Spring AMQP

1.6.0.M1

Mark Pollack , Mark Fisher , Oleg Zhurakousky , Dave Syer ,
Gary Russell , Gunnar Hillert , Artem Bilan , Stéphane Nicoll

Copyright © 2010-2016 Pivotal Software Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring AMQP

Table of Contents

R = T S 1
2. INTFOAUCTION ..ottt e e ettt e e e e et et s e e e e et e e e anb b neeeeeeeene 2
2.1. Quick Tour for the IMPAtIENTcounii e e 2
10T [T 1o) o S 2
CoMPALIDIITY ovneee e 2

Very, VEry QUICKiiiiiiiii et e e e et e ean e eees 2

With XML CONfIQUIALIONccceuiiiiiii et 2

With Java Configurationcocouuiiiiiiii e e eaas 3

2.2, WNAE'S INEW .ttt ettt e et et et e e e e e et e et aa e e aa e e et e eaa e ean s 4
Changes iN 1.6 SINCE 1.5 ..o 4
IS o TS o] Lo o A 4
NAMESPACE CRANGESiiiiiiiieiit e ettt e et e e e e e e e eaens 4

Listener Container ChaNGESccceuuuiiiiii et eeaans 4
AutoDeclare and RabbitAdMINSoiiiiiiiiiiii e 4
AmgpTemplate: receive With timEOULooouiiiiii i 4
ASYNCRALDITEMPIALE ... 4
RabbitTemplate Changescccouiiiiiiiii e e 5

MESSAJE PIOPEITIESceeiiiiieii ettt e e e et e e et e ea e aeaas 5
RabbitAdMIN ChanQes oo e 5
@RabbitListener ChaNQEScvvuniiiiii e 5

Delayed Message EXChanQec.oiiuniiiiiiiii e 5

ST =T gl =] T T 5

B REIEIEINCE ... e 6
3.1. USIiNg SPring AMOP ..o e e eaas 6
Y[L AN o] 1 - T €0 1 6
INIFOAUCTION ..ttt e e e e e 6

Y oSSt T [PP UPTPT 6
EXCRANGE oo e 7

QUEBUIE et 7

1211 o {1 0 To [N TPPRT PRI 8
Connection and Resource ManagemMeNntcc.uuiiiiiiniiiiiii et eeeai e eens 9
INIFOAUCTION ..ttt e e e e e 9
Configuring the Underlying Client Connection Factorycccoeeuiieiiniiinieeennnnns 11
CONFIGUING SSL .ottt e et e e e eaans 12

Routing ConNECtioN FACIONYiiiiiiii e 12

Queue Affinity and the LocalizedQueueConnectionFactorycccceevvueeennnaennnn. 13

Publisher Confirms and REUIMNSccuiiiiiii e e 14

Logging Channel CloSE EVENLScciviiiiiiiiiii e e 15
AMAPTEMPIALE ..ottt et e e e et e e e e e aes 15

T 10T [T o) o S 15

Adding Retry Capabilitiesciiiiiiii i 16

Publisher Confirms and REUIMNS ... e 17
MesSaging INtEGIAtIONuuiiiiiiii e et 18

Y =Tl o T [TST: To [18

Ta 1ol 011 o] o PRSPPI 18

MeSSage BUIIAET APouiiiii e 19

PUDBISNEr RETUINS ...t e e 20

1.6.0.M1 Spring AMQP iii

Spring AMQP

BaAICNING .euiiiii e 20
RECEIVING MESSAGES ...uiitiiiiieiit ettt e ettt e e e et e et e et e et e e et e e et e aebn e eanaees 21
T 10T [T 1o) o PN 21
o] 11 Ta T @] 1S [41 PP 21
ASYNCHIONOUS CONSUMIETuuiitiiit et e ettt e et et e et e e e e ean s 23
BatChed MESSAGESciiiiiiieiiii et 25
Consumer Failure EVENLScoooiiiiiiiiii e 25
CONSUMET TAUS .etuietittiiti ettt ettt ettt et et et e e e et e et et e en e en s e e e eeaeaeenes 26
Annotation-driven Listener ENdpointscoooiiiiiiiiiiiinii e 26
Threading and Asynchronous CONSUMENSveuuuiveinieeiiieeinieeaieeeeneeeiaeranaeennnns 34
Detecting Idle ASynchronOuS CONSUMETSc.uuiiuuniiitieiiiieeiiieeeie et ei e eeanns 34
MESSAGE CONVEITEISiiiieiiie ittt ettt et et et et e e et e e e e eanaeee 35
] o [N L1 1o o IR PRSPPI 35
SIMPIEMESSAGECONVEITEL ...ttt e e e e e e eea e aees 36
JsonMessageConverter and Jackson2JsonMessageConverterccooveveevnnneees 37
MarshallingMesSageCONVEIETiiiiiieiii e e e e 38
ContentTypeDelegatingMesSageCONVEITETcccuuiiiiiiieiiieiiieeei e 38
Message PropertieS CONVEITEISoouuuiiiiiii ettt eei e 38
Modifying Messages - Compression and MOFEc..ovivuiiiiieiiii e e e 39
ReqUESH/REPIY MESSAGINGuuiieuniiiieiii ettt e e et et e et e e e ea e 40
T 10T [T 1o) o PN 40
=T 0]V I T 1 =T 0T | 40
RabbitMQ DIreCt reply-t0couuiiiiiiiie e 41
Message Correlation With A Reply QUEUEooviiviiiiiiiiiieciei e 41
Reply Listener CONLAINETcciveiiiiiee e e e e e e e e an s 41
ASYNCRAbDITTEMPIALE ... e 43
Spring Remoting With AMOP ... 45
Configuring the DrOKETiie e e e e e e e 46
TageTo 011 o] o PP PT PPN 46
Declaring Collections of Exchanges, Queues, Bindingscccooovvveiiiiieiiiiinneeenns 51
Conditional DECIAratioNooieuuiiieiiiiee e 52
ANONYMOUSQUEUE ..ottt ittt e et et et e et e et et e et e ee e en e e e e e e e enaeenae 54
Delayed Message EXCRANGEccoouuiiiiiiiiiieieii ettt e 55
RabbitMQ REST AP ...ttt er e 56
EXCePtion HaNAIINGoiiiii et e e 57
LI = 1 E57= 1o 1o o P 58
] o 11 L1 1o o IR P PPTN 58
A note on Rollback of Received MESSAJESccouuiiiiiiiiiiiiiiieei e 59
Using the RabbitTransactionManageroooeiiuiiiieiiiiiieeei e 60
Message Listener Container Configurationcoevviiiiiiiiiin e 60
(IS (=] o [T g Ode] o (o £ (=] [VAPPSR PR 66
EXCIUSIVE CONSUMET ...eiiiiiieeiee ittt e e e e e et e e et e et e e et s e e e e e e enneeennas 67
Listener Container QUEUESuuiiuiiitiei ettt e e e e et e e e et et e e e e e et e eaeeans 67
Resilience: Recovering from Errors and Broker Failurescccoooviiiiiiiiiiiiiiiincennnn. 67
T 10T [T 1o) o PN 67
Automatic Declaration of Exchanges, Queues and Bindingscccooovvvvevnnnne. 68
Failures in Synchronous Operations and Options for Retrycccoevveiiiiinneennn. 68
Message Listeners and the ASynchronous Caseooveveviiiieiiiiinneiiiiineeeennen, 69
Exception Classification for Retryooviiiiiiiiii e 70
(BT o 18 e o[o [P PTUP T UPPTRPPTRN 70

1.6.0.M1

Spring AMQP iv

Spring AMQP

3.2, SamMPle APPICALIONS ...uieeiiiii e 70
Ta oo (0T i o] o NPT TOPT PP 70

[1= o VAo T ¢ o 70

] o [N L1 1o o IR PRSPPI 70
SYNChroNOUS EXAMPIEcueii e 70
ASYNChronous EXAmMPIeiiiii e 72

S (o o3 QN I -V L1 Vo P 73

TR T =TS (] To IS TU o] oL o AN PP 75
T 0T [T 1o) o PP 75
Mockito Answer<?> Implementationsovvei i 76
@RabbitListenerTest and RabbitListenerTesStHarnesscovvviviiiiiiiiiiiieeeeeee 76

4. Spring INtegration - RETEIENCEiiii e e 81
4.1. Spring Integration AMQP SUPPOIT .. .ceuiiiiei et e e e e e e e aneees 81
TagoTo 0T i o] o PP PP 81
INbouNd Channel AAPLENcooeii e 81
Outbound Channel AGAPLELuiii e e e e e e e e aaes 81
INDOUNT GAEBWAY ... ettt et ettt e e e e et e e e e eaa s 81
OUDOUNT GAIEWAYvuneiiiii ettt et e e 81

T @1 01T g =0 U o = PP 82
5.1, FUMher REAAING ...ttt et e e et e e e e aaeaes 82
AL CRANGE HISTOMY ...iiiiii ettt ettt e e et e e e et e e e rb e e e eaeas 83
AL CUITENE REICASE ..ottt et e et e et e e et e e eenans 83
A.2. PrevioUS REIEASESc.uiiiiiiiiii e e et 83
Changes iN 1.5 SINCE 1.4 ...ooiiii et 83
spring-erlang is NO Longer SUPPOIEdccouuiiiiieiiiiiii e e e e e 83
CachingConnectionFactory Changescc.oviiiiiiiiiiii e 83
Properties to Control Container Queue Declaration Behaviorcccoeveevnnnene. 83

Class Package Changeoovieiiiiiiiie e e e 83
DefaultMessagePropertieSCONVEITETco..iiiuiiiiiii e 84
@RabbitListener IMProVEMENTSoiiuiiiiiei e e e e 84
Automatic Exchange, Queue, Binding Declarationcccooveviieiiiieviineeineeenn. 84
RabbitTemplate Changesccouu i e 84

The RabbitManagementTemplate ... 85

Listener Container Bean Names (XML)c.uviviiiiiiiiiiiie e 85
Class-Level @RADDITLISIENETvnieiiiiii e 85
SimpleMessageListenerContainer: BackOff SUPPOItoiviiiiiiiiiiiiiiiieiiieees 85

(O gF-Ta a1 I @ (01T T oo T 11 Vo [P 85
APPLICAtION BEVENTS ...t e 85
Consumer Tag ConfigUrationoooeeeuiiieiiiiiieei e e 85
MeSSagELISIENEIATAPLETeee it e e 86
LocalizedQueueConNECHONFACIONYcc.uiiiiieiieeei e e e 86
ANONYMOUS QUEUE NAMING ...vvueiiiiiieieiii et e et e e et e e et e et eeea e eenees 86

(O g T TaTo [T T N I g o7 T I 86
(@]RE=10] o T1{MES (1 0 ST gAY a1 g 0] ¢= 1 1] o [P 86
RabbitMessagingTemplate ... 86

Listener Container Missing Queues Fatal Attributecccociiviviiiiviiees 86
RabbitTemplate ConfirmCallback Interfaceccooooiiiiiiiiiiii e, 86
RabbitConnectioNFaCtOryBEaANoiiiiiiiiiiiiiii e 86
CachingCoNNECHONFACIONYvuiiiiiei e e ea s 86

[T Y o] 01T oo (=] S PP PT PSPPI PPPPPN 87

1.6.0.M1 Spring AMQP v

Spring AMQP

LISTENET QUEUES ...uitiiiteii ettt e e e e e e et e et e et e e et e e e e e et 87
RabbitTemplate: mandatory and connectionFactorySelector Expressions 87
Listeners and the Routing Connection Factoryccooveviiiiiieiiiiinieeiiineeeeie 87
RabbitTemplate: RecoveryCallback optioncccooiiiiiiiii e, 87
MessageConVerSiONEXCEPLIONiiiuiiiiiiei e 87
RabbitMQ 3.4 Compatibilityooiiiiiiiiii 88
ContentTypeDelegatingMessSageCONVEIETccuuuieiiieeiieeeie e e e e e 88
Changes iN 1.3 SINCE 1.2 ..ouiiii et e e e e e e e eaa e aees 88
LiStENET CONCUITENCY ...ieitieeetii ettt ettt e ettt e ettt e et eab e e e e ent e e eenanaeeeees 88
LISTENET QUEUESiiiiitieii ettt ettt e e e e e e e e et e et e et e e e e e et 88
CONSUMET PIIOIILY ..ttt ettt e e et e e e et e e et e e ea e eanns 88
EXCIUSIVE CONSUMET ..outiiiiieei ettt ettt e e e et e et e e et e e et e e e e e eanaeeeen 88
RabDbit AAMIN ... 88
Direct EXChange BiNAINGc.uoieuniiiiiii et e 88
AMOP TEMPIALE ...t 89
Caching ConneCtioN FACIOIYuiiiiiiiii e e e e 89
BiNdiNG AFQUMENES ...ouniiiiiii et ettt e et e et e e e eenas 89
Routing ConNECtioN FACIOMYuiiiiiiiiieiii e 89
MessageBuilder and MessagePropertiesBuilderccooeviiiviiiiin i, 89
RetryINterceptorBUIIAEToiueiiiiie e e 89
RepUDIISNMESSAGERECOVEIETiiiiiiieeieii et 89
Default Error Handler (SINCE 1.3.2) ...cvuuiiiiieii e e e 89
Listener Container 'missingQueuesFatal” Property (Since 1.3.5)ccooevvvviienennnn. 89
Changes 10 1.2 SINCE 1.1 ..oooiiiiiiiiii ettt eeai e eaees 20
RabbItMQ VEISIONiiiiiiii e 90
RADDIT AQMIN <o 90
Rabbit TEMPIALE ... oo e 90
JSON MESSAQGE CONVEITEIS ...euiiitieii ettt e e e e e e e e e e et e et e enneenaeens 90
Automatic Declaration of QUEUES, EICcvviiiiiiiiiiiii e 90
AMOP REMOTING ..eietiieiiii ettt e e 90
Requested Heart BEALSccouuiiiiiieiii i ee e e e e e e e e e e e e e e 90
Changes t0 1.1 SINCE 1.0 ...ttt e e e 91
1= =T - | 91
YN 1Y@] = oo P Y o] o =T g T [T 91

1.6.0.M1

Spring AMQP Vi

Spring AMQP

1. Preface

The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging
solutions. We provide a "template" as a high-level abstraction for sending and receiving messages.
We also provide support for Message-driven POJOs. These libraries facilitate management of AMQP
resources while promoting the use of dependency injection and declarative configuration. In all of these
cases, you will see similarities to the JMS support in the Spring Framework. For other project-related
information visit the Spring AMQP project homepage.

1.6.0.M1 Spring AMQP

http://projects.spring.io/spring-amqp/

Spring AMQP

2. Introduction

This first part of the reference documentation is a high-level overview of Spring AMQP and the underlying
concepts and some code snippets that will get you up and running as quickly as possible.

2.1 Quick Tour for the impatient

Introduction
This is the 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmg.com/download.html). Then
grab the spring-rabbit JAR and all its dependencies - the easiest way to do that is to declare a
dependency in your build tool, e.g. for Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. angp</ gr oupl d>
<artifactld>spring-rabbit</artifactld>
<versi on>1. 6. 0. ML</ ver si on>

</ dependency>

And for gradle:

conpil e 'org. springframework. angp: spring-rabbit:1.6.0. M
Compatibility

While the default Spring Framework version dependency is 4.2.x, Spring AMQP is generally
compatible with earlier versions of Spring Framework. Annotation-based listeners and the
Rabbi t Messagi ngTenpl at e require Spring Framework 4.1 or higher, however.

Similarly, the default angp- cl i ent version is 3.6.x but the framework is compatible with versions 3.4.0
and above. However, of course, features that rely on newer client versions will not be available. Note
the this refers to the java client library; generally, it will work with older broker versions.

Very, Very Quick

Using plain, imperative Java to send and receive a message:

Connecti onFactory connecti onFactory = new Cachi ngConnecti onFactory();
AngpAdmi n adm n = new Rabbi t Adm n(connecti onFactory);

adm n. decl ar eQueue(new Queue("nyqueue"));

AngpTenpl ate tenpl ate = new Rabbit Tenpl at e(connect i onFactory);

t enpl at e. convert AndSend(" nyqueue", "foo");

String foo = (String) tenplate.recei veAndConvert ("nyqueue");

Note that there is a Connect i onFact ory in the native Java Rabbit client as well. We are using the
Spring abstraction in the code above. We are relying on the default exchange in the broker (since none
is specified in the send), and the default binding of all queues to the default exchange by their name
(hence we can use the queue name as a routing key in the send). Those behaviours are defined in
the AMQP specification.

With XML Configuration

The same example as above, but externalizing the resource configuration to XML

1.6.0.M1 Spring AMQP 2

http://www.rabbitmq.com/download.html

Spring AMQP

Appl i cati onCont ext context =
new Generi cXm Appl i cati onCont ext ("cl asspat h:/rabbit-context.xm");
AngpTenpl ate tenpl ate = context. get Bean(AngpTenpl at e. cl ass) ;
t enpl at e. convert AndSend(" nyqueue", "foo");
String foo = (String) tenplate.recei veAndConvert (" myqueue");

<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xm ns: rabbit="http://ww. springframework. org/ schema/ rabbi t"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ r abbi t
http://ww. springframework. or g/ schema/ rabbi t/spring-rabbit.xsd
http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<rabbi t: connecti on-factory i d="connecti onFactory"/>

<rabbit:tenplate id="anmgpTenpl ate" connecti on-factory="connecti onFactory"/>
<rabbi t:adm n connection-factory="connecti onFactory"/>

<rabbi t: queue nanme="nyqueue"/ >

</ beans>

The <r abbi t : admi n/ > declaration by default automatically looks for beans of type Queue, Exchange
and Bi ndi ng and declares them to the broker on behalf of the user, hence there is no need to use that
bean explicitly in the simple Java driver. There are plenty of options to configure the properties of the
components in the XML schema - you can use auto-complete features of your XML editor to explore
them and look at their documentation.

With Java Configuration

The same example again with the external configuration in Java:

Appl i cati onCont ext context =
new Annot at i onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AngpTenpl ate tenpl ate = context. get Bean(AngpTenpl at e. cl ass) ;
t enpl at e. convert AndSend(" nyqueue", "foo");
String foo = (String) tenplate.recei veAndConvert (" myqueue");

@onfiguration
public class RabbitConfiguration {

@Bean
publ i ¢ Connecti onFactory connectionFactory() {
return new Cachi ngConnecti onFactory("| ocal host");

}

@Bean
publi c AngpAdmi n angpAdmi n() {
return new Rabbi t Adm n(connecti onFactory());

}

@Bean
publ i ¢ Rabbit Tenpl ate rabbitTenplate() {
return new Rabbit Tenpl at e(connecti onFactory());

}

@Bean

public Queue nyQueue() {
return new Queue("nyqueue");

}

1.6.0.M1 Spring AMQP 3

Spring AMQP

2.2 What's New

Changes in 1.6 Since 1.5

Testing Support

A new testing support library is now provided. See Section 3.3, “Testing Support” for more information.
Namespace Changes

Connection Factory

It is now possible to add a t hr ead- f act ory to a connection factory bean declaration, for example
to name the threads created by the anqgp- cl i ent library. See the section called “Connection and
Resource Management” for more information.

Queue Definitions

It is now possible to provide a naming strategy for anonymous queues; see the section called
“AnonymousQueue” for more information.

Listener Container Changes
Idle Message Listener Detection

It is now possible to configure listener containers to publish Appl i cat i onEvent s when idle. See the
section called “Detecting Idle Asynchronous Consumers” for more information.

Mismatched Queue Detection

By default, when a listener container starts, if queues with mismatched properties or arguments were
detected, the container would log the exception but continue to listen. The container now has a property
m smat chedQueuesFat al which will prevent the container (and context) from starting if the problem
is detected during startup. It will also stop the container if the problem is detected later, such as after
recovering from a connection failure. See the section called “Message Listener Container Configuration”
for more information.

AutoDeclare and RabbitAdmins

See the section called “Message Listener Container Configuration” (aut oDecl ar e) for some changes
to the semantics of that option with respect to the use of Rabbi t Adm n s in the application context.

AmqgpTemplate: receive with timeout

A numberofnewr ecei ve() methods witht i neout have been introduced for the AngpTenpl at e and
its Rabbi t Tenpl at e implementation. See the section called “Polling Consumer” for more information.

AsyncRabbitTemplate

A new AsyncRabbi t Tenpl at e has been introduced. This template provides a number of send and
receive methods, where the return value is a Li st enabl eFut ur e, which can be used later to obtain
the result either synchronously, or asynchronously. See the section called “AsyncRabbitTemplate” for
more information.

1.6.0.M1 Spring AMQP 4

Spring AMQP

RabbitTemplate Changes

1.4.1 introduced the ability to use Direct reply-to when the broker supports it; it is more efficient than
using a temporary queue for each reply. This version allows you to override this default behavior and
use atemporary queue by setting the useTenpor ar yRepl yQueues property tot r ue. See the section
called “RabbitMQ Direct reply-to” for more information.

Message Properties
Correlationld

The correl ati onl d message property can now be a Stri ng. See the section called “Message
Properties Converters” for more information.

Long String Headers

Previously, the Def aul t MessagePr operti esConvert er "converted" headers longer than the long
string limit (default 1024) to a Dat al nput St r eam (actually it just referenced the LongStri ng's
Dat al nput St ream). On output, this header was not converted (except to a String, e.g.
java.io. Dat al nput St ream@ d057a39 by callingt oSt ri ng() on the stream).

With this release, long LongStri ng s are now left as LongSt ri ng s by default; you can access
the contents via the getBytes[], toString(), or get Stream() methods. A large incoming
LongSt ri ng is now correctly "converted” on output too.

See the section called “Message Properties Converters” for more information.
RabbitAdmin Changes
Declaration Failures

Previously, the i gnoreDecl arati onFai |l ures flag only took effect for | OExcepti on on the
channel (such as mis-matched arguments). It now takes effect for any exception (such as
Ti meout Excepti on). In addition, a Decl ar ati onExcepti onEvent is now published whenever
a declaration fails. The Rabbit Adnmi n last declaration event is also available as a property
| ast Decl ar ati onExcepti onEvent. See the section called “Configuring the broker” for more
information.

@RabbitListener Changes

When using Java 8 or later, it is now possible to add multiple @Rabbi t Li st ener annotations to @ean
classes or their methods. When using Java 7 or earlier, you can use the @Rabbi t Li st ener s container
annotation to provide the same functionality. See the section called “@Repeatable @RabbitListener”
for more information.

Delayed Message Exchange

Spring AMQP now has first class support for the RabbitMQ Delayed Message Exchange plugin. See
the section called “Delayed Message Exchange” for more information.

Earlier Releases

See Section A.2, “Previous Releases” for changes in previous versions.

1.6.0.M1 Spring AMQP 5

https://www.rabbitmq.com/direct-reply-to.html

Spring AMQP

3. Reference

This part of the reference documentation details the various components that comprise Spring AMQP.
The main chapter covers the core classes to develop an AMQP application. This part also includes a
chapter about the sample applications.

3.1 Using Spring AMQP

In this chapter, we will explore the interfaces and classes that are the essential components for
developing applications with Spring AMQP.

AMQP Abstractions

Introduction

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution.
These modules are: spring-amqgp, and spring-rabbit. The spring-amgp module contains the
or g. spri ngframewor k. anmgp. cor e package. Within that package, you will find the classes that
represent the core AMQP "model". Our intention is to provide generic abstractions that do not rely on
any particular AMQP broker implementation or client library. End user code will be more portable across
vendor implementations as it can be developed against the abstraction layer only. These abstractions
are then used implemented by broker-specific modules, such as spring-rabbit. There is currently only a
RabbitMQ implementation; however the abstractions have been validated in .NET using Apache Qpid
in addition to RabbitMQ. Since AMQP operates at the protocol level in principle, the RabbitMQ client
can be used with any broker that supports the same protocol version, but we do not test any other
brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification. If
you are not, then have a look at the resources listed in Chapter 5, Other Resources

Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when
performing an operation such as basi cPubl i sh(), the content is passed as a byte-array argument
and additional properties are passed in as separate arguments. Spring AMQP defines a Message class
as part of a more general AMQP domain model representation. The purpose of the Message class is
to simply encapsulate the body and properties within a single instance so that the API can in turn be
simpler. The Message class definition is quite straightforward.

public class Message {
private final MessageProperties nessageProperties;
private final byte[] body;

public Message(byte[] body, MessageProperties messageProperties) {
t hi s. body = body;
this. nessageProperti es = nmessageProperties;

}

public byte[] getBody() {
return this. body;

}

publ i c MessageProperties get MessageProperties() {
return this.nnessageProperties;

}

1.6.0.M1 Spring AMQP 6

Spring AMQP

The MessageProperti es interface defines several common properties such as messageld,
timestamp, contentType, and several more. Those properties can also be extended with user-defined
headers by calling the set Header (Stri ng key, Object val ue) method.

Exchange

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to.
Each Exchange within a virtual host of a broker will have a uniqgue name as well as a few other properties:

public interface Exchange {
String getNanme();
String get ExchangeType();
bool ean i sDurabl e();
bool ean i sAut oDel ete();

Map<String, Object> getArgunments();

As you can see, an Exchange also has a type represented by constants defined in ExchangeTypes.
The basic types are: Di rect, Topi c, Fanout, and Headers. In the core package you will find
implementations of the Exchange interface for each of those types. The behavior varies across these
Exchange types in terms of how they handle bindings to Queues. For example, a Direct exchange
allows for a Queue to be bound by a fixed routing key (often the Queue’s name). A Topic exchange
supports bindings with routing patterns that may include the * and # wildcards for exactly-one and zero-
or-more, respectively. The Fanout exchange publishes to all Queues that are bound to it without taking
any routing key into consideration. For much more information about these and the other Exchange
types, check out Chapter 5, Other Resources.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange that has
no name. All Queues that are declared will be bound to that default Exchange with their names
as routing keys. You will learn more about the default Exchange’s usage within Spring AMQP in
the section called “AmgpTemplate”.

Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like
the various Exchange classes, our implementation is intended to be an abstract representation of this
core AMQP type.

1.6.0.M1 Spring AMQP 7

Spring AMQP

public class Queue {
private final String nane;
private vol atile bool ean durabl e;
private vol atile bool ean excl usi ve;
private vol atile bool ean autoDel ete;

private volatile Map<String, Object> argunents;

/**
* The queue is durabl e, non-exclusive and non auto-del ete.
*
* @aram narme the nane of the queue.
*/
public Queue(String nanme) {
this(nane, true, false, false);

}

/'l Getters and Setters onmitted for brevity

Notice that the constructor takes the Queue name. Depending on the implementation, the admin
template may provide methods for generating a uniquely named Queue. Such Queues can be useful
as a "reply-to" address or other temporary situations. For that reason, the exclusive and autoDelete
properties of an auto-generated Queue would both be set to true.

Note

See the section on queues in the section called “Configuring the broker” for information about
declaring queues using namespace support, including queue arguments.

Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings
that connect Queues to Exchanges are critical for connecting those producers and consumers via
messaging. In Spring AMQP, we define a Bi ndi ng class to represent those connections. Let’s review
the basic options for binding Queues to Exchanges.

You can bind a Queue to a DirectExchange with a fixed routing key.

new Bi ndi ng(someQueue, soneDirect Exchange, "foo.bar")

You can bind a Queue to a TopicExchange with a routing pattern.

new Bi ndi ng(soneQueue, soneTopi cExchange, "foo.*")

You can bind a Queue to a FanoutExchange with no routing key.

new Bi ndi ng(soneQueue, soneFanout Exchange)

We also provide a Bi ndi ngBui | der to facilitate a "fluent API" style.

‘ Bi nding b = Bi ndi ngBui | der. bi nd(someQueue) . t o(soneTopi cExchange) . wi th("foo.*");

1.6.0.M1 Spring AMQP 8

Spring AMQP

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a static
import for the bind() method.

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it is
not an "active" component. However, as you will see later in the section called “Configuring the broker”,
Binding instances can be used by the AmgpAdni n class to actually trigger the binding actions on the
broker. Also, as you will see in that same section, the Binding instances can be defined using Spring’s
@ean-style within @onf i gur ati on classes. There is also a convenient base class which further
simplifies that approach for generating AMQP-related bean definitions and recognizes the Queues,
Exchanges, and Bindings so that they will all be declared on the AMQP broker upon application startup.

The AmgpTenpl at e is also defined within the core package. As one of the main components
involved in actual AMQP messaging, it is discussed in detail in its own section (see the section called
“AmgpTemplate”).

Connection and Resource Management

Introduction

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our "spring-
rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the Connect i onFact ory
interface. The responsibility of a ConnectionFactory implementation is to provide an
instance of or g. spri ngf r amewor k. angp. r abbi t. connecti on. Connect i on which is a wrapper
for com rabbitng. client.Connection. The only concrete implementation we provide is
Cachi ngConnect i onFact or y which, by default, establishes a single connection proxy that can be
shared by the application. Sharing of the connection is possible since the "unit of work" for messaging
with AMQP is actually a "channel" (in some ways, this is similar to the relationship between a Connection
and a Session in JMS). As you can imagine, the connection instance provides a cr eat eChannel

method. The Cachi ngConnect i onFact or y implementation supports caching of those channels, and
it maintains separate caches for channels based on whether they are transactional or not. When creating
an instance of Cachi ngConnect i onFact or y, the hostname can be provided via the constructor. The
username and password properties should be provided as well. If you would like to configure the size of
the channel cache (the default is 1), you could call the set Channel CacheSi ze() method here as well.

Starting with version 1.3, the Cachi ngConnect i onFact or y can be configured to cache connections
as well as just channels. In this case, each call to cr eat eConnecti on() creates a new connection
(or retrieves an idle one from the cache). Closing a connection returns it to the cache (if the cache
size has not been reached). Channels created on such connections are cached too. The use of
separate connections might be useful in some environments, such as consuming from an HA cluster,
in conjunction with a load balancer, to connect to different cluster members.

Important

When the cache mode is CONNECTI ON, automatic declaration of queues etc. (See the section
called “Automatic Declaration of Exchanges, Queues and Bindings”) is NOT supported.

1.6.0.M1 Spring AMQP 9

Spring AMQP

Also, at the time of writing, the r abbi t ng- cl i ent library creates a fixed thread pool for each
connection (5 threads) by default. When using a large number of connections, you should consider
setting a custom execut or on the Cachi ngConnecti onFact ory. Then, the same executor
will be used by all connections and its threads can be shared. The executor’s thread pool should
be unbounded, or set appropriately for the expected utilization (usually, at least one thread per
connection). If multiple channels are created on each connection then the pool size will affect the
concurrency, so a variable (or simple cached) thread pool executor would be most suitable.

It is important to understand that the cache size is (by default) not a limit, but merely the number of
channels that can be cached. With a cache size of, say, 10, any number of channels can actually be in
use. If more than 10 channels are being used and they are all returned to the cache, 10 will go in the
cache; the remainder will be physically closed.

Starting with version 1.4.2, the Cachi ngConnectionFactory has a property
channel Checkout Ti meout. When this property is greater than zero, the channel CacheSi ze
becomes a limit on the number of channels that can be created on a connection. If the limit is reached,
calling threads will block until a channel is available or this timeout is reached, in which case a
AngpTi meout Except i on is thrown.

Warning

Channels used within the framework (e.g. Rabbi t Tenpl at e) will be reliably returned to the
cache. If you create channels outside of the framework, (e.g. by accessing the connection(s)
directly and invoking cr eat eChannel ()), you must return them (by closing) reliably, perhaps in
afinal |y block, to avoid running out of channels.

Cachi ngConnecti onFactory connectionFactory = new Cachi ngConnecti onFact ory("sonmehost")
connecti onFact ory. set User nane(" guest ")
connecti onFact ory. set Passwor d("guest");

Connection connection = connectionFactory. createConnection();

When using XML, the configuration might look like this:

<bean id="connecti onFactory"
cl ass="org. springframewor k. angp. r abbi t. connecti on. Cachi ngConnecti onFact ory">
<constructor-arg val ue="sonehost"/ >
<property name="usernanme" val ue="guest"/>
<property name="password" val ue="guest"/>
</ bean>

Note

There is also a Si ngl eConnect i onFact or y implementation which is only available in the unit
test code of the framework. It is simpler than Cachi ngConnect i onFact ory since it does not
cache channels, but it is not intended for practical usage outside of simple tests due to its lack of
performance and resilience. If you find a need to implement your own Connect i onFact ory for
some reason, the Abst r act Connect i onFact ory base class may provide a nice starting point.

A Connect i onFact ory can be created quickly and conveniently using the rabbit namespace:

<rabbi t: connection-factory i d="connecti onFactory"/>

1.6.0.M1 Spring AMQP 10

Spring AMQP

In most cases this will be preferable since the framework can choose the best defaults for you. The
created instance will be a Cachi ngConnecti onFact ory. Keep in mind that the default cache size
for channels is 1. If you want more channels to be cached set a larger value via the channelCacheSize
property. In XML it would look like this:

<bean id="connecti onFactory"
cl ass="org. spri ngfranmewor k. angp. r abbi t. connecti on. Cachi ngConnecti onFact ory" >
<constructor-arg val ue="sonehost"/>
<property name="usernanme" val ue="guest"/>
<property name="password" val ue="guest"/>
<property name="channel CacheSi ze" val ue="25"/>
</ bean>

And with the namespace you can just add the channel-cache-size attribute:

<rabbi t: connecti on-factory
i d="connecti onFactory" channel - cache-si ze="25"/>

The default cache mode is CHANNEL, but you can configure it to cache connections instead,; in this
case, we use connect i on- cache- si ze:

<rabbi t: connecti on-factory
i d="connecti onFactory" cache-npbde="CONNECTI ON' connecti on-cache-si ze="25"/>

Host and port attributes can be provided using the namespace

<rabbi t: connection-factory
i d="connecti onFactory" host="sonehost" port="5672"/>

Alternatively, if running in a clustered environment, use the addresses attribute.

<rabbi t: connection-factory
i d="connectionFactory" addresses="host 1:5672, host2: 5672"/ >

Here’s an example with a custom thread factory that prefixes thread names with r abbi t ng- .

<rabbi t: connection-factory id="multiHost" virtual-host="/bar" addresses="host 1: 1234, host 2, host 3: 4567"
thread-factory="tf"
channel - cache-si ze="10" usernanme="user" passwor d="password" />

<bean id="tf" class="org.springframework.schedul i ng. concurrent. Custoni zabl eThr eadFact ory" >
<constructor-arg val ue="rabbitmg-" />
</ bean>

Configuring the Underlying Client Connection Factory

The Cachi ngConnecti onFact ory uses an instance of the Rabbit client Connecti onFactory; a
number of configuration properties are passed through (host, port, userName, password,
request edHeart Beat, connecti onTi neout for example) when setting the equivalent property
on the Cachi ngConnecti onFact ory. To set other properties (cl i ent Properti es for example),
define an instance of the rabbit factory and provide a reference to it using the appropriate constructor
of the Cachi ngConnect i onFact ory. When using the namespace as described above, provide a
reference to the configured factory in the connect i on-f act or y attribute. For convenience, a factory
bean is provided to assist in configuring the connection factory in a Spring application context, as
discussed in the next section.

<rabbi t: connection-factory
i d="connecti onFactory" connecti on-factory="rabbitConnecti onFactory"/>

1.6.0.M1 Spring AMQP 11

Spring AMQP

Configuring SSL

Starting with version 1.4, a convenient Rabbi t Connect i onFact or yBean is provided to enable
convenient configuration of SSL properties on the underlying client connection factory, using
dependency injection. Other setters simply delegate to the underlying factory. Previously you had to
configure the SSL options programmatically.

<rabbi t: connection-factory id="rabbitConnectionFactory"
connection-factory="client Connecti onFact ory"
host ="${ host }"
port="${port}"
virtual - host ="${vhost}"
user nane="${user nane}" passwor d="${password}" />

<bean id="client Connecti onFactory"
class="org. springframework. xd. dirt.integration.rabbit.RabbitConnectionFactoryBean">
<property name="useSSL" val ue="true" />
<property name="ssl PropertiesLocation" value="file:/secrets/rabbitSSL.properties"/>
</ bean>

Refer to the RabbitMQ Documentation for information about configuring SSL. Omit the keySt ore
and t r ust St or e configuration to connect over SSL without certificate validation. Key and trust store
configuration can be provided as follows:

The ssl Properti esLocat i on property is a Spring Resour ce pointing to a properties file containing
the following keys:

keyStore=fil e:/secret/keycert.pl2
trustStore=file:/secret/trustStore
keySt or e. passPhrase=secr et

trust St ore. passPhrase=secr et

The keySt or e andt r ust st or e are Spring Resour ces pointing to the stores. Typically this properties
file will be secured by the operating system with the application having read access.

Starting with Spring AMQP version 1.5, these properties can be set directly on the factory bean. If both
discrete properties and ssl Properti esLocat i on is provided, properties in the latter will override the
discrete values.

Routing Connection Factory

Starting with version 1.3, the Abstract Routi ngConnectionFactory has been introduced.
This provides a mechanism to configure mappings for several Connecti onFactories and
determine a target Connecti onFactory by some | ookupKey at runtime. Typically, the
implementation checks a thread-bound context. For convenience, Spring AMQP provides the
Si mpl eRout i ngConnect i onFact ory, which gets the current thread-bound | ookupKey from the
Si npl eResour ceHol der :

<bean id="connecti onFactory"
cl ass="org. springfranmewor k. angp. rabbi t. connecti on. Si npl eRout i ngConnecti onFactory" >
<property name="t ar get Connecti onFactories">
<n"ap>
<entry key="#{connectionFactoryl.virtual Host}" ref="connectionFactoryl"/>
<entry key="#{connectionFactory2.virtual Host}" ref="connectionFactory2"/>
</ map>
</ property>
</ bean>

<rabbit:tenplate id="tenplate" connection-factory="connectionFactory" />

1.6.0.M1 Spring AMQP 12

https://www.rabbitmq.com/ssl.html

Spring AMQP

public class MyService {

@\ut owi r ed
private RabbitTenpl ate rabbit Tenpl at e;

public void service(String vHost, String payl oad) {
Si npl eResour ceHol der. bi nd(rabbi t Tenpl at e. get Connecti onFactory(), vHost);
rabbi t Tenpl at e. conver t AndSend(payl oad) ;
Si mpl eResour ceHol der. unbi nd(rabbi t Tenpl at e. get Connecti onFactory());

}

It is important to unbind the resource after use. For more information see the JavaDocs of
Abst ract Routi ngConnect i onFactory.

Starting with version 1.4, the Rabbi t Tenpl at e supports the SpEL
sendConnecti onFact or ySel ect or Expr essi on and
recei veConnect i onFact or ySel ect or Expr essi on properties, which are evaluated on each
AMQP protocol interaction operation (send, sendAndRecei ve, recei ve or recei veAndRepl y),
resolving to a | ookupKey value for the provided Abstract Routi ngConnecti onFact ory. Bean
references, such as " @Host Resol ver. get VHost (#r oot)" can be used in the expression. For
send operations, the Message to be sent is the root evaluation object; for r ecei ve operations, the
gueueName is the root evaluation object.

The routing algorithm is: If the selector expression is nul | , or is evaluated to nul | , or the provided
Connecti onFactory isn't an instance of Abstract Routi ngConnecti onFact ory, everything
works as before, relying on the provided Connect i onFact ory implementation. The same occurs if
the evaluation result isn’t nul | , but there is no target Connect i onFact ory for that | ookupKey and
the Abstract Routi ngConnecti onFact ory is configured with | eni ent Fal | back = true. Of
course, in the case of an Abstract Routi ngConnecti onFact ory it does fallback to its r out i ng
implementation based on det er mi neCur r ent LookupKey() . But, if | eni ent Fal | back = fal se,
anl || egal St at eExcepti on is thrown.

The Namespace support also provides the send-connection-factory-selector-
expression and recei ve-connection-factory-sel ector-expressi on attributes on the
<r abbi t: t enpl at e> component.

Also starting with version 1.4, you can configure a routing connection factory in a
Si npl eMessageli st ener Cont ai ner. In that case, the list of queue names is used as the lookup
key. For example, if you configure the container with set QueueNanes("f oo", "bar"), the lookup
key will be "[f 00, bar]" (no spaces).

Queue Affinity and the LocalizedQueueConnectionFactory

When using HA queues in a cluster, for the best performance, it can be desirable to connect
to the physical broker where the master queue resides. While the Cachi ngConnecti onFact ory
can be configured with multiple broker addresses; this is to fail over and the client will attempt
to connect in order. The Local i zedQueueConnecti onFactory uses the REST API provided
by the admin plugin to determine which node the queue is mastered. It then creates (or
retrieves from a cache) a Cachi ngConnecti onFact ory that will connect to just that node. If
the connection fails, the new master node is determined and the consumer connects to it. The
Local i zedQueueConnect i onFact ory is configured with a default connection factory, in case the
physical location of the queue cannot be determined, in which case it will connect as normal to the
cluster.

1.6.0.M1 Spring AMQP 13

Spring AMQP

The Local i zedQueueConnectionFactory is a RoutingConnectionFactory and the
Si npl eMessageli st ener Cont ai ner uses the queue names as the lookup key as discussed in the
section called “Routing Connection Factory” above.

Note

For this reason (the wuse of the queue name for the lookup), the
Local i zedQueueConnect i onFact ory can only be used if the container is configured to listen
to a single queue.

Note

The RabbitMQ management plugin must be enabled on each node.

Caution

This connection factory is intended for long-lived connections, such as those used by the
Si npl eMessageli st ener Cont ai ner. It is not intended for short connection use, such as
with a Rabbi t Tenpl at e because of the overhead of invoking the REST API before making the
connection. Also, for publish operations, the queue is unknown, and the message is published to
all cluster members anyway, so the logic of looking up the node has little value.

Here is an example configuration, using Spring Boot’s RabbitProperties to configure the factories:

@\ut owi r ed
private RabbitProperties props;

private final String[] adm nUris = { "http://host1:15672", "http://host2:15672" };
private final String[] nodes = { "rabbit@ostl1", "rabbit@ost2" };

@Bean
public ConnectionFactory defaul t ConnectionFactory() {
Cachi ngConnecti onFactory cf = new Cachi ngConnecti onFactory();
cf.set Addresses(this.props.get Addresses());
cf.set Usernane(this. props. get Usernane());
cf.set Password(this.props. get Password());
cf.setVirtual Host (this. props.getVirtual Host());
return cf;

}

@Bean
public ConnectionFactory queueAffinityCH(
@ual i fier("defaultConnectionFactory") ConnectionFactory defaul tCF) {
return new Local i zedQueueConnecti onFact ory(def aul t CF,

StringUtils.conmaDel i mtedListToStringArray(this.props.getAddresses()),
this.adm nUris, this.nodes,
this. props.getVirtual Host (), this.props.getUsernane(), this.props.getPassword(),
false, null);

Notice that the first three parameters are arrays of addr esses, adm nUri s and nodes. These are
positional in that when a container attempts to connect to a queue, it determines on which node the
gueue is mastered and connects to the address in the same array position.

Publisher Confirms and Returns

Confirmed and returned messages are supported by setting the Cachi ngConnecti onFact ory's
publ i sher Confi rns and publ i sher Ret ur ns properties to 'true' respectively.

1.6.0.M1 Spring AMQP 14

Spring AMQP

When these options are set, Channel s created by the factory are wrapped in an
Publ i sher Cal | backChannel , which is used to facilitate the callbacks. When such a channel is
obtained, the client can register a Publ i sher Cal | backChannel . Li st ener with the Channel .
The Publ i sher Cal | backChannel implementation contains logic to route a confirm/return to the
appropriate listener. These features are explained further in the following sections.

Tip

For some more background information, please see the following blog post by the RabbitMQ team
titled Introducing Publisher Confirms.

Logging Channel Close Events

A mechanism to enable users to control logging levels was introduced in version 1.5.

The Cachi ngConnecti onFact ory uses a default strategy to log channel closures as follows:
» Normal channel closes (200 OK) are not logged.

 If a channel is closed due to a failed passive queue declaration, it is logged at debug level.

» If a channel is closed because the basi c. consune is refused due to an exclusive consumer
condition, it is logged at INFO level.

» All others are logged at ERROR level.

To modify this behavior, inject a custom Conditional ExceptionLogger into the
Cachi ngConnecti onFact ory inits cl oseExcepti onLogger property.

Also see the section called “Consumer Failure Events”.
AmgpTemplate

Introduction

As with many other high-level abstractions provided by the Spring Framework and related projects,
Spring AMQP provides a "template" that plays a central role. The interface that defines the main
operations is called AngpTenpl at e. Those operations cover the general behavior for sending and
receiving Messages. In other words, they are not unique to any implementation, hence the "AMQP" in
the name. On the other hand, there are implementations of that interface that are tied to implementations
of the AMQP protocol. Unlike JMS, which is an interface-level API itself, AMQP is a wire-level protocol.
The implementations of that protocol provide their own client libraries, so each implementation of
the template interface will depend on a particular client library. Currently, there is only a single
implementation: Rabbi t Tenpl at e. In the examples that follow, you will often see usage of an
"AmgpTemplate", but when you look at the configuration examples, or any code excerpts where
the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AmgpTenpl at e interface defines all of the basic operations for sending and
receiving Messages. We will explore Message sending and reception, respectively, in the two sections
that follow.

See also the section called “AsyncRabbitTemplate”.

1.6.0.M1 Spring AMQP 15

http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

Spring AMQP

Adding Retry Capabilities

Starting with version 1.3 you can now configure the Rabbi t Tenpl at e to use a RetryTenpl at e to
help with handling problems with broker connectivity. Refer to the spring-retry project for complete
information; the following is just one example that uses an exponential back off policy and the default
Si npl eRet r yPol i cy which will make three attempts before throwing the exception to the caller.

Using the XML namespace:

<rabbit:tenplate id="tenplate" connection-factory="connectionFactory" retry-tenplate="retryTenpl ate"/>

<bean id="retryTenpl ate" class="org.springframework.retry.support.RetryTenpl ate">
<property name="backOf f Policy">
<bean cl ass="org. springfranmework.retry. backoff.Exponenti al BackCf f Pol i cy" >
<property nanme="initiallnterval" val ue="500" />
<property name="multiplier" value="10.0" />
<property name="maxl nterval " val ue="10000" />
</ bean>
</ property>
</ bean>

Using @onfi gur ati on:

@Bean
publ i c AngpTenpl at e rabbit Tenpl ate();
Rabbi t Tenpl ate tenpl ate = new Rabbit Tenpl at e(connecti onFactory());
RetryTenpl ate retryTenpl ate = new RetryTenpl ate();
Exponent i al BackCf f Pol i cy backCf f Pol i cy = new Exponenti al BackOf f Pol i cy();
backOf f Pol i cy. setlnitiallnterval (500);
backOf f Pol i cy. setMul tiplier(10.0);
backOf f Pol i cy. set Max| nt erval (10000) ;
retryTenpl at e. set BackOf f Pol i cy(backOf f Pol i cy);
tenpl ate. set RetryTenpl ate(retryTenpl ate);
return tenpl ate;

Starting with version 1.4, in addition to the retryTenplate property, the
recoveryCal | back option is supported on the Rabbit Tenpl ate. It is used as a second
argument for the RetryTenpl ate. execute(RetryCall back<T, E> retryCall back,
RecoveryCal | back<T>r ecoveryCal | back).

Note

The RecoveryCal | back is somewhat limited in that the retry context only contains the
| ast Thr owabl e field. For more sophisticated use cases, you should use an external
Ret r yTenpl at e so that you can convey additional information to the Recover yCal | back via
the context’s attributes:

1.6.0.M1 Spring AMQP 16

https://github.com/spring-projects/spring-retry

Spring AMQP

retryTenpl at e. execut e(
new RetryCal | back<Obj ect, Exception>() {

@verride

public Object doWthRetry(RetryContext context) throws Exception {
context.setAttribute("nessage", nessage);
return rabbitTenpl at e. convert AndSend(exchange, routingKey, nessage);

}
}, new RecoveryCal | back<Cbj ect >() {

@verride
public Object recover(RetryContext context) throws Exception {
Obj ect nmessage = context.getAttribute("nmessage");
Throwabl e t = context.getLast Throwabl e();
/1 Do sonething with nessage
return null;

1)

In this case, you would not inject a Ret r yTenpl at e into the Rabbi t Tenpl at e.
Publisher Confirms and Returns
The Rabbi t Tenpl at e implementation of AngpTenpl at e supports Publisher Confirms and Returns.

For returned messages, the template’s nmandatory property must be set to true, or the
mandat or y- expr essi on must evaluate to true for a particular message. This feature requires
a Cachi ngConnecti onFact ory that has its publ i sher Ret ur ns property set to true (see the
section called “Publisher Confirms and Returns”). Returns are sent to to the client by it registering
a Rabbit Tenpl ate. ReturnCal | back by calling setReturnCall back(ReturnCall back
cal | back) . The callback must implement this method:

voi d returnedMessage(Message nessage, int replyCode, String replyText,
String exchange, String routingKey);

Only one Ret urnCal | back is supported by each Rabbi t Tenpl at e. See also the section called
“Reply Timeout”.

For Publisher Confirms (aka Publisher Acknowledgements), the template requires a
Cachi ngConnecti onFact ory that has its publ i sher Confi rnms property set to true. Confirms
are sent to to the client by it registering a Rabbit Tenpl at e. Confi rntCal | back by calling
set Confi rnCal | back(ConfirntCal | back cal | back) . The callback mustimplement this method:

void confirm(Correl ati onData correl ati onData, bool ean ack, String cause);

The Correl ati onDat a is an object supplied by the client when sending the original message. The
ack is true for an ack and false for a nack. For nack s, the cause may contain a reason for the nack,
if it is available when the nack is generated. An example is when sending a message to a non-existent
exchange. In that case the broker closes the channel; the reason for the closure is included in the cause.
cause was added in version 1.4.

Only one Conf i r nCal | back is supported by a Rabbi t Tenpl at e.

Note

When a rabbit template send operation completes, the channel is closed; this would preclude the
reception of confirms or returns in the case when the connection factory cache is full (when there
is space in the cache, the channel is not physically closed and the returns/confirms will proceed

1.6.0.M1 Spring AMQP 17

Spring AMQP

as normal). When the cache is full, the framework defers the close for up to 5 seconds, in order to
allow time for the confirms/returns to be received. When using confirms, the channel will be closed
when the last confirm is received. When using only returns, the channel will remain open for the
full 5 seconds. It is generally recommended to set the connection factory’s channel CacheSi ze
to a large enough value so that the channel on which a message is published is returned to the
cache instead of being closed.

Messaging integration

Starting with version 1.4 Rabbit Messagi ngTenpl ate, built on top of Rabbit Tenpl ate,
provides an integration with the Spring Framework messaging abstraction, i.e.
or g. spri ngframewor k. nessagi ng. Message. This allows you to create the message to send in
generic manner.

Sending messages

Introduction

When sending a Message, one can use any of the following methods:

voi d send(Message nmessage) throws AngpException;

voi d send(String routingKey, Message nessage) throws AmgpExcepti on;

voi d send(String exchange, String routingKey, Message nessage) throws AngpExcepti on;
We can begin our discussion with the last method listed above since it is actually the most explicit. It
allows an AMQP Exchange name to be provided at runtime along with a routing key. The last parameter

is the callback that is responsible for actual creating of the Message instance. An example of using this
method to send a Message might look this this:

angpTenpl at e. send(" mar ket Dat a. t opi ¢c", "quotes. nasdaq. FOO',
new Message("12.34".getBytes(), someProperties));

The "exchange" property can be set on the template itself if you plan to use that template instance to
send to the same exchange most or all of the time. In such cases, the second method listed above may
be used instead. The following example is functionally equivalent to the previous one:

angpTenpl at e. set Exchange(" nar ket Dat a. t opi ¢");
angpTenpl at e. send(" quot es. nasdaq. FOO', new Message("12.34". get Bytes(), soneProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting
only the Message may be used:

anmgpTenpl at e. set Exchange(" mar ket Data. topi c");
angpTenpl at e. set Rout i ngKey(" quot es. nasdaqg. FOO') ;
amgpTenpl at e. send(new Message("12. 34". get Bytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method
parameters will always override the template’s default values. In fact, even if you do not explicitly set
those properties on the template, there are always default values in place. In both cases, the default is
an empty String, but that is actually a sensible default. As far as the routing key is concerned, it's not
always necessary in the first place (e.g. a Fanout Exchange). Furthermore, a Queue may be bound to
an Exchange with an empty String. Those are both legitimate scenarios for reliance on the default empty
String value for the routing key property of the template. As far as the Exchange name is concerned, the
empty String is quite commonly used because the AMQP specification defines the "default Exchange”

1.6.0.M1 Spring AMQP 18

Spring AMQP

as having no name. Since all Queues are automatically bound to that default Exchange (which is a
Direct Exchange) using their name as the binding value, that second method above can be used for
simple point-to-point Messaging to any Queue through the default Exchange. Simply provide the queue
name as the "routingKey" - either by providing the method parameter at runtime:

Rabbi t Tenpl ate tenpl ate = new RabbitTenplate(); // using default no-nanme Exchange
tenpl at e. send(" queue. hel | oWorl d", new Message("Hello Worl d". getBytes(), someProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to a single
Queue, the following is perfectly reasonable:

Rabbi t Tenpl ate tenpl ate = new RabbitTenplate(); // using default no-name Exchange
tenpl at e. set Routi ngKey("queue. hel loWorld"); // but we'll always send to this Queue
tenpl ate. send(new Message("Hel |l o Worl d". getBytes(), someProperties));

Message Builder API

Starting with version 1.3, a message builder API is provided by the MessageBuil der and
MessagePr operti esBui | der; they provides a convenient "fluent” means of creating a message or
message properties:

Message nessage = MessageBuil der. wi t hBody("foo". get Bytes())
. set Cont ent Type(MessageProperti es. CONTENT_TYPE_TEXT_PLAI N)
. set Messagel d("123")

. set Header ("bar", "baz")
.bui 1 d();

or

MessageProperties props = MessagePropertiesBuil der.new nstance()
. set Cont ent Type(MessageProperti es. CONTENT_TYPE_TEXT_PLAI N)
. set Messagel d("123")
. set Header ("bar", "baz")
.build();

Message nessage = MessageBui |l der. wit hBody("foo". get Bytes())
.andProperties(props)
.build();

Each of the properties defined on the MessageProperies can be set. Other methods include
set Header (String key, String val ue),renoveHeader (String key),renoveHeaders(),
and copyProperties(MessageProperties properties). Each property setting method has
a set*| f Absent () variant. In the cases where a default initial value exists, the method is named
set*| f Absent OrDefaul t ().

Five static methods are provided to create an initial message builder:

public static MessageBuilder withBody(byte[] body) O

public static MessageBuil der withC onedBody(byte[] body) O

public static MessageBuil der withBody(byte[] body, int from int to) O
public static MessageBuil der from\Vessage(Message nessage) 0O

public static MessageBuilder fronC onedMessage(Message nessage) 0O

0 The message created by the builder will have a body that is a direct reference to the argument.
0 The message created by the builder will have a body that is a new array containing a copy of bytes
in the argument.

1.6.0.M1 Spring AMQP 19

http://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/MessageProperties.html

Spring AMQP

0 The message created by the builder will have a body that is a new array containing the range of
bytes from the argument. See Arr ays. copyOf Range() for more details.

0 The message created by the builder will have a body that is a direct reference to the body of the
argument. The argument’s properties are copied to a new MessagePr operti es object.

0 The message created by the builder will have a body that is a new array containing a copy of the
argument’s body. The argument’s properties are copied to a new MessagePr opert i es object.

public static MessagePropertiesBuilder new nstance() O
public static MessagePropertiesBuilder fronProperties(MessageProperties properties) O

public static MessagePropertiesBuil der fronCl onedProperties(MessageProperties properties) O

O A new message properties object is initialized with default values.
O The builder is initialized with, and bui | d() will return, the provided properties object.,
0 The argument’s properties are copied to a new MessagePr opert i es object.

With the Rabbi t Tenpl at e implementation of AmgpTenpl at e, each of the send() methods has an
overloaded version that takes an additional Cor r el ati onDat a object. When publisher confirms are
enabled, this object is returned in the callback described in the section called “AmgpTemplate”. This
allows the sender to correlate a confirm (ack or nack) with the sent message.

Publisher Returns

When the template’s mandat ory property is true returned messages are provided by the callback
described in the section called “AmgpTemplate”.

Starting with version 1.4 the Rabbi t Tenpl at e supports the SpEL nmandat or yExpr essi on property,
which is evaluated against each request message, as the root evaluation object, resolving to a bool ean
value. Bean references, such as " @ryBean. i sMandat or y(#r oot)" can be used in the expression.

Publisher returns can also be used internally by the Rabbi t Tenpl at e in send and receive operations.
See the section called “Reply Timeout” for more information.

Batching

Starting with version 1.4.2, the Bat chi ngRabbi t Tenpl at e has been introduced. This is a subclass
of Rabbi t Tenpl at e with an overridden send method that batches messages according to the
Bat chi ngSt r at egy; only when a batch is complete is the message sent to RabbitMQ.

public interface BatchingStrategy {
MessageBat ch addToBat ch(String exchange, String routingKey, Message nessage);
Dat e next Rel ease();

Col | ecti on<MessageBat ch> rel easeBat ches();

Caution

Batched data is held in memory; unsent messages can be lost in the event of a system failure.

A Si npl eBat chi ngSt r at egy is provided. It supports sending messages to a single exchange/routing
key. It has properties:

1.6.0.M1 Spring AMQP 20

Spring AMQP

» bat chSi ze - the number of messages in a batch before it is sent

* bufferLimt -the maximum size of the batched message; this will preempt the bat chSi ze if
exceeded, and cause a partial batch to be sent

e tineout -atime after which a partial batch will be sent when there is no new activity adding messages
to the batch

The Si npl eBat chi ngSt r at egy formats the batch by preceding each embedded message with a 4
byte binary length. This is communicated to the receiving system by setting the spr i ngBat chFor mat
message property to | engt hHeader 4.

Important

Batched messages are automatically de-batched by listener containers (using the
spri ngBat chFor nat message header). Rejecting any message from a batch will cause the
entire batch to be rejected.

Receiving messages
Introduction

Message reception is always a little more complicated than sending. There are two ways to receive a
Message. The simpler option is to poll for a single Message at a time with a polling method call. The
more complicated yet more common approach is to register a listener that will receive Messages on-
demand, asynchronously. We will look at an example of each approach in the next two sub-sections.

Polling Consumer

The AngpTenpl at e itself can be used for polled Message reception. By default, if no message is
available, nul | is returned immediately; there is no blocking. Starting with version 1.5, you can now set
areceiveTi meout , in milliseconds, and the receive methods will block for up to that long, waiting for
a message. A value less than zero means block indefinitely (or at least until the connection to the broker
is lost). Version 1.6 introduced variants of the r ecei ve methods allowing the timeout to be passed in
on each call.

Caution

Since the receive operation creates a new Queuei ngConsuner for each message, this
technique is not really appropriate for high-volume environments; consider using an asynchronous
consumer, or ar ecei veTi neout of zero for those use cases.

There are four simple receive methods available. As with the Exchange on the sending side, there is
a method that requires a default queue property having been set directly on the template itself, and
there is a method that accepts a queue parameter at runtime. Version 1.6 introduced variants to accept
ti meout M I 1i s tooverride recei veTi meout on a per-request basis.

Message receive() throws AmgpException;
Message receive(String queueNane) throws AngpExcepti on;
Message receive(long tineoutMIlis) throws AngpExcepti on;

Message receive(String queueNane, long tinmeoutMIlis) throws AmgpException;

1.6.0.M1 Spring AMQP 21

Spring AMQP

Just like in the case of sending messages, the AngpTenpl at e has some convenience methods for
receiving POJOs instead of Message instances, and implementations will provide a way to customize
the MessageConvert er used to create the Cbj ect returned:

Obj ect recei veAndConvert () throws AmgpException;
Obj ect recei veAndConvert (String queueNane) throws AngpExcepti on;
Message recei veAndConvert(long timeoutMI11is) throws AngpException;

Message recei veAndConvert (String queueNanme, |long tinmeoutMIlis) throws AngpException;

Similar to sendAndRecei ve methods, beginning with version 1.3, the AngpTenpl at e has several
convenience r ecei veAndRepl y methods for synchronously receiving, processing and replying to
messages:

<R, S> bool ean recei veAndRepl y(Recei veAndRepl yCal | back<R, S> cal | back)
throws AmgpExcepti on;

<R, S> bool ean recei veAndRepl y(String queueNane, Recei veAndRepl yCal | back<R, S> cal | back)
t hrows AngpExcepti on;

<R, S> bool ean recei veAndRepl y(Recei veAndRepl yCal | back<R, S> cal | back,
String repl yExchange, String repl yRoutingKey) throws AngpExcepti on;

<R, S> bool ean recei veAndRepl y(String queueNane, Recei veAndRepl yCal | back<R, S> cal |l back,
String repl yExchange, String replyRoutingKey) throws AngpException;

<R, S> bool ean recei veAndRepl y(Recei veAndRepl yCal | back<R, S> cal | back,
Repl yToAddr essCal | back<S> repl yToAddr essCal | back) throws AmgpExcepti on;

<R, S> bool ean recei veAndRepl y(String queueNane, Recei veAndRepl yCal | back<R, S> cal | back,
Repl yToAddr essCal | back<S> repl yToAddr essCal | back) throws AmgpExcepti on;

The AngpTenpl at e implementation takes care of the receive and reply phases. In most cases
you should provide only an implementation of Recei veAndRepl yCal | back to perform some
business logic for the received message and build a reply object or message, if needed. Note, a
Recei veAndRepl yCal | back may return nul | . In this case no reply is sentand r ecei veAndRepl y
works like the r ecei ve method. This allows the same queue to be used for a mixture of messages,
some of which may not need a reply.

Automatic message (request and reply) conversion is applied only if the provided callback is not
an instance of Recei veAndRepl yMessageCal | back - which provides a raw message exchange
contract.

The Repl yToAddr essCal | back is useful for cases requiring custom logic to determine the r epl yTo
address at runtime against the received message and reply from the Recei veAndRepl yCal | back.
By default, r epl yTo information in the request message is used to route the reply.

The following is an example of POJO-based receive and reply...

bool ean received =
this.tenpl ate.recei veAndRepl y(ROUTE, new Recei veAndRepl yCal | back<Order, |nvoice>() {

public Invoice handl e(Order order) {
return processOrder(order);
}
)
if (received) {
log.info("We received an order!");

}

1.6.0.M1 Spring AMQP 22

Spring AMQP

Asynchronous Consumer

Important

Spring AMQP also supports annotated-listener endpoints through the use of the
@Rabbi t Li st ener annotation and provides an open infrastructure to register endpoints
programmatically. This is by far the most convenient way to setup an asynchronous consumer,
see the section called “Annotation-driven Listener Endpoints” for more details.

Message Listener

For asynchronous Message reception, a dedicated component (not the AngpTenpl at e) is involved.
That component is a container for a Message consuming callback. We will look at the container and its
properties in just a moment, but first we should look at the callback since that is where your application
code will be integrated with the messaging system. There are a few options for the callback starting with
an implementation of the MessageLi st ener interface:

public interface Messageli stener {
voi d onMessage(Message nessage);

}

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use
the Channel Awar eMessageli st ener . It looks similar but with an extra parameter:

public interface Channel AnareMessageli stener {
voi d onMessage(Message nessage, Channel channel) throws Excepti on;

}
MessagelistenerAdapter

If you prefer to maintain a stricter separation between your application logic and the messaging API,
you can rely upon an adapter implementation that is provided by the framework. This is often referred
to as "Message-driven POJO" support. When using the adapter, you only need to provide a reference
to the instance that the adapter itself should invoke.

MessagelLi st ener Adapter |istener = new Messageli st ener Adapt er (sonePoj o) ;
i stener. set Defaul tListenerMethod("nmyMthod");

You can subclass the adapter and provide an implementation of get Li st ener Met hodNane() to
dynamically select different methods based on the message. This method has two parameters, the
ori gi nal Message and ext r act edMessage, the latter being the result of any conversion. By default,
a Si npl eMessageConvert er is configured; see the section called “SimpleMessageConverter” for
more information and information about other converters available.

Starting with version 1.4.2, the original message has properties consuner Queue and consuner Tag
which can be used to determine which queue a message was received from.

Starting with version 1.5, you can configure a map of consumer queue/tag to method name, to
dynamically select the method to call. If no entry is in the map, we fall back to the default listener method.

Container

Now that you’ve seen the various options for the Message-listening callback, we can turn our attention
to the container. Basically, the container handles the "active" responsibilities so that the listener
callback can remain passive. The container is an example of a "lifecycle" component. It provides

1.6.0.M1 Spring AMQP 23

Spring AMQP

methods for starting and stopping. When configuring the container, you are essentially bridging the
gap between an AMQP Queue and the Messageli st ener instance. You must provide a reference
to the Connecti onFactory and the queue name or Queue instance(s) from which that listener
should consume Messages. Here is the most basic example using the default implementation,
Si nmpl eMessageli st ener Cont ai ner :

Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(rabbi t Connecti onFactory);

cont ai ner. set QueueNanes("sone. queue");

cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (sonePoj 0)) ;

As an "active" component, it's most common to create the listener container with a bean definition so
that it can simply run in the background. This can be done via XML:

<rabbit:|istener-container connection-factory="rabbitConnectionFactory">
<rabbit:|istener queues="some.queue" ref="somePoj 0" method="handl e"/>
</rabbit:|istener-container>

Or, you may prefer to use the @Configuration style which will look very similar to the actual code snippet
above:

@onfiguration
public class Exanpl eAmgpConfiguration {

@Bean
publ i c Si npl eMessageli st ener Cont ai ner nessageli st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner();
cont ai ner. set Connect i onFact or y(rabbi t Connecti onFactory());
cont ai ner. set QueueNane("sone. queue") ;
cont ai ner. set Messageli st ener (exanpl eLi stener());
return container;

}

@Bean
publ i c Connecti onFactory rabbitConnectionFactory() {
Cachi ngConnecti onFactory connectionFactory =
new Cachi ngConnecti onFactory("| ocal host");
connecti onFact ory. set User name(" guest ") ;
connecti onFactory. set Password("guest");
return connectionFactory;

}

@Bean
publ i c Messageli stener exanpl eListener() {
return new Messagelistener() {
public void onMessage(Message nessage) {
Systemout.println("received: " + nessage);
}
ba

Starting with RabbitMQ Version 3.2, the broker now supports consumer priority (see Using Consumer
Priorities with RabbitMQ). This is enabled by setting the x- pri ori t y argument on the consumer. The
Si npl eMessageli st ener Cont ai ner now supports setting consumer arguments:

cont ai ner . set Consuner Ar gunent s(Col | ecti ons.
<String, Object> singletonMap("x-priority", Integer.valueCO (10)));

For convenience, the namespace provides the pri ori ty attribute on the | i st ener element:

<rabbit:|istener-container connection-factory="rabbitConnectionFactory">
<rabbit:|istener queues="sone.queue" ref="somePojo" method="handle" priority="10" />
</rabbit:|istener-container>

1.6.0.M1 Spring AMQP 24

http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/

Spring AMQP

Starting with version 1.3 the queue(s) on which the container is listening can be modified at runtime;
see the section called “Listener Container Queues”.

auto-delete Queues

When a container is configured to listen to aut o- del et e queue(s), or the queue has an x- expi r es
option or the Time-To-Live policy is configured on the Broker, the queue is removed by the broker when
the container is stopped (last consumer is cancelled). Before version 1.3, the container could not be
restarted because the queue was missing; the Rabbi t Admi n only automatically redeclares queues etc,
when the connection is closed/opens, which does not happen when the container is stopped/started.

Starting with version 1.3, the container will now use a Rabbi t Adni n to redeclare any missing queues
during startup.

You can also use conditional declaration (the section called “Conditional Declaration”) together with an
aut o- startup="fal se" admin to defer queue declaration until the container is started.

<rabbi t: queue id="ot her Anon" decl ared- by="cont ai ner Addm n" />

<rabbi t: di rect-exchange name="ot her Exchange" auto-del ete="true" decl ared-by="cont ai ner Adm n" >
<rabbi t : bi ndi ngs>
<rabbi t: bi ndi ng queue="ot her Anon" key="ot her Anon" />
</ rabbi t: bi ndi ngs>
</rabbit:direct-exchange>

<rabbit:|istener-container id="container2" auto-startup="false">
<rabbit:listener id="listener2" ref="foo" queues="otherAnon" admi n="contai ner Adm n" />
</rabbit:|istener-container>

<rabbi t:adm n id="contai ner Adm n" connecti on-factory="rabbit Connecti onFactory"
aut o-startup="fal se" />

In this case, the queue and exchange are declared by cont ai ner Adm n which has aut o-
startup="fal se" so the elements are not declared during context initialization. Also, the container
is not started for the same reason. When the container is later started, it uses it's reference to
cont ai ner Admi n to declare the elements.

Batched Messages

Batched messages are automatically de-batched by listener containers (using the
spri ngBat chFor mat message header). Rejecting any message from a batch will cause the entire
batch to be rejected. See the section called “Batching” for more information about batching.

Consumer Failure Events

Starting with version 1.5, the Sinpl eMessageli stener Cont ai ner publishes application
events whenever a listener (consumer) experiences a failure of some kind. The event
Li st ener Cont ai ner Consurmer Fai | edEvent has the following properties:

e cont ai ner - the listener container where the consumer experienced the problem.

e reason - a textual reason for the failure.

fat al - a boolean indicating whether the failure was fatal; with non-fatal exceptions, the container
will attempt to restart the consumer, according to the ret ryl nt er val .

t hr owabl e - the Thr owabl e that was caught.

1.6.0.M1 Spring AMQP 25

http://www.rabbitmq.com/ttl.html

Spring AMQP

These events can be consumed by implementing
Appl i cati onLi st ener <Li st ener Cont ai ner Consuner Fai | edEvent >.

Note

System-wide events (such as connection failures) will be published by all consumers when
concurrent Consuner s is greater than 1.

If a consumer fails because one if its queues is being used exclusively, by default, as well
as publishing the event, a WARN log is issued. To change this logging behavior, provide
a custom Conditional Excepti onLogger in the Sinpl eMessageli stenerContainer 's
excl usi veConsuner Except i onLogger property. See also the section called “Logging Channel
Close Events”.

Fatal errors are always logged at ERROR level; this it not modifiable.
Consumer Tags

Starting with version 1.4.5, you can now provide a strategy to generate consumer tags. By default, the
consumer tag will be generated by the broker.

public interface ConsunerTagStrategy {
String createConsuner Tag(String queue);

}

The queue is made available so it can (optionally) be used in the tag.
See the section called “Message Listener Container Configuration”.
Annotation-driven Listener Endpoints

Introduction

Starting with version 1.4, the easiest way to receive a message asynchronously is to use the annotated
listener endpoint infrastructure. In a nutshell, it allows you to expose a method of a managed bean as
a Rabbit listener endpoint.

@Conponent
public class MyService {

@Rabbi t Li st ener (queues = "nyQueue")
public void processOrder(String data) {

}
}

The idea of the example above is that, whenever a message is available on the
org. spri ngframewor k. angp. cor e. Queue "myQueue”, the processOrder method is invoked
accordingly (in this case, with the payload of the message).

The annotated endpoint infrastructure creates a message listener container behind the scenes for each
annotated method, using a Rabbi t Li st ener Cont ai ner Fact ory.

In the example above, nyQueue must already exist and be bound to some exchange. Starting with
version 1.5.0, the queue can be declared and bound automatically, as long as a Rabbi t Admi n exists
in the application context.

1.6.0.M1 Spring AMQP 26

Spring AMQP

@Conponent
public class MyService {

@Rabbi t Li st ener (bi ndi ngs = @ueueBi ndi ng(
val ue = @ueue(value = "nyQueue", durable = "true"),
exchange = @xchange(val ue = "auto. exch"),
key = "orderRouti ngKey")

)
public void processOrder(String data) {

}

@Rabbi t Li st ener (bi ndi ngs = @ueueBi ndi ng(
val ue = @ueue(),
exchange = @xchange(val ue = "auto. exch"),
key = "invoi ceRouti ngKey")

)

public void processlnvoi ce(String data) {

}

In the first example, a queue nyQueue will be declared automatically (durable) together with the
exchange, if needed, and bound to the exchange with the routing key. In the second example, an
anonymous (exclusive, auto-delete) queue will be declared and bound. Multiple QueueBi ndi ng entries
can be provided, allowing the listener to listen to multiple queues.

Enable listener endpoint annotations

To enable support for @Rabbi tLi stener annotations add @nabl eRabbit to one of your
@confi gur ati on classes.

@onfi guration
@:nabl eRabbi t
public class AppConfig {

@Bean
publ i c Si npl eRabbi t Li st ener Cont ai ner Fact ory rabbi tLi stener Cont ai ner Factory() {
Si npl eRabbi t Li st ener Cont ai ner Factory factory = new Si npl eRabbi t Li st ener Cont ai ner Factory();
factory. set Connect i onFact or y(connecti onFactory());
factory. set Concurrent Consuner s(3);
factory. set MaxConcur r ent Consuner s(10) ;
return factory;

By default, the infrastructure looks for a bean named r abbi t Li st ener Cont ai ner Fact ory as the
source for the factory to use to create message listener containers. In this case, and ignoring the
RabbitMQ infrastructure setup, the pr ocessOr der method can be invoked with a core poll size of 3
threads and a maximum pool size of 10 threads.

Itis possible to customize the listener container factory to use per annotation or an explicit default can be
configured by implementing the Rabbi t Li st ener Conf i gur er interface. The default is only required
if at least one endpoint is registered without a specific container factory. See the javadoc for full details
and examples.

If you prefer XML configuration, use the <r abbi t : annot ati on- dri ven> element.

1.6.0.M1 Spring AMQP 27

Spring AMQP

<rabbi t: annot ati on-driven/>

<bean id="rabbitListenerContai ner Fact ory"
cl ass="org. spri ngframewor k. angp. rabbi t. confi g. Si npl eRabbi t Li st ener Cont ai ner Factory" >
<property nanme="connecti onFactory" ref="connecti onFactory"/>
<property name="concurrent Consuners" val ue="3"/>
<property name="maxConcurrent Consuners" val ue="10"/>
</ bean>

Message Conversion for Annotated Methods

There are two conversion steps in the pipeline before invoking the listener. The first uses a
MessageConvert er to convert the incoming Spring AMQP Message to a spring-messaging Message.
When the target method is invoked, the message payload is converted, if necessary, to the method
parameter type.

The default MessageConver t er for the first step is a Spring AMQP Si npl eMessageConvert er that
handles conversionto St ri ng and j ava. i 0. Seri al i zabl e objects; all others remainasabyte[].
In the following discussion, we call this the message converter.

The default converter for the second step is a Generi cMessageConverter which delegates to
a conversion service (an instance of Def aul t For matt i ngConver si onSer vi ce). In the following
discussion, we call this the method argument converter.

To change the message converter, simply add it as a property to the container factory bean:

@Bean
publ i ¢ Si npl eRabbi t Li st ener Cont ai ner Fact ory rabbi tLi stener Cont ai ner Factory() {
Si npl eRabbi t Li st ener Cont ai ner Factory factory = new Si npl eRabbi t Li st ener Cont ai ner Factory();

factory. set MessageConvert er (new Jackson2JsonMessageConverter());

return factory;

This configures a Jackson2 converter that expects header information to be present to guide the
conversion.

You can also consider a Cont ent TypeDel egati ngMessageConverter which can handle
conversion of different content types.

In most cases, it is not necessary to customize the method argument converter unless, for example,
you want to use a custom Conver si onSer vi ce.

If you wish to customize the method argument converter, you can do so as follows:

1.6.0.M1 Spring AMQP 28

Spring AMQP

@onfi guration
@Enabl eRabbi t
public class AppConfig inplenents RabbitListenerConfigurer {

@Bean
publ i ¢ Def aul t MessageHand| er Met hodFact ory myHandl er Met hodFactory() {
Def aul t MessageHand| er Met hodFact ory factory = new Def aul t MessageHand| er Met hodFact ory() ;
factory. set MessageConverter (new Generi cMessageConverter (myConversi onService()));
return factory;

}

@Bean

publ i c ConversionService nmyConversionService() {
Def aul t Conver si onServi ce conv = new Def aul t Conver si onServi ce();
conv. addConvert er (mySpeci al Converter());
return conv;

}

@verride

public voi d configureRabbitListeners(RabbitListener Endpoi nt Regi strar registrar) {
regi strar. set MessageHandl| er Met hodFact or y(myHandl er Met hodFactory());

}

Important

for multi-method listeners (see the section called “Multi-Method Listeners”), the method selection
is based on the payload of the message after the message conversion; the method argument
converter is only called after the method has been selected.

Programmatic Endpoint Registration

Rabbi t Li st ener Endpoi nt provides a model of a Rabbit endpoint and is responsible for configuring
the container for that model. The infrastructure allows you to configure endpoints programmatically in
addition to the ones that are detected by the Rabbi t Li st ener annotation.

@onfiguration
@nabl eRabbi t
public class AppConfig inplenents RabbitListenerConfigurer {

@verride
public voi d configureRabbitListeners(RabbitListener Endpoi nt Regi strar registrar) {
Si npl eRabbi t Li st ener Endpoi nt endpoi nt = new Si npl eRabbi t Li st ener Endpoi nt () ;
endpoi nt . set QueueNanes(" anot her Queue");
endpoi nt. set Messageli st ener (nmessage -> {
/'l processing
b

regi strar.regi st er Endpoi nt (endpoi nt);

In the example above, we used Si npl eRabbi t Li st ener Endpoi nt which provides the actual
Messageli st ener to invoke but you could just as well build your own endpoint variant describing a
custom invocation mechanism.

It should be noted that you could just as well skip the use of @Rabbi t Li st ener altogether and only
register your endpoints programmatically through RabbitListenerConfigurer.

1.6.0.M1 Spring AMQP 29

Spring AMQP

Annotated Endpoint Method Signature

So far, we have been injecting a simple String in our endpoint but it can actually have a very flexible
method signature. Let's rewrite it to inject the Or der with a custom header:

@onponent
public class MyService {

@Rabbi t Li st ener (queues = "nyQueue")
public void processOrder(Order order, @dfeader("order_type") String orderType) {

}

These are the main elements you can inject in listener endpoints:
The raw or g. spri ngf r anewor k. angp. cor e. Message.
The com r abbi t ng. cl i ent. Channel on which the message was received

The org. springframewor k. nessagi ng. Message representing the incoming AMQP message.
Note that this message holds both the custom and the standard headers (as defined by AngpHeader s).

@1eader -annotated method arguments to extract a specific header value, including standard AMQP
headers.

@eader s-annotated argument that must also be assignable to j ava. uti | . Map for getting access
to all headers.

A non-annotated element that is not one of the supported types (i.e. Message and Channel) is
considered to be the payload. You can make that explicit by annotating the parameter with @ay| oad.
You can also turn on validation by adding an extra @/al i d.

The ability to inject Spring’s Message abstraction is particularly useful to benefit from all the information
stored in the transport-specific message without relying on transport-specific API.

@Rabbi t Li st ener (queues = "nyQueue")
public void processOrder(Message<Order> order) { ...

}

Handling of method arguments is provided by Def aul t MessageHand| er Met hodFact or y which can
be further customized to support additional method arguments. The conversion and validation support
can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @/al i d and configure the necessary validator as follows:

1.6.0.M1 Spring AMQP 30

Spring AMQP

@onfi guration
@:nabl eRabbi t
public class AppConfig inplenents RabbitListenerConfigurer {

@verride
public voi d configureRabbitListeners(RabbitListener Endpoi nt Regi strar registrar) {
regi strar. set MessageHand| er Met hodFact or y(myHandl er Met hodFactory());

}

@Bean

publ i ¢ Def aul t MessageHandl er Met hodFact ory nyHandl er Met hodFactory() {
Def aul t MessageHandl er Met hodFactory factory = new Def aul t MessageHandl er Met hodFact ory() ;
factory. setValidator(nyValidator());
return factory;

Listening to Multiple Queues

When using the queues attribute, you can specify that the associated container can listen to multiple
gueues. You can use a @eader annotation to make the queue name from which a message was
received available to the POJO method:

@Conponent
public class MyService {

@Rabbi t Li st ener (queues = { "queuel", "queue2" })
public void processOrder(String data, @deader(AngpHeaders. CONSUVER QUEUE) String queue) {

}

Starting with version 1.5, you can externalize the queue names using property placeholders, and SpEL:

@Conponent
public class MyService {

@Rrabbi t Li stener (queues = "#{' ${property.w th. comma. del i mi t ed. queue. nanmes}' .split(',"')}")
public void processOrder(String data, @leader(AngpHeaders. CONSUVER QUEUE) String queue) {

}

Prior to version 1.5, only a single queue could be specified this way; each queue needed a separate
property.

Reply Management

The existing support in Messageli st ener Adapt er already allows your method to have a non-void
return type. When that's the case, the result of the invocation is encapsulated in a message sent either in
the address specified in the Repl yToAddr ess header of the original message or in the default address
configured on the listener. That default address can now be set using the @endTo annotation of the
messaging abstraction.

Assuming our pr ocessOr der method should now return an Or der St at us, it is possible to write it as
follow to automatically send a reply:

1.6.0.M1 Spring AMQP 31

Spring AMQP

@Rabbi t Li st ener (destination = "nmyQueue")
@endTo(" st at us")
public OrderStatus processOrder (O der order) {
/'l order processing
return status;

If you need to set additional headers in a transport-independent manner, you could return a Message
instead, something like:

@Rabbi t Li st ener (destination = "nyQueue")
@endTo(" st at us")
publ ic Message<Order St atus> processOrder (Order order) {
/'l order processing
return MessageBui |l der
. Wi t hPayl oad(st at us)
. set Header ("code", 1234)
Lbuild();

The @endTo value is assumed as a reply exchange and r out i ngKey pair following the pattern
exchange/ r out i ngKey, where one of those parts can be omitted. The valid values are:

f oo/ bar - the replyTo exchange and routingKey.

f oo/ -the replyTo exchange and default (empty) routingKey.

bar or/ bar - the replyTo routingKey and default (empty) exchange.
/ or empty - the replyTo default exchange and default routingKey.

Also @endTo can be used without a val ue attribute. This case is equal to an empty sendTo pattern.
@sendTo is only used if the inbound message does not have ar epl yToAddr ess property.

Starting with version 1.5, the @endTo value can be a SpEL Expression, for example...

@Rabbi t Li st ener (queues = "test.sendTo. spel ")
@endTo(" #{spel Repl yTo}")
public String capitalizeWthSendToSpel (String foo) {
return foo.toUpperCase();
}
@Bean
public String spel Repl yTo() {
return "test.sendTo.reply.spel";

}

The expression must evaluate to a St ri ng, which can be a simple queue name (sent to the default
exchange) or with the form exchange/ r out i ngKey as discussed above. The expression is evaluated
once, during context initialization. For dynamic reply routing, the message sender should include a
repl y_t o message property.

Multi-Method Listeners

Starting with version 1.5.0, the @Rabbi t Li st ener annotation can now be specified at the class level.
Together with the new @Rabbi t Handl er annotation, this allows a single listener to invoke different
methods, based on the payload type of the incoming message. This is best described using an example:

1.6.0.M1 Spring AMQP 32

Spring AMQP

@Rabbi t Li stener (id="nulti", queues = "soneQueue")
public class MiltilListenerBean {

@Rabbi t Handl er

@endTo("ny. reply. queue")
public String bar(Bar bar) {

}

@Rabbi t Handl er
public String baz(Baz baz) {

}

@rabbi t Handl er
public String qux(@ieader("angp_recei vedRoutingKey”) String rk, @ayload Qux qux) {

}

In this case, the individual @Rabbi t Handl er methods are invoked if the converted payload is a Bar ,
Baz or Qux. It is important to understand that the system must be able to identify a unique method
based on the payload type. The type is checked for assignability to a single parameter that has no
annotations, or is annotated with the @ayl oad annotation. Notice that the same method signatures
apply as discussed in the method-level @Rabbi t Li st ener described above.

Notice that the @endTo must be specified on each method (if needed); it is not supported at the class
level.

@Repeatable @RabbitListener

Starting with version 1.6, the @Rabbi t Li st ener annotation is marked with @Repeat abl e. This means
that the annotation can appear on the same annotated element (method or class) multiple times. In
this case, a separate listener container is created for each annotation, each of which invokes the same
listener @Bean. Repeatable annotations can be used with Java 8 or above; when using Java 7 or earlier,
the same effect can be achieved by using the @abbi t Li st ener s "container" annotation, with an
array of @Rabbi t Li st ener annotations.

Container Management

Containers created for annotations are not registered with the application context. You
can obtain a collection of all containers by invoking getLi stenerContainers() on the
Rabbi t Li st ener Endpoi nt Regi stry bean. You can then iterate over this collection, for example,
to stop/start all containers or invoke the Li f ecycl e methods on the registry itself which will invoke the
operations on each container.

You can also get a reference to an individual container using
its id, using get Li stener Contai ner(String id); for example
regi stry. getListenerContainer("nulti") forthe container created by the snippet above.

Starting with version 1.5.2, you can obtain the id s of the registered containers with
get Li stener Cont ai nerlds().

Starting with version 1.5, you can now assign a gr oup to the container on the Rabbi t Li st ener
endpoint. This provides a mechanism to get a reference to a subset of containers; adding a gr oup
attribute causes a bean of type Col | ecti on<Messageli st ener Cont ai ner > to be registered with
the context with the group name.

1.6.0.M1 Spring AMQP 33

Spring AMQP

Threading and Asynchronous Consumers
A number of different threads are involved with asynchronous consumers.

Threads from the TaskExecut or configured in the Si npl eMessagelLi st ener are used to invoke
the MessagelLi st ener when a new message is delivered by Rabbi t MQ Cl i ent . If not configured, a
Si npl eAsyncTaskExecut or is used. If a pooled executor is used, ensure the pool size is sufficient
to handle the configured concurrency.

The Executor configured in the Cachi ngConnecti onFactory is passed into the Rabbi t MQ
d i ent when creating the connection, and its threads are used to deliver new messages to the listener
container. At the time of writing, if this is not configured, the client uses an internal thread pool executor
with a pool size of 5.

The Rabbi t MQ cl i ent usesaThr eadFact ory to create threads for low-level /O (socket) operations.
To modify this factory, you need to configure the underlying RabbitMQ Connecti onFactory, as
discussed in the section called “Configuring the Underlying Client Connection Factory”.

Detecting Idle Asynchronous Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle - users might
want to take some action if no messages arrive for some period of time.

Starting with version 1.6, it is now possible to configure the listener container to publish a
Li st ener Cont ai ner | dl eEvent when some time passes with no message delivery. While the
container is idle, an event will be published every i dl eEvent | nt er val milliseconds.

To configure this feature, set the i dl eEvent | nt er val on the container:

xml

<rabbit:|istener-container connection-factory="connectionFactory"
i dI e-event-interval ="60000"
>

<rabbit:listener id="containerl" queue-names="foo" ref="nyListener" nethod="handle" />
</rabbit:|istener-container>

Java

@Bean
publ i c Si npl eMessageli st ener Cont ai ner (Connecti onFactory connectionFactory) {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner (connecti onFactory);

cont ai ner. set | dl eEvent | nterval (60000L);

return container;

@RabbitListener

@Bean

publ i c Sinpl eRabbi t Li st ener Cont ai ner Fact ory rabbi tLi stener Contai ner Factory() {
Si npl eRabbi t Li st ener Cont ai ner Factory factory = new Si npl eRabbi t Li st ener Cont ai ner Factory();
factory. set Connect i onFact or y(rabbi t Connecti onFactory());
factory. setldl eEvent| nterval (60000L);

return factory;

1.6.0.M1 Spring AMQP 34

Spring AMQP

In each of these cases, an event will be published once per minute while the container is idle.
Event Consumption

You can capture these events by implementing Appl i cat i onLi st ener - either a general listener, or
one narrowed to only receive this specific event. You can also use @vent Li st ener, introduced in
Spring Framework 4.2.

The following example combines the @Rabbi t Li st ener and @vent Li st ener into a single class.
It's important to understand that the application listener will get events for all containers so you may
need to check the listener id if you want to take specific action based on which container is idle. You
can also use the @vent Li st ener condi ti on for this purpose.

The events have 4 properties:

e sour ce - the listener container instance

i d - the listener id (or container bean name)
i dl eTi ne - the time the container had been idle when the event was published

* queueNanes - the names of the queue(s) that the container listens to

public class Listener {
private final CountDownLatch |atch = new Count DownlLat ch(2);
private volatile ListenerContainerldl eEvent event;
@Rabbi t Li st ener (i d="foo", queues="#{queue.nane}")
public String listen(String foo) {
return foo.toUpperCase();

}

@Event Li stener (condition = "event.listenerld == 'foo'")
public void onApplicationEvent (ListenerContainerldl eEvent event) {

}

Important

Event listeners will see events for all containers; so, in the example above, we narrow the events
received based on the listener ID.

Message Converters
Introduction

The AngpTenpl at e also defines several methods for sending and receiving Messages that will
delegate to a MessageConvert er. The MessageConvert er itself is quite straightforward. It provides
a single method for each direction: one for converting to a Message and another for converting from a
Message. Notice that when converting to a Message, you may also provide properties in addition to the
object. The "object" parameter typically corresponds to the Message body.

1.6.0.M1 Spring AMQP 35

Spring AMQP

public interface MessageConverter {

Message toMessage(Obj ect object, MessageProperties nessageProperti es)
throws MessageConver si onExcepti on;

Obj ect fromvessage(Message nessage) throws MessageConversi onExcepti on;

The relevant Message-sending methods on the AngpTenpl at e are listed below. They are simpler than
the methods we discussed previously because they do not require the Message instance. Instead, the
MessageConvert er is responsible for "creating” each Message by converting the provided object to
the byte array for the Message body and then adding any provided MessagePr operti es.

voi d convert AndSend(Obj ect nessage) throws AngpException;
voi d convert AndSend(String routingKey, Cbject nessage) throws AngpExcepti on;

voi d convert AndSend(String exchange, String routingKey, Cbject nmessage)
throws AmgpExcepti on;

voi d convert AndSend(Cbj ect nessage, MessagePost Processor nessagePost Processor)
t hrows AngpExcepti on;

voi d convert AndSend(String routingKey, Cbject nessage,
MessagePost Processor nessagePost Processor) throws AngpExcepti on;

voi d convert AndSend(String exchange, String routingKey, Cbject nessage,
MessagePost Processor nessagePost Processor) throws AngpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies
on the template’s "queue” property having been set.

Obj ect recei veAndConvert () throws AngpException;

Obj ect recei veAndConvert (String queueNane) throws AngpException;

Note

The MessagelLi st ener Adapt er mentioned in the section called “Asynchronous Consumer”
also uses a MessageConverter.

SimpleMessageConverter

The default implementation of the MessageConvert er strategy is called
Si npl eMessageConvert er. This is the converter that will be used by an instance of RabbitTemplate
if you do not explicitly configure an alternative. It handles text-based content, serialized Java objects,
and simple byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain™), it will also check for the
content-encoding property to determine the charset to be used when converting the Message body
byte array to a Java String. If no content-encoding property had been set on the input Message, it will
use the "UTF-8" charset by default. If you need to override that default setting, you can configure an
instance of Si npl eMessageConvert er, set its "defaultCharset" property and then inject that into a
Rabbi t Tenpl at e instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object", the
Si npl eMessageConvert er will attempt to deserialize (rehydrate) the byte array into a Java object.

1.6.0.M1 Spring AMQP 36

Spring AMQP

While that might be useful for simple prototyping, it's generally not recommended to rely on Java
serialization since it leads to tight coupling between the producer and consumer. Of course, it also rules
out usage of non-Java systems on either side. With AMQP being a wire-level protocol, it would be
unfortunate to lose much of that advantage with such restrictions. In the next two sections, we’ll explore
some alternatives for passing rich domain object content without relying on Java serialization.

For all other content-types, the Si npl eMessageConvert er will return the Message body content
directly as a byte array.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the Si npl eMessageConvert er likewise
deals with byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the
case of byte arrays, there is nothing to convert), and it will set the content-type property accordingly. If
the Object to be converted does not match one of those types, the Message body will be null.

JsonMessageConverter and Jackson2JsonMessageConverter

As mentioned in the previous section, relying on Java serialization is generally not recommended. One
rather common alternative that is more flexible and portable across different languages and platforms
is JSON (JavaScript Object Notation). Two implementations are available and can be configured
on any Rabbit Tenpl at e instance to override its usage of the Si npl eMessageConvert er
default. The JsonMessageConvert er which uses the org. codehaus. j ackson 1.x library and
Jackson2JsonMessageConvert er which uses the com fast er xm . j ackson 2.x library.

<bean cl ass="org. springfranmewor k. angp. rabbi t. core. Rabbi t Tenpl at e" >
<property nanme="connecti onFactory" ref="rabbitConnectionFactory"/>
<property name="nessageConverter">
<bean cl ass="org. springfranmewor k. angp. support. converter.JsonMessageConverter">

<l-- if necessary, override the Defaul tCl assMapper -->
<property name="cl assMapper" ref="custonC assMapper"/>

</ bean>

</ property>

</ bean>

<bean cl ass="org. spri ngfranmewor k. angp. rabbi t. core. Rabbi t Tenpl ate" >
<property name="connecti onFactory" ref="rabbitConnectionFactory"/>
<property name="nessageConverter">
<bean cl ass="org. spri ngfranmewor k. angp. support. converter.Jackson2JsonMessageConverter">

<l-- if necessary, override the Defaultd assMapper -->
<property nanme="cl assMapper" ref="custonCl assMapper"/>

</ bean>

</ property>

</ bean>

As shown above, the JsonMessageConverter and Jackson2JsonMessageConverter uses
a Defaul t d assMapper by default. Type information is added to (and retrieved from) the
MessageProperties. If an inbound message does not contain type information in the
MessagePr operti es, but you know the expected type, you can configure a static type using the
def aul t Type property

<bean id="j sonConverterWthDef aul t Type"
cl ass="0.s.anmgp. support.converter.JsonMessageConverter">
<property name="cl assMapper" >
<bean cl ass="org. spri ngfranmewor k. angp. support. converter. Def aul t Cl assMapper ">
<property name="def aul t Type" val ue="f 0o. PurchaseOrder"/>
</ bean>
</ property>
</ bean>

1.6.0.M1 Spring AMQP 37

Spring AMQP

<bean id="jsonConverterWthDef aul t Type"
cl ass="o0.s. angp. support. converter.Jackson2JsonMessageConverter">
<property nanme="cl assMapper" >
<bean cl ass="org. spri ngfranmewor k. angp. support. converter. Def aul t O assMapper ">
<property nanme="def aul t Type" val ue="f 0o. PurchaseOrder"/>
</ bean>
</ property>
</ bean>

MarshallingMessageConverter

Yet another option is the Mar shal | i ngMessageConvert er . It delegates to the Spring OXM library’s
implementations of the Mar shal | er and Unmar shal | er strategy interfaces. You can read more about
that library here. In terms of configuration, it's most common to provide the constructor argument only
since most implementations of Mar shal | er will also implement Unrar shal | er.

<bean cl ass="org. springfranmewor k. angp. rabbi t. core. Rabbi t Tenpl ate" >
<property name="connecti onFactory" ref="rabbitConnectionFactory"/>
<property name="nessageConverter">
<bean cl ass="org. spri ngfranmewor k. angp. support. converter. Marshal | i ngMessageConverter">
<constructor-arg ref="sonmel npl enenati onCf Mar shal | er AndUnnar shal [er"/ >
</ bean>
</ property>
</ bean>

ContentTypeDelegatingMessageConverter

This class was introduced in version 1.4.2 and allows delegation to a specific MessageConvert er
based on the content type property in the MessageProperti es. By default, it will delegate to a
Si npl eMessageConvert er if there is no cont ent Type property, or a value that matches none of
the configured converters.

<bean id="cont ent TypeConverter" cl ass="Content TypeDel egati ngMessageConverter">
<property name="del egat es" >
<rT‘ap>
<entry key="application/json" val ue-ref="jsonMessageConverter" />
<entry key="application/xm" val ue-ref="xm MessageConverter" />
</ nap>
</ property>
</ bean>

Message Properties Converters

The MessagePropertiesConverter strategy interface is used to convert between the Rabbit
Client Basi cProperties and Spring AMQP MessageProperti es. The default implementation
(Def aul t MessagePr operti esConverter) is usually sufficient for most purposes but you can
implement your own if needed. The default properties converter will convert Basi cProperties
elements of type LongString to String s when the size is not greater than 1024 bytes. Larger
LongsSt ri ng s are not converted (see below). This limit can be overridden with a constructor argument.

Starting with version 1.6, headers longer than the long string limit (default 1024) are now left as
LongStri ng s by default by the Def aul t MessagePr operti esConverter. You can access the
contents via the get Byt es[],toString(), or get Strean() methods.

Previously, the Default MessageProperti esConverter "converted" such headers to a
Dat al nput St r eam (actually it just referenced the LongSt ri ng's Dat al nput St r eam). On output,
this header was not converted (except to a String, e.g. j ava. i 0. Dat al nput St r eam@ d057a39 by
callingt oStri ng() on the stream).

Large incoming LongSt ri ng headers are now correctly "converted" on output too (by default).

1.6.0.M1 Spring AMQP 38

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Spring AMQP

A new constructor is provided to allow you to configure the converter to work as before:

Construct an instance where LongStrings will be returned

unconverted or as a java.io.Datal nput Stream when |longer than this limt.
Use this constructor with "true' to restore pre-1.6 behavior.

@aram longStringLimt the limt.

@ar am convertLonglLongStrings LongString when fal se,

Dat al nput St r eam when true.

@ince 1.6

* ok kR k% %

*/
publ i c Defaul t MessagePropertiesConverter(int |ongStringLimt, boolean convertLongLongStrings) { ... }

Also starting with version 1.6, a new property correl ationldString has been added to
MessagePr operti es. Previously, when converting to/from Basi cProperties used by the
RabbitMQ client, an unnecessary byte[] <-> String conversion was performed because
MessageProperties.correlationld is a byte[] but Basi cProperties uses a String.
(Ultimately, the RabbitMQ client uses UTF-8 to convert the String to bytes to put in the protocol
message).

To provide maximum backwards compatibility, a new property correl ationl dPolicy
has been added to the DefaultMessagePropertiesConverter. This takes an
Def aul t MessageProperti esConverter. Correl ati onl dPol i cy enum argument. By default it
is set to BYTES which replicates the previous behavior.

For inbound messages:

* STRI NG- just the correl ati onl dStri ng property is mapped
» BYTES-justthe correl ati onl d property is mapped

* BOTH - both properties are mapped

For outbound messages:

* STRI NG- justthe correl ati onl dStri ng property is mapped
* BYTES- justthe correl ati onl d property is mapped

» BOTH - Both properties will be considered, with the String property taking precedence
Modifying Messages - Compression and More

A number of extension points exist where you can perform some processing on a message, either before
it is sent to RabbitMQ, or immediately after it is received.

As can be seen in the section called “Message Converters”, one such extension
point is in the AngpTenpl ate convert AndRecei ve operations, where you can provide
a MessagePost Processor. For example, after your POJO has been converted, the
MessagePost Processor enables you to set custom headers or properties on the Message.

Starting with version 1.4.2, additional extension points have been added to the Rabbi t Tenpl at e
- set Bef or ePubl i shPost Processor s() and set Aft er Recei vePost Processor s() . The first
enables a post processor to run immediately before sending to RabbitMQ. When using batching (see
the section called “Batching”), this is invoked after the batch is assembled and before the batch is sent.
The second is invoked immediately after a message is received.

These extension points are used for such features as compression and, for this purpose, several
MessagePost Processor s are provided:

1.6.0.M1 Spring AMQP 39

Spring AMQP

e GZipPostProcessor

» ZipPostProcessor

for compressing messages before sending, and
» GUnzipPostProcessor

» UnzipPostProcessor

for decompressing received messages.

Similarly, the Si npl eMessageli st ener Cont ai ner also has a
set Aft er Recei vePost Processor s() method, allowing the decompression to be performed after
messages are received by the container.

Request/Reply Messaging
Introduction

The AmgpTenpl at e also provides a variety of sendAndRecei ve methods that accept the same
argument options that you have seen above for the one-way send operations (exchange, routingKey,
and Message). Those methods are quite useful for request/reply scenarios since they handle the
configuration of the necessary "reply-to" property before sending and can listen for the reply message
on an exclusive Queue that is created internally for that purpose.

Similar request/reply methods are also available where the MessageConvert er is applied to both
the request and reply. Those methods are named convert SendAndRecei ve. See the Javadoc of
AmgpTenpl at e for more detail.

Starting with version 1.5.0, each of the sendAndRecei ve method variants has an overloaded version
that takes Corr el at i onDat a. Together with a properly configured connection factory, this enables
the receipt of publisher confirms for the send side of the operation. See the section called “Publisher
Confirms and Returns” for more information.

Reply Timeout

By default, the send and receive methods will timeout after 5 seconds and return null. This can be
modified by setting the r epl yTi neout property. Starting with version 1.5, if you set the nandat ory
property to true (or the mandat or y- expr essi on evaluates to t r ue for a particular message), if the
message cannot be delivered to a queue an AngpMessageRet ur nedExcept i on will be thrown. This
exception hasr et ur nedMessage, r epl yCode, r epl yText properties, as well as the exchange and
rout i ngKey used for the send.

Note

This feature uses publisher returns and is enabled by setting publ i sher Ret ur ns to true on the
Cachi ngConnecti onFact or y (see the section called “Publisher Confirms and Returns”). Also,
you must not have registered your own Ret ur nCal | back with the Rabbi t Tenpl at e.

1.6.0.M1 Spring AMQP 40

Spring AMQP

RabbitMQ Direct reply-to

Important

Starting with version 3.4.0, the RabbhitMQ server now supports Direct reply-to; this eliminates the
main reason for a fixed reply queue (to avoid the need to create a temporary queue for each
request). Starting with Spring AMQP version 1.4.1 Direct reply-to will be used by default (if
supported by the server) instead of creating temporary reply queues. When no r epl yQueue
is provided (or it is set with the name ang. r abbi t ng. r epl y-t 0), the Rabbi t Tenpl at e will
automatically detect whether Direct reply-to is supported and either use it or fall back to using
a temporary reply queue. When using Direct reply-to, a repl y- | i st ener is not required and
should not be configured.

Reply listeners are still supported with named queues (other than any. r abbit ng. repl y-t o),
allowing control of reply concurrency etc.

Starting with version 1.6 if, for some reason, you wish to use a temporary, exclusive, auto-delete queue
for each reply, set the useTenpor ar yRepl yQueues property to t r ue. This property is ignored if you
you set ar epl yAddr ess.

The decision whether or not to use direct reply-to can be changed to use different criteria by subclassing
Rabbi t Tenpl at e and overriding useDi r ect Repl yTo() . The method is called once only; when the
first request is sent.

Message Correlation With A Reply Queue

When using a fixed reply queue (other than ang. r abbi t mg. r epl y-t 0), it is necessary to provide
correlation data so that replies can be correlated to requests. See RabbitMQ Remote Procedure Call
(RPC). By default, the standard correl ati onl d property will be used to hold the correlation data.
However, if you wish to use a custom property to hold correlation data, you can set the corr el ati on-
key attribute on the <rabbit-template/>. Explicitly setting the attribute to cor r el ati onl d is the same
as omitting the attribute. Of course, the client and server must use the same header for correlation data.

Note

Spring AMQP version 1.1 used a custom property spri ng_reply_correl ati on for this data.
If you wish to revert to this behavior with the current version, perhaps to maintain compatibility
with another application using 1.1, you must set the attribute to spring_reply_correl ati on.

Reply Listener Container

When using RabbitMQ versions prior to 3.4.0, a new temporary queue is used for each reply. However,
a single reply queue can be configured on the template, which can be more efficient, and also allows
you to set arguments on that queue. In this case, however, you must also provide a <reply-listener/>
sub element. This element provides a listener container for the reply queue, with the template being the
listener. All of the the section called “Message Listener Container Configuration” attributes allowed on a
<listener-container/> are allowed on the element, except for connection-factory and message-converter,
which are inherited from the template’s configuration.

1.6.0.M1 Spring AMQP 41

http://www.rabbitmq.com/direct-reply-to.html
http://www.rabbitmq.com/tutorials/tutorial-six-java.html
http://www.rabbitmq.com/tutorials/tutorial-six-java.html

Spring AMQP

<rabbit:tenpl ate i d="anmgpTenpl at e"
connecti on-factory="connecti onFact ory"
repl y- queue="replies"
repl y- addr ess="r epl yEx/ r out eRepl y" >
<rabbit:reply-Ilistener/>
</rabbit:tenplate>

While the container and template share a connection factory, they do not share a channel and therefore
requests and replies are not performed within the same transaction (if transactional).

Note

Priorto version 1.5.0, ther epl y- addr ess attribute was not available, replies were always routed
using the default exchange and the r epl y- queue name as the routing key. This is still the
default but you can now specify the new r epl y- addr ess attribute. The r epl y- addr ess can
contain an address with the form <exchange>/ <r out i ngKey> and the reply will be routed to the
specified exchange and routed to a queue bound with the routing key. Ther epl y- addr ess has
precedence over r epl y- queue. The <repl y-1i st ener > must be configured as a separate
<l i st ener-cont ai ner > component, when only r epl y- addr ess is in use, anyway r epl y-
addr ess andr epl y- queue (or queues attribute on the <l i st ener - cont ai ner >) must refer
to the same queue logically.

With this configuration, a Si npl eLi st ener Cont ai ner is used to receive the replies; with
the Rabbit Tenpl ate being the Messageli stener. When defining a template with the
<rabbi t:tenpl at e/ > namespace element, as shown above, the parser defines the container and
wires in the template as the listener.

Note

When the template does not use a fixed r epl yQueue (or is using Direct reply-to - see the section
called “RabbitMQ Direct reply-to”) a listener container is not needed. Direct repl y-t o is the
preferred mechanism when using RabbitMQ 3.4.0 or later.

If you define your Rabbi t Tenpl at e as a <bean/ >, or using an @onfi gur ati on class to define it
as an @ean, or when creating the template programmatically, you will need to define and wire up the
reply listener container yourself. If you fail to do this, the template will never receive the replies and will
eventually time out and return null as the reply to a call to a sendAndRecei ve method.

Starting with version 1.5, the Rabbit Tenpl ate will detect if it has been configured as a
MessagelLi st ener to receive replies. If not, attempts to send and receive messages with a reply
address will fail with an 1 | | egal St at eExcept i on (because the replies will never be received).

Further, if a simple r epl yAddr ess (queue name) is used, the reply listener container will verify that it
is listening to a queue with the same name. This check cannot be performed if the reply address is an
exchange and routing key and a debug log message will be written.

Important

When wiring the reply listener and template yourself, it is important to ensure that the template’s
r epl yQueue and the container’s queues (or queueNanes) properties refer to the same queue.
The template inserts the reply queue into the outbound message r epl yTo property.

The following are examples of how to manually wire up the beans.

1.6.0.M1 Spring AMQP 42

Spring AMQP

<bean id="angpTenpl ate" cl ass="org. spri ngfranmewor k. angp. rabbi t. core. Rabbi t Tenpl ate" >
<constructor-arg ref="connecti onFactory" />
<property name="exchange" val ue="f oo. exchange" />
<property name="routingKey" val ue="foo" />
<property name="repl yQueue" ref="replyQ />
<property name="repl yTi meout" val ue="600000" />
</ bean>

<bean cl ass="org. springframework. angp. rabbit.|istener. Si npl eMessageli st ener Cont ai ner ">
<constructor-arg ref="connecti onFactory" />
<property name="queues" ref="replyQ />
<property name="nessagelLi stener" ref="angpTenpl ate" />

</ bean>

<rabbi t: queue id="replyQ' name="ny.reply.queue" />

@ean
publ i c RabbitTenpl ate angpTenpl ate() {
Rabbi t Tenpl at e rabbi t Tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
rabbi t Tenpl at e. set MessageConverter (nmsgConv());
rabbi t Tenpl at e. set Repl yQueue(repl yQueue());
rabbi t Tenpl at e. set Repl yTi meout (60000) ;
return rabbitTenpl ate;

}

@Bean
publi c Si npl eMessageli st ener Cont ai ner repl yLi stener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(connecti onFactory());
cont ai ner. set Queues(repl yQueue());
cont ai ner. set Messageli st ener (angpTenpl ate());
return container;

}

@Bean
public Queue replyQueue() {
return new Queue("ny.reply.queue");

}

A complete example of a Rabbi t Tenpl at e wired with a fixed reply queue, together with a "remote"
listener container that handles the request and returns the reply is shown in this test case.

Important

When the reply times out (r epl yTi nmeout), the sendAndRecei ve() methods return null.

Prior to version 1.3.6, late replies for timed out messages were simply logged. Now, if a late reply is
received, itis rejected (the template throws an AngpRej ect AndDont RequeueExcept i on). If the reply
gueue is configured to send rejected messages to a dead letter exchange, the reply can be retrieved
for later analysis. Simply bind a queue to the configured dead letter exchange with a routing key equal
to the reply queue’s name.

Refer to the RabbitMQ Dead Letter Documentation for more information about configuring dead lettering.
You can also take a look at the Fi xedRepl yQueueDeadLet t er Test s test case for an example.

AsyncRabbitTemplate

Version 1.6 introduced the AsyncRabbit Tenpl ate. This has similar sendAndRecei ve (and
conver t SendAndRecei ve) methods to those on the AmgpTemplate but instead of blocking, they
return a Li st enabl eFut ure.

The sendAndRecei ve methods return a Rabbi t MessageFut ur e; the convert SendAndRecei ve
methods return a Rabbi t Convert er Fut ure.

1.6.0.M1 Spring AMQP 43

https://github.com/spring-projects/spring-amqp/tree/master/spring-rabbit/src/test/java/org/springframework/amqp/rabbit/listener/JavaConfigFixedReplyQueueTests.java
https://www.rabbitmq.com/dlx.html
#amqp-template

Spring AMQP

You can either synchronously retrieve the result later, by invoking get () on the future, or you can
register a callback which will be called asynchronously with the result.

@\ut owi r ed
private AsyncRabbit Tenpl ate tenpl at e;

public void doSoneWr kAndGet Resul t Later () {

Li st enabl eFuture<String> future = this.tenpl ate.convert SendAndRecei ve("foo0");
/'l do sone nore work
String reply = null;

try {
reply = future.get();

}

catch (Executi onException e) {

}

}

public void doSoneWr kAndGet Resul t Async() {

Li st enabl eFuture<String> future = this.tenpl ate. convert SendAndRecei ve("foo0");
future.addCal | back(new Li st enabl eFut ureCal | back<Stri ng>() {

@verride
public void onSuccess(String result) {

}

@verride
public void onFailure(Throwabl e ex) {

}

1)

If mandatory is set, and the message can't be delivered, the future will throw an
Execut i onExcept i on with a cause of AngpMessageRet ur nedExcept i on which encapsulates the
returned message and information about the return.

If enabl eConfirnms is set, the future will have a property confirm which is itself a
Li st enabl eFut ur e<Bool ean> with t r ue indicating a successful publish. If the confirm future is
false, the Rabbi t Fut ur e will have a further property nack Cause - the reason for the failure, if available.

Important

The publisher confirm is discarded if it is received after the reply - since the reply implies a
successful publish.

1.6.0.M1 Spring AMQP 44

Spring AMQP

Spring Remoting with AMQP

The Spring Framework has a general remoting capability, allowing Remote Procedure Calls (RPC)
using various transports. Spring-AMQP supports a similar mechanism with a AngpPr oxyFact or yBean
on the client and a Angpl nvoker Ser vi ceExport er on the server. This provides RPC over AMQP.
On the client side, a Rabbi t Tenpl at e is used as described above; on the server side, the invoker
(configured as a Messageli st ener) receives the message, invokes the configured service, and
returns the reply using the inbound message’s r epl yTo information.

The client factory bean can be injected into any bean (using its ser vi cel nt er f ace); the client can
then invoke methods on the proxy, resulting in remote execution over AMQP.

Note

With the default MessageConverter s, the method parameters and returned value must be
instances of Seri al i zabl e.

On the server side, the Angpl nvoker Servi ceExporter has both AngpTenpl ate and
MessageConvert er properties. Currently, the template’s MessageConvert er is not used. If you
need to supply a custom message converter, then you should provide it using the nessageConvert er
property. On the client side, a custom message converter can be added to the AngpTenpl at e which
is provided to the AmgpPr oxyFact or yBean using its angpTenpl at e property.

Sample client and server configurations are shown below.

<bean id="client"

cl ass="org. spri ngframewor k. angp. renot i ng. cl i ent. AngpPr oxyFact or yBean" >
<property name="angpTenpl ate" ref="tenplate" />

<property name="servicel nterface" val ue="foo. Servicelnterface" />

</ bean>

<rabbi t: connection-factory id="connectionFactory" />

<rabbit:tenplate id="tenpl ate" connection-factory="connecti onFactory" reply-tinmeout="2000"
routing- key="renoti ng. bi ndi ng" exchange="renoti ng. exchange" />

<rabbi t:adm n connection-factory="connecti onFactory" />
<rabbi t: queue name="renoti ng. queue" />

<rabbi t: di rect - exchange name="renoti ng. exchange" >
<r abbi t: bi ndi ngs>
<rabbi t: bi ndi ng queue="renoting. queue" key="renoting. bi nding" />
</ rabbi t: bi ndi ngs>
</rabbit:direct-exchange>

1.6.0.M1 Spring AMQP 45

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/remoting.html

Spring AMQP

<bean id="listener"

cl ass="org. spri ngframewor k. angp. r enot i ng. servi ce. Angpl nvoker Ser vi ceExporter">
<property name="servicel nterface" val ue="foo. Servicel nterface" />

<property name="service" ref="service" />

<property nanme="amgpTenpl ate" ref="tenplate" />

</ bean>

<bean id="service" class="foo.Servicelnpl" />

<rabbi t:connection-factory id="connectionFactory" />

<rabbit:tenplate id="tenplate" connection-factory="connectionFactory" />
<rabbi t: queue name="renoti ng. queue" />

<rabbit:|istener-container connection-factory="connectionFactory">

<rabbit:listener ref="listener" queue-nanes="renoting. queue" />
</rabbit:|istener-container>

Important

The Anmqgpl nvoker Ser vi ceExport er can only process properly formed messages, such as
those sent from the AngpPr oxyFact or yBean. If it receives a message that it cannot interpret, a
serialized Runt i meExcept i on will be sent as a reply. If the message has no r epl yToAddr ess
property, the message will be rejected and permanently lost if no Dead Letter Exchange has been
configured.

Note

By default, if the request message cannot be delivered, the calling thread will eventually timeout
and a Renot ePr oxyFai | ur eExcept i on will be thrown. The timeout is 5 seconds by default,
and can be modified by setting the r epl yTi meout property on the Rabbbi t Tenpl at e. Starting
with version 1.5, setting the nandat or y property to true, and enabling returns on the connection
factory (see the section called “Publisher Confirms and Returns”), the calling thread will throw
an AnmgpMessageRet ur nedExcepti on. See the section called “Reply Timeout” for more
information.

Configuring the broker

Introduction

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and
Bindings on the broker. These operations which are portable from the 0.8 specification and higher are
present in the AmgpAdmin interface in the org.springframework.amqgp.core package. The RabbitMQ
implementation of that class is RabbitAdmin located in the org.springframework.amqgp.rabbit.core

package.

The AmgpAdmin interface is based on using the Spring AMQP domain abstractions and is shown below:

1.6.0.M1 Spring AMQP

46

Spring AMQP

public interface AngpAdm n {
/| Exchange Operations
voi d decl ar eExchange(Exchange exchange);
voi d del et eExchange(String exchangeNane);
/'l Queue Operations
Queue decl areQueue();
String decl areQueue(Queue queue);
voi d del et eQueue(String queueNane);
voi d del et eQueue(String queueNane, bool ean unused, bool ean enpty);
voi d purgeQueue(String queueNane, bool ean noWit);
/1 Bi ndi ng Operations
voi d decl ar eBi ndi ng(Bi ndi ng bi ndi ng);
voi d renoveBi ndi ng(Bi ndi ng bi ndi ng) ;
Properties get QueueProperties(String queueNane);

}

The get QueuePr operti es() method returns some limited information about the queue (message
count and consumer count). The keys for the properties returned are available as constants in
the Rabbi t Tenpl at e (QUEUE_NAME, QUEUE_MESSAGE_COUNT, QUEUE_CONSUMER_COUNT). The
RabbitMQ REST API provides much more information in the Queuel nf o object.

The no-arg decl areQueue() method defines a queue on the broker with a name that is
automatically generated. The additional properties of this auto-generated queue are excl usi ve=t r ue,
aut oDel et e=t r ue, and dur abl e=f al se.

The decl areQueue(Queue queue) method takes a Queue object and returns the name of the
declared queue. If the provided Queue's namne property is an empty String, the broker declares the queue
with a generated name and that name is returned to the caller. The Queue obiject itself is not changed.
This functionality can only be used programmatically by invoking the Rabbi t Admi n directly. It is not
supported for auto-declaration by the admin by defining a queue declaratively in the application context.

This is in contrast to an Anonynous Queue where the framework generates a unique (UUl D) name and
setsdur abl etof al se and excl usi ve, aut oDel etetotrue. A<rabbit: queue/ >with an empty,
or missing, namne attribute will always create an AnonynousQueue.

See the section called “AnonymousQueue” to understand why AnonynousQueue is preferred over
broker-generated queue names, as well as how to control the format of the name. Declarative queues
must have fixed names because they might be referenced elsewhere in the context, for example, in
a listener:

<rabbit:|istener-container>
<rabbit:|istener ref="listener" queue-names="#{someQueue. nane}" />
</rabbit:|istener-container>

See the section called “Automatic Declaration of Exchanges, Queues and Bindings”.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring
XML would look like this:

1.6.0.M1 Spring AMQP 47

Spring AMQP

<rabbi t: connecti on-factory i d="connecti onFactory"/>

<rabbi t:adm n id="anmgpAdm n" connecti on-factory="connecti onFactory"/>

When the Cachi ngConnect i onFact ory cache mode is CHANNEL (the default), the Rabbi t Adni n
implementation does automatic lazy declaration of Queues, Exchanges and Bi ndi ngs declared in
the same Appl i cati onCont ext . These components will be declared as son as a Connecti on is
opened to the broker. There are some namespace features that make this very convenient, e.g. in the
Stocks sample application we have:

<rabbi t: queue id="tradeQueue"/>
<rabbi t: queue i d="mar ket Dat aQueue"/ >

<f anout - exchange name="br oadcast. responses"
xm ns="http://ww. springfranmework. org/ schema/ rabbit">
<bi ndi ngs>
<bi ndi ng queue="tradeQueue"/ >
</ bi ndi ngs>
</ f anout - exchange>

<t opi c- exchange name="app. st ock. mar ket dat a"
xm ns="http://ww. springfranmework. or g/ schema/ r abbi t" >
<bi ndi ngs>
<bi ndi ng queue="mar ket Dat aQueue" pattern="3${stocks. quote.pattern}"/>
</ bi ndi ngs>
</ t opi c- exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names
generated by the framework, not by the broker) and refer to them by ID. We can also declare Queues
with explicit names, which also serve as identifiers for their bean definitions in the context. E.g.

<rabbi t: queue name="st ocks. trade. queue"/>
Tip

You can provide both an id and a name attribute. This allows you to refer to the queue (for
example in a binding) by an id that is independent of the queue name. It also allows standard
Spring features such as property placeholders, and SpEL expressions for the queue name; these
features are not available when using the name as the bean identifier.

Queues can be configured with additional arguments, for example, x-message-ttl or x-ha-policy. Using
the namespace support, they are provided in the form of a Map of argument name/argument value pairs,
using the <rabbit:queue-arguments> element.

<rabbi t: queue name="wi t hAr gurment s" >
<rabbi t: queue- ar gunent s>
<entry key="x-ha-policy" value="all"/>
</ rabbi t: queue- ar gunment s>
</ rabbit: queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs
to be provided.

<rabbi t: queue name="wi t hAr gurment s" >
<rabbi t: queue-argunent s val ue-type="j ava. | ang. Long" >
<entry key="x-nmessage-ttl" val ue="100"/>
</ rabbi t: queue- ar gument s>
</ rabbit: queue>

1.6.0.M1 Spring AMQP 48

Spring AMQP

When providing arguments of mixed types, the type is provided for each entry element:

<rabbi t: queue name="wi t hAr gunent s" >
<r abbi t : queue- ar gunent s>
<entry key="x-nessage-ttl">
<val ue type="j ava. | ang. Long" >100</ val ue>
</entry>
<entry key="x-ha-policy" value="all"/>
</ rabbit: queue- ar gument s>
</rabbit:queue>

With Spring Framework 3.2 and later, this can be declared a little more succinctly:

<rabbi t: queue name="w t hAr gurment s" >
<rabbi t: queue- ar gunent s>
<entry key="x-nmessage-ttl" val ue="100" val ue-type="java.l ang. Long"/>
<entry key="x-ha-policy" value="all"/>
</ rabbi t: queue- ar gument s>
</ rabbit: queue>

Important

The RabbitMQ broker will not allow declaration of a queue with mismatched arguments. For
example, if a queue already exists withnoti me to | i ve argument, and you attempt to declare
it with, say, key="x- nessage-ttl" val ue="100", an exception will be thrown.

By default, the Rabbi t Admi n will immediately stop processing all declarations when any exception
occurs; this could cause downstream issues - such as a listener container failing to initialize because
another queue (defined after the one in error) is not declared.

This behavior can be modified by setting the ignore-decl aration-failures attribute to
true on the Rabbit Adm n. This option instructs the Rabbi t Adm n to log the exception, and
continue declaring other elements. When configuring the Rabbi t Admi n using java, this property is
i gnor eDecl arationFai | ures.

Prior to version 1.6, this property only took effect if an | OExcept i on occurred on the channel - such
as when there is a mismatch between current and desired properties. Now, this property takes effect
on any exception, including Ti meout Except i on etc.

In addition, any declaration exceptions result in the publishing of a Decl ar at i onExcept i onEvent ,
which is an Appl i cati onEvent that can be consumed by any Applicati onLi stener in the
context. The event contains a reference to the admin, the element that was being declared, and the
Thr owabl e.

Starting with version 1.3 the HeadersExchange can be configured to match on multiple headers; you
can also specify whether any or all headers must match:

<r abbi t : header s- exchange nane="headers-test">
<rabbi t: bi ndi ngs>
<rabbi t: bi ndi ng queue="bucket">
<rabbi t : bi ndi ng- ar gunent s>
<entry key="foo" val ue="bar"/>
<entry key="baz" val ue="qux"/>
<entry key="x-match" value="all"/>
</ rabbi t: bi ndi ng- ar gunent s>
</ rabbi t: bi ndi ng>
</ rabbi t: bi ndi ngs>
</ rabbi t: header s- exchange>

1.6.0.M1 Spring AMQP 49

Spring AMQP

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample application,
where there is the @onf i gur ati on class Abst r act St ockRabbi t Confi gur ati on which in turn
has Rabbi t Cl i ent Confi gur ati on and Rabbi t Ser ver Conf i gur ati on subclasses. The code for
Abst ract St ockRabbi t Confi gur ati on is shown below

@onfiguration
public abstract class Abstract St ockAppRabbit Confi guration {

@Bean
publ i ¢ Connecti onFactory connectionFactory() {
Cachi ngConnecti onFactory connectionFactory =
new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User nane("guest");
connecti onFact ory. set Passwor d("guest");
return connectionFactory;

}

@Bean
publ i ¢ Rabbit Tenpl ate rabbitTenpl ate() {
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
tenpl at e. set MessageConverter (j sonMessageConverter());
confi gureRabbi t Tenpl at e(tenpl ate);
return tenpl ate;

}

@Bean
publ i c MessageConverter jsonMessageConverter() {
return new JsonMessageConverter();

}

@Bean
publ i ¢ Topi cExchange nar ket Dat aExchange() {
return new Topi cExchange(" app. st ock. nar ket data") ;

}

/] additional code onmtted for brevity

In the Stock application, the server is configured using the following @Configuration class:

@onfiguration
public class RabbitServerConfiguration extends Abstract St ockAppRabbit Configuration {

@Bean
publ i c Queue stockRequest Queue() {
return new Queue("app. stock.request");

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. There is no binding
of the TopicExchange to a queue in the server configuration, as that is done in the client application.
The stock request queue however is automatically bound to the AMQP default exchange - this behavior
is defined by the specification.

The client @Configuration class is a little more interesting and is shown below.

1.6.0.M1 Spring AMQP 50

Spring AMQP

@onfi guration
public class Rabbitd ientConfiguration extends Abstract St ockAppRabbit Confi guration {

@/al ue(" ${stocks. quote. pattern}")
private String market Dat aRout i ngKey;

@Bean
public Queue market Dat aQueue() {
return angpAdm n() . decl areQueue();

}

/**
* Binds to the market data exchange.
* Interested in any stock quotes
* that match its routing key.
*/
@Bean
publ i c Binding market Dat aBi ndi ng() {

return Bi ndi ngBui | der . bi nd(

mar ket Dat aQueue()).t o(mar ket Dat aExchange()).w t h(mar ket Dat aRout i ngKey) ;

}

/1 additional code omitted for brevity

The client is declaring another queue via the declareQueue() method on the AmgpAdmin, and it binds
that queue to the market data exchange with a routing pattern that is externalized in a properties file.

Declaring Collections of Exchanges, Queues, Bindings

Starting with version 1.5, it is now possible to declare multiple entities with one @ean, by returing a
collection.

Only collections where the first element is a Decl ar abl e are considered, and only Decl ar abl e
elements from such collections are processed.

1.6.0.M1 Spring AMQP 51

Spring AMQP

@onfi guration
public static class Config {

@Bean
public ConnectionFactory cf() {
return new Cachi ngConnecti onFactory("l ocal host");

}

@ean

publ i ¢ Rabbit Adm n adm n(ConnectionFactory cf) {
return new Rabbit Adm n(cf);

}

@Bean
public Direct Exchange el() {
return new Direct Exchange("el", false, true);

}

@Bean
public Queue ql() {
return new Queue("ql", false, false, true);

}

@Bean

public Binding bl() {

return BindingBuilder.bind(ql()).to(el()).wth("k1");
}

@Bean
public List<Exchange> es() {
return Arrays. <Exchange>asLi st (
new Di rect Exchange("e2", false, true),
new Di rect Exchange("e3", false, true)
)
}

@Bean
public List<Qeue> gs() {
return Arrays. asLi st (
new Queue("qg2", false, false, true),
new Queue("qg3", false, false, true)
)
}

@ean
public List<Binding> bs() {
return Arrays. asLi st (
new Bi ndi ng("qg2", DestinationType. QJEUE, "e2", "k2", null),
new Bi ndi ng("qg3", DestinationType. QJEUE, "e3", "k3", null)
)
}

@Bean
public List<Declarable> ds() {

return Arrays. <Decl ar abl e>asLi st (

new Di rect Exchange("e4", false, true),

new Queue("qg4", false, false, true),

new Bi ndi ng("qg4", DestinationType. QJEUE, "e4", "k4", null)
)
}

Conditional Declaration

By default, all queues, exchanges, and bindings are declared by all Rabbi t Admi n instances (that have
aut o- startup="true") in the application context.

1.6.0.M1 Spring AMQP 52

Spring AMQP

Note

Starting with the 1.2 release, it is possible to conditionally declare these elements. This is
particularly useful when an application connects to multiple brokers and needs to specify with
which broker(s) a particular element should be declared.

The classes representing these elements implement Decl arabl e which has two methods:
shoul dDecl are() and get Decl ari ngAdm ns(). The Rabbi t Adm n uses these methods to
determine whether a particular instance should actually process the declarations on its Connect i on.

The properties are available as attributes in the namespace, as shown in the following examples.

<rabbi t:adm n id="adm nl" connection-factory="CF1" />
<rabbi t:adm n i d="adm n2" connecti on-factory="CF2" />
<rabbi t: queue id="decl aredByBot hAdm nslnmplicitly" />
<rabbi t: queue id="decl ar edByBot hAdm ns" decl ar ed- by="adm nl1, adm n2" />
<rabbi t: queue id="decl aredByAdm n1Onl y" decl ar ed- by="adm n1" />
<rabbi t: queue id="not Decl aredByAny" aut o-decl are="fal se" />
<rabbi t:direct-exchange nane="direct" decl ared-by="adm nl, adm n2">
<rabbi t: bi ndi ngs>

<rabbi t: bi ndi ng key="fo00" queue="bar"/>

</ rabbi t: bi ndi ngs>
</rabbit:direct-exchange>

Note

The aut o- decl ar e attribute is t r ue by default and if the decl ar ed- by is not supplied (or is
empty) then all Rabbi t Adni n s will declare the object (as long as the admin’s aut o- st art up
attribute is true; the default).

Similarly, you can use Java-based @onf i gur at i on to achieve the same effect. In this example, the
components will be declared by adm nl1 but not admni n2;:

1.6.0.M1 Spring AMQP 53

Spring AMQP

@Bean

publ i c RabbitAdnmin adm n() {

Rabbi t Adm n rabbi t Admi n = new Rabbi t Adm n(cf1());
rabbi t Admi n. aft er PropertiesSet ();

return rabbitAdm n;

}

@Bean

publ i ¢ Rabbit Adm n adm n2() {

Rabbi t Admi n rabbi t Adm n = new Rabbi t Admi n(cf2());
rabbi t Adm n. after PropertiesSet();

return rabbitAdm n;

}

@Bean

public Queue queue() {

Queue queue = new Queue("foo0");

queue. set Adm nsThat Shoul dDecl are(adm n());
return queue;

}

@Bean

publ i ¢ Exchange exchange() {

Di rect Exchange exchange = new Direct Exchange("bar");
exchange. set Adm nsThat Shoul dDecl are(adm n());

return exchange;

}

@Bean

public Binding binding() {
Bi ndi ng bi ndi ng = new Bi ndi ng("foo", DestinationType. QJEUE, exchange().getNane(), "foo", null);
bi ndi ng. set Adni nsThat Shoul dDecl are(admnin());
return binding;

}

AnonymousQueue

In general, when needing a uniquely-named, exclusive, auto-delete queue, it is recommended that the
AnonynousQueue is used instead of broker-defined queue names (using "" as a Queue name will
cause the broker to generate the queue name).

This is because:

1. The queues are actually declared when the connection to the broker is established; this is long after
the beans are created and wired together; beans using the queue need to know its name. In fact, the
broker might not even be running when the app is started.

2. Ifthe connection to the broker is lost for some reason, the admin will re-declare the AnonynousQueue
with the same name. If we used broker-declared queues, the queue name would change.

Starting with version 1.5.3, you can control the format of the queue name used by AnonynousQueue s.

By default, the queue name is the String representation of a UUI D; for example: 07af cf e9-
fe77-4983- 8645- 0061ec6la4d7a.

You can now provide an AnonyrmousQueue. Nam ngSt rat egy implementation in a constructor
argument:

1.6.0.M1 Spring AMQP 54

Spring AMQP

@Bean
public Queue anonl() {
return new AnonynousQueue(new AnonynousQueue. Base64Ur | Nami ngStrategy());

}

@Bean
public Queue anon2() {
return new AnonynousQeue(new AnonynousQueue. Base64Ur | Nami ngStrat egy("foo-"));

}

The first will generate a queue name prefixed by spri ng. gen- followed by a base64 representation of
the UUI D, for example: spri ng. gen- MRBv9sql SkuGi Pf OYf po4g. The second will generate a queue
name prefixed by f oo- followed by a base64 representation of the UUI D.

The base64 encoding uses the "URL and Filename Safe Alphabet" from RFC 4648; trailing padding
characters (=) are removed.

You can provide your own naming strategy, whereby you can include other information (e.g. application,
client host) in the queue name.

Starting with version 1.6, the naming strategy can be specified when using XML configuration; the
nam ng- st r at egy attribute is present on the <r abbi t : queue> element for a bean reference that
implements AnonynmousQueue. Nam ngSt r at egy.

<rabbi t: queue i d="uui dAnon" />

<rabbi t: queue id="springAnon" nam ng-strategy="springNaner" />

<rabbi t: queue id="cust omAnon" namni ng-strategy="custonNaner" />

<bean id="springNanmer" class="org.springfranmework. angp. core. AnonynousQueue. Base64Ur | Nam ngSt r at egy" />
<bean id="custonNanmer" class="org.springfranework. angp. cor e. AnonynousQueue. Base64Ur | Nami ngStr at egy" >

<constructor-arg val ue="custom gen-" />
</ bean>

The first creates names with a String representation of a UUID. The second creates names
like spring.gen- MRBv9sql SkuC Pf OYf po4g. The third creates names like custom gen-
MRBv9sql SkuCi Pf OYf po4g.

Of course, you can provide your own naming strategy bean.
Delayed Message Exchange

Version 1.6 introduces support for the Delayed Message Exchange Plugin

Note

The plugin is currently marked as experimental but has been available for over a year (at
the time of writing). If changes to the plugin make it necessary, we will add support for such
changes as soon as practical. For that reason, this support in Spring AMQP should be considered
experimental, too. This functionality was tested with RabbitMQ 3.6.0 and version 0.0.1 of the

plugin.

To use a Rabbi t Adm n to declare an exchange as delayed, simply set the del ayed property on the
exchange bean to true. The Rabbi t Admi n will use the exchange type (Di r ect , Fanout etc) to set the
x-del ayed-t ype argument and declare the exchange with type x- del ayed- nessage.

1.6.0.M1 Spring AMQP 55

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

Spring AMQP

The del ayed property (default f al se) is also available when configuring exchange beans using XML.

<rabbi t:topi c-exchange nane="topic" del ayed="true" />

To send a delayed message, it's simply a matter of setting the x-del ay header, via the
MessageProperti es:

MessageProperties properties = new MessageProperties();
properties. set XDel ay(15000) ;
tenpl at e. send(exchange, routi ngKey,
MessageBui | der. wi t hBody("fo00". getBytes()).andProperties(properties).build());

or

rabbi t Tenpl at e. convert AndSend(exchange, routingKey, "foo", new MessagePost Processor () {

@verride

public Message postProcessMessage(Message nessage) throws AngpException {
nmessage. get MessageProperti es(). set XDel ay(15000) ;
return nessage,

1)

To check if a message was delayed, use the getReceivedDel ay() method on the
MessagePr operti es. Itis a separate property to avoid unintended propagation to an output message
generated from an input messasge.

RabbitMQ REST API

When the management plugin is enabled, the RabbitMQ server exposes a REST APl to monitor
and configure the broker. A Java Binding for the API is now provided. In general, you can use
that API directly, but a convenience wrapper is provided to use the familiar Spring AMQP Queue,
Exchange, and Bi ndi ng domain objects with the API. Much more information is available for
these objects when using the com rabbi tng. http.client.dient API directly (Queuel nfo,
Exchangel nf o, and Bi ndi ngl nf o respectively). The following operations are available on the
Rabbi t Managenent Tenpl at e:

1.6.0.M1 Spring AMQP 56

https://github.com/rabbitmq/hop

Spring AMQP

public interface AngpManagenent Operations {

voi d addExchange(Exchange exchange);

voi d addExchange(String vhost, Exchange exchange);
voi d purgeQueue(Queue queue);

voi d purgeQueue(String vhost, Queue queue);

voi d del et eQueue(Queue queue);

voi d del et eQueue(String vhost, Queue queue);
Queue get Queue(String nane);

Queue get Queue(String vhost, String nane);

Li st <Queue> get Queues();

Li st <Queue> get Queues(String vhost);

voi d addQueue(Queue queue);

voi d addQueue(String vhost, Queue queue);

voi d del et eExchange(Exchange exchange);

voi d del et eExchange(String vhost, Exchange exchange);
Exchange get Exchange(String nane);

Exchange get Exchange(String vhost, String name);
Li st <Exchange> get Exchanges();

Li st <Exchange> get Exchanges(String vhost);

Li st <Bi ndi ng> get Bi ndi ngs();

Li st <Bi ndi ng> get Bi ndi ngs(String vhost);

Li st <Bi ndi ng> get Bi ndi ngsFor Exchange(Stri ng vhost, String exchange);

Refer to the javadocs for more information.

Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For example,
there are a lot of cases where IOExceptions may be thrown. The RabbitTemplate,
SimpleMessageListenerContainer, and other Spring AMQP components will catch those Exceptions
and convert into one of the Exceptions within our runtime hierarchy. Those are defined in the
org.springframework.amqp package, and AmgpException is the base of the hierarchy.

When a listener throws an exception, itis wrapped inaLi st ener Execut i onFai | edExcepti on and,
normally the message is rejected and requeued by the broker. Setting def aul t RequeueRej ect ed
to false will cause messages to be discarded (or routed to a dead letter exchange). As discussed
in the section called “Message Listeners and the Asynchronous Case”, the listener can throw an
AngpRej ect AndDont RequeueExcept i on to conditionally control this behavior.

However, there is a class of errors where the listener cannot control the behavior. When a message
that cannot be converted is encountered (for example an invalid cont ent _encodi ng header),

1.6.0.M1 Spring AMQP 57

Spring AMQP

the MessageConver si onExcepti on is thrown before the message reaches user code. With
def aul t RequeueRej ect ed set to t r ue (default), such messages would be redelivered over and
over. Before version 1.3.2, users needed to write a custom Er r or Handl er, as discussed in the section
called “Exception Handling” to avoid this situation.

Starting with version 1.3.2, the default Er r or Handl er is now a
Condi ti onal Rej ecti ngError Handl er which will reject (and not requeue) messages that fail
with a MessageConver si onExcepti on. An instance of this error handler can be configured
with a Fat al Excepti onStrat egy so users can provide their own rules for conditional message
rejection, e.g. a delegate implementation to the Bi naryExcepti onCd assifier from Spring
Retry (the section called “Message Listeners and the Asynchronous Case”). In addition, the
Li st ener Execut i onFai | edExcepti onnowhasaf ai | edMessage property which can be used in
the decision. If the Fat al Excepti onStrat egy. i sFat al () method returns t r ue, the error handler
throws an AmgpRej ect AndDont RequeueExcept i on. The default Fat al Excepti onSt r at egy logs
a warning message.

Transactions

Introduction

The Spring Rabbit framework has support for automatic transaction management in the synchronous
and asynchronous use cases with a number of different semantics that can be selected declaratively,
as is familiar to existing users of Spring transactions. This makes many if not most common messaging
patterns very easy to implement.

There are two ways to signal the desired transaction semantics to the framework. In both the
Rabbi t Tenpl at e and Si npl eMessagelLi st ener Cont ai ner thereis a flag channel Tr ansact ed
which, if true, tells the framework to use a transactional channel and to end all operations
(send or receive) with a commit or rollback depending on the outcome, with an exception
signaling a rollback. Another signal is to provide an external transaction with one of Spring’s
Pl at f or mr ansact i onManager implementations as a context for the ongoing operation. If there
is already a transaction in progress when the framework is sending or receiving a message, and the
channel Tr ansact ed flag is true, then the commit or rollback of the messaging transaction will be
deferred until the end of the current transaction. If the channel Tr ansact ed flag is false, then no
transaction semantics apply to the messaging operation (it is auto-acked).

The channel Tr ansact ed flag is a configuration time setting: it is declared and processed once when
the AMQP components are created, usually at application startup. The external transaction is more
dynamic in principle because the system responds to the current Thread state at runtime, but in practice
is often also a configuration setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with Rabbi t Tenpl at e the external transaction is provided by the caller,
either declaratively or imperatively according to taste (the usual Spring transaction model). An example
of a declarative approach (usually preferred because it is non-invasive), where the template has been
configured with channel Tr ansact ed=t r ue:

@r ansact i onal
public void doSonet hi ng() {
String incom ng = rabbitTenpl ate. recei veAndConvert();
/1 do sone nore database processing...
String outgoing = processl nDat abaseAndExt ract Repl y(i ncom ng);
r abbi t Tenpl at e. conver t AndSend(out goi ng) ;

1.6.0.M1 Spring AMQP 58

Spring AMQP

A String payload is received, converted and sent as a message body inside a method marked as
@Transactional, so if the database processing fails with an exception, the incoming message will be
returned to the broker, and the outgoing message will not be sent. This applies to any operations with the
Rabbi t Tenpl at e inside a chain of transactional methods (unless the Channel is directly manipulated
to commit the transaction early for instance).

For asynchronous use cases with Si npl eMessagelLi st ener Cont ai ner if an external transaction is
needed it has to be requested by the container when it sets up the listener. To signal that an external
transaction is required the user provides an implementation of Pl at f or nTr ansact i onManager to
the container when it is configured. For example:

@onfiguration
public class Exanpl eExt ernal Tr ansacti onAngpConfi guration {

@ean
publ i c Sinpl eMessagelLi st ener Cont ai ner nmessageli st ener Contai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(rabbi t Connecti onFactory());
cont ai ner. set Transacti onManager (transacti onManager());
cont ai ner. set Channel Transact ed(true);
cont ai ner. set QueueNane(" sone. queue") ;
cont ai ner. set MessagelLi st ener (exanpl eLi stener());
return container;

In the example above, the transaction manager is added as a dependency injected from another bean
definition (not shown), and the channel Tr ansact ed flag is also set to true. The effect is that if
the listener fails with an exception the transaction will be rolled back, and the message will also be
returned to the broker. Significantly, if the transaction fails to commit (e.g. a database constraint error,
or connectivity problem), then the AMQP transaction will also be rolled back, and the message will
be returned to the broker. This is sometimes known as a Best Efforts 1 Phase Commit, and is a very
powerful pattern for reliable messaging. If the channel Tr ansact ed flag was set to false in the example
above, which is the default, then the external transaction would still be provided for the listener, but all
messaging operations would be auto-acked, so the effect is to commit the messaging operations even
on a rollback of the business operation.

A note on Rollback of Received Messages

AMQP transactions only apply to messages and acks sent to the broker, so when there is a rollback
of a Spring transaction and a message has been received, what Spring AMQP has to do is not just
rollback the transaction, but also manually reject the message (sort of a nack, but that's not what the
specification calls it). The action taken on message rejection is independent of transactions and depends
on the def aul t RequeueRej ect ed property (default t r ue). For more information about rejecting
failed messages, see the section called “Message Listeners and the Asynchronous Case”.

For more information about RabbitMQ transactions, and their limitations, refer to RabbitMQ Broker
Semantics.

Note

Prior to RabbitMQ 2.7.0, such messages (and any that are unacked when a channel is closed or
aborts) went to the back of the queue on a Rabbit broker, since 2.7.0, rejected messages go to
the front of the queue, in a similar manner to JMS rolled back messages.

1.6.0.M1 Spring AMQP 59

http://www.rabbitmq.com/semantics.html
http://www.rabbitmq.com/semantics.html

Spring AMQP

Using the RabbitTransactionManager

The RabbitTransactionManager is an alternative to executing Rabbit operations within, and
synchronized with, external transactions. This Transaction Manager is an implementation of the
PlatformTransactionManager interface and should be used with a single Rabbit ConnectionFactory.

Important

This strategy is not able to provide XA transactions, for example in order to share transactions
between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources
via ConnectionFactoryUtils. get Transacti onal Resour ceHol der (Connecti onFactory,
bool ean) instead of a standard Connecti on. cr eat eChannel () call with subsequent Channel
creation. When using Spring AMQP’s RabbitTemplate, it will autodetect a thread-bound Channel and
automatically participate in its transaction.

With Java Configuration you can setup a new RabbitTransactionManager using:

@Bean
publ i ¢ Rabbit Transacti onManager rabbit Transacti onManager () {
return new Rabbit Transacti onManager (connecti onFactory);

}

If you prefer using XML configuration, declare the following bean in your XML Application Context file:

<bean id="rabbit TxManager"
cl ass="org. springfranmewor k. angp. rabbi t.transacti on. Rabbi t Transacti onManager" >
<property nanme="connecti onFactory" ref="connectionFactory"/>
</ bean>

Message Listener Container Configuration

There are quite a few options for configuring a Si npl eMessagelLi st ener Cont ai ner related to
transactions and quality of service, and some of them interact with each other.

The table below shows the container property names and their equivalent attribute names (in
parentheses) when using the namespace to configure a <r abbi t: | i st ener-cont ai ner/ >.

Some properties are not exposed by the namespace; indicated by "N/Afor the attribute.

Table 3.1. Configuration options for a message listener container

Property (Attribute) Description

(group) This is only available when using the

namespace. When specified, a bean of type

Col | ecti on<Messageli st ener Cont ai ner > is registered
with this name, and the container for each <l i st ener/ >
element is added to the collection. This allows, for example,
starting/stopping the group of containers by iterating over the
collection. If multiple <l i st ener - cont ai ner/ > elements
have the same group value, the containers in the collection is an
aggregate of all containers so designated.

channel Tr ansact ed Boolean flag to signal that all messages should be acknowledged
(et SR) in a transaction (either manually or automatically)

1.6.0.M1 Spring AMQP 60

http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Spring AMQP

Property (Attribute)

Description

acknow edgeMode
(acknow edge)

« NONE = no acks will be sent (incompatible with
channel Tr ansact ed=t r ue). RabbitMQ calls this "autoack"
because the broker assumes all messages are acked without
any action from the consumer.

« MANUAL = the listener must acknowledge all messages by
calling Channel . basi cAck() .

¢ AUTO= the container will acknowledge the message
automatically, unless the MessagelLi st ener throws an
exception. Note that acknowl edgeMode is complementary
to channelTransacted - if the channel is transacted then the
broker requires a commit notification in addition to the ack. This
is the default mode. See also t xSi ze.

transacti onManager
(transacti on- manager)

pr ef et chCount
(prefetch)

shut downTi meout

External transaction manager for the operation of the listener.
Also complementary to channelTransacted - if the Channel

is transacted then its transaction will be synchronized with the
external transaction.

The number of messages to accept from the broker in one
socket frame. The higher this is the faster the messages can be
delivered, but the higher the risk of non-sequential processing.
Ignored if the acknowl edgeMode is NONE. This will be
increased, if necessary, to match the t xSi ze.

When a container shuts down (e.g. if its enclosing

(transaction-size)

(B2 Appl i cati onCont ext is closed) it waits for in-flight messages
to be processed up to this limit. Defaults to 5 seconds. After the
limit is reached, if the channel is not transacted messages will be
discarded.

txSi ze When used with acknowl edgeMbde AUTO, the container will

attempt to process up to this number of messages before sending
an ack (waiting for each one up to the receive timeout setting).
This is also when a transactional channel is committed. If the

pr ef et chCount is less than the t xSi ze, it will be increased to
match the t xSi ze.

recei veTi meout
(receive-tinmeout)

aut oSt art up
(aut o- startup)

The maximum time to wait for each message. If
acknowledgeMode=NONE this has very little effect - the container
just spins round and asks for another message. It has the biggest
effect for a transactional Channel witht xSi ze > 1, since it can
cause messages already consumed not to be acknowledged until
the timeout expires.

Flag to indicate that the container should start when the

Appl i cati onCont ext does (as part of the Smart Li f ecycl e
callbacks which happen after all beans are initialized). Defaults
to true, but set it to false if your broker might not be available on

1.6.0.M1

Spring AMQP 61

Spring AMQP

Property (Attribute)

Description

startup, and then call st art () later manually when you know the
broker is ready.

phase
(phase)

advi ceChai n
(advi ce- chai n)

When autoStartup is true, the lifecycle phase within which this
container should start and stop. The lower the value the earlier
this container will start and the later it will stop. The default is
Integer. MAX_VALUE meaning the container will start as late as
possible and stop as soon as possible.

An array of AOP Advice to apply to the listener execution.
This can be used to apply additional cross cutting concerns
such as automatic retry in the event of broker death. Note that
simple re-connection after an AMQP error is handled by the
Cachi ngConnect i onFact ory, as long as the broker is still
alive.

t askExecut or
(task- executor)

error Handl er
(error-handl er)

A reference to a Spring TaskExecutor (or standard JDK
1.5+ Executor) for executing listener invokers. Default is a
SimpleAsyncTaskExecutor, using internally managed threads.

A reference to an ErrorHandler strategy for handling
any uncaught Exceptions that may occur during

the execution of the MessageListener. Default:
Condi ti onal Rej ecti ngError Handl er

concur r ent Consuner s
(concurrency)

nmaxConcur r ent Consumner s
(max- concurrency)

start Consuner M nl nt erval
(mn-start-interval)

The number of concurrent consumers to initially start for each
listener. See the section called “Listener Concurrency”.

The maximum number of concurrent consumers to start,
if needed, on demand. Must be greater than or equal to

concurrentConsumers. See the section called “Listener

Concurrency”.

The time in milliseconds which must elapse before each new
consumer is started on demand. See the section called “Listener
Concurrency”. Default 10000 (10 seconds).

st opConsuner M nl nt er val
(mn-stop-interval)

The time in milliseconds which must elapse before a consumer
is stopped, since the last consumer was stopped, when an

idle consumer is detected. See the section called “Listener
Concurrency”. Default 60000 (1 minute).

consecutiveActiveTrigger
(m n-consecutive-active)

consecutivel dl eTri gger
(m n-consecutive-idle)

The minimum number of consecutive messages received by a
consumer, without a receive timeout occurring, when considering
starting a new consumer. Also impacted by txSize. See the
section called “Listener Concurrency”. Default 10.

The minimum number of receive timeouts a consumer
must experience before considering stopping a consumer.
Also impacted by txSize. See the section called “Listener
Concurrency”. Default 10.

1.6.0.M1

Spring AMQP 62

Spring AMQP

Property (Attribute)

Description

connecti onFactory
(connection-factory)

A reference to the connectionFactory; when configuring using
the XML namespace, the default referenced bean name is
"rabbitConnectionFactory".

def aul t RequeueRej ect ed
(requeue-rej ect ed)

recoveryl nterval
(recovery-interval)

recover yBackCr f
(recovery-back- of f)

excl usive
(excl usi ve)

Determines whether messages that are rejected because the
listener threw an exception should be requeued or not. Default
true.

Determines the time in milliseconds between attempts to start a
consumer if it fails to start for non-fatal reasons. Default 5000.
Mutually exclusive with r ecover yBackCf f .

Specifies the BackOf f for intervals between attempts to start

a consumer if it fails to start for non-fatal reasons. Default is

Fi xedBackOf f with unlimited retries every 5 seconds. Mutually
exclusive with r ecoveryl nterval .

Determines whether the single consumer in this container

has exclusive access to the queue(s). The concurrency of the
container must be 1 when this is true. If another consumer

has exclusive access, the container will attempt to recover

the consumer, according to the r ecovery-i nt erval or
recovery- back- of f . When using the namespace, this attribute
appears on the <rabbit:listener/> element along with the queue
names. Default false.

rabbi t Adm n
(admi n)

m ssi ngQueuesFat al
(m ssing-queues-fatal)

When a listener container listens to at least one auto-delete
queue and it is found to be missing during startup, the container
uses a Rabbi t Admi n to declare the queue and any related
bindings and exchanges. If such elements are configured to
use conditional declaration (see the section called “Conditional
Declaration”), the container must use the admin that was
configured to declare those elements. Specify that admin here;
only required when using auto-delete queues with conditional
declaration. If you do not wish the auto-delete queue(s) to be
declared until the container is started, set aut o- st art up to

f al se on the admin. Defaults to a Rabbi t Admi n that will
declare all non-conditional elements.

Starting with version 1.3.5,
Si npl eMessageli st ener Cont ai ner has this new property.

When set to t r ue (default), if none of the configured queues are
available on the broker, it is considered fatal. This causes the
application context to fail to initialize during startup; also, when
the queues are deleted while the container is running, by default,
the consumers make 3 retries to connect to the queues (at 5
second intervals) and stop the container if these attempts fail.

This was not configurable in previous versions.

1.6.0.M1

Spring AMQP 63

Spring AMQP

Property (Attribute) Description

When set to f al se, after making the 3 retries, the container

will go into recovery mode, as with other problems, such as

the broker being down. The container will attempt to recover
according to the r ecover yl nt er val property. During each
recovery attempt, each consumer will again try 4 times to
passively declare the queues at 5 second intervals. This process
will continue indefinitely.

You can also use a properties bean to set the property globally for
all containers, as follows:

<util:properties id="spring.angp.global.properties">
<prop key="sm c. m ssi ng. queues. f at al " >f al se</ prop>
</util:properties>

This global property will not be applied to any containers that
have an explicit mi ssi ngQueuesFat al property set.

The default retry properties (3 retries at 5 second intervals) can
be overridden using the properties below.

ni smat chedQueuesFat al This was added in version 1.6. When the container starts, if
() SR CERONATEERUETET) this property is true (default: false), the container checks that
all queues declared in the context are compatible with queues
already on the broker. If mismatched properties (e.g. aut o-
del et e) or arguments (e.g. X- nessage-ttl) exist, the
container (and application context) will fail to start with a fatal
exception.

If the problem is detected during recovery (e.g. after a lost
connection), the container will be stopped.

There must be a single Rabbi t Adni n in the application context
(or one specifically configured on the container using the
r abbi t Admi n property); otherwise this property must be f al se.

Note

If the broker is not available during initial startup, the
container will start and the conditions will be checked when
the connection is established.

Important

the check is done against all queues in the context, not just
the queues that a particular listener is configured to use. If
you wish to limit the checks to just those queues used by a
container, you should configure a separate Rabbi t Admi n
for the container, and provide a reference to it using the

r abbi t Admi n property. See the section called “Conditional
Declaration” for more information.

1.6.0.M1 Spring AMQP 64

Spring AMQP

Property (Attribute)

Description

aut oDecl are
(aut o- decl ar e)

Starting with version 1.4, Si npl eMessageli st ener Cont ai ner
has this new property.

When set to t r ue (default), the container will use a

Rabbi t Adni n to redeclare all AMQP objects (Queues,
Exchanges, Bindings), if it detects that at least one of its queues
is missing during startup, perhaps because it's an aut o- del et e
or an expired queue, but the redeclaration will proceed if the
queue is missing for any reason. To disable this behavior, set this
property to f al se. Note that the container will fail to start if all of
its queues are missing.

Note

Prior to version 1.6, if there was more than one admin in
the context, the container would randomly select one. If
there were no admins, it would create one internally. In
either case, this could cause unexpected results. Starting
with version 1.6, for aut oDecl ar e to work, there must be
exactly one Rabbi t Admi n in the context, or a reference
to a specific instance must be configured on the container
using the r abbi t Adni n property.

decl arationRetries
(declaration-retries)

Starting with versions 1.4.3, 1.3.9,
Si npl eMessageli st ener Cont ai ner has this new property.
The namespace attribute is available in version 1.5.x

The number of retry attempts when passive queue declaration
fails. Passive queue declaration occurs when the consumer starts
or, when consuming from multiple queues, when not all queues
were available during initialization. When none of the configured
queues can be passively declared (for any reason) after the
retries are exhausted, the container behavior is controlled by

the 'missingQueuesFatal” property above. Default: 3 retries (4
attempts).

fail edDecl arati onRetryl nterval
(failed-declaration-retry-
interval)

Starting with versions 1.4.3, 1.3.9,
Si npl eMessageli st ener Cont ai ner has this new property.
The namespace attribute is available in version 1.5.x

The interval between passive queue declaration retry attempts.
Passive queue declaration occurs when the consumer starts or,
when consuming from multiple queues, when not all queues were
available during initialization. Default: 5000 (5 seconds).

retryDecl arati onl nterval
(m ssing-queue-retry-
interval)

Starting with versions 1.4.3, 1.3.9,
Si npl eMessageli st ener Cont ai ner has this new property.
The namespace attribute is available in version 1.5.x

1.6.0.M1

Spring AMQP 65

Spring AMQP

Property (Attribute) Description

If a subset of the configured queues are available during
consumer initialization, the consumer starts consuming from
those queues. The consumer will attempt to passively declare the
missing queues using this interval. When this interval elapses,
the declarationRetries and failedDeclarationRetryInterval will
again be used. If there are still missing queues, the consumer will
again wait for this interval before trying again. This process will
continue indefinitely until all queues are available. Default: 60000

(1 minute).
consumer TagSt r at egy Starting with version 1.4.5,
(consurrer - tag- strat egy) Si npl eMessageli st ener Cont ai ner has this new property.

The namespace attribute is available in version 1.5.x

Previously, only broker-generated consumer tags can be

used; while this is still the default, you can now provide an
implementation of ConsumerTagStrategy, enabling the creation of
a (unique) tag for each consumer.

i dl eEvent I nt erval Starting with version 1.6, Si npl eMessageli st ener Cont ai ner
{1 al) & e - [EEeRr) has this new property. See the section called “Detecting Idle
Asynchronous Consumers”.

Listener Concurrency

By default, the listener container will start a single consumer which will receive messages from the
queue(s).

When examining the table in the previous section, you will see a number of properties/attributes that
control concurrency. The simplestis concur r ent Consuner s, which simply creates that (fixed) number
of consumers which will concurrently process messages.

Prior to version 1.3.0, this was the only setting available and the container had to be stopped and started
again to change the setting.

Since version 1.3.0, you can now dynamically adjust the concurr ent Consuner s property. If it is
changed while the container is running, consumers will be added or removed as necessary to adjust
to the new setting.

In addition, a new property maxConcurrent Consuners has been added and the container
will dynamically adjust the concurrency based on workload. This works in conjunction
with four additional properties: consecuti veActiveTrigger, start Consumer M nlnterval,
consecutivel dl eTri gger, st opConsuner M nl nt er val . With the default settings, the algorithm
to increase consumers works as follows:

If the maxConcur r ent Consuner s has not been reached and an existing consumer is active for 10
consecutive cycles AND at least 10 seconds has elapsed since the last consumer was started, a new
consumer is started. A consumer is considered active if it received at least one message in t xSi ze *
recei veTi meout milliseconds.

With the default settings, the algorithm to decrease consumers works as follows:

1.6.0.M1 Spring AMQP 66

Spring AMQP

If there are more than concurrent Consuner s running and a consumer detects 10 consecutive
timeouts (idle) AND the last consumer was stopped at least 60 seconds ago, a consumer will be stopped.
The timeout depends on the r ecei veTi meout and the t xSi ze properties. A consumer is considered
idle if it receives no messagesint xSi ze *r ecei veTi meout milliseconds. So, with the default timeout
(1 second) and a t xSi ze of 4, stopping a consumer will be considered after 40 seconds of idle time
(4 timeouts correspond to 1 idle detection).

Note

Practically, consumers will only be stopped if the whole container is idle for some time. This is
because the broker will share its work across all the active consumers.

Exclusive Consumer

Also starting with version 1.3, the listener container can be configured with a single exclusive consumer;
this prevents other containers from consuming from the queue(s) until the current consumer is cancelled.
The concurrency of such a container must be 1.

When using exclusive consumers, other containers will attempt to consume from the queue(s) according
totherecoveryl nt erval property, and log a WARNIng if the attempt fails.

Listener Container Queues

version 1.3 introduced a number of improvements for handling multiple queues in a listener container.

The container must be configured to listen on at least one queue; this was the case previously too, but
now queues can be added and removed at runtime. The container will recycle (cancel and re-create)
the consumers when any pre-fetched messages have been processed. See methods addQueues,
addQueueNanes, r enoveQueues and r enoveQueueNanes. When removing queues, at least one
gueue must remain.

A consumer will now start if any of its queues are available - previously the container would stop if any
gueues were unavailable. Now, this is only the case if none of the queues are available. If not all queues
are available, the container will attempt to passively declare (and consume from) the missing queue(s)
every 60 seconds.

Also, if a consumer receives a cancel from the broker (for example if a queue is deleted) the consumer
will attempt to recover and the recovered consumer will continue to process messages from any other
configured queues. Previously a cancel on one queue cancelled the entire consumer and eventually
the container would stop due to the missing queue.

If you wish to permanently remove a queue, you should update the container before or after deleting to
gueue, to avoid future attempts to consume from it.

Resilience: Recovering from Errors and Broker Failures
Introduction

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with
recovery and automatic re-connection in the event of a protocol error or broker failure. We have seen
all the relevant components already in this guide, but it should help to bring them all together here and
call out the features and recovery scenarios individually.

1.6.0.M1 Spring AMQP 67

Spring AMQP

The primary reconnection features are enabled by the CachingConnectionFactory
itself. It is also often beneficial to use the RabbitAdm n auto-declaration features. In
addition, if you care about guaranteed delivery, you probably also need to use the
channel Transacted flag in RabbitTenpl ate and Sinpl eMessageli st ener Cont ai ner
and also the Acknow edgeMbde. AUTO (or manual if you do the acks yourself) in the
Si npl eMessageli st ener Cont ai ner.

Automatic Declaration of Exchanges, Queues and Bindings

The Rabbi t Adm n component can declare exchanges, queues and bindings on startup. It does this
lazily, through a Connect i onLi st ener, so if the broker is not present on startup it doesn’t matter. The
firsttime a Connect i on is used (e.g. by sending a message) the listener will fire and the admin features
will be applied. A further benefit of doing the auto declarations in a listener is that if the connection is
dropped for any reason (e.g. broker death, network glitch, etc.) they will be applied again the next time
they are needed.

Note

Queues declared this way must have fixed names; either explicitly declared, or generated by the
framework for AnonynousQueue s. Anonymous queues are non-durable, exclusive, and auto-
delete.

Important

Automatic declaration is only performed when the Cachi ngConnect i onFact or y cache mode is
CHANNEL (the default). This limitation exists because exlusive and auto-delete queues are bound
to the connection.

Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using Rabbi t Tenpl at e
(for instance), then Spring AMQP will throw an AnmgpException (usually but not always
Angpl OExcept i on). We don't try to hide the fact that there was a problem, so you have to be able to
catch and respond to the exception. The easiest thing to do if you suspect that the connection was lost,
and it wasn't your fault, is to simply try the operation again. You can do this manually, or you could look
at using Spring Retry to handle the retry (imperatively or declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the
parameters of the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP
also provides some convenience factory beans for creating Spring Retry interceptors in a convenient
form for AMQP use cases, with strongly typed callback interfaces for you to implement custom
recovery logic. See the Javadocs and properties of St at ef ul Ret r yQper ati onsl nt er cept or and
St at el essRetryQper ati onsl nt er cept or for more detail. Stateless retry is appropriate if there is
no transaction or if a transaction is started inside the retry callback. Note that stateless retry is simpler to
configure and analyse than stateful retry, but it is not usually appropriate if there is an ongoing transaction
which must be rolled back or definitely is going to roll back. A dropped connection in the middle of a
transaction should have the same effect as a rollback, so for reconnection where the transaction is
started higher up the stack, stateful retry is usually the best choice.

Starting with version 1.3, a builder API is provided to aid in assembling these interceptors using Java
(orin @onfi gur ati on classes), for example:

1.6.0.M1 Spring AMQP 68

Spring AMQP

@Bean
public Stateful RetryOperationslnterceptor interceptor() {
return RetrylnterceptorBuilder.stateful ()
. maxAt t enpt s(5)
. backOf f Opti ons(1000, 2.0, 10000) // initiallnterval, nultiplier, maxlnterval
Lbuild();

Only a subset of retry capabilities can be configured this way; more advanced features would need the
configuration of a Ret ryTenpl at e as a Spring bean. See the Spring Retry Javadocs for complete
information about available policies and their configuration.

Message Listeners and the Asynchronous Case

IfaMessageli st ener fails because of a business exception, the exception is handled by the message
listener container and then it goes back to listening for another message. If the failure is caused by a
dropped connection (not a business exception), then the consumer that is collecting messages for the
listener has to be cancelled and restarted. The Si npl eMessageli st ener Cont ai ner handles this
seamlessly, and it leaves a log to say that the listener is being restarted. In fact it loops endlessly trying
to restart the consumer, and only if the consumer is very badly behaved indeed will it give up. One side
effect is that if the broker is down when the container starts, it will just keep trying until a connection
can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need more
thought and some custom configuration, especially if transactions and/or container acks are in use. Prior
to 2.8.x, RabbitMQ had no definition of dead letter behaviour, so by default a message that is rejected
or rolled back because of a business exception can be redelivered ad infinitum. To put a limit in the
client on the number of re-deliveries, one choice is a St at ef ul Ret r yOper ati onsl nt er cept or in
the advice chain of the listener. The interceptor can have a recovery callback that implements a custom
dead letter action: whatever is appropriate for your particular environment.

Another alternative is to set the container’s rejectRequeued property to false. This causes all failed
messages to be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering the
message to a Dead Letter Exchange.

Or, you can throw a AngpRej ect AndDont RequeueExcept i on; this prevents message requeuing,
regardless of the setting of the def aul t RequeueRej ect ed property.

Often, a combination of both techniques will be used. Use a
St at ef ul Ret ryQper ati onsl nt er cept or inthe advice chain, where it's MessageRecover throws
an AngpRej ect AndDont RequeueExcept i on. The MessageRecover is called when all retries have
been exhausted. The default MessageRecover er simply consumes the errant message and emits a
WARN message. In which case, the message is ACK’d and won't be sent to the Dead Letter Exchange,
if any.

Starting with version 1.3, a new Republ i shMessageRecover er is provided, to allow publishing of
failed messages after retries are exhausted:

@Bean
RetryOperationslnterceptor interceptor() {
return RetrylnterceptorBuilder.statel ess()
. maxAt t enpt s(5)
.recoverer (new Republ i shMessageRecover er (angpTenpl ate(), "bar", "baz"))
.bui 1 d();

1.6.0.M1 Spring AMQP 69

http://static.springsource.org/spring-retry/docs/api/current/

Spring AMQP

The Republ i shMessageRecover er publishes the message with additional information in message
headers, such as the exception message, stack trace, original exchange and routing key. Additional
headers can be added by creating a subclass and overriding addi t i onal Header s() .

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The
default configuration will retry for all exceptions. Given that user exceptions will be wrapped in a
Li st ener Execut i onFai | edExcepti on we need to ensure that the classification examines the
exception causes. The default classifier just looks at the top level exception.

Since Spring Retry 1.0.3, the Bi nar yExcepti onCl assi fi er has a property traver seCauses
(default f al se). When t r ue it will traverse exception causes until it finds a match or there is no cause.

To use this classifier for retry, use a Si npl eRet r yPol i cy created with the constructor that takes the
max attempts, the Map of Excepti on s and the boolean (traverseCauses), and inject this policy into
the Ret ryTenpl at e.

Debugging
Spring AMQP provides extensive logging, especially at DEBUG level.

If you wish to monitor the AMQP protocol between the application and broker, you could use a tool
such as WireShark, which has a plugin to decode the protocol. Alternatively the RabbitMQ java client
comes with a very useful class Tr acer . When run as a mai n, by default, it listens on port 5673 and
connects to port 5672 on localhost. Simply run it, and change your connection factory configuration to
connect to port 5673 on localhost. It displays the decoded protocol on the console. Refer to the Tr acer
javadocs for more information.

3.2 Sample Applications

Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello World"
example that demonstrates both synchronous and asynchronous message reception. It provides an
excellent starting point for acquiring an understanding of the essential components. The second sample
is based on a stock-trading use case to demonstrate the types of interaction that would be common in
real world applications. In this chapter, we will provide a quick walk-through of each sample so that you
can focus on the most important components. The samples are both Maven-based, so you should be
able to import them directly into any Maven-aware IDE (such as SpringSource Tool Suite).

Hello World

Introduction

The Hello World sample demonstrates both synchronous and asynchronous message reception. You
can import the spring-rabbit-helloworld sample into the IDE and then follow the discussion below.

Synchronous Example

Within the src/main/java directory, navigate to the org.springframework.amqp.helloworld package. Open
the HelloWorldConfiguration class and notice that it contains the @Configuration annotation at class-
level and some @Bean annotations at method-level. This is an example of Spring’s Java-based
configuration. You can read more about that here.

1.6.0.M1 Spring AMQP 70

https://github.com/SpringSource/spring-amqp-samples
http://www.springsource.org/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java

Spring AMQP

@Bean
publ i ¢ Connecti onFactory connectionFactory() {
Cachi ngConnecti onFactory connectionFactory =
new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User nane("guest ") ;
connecti onFact ory. set Passwor d("guest");
return connectionFactory;

The configuration also contains an instance of Rabbi t Admi n, which by default looks for any beans of
type Exchange, Queue, or Binding and then declares them on the broker. In fact, the "helloWorldQueue"
bean that is generated in HelloWorldConfiguration is an example simply because it is an instance of
Queue.

@Bean
public Queue hel | oWr | dQueue() {

return new Queue(this. hell oWrl| dQueueNane) ;
}

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue’s
name set as its "queue" property (for receiving Messages) and for its "routingKey" property (for sending
Messages).

Now that we've explored the configuration, let's look at the code that actually uses these components.
First, open the Producer class from within the same package. It contains a main() method where the
Spring ApplicationContext is created.

public static void main(String[] args) {
Appl i cationContext context =
new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AmgpTenpl ate angpTenpl ate = cont ext . get Bean(AngpTenpl at e. cl ass) ;
angpTenpl at e. convert AndSend("Hel l o World");
Systemout.println("Sent: Hello Wrld");

As you can see in the example above, the AmgpTemplate bean is retrieved and used for sending a
Message. Since the client code should rely on interfaces whenever possible, the type is AmgpTemplate
rather than RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance
of RabbitTemplate, relying on the interface means that this code is more portable (the configuration
can be changed independently of the code). Since the convertAndSend() method is invoked, the
template will be delegating to its MessageConverter instance. In this case, it's using the default
SimpleMessageConverter, but a different implementation could be provided to the "rabbitTemplate”
bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means
it will be sharing the "rabbitTemplate” bean. That's why we configured that template with both a
“routingKey" (for sending) and "queue" (for receiving). As you saw in the section called “AmgpTemplate”,
you could instead pass the routingKey argument to the send method and the queue argument
to the receive method. The Consumer code is basically a mirror image of the Producer, calling
receiveAndConvert() rather than convertAndSend().

public static void main(String[] args) {
Appl i cati onCont ext context =
new Annot at i onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AngpTenpl at e angpTenpl ate = cont ext . get Bean(AngpTenpl at e. cl ass) ;
System out. println("Received: " + angpTenpl ate. recei veAndConvert());

1.6.0.M1 Spring AMQP 71

Spring AMQP

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello
World" in the console output.

Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a slightly
more advanced but significantly more powerful option. With a few modifications, the Hello World sample
can provide an example of asynchronous reception, a.k.a. Message-driven POJOs. In fact, there is a
sub-package that provides exactly that: org.springframework.amqgp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it
creates a "connectionFactory" and "rabbitTemplate" bean. This time, since the configuration is dedicated
to the message sending side, we don’t even need any Queue definitions, and the RabbitTemplate only
has the routingKey property set. Recall that messages are sent to an Exchange rather than being sent
directly to a Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are
bound to that default Exchange with their name as the routing key. That is why we only need to provide
the routing key here.

publ i ¢ Rabbit Tenpl ate rabbitTenpl ate() {
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
tenpl at e. set Routi ngKey(t hi s. hel | oWor | dQueueNane) ;
return tenpl ate;

Since this sample will be demonstrating asynchronous message reception, the producing side
is designed to continuously send messages (if it were a message-per-execution model like the
synchronous version, it would not be quite so obvious that it is in fact a message-driven consumer).
The component responsible for sending messages continuously is defined as an inner class within the
ProducerConfiguration. It is configured to execute every 3 seconds.

static class Schedul edProducer {

@\ut owi r ed
private vol atile RabbitTenpl ate rabbit Tenpl at e;

private final Atom clnteger counter = new Atom clnteger();

@chedul ed(fi xedRate = 3000)
public void sendMessage() {

rabbi t Tenpl at e. convert AndSend("Hello World " + counter.increnment AndGet());
}

You don't need to understand all of the details since the real focus should be on the receiving side (which
we will cover momentarily). However, if you are not yet familiar with Spring 3.0 task scheduling support,
you can learn more here. The short story is that the "postProcessor" bean in the ProducerConfiguration
is registering the task with a scheduler.

Now, let’s turn to the receiving side. To emphasize the Message-driven POJO behavior will start with
the component that is reacting to the messages. The class is called HelloworldHandler.

public class Hell owrl dHandl er {

public void handl eMessage(String text) {
Systemout. println("Received: " + text);

}

1.6.0.M1 Spring AMQP 72

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support

Spring AMQP

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any
interfaces, and it doesn’'t even contain any imports. It is being "adapted" to the MessagelListener
interface by the Spring AMQP MessagelistenerAdapter. That adapter can then be configured
on a SimpleMessagelistenerContainer. For this sample, the container is created in the
ConsumerConfiguration class. You can see the POJO wrapped in the adapter there.

@Bean

publ i c Si npl eMessageli st ener Cont ai ner |i st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(connecti onFactory());
cont ai ner. set QueueNane(t hi s. hel | oWor| dQueueNane) ;
cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (new Hel | oWor | dHandl er()));
return container;

The SimpleMessageListenerContainer is a Spring lifecycle component and will start automatically by
default. If you look in the Consumer class, you will see that its main() method consists of nothing more
than a one-line bootstrap to create the ApplicationContext. The Producer’'s main() method is also a
one-line bootstrap, since the component whose method is annotated with @Scheduled will also start
executing automatically. You can start the Producer and Consumer in any order, and you should see
messages being sent and received every 3 seconds.

Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World
sample. However, the configuration is very similar - just a bit more involved. Since we've walked through
the Hello World configuration in detail, here we’ll focus on what makes this sample different. There is
a server that pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe to
the market data feed by binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdag.*"). The
other main feature of this demo is a request-reply "stock trade" interaction that is initiated by the client
and handled by the server. That involves a private "replyTo" Queue that is sent by the client within the
order request Message itself.

The Server’'s core configuration is in the RabbitServerConfiguration class
within the org.springframework.amqp.rabbit.stocks.config.server package. It extends the
AbstractStockAppRabbitConfiguration. That is where the resources common to the Server and Client(s)
are defined, including the market data Topic Exchange (whose name is app.stock.marketdata) and the
Queue that the Server exposes for stock trades (whose name is app.stock.request). In that common
configuration file, you will also see that a JsonMessageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on
the RabbitTemplate so that it does not need to provide that exchange name with every call to send a
Message. It does this within an abstract callback method defined in the base configuration class.

public void confi gureRabbit Tenpl at e(Rabbi t Tenpl at e rabbit Tenpl ate) {
r abbi t Tenpl at e. set Exchange(MARKET_DATA_EXCHANGE_NAME) ;
}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case,
because it will be bound to the default no-name exchange with its own name as the routing key. As
mentioned earlier, the AMQP specification defines that behavior.

@Bean
publ i c Queue stockRequest Queue() {
return new Queue(STOCK REQUEST_QUEUE_NAME) ;

}

1.6.0.M1 Spring AMQP 73

Spring AMQP

Now that you've seen the configuration of the Server's AMQP resources, navigate to the
org.springframework.amqgp.rabbit.stocks package under the src/test/java directory. There you will see
the actual Server class that provides a main() method. It creates an ApplicationContext based on the
server-bootstrap.xml config file. In there you will see the scheduled task that publishes dummy market
data. That configuration relies upon Spring 3.0’s "task” namespace support. The bootstrap config file
also imports a few other files. The most interesting one is server-messaging.xml which is directly under
src/main/resources. In there you will see the "messagelistenerContainer” bean that is responsible for
handling the stock trade requests. Finally have a look at the "serverHandler" bean that is defined in
"server-handlers.xml" (also in src/main/resources). That bean is an instance of the ServerHandler class
and is a good example of a Message-driven POJO that is also capable of sending reply Messages.
Notice that it is not itself coupled to the framework or any of the AMQP concepts. It simply accepts a
TradeRequest and returns a TradeResponse.

publi c TradeResponse handl eMessage(Tr adeRequest tradeRequest) { ...
}

Now that we've seen the most important configuration and code for the Server, let's
turn to the Client. The best starting point is probably RabbitClientConfiguration within the
org.springframework.amqgp.rabbit.stocks.config.client package. Notice that it declares two queues
without providing explicit names.

@Bean
public Queue market Dat aQueue() {
return angpAdm n() . decl areQueue();

}

@Bean
public Queue traderJoeQueue() {
return angpAdm n() . decl areQueue();

}

Those are private queues, and unique names will be generated automatically. The first generated
gueue is used by the Client to bind to the market data exchange that has been exposed by the Server.
Recall that in AMQP, consumers interact with Queues while producers interact with Exchanges. The
"binding" of Queues to Exchanges is what instructs the broker to deliver, or route, messages from a
given Exchange to a Queue. Since the market data exchange is a Topic Exchange, the binding can
be expressed with a routing pattern. The RabbitClientConfiguration declares that with a Binding object,
and that object is generated with the BindingBuilder’s fluent API.

@/al ue(" ${stocks. quote. pattern}")
private String market Dat aRout i ngKey;

@ean
publ i c Binding market Dat aBi ndi ng() {
return Bindi ngBui |l der. bi nd(
mar ket Dat aQueue()) .t o(mar ket Dat aExchange()).w t h(mar ket Dat aRout i ngKey) ;

Notice that the actual value has been externalized in a properties file ("client.properties” under src/main/
resources), and that we are using Spring’s @Value annotation to inject that value. This is generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making
changes to the routing pattern used for binding. Let’s try that now.

Start by running org.springframework.amqgp.rabbit.stocks.Server and then
org.springframework.amgp.rabbit.stocks.Client. You should see dummy quotes for NASDAQ stocks
because the current value associated with the stocks.quote.pattern key in client.properties is

1.6.0.M1 Spring AMQP 74

Spring AMQP

app.stock.quotes.nasdaq.. Now, while keeping the existing Server and Client running, change that
property value to app.stock.quotes.nyse. and start a second Client instance. You should see that the
first client is still receiving NASDAQ quotes while the second client receives NYSE quotes. You could
instead change the pattern to get all stocks or even an individual ticker.

The final feature we’'ll explore is the request-reply interaction from the Client’'s perspective. Recall
that we have already seen the ServerHandler that is accepting TradeRequest objects and returning
TradeResponse objects. The corresponding code on the Client side is RabbitStockServiceGateway in
the org.springframework.amqgp.rabbit.stocks.gateway package. It delegates to the RabbitTemplate in
order to send Messages.

public voi d send(TradeRequest tradeRequest) {
get Rabbi t Tenpl at e() . convert AndSend(tradeRequest, new MessagePost Processor () {
publ i c Message postProcessMessage(Message nessage) throws AngpException {
message. get MessageProperties(). set Repl yTo(new Addr ess(def aul t Repl yToQueue)) ;
try {
nmessage. get MessageProperties().setCorrel ationl d(
UUI D. randonmJUl D() . toString().getBytes("UTF-8"));
}
catch (UnsupportedEncodi ngException e) {
throw new AngpException(e);
}

return nessage,;

1)

}

Notice that prior to sending the message, it sets the "replyTo" address. It's providing the queue that was
generated by the "traderJoeQueue" bean definition shown above. Here’s the @Bean definition for the
StockServiceGateway class itself.

@Bean
public StockServiceGateway stockServiceGateway() {
Rabbi t St ockSer vi ceGat eway gat eway = new Rabbi t St ockSer vi ceGat eway() ;
gat eway. set Rabbi t Tenpl at e(rabbi t Tenpl ate());
gat eway. set Def aul t Repl yToQueue(trader JoeQueue());
return gateway;

}

If you are no longer running the Server and Client, start them now. Try sending a request with the format
of 100 TCKR. After a brief artificial delay that simulates "processing" of the request, you should see a
confirmation message appear on the Client.

3.3 Testing Support

Introduction

Writing integration for asynchronous applications is necessarily more complex than testing simpler
applications. This is made more complex when abstractions such as the @Rabbit Li stener
annotations come into the picture. The question being how to verify that, after sending a message, the
listener received the message as expected.

The framework itself has many unit and integration tests; some using mocks, others using integration
testing with a live RabbitMQ broker. You can consult those tests for some ideas for testing scenarios.

Spring AMQP version 1.6 introduced the spri ng-r abbi t -t est jar which provides support for testing
some of these more complex scenarios. It is anticipated that this project will expand over time but we
need community feedback to make suggestions for features needed to help with testing. Please use
JIRA or GitHub Issues to provide such feedback.

1.6.0.M1 Spring AMQP 75

https://jira.spring.io/browse/AMQP
https://github.com/spring-projects/spring-amqp/issues

Spring AMQP

Mockito Answer<?> Implementations
There are currently two Answer <?> implementations to help with testing:

The first, Lat chCount DownAndCal | Real Met hodAnswer provides an Answer <Voi d> that returns
nul | and counts down a latch.

Lat chCount DownAndCal | Real Met hodAnswer answer = new Lat chCount DownAndCal | Real Met hodAnswer (2) ;
doAnswer (answer)
.when(listener).foo(anyString(), anyString());

assert True(answer. get Lat ch(). awai t (10, Ti meUnit. SECONDS));

The second, LanbdaAnswer <T> provides a mechanism to optionally call the real method and provides
an opportunity to return a custom result, based on the | nvocat i onOnMock and the result (if any).

public class Foo {

public String foo(String foo) {
return foo.toUpperCase();
}

Foo foo = spy(new Foo());

doAnswer (new LanbdaAnswer <String>(true, (i, r) ->r +r))
.when(foo).foo(anyString());
assert Equal s("FOOFOCO', foo.foo("foo0"));

doAnswer (new LanbdaAnswer <String>(true, (i, r) ->r + i.getArgunents()[0]))
.when(foo).foo(anyString());
assert Equal s(" FOX 00", foo.foo("fo00"));

doAnswer (new LanbdaAnswer <String>(false, (i, r) ->
" + i.getArgunments()[0] + i.getArguments()[0])).when(foo).foo(anyString());
assert Equal s("foof 00", foo.foo("foo0"));

When using Java 7 or earlier:

doAnswer (new LanbdaAnswer <String>(true, new Val ueToReturn<String>() {
@verride
public String apply(lnvocationOnMbck i, String r) {
returnr +r;

}
})) . when(foo).foo(anyString());

@RabbitListenerTest and RabbitListenerTestHarness

Annotating one of your @onfi guration classes with @Rabbi t Li st ener Test will cause the
framework to replace the standard Rabbi t Li st ener Annot at i onBeanPost Processor with a
subclass Rabbi t Li st ener Test Har ness (it will also enable @Rabbi tLi st ener detection via
@knabl eRabbi t).

The Rabbi t Li st ener Test Har ness enhances the listener in two ways - it wraps it in a Mocki t o
Spy, enabling normal Mocki t o stubbing and verification operations. It can also add an Advi ce to the
listener enabling access to the arguments, result and or exceptions thrown. You can control which (or
both) of these are enabled with attributes on the @Rabbi t Li st ener Test . The latter is provided for
access to lower-level data about the invocation - it also supports blocking the test thread until the async
listener is called.

1.6.0.M1 Spring AMQP 76

Spring AMQP

Important

fi nal @RabbitListener methods cannot be spied or advised; also, only listeners with ani d
attribute can be spied or advised.

Let’s take a look at some examples.

Using spy:

@onfiguration
@Rrabbi t Li st ener Test
public class Config {

@ean
public Listener listener() {
return new Listener();

}

}
public class Listener {

@Rabbi t Li st ener (i d="fo0", queues="#{queuel. nane}")
public String foo(String foo) {

return foo.toUpperCase();
}

@Rabbi t Li stener (i d="bar", queues="#{queue2. nane}")
public void foo(@Payl oad String foo, @deader("angp_recei vedRoutingKey") String rk) {

}
}
public class MyTests {

@\ut owi r ed
private RabbitListenerTest Har ness harness; 0O

@est
public void test TwoWay() throws Exception {
assert Equal s("FOO', this.rabbitTenplate.convertSendAndRecei ve(this. queuel. get Name(), "fo00"));

Li stener listener = this.harness.getSpy("foo"); O
assertNot Nul | (i stener);
verify(listener).foo("foo");

}

@est

public void testOneWay() throws Exception {
Li stener |istener = this.harness. getSpy("bar");
assertNotNul | (i stener);

Lat chCount DownAndCal | Real Met hodAnswer answer = new Lat chCount DownAndCal | Real Met hodAnswer (2); O
doAnswer (answer) . when(listener).foo(anyString(), anyString()); O

this.rabbitTenpl ate. convert AndSend(t hi s. queue2. get Nane(), "bar");
t hi s. rabbit Tenpl at e. convert AndSend(t hi s. queue2. get Name(), "baz");

assert True(answer. get Latch().awai t (10, Ti meUnit. SECONDS));
verify(listener).foo("bar", this.queue2.getNanme());
verify(listener).foo("baz", this.queue2.getNane());

1.6.0.M1 Spring AMQP

Spring AMQP

O Inject the harness into the test case so we can get access to the spy.

0 Get areference to the spy so we can verify it was invoked as expected. Since this is a send and
receive operation, there is no need to suspend the test thread because it was already suspended
in the Rabbi t Tenpl at e waiting for the reply.

O In this case, we're only using a send operation so we need a latch to wait for the asynchronous
call to the listener on the container thread. We use one of the Answer<?> implementations to help
with that.

0 Configure the spy to invoke the Answer .

1.6.0.M1 Spring AMQP 78

#mockito-answer

Spring AMQP

Using the capture advice:

@onfiguration

@onponent Scan

@Rabbi t Li st ener Test (spy = fal se, capture = true)
public class Config {

@er vi ce
public class Listener {

private bool ean fail ed,;

@Rabbi t Li stener (i d="foo0", queues="#{queuel.nane}")
public String foo(String foo) {
return foo.toUpperCase();

@Rabbi t Li stener (i d="bar", queues="#{queue2.nane}")
public void foo(@ayload String foo, @deader("ammp_receivedRoutingKey") String rk) {
if (!failed & foo.equal s("ex")) {
failed = true;
t hrow new Runti neExcepti on(foo0);

}

failed = fal se;

public class MyTests {

@\ut owi r ed
private RabbitListenerTest Har ness harness; 0O

@est
public void test TwoWay() throws Exception {

I nvocati onData invocationData =

t hi s. har ness. get Next | nvocat i onDat aFor ("foo", 0, TinmeUnit.SECONDS); O
assert That (i nvocati onDat a. get Argunments()[0], equal To("fo00")); O
assert That ((String) invocationData.getResult(), equal To("FOJ"));

@est

public void testOneWay() throws Exception {
t hi s. rabbit Tenpl at e. convert AndSend(t hi s. queue2. get Name(), "bar");
this.rabbitTenpl ate. convert AndSend(t hi s. queue2. get Nane(), "baz");
this.rabbitTenpl ate. convert AndSend(t hi s. queue2. get Nane(), "ex");

I nvocationData invocationData =
this. harness. get Next | nvocati onDat aFor ("bar", 10, Ti nmeUnit.SECONDS); 0O
Obj ect[] args = invocationData. get Argunents();
assert That ((String) args[0], equal To("bar"));
assertThat ((String) args[1], equal To(queue2. getNanme()));

args = invocationData. get Argunments();
assertThat ((String) args[0], equal To("baz"));

args = invocationData. get Argunments();
assertThat ((String) args[0], equal To("ex"));
assert Equal s("ex", invocationData. get Throwabl e().get Message()); O

assert Equal s("FOO', this.rabbitTenpl ate.convertSendAndRecei ve(this. queuel. get Nanme(),

invocationData = this. harness. get NextlnvocationDat aFor ("bar", 10, Ti neUnit.SECONDS);

invocati onData = this. harness. get Nextlnvocati onDat aFor("bar", 10, Ti meUnit. SECONDS);

"foo0"));

1.6.0.M1 Spring AMQP

79

Spring AMQP

O Inject the harness into the test case so we can get access to the spy.

0 Use harness. get Next | nvocati onDat aFor () to retrieve the invocation data - in this case
since it was a request/reply scenario there is no need to wait for any time because the test thread
was suspended in the Rabbi t Tenpl at e waiting for the result.

O We can then verify that the argument and result was as expected.

0 This time we need some time to wait for the data, since it's an async operation on the container
thread and we need to suspend the test thread.

O When the listener throws an exception, it is available in the t hr owabl e property of the invocation
data.

1.6.0.M1 Spring AMQP 80

Spring AMQP

4. Spring Integration - Reference

This part of the reference documentation provides a quick introduction to the AMQP support within the
Spring Integration project.

4.1 Spring Integration AMQP Support

Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon
the Spring AMQP project. Those adapters are developed and released in the Spring Integration
project. In Spring Integration, "Channel Adapters" are unidirectional (one-way) whereas "Gateways"
are bidirectional (request-reply). We provide an inbound-channel-adapter, outbound-channel-adapter,
inbound-gateway, and outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation will be available
as part of the Spring Integration distribution. As a taster, we just provide a quick overview of the main
features here.

Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel-adapter>

<angp: i nbound- channel - adapt er channel ="f r omAMQ®P"
queue- names="sone. queue"
connection-factory="rabbitConnectionFactory"/>

Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A routing-key
may optionally be provided in addition to the exchange name.

<angp: out bound- channel - adapt er channel ="t oAMQP"
exchange- name="sone. exchange"
routing- key="f 00"
angp-t enpl at e="r abbi t Tenpl ate"/ >

Inbound Gateway

To receive an AMQP Message from a Queue, and respond to its reply-to address, configure an
<inbound-gateway>.

<angp: i nbound- gat eway request - channel ="fr omAMP"
repl y- channel ="t oAMQP"
queue- nanes="sone. queue"
connection-factory="rabbit Connecti onFactory"/>

Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from a remote client, configure
an <outbound-gateway>. A routing-key may optionally be provided in addition to the exchange name.

<anqp: out bound- gat eway request - channel ="t oAMQP"
repl y- channel =" f r omAMQP"
exchange- name="sone. exchange"
routing- key="f 00"
angp-t enpl at e="r abbi t Tenpl ate"/ >

1.6.0.M1 Spring AMQP 81

http://www.springsource.org/spring-integration

Spring AMQP

5. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you
learn about AMQP.

5.1 Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course
the authoritative source of information, and the Spring AMQP code should be very easy to understand
for anyone who is familiar with the spec. Our current implementation of the RabbitMQ support is based
on their 2.8.x version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1
document.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started
page. Since that is currently the only supported implementation for Spring AMQP, we also recommend
that as a general starting point for all broker-related concerns.

1.6.0.M1 Spring AMQP 82

http://www.amqp.org/resources/download
http://www.rabbitmq.com/how.html

Spring AMQP

Appendix A. Change History

A.1 Current Release

See Section 2.2, “What’'s New”.
A.2 Previous Releases

Changes in 1.5 Since 1.4
spring-erlang is No Longer Supported

The spri ng-erl ang jar is no longer included in the distribution. Use the section called “RabbitMQ
REST API” instead.

CachingConnectionFactory Changes
Empty Addresses Property in CachingConnectionFactory

Previously, if the connection factory was configured with a host/port, but an empty String was also
supplied for addr esses, the host and port were ignored. Now, an empty addr esses String is treated
the same as a nul | , and the host/port will be used.

URI Constructor

The Cachi ngConnect i onFact or y has an additional constructor, with a URlI parameter, to configure
the broker connection.

Connection Reset

A new method r eset Connecti on() has been added to allow users to reset the connection (or
connections). This might be used, for example, to reconnect to the primary broker after failing over to
the secondary broker. This will impact in-process operations. The existing dest r oy() method does
exactly the same, but the new method has a less daunting name.

Properties to Control Container Queue Declaration Behavior

When the listener container consumers start, they attempt to passively declare the queues to ensure
they are available on the broker. Previously, if these declarations failed, for example because the
gueues didn’t exist, or when an HA queue was being moved, the retry logic was fixed at 3 retry
attempts at 5 second intervals. If the queue(s) still do not exist, the behavior is controlled by the
m ssi ngQueuesFat al property (default true). Also, for containers configured to listen from multiple
gueues, if only a subset of queues are available, the consumer retried the missing queues on a fixed
interval of 60 seconds.

These 3 properties (declarati onRetries, fail edDecl arati onRetryl nterval,
retryDecl arationl nterval) are now configurable. See the section called “Message Listener
Container Configuration” for more information.

Class Package Change

The Rabbi t Gat eway Support class has been moved from o. s. angp. r abbi t . core. support to
0.s.anqgp. rabbit. core.

1.6.0.M1 Spring AMQP 83

Spring AMQP

DefaultMessagePropertiesConverter

The Def aul t MessagePr operti esConverter can now be configured to determine the maximum
length of a LongSt ri ng that will be converted to a St ri ng rather than a Dat al nput St r eam The
converter has an alternative constructor that takes the value as a limit. Previously, this limit was hard-
coded at 1024 bytes. (Also available in 1.4.4).

@RabbitListener Improvements
@QueueBinding for @RabbitListener

The bi ndi ngs attribute has been added to the @Rabbi t Li st ener annotation as mutually exclusive
with the queues attribute to allow the specification of the queue, its exchange and bi ndi ng for
declaration by a Rabbi t Admi n on the Broker.

SpEL in @SendTo
The default reply address (@endTo) for a @Rabbi t Li st ener can now be a SpEL expression.
Multiple Queue Names Via Properties

It is now possible to use a combination of SpEL and property placeholders to specify multiple queues
for a listener.

See the section called “Annotation-driven Listener Endpoints” for more information.
Automatic Exchange, Queue, Binding Declaration

It is now possible to declare beans that define a collection of these entities and the Rabbi t Adni n will
add the contents to the list of entities that it will declare when a connection is established. See the
section called “Declaring Collections of Exchanges, Queues, Bindings” for more information.

RabbitTemplate Changes
reply-address

The repl y- addr ess attribute has been added to the <rabbit-tenpl at e> component as an
alternative r epl y- queue. See the section called “Request/Reply Messaging” for more information.
(Also available in 1.4.4 as a setter on the Rabbi t Tenpl at e).

Blocking Receive Methods

The Rabbi t Tenpl at e now supports blocking in r ecei ve and conver t AndRecei ve methods. See
the section called “Polling Consumer” for more information.

Mandatory with SendAndReceive Methods

When the mandat ory flag is set when using sendAndRecei ve and convert SendAndRecei ve
methods, the calling thread will throw an AngpMessageRet ur nedExcept i on if the request message
can't be deliverted. See the section called “Reply Timeout” for more information.

Improper Reply Listener Configuration

The framework will attempt to verify proper configuration of a reply listener container when using a
named reply queue.

1.6.0.M1 Spring AMQP 84

Spring AMQP

See the section called “Reply Listener Container” for more information.
The RabbitManagementTemplate

The Rabbi t Managenent Tenpl at e has been introduced to monitor and configure the RabbitMQ
Broker using the REST API provided by its Management Plugin. See the section called “RabbitMQ
REST API” for more information.

Listener Container Bean Names (XML)

Important

Thei d attribute onthe <l i st ener - cont ai ner/ >element has been removed. Starting with this
release, the i d on the <l i st ener/ > child element is used alone to name the listener container
bean created for each listener element.

Normal Spring bean name overrides are applied; if a later <l i st ener/ > is parsed with the same
i d as an existing bean, the new definition will override the existing one. Previously, bean names
were composed from the ids of the <l i st ener - cont ai ner/ > and <l i st ener/ > elements.

When migrating to this release, if you have i d s on your <I i st ener - cont ai ner/ > elements,
remove them and set the i d on the child <I i st ener/ > element instead.

However, to support starting/stopping containers as a group, a new gr oup attribute has been added.
When this attribute is defined, the containers created by this element are added to a bean with this
name, of type Col | ecti on<Si npl eMessageli st ener Cont ai ner . You can iterate over this group
to start/stop containers.

Class-Level @RabbitListener

The @Rabbi t Li st ener annotation can now be applied at the class level. Together with the new
@rabbi t Handl er method annotation, this allows the handler method to be selected based on payload
type. See the section called “Multi-Method Listeners” for more information.

SimpleMessageListenerContainer: BackOff support

The Si npl eMessageli st ener Cont ai ner can now be supplied with a BackOf f instance for
consumner startup recovery. See the section called “Message Listener Container Configuration” for
more information.

Channel Close Logging

A mechanism to control the log levels of channel closure has been introduced. See the section called
“Logging Channel Close Events”.

Application Events

The Si npl eMessageli st ener Cont ai ner now emits application events when consumers fail. See
the section called “Consumer Failure Events” for more information.

Consumer Tag Configuration

Previously, the consumer tags for asynchronous consumers were generated by the broker. With this
release, it is now possible to supply a naming strategy to the listener container. See the section called
“Consumer Tags”.

1.6.0.M1 Spring AMQP 85

https://www.rabbitmq.com/management.html

Spring AMQP

MessageListenerAdapter

The Messageli st ener Adapt er now supports a map of queue names (or consumer tags) to method
names, to determine which delegate method to call based on the queue the message was received from.

LocalizedQueueConnectionFactory

A new connection factory that connects to the node in a cluster where a mirrored queue actually resides.
See the section called “Queue Affinity and the LocalizedQueueConnectionFactory”.

Anonymous Queue Naming

Starting with version 1.5.3, you can now control how AnonynousQueue names are generated. See the
section called “AnonymousQueue” for more information.

Changes in 1.4 Since 1.3
@RabbitListener Annotation

POJO listeners can be annotated with @Rabbi t Li st ener, enabled by @tnabl eRabbit or
<rabbi t: annot ati on-driven / >. Spring Framework 4.1 is required for this feature. See the section
called “Annotation-driven Listener Endpoints” for more information.

RabbitMessagingTemplate

A new Rabbi t Messagi ngTenpl at e is provided to allow users to interact with RabbitMQ using
spring- messagi ng Message's. It uses the " RabbitTenpl ate internally which can be
configured as normal. Spring Framework 4.1 is required for this feature. See the section called
“Messaging integration” for more information.

Listener Container Missing Queues Fatal Attribute

1.3.5introduced the m ssi ngQueuesFat al property on the Si npl eMessagelLi st ener Cont ai ner.
This is now available on the listener container namespace element. See the section called “Message
Listener Container Configuration”.

RabbitTemplate ConfirmCallback Interface

The confirm method on this interface has an additional parameter cause. When available, this
parameter will contain the reason for a negative acknowledgement (nack). See the section called
“Publisher Confirms and Returns”.

RabbitConnectionFactoryBean

A factory bean is now provided to create the underlying RabbitMQ Connect i onFact or y used by the
Cachi ngConnect i onFact ory. This enables configuration of SSL options using Spring’s dependency
injection. See the section called “Configuring the Underlying Client Connection Factory”.

CachingConnectionFactory

The Cachi ngConnecti onFactory now allows the connectionTi meout to be set as a
property or as an attribute in the namespace. It sets the property on the underlying RabbitMQ
Connect i onFact ory See the section called “Configuring the Underlying Client Connection Factory”.

1.6.0.M1 Spring AMQP 86

Spring AMQP

Log Appender

The Logback org. springframework. amgp. rabbit. | ogback. AngpAppender has been
introduced. It provides similar options like
org. springfranmewor k. angp. rabbi t. | og4j . AngpAppender . For more info see JavaDocs of
these classes.

The Log4j AmgpAppender now supports the deliveryMdde property (PERSI STENT or
NON_PERSI STENT, default: PERSI STENT). Previously, all log4j messages were PERSISTENT.

The appender also supports modification of the Message before sending - allowing, for example, the
addition of custom headers. Subclasses should override the post Pr ocessMessageBef or eSend() .

Listener Queues

The listener container now, by default, redeclares any missing queues during startup. A new aut o-
decl ar e attribute has been added to the <rabbit:|i stener-container> to prevent these
redeclarations. See the section called “auto-delete Queues”.

RabbitTemplate: mandatory and connectionFactorySelector Expressions

The nandatoryExpression and sendConnecti onFactorySel ector Expression and
recei veConnecti onFact or ySel ect or Expressi on SpEL Expression's properties
have been added to t he " Rabbi t Tenpl ate. The nandat or yExpressi on
is used to evaluate a nandatory boolean value against each request
message, when a ReturnCallback is in use. See the section called
“Publisher Confirms and Returns”. The sendConnecti onFact orySel ect or Expressi on
and recei veConnect i onFact or ySel ect or Expr essi on are used when an
Abst ract Routi ngConnect i onFact ory is provided, to determine the | ookupKey for the target
Connect i onFact ory at runtime on each AMQP protocol interaction operation. See the section called
“Routing Connection Factory”.

Listeners and the Routing Connection Factory

A Si npl eMessageli st ener Cont ai ner can be configured with a routing connection factory to
enable connection selection based on the queue names. See the section called “Routing Connection
Factory”.

RabbitTemplate: RecoveryCallback option

The r ecover yCal | back property has been added to be used in the r et r yTenpl at e. execut e() .
See the section called “Adding Retry Capabilities”.

MessageConversionException

This exception is now a subclass of AmgpExcept i on; if you have code like the following:

try {
tenpl at e. convert AndSend("foo", "bar", "baz");

}
catch (AngpException e) {

}

catch (MessageConversi onException e) {

}

1.6.0.M1 Spring AMQP 87

Spring AMQP

The second catch block will no longer be reachable and needs to be moved above the catch-all
AmgpExcept i on catch block.

RabbitMQ 3.4 Compatibility

Spring AMQP is now compatible with the RabbitMQ 3.4, including direct reply-to; see the section called
“Compatibility” and the section called “RabbitMQ Direct reply-to” for more information.

ContentTypeDelegatingMessageConverter

The Cont ent TypeDel egati ngMessageConverter has been introduced to select the
MessageConvert er to use, based on the cont ent Type property in the MessagePr operti es. See
the section called “Message Converters” for more information.

Changes in 1.3 Since 1.2

Listener Concurrency

The listener container now supports dynamic scaling of the number of consumers based on workload,
or the concurrency can be programmatically changed without stopping the container. See the section
called “Listener Concurrency”.

Listener Queues

The listener container now permits the queue(s) on which it is listening to be modified at runtime. Also,
the container will now start if at least one of its configured queues is available for use. See the section
called “Listener Container Queues”

This listener container will now redeclare any auto-delete queues during startup. See the section called
“auto-delete Queues”.

Consumer Priority

The listener container now supports consumer arguments, allowing the x- pri ori ty argument to be
set. See the section called “Container”.

Exclusive Consumer

The Si nmpl eMessageli st ener Cont ai ner can now be configured with a single excl usive
consumer, preventing other consumers from listening to the queue. See the section called “Exclusive
Consumer”.

Rabbit Admin

It is now possible to have the Broker generate the queue name, regardless of durable, autoDelete and
exclusive settings. See the section called “Configuring the broker”.

Direct Exchange Binding

Previously, omitting the key attribute from a bi ndi ng element of a di r ect - exchange configuration
caused the queue or exchange to be bound with an empty string as the routing key. Now it is bound with
the the name of the provided Queue or Exchange. Users wishing to bind with an empty string routing
key need to specify key="".

1.6.0.M1 Spring AMQP 88

Spring AMQP

AMQP Template

The AngpTenpl at e now provides several synchronous recei veAndRepl y methods. These are
implemented by the Rabbit Tenpl at e. For more information see the section called “Receiving
messages”.

The Rabbi t Tenpl at e now supports configuring a Ret r yTenpl at e to attempt retries (with optional
back off policy) for when the broker is not available. For more information see the section called “Adding
Retry Capabilities”.

Caching Connection Factory

The caching connection factory can now be configured to cache "Connection’s and their "Channel’s
instead of using a single connection and caching just ‘Channel’s. See the section called “Connection
and Resource Management”.

Binding Arguments

The <exchange>'s <bi ndi ng> now supports parsing of the <bi ndi ng- ar gunent s> sub-element.
The <header s- exchange>'s <bi ndi ng> now can be configured with a key/ val ue attribute pair
(to match on a single header) or with a <bi ndi ng- ar gunent s> sub-element, allowing matching on
multiple headers; these options are mutually exclusive. See the section called “Introduction”.

Routing Connection Factory

A new Sinpl eRouti ngConnecti onFactory has been introduced, to allow configuration of
Connect i onFact or i es mapping to determine the target Connect i onFact ory to use at runtime.
See the section called “Routing Connection Factory”.

MessageBuilder and MessagePropertiesBuilder

"Fluent APIs" for building messages and/or message properties is now provided. See the section called
“Message Builder API”.

RetryInterceptorBuilder

A "Fluent API" for building listener container retry interceptors is now provided. See the section called
“Failures in Synchronous Operations and Options for Retry”.

RepublishMessageRecoverer

This new MessageRecover er is provided to allow publishing a failed message to another queue
(including stack trace information in the header) when retries are exhausted. See the section called
“Message Listeners and the Asynchronous Case”.

Default Error Handler (Since 1.3.2)

A default Condi ti onal Rej ecti ngErr or Handl er has been added to the listener container. This
error handler detects message conversion problems (which are fatal) and instructs the container to
reject the message to prevent the broker from continually redelivering the unconvertible message. See
the section called “Exception Handling”.

Listener Container 'missingQueuesFatal” Property (Since 1.3.5)

The Si npl eMessageli st ener Cont ai ner now has a property m ssi ngQueuesFat al (default
t rue). Previously, missing queues were always fatal. See the section called “Message Listener
Container Configuration”.

1.6.0.M1 Spring AMQP 89

Spring AMQP

Changes to 1.2 Since 1.1
RabbitMQ Version

Spring AMQP now using RabbitMQ 3.1.x by default (but retains compatibility with earlier versions).
Certain deprecations have been added for features no longer supported by RabbitMQ 3.1.x - federated
exchanges and the i mmedi at e property on the Rabbi t Tenpl at e.

Rabbit Admin

The Rabbi t Adrmi n now provides an option to allow exchange, queue, and binding declarations to
continue when a declaration fails. Previously, all declarations stopped on a failure. By setting i gnor e-
decl ar at i on- excepti ons, such exceptions are logged (WARN), but further declarations continue.
An example where this might be useful is when a queue declaration fails because of a slightly different
tt 1 setting would normally stop other declarations from proceeding.

The Rabbi t Adm n now provides an additional method get QueuePr operti es() . This can be usedto
determine if a queue exists on the broker (returns null for a non-existent queue). In addition, the current
number of messages in the queue, as well as the current number of consumers is returned.

Rabbit Template

Previously, when using the . . . sendAndRecei ve() methods were used with a fixed reply queue, two
custom headers were used for correlation data and to retain/restore reply queue information. With this
release, the standard message property correl ati onl d is used by default, although the user can
specifiy a custom property to use instead. In addition, nested r epl yTo information is now retained
internally in the template, instead of using a custom header.

The i medi at e property is deprecated; users must not set this property when using RabbitMQ 3.0.x
or greater.

JSON Message Converters

A Jackson 2.x MessageConverter is now provided, along with the existing converter that uses
Jackson 1.x.

Automatic Declaration of Queues, etc

Previously, when declaring queues, exchanges and bindings, it was not possible to define which
connection factory was used for the declarations, each Rabbi t Adm n would declare all components
using its connection.

Starting with this release, it is now possible to limit declarations to specific Rabbi t Admi n instances.
See the section called “Conditional Declaration”.

AMQP Remoting

Facilities are now provided for using Spring Remoting techniques, using AMQP as the transport for the
RPC calls. For more information see the section called “Spring Remoting with AMQP”

Requested Heart Beats

Several users have asked for the underlying client connection factory’s r equest edHear t Beat s
property to be exposed on the Spring AMQP Cachi ngConnecti onFact ory. This is now available;

1.6.0.M1 Spring AMQP 90

Spring AMQP

previously, it was necessary to configure the AMQP client factory as a separate bean and provide a
reference to it in the Cachi ngConnect i onFact ory.

Changes to 1.1 Since 1.0

General

Spring-AMQP is now built using gradle.

Adds support for publisher confirms and returns.

Adds support for HA queues, and broker failover.

Adds support for Dead Letter Exchanges/Dead Letter Queues.
AMQP Log4j Appender

Adds an option to support adding a message id to logged messages.

Adds an option to allow the specification of a Char set name to be used when converting String s
to “byte[].

1.6.0.M1 Spring AMQP 91

	Spring AMQP
	Table of Contents
	1. Preface
	2. Introduction
	2.1 Quick Tour for the impatient
	Introduction
	Compatibility
	Very, Very Quick
	With XML Configuration
	With Java Configuration

	2.2 What’s New
	Changes in 1.6 Since 1.5
	Testing Support
	Namespace Changes
	Connection Factory
	Queue Definitions

	Listener Container Changes
	Idle Message Listener Detection
	Mismatched Queue Detection

	AutoDeclare and RabbitAdmins
	AmqpTemplate: receive with timeout
	AsyncRabbitTemplate
	RabbitTemplate Changes
	Message Properties
	CorrelationId
	Long String Headers

	RabbitAdmin Changes
	Declaration Failures

	@RabbitListener Changes
	Delayed Message Exchange

	Earlier Releases

	3. Reference
	3.1 Using Spring AMQP
	AMQP Abstractions
	Introduction
	Message
	Exchange
	Queue
	Binding

	Connection and Resource Management
	Introduction
	Configuring the Underlying Client Connection Factory
	Configuring SSL
	Routing Connection Factory
	Queue Affinity and the LocalizedQueueConnectionFactory
	Publisher Confirms and Returns
	Logging Channel Close Events

	AmqpTemplate
	Introduction
	Adding Retry Capabilities
	Publisher Confirms and Returns
	Messaging integration

	Sending messages
	Introduction
	Message Builder API
	Publisher Returns
	Batching

	Receiving messages
	Introduction
	Polling Consumer
	Asynchronous Consumer
	Message Listener
	MessageListenerAdapter
	Container
	auto-delete Queues

	Batched Messages
	Consumer Failure Events
	Consumer Tags
	Annotation-driven Listener Endpoints
	Introduction
	Enable listener endpoint annotations
	Message Conversion for Annotated Methods
	Programmatic Endpoint Registration
	Annotated Endpoint Method Signature
	Listening to Multiple Queues
	Reply Management
	Multi-Method Listeners
	@Repeatable @RabbitListener
	Container Management

	Threading and Asynchronous Consumers
	Detecting Idle Asynchronous Consumers
	xml
	Java
	@RabbitListener
	Event Consumption

	Message Converters
	Introduction
	SimpleMessageConverter
	Converting From a Message
	Converting To a Message

	JsonMessageConverter and Jackson2JsonMessageConverter
	MarshallingMessageConverter
	ContentTypeDelegatingMessageConverter
	Message Properties Converters

	Modifying Messages - Compression and More
	Request/Reply Messaging
	Introduction
	Reply Timeout
	RabbitMQ Direct reply-to
	Message Correlation With A Reply Queue
	Reply Listener Container
	AsyncRabbitTemplate
	Spring Remoting with AMQP

	Configuring the broker
	Introduction
	Declaring Collections of Exchanges, Queues, Bindings
	Conditional Declaration
	AnonymousQueue

	Delayed Message Exchange
	RabbitMQ REST API
	Exception Handling
	Transactions
	Introduction
	A note on Rollback of Received Messages
	Using the RabbitTransactionManager

	Message Listener Container Configuration
	Listener Concurrency
	Exclusive Consumer
	Listener Container Queues
	Resilience: Recovering from Errors and Broker Failures
	Introduction
	Automatic Declaration of Exchanges, Queues and Bindings
	Failures in Synchronous Operations and Options for Retry
	Message Listeners and the Asynchronous Case
	Exception Classification for Retry

	Debugging

	3.2 Sample Applications
	Introduction
	Hello World
	Introduction
	Synchronous Example
	Asynchronous Example

	Stock Trading

	3.3 Testing Support
	Introduction
	Mockito Answer<?> Implementations
	@RabbitListenerTest and RabbitListenerTestHarness

	4. Spring Integration - Reference
	4.1 Spring Integration AMQP Support
	Introduction
	Inbound Channel Adapter
	Outbound Channel Adapter
	Inbound Gateway
	Outbound Gateway

	5. Other Resources
	5.1 Further Reading

	Appendix A. Change History
	A.1 Current Release
	A.2 Previous Releases
	Changes in 1.5 Since 1.4
	spring-erlang is No Longer Supported
	CachingConnectionFactory Changes
	Empty Addresses Property in CachingConnectionFactory
	URI Constructor
	Connection Reset

	Properties to Control Container Queue Declaration Behavior
	Class Package Change
	DefaultMessagePropertiesConverter
	@RabbitListener Improvements
	@QueueBinding for @RabbitListener
	SpEL in @SendTo
	Multiple Queue Names Via Properties

	Automatic Exchange, Queue, Binding Declaration
	RabbitTemplate Changes
	reply-address
	Blocking Receive Methods
	Mandatory with SendAndReceive Methods
	Improper Reply Listener Configuration

	The RabbitManagementTemplate
	Listener Container Bean Names (XML)
	Class-Level @RabbitListener
	SimpleMessageListenerContainer: BackOff support
	Channel Close Logging
	Application Events
	Consumer Tag Configuration
	MessageListenerAdapter
	LocalizedQueueConnectionFactory
	Anonymous Queue Naming

	Changes in 1.4 Since 1.3
	@RabbitListener Annotation
	RabbitMessagingTemplate
	Listener Container Missing Queues Fatal Attribute
	RabbitTemplate ConfirmCallback Interface
	RabbitConnectionFactoryBean
	CachingConnectionFactory
	Log Appender
	Listener Queues
	RabbitTemplate: mandatory and connectionFactorySelector Expressions
	Listeners and the Routing Connection Factory
	RabbitTemplate: RecoveryCallback option
	MessageConversionException
	RabbitMQ 3.4 Compatibility
	ContentTypeDelegatingMessageConverter

	Changes in 1.3 Since 1.2
	Listener Concurrency
	Listener Queues
	Consumer Priority
	Exclusive Consumer
	Rabbit Admin
	Direct Exchange Binding
	AMQP Template
	Caching Connection Factory
	Binding Arguments
	Routing Connection Factory
	MessageBuilder and MessagePropertiesBuilder
	RetryInterceptorBuilder
	RepublishMessageRecoverer
	Default Error Handler (Since 1.3.2)
	Listener Container 'missingQueuesFatal` Property (Since 1.3.5)

	Changes to 1.2 Since 1.1
	RabbitMQ Version
	Rabbit Admin
	Rabbit Template
	JSON Message Converters
	Automatic Declaration of Queues, etc
	AMQP Remoting
	Requested Heart Beats

	Changes to 1.1 Since 1.0
	General
	AMQP Log4j Appender

