)
throws AmgpExcepti on;

voi d convert AndSend(Cbj ect nessage, MessagePost Processor nessagePost Processor)
throws AngpExcepti on;

voi d convertAndSend(String routingKey, Object nessage,
MessagePost Processor nessagePost Processor) throws AmgpExcepti on;

voi d convert AndSend(String exchange, String routingKey, Object nessage,
MessagePost Processor nessagePost Processor) throws AngpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies
on the template’s "queue" property having been set.

Obj ect recei veAndConvert () throws AnmgpExcepti on;

Obj ect recei veAndConvert (String queueNane) throws AngpException;

1.5.0.M1 Spring AMQP 33

Spring AMQP

Note

The MessagelLi st ener Adapt er mentioned in the section called “Asynchronous Consumer”
also uses a MessageConvert er.

SimpleMessageConverter

The default implementation of the MessageConvert er strategy is called
Si npl eMessageConvert er. This is the converter that will be used by an instance of RabbitTemplate
if you do not explicitly configure an alternative. It handles text-based content, serialized Java objects,
and simple byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain"), it will also check for the
content-encoding property to determine the charset to be used when converting the Message body
byte array to a Java String. If no content-encoding property had been set on the input Message, it will
use the "UTF-8" charset by default. If you need to override that default setting, you can configure an
instance of Si npl eMessageConvert er, set its "defaultCharset" property and then inject that into a
Rabbi t Tenpl at e instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object", the
Si npl eMessageConvert er will attempt to deserialize (rehydrate) the byte array into a Java object.
While that might be useful for simple prototyping, it's generally not recommended to rely on Java
serialization since it leads to tight coupling between the producer and consumer. Of course, it also rules
out usage of non-Java systems on either side. With AMQP being a wire-level protocol, it would be
unfortunate to lose much of that advantage with such restrictions. In the next two sections, we’ll explore
some alternatives for passing rich domain object content without relying on Java serialization.

For all other content-types, the Si npl eMessageConvert er will return the Message body content
directly as a byte array.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the Si npl eMessageConvert er likewise
deals with byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the
case of byte arrays, there is nothing to convert), and it will set the content-type property accordingly. If
the Object to be converted does not match one of those types, the Message body will be null.

JsonMessageConverter and Jackson2JsonMessageConverter

As mentioned in the previous section, relying on Java serialization is generally not recommended. One
rather common alternative that is more flexible and portable across different languages and platforms
is JSON (JavaScript Object Notation). Two implementations are available and can be configured
on any Rabbit Tenpl at e instance to override its usage of the Si npl eMessageConvert er
default. The JsonMessageConverter which uses the org. codehaus. j ackson 1.x library and
Jackson2JsonMessageConvert er which uses the com f ast erxm . j ackson 2.x library.

<bean cl ass="org. springfranmewor k. angp. rabbi t. core. Rabbi t Tenpl ate" >
<property name="connecti onFactory" ref="rabbitConnectionFactory"/>
<property name="nmessageConverter">
<bean cl ass="org. spri ngfranmewor k. angp. support.converter.JsonMessageConverter">

<l-- if necessary, override the Defaul tCl assMapper -->
<property name="cl assMapper" ref="custonCl assMapper"/>

</ bean>

</ property>

</ bean>

1.5.0.M1 Spring AMQP 34

Spring AMQP

<bean cl ass="org. springfranmewor k. angp. rabbi t. core. Rabbi t Tenpl ate" >
<property name="connecti onFactory" ref="rabbitConnectionFactory"/>
<property name="nessageConverter">
<bean cl ass="org. spri ngfranmewor k. angp. support. converter.Jackson2JsonMessageConverter">

<l-- if necessary, override the Defaultd assMapper -->
<property nanme="cl assMapper" ref="custonCl assMapper"/>

</ bean>

</ property>

</ bean>

As shown above, the JsonMessageConverter and Jackson2JsonMessageConverter uses
a Defaul t d assMapper by default. Type information is added to (and retrieved from) the
MessageProperties. If an inbound message does not contain type information in the
MessagePr operti es, but you know the expected type, you can configure a static type using the
def aul t Type property

<bean id="j sonConverter Wt hDef aul t Type"
cl ass="0.s. angp. support.converter.JsonMessageConverter">
<property name="cl assMapper" >
<bean cl ass="org. spri ngfranmewor k. angp. support. converter. Def aul t Cl assMapper ">
<property name="def aul t Type" val ue="f 0o. PurchaseOrder"/>
</ bean>
</ property>
</ bean>

<bean id="j sonConverterWthDefaul t Type"
cl ass="0. s. anqp. support. converter. Jackson2JsonMessageConverter">
<property nanme="cl assMapper" >
<bean cl ass="org. springframewor k. angp. support. converter. Def aul t Cl assMapper ">
<property name="def aul t Type" val ue="f o0o. PurchaseQOrder"/>
</ bean>
</ property>
</ bean>

MarshallingMessageConverter

Yet another option is the Mar shal | i ngMessageConvert er . It delegates to the Spring OXM library’s
implementations of the Mar shal | er and Unmar shal | er strategy interfaces. You can read more about
that library here. In terms of configuration, it's most common to provide the constructor argument only
since most implementations of Mar shal | er will also implement Unmar shal | er.

<bean cl ass="org. springframewor k. angp. rabbi t. core. Rabbi t Tenpl ate" >
<property name="connecti onFactory" ref="rabbitConnecti onFactory"/>
<property nanme="nmessageConverter">
<bean cl ass="org. springfranewor k. angp. support. converter. Marshal | i ngMessageConverter">
<constructor-arg ref="sonel npl enenati onOf Mar shal | er AndUnmar shal | er"/ >
</ bean>
</ property>
</ bean>

ContentTypeDelegatingMessageConverter

This class was introduced in version 1.4.2 and allows delegation to a specific MessageConvert er
based on the content type property in the MessageProperti es. By default, it will delegate to a
Si nmpl eMessageConvert er if there is no cont ent Type property, or a value that matches none of
the configured converters.

1.5.0.M1 Spring AMQP 35

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Spring AMQP

<bean id="cont ent TypeConverter" cl ass="Content TypeDel egati ngMessageConverter">
<property name="del egat es" >
<map>
<entry key="application/json" val ue-ref="jsonMessageConverter" />
<entry key="application/xm" val ue-ref="xm MessageConverter" />
</ nap>
</ property>
</ bean>

Message Properties Converters

The MessagePropertiesConverter strategy interface is used to convert between the Rabbit
Client Basi cProperties and Spring AMQP MessageProperti es. The default implementation
(Def aul t MessagePr operti esConverter) is usually sufficient for most purposes but you can
implement your own if needed. The default properties converter will convert Basi cProperties
elements of type LongString to String s when the size is not greater than 1024 bytes. Larger
LongStri ng s are returned as a "DatalnputStream. This limit can be overridden with a constructor
argument.

Modifying Messages - Compression and More

A number of extension points exist where you can perform some processing on a message, either before
it is sent to RabbitMQ, or immediately after it is received.

As can be seen in the section called “Message Converters”, one such extension
point is in the AngpTenpl ate convert AndRecei ve operations, where you can provide
a MessagePost Processor. For example, after your POJO has been converted, the
MessagePost Processor enables you to set custom headers or properties on the Message.

Starting with version 1.4.2, additional extension points have been added to the Rabbi t Tenpl at e
- set Bef or ePubl i shPost Processor s() and set Aft er Recei vePost Processor s() . The first
enables a post processor to run immediately before sending to RabbitMQ. When using batching (see
the section called “Batching”), this is invoked after the batch is assembled and before the batch is sent.
The second is invoked immediately after a message is received.

These extension points are used for such features as compression and, for this purpose, several
MessagePost Processor s are provided:

» GZipPostProcessor

» ZipPostProcessor

for compressing messages before sending, and
» GUnzipPostProcessor

» UnzipPostProcessor

for decompressing received messages.

Similarly, the Si npl eMessageli st ener Cont ai ner also has a
set Aft er Recei vePost Processor s() method, allowing the decompression to be performed after
messages are received by the container.

1.5.0.M1 Spring AMQP 36

Spring AMQP

Request/Reply Messaging
Introduction

The AmgpTenpl at e also provides a variety of sendAndRecei ve methods that accept the same
argument options that you have seen above for the one-way send operations (exchange, routingKey,
and Message). Those methods are quite useful for request/reply scenarios since they handle the
configuration of the necessary "reply-to" property before sending and can listen for the reply message
on an exclusive Queue that is created internally for that purpose.

Similar request/reply methods are also available where the MessageConvert er is applied to both
the request and reply. Those methods are named convert SendAndRecei ve. See the Javadoc of
AmgpTenpl at e for more detail.

Starting with version 1.5, each of the sendAndRecei ve method variants has an overloaded version
that takes Corr el at i onDat a. Together with a properly configured connection factory, this enables
the receipt of publisher confirms for the send side of the operation. See the section called “Publisher
Confirms and Returns” for more information.

By default, a new temporary queue is used for each reply (but see the section called “RabbitMQ Direct
reply-to”). However, a single reply queue can be configured on the template, which can be more efficient,
and also allows you to set arguments on that queue. In this case, however, you must also provide a
<reply-listener/> sub element. This element provides a listener container for the reply queue, with the
template being the listener. All of the the section called “Message Listener Container Configuration”
attributes allowed on a <listener-container/> are allowed on the element, except for connection-factory
and message-converter, which are inherited from the template’s configuration.

<rabbit:tenpl ate i d="anmgpTenpl at e"
connecti on-factory="connecti onFactory"
repl y-queue="replies"
repl y- addr ess="r epl yEx/ r out eRepl y" >
<rabbit:reply-listener/>
</rabbit:tenpl ate>

While the container and template share a connection factory, they do not share a channel and therefore
requests and replies are not performed within the same transaction (if transactional).

Note

Prior to version 1.5, the r epl y- addr ess attribute was not available, replies were always routed
using the default exchange and the r epl y- queue name as the routing key. This is still the
default but you can now specify the new r epl y- addr ess attribute. The r epl y- addr ess can
contain an address with the form <exchange>/ <r out i ngKey> and the reply will be routed to the
specified exchange and routed to a queue bound with the routing key. Ther epl y- addr ess has
precedence over r epl y- queue. The <repl y- | i st ener > must be configured as a separate
<l i st ener - cont ai ner > component, when only r epl y- addr ess is in use, anyway r epl y-
addr ess andr epl y- queue (or queues attribute on the <l i st ener - cont ai ner >) must refer
to the same queue logically.

1.5.0.M1 Spring AMQP 37

Spring AMQP

RabbitMQ Direct reply-to

Important

Starting with version 3.4.0, the RabbhitMQ server now supports Direct reply-to; this eliminates the
main reason for a fixed reply queue (to avoid the need to create a temporary queue for each
request). Starting with Spring AMQP version 1.4.1 Direct reply-to will be used by default (if
supported by the server) instead of creating temporary reply queues. When no r epl yQueue
is provided (or it is set with the name ang. r abbi t ng. r epl y-t 0), the Rabbi t Tenpl at e will
automatically detect whether Direct reply-to is supported and either use it or fall back to using
a temporary reply queue. When using Direct reply-to, a repl y- | i st ener is not required and
should not be configured.

Reply listeners are still supported with named queues (other than any. r abbit ng. repl y-t o),
allowing control of reply concurrency etc.

Message Correlation With A Reply Queue

When using a fixed reply queue (other than ang. r abbi t mg. r epl y-t 0), it is necessary to provide
correlation data so that replies can be correlated to requests. See RabbitMQ Remote Procedure Call
(RPC). By default, the standard correl ati onl d property will be used to hold the correlation data.
However, if you wish to use a custom property to hold correlation data, you can set the corr el ati on-
key attribute on the <rabbit-template/>. Explicitly setting the attribute to corr el ati onl d is the same
as omitting the attribute. Of course, the client and server must use the same header for correlation data.

Note

Spring AMQP version 1.1 used a custom property spri ng_reply_correl ati on for this data.
If you wish to revert to this behavior with the current version, perhaps to maintain compatibility
with another application using 1.1, you must set the attribute to spring_reply_correl ati on.

Reply Listener Container

When using a fixed reply queue, a Si npl eLi st ener Cont ai ner is used to receive the replies;
with the Rabbi t Tenpl at e being the MessagelLi st ener. When defining a template with the
<rabbi t:t enpl at e/ > namespace element, as shown above, the parser defines the container and
wires in the template as the listener.

Note

When the template does not use a fixed r epl yQueue (or is using Direct reply-to - see the section
called “RabbitMQ Direct reply-to”) a listener container is not needed.

If you define your Rabbi t Tenpl at e as a <bean/ >, or using an @onf i gur ati on class to define it
as an @ean, or when creating the template programmatically, you will need to define and wire up the
reply listener container yourself. If you fail to do this, the template will never receive the replies and will
eventually time out and return null as the reply to a call to a sendAndRecei ve method.

1.5.0.M1 Spring AMQP 38

http://www.rabbitmq.com/direct-reply-to.html
http://www.rabbitmq.com/tutorials/tutorial-six-java.html
http://www.rabbitmq.com/tutorials/tutorial-six-java.html

Spring AMQP

Important

When wiring the reply listener and template yourself, it is important to ensure that the template’s
repl yQueue and the container’s queues (or queueNanes) properties refer to the same queue.
The template inserts the reply queue into the outbound message r epl yTo property.

The following are examples of how to manually wire up the beans.

<bean id="anmgpTenpl ate" cl ass="org. springfranework. angp. rabbi t. core. Rabbi t Tenpl ate" >
<constructor-arg ref="connecti onFactory" />
<property name="exchange" val ue="f 0o. exchange" />
<property name="routingKey" val ue="foo" />
<property name="repl yQueue" ref="replyQ />
<property name="repl yTi meout" val ue="600000" />
</ bean>

<bean cl ass="org. springframework. angp. rabbit.|istener. Si npl eMessageli st ener Cont ai ner ">
<constructor-arg ref="connectionFactory" />
<property name="queues" ref="replyQ />
<property name="nessagelLi stener" ref="angpTenpl ate" />

</ bean>

<rabbi t: queue id="repl yQ' name="ny.reply.queue" />

@Bean
publ i ¢ RabbitTenpl ate angpTenpl ate() {
Rabbi t Tenpl at e rabbi t Tenpl at e = new Rabbi t Tenpl at e(connecti onFactory());
r abbi t Tenpl at e. set MessageConverter (nmsgConv());
rabbi t Tenpl at e. set Repl yQueue(repl yQueue());
rabbi t Tenpl at e. set Repl yTi meout (60000) ;
return rabbitTenpl ate;

}

@Bean
publ i c Si npl eMessageli st ener Cont ai ner repl yLi st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(connecti onFactory());
cont ai ner. set Queues(repl yQueue());
cont ai ner. set MessagelLi st ener (angpTenpl ate());
return container;

}

@Bean
public Queue replyQueue() {
return new Queue("ny.reply.queue");

}

A complete example of a Rabbi t Tenpl at e wired with a fixed reply queue, together with a "remote"
listener container that handles the request and returns the reply is shown in this test case.

Important

When the reply times out (r epl yTi neout), the sendAndRecei ve() methods return null.

Prior to version 1.3.6, late replies for timed out messages were simply logged. Now, if a late reply is
received, itis rejected (the template throws an AnmgpRej ect AndDont RequeueExcept i on). If the reply
gueue is configured to send rejected messages to a dead letter exchange, the reply can be retrieved
for later analysis. Simply bind a queue to the configured dead letter exchange with a routing key equal
to the reply queue’s name.

Refer to the RabbitMQ Dead Letter Documentation for more information about configuring dead lettering.
You can also take a look at the Fi xedRepl yQueueDeadLet t er Test s test case for an example.

1.5.0.M1 Spring AMQP 39

https://github.com/spring-projects/spring-amqp/tree/master/spring-rabbit/src/test/java/org/springframework/amqp/rabbit/listener/JavaConfigFixedReplyQueueTests.java
https://www.rabbitmq.com/dlx.html

Spring AMQP

Spring Remoting with AMQP

The Spring Framework has a general remoting capability, allowing Remote Procedure Calls (RPC)
using various transports. Spring-AMQP supports a similar mechanism with a AngpPr oxyFact or yBean
on the client and a Angpl nvoker Ser vi ceExport er on the server. This provides RPC over AMQP.
On the client side, a Rabbi t Tenpl at e is used as described above; on the server side, the invoker
(configured as a Messageli st ener) receives the message, invokes the configured service, and
returns the reply using the inbound message’s r epl yTo information.

The client factory bean can be injected into any bean (using its ser vi cel nt er f ace); the client can
then invoke methods on the proxy, resulting in remote execution over AMQP.

Note

With the default MessageConverter s, the method paramters and returned value must be
instances of Seri al i zabl e.

On the server side, the Angpl nvoker Servi ceExporter has both AngpTenpl ate and
MessageConvert er properties. Currently, the template’s MessageConvert er is not used. If you
need to supply a custom message converter, then you should provide it using the nessageConvert er
property. On the client side, a custom message converter can be added to the AngpTenpl at e which
is provided to the AmgpPr oxyFact or yBean using its angpTenpl at e property.

Sample client and server configurations are shown below.

<bean id="client"

cl ass="org. spri ngframewor k. angp. renot i ng. cl i ent. AngpPr oxyFact or yBean" >
<property name="angpTenpl ate" ref="tenplate" />

<property name="servicel nterface" val ue="foo. Servicelnterface" />

</ bean>

<rabbi t: connection-factory id="connectionFactory" />

<rabbit:tenplate id="tenpl ate" connection-factory="connecti onFactory" reply-tinmeout="2000"
routing- key="renoti ng. bi ndi ng" exchange="renoti ng. exchange" />

<rabbi t:adm n connection-factory="connecti onFactory" />
<rabbi t: queue name="renoti ng. queue" />

<rabbi t: di rect - exchange name="renoti ng. exchange" >
<r abbi t: bi ndi ngs>
<rabbi t: bi ndi ng queue="renoting. queue" key="renoting. bi nding" />
</ rabbi t: bi ndi ngs>
</rabbit:direct-exchange>

1.5.0.M1 Spring AMQP 40

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/remoting.html

Spring AMQP

<bean id="listener"

cl ass="org. spri ngframewor k. angp. r enot i ng. servi ce. Angpl nvoker Ser vi ceExporter">
<property name="servicel nterface" val ue="foo. Servicel nterface" />

<property name="service" ref="service" />

<property nanme="amgpTenpl ate" ref="tenplate" />

</ bean>

<bean id="service" class="foo.Servicelnpl" />

<rabbi t:connection-factory id="connectionFactory" />

<rabbit:tenplate id="tenplate" connection-factory="connectionFactory" />
<rabbi t: queue name="renoti ng. queue" />

<rabbit:|istener-container connection-factory="connectionFactory">

<rabbit:listener ref="listener" queue-nanes="renoting. queue" />
</rabbit:|istener-container>

Important

The Anmqgpl nvoker Ser vi ceExport er can only process properly formed messages, such as
those sent from the AngpPr oxyFact or yBean. If it receives a message that it cannot interpret, a
serialized Runt i neExcept i on will be sent as a reply. If the message has nor epl yToAddr ess
property, the message will be rejected and permanently lost if no Dead Letter Exchange has been
configured.

Configuring the broker
Introduction

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and
Bindings on the broker. These operations which are portable from the 0.8 specification and higher are
present in the AmgpAdmin interface in the org.springframework.amqgp.core package. The RabbitMQ
implementation of that class is RabbitAdmin located in the org.springframework.amqgp.rabbit.core
package.

The AmgpAdmin interface is based on using the Spring AMQP domain abstractions and is shown below:

1.5.0.M1 Spring AMQP 41

Spring AMQP

public interface AngpAdm n {
/| Exchange Operations
voi d decl ar eExchange(Exchange exchange);
voi d del et eExchange(String exchangeNane);
/'l Queue Operations
Queue decl areQueue();
String decl areQueue(Queue queue);
voi d del et eQueue(String queueNane);
voi d del et eQueue(String queueNane, bool ean unused, bool ean enpty);
voi d purgeQueue(String queueNane, bool ean noWit);
/1 Bi ndi ng Operations
voi d decl ar eBi ndi ng(Bi ndi ng bi ndi ng);
voi d renoveBi ndi ng(Bi ndi ng bi ndi ng) ;

Properties get QueueProperties(String queueNane);

The no-arg declareQueue() method defines a queue on the broker whose name is automatically
generated. The additional properties of this auto-generated queue are excl usive=true,
aut oDel et e=t r ue, and dur abl e=f al se.

The decl areQueue(Queue queue) method takes a Queue object and returns the name of the
declared queue. This is useful if you wish the broker to generate the queue’s name. This is in contrast
to an AnonynousQueue where the framework generates a unique (UUl D) name and sets dur abl e to
fal se and exl usi ve, autoDel ete totrue. If the provided Queue's nane property is an empty
String, the Broker declares the queue with a generated name and that name is returned to the caller.
The Queue objectitself is not changed. This functionality can only be used programmatically by invoking
the Rabbi t Adni n directly. It is not supported for auto-declaration by the admin by defining a queue
declaratively in the application context. A <r abbi t : queue/ > with an empty, or missing, name will
always create an AnonynousQueue. This is because the name will change if redeclared due to a
connection failure. Declarative queues must have fixed hames because they might be referenced
elsewhere in the context, for example, in a listener;

<rabbit:|istener-container>
<rabbit:listener ref="listener" queue-nanes="#{soneQueue. nane}" />
</rabbit:|istener-container>

See the section called “Automatic Declaration of Exchanges, Queues and Bindings”.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring
XML would look like this:

<rabbi t: connection-factory i d="connecti onFactory"/>

<rabbi t:adm n i d="angpAdni n" connection-factory="connectionFactory"/>

When the Cachi ngConnecti onFact ory cache mode is CHANNEL (the default), the Rabbi t Adni n
implementation does automatic lazy declaration of Queues, Exchanges and Bi ndi ngs declared in

1.5.0.M1 Spring AMQP 42

Spring AMQP

the same Appl i cati onCont ext . These components will be declared as son as a Connecti on is
opened to the broker. There are some namespace features that make this very convenient, e.g. in the
Stocks sample application we have:

<rabbi t:queue id="tradeQueue"/>
<rabbi t: queue i d="mar ket Dat aQueue"/ >

<f anout - exchange nane="broadcast.responses"
xm ns="http://ww. spri ngframework. or g/ schena/ r abbi t " >
<bi ndi ngs>
<bi ndi ng queue="tradeQueue"/ >
</ bi ndi ngs>
</ f anout - exchange>

<t opi c- exchange name="app. st ock. mar ket dat a"
xm ns="http://ww. springfranmework. org/ scherma/ rabbit">
<bi ndi ngs>
<bi ndi ng queue="mar ket Dat aQueue" pattern="${stocks. quote.pattern}"/>
</ bi ndi ngs>
</t opi c- exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names
generated by the framework, not by the broker) and refer to them by ID. We can also declare Queues
with explicit names, which also serve as identifiers for their bean definitions in the context. E.g.

<rabbi t: queue name="stocks. trade. queue"/>

Tip

You can provide both an id and a name attribute. This allows you to refer to the queue (for
example in a binding) by an id that is independent of the queue name. It also allows standard
Spring features such as property placeholders, and SpEL expressions for the queue name; these
features are not available when using the name as the bean identifier.

Queues can be configured with additional arguments, for example, x-message-ttl or x-ha-policy. Using
the namespace support, they are provided in the form of a Map of argument name/argument value pairs,
using the <rabbit:queue-arguments> element.

<rabbi t: queue name="wi t hAr gurment s" >
<rabbi t: queue- ar gunent s>
<entry key="x-ha-policy" value="all"/>
</ rabbi t: queue- ar gument s>
</rabbit:queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs
to be provided.

<rabbi t: queue name="wi t hArgurment s" >
<rabbi t: queue- argunent s val ue-type="j ava. | ang. Long" >
<entry key="x-message-ttl" val ue="100"/>
</ rabbi t: queue- ar gument s>
</rabbit:queue>

When providing arguments of mixed types, the type is provided for each entry element:

1.5.0.M1 Spring AMQP 43

Spring AMQP

<rabbi t: queue name="w t hAr gunment s" >
<rabbi t: queue- ar gunent s>
<entry key="x-message-ttl">
<val ue type="j ava.l ang. Long">100</ val ue>
</entry>
<entry key="x-ha-policy" value="all"/>
</ rabbi t: queue- ar gument s>
</ rabbit: queue>

With Spring Framework 3.2 and later, this can be declared a little more succinctly:

<rabbi t: queue name="wi t hArgurment s" >
<rabbi t: queue- ar gunent s>
<entry key="x-message-ttl" val ue="100" val ue-type="java.l ang. Long"/>
<entry key="x-ha-policy" value="all"/>
</ rabbit: queue- ar gument s>
</rabbit:queue>

Important

The RabbitMQ broker will not allow declaration of a queue with mismatched arguments. For
example, if aqueue already exists withnoti me to | i ve argument, and you attempt to declare
it with, say, key="x-message-ttl" val ue="100", an exception will be thrown.

By default, the Rabbi t Admi n will immediately stop processing all declarations when any exception
occurs; this could cause downstream issues - such as a listener container failing to initialize because
another queue (defined after the one in error) is not declared.

This behavior can be modified by setting the i gnor e- decl ar ati on-f ai | ur es attribute to t r ue on
the Rabbi t Adm n. This option instructs the Rabbi t Admi n to log the exception, and continue declaring
other elements.

Starting with version 1.3 the HeadersExchange can be configured to match on multiple headers; you
can also specify whether any or all headers must match:

<rabbi t: header s- exchange nane="headers-test">
<rabbi t: bi ndi ngs>
<rabbi t: bi ndi ng queue="bucket ">
<r abbi t : bi ndi ng- ar gunent s>
<entry key="foo" val ue="bar"/>
<entry key="baz" val ue="qux"/>
<entry key="x-match" value="all"/>
</ rabbi t: bi ndi ng- ar gunent s>
</ rabbi t: bi ndi ng>
</ rabbi t: bi ndi ngs>
</ rabbi t: header s- exchange>

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample
application, where there is the @onfi gurati on class Abstract St ockRabbi t Confi gurati on
which in turn has RabbitClientConfiguration and RabbitServerConfiguration subclasses. The code for
AbstractStockRabbitConfiguration is shown below

1.5.0.M1 Spring AMQP 44

Spring AMQP

@onfi guration
public abstract class Abstract St ockAppRabbit Confi guration {

@Bean
publ i ¢ Connecti onFactory connectionFactory() {
Cachi ngConnecti onFactory connectionFactory =
new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User name(" guest ") ;
connecti onFact ory. set Passwor d(" guest");
return connectionFactory;

}

@Bean
publ i ¢ Rabbit Tenpl ate rabbitTenpl ate() {
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
tenpl at e. set MessageConvert er (j sonMessageConverter());
confi gur eRabbi t Tenpl at e(t enpl ate);
return tenplate;

}

@ean
publ ic MessageConverter jsonMessageConverter() {
return new JsonMessageConverter();

}

@Bean
publ i ¢ Topi cExchange mar ket Dat aExchange() {
return new Topi cExchange("app. st ock. marketdata");

}

/1 additional code omitted for brevity

In the Stock application, the server is configured using the following @Configuration class:

@onfiguration
public class Rabbit Server Confi guration extends Abstract St ockAppRabbit Configuration {

@Bean
publ i c Queue stockRequest Queue() {
return new Queue("app.stock.request");

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. There is no binding
of the TopicExchange to a queue in the server configuration, as that is done in the client application.
The stock request queue however is automatically bound to the AMQP default exchange - this behavior
is defined by the specification.

The client @Configuration class is a little more interesting and is shown below.

1.5.0.M1 Spring AMQP 45

Spring AMQP

@onfi guration
public class Rabbitd ientConfiguration extends Abstract St ockAppRabbit Confi guration {

@/al ue(" ${stocks. quote. pattern}")
private String market Dat aRout i ngKey;

@Bean
public Queue market Dat aQueue() {
return angpAdm n() . decl areQueue();

}

/**
* Binds to the market data exchange.
Interested in any stock quotes
* that match its routing key.
*/
@Bean
publ i c Binding market Dat aBi ndi ng() {
return Bi ndi ngBui | der . bi nd(
mar ket Dat aQueue()).t o(mar ket Dat aExchange()).w t h(mar ket Dat aRout i ngKey) ;
}

/1 additional code omitted for brevity

The client is declaring another queue via the declareQueue() method on the AmgpAdmin, and it binds
that queue to the market data exchange with a routing pattern that is externalized in a properties file.

Conditional Declaration

By default, all queues, exchanges, and bindings are declared by all Rabbi t Admi n instances (that have
aut o- st artup="true") in the application context.

Note

Starting with the 1.2 release, it is possible to conditionally declare these elements. This is
particularly useful when an application connects to multiple brokers and needs to specify with
which broker(s) a particular element should be declared.

The classes representing these elements implement Decl arabl e which has two methods:
shoul dDecl are() and get Decl ari ngAdm ns(). The Rabbi t Adm n uses these methods to
determine whether a particular instance should actually process the declarations on its Connect i on.

The properties are available as attributes in the namespace, as shown in the following examples.

<rabbi t:adm n id="adm nl" connection-factory="CF1" />
<rabbi t:adm n i d="adm n2" connecti on-factory="CF2" />
<rabbi t: queue id="decl aredByBot hAdm nslnplicitly" />
<rabbi t: queue id="decl ar edByBot hAdm ns" decl ar ed- by="adm nl1, adm n2" />
<rabbi t: queue id="decl aredByAdm n1Only" decl ar ed- by="adm n1" />
<rabbi t: queue id="not Decl ar edByAny" auto-decl are="fal se" />
<rabbi t: di rect-exchange name="direct" decl ared-by="adm nl1, adm n2">
<rabbi t: bi ndi ngs>
<rabbi t: bi ndi ng key="fo00" queue="bar"/>

</ rabbi t: bi ndi ngs>
</rabbit:direct-exchange>

1.5.0.M1 Spring AMQP 46

Spring AMQP

Note

The aut o- decl ar e attribute is t r ue by default and if the decl ar ed- by is not supplied (or is
empty) then all Rabbi t Adni n s will declare the object (as long as the admin’s aut o- st art up
attribute is true; the default).

Similarly, you can use Java-based @onf i gur at i on to achieve the same effect. In this example, the
components will be declared by adm nl1 but not admni n2;:

@ean

publ i c RabbitAdm n adm n() {
Rabbi t Admi n rabbi t Adm n = new Rabbi t Admi n(cf1());
rabbi t Admi n. aft er PropertiesSet ();
return rabbitAdn n;

}

@Bean

publ i ¢ Rabbit Adm n adm n2() {
Rabbi t Admi n rabbi t Adm n = new Rabbi t Admi n(cf2());
rabbi t Adm n. after PropertiesSet();
return rabbitAdn n;

}

@Bean

public Queue queue() {

Queue queue = new Queue("foo0");

queue. set Adm nsThat Shoul dDecl are(adm n());
return queue;

}

@Bean

publi ¢ Exchange exchange() {

Di rect Exchange exchange = new Direct Exchange("bar");
exchange. set Adm nsThat Shoul dDecl are(adm n());

return exchange;

}

@Bean

public Bi nding binding() {
Bi ndi ng bi ndi ng = new Bi ndi ng("foo", DestinationType. QJEUE, exchange().getName(), "foo", null);
bi ndi ng. set Admi nsThat Shoul dDecl are(admi n());
return binding;

}

RabbitMQ REST API

When the management plugin is enabled, the RabbitMQ server exposes a REST AP| to monitor
and configure the broker. A Java Binding for the APl is now provided. In general, you can
use that API directly, but a convenience wrapper is provided to use the familiar Spring AMQP
Queue, Exchange, and Bi ndi ng domain objects with the API. More information is available for
these objects when using the com rabbi tng. http.client.dient API directly (Queuel nfo,
Exchangel nf o, and Bi ndi ngl nf o respectively). The following operations are available on the
Rabbi t Managenent Tenpl at e:

1.5.0.M1 Spring AMQP 47

https://github.com/rabbitmq/hop

Spring AMQP

public interface AngpManagenent Operations {

voi d addExchange(Exchange exchange);

voi d addExchange(String vhost, Exchange exchange);
voi d purgeQueue(Queue queue);

voi d purgeQueue(String vhost, Queue queue);

voi d del et eQueue(Queue queue);

voi d del et eQueue(String vhost, Queue queue);
Queue get Queue(String nane);

Queue get Queue(String vhost, String nane);

Li st <Queue> get Queues();

Li st <Queue> get Queues(String vhost);

voi d addQueue(Queue queue);

voi d addQueue(String vhost, Queue queue);

voi d del et eExchange(Exchange exchange);

voi d del et eExchange(String vhost, Exchange exchange);
Exchange get Exchange(String nane);

Exchange get Exchange(String vhost, String name);
Li st <Exchange> get Exchanges();

Li st <Exchange> get Exchanges(String vhost);

Li st <Bi ndi ng> get Bi ndi ngs();

Li st <Bi ndi ng> get Bi ndi ngs(String vhost);

Li st <Bi ndi ng> get Bi ndi ngsFor Exchange(Stri ng vhost, String exchange);

Refer to the javadocs for more information.

Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For example,
there are a lot of cases where IOExceptions may be thrown. The RabbitTemplate,
SimpleMessageListenerContainer, and other Spring AMQP components will catch those Exceptions
and convert into one of the Exceptions within our runtime hierarchy. Those are defined in the
org.springframework.amqp package, and AmgpException is the base of the hierarchy.

When a listener throws an exception, itis wrapped inaLi st ener Execut i onFai | edExcepti on and,
normally the message is rejected and requeued by the broker. Setting def aul t RequeueRej ect ed
to false will cause messages to be discarded (or routed to a dead letter exchange). As discussed
in the section called “Message Listeners and the Asynchronous Case”, the listener can throw an
AngpRej ect AndDont RequeueExcept i on to conditionally control this behavior.

However, there is a class of errors where the listener cannot control the behavior. When a message
that cannot be converted is encountered (for example an invalid cont ent _encodi ng header),

1.5.0.M1 Spring AMQP 48

Spring AMQP

the MessageConver si onExcepti on is thrown before the message reaches user code. With
def aul t RequeueRej ect ed set to t r ue (default), such messages would be redelivered over and
over. Before version 1.3.2, users needed to write a custom Er r or Handl er, as discussed in the section
called “Exception Handling” to avoid this situation.

Starting with version 1.3.2, the default Er r or Handl er is now a
Condi ti onal Rej ecti ngError Handl er which will reject (and not requeue) messages that fail
with a MessageConver si onExcepti on. An instance of this error handler can be configured
with a Fat al Excepti onStrat egy so users can provide their own rules for conditional message
rejection, e.g. a delegate implementation to the Bi naryExcepti onCd assifier from Spring
Retry (the section called “Message Listeners and the Asynchronous Case”). In addition, the
Li st ener Execut i onFai | edExcepti onnowhasaf ai | edMessage property which can be used in
the decision. If the Fat al Excepti onStrat egy. i sFat al () method returns t r ue, the error handler
throws an AmgpRej ect AndDont RequeueExcept i on. The default Fat al Excepti onSt r at egy logs
a warning message.

Transactions

Introduction

The Spring Rabbit framework has support for automatic transaction management in the synchronous
and asynchronous use cases with a number of different semantics that can be selected declaratively,
as is familiar to existing users of Spring transactions. This makes many if not most common messaging
patterns very easy to implement.

There are two ways to signal the desired transaction semantics to the framework. In both the
Rabbi t Tenpl at e and Si npl eMessagelLi st ener Cont ai ner thereis a flag channel Tr ansact ed
which, if true, tells the framework to use a transactional channel and to end all operations
(send or receive) with a commit or rollback depending on the outcome, with an exception
signaling a rollback. Another signal is to provide an external transaction with one of Spring’s
Pl at f or mr ansact i onManager implementations as a context for the ongoing operation. If there
is already a transaction in progress when the framework is sending or receiving a message, and the
channel Tr ansact ed flag is true, then the commit or rollback of the messaging transaction will be
deferred until the end of the current transaction. If the channel Tr ansact ed flag is false, then no
transaction semantics apply to the messaging operation (it is auto-acked).

The channel Tr ansact ed flag is a configuration time setting: it is declared and processed once when
the AMQP components are created, usually at application startup. The external transaction is more
dynamic in principle because the system responds to the current Thread state at runtime, but in practice
is often also a configuration setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with Rabbi t Tenpl at e the external transaction is provided by the caller,
either declaratively or imperatively according to taste (the usual Spring transaction model). An example
of a declarative approach (usually preferred because it is non-invasive), where the template has been
configured with channel Tr ansact ed=t r ue:

@r ansact i onal
public void doSonet hi ng() {
String incom ng = rabbitTenpl ate. recei veAndConvert();
/1 do sone nore database processing...
String outgoing = processl nDat abaseAndExt ract Repl y(i ncom ng);
r abbi t Tenpl at e. conver t AndSend(out goi ng) ;

1.5.0.M1 Spring AMQP 49

Spring AMQP

A String payload is received, converted and sent as a message body inside a method marked as
@Transactional, so if the database processing fails with an exception, the incoming message will be
returned to the broker, and the outgoing message will not be sent. This applies to any operations with the
Rabbi t Tenpl at e inside a chain of transactional methods (unless the Channel is directly manipulated
to commit the transaction early for instance).

For asynchronous use cases with Si npl eMessagelLi st ener Cont ai ner if an external transaction is
needed it has to be requested by the container when it sets up the listener. To signal that an external
transaction is required the user provides an implementation of Pl at f or nTr ansact i onManager to
the container when it is configured. For example:

@onfiguration
public class Exanpl eExt ernal Tr ansacti onAngpConfi guration {

@ean
publ i c Sinpl eMessagelLi st ener Cont ai ner nmessageli st ener Contai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(rabbi t Connecti onFactory());
cont ai ner. set Transacti onManager (transacti onManager());
cont ai ner. set Channel Transact ed(true);
cont ai ner. set QueueNane(" sone. queue") ;
cont ai ner. set MessagelLi st ener (exanpl eLi stener());
return container;

In the example above, the transaction manager is added as a dependency injected from another bean
definition (not shown), and the channel Tr ansact ed flag is also set to true. The effect is that if
the listener fails with an exception the transaction will be rolled back, and the message will also be
returned to the broker. Significantly, if the transaction fails to commit (e.g. a database constraint error,
or connectivity problem), then the AMQP transaction will also be rolled back, and the message will
be returned to the broker. This is sometimes known as a Best Efforts 1 Phase Commit, and is a very
powerful pattern for reliable messaging. If the channel Tr ansact ed flag was set to false in the example
above, which is the default, then the external transaction would still be provided for the listener, but all
messaging operations would be auto-acked, so the effect is to commit the messaging operations even
on a rollback of the business operation.

A note on Rollback of Received Messages

AMQP transactions only apply to messages and acks sent to the broker, so when there is a rollback
of a Spring transaction and a message has been received, what Spring AMQP has to do is not just
rollback the transaction, but also manually reject the message (sort of a nack, but that's not what the
specification calls it). The action taken on message rejection is independent of transactions and depends
on the def aul t RequeueRej ect ed property (default t r ue). For more information about rejecting
failed messages, see the section called “Message Listeners and the Asynchronous Case”.

For more information about RabbitMQ transactions, and their limitations, refer to RabbitMQ Broker
Semantics.

Note

Prior to RabbitMQ 2.7.0, such messages (and any that are unacked when a channel is closed or
aborts) went to the back of the queue on a Rabbit broker, since 2.7.0, rejected messages go to
the front of the queue, in a similar manner to JMS rolled back messages.

1.5.0.M1 Spring AMQP 50

http://www.rabbitmq.com/semantics.html
http://www.rabbitmq.com/semantics.html

Spring AMQP

Using the RabbitTransactionManager

The RabbitTransactionManager is an alternative to executing Rabbit operations within, and
synchronized with, external transactions. This Transaction Manager is an implementation of the
PlatformTransactionManager interface and should be used with a single Rabbit ConnectionFactory.

Important

This strategy is not able to provide XA transactions, for example in order to share transactions
between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources
via ConnectionFactoryUtils. get Transacti onal Resour ceHol der (Connecti onFactory,
bool ean) instead of a standard Connecti on. cr eat eChannel () call with subsequent Channel
creation. When using Spring AMQP’s RabbitTemplate, it will autodetect a thread-bound Channel and
automatically participate in its transaction.

With Java Configuration you can setup a new RabbitTransactionManager using:

@ean
publ i ¢ RabbitTransacti onManager rabbit Transacti onManager () {
return new Rabbit Transacti onManager (connecti onFactory);

}

If you prefer using XML configuration, declare the following bean in your XML Application Context file:

<bean i d="rabbit TxManager"
cl ass="org. springframewor k. angp. rabbi t.transacti on. Rabbi t Transacti onManager " >
<property name="connecti onFactory" ref="connectionFactory"/>
</ bean>

Message Listener Container Configuration

There are quite a few options for configuring a Si npl eMessagelLi st ener Cont ai ner related to
transactions and quality of service, and some of them interact with each other.

The table below shows the container property names and their equivalent attribute names (in
parentheses) when using the namespace to configure a <r abbi t: | i st ener-cont ai ner/ >.

Some properties are not exposed by the namespace; indicated by "N/Afor the attribute.

Table 3.1. Configuration options for a message listener container

Property (Attribute) Description
channel Transact ed Boolean flag to signal that all messages should be acknowledged
(eSS ET) in a transaction (either manually or automatically)
acknow edgeMbde « NONE = no acks will be sent (incompatible with
(EEmIT L Ee) channel Tr ansact ed=t r ue). RabbitMQ calls this "autoack"

because the broker assumes all messages are acked without
any action from the consumer.

« MANUAL = the listener must acknowledge all messages by
calling Channel . basi cAck() .

1.5.0.M1 Spring AMQP 51

http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Spring AMQP

Property (Attribute)

Description

¢ AUTO= the container will acknowledge the message
automatically, unless the MessagelLi st ener throws an
exception. Note that acknowl edgeMode is complementary
to channelTransacted - if the channel is transacted then the
broker requires a commit notification in addition to the ack. This
is the default mode. See also t xSi ze.

transacti onManager
(transacti on- manager)

pr ef et chCount
(prefetch)

shut downTi meout

External transaction manager for the operation of the listener.
Also complementary to channelTransacted - if the Channel

is transacted then its transaction will be synchronized with the
external transaction.

The number of messages to accept from the broker in one
socket frame. The higher this is the faster the messages can be
delivered, but the higher the risk of non-sequential processing.
Ignored if the acknowl edgeMode is NONE. This will be
increased, if necessary, to match the t xSi ze.

When a container shuts down (e.g. if its enclosing

(transaction-size)

(B2 Appl i cati onCont ext is closed) it waits for in-flight messages
to be processed up to this limit. Defaults to 5 seconds. After the
limit is reached, if the channel is not transacted messages will be
discarded.

txSi ze When used with acknowl edgeMbde AUTO, the container will

attempt to process up to this number of messages before sending
an ack (waiting for each one up to the receive timeout setting).
This is also when a transactional channel is committed. If the

pr ef et chCount is less than the t xSi ze, it will be increased to
match the t xSi ze.

recei veTi meout
(receive-tinmeout)

aut oSt art up
(aut o- startup)

The maximum time to wait for each message. If
acknowledgeMode=NONE this has very little effect - the container
just spins round and asks for another message. It has the biggest
effect for a transactional Channel witht xSi ze > 1, since it can
cause messages already consumed not to be acknowledged until
the timeout expires.

Flag to indicate that the container should start when the

Appl i cati onCont ext does (as part of the Smart Li f ecycl e
callbacks which happen after all beans are initialized). Defaults

to true, but set it to false if your broker might not be available on
startup, and then call st art () later manually when you know the
broker is ready.

phase When autoStartup is true, the lifecycle phase within which this
{piess) container should start and stop. The lower the value the earlier
this container will start and the later it will stop. The default is
Integer. MAX_VALUE meaning the container will start as late as
possible and stop as soon as possible.
1.5.0.M1 Spring AMQP 52

Spring AMQP

Property (Attribute)

Description

advi ceChai n
(advi ce- chai n)

An array of AOP Advice to apply to the listener execution.
This can be used to apply additional cross cutting concerns
such as automatic retry in the event of broker death. Note that
simple re-connection after an AMQP error is handled by the
Cachi ngConnect i onFact ory, as long as the broker is still
alive.

t askExecut or
(task- execut or)

error Handl er
(error-handl er)

concur r ent Consuner s
(concurrency)

A reference to a Spring TaskExecutor (or standard JDK
1.5+ Executor) for executing listener invokers. Default is a
SimpleAsyncTaskExecutor, using internally managed threads.

A reference to an ErrorHandler strategy for handling
any uncaught Exceptions that may occur during

the execution of the MessageListener. Default:
Condi ti onal Rej ecti ngError Handl er

The number of concurrent consumers to initially start for each
listener. See the section called “Listener Concurrency”.

maxConcur r ent Consuner s
(max- concurrency)

The maximum number of concurrent consumers to start,
if needed, on demand. Must be greater than or equal to

concurrentConsumers. See the section called “Listener

Concurrency”.

st art Consuner M nl nt erval
(mn-start-interval)

The time in milliseconds which must elapse before each new
consumer is started on demand. See the section called “Listener
Concurrency”. Default 10000 (10 seconds).

st opConsumner M nl nt er val
(m n-stop-interval)

The time in milliseconds which must elapse before a consumer
is stopped, since the last consumer was stopped, when an

idle consumer is detected. See the section called “Listener
Concurrency”. Default 60000 (1 minute).

consecutiveActiveTrigger
(m n-consecutive-active)

The minimum number of consecutive messages received by a
consumer, without a receive timeout occurring, when considering
starting a new consumer. Also impacted by txSize. See the
section called “Listener Concurrency”. Default 10.

consecutivel dl eTri gger
(m n-consecutive-idle)

The minimum number of receive timeouts a consumer
must experience before considering stopping a consumer.
Also impacted by txSize. See the section called “Listener
Concurrency”. Default 10.

connecti onFactory
(connection-factory)

A reference to the connectionFactory; when configuring using
the XML namespace, the default referenced bean name is
"rabbitConnectionFactory".

def aul t RequeueRej ect ed
(requeue-rej ect ed)

Determines whether messages that are rejected because the
listener threw an exception should be requeued or not. Default
true.

1.5.0.M1

Spring AMQP 53

Spring AMQP

Property (Attribute)

Description

recoveryl nterval
(recovery-interval)

Determines the time in milliseconds between attempts to start a
consumer if it fails to start for non-fatal reasons. Default 5000.
Mutually exclusive with r ecover yBackOf f .

recover yBackOr f
(recovery-back-of f)

Specifies the BackOf f for intervals between attempts to start

a consumer if it fails to start for non-fatal reasons. Default is

Fi xedBackOf f with unlimited retries every 5 seconds. Mutually
exclusive with r ecoveryl nt erval .

excl usi ve
(excl usi ve)

r abbi t Admi n
(admni n)

Determines whether the single consumer in this container

has exclusive access to the queue(s). The concurrency of the
container must be 1 when this is true. If another consumer

has exclusive access, the container will attempt to recover

the consumer, according to the r ecovery-i nt erval or
recovery- back- of f . When using the namespace, this attribute
appears on the <rabbit:listener/> element along with the queue
names. Default false.

When a listener container listens to at least one auto-delete
gueue and it is found to be missing during startup, the container
uses a Rabbi t Admi n to declare the queue and any related
bindings and exchanges. If such elements are configured to
use conditional declaration (see the section called “Conditional
Declaration”), the container must use the admin that was
configured to declare those elements. Specify that admin here;
only required when using auto-delete queues with conditional
declaration. If you do not wish the auto-delete queue(s) to be
declared until the container is started, set aut o- st art up to

f al se on the admin. Defaults to a Rabbi t Adm n that will
declare all non-conditional elements.

m ssi ngQueuesFat al
(m ssing-queues-fatal)

Starting with version 1.3.5,
Si npl eMessageli st ener Cont ai ner has this new property.

When set to t r ue (default), if none of the configured queues are
available on the broker, it is considered fatal. This causes the
application context to fail to initialize during startup; also, when
the queues are deleted while the container is running, by default,
the consumers make 3 retries to connect to the queues (at 5
second intervals) and stop the container if these attempts fail.

This was not configurable in previous versions.

When set to f al se, after making the 3 retries, the container

will go into recovery mode, as with other problems, such as

the broker being down. The container will attempt to recover
according to the r ecover yl nt er val property. During each
recovery attempt, each consumer will again try 4 times to
passively declare the queues at 5 second intervals. This process
will continue indefinitely.

1.5.0.M1

Spring AMQP 54

Spring AMQP

Property (Attribute)

Description

aut oDecl are
(aut o- decl are)

You can also use a properties bean to set the property globally for
all containers, as follows:

[source,xml] ---- <util:properties
id="spring.amqgp.global.properties"> <prop
key="smlc.missing.queues.fatal">false</prop> </util:properties>

This global property will not be applied to any containers that
have an explicit m ssi ngQueuesFat al property set.

The default retry properties (3 retries at 5 second intervals) can
be overridden using the properties below.

Starting with version 1.4, Si npl eMessageli st ener Cont ai ner
has this new property.

When set to t r ue (default), the container will redeclare all AMQP
objects (Queues, Exchanges, Bindings), if it detects that at least
one of its queues is missing during startup, perhaps because it's
an aut o- del et e or an expired queue, but the redeclaration will
proceed if the queue is missing for any reason. To disable this
behavior, set this property to f al se. Note that the container will
fail to start if all of its queues are missing.

decl arationRetries
(decl aration-retries)

Starting with versions 1.4.3, 1.3.9,
Si npl eMessageli st ener Cont ai ner has this new property.
The namespace attribute is available in version 1.5.

The number of retry attempts when passive queue declaration
fails. Passive queue declaration occurs when the consumer starts
or, when consuming from multiple queues, when not all queues
were available during initialization. When none of the configured
queues can be passively declared (for any reason) after the
retries are exhausted, the container behavior is controlled by

the 'missingQueuesFatal” property above. Default: 3 retries (4
attempts).

fail edDecl arati onRetryl nterval
(failed-declaration-retry-
interval)

retryDecl arationl nterval
(m ssing-queue-retry-
interval)

Starting with versions 1.4.3, 1.3.9,
Si npl eMessageli st ener Cont ai ner has this new property.
The namespace attribute is available in version 1.5.

The interval between passive queue declaration retry attempts.
Passive queue declaration occurs when the consumer starts or,
when consuming from multiple queues, when not all queues were
available during initialization. Default: 5000 (5 seconds).

Starting with versions 1.4.3, 1.3.9,
Si npl eMessageli st ener Cont ai ner has this new property.
The namespace attribute is available in version 1.5.

1.5.0.M1

Spring AMQP 55

Spring AMQP

Property (Attribute) Description

If a subset of the configured queues are available during
consumer initialization, the consumer starts consuming from
those queues. The consumer will attempt to passively declare the
missing queues using this interval. When this interval elapses,
the declarationRetries and failedDeclarationRetryInterval will
again be used. If there are still missing queues, the consumer will
again wait for this interval before trying again. This process will
continue indefinitely until all queues are available. Default: 60000
(1 minute).

Listener Concurrency

By default, the listener container will start a single consumer which will receive messages from the
queue(s).

When examining the table in the previous section, you will see a number of properties/attributes that
control concurrency. The simplestis concur r ent Consuner s, which simply creates that (fixed) number
of consumers which will concurrently process messages.

Prior to version 1.3.0, this was the only setting available and the container had to be stopped and started
again to change the setting.

Since version 1.3.0, you can now dynamically adjust the concurrent Consuner s property. If it is
changed while the container is running, consumers will be added or removed as necessary to adjust
to the new setting.

In addition, a new property maxConcurrent Consuners has been added and the container
will dynamically adjust the concurrency based on workload. This works in conjunction
with four additional properties: consecuti veActiveTrigger, start Consunmer M nlnterval,
consecuti vel dl eTri gger, st opConsuner M nl nt er val . With the default settings, the algorithm
to increase consumers works as follows:

If the maxConcur r ent Consuner s has not been reached and an existing consumer is active for 10
consecutive cycles AND at least 10 seconds has elapsed since the last consumer was started, a new
consumer is started. A consumer is considered active if it received at least one message in t xSi ze *
recei veTi meout milliseconds.

With the default settings, the algorithm to decrease consumers works as follows:

If there are more than concurrent Consuners running and a consumer detects 10 consecutive
timeouts (idle) AND the last consumer was stopped at least 60 seconds ago, a consumer will be stopped.
The timeout depends on the r ecei veTi neout and the t xSi ze properties. A consumer is considered
idle if it receives no messages int xSi ze *r ecei veTi meout milliseconds. So, with the default timeout
(1 second) and a t xSi ze of 4, stopping a consumer will be considered after 40 seconds of idle time
(4 timeouts correspond to 1 idle detection).

Note

Practically, consumers will only be stopped if the whole container is idle for some time. This is
because the broker will share its work across all the active consumers.

1.5.0.M1 Spring AMQP 56

Spring AMQP

Exclusive Consumer

Also starting with version 1.3, the listener container can be configured with a single exclusive consumer;
this prevents other containers from consuming from the queue(s) until the current consumer is cancelled.
The concurrency of such a container must be 1.

When using exclusive consumers, other containers will attempt to consume from the queue(s) according
to the r ecoveryl nt erval property, and log a WARNIng if the attempt fails.

Listener Container Queues

version 1.3 introduced a number of improvements for handling multiple queues in a listener container.

The container must be configured to listen on at least one queue; this was the case previously too, but
now queues can be added and removed at runtime. The container will recycle (cancel and re-create)
the consumers when any pre-fetched messages have been processed. See methods addQueues,
addQueueNanes, renoveQueues and r enoveQueueNanes. When removing queues, at least one
gueue must remain.

A consumer will now start if any of its queues are available - previously the container would stop if any
gueues were unavailable. Now, this is only the case if none of the queues are available. If not all queues
are available, the container will attempt to passively declare (and consume from) the missing queue(s)
every 60 seconds.

Also, if a consumer receives a cancel from the broker (for example if a queue is deleted) the consumer
will attempt to recover and the recovered consumer will continue to process messages from any other
configured queues. Previously a cancel on one queue cancelled the entire consumer and eventually
the container would stop due to the missing queue.

If you wish to permanently remove a queue, you should update the container before or after deleting to
gqueue, to avoid future attempts to consume from it.

Resilience: Recovering from Errors and Broker Failures
Introduction

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with
recovery and automatic re-connection in the event of a protocol error or broker failure. We have seen
all the relevant components already in this guide, but it should help to bring them all together here and
call out the features and recovery scenarios individually.

The primary reconnection features are enabled by the CachingConnectionFactory
itself. It is also often beneficial to use the RabbitAdnmi n auto-declaration features. In
addition, if you care about guaranteed delivery, you probably also need to use the
channel Transacted flag in RabbitTenpl ate and Sinpl eMessageli st ener Cont ai ner
and also the Acknow edgeMbde. AUTO (or manual if you do the acks yourself) in the
Si npl eMessageli st ener Cont ai ner.

Automatic Declaration of Exchanges, Queues and Bindings

The Rabbi t Adm n component can declare exchanges, queues and bindings on startup. It does this
lazily, through a Connect i onLi st ener, so if the broker is not present on startup it doesn’t matter. The
firsttime a Connect i on is used (e.g. by sending a message) the listener will fire and the admin features
will be applied. A further benefit of doing the auto declarations in a listener is that if the connection is

1.5.0.M1 Spring AMQP 57

Spring AMQP

dropped for any reason (e.g. broker death, network glitch, etc.) they will be applied again the next time
they are needed.

Note

Queues declared this way must have fixed names; either explicitly declared, or generated by the
framework for AnonynousQueue s. Anonymous queues are non-durable, exclusive, and auto-
delete.

Important

Automatic declaration is only performed when the Cachi ngConnect i onFact or y cache mode is
CHANNEL (the default). This limitation exists because exlusive and auto-delete queues are bound
to the connection.

Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using Rabbit Tenpl at e
(for instance), then Spring AMQP will throw an AmgpException (usually but not always
Angpl OExcepti on). We don't try to hide the fact that there was a problem, so you have to be able to
catch and respond to the exception. The easiest thing to do if you suspect that the connection was lost,
and it wasn’t your fault, is to simply try the operation again. You can do this manually, or you could look
at using Spring Retry to handle the retry (imperatively or declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the
parameters of the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP
also provides some convenience factory beans for creating Spring Retry interceptors in a convenient
form for AMQP use cases, with strongly typed callback interfaces for you to implement custom
recovery logic. See the Javadocs and properties of St at ef ul Ret r yQper ati onsl nt er cept or and
St at el essRetryQper ati onsl nt er cept or for more detail. Stateless retry is appropriate if there is
no transaction or if a transaction is started inside the retry callback. Note that stateless retry is simpler to
configure and analyse than stateful retry, but it is not usually appropriate if there is an ongoing transaction
which must be rolled back or definitely is going to roll back. A dropped connection in the middle of a
transaction should have the same effect as a rollback, so for reconnection where the transaction is
started higher up the stack, stateful retry is usually the best choice.

Starting with version 1.3, a builder API is provided to aid in assembling these interceptors using Java
(orin @onfi gur ati on classes), for example:

@ean
public Stateful RetryQperationslnterceptor interceptor() {
return RetrylnterceptorBuilder.stateful ()
. maxAt t enpt s(5)
. backOf f Opti ons(1000, 2.0, 10000) // initiallnterval, multiplier, nmaxlnterval
.bui I d();

}

Only a subset of retry capabilities can be configured this way; more advanced features would need the
configuration of a Ret r yTenpl at e as a Spring bean. See the Spring Retry Javadocs for complete
information about available policies and their configuration.

Message Listeners and the Asynchronous Case

IfaMessageli st ener fails because of a business exception, the exception is handled by the message
listener container and then it goes back to listening for another message. If the failure is caused by a

1.5.0.M1 Spring AMQP 58

http://static.springsource.org/spring-retry/docs/api/current/

Spring AMQP

dropped connection (not a business exception), then the consumer that is collecting messages for the
listener has to be cancelled and restarted. The Si mpl eMessageli st ener Cont ai ner handles this
seamlessly, and it leaves a log to say that the listener is being restarted. In fact it loops endlessly trying
to restart the consumer, and only if the consumer is very badly behaved indeed will it give up. One side
effect is that if the broker is down when the container starts, it will just keep trying until a connection
can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need more
thought and some custom configuration, especially if transactions and/or container acks are in use. Prior
to 2.8.x, RabbitMQ had no definition of dead letter behaviour, so by default a message that is rejected
or rolled back because of a business exception can be redelivered ad infinitum. To put a limit in the
client on the number of re-deliveries, one choice is a St at ef ul Ret r yOper ati onsl nt er cept or in
the advice chain of the listener. The interceptor can have a recovery callback that implements a custom
dead letter action: whatever is appropriate for your particular environment.

Another alternative is to set the container’s rejectRequeued property to false. This causes all failed
messages to be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering the
message to a Dead Letter Exchange.

Or, you can throw a AngpRej ect AndDont RequeueExcept i on; this prevents message requeuing,
regardless of the setting of the def aul t RequeueRej ect ed property.

Often, a combination of both techniques will be used. Use a
St at ef ul Ret ryQper at i onsl nt er cept or in the advice chain, where it's MessageRecover throws
an AngpRej ect AndDont RequeueExcept i on. The MessageRecover is called when all retries have
been exhausted. The default MessageRecover er simply consumes the errant message and emits a
WARN message. In which case, the message is ACK’d and won'’t be sent to the Dead Letter Exchange,
if any.

Starting with version 1.3, a new Republ i shMessageRecover er is provided, to allow publishing of
failed messages after retries are exhausted:

@Bean
Ret ryOper ationslnterceptor interceptor() {
return RetrylnterceptorBuilder.stateless()
. Wi t hMaxAt t enpt s(5)
. set Recover er (new Republ i shMessageRecover er (angpTenpl ate(), "bar", "baz"))
.build();

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The
default configuration will retry for all exceptions. Given that user exceptions will be wrapped in a
Li st ener Execut i onFai | edExcepti on we need to ensure that the classification examines the
exception causes. The default classifier just looks at the top level exception.

Since Spring Retry 1.0.3, the Bi nar yExcepti onCl assi fi er has a property t raver seCauses
(default f al se). When t r ue it will traverse exception causes until it finds a match or there is no cause.

To use this classifier for retry, use a Si npl eRet r yPol i cy created with the constructor that takes the
max attempts, the Map of Except i on s and the boolean (traverseCauses), and inject this policy into
the Ret ryTenpl at e.

1.5.0.M1 Spring AMQP 59

Spring AMQP

Debugging
Spring AMQP provides extensive logging, especially at DEBUG level.

If you wish to monitor the AMQP protocol between the application and broker, you could use a tool
such as WireShark, which has a plugin to decode the protocol. Alternatively the RabbitMQ java client
comes with a very useful class Tr acer . When run as a mai n, by default, it listens on port 5673 and
connects to port 5672 on localhost. Simply run it, and change your connection factory configuration to
connect to port 5673 on localhost. It displays the decoded protocol on the console. Refer to the Tr acer
javadocs for more information.

3.2 Sample Applications

Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello World"
example that demonstrates both synchronous and asynchronous message reception. It provides an
excellent starting point for acquiring an understanding of the essential components. The second sample
is based on a stock-trading use case to demonstrate the types of interaction that would be common in
real world applications. In this chapter, we will provide a quick walk-through of each sample so that you
can focus on the most important components. The samples are both Maven-based, so you should be
able to import them directly into any Maven-aware IDE (such as SpringSource Tool Suite).

Hello World

Introduction

The Hello World sample demonstrates both synchronous and asynchronous message reception. You
can import the spring-rabbit-helloworld sample into the IDE and then follow the discussion below.

Synchronous Example

Within the src/main/java directory, navigate to the org.springframework.amqp.helloworld package. Open
the HelloWorldConfiguration class and notice that it contains the @Configuration annotation at class-
level and some @Bean annotations at method-level. This is an example of Spring’s Java-based
configuration. You can read more about that here.

@Bean
publ i c ConnectionFactory connectionFactory() {
Cachi ngConnecti onFactory connectionFactory =
new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User name("guest ") ;
connecti onFact ory. set Passwor d("guest");
return connectionFactory;

The configuration also contains an instance of Rabbi t Admi n, which by default looks for any beans of
type Exchange, Queue, or Binding and then declares them on the broker. In fact, the "helloWorldQueue"
bean that is generated in HelloWorldConfiguration is an example simply because it is an instance of
Queue.

@Bean
public Queue hel | oWr | dQueue() {
return new Queue(this.helloWrldQueueNane);

}

1.5.0.M1 Spring AMQP 60

https://github.com/SpringSource/spring-amqp-samples
http://www.springsource.org/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java

Spring AMQP

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue’s
name set as its "queue” property (for receiving Messages) and for its "routingKey" property (for sending
Messages).

Now that we've explored the configuration, let’s look at the code that actually uses these components.
First, open the Producer class from within the same package. It contains a main() method where the
Spring ApplicationContext is created.

public static void main(String[] args) {
Appl i cati onCont ext context =
new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AmgpTenpl ate angpTenpl ate = cont ext . get Bean(AngpTenpl at e. cl ass) ;
angpTenpl at e. convert AndSend("Hel l o World");
Systemout.println("Sent: Hello World");

As you can see in the example above, the AmgpTemplate bean is retrieved and used for sending a
Message. Since the client code should rely on interfaces whenever possible, the type is AmgpTemplate
rather than RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance
of RabbitTemplate, relying on the interface means that this code is more portable (the configuration
can be changed independently of the code). Since the convertAndSend() method is invoked, the
template will be delegating to its MessageConverter instance. In this case, it's using the default
SimpleMessageConverter, but a different implementation could be provided to the "rabbitTemplate”
bean as defined in HelloworldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means
it will be sharing the "rabbitTemplate" bean. That's why we configured that template with both a
"routingKey" (for sending) and "queue" (for receiving). As you saw in the section called “AmgpTemplate”,
you could instead pass the routingKey argument to the send method and the queue argument
to the receive method. The Consumer code is basically a mirror image of the Producer, calling
receiveAndConvert() rather than convertAndSend().

public static void main(String[] args) {
Appl i cati onCont ext context =
new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AmgpTenpl ate angpTenpl ate = cont ext . get Bean(AngpTenpl at e. cl ass) ;
System out. println("Received: " + angpTenpl ate. recei veAndConvert());

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello
World" in the console output.

Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a slightly
more advanced but significantly more powerful option. With a few modifications, the Hello World sample
can provide an example of asynchronous reception, a.k.a. Message-driven POJOs. In fact, there is a
sub-package that provides exactly that: org.springframework.amqgp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it
creates a "connectionFactory" and "rabbitTemplate" bean. This time, since the configuration is dedicated
to the message sending side, we don’'t even need any Queue definitions, and the RabbitTemplate only
has the routingKey property set. Recall that messages are sent to an Exchange rather than being sent
directly to a Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are
bound to that default Exchange with their name as the routing key. That is why we only need to provide
the routing key here.

1.5.0.M1 Spring AMQP 61

Spring AMQP

publ i ¢ Rabbit Tenpl ate rabbitTenpl ate() {
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
tenpl at e. set Rout i ngKey(t hi s. hel | oWor| dQueueNane) ;
return tenpl ate;

Since this sample will be demonstrating asynchronous message reception, the producing side
is designed to continuously send messages (if it were a message-per-execution model like the
synchronous version, it would not be quite so obvious that it is in fact a message-driven consumer).
The component responsible for sending messages continuously is defined as an inner class within the
ProducerConfiguration. It is configured to execute every 3 seconds.

static class Schedul edProducer {

@\ut owi r ed
private vol atile RabbitTenpl ate rabbit Tenpl at e;

private final Atom clnteger counter = new Atom clnteger();

@chedul ed(fi xedRate = 3000)
public void sendMessage() {
rabbi t Tenpl at e. convert AndSend("Hello World " + counter.increment AndGet());

}

You don't need to understand all of the details since the real focus should be on the receiving side (which
we will cover momentarily). However, if you are not yet familiar with Spring 3.0 task scheduling support,
you can learn more here. The short story is that the "postProcessor” bean in the ProducerConfiguration
is registering the task with a scheduler.

Now, let’s turn to the receiving side. To emphasize the Message-driven POJO behavior will start with
the component that is reacting to the messages. The class is called HelloworldHandler.

public class Hell oWwrl dHandl er {

public void handl eMessage(String text) {
Systemout. println("Received: " + text);

}

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any
interfaces, and it doesn’'t even contain any imports. It is being "adapted" to the Messagelistener
interface by the Spring AMQP MessagelistenerAdapter. That adapter can then be configured
on a SimpleMessagelListenerContainer. For this sample, the container is created in the
ConsumerConfiguration class. You can see the POJO wrapped in the adapter there.

@Bean

public Si npl eMessageli st ener Cont ai ner |i st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(connecti onFactory());
cont ai ner. set QueueNane(t hi s. hel | oWor | dQueueNane) ;
cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (new Hel | oWor | dHandl er()));
return container;

The SimpleMessagelListenerContainer is a Spring lifecycle component and will start automatically by
default. If you look in the Consumer class, you will see that its main() method consists of nothing more
than a one-line bootstrap to create the ApplicationContext. The Producer’'s main() method is also a
one-line bootstrap, since the component whose method is annotated with @Scheduled will also start

1.5.0.M1 Spring AMQP 62

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support

Spring AMQP

executing automatically. You can start the Producer and Consumer in any order, and you should see
messages being sent and received every 3 seconds.

Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World
sample. However, the configuration is very similar - just a bit more involved. Since we've walked through
the Hello World configuration in detail, here we’ll focus on what makes this sample different. There is
a server that pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe to
the market data feed by binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdag.*"). The
other main feature of this demo is a request-reply "stock trade” interaction that is initiated by the client
and handled by the server. That involves a private "replyTo" Queue that is sent by the client within the
order request Message itself.

The Server’s core configuration is in the RabbitServerConfiguration class
within the org.springframework.amqp.rabbit.stocks.config.server package. It extends the
AbstractStockAppRabbitConfiguration. That is where the resources common to the Server and Client(s)
are defined, including the market data Topic Exchange (whose name is app.stock.marketdata) and the
Queue that the Server exposes for stock trades (whose name is app.stock.request). In that common
configuration file, you will also see that a JsonMessageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on
the RabbitTemplate so that it does not need to provide that exchange name with every call to send a
Message. It does this within an abstract callback method defined in the base configuration class.

public voi d configureRabbit Tenpl at e(Rabbi t Tenpl at e rabbi t Tenpl ate) {
r abbi t Tenpl at e. set Exchange(MARKET_DATA_EXCHANGE_NAME) ;
}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case,
because it will be bound to the default no-name exchange with its own name as the routing key. As
mentioned earlier, the AMQP specification defines that behavior.

@Bean
public Queue stockRequest Queue() {
return new Queue(STOCK REQUEST_QUEUE_NAME) ;

}

Now that you've seen the configuration of the Servers AMQP resources, navigate to the
org.springframework.amqp.rabbit.stocks package under the src/test/java directory. There you will see
the actual Server class that provides a main() method. It creates an ApplicationContext based on the
server-bootstrap.xml config file. In there you will see the scheduled task that publishes dummy market
data. That configuration relies upon Spring 3.0’s "task" namespace support. The bootstrap config file
also imports a few other files. The most interesting one is server-messaging.xml which is directly under
src/main/resources. In there you will see the "messagelListenerContainer” bean that is responsible for
handling the stock trade requests. Finally have a look at the "serverHandler" bean that is defined in
"server-handlers.xml" (also in src/main/resources). That bean is an instance of the ServerHandler class
and is a good example of a Message-driven POJO that is also capable of sending reply Messages.
Notice that it is not itself coupled to the framework or any of the AMQP concepts. It simply accepts a
TradeRequest and returns a TradeResponse.

publ ic TradeResponse handl eMessage(Tr adeRequest tradeRequest) { ...
}

1.5.0.M1 Spring AMQP 63

Spring AMQP

Now that we've seen the most important configuration and code for the Server, let's
turn to the Client. The best starting point is probably RabbitClientConfiguration within the
org.springframework.amgp.rabbit.stocks.config.client package. Notice that it declares two queues
without providing explicit names.

@Bean
public Queue market Dat aQueue() {
return angpAdm n() . decl areQueue();

}

@Bean
public Queue traderJoeQueue() {
return angpAdm n() . decl areQueue();

}

Those are private queues, and unique names will be generated automatically. The first generated
gueue is used by the Client to bind to the market data exchange that has been exposed by the Server.
Recall that in AMQP, consumers interact with Queues while producers interact with Exchanges. The
"binding" of Queues to Exchanges is what instructs the broker to deliver, or route, messages from a
given Exchange to a Queue. Since the market data exchange is a Topic Exchange, the binding can
be expressed with a routing pattern. The RabbitClientConfiguration declares that with a Binding object,
and that object is generated with the BindingBuilder’s fluent API.

@/al ue(" ${stocks. quote. pattern}")
private String market Dat aRout i ngKey;

@Bean
publ i c Bi ndi ng mar ket Dat aBi ndi ng() {
return Bi ndi ngBui | der . bi nd(
mar ket Dat aQueue()) . t o(mar ket Dat aExchange()) . wi t h(mar ket Dat aRout i ngKey) ;

Notice that the actual value has been externalized in a properties file ("client.properties" under src/main/
resources), and that we are using Spring’s @Value annotation to inject that value. This is generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making
changes to the routing pattern used for binding. Let’s try that now.

Start by running org.springframework.amqp.rabbit.stocks.Server and then
org.springframework.amqgp.rabbit.stocks.Client. You should see dummy quotes for NASDAQ stocks
because the current value associated with the stocks.quote.pattern key in client.properties is
app.stock.quotes.nasdaq.. Now, while keeping the existing Server and Client running, change that
property value to app.stock.quotes.nyse. and start a second Client instance. You should see that the
first client is still receiving NASDAQ quotes while the second client receives NYSE quotes. You could
instead change the pattern to get all stocks or even an individual ticker.

The final feature we’ll explore is the request-reply interaction from the Client’s perspective. Recall
that we have already seen the ServerHandler that is accepting TradeRequest objects and returning
TradeResponse objects. The corresponding code on the Client side is RabbitStockServiceGateway in
the org.springframework.amqp.rabbit.stocks.gateway package. It delegates to the RabbitTemplate in
order to send Messages.

1.5.0.M1 Spring AMQP 64

Spring AMQP

public void send(TradeRequest tradeRequest) {
get Rabbi t Tenpl at e() . convert AndSend(tradeRequest, new MessagePost Processor () {
publ i c Message postProcessMessage(Message nessage) throws AngpException {
nmessage. get MessageProperties().set Repl yTo(new Addr ess(def aul t Repl yToQueue));
try {
nmessage. get MessageProperties().setCorrel ati onl d(
UUI D. randonJUl D() . toString().getBytes("UTF-8"));
}
catch (UnsupportedEncodi ngException e) {
throw new AngpException(e);
}

return nessage,

1)

Notice that prior to sending the message, it sets the "replyTo" address. It's providing the queue that was
generated by the "traderJoeQueue" bean definition shown above. Here's the @Bean definition for the
StockServiceGateway class itself.

@Bean
public StockServiceGateway stockServiceGateway() {
Rabbi t St ockSer vi ceGat eway gat eway = new Rabbi t St ockSer vi ceGat eway() ;
gat eway. set Rabbi t Tenpl at e(rabbi t Tenpl ate());
gat eway. set Def aul t Repl yToQueue(trader JoeQueue());
return gateway;

If you are no longer running the Server and Client, start them now. Try sending a request with the format
of 100 TCKR. After a brief artificial delay that simulates "processing” of the request, you should see a
confirmation message appear on the Client.

1.5.0.M1 Spring AMQP 65

Spring AMQP

4. Spring Integration - Reference

This part of the reference documentation provides a quick introduction to the AMQP support within the
Spring Integration project.

4.1 Spring Integration AMQP Support

Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon
the Spring AMQP project. Those adapters are developed and released in the Spring Integration
project. In Spring Integration, "Channel Adapters" are unidirectional (one-way) whereas "Gateways"
are bidirectional (request-reply). We provide an inbound-channel-adapter, outbound-channel-adapter,
inbound-gateway, and outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation will be available
as part of the Spring Integration distribution. As a taster, we just provide a quick overview of the main
features here.

Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel-adapter>

<angp: i nbound- channel - adapt er channel ="f r omAMQ®P"
queue- names="sone. queue"
connection-factory="rabbitConnectionFactory"/>

Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A routing-key
may optionally be provided in addition to the exchange name.

<angp: out bound- channel - adapt er channel ="t oAMQP"
exchange- name="sone. exchange"
routing- key="f 00"
angp-t enpl at e="r abbi t Tenpl ate"/ >

Inbound Gateway

To receive an AMQP Message from a Queue, and respond to its reply-to address, configure an
<inbound-gateway>.

<angp: i nbound- gat eway request - channel ="fr omAMP"
repl y- channel ="t oAMQP"
queue- nanes="sone. queue"
connection-factory="rabbit Connecti onFactory"/>

Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from a remote client, configure
an <outbound-gateway>. A routing-key may optionally be provided in addition to the exchange name.

<anqp: out bound- gat eway request - channel ="t oAMQP"
repl y- channel =" f r omAMQP"
exchange- name="sone. exchange"
routing- key="f 00"
angp-t enpl at e="r abbi t Tenpl ate"/ >

1.5.0.M1 Spring AMQP 66

http://www.springsource.org/spring-integration

Spring AMQP

5. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you
learn about AMQP.

5.1 Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course
the authoritative source of information, and the Spring AMQP code should be very easy to understand
for anyone who is familiar with the spec. Our current implementation of the RabbitMQ support is based
on their 2.8.x version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1
document.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started
page. Since that is currently the only supported implementation for Spring AMQP, we also recommend
that as a general starting point for all broker-related concerns.

1.5.0.M1 Spring AMQP 67

http://www.amqp.org/resources/download
http://www.rabbitmq.com/how.html

	Spring AMQP
	Table of Contents
	1. Preface
	2. Introduction
	2.1 Quick Tour for the impatient
	Introduction
	Compatibility
	Very, Very Quick
	With XML Configuration
	With Java Configuration

	2.2 What’s New
	Changes in 1.5 Since 1.4
	spring-erlang is No Longer Supported
	Empty Addresses Property in CachingConnectionFactory
	Properties to Control Container Queue Declaration Behavior
	Class Package Change
	DefaultMessagePropertiesConverter
	@QueueBinding for @RabbitListener
	The reply-address for RabbitTemplate
	The RabbitManagementTemplate
	Listener Container Bean Names (XML)
	Class-Level @RabbitListener
	SimpleMessageListenerContainer: BackOff support

	Changes in 1.4 Since 1.3
	@RabbitListener Annotation
	RabbitMessagingTemplate
	Listener Container Missing Queues Fatal Attribute
	RabbitTemplate ConfirmCallback Interface
	RabbitConnectionFactoryBean
	CachingConnectionFactory
	Log Appender
	Listener Queues
	RabbitTemplate: mandatory and connectionFactorySelector Expressions
	Listeners and the Routing Connection Factory
	RabbitTemplate: RecoveryCallback option
	MessageConversionException
	RabbitMQ 3.4 Compatibility
	ContentTypeDelegatingMessageConverter

	Changes in 1.3 Since 1.2
	Listener Concurrency
	Listener Queues
	Consumer Priority
	Exclusive Consumer
	Rabbit Admin
	Direct Exchange Binding
	AMQP Template
	Caching Connection Factory
	Binding Arguments
	Routing Connection Factory
	MessageBuilder and MessagePropertiesBuilder
	RetryInterceptorBuilder
	RepublishMessageRecoverer
	Default Error Handler (Since 1.3.2)
	Listener Container 'missingQueuesFatal` Property (Since 1.3.5)

	Changes to 1.2 Since 1.1
	RabbitMQ Version
	Rabbit Admin
	Rabbit Template
	JSON Message Converters
	Automatic Declaration of Queues, etc
	AMQP Remoting
	Requested Heart Beats

	Changes to 1.1 Since 1.0
	General
	AMQP Log4j Appender

	3. Reference
	3.1 Using Spring AMQP
	AMQP Abstractions
	Introduction
	Message
	Exchange
	Queue
	Binding

	Connection and Resource Management
	Introduction
	Configuring the Underlying Client Connection Factory
	Configuring SSL
	Routing Connection Factory
	Publisher Confirms and Returns

	AmqpTemplate
	Introduction
	Adding Retry Capabilities
	Publisher Confirms and Returns
	Messaging integration

	Sending messages
	Introduction
	Message Builder API
	Publisher Returns
	Batching

	Receiving messages
	Introduction
	Polling Consumer
	Asynchronous Consumer
	auto-delete Queues

	Batched Messages
	Annotation-driven Listener Endpoints
	Introduction
	Enable listener endpoint annotations
	Programmatic Endpoint Registration
	Annotated Endpoint Method Signature
	Reply Management
	Multi-Method Listeners

	Threading and Asynchronous Consumers

	Message Converters
	Introduction
	SimpleMessageConverter
	Converting From a Message
	Converting To a Message

	JsonMessageConverter and Jackson2JsonMessageConverter
	MarshallingMessageConverter
	ContentTypeDelegatingMessageConverter
	Message Properties Converters

	Modifying Messages - Compression and More
	Request/Reply Messaging
	Introduction
	RabbitMQ Direct reply-to
	Message Correlation With A Reply Queue
	Reply Listener Container

	Spring Remoting with AMQP

	Configuring the broker
	Introduction
	Conditional Declaration

	RabbitMQ REST API
	Exception Handling
	Transactions
	Introduction
	A note on Rollback of Received Messages
	Using the RabbitTransactionManager

	Message Listener Container Configuration
	Listener Concurrency
	Exclusive Consumer
	Listener Container Queues
	Resilience: Recovering from Errors and Broker Failures
	Introduction
	Automatic Declaration of Exchanges, Queues and Bindings
	Failures in Synchronous Operations and Options for Retry
	Message Listeners and the Asynchronous Case
	Exception Classification for Retry

	Debugging

	3.2 Sample Applications
	Introduction
	Hello World
	Introduction
	Synchronous Example
	Asynchronous Example

	Stock Trading

	4. Spring Integration - Reference
	4.1 Spring Integration AMQP Support
	Introduction
	Inbound Channel Adapter
	Outbound Channel Adapter
	Inbound Gateway
	Outbound Gateway

	5. Other Resources
	5.1 Further Reading

