
Spring AMQP

2.0.0.M4

Mark Pollack , Mark Fisher , Oleg Zhurakousky , Dave Syer ,
Gary Russell , Gunnar Hillert , Artem Bilan , Stéphane Nicoll

Copyright © 2010-2017 Pivotal Software Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring AMQP

2.0.0.M4 Spring AMQP iii

Table of Contents

1. Preface .. 1
2. Introduction .. 2

2.1. Quick Tour for the impatient .. 2
Introduction .. 2

Compatibility .. 2
Very, Very Quick .. 2
With XML Configuration .. 2
With Java Configuration .. 3

2.2. What’s New .. 4
Changes in 2.0 Since 1.7 ... 4

AMQP Client library .. 4
General Changes ... 4
Deleted classes .. 4
New Listener Container .. 4
Log4j Appender .. 4
Logback Appender ... 4
RabbitTemplate Changes ... 5
Listener Adapter ... 5
Listener Container Changes ... 5
Connection Factory Changes .. 5
Retry Changes ... 6
Anonymous Queue Naming .. 6
@RabbitListener Changes .. 6
Container Conditional Rollback ... 6
Remove Jackson 1.x support .. 6
JSON Message Converter .. 6
XML Parsers .. 6

Earlier Releases ... 7
3. Reference .. 8

3.1. Using Spring AMQP .. 8
AMQP Abstractions .. 8

Introduction .. 8
Message .. 8
Exchange ... 9
Queue ... 9
Binding .. 10

Connection and Resource Management .. 11
Introduction .. 11
Configuring the Underlying Client Connection Factory ... 14
RabbitConnectionFactoryBean and Configuring SSL ... 15
Routing Connection Factory .. 15
Queue Affinity and the LocalizedQueueConnectionFactory 16
Publisher Confirms and Returns .. 18
Connection and Channel Listeners .. 18
Logging Channel Close Events ... 19
Runtime Cache Properties .. 19
RabbitMQ Automatic Connection/Topology recovery ... 21

Spring AMQP

2.0.0.M4 Spring AMQP iv

Adding Custom Client Connection Properties ... 21
AmqpTemplate ... 22

Introduction .. 22
Adding Retry Capabilities .. 22
Publishing is Asynchronous - How to Detect Success and Failures 23
Publisher Confirms and Returns .. 24
Scoped Operations ... 25
Messaging integration ... 26
Validated User Id ... 26

Sending messages ... 26
Introduction .. 26
Message Builder API .. 27
Publisher Returns ... 29
Batching ... 29

Receiving messages ... 30
Introduction .. 30
Polling Consumer ... 30
Asynchronous Consumer .. 31
Batched Messages ... 35
Consumer Failure Events ... 35
Consumer Tags .. 36
Annotation-driven Listener Endpoints ... 36
Threading and Asynchronous Consumers .. 47
Choosing a Container ... 48
Detecting Idle Asynchronous Consumers ... 49

Message Converters ... 50
Introduction .. 50
SimpleMessageConverter ... 51
SerializerMessageConverter .. 52
Jackson2JsonMessageConverter ... 52
MarshallingMessageConverter ... 54
ContentTypeDelegatingMessageConverter ... 55
Java Deserialization ... 55
Message Properties Converters .. 55

Modifying Messages - Compression and More ... 57
Request/Reply Messaging .. 57

Introduction .. 57
Reply Timeout .. 58
RabbitMQ Direct reply-to .. 58
Message Correlation With A Reply Queue ... 59
Reply Listener Container .. 59
AsyncRabbitTemplate ... 61
Spring Remoting with AMQP .. 63

Configuring the broker .. 65
Introduction .. 65
Builder API for Queues and Exchanges ... 69
Declaring Collections of Exchanges, Queues, Bindings 70
Conditional Declaration ... 71
A Note On "id" and "name" Attributes .. 73
AnonymousQueue .. 73

Spring AMQP

2.0.0.M4 Spring AMQP v

Delayed Message Exchange ... 75
RabbitMQ REST API .. 75
Exception Handling ... 76
Transactions .. 77

Introduction .. 77
Conditional Rollback ... 79
A note on Rollback of Received Messages .. 79
Using the RabbitTransactionManager .. 80

Message Listener Container Configuration ... 80
Listener Concurrency .. 88

SimpleMessageListenerContainer .. 88
DirectMessageListenerContainer ... 89

Exclusive Consumer ... 89
Listener Container Queues ... 89
Resilience: Recovering from Errors and Broker Failures ... 90

Introduction .. 90
Automatic Declaration of Exchanges, Queues and Bindings 90
Failures in Synchronous Operations and Options for Retry 90
Message Listeners and the Asynchronous Case .. 91
Exception Classification for Retry .. 92

Debugging ... 92
3.2. Logging Subsystem AMQP Appenders ... 93

Common properties .. 93
Log4j2 Appender .. 95
Logback Appender ... 95
Customizing the Messages ... 95
Customizing the Client Properties .. 95

Simple String Properties ... 95
Advanced Technique for Logback ... 96

3.3. Sample Applications .. 96
Introduction .. 96
Hello World .. 97

Introduction .. 97
Synchronous Example .. 97
Asynchronous Example .. 98

Stock Trading ... 99
Receiving JSON from Non-Spring Applications ... 102

3.4. Testing Support ... 102
Introduction .. 102
Mockito Answer<?> Implementations ... 103
@RabbitListenerTest and RabbitListenerTestHarness ... 103
TestRabbitTemplate .. 107
JUnit @Rules ... 109

BrokerRunning .. 109
LongRunningIntegrationTest .. 110

4. Spring Integration - Reference .. 111
4.1. Spring Integration AMQP Support ... 111

Introduction .. 111
Inbound Channel Adapter ... 111
Outbound Channel Adapter ... 111

Spring AMQP

2.0.0.M4 Spring AMQP vi

Inbound Gateway ... 111
Outbound Gateway ... 111

5. Other Resources .. 112
5.1. Further Reading ... 112

A. Change History .. 113
A.1. Current Release .. 113
A.2. Previous Releases ... 113

Changes in 1.6 Since 1.5 ... 113
Testing Support .. 113
Builder ... 113
Namespace Changes ... 113
Listener Container Changes .. 113
AutoDeclare and RabbitAdmins ... 114
AmqpTemplate: receive with timeout ... 114
AsyncRabbitTemplate ... 114
RabbitTemplate Changes .. 114
Message Properties .. 114
RabbitAdmin Changes .. 115
@RabbitListener Changes .. 115
Delayed Message Exchange ... 116
Exchange internal flag .. 116
CachingConnectionFactory Changes ... 116
RabbitConnectionFactoryBean ... 116
Java Deserialization .. 116
JSON MessageConverter .. 116
Logging Appenders ... 116

Changes in 1.5 Since 1.4 ... 117
spring-erlang is No Longer Supported .. 117
CachingConnectionFactory Changes ... 117
Properties to Control Container Queue Declaration Behavior 117
Class Package Change .. 117
DefaultMessagePropertiesConverter .. 117
@RabbitListener Improvements ... 118
Automatic Exchange, Queue, Binding Declaration .. 118
RabbitTemplate Changes .. 118
The RabbitManagementTemplate .. 118
Listener Container Bean Names (XML) .. 119
Class-Level @RabbitListener .. 119
SimpleMessageListenerContainer: BackOff support .. 119
Channel Close Logging ... 119
Application Events .. 119
Consumer Tag Configuration ... 119
MessageListenerAdapter ... 119
LocalizedQueueConnectionFactory .. 119
Anonymous Queue Naming .. 120

Changes in 1.4 Since 1.3 ... 120
@RabbitListener Annotation .. 120
RabbitMessagingTemplate .. 120
Listener Container Missing Queues Fatal Attribute .. 120
RabbitTemplate ConfirmCallback Interface ... 120

Spring AMQP

2.0.0.M4 Spring AMQP vii

RabbitConnectionFactoryBean ... 120
CachingConnectionFactory .. 120
Log Appender .. 120
Listener Queues ... 121
RabbitTemplate: mandatory and connectionFactorySelector Expressions 121
Listeners and the Routing Connection Factory ... 121
RabbitTemplate: RecoveryCallback option ... 121
MessageConversionException ... 121
RabbitMQ 3.4 Compatibility ... 121
ContentTypeDelegatingMessageConverter ... 122

Changes in 1.3 Since 1.2 ... 122
Listener Concurrency .. 122
Listener Queues ... 122
Consumer Priority ... 122
Exclusive Consumer ... 122
Rabbit Admin ... 122
Direct Exchange Binding ... 122
AMQP Template ... 122
Caching Connection Factory ... 123
Binding Arguments ... 123
Routing Connection Factory .. 123
MessageBuilder and MessagePropertiesBuilder ... 123
RetryInterceptorBuilder .. 123
RepublishMessageRecoverer .. 123
Default Error Handler (Since 1.3.2) .. 123
Listener Container 'missingQueuesFatal` Property (Since 1.3.5) 123

Changes to 1.2 Since 1.1 ... 123
RabbitMQ Version .. 123
Rabbit Admin ... 124
Rabbit Template ... 124
JSON Message Converters ... 124
Automatic Declaration of Queues, etc .. 124
AMQP Remoting .. 124
Requested Heart Beats ... 124

Changes to 1.1 Since 1.0 ... 124
General .. 124
AMQP Log4j Appender ... 125

Spring AMQP

2.0.0.M4 Spring AMQP 1

1. Preface

The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging
solutions. We provide a "template" as a high-level abstraction for sending and receiving messages.
We also provide support for Message-driven POJOs. These libraries facilitate management of AMQP
resources while promoting the use of dependency injection and declarative configuration. In all of these
cases, you will see similarities to the JMS support in the Spring Framework. For other project-related
information visit the Spring AMQP project homepage.

http://projects.spring.io/spring-amqp/

Spring AMQP

2.0.0.M4 Spring AMQP 2

2. Introduction
This first part of the reference documentation is a high-level overview of Spring AMQP and the underlying
concepts and some code snippets that will get you up and running as quickly as possible.

2.1 Quick Tour for the impatient

Introduction

This is the 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmq.com/download.html). Then
grab the spring-rabbit JAR and all its dependencies - the easiest way to do that is to declare a
dependency in your build tool, e.g. for Maven:

<dependency>

 <groupId>org.springframework.amqp</groupId>

 <artifactId>spring-rabbit</artifactId>

 <version>2.0.0.M4</version>

</dependency>

And for gradle:

compile 'org.springframework.amqp:spring-rabbit:2.0.0.M4'

Compatibility

The minimum Spring Framework version dependency is 5.0.x.

The minimum amqp-client java client library version is 4.1.0.

Note the this refers to the java client library; generally, it will work with older broker versions.

Very, Very Quick

Using plain, imperative Java to send and receive a message:

ConnectionFactory connectionFactory = new CachingConnectionFactory();

AmqpAdmin admin = new RabbitAdmin(connectionFactory);

admin.declareQueue(new Queue("myqueue"));

AmqpTemplate template = new RabbitTemplate(connectionFactory);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

Note that there is a ConnectionFactory in the native Java Rabbit client as well. We are using the
Spring abstraction in the code above. We are relying on the default exchange in the broker (since none
is specified in the send), and the default binding of all queues to the default exchange by their name
(hence we can use the queue name as a routing key in the send). Those behaviours are defined in
the AMQP specification.

With XML Configuration

The same example as above, but externalizing the resource configuration to XML:

ApplicationContext context =

 new GenericXmlApplicationContext("classpath:/rabbit-context.xml");

AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

http://www.rabbitmq.com/download.html

Spring AMQP

2.0.0.M4 Spring AMQP 3

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:rabbit="http://www.springframework.org/schema/rabbit"

 xsi:schemaLocation="http://www.springframework.org/schema/rabbit

 http://www.springframework.org/schema/rabbit/spring-rabbit.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <rabbit:connection-factory id="connectionFactory"/>

 <rabbit:template id="amqpTemplate" connection-factory="connectionFactory"/>

 <rabbit:admin connection-factory="connectionFactory"/>

 <rabbit:queue name="myqueue"/>

</beans>

The <rabbit:admin/> declaration by default automatically looks for beans of type Queue, Exchange
and Binding and declares them to the broker on behalf of the user, hence there is no need to use that
bean explicitly in the simple Java driver. There are plenty of options to configure the properties of the
components in the XML schema - you can use auto-complete features of your XML editor to explore
them and look at their documentation.

With Java Configuration

The same example again with the external configuration in Java:

ApplicationContext context =

 new AnnotationConfigApplicationContext(RabbitConfiguration.class);

AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

........

@Configuration

public class RabbitConfiguration {

 @Bean

 public ConnectionFactory connectionFactory() {

 return new CachingConnectionFactory("localhost");

 }

 @Bean

 public AmqpAdmin amqpAdmin() {

 return new RabbitAdmin(connectionFactory());

 }

 @Bean

 public RabbitTemplate rabbitTemplate() {

 return new RabbitTemplate(connectionFactory());

 }

 @Bean

 public Queue myQueue() {

 return new Queue("myqueue");

 }

}

Spring AMQP

2.0.0.M4 Spring AMQP 4

2.2 What’s New

Changes in 2.0 Since 1.7

AMQP Client library

Spring AMQP now uses the new 4.0.x version of the amqp-client library provided by the RabbitMQ
team. This client has auto recovery configured by default; see the section called “RabbitMQ Automatic
Connection/Topology recovery”.

Note

The 4.0.x client enables automatic recovery by default; while compatible with this feature,
Spring AMQP has its own recovery mechanisms and the client recovery feature generally
isn’t needed. It is recommended to disable amqp-client automatic recovery, to avoid getting
AutoRecoverConnectionNotCurrentlyOpenException s when the broker is available,
but the connection has not yet recovered. Starting with version 1.7.1, Spring AMQP disables
it unless you explicitly create your own RabbitMQ connection factory and provide it to the
CachingConnectionFactory. RabbitMQ ConnectionFactory instances created by the
RabbitConnectionFactoryBean will also have the option disabled by default.

General Changes

The ExchangeBuilder now builds durable exchanges by default. The @Exchange annotation used
within a @QeueueBinding also declares durable exchanges by default. The @Queue annotation
used within a @RabbitListener by default declares durable queues if named and non-durable if
anonymous. See the section called “Builder API for Queues and Exchanges” and the section called
“Annotation-driven Listener Endpoints” for more information.

Deleted classes

UniquelyNameQueue is no longer provided. It is unusual to create a durable non auto-delete
queue with a unique name. This class has been deleted; if you require its functionality, use new
Queue(UUID.randomUUID().toString()).

New Listener Container

The DirectMessageListenerContainer has been added alongside the existing
SimpleMessageListenerContainer. See the section called “Choosing a Container” and the section
called “Message Listener Container Configuration” for information about choosing which container to
use as well as how to configure them.

Log4j Appender

This appender is no longer available due to the end-of-life of log4j. See Section 3.2, “Logging Subsystem
AMQP Appenders” for information about the available log appenders.

Logback Appender

This appender no longer captures caller data (method, line number) by default; it can be re-enabled by
setting the includeCallerData configuration option. See Section 3.2, “Logging Subsystem AMQP
Appenders” for information about the available log appenders.

Spring AMQP

2.0.0.M4 Spring AMQP 5

RabbitTemplate Changes

Important

Previously, a non-transactional RabbitTemplate participated in an existing transaction if it
ran on a transactional listener container thread. This was a serious bug; however, users might
have relied on this behavior. Starting with version 1.6.2, you must set the channelTransacted
boolean on the template for it to participate in the container transaction.

The RabbitTemplate now uses a DirectReplyToMessageListenerContainer (by default)
instead of creating a new consumer for each request. See the section called “RabbitMQ Direct reply-
to” for more information.

The AsyncRabbitTemplate now supports Direct reply-to; see the section called
“AsyncRabbitTemplate” for more information.

The RabbitTemplate and AsyncRabbitTemplate now have receiveAndConvert and
convertSendAndReceiveAsType methods that take a ParameterizedTypeReference<T>
argument, allowing the caller to specify the type to convert the result to. This is particularly
useful for complex types or when type information is not conveyed in message headers. Requires
a SmartMessageConverter such as the Jackson2JsonMessageConverter. See the section
called “Receiving messages”, the section called “Request/Reply Messaging”, the section called
“AsyncRabbitTemplate”, and the section called “Converting From a Message With RabbitTemplate” for
more information.

You can now use a RabbitTemplate to perform multiple operations on a dedicated channel. See the
section called “Scoped Operations” for more information.

Listener Adapter

A convenient FunctionalInterface is available for using lambdas with the
MessageListenerAdapter. See the section called “MessageListenerAdapter” for more information.

Listener Container Changes

Message Count

Previously, MessageProperties.getMessageCount() returned 0 for messages emitted by the
container. This property only applies when using basicGet (e.g. from RabbitTemplate.receive()
methods) and is now initialized to null for container messages.

Transaction Rollback behavior

Message requeue on transaction rollback is now consistent, regardless of whether or not a transaction
manager is configured. See the section called “A note on Rollback of Received Messages” for more
information.

Connection Factory Changes

The connection and channel listener interfaces now provide a mechanism to obtain information
about exceptions. See the section called “Connection and Channel Listeners” and the section called
“Publishing is Asynchronous - How to Detect Success and Failures” for more information.

Spring AMQP

2.0.0.M4 Spring AMQP 6

A new ConnectionNameStrategy is now provided to populate the application-specific identification
of the target RabbitMQ connection from the AbstractConnectionFactory. See the section called
“Connection and Resource Management” for more information.

Retry Changes

The MissingMessageIdAdvice is no longer provided; it’s functionality is now built-in; see the section
called “Failures in Synchronous Operations and Options for Retry” for more information.

Anonymous Queue Naming

By default, AnonymousQueues are now named with the default Base64UrlNamingStrategy instead
of a simple UUID string. See the section called “AnonymousQueue” for more information.

@RabbitListener Changes

You can now provide simple queue declarations (only bound to the default exchange) in
@RabbitListener annotations. See the section called “Annotation-driven Listener Endpoints” for
more information.

You can now configure @RabbitListener annotations so that any exceptions thrown will be returned
to the sender. You can also configure a RabbitListenerErrorHandler to handle exceptions. See
the section called “Handling Exceptions” for more information.

You can now bind a queue with multiple routing keys when using the @QueueBinding annotation.
Also @QueueBinding.exchange() now supports custom exchange types and declares durable
exchanges by default.

You can now set the concurrency of the listener container at the annotation level rather than having
to configure a different container factory for different concurrency settings.

See the section called “Annotation-driven Listener Endpoints” for more information.

Container Conditional Rollback

When using an external transaction manager (e.g. JDBC), rule-based rollback is now supported when
providing the container with a transaction attribute. It is also now more flexible when using a transaction
advice. See the section called “Conditional Rollback” for more information.

Remove Jackson 1.x support

Deprecated in previous versions, Jackson 1.x converters and related components have
now been deleted; use similar components based on Jackson 2.x. See the section called
“Jackson2JsonMessageConverter” for more information.

JSON Message Converter

When the __TypeId__ is set to Hashtable for an inbound JSON message, the default conversion
type is now LinkedHashMap; previously it was Hashtable. To revert to a Hashtable use
setDefaultMapType on the DefaultClassMapper.

XML Parsers

When parsing Queue and Exchange XML components, the parsers no longer register the name attribute
value as a bean alias if an id attribute is present. See the section called “A Note On "id" and "name"
Attributes” for more information.

Spring AMQP

2.0.0.M4 Spring AMQP 7

Earlier Releases

See Section A.2, “Previous Releases” for changes in previous versions.

Spring AMQP

2.0.0.M4 Spring AMQP 8

3. Reference
This part of the reference documentation details the various components that comprise Spring AMQP.
The main chapter covers the core classes to develop an AMQP application. This part also includes a
chapter about the sample applications.

3.1 Using Spring AMQP

In this chapter, we will explore the interfaces and classes that are the essential components for
developing applications with Spring AMQP.

AMQP Abstractions

Introduction

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution.
These modules are: spring-amqp, and spring-rabbit. The spring-amqp module contains the
org.springframework.amqp.core package. Within that package, you will find the classes that
represent the core AMQP "model". Our intention is to provide generic abstractions that do not rely on
any particular AMQP broker implementation or client library. End user code will be more portable across
vendor implementations as it can be developed against the abstraction layer only. These abstractions
are then used implemented by broker-specific modules, such as spring-rabbit. There is currently only a
RabbitMQ implementation; however the abstractions have been validated in .NET using Apache Qpid
in addition to RabbitMQ. Since AMQP operates at the protocol level in principle, the RabbitMQ client
can be used with any broker that supports the same protocol version, but we do not test any other
brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification. If
you are not, then have a look at the resources listed in Chapter 5, Other Resources

Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when
performing an operation such as basicPublish(), the content is passed as a byte-array argument
and additional properties are passed in as separate arguments. Spring AMQP defines a Message class
as part of a more general AMQP domain model representation. The purpose of the Message class is
to simply encapsulate the body and properties within a single instance so that the API can in turn be
simpler. The Message class definition is quite straightforward.

public class Message {

 private final MessageProperties messageProperties;

 private final byte[] body;

 public Message(byte[] body, MessageProperties messageProperties) {

 this.body = body;

 this.messageProperties = messageProperties;

 }

 public byte[] getBody() {

 return this.body;

 }

 public MessageProperties getMessageProperties() {

 return this.messageProperties;

 }

}

Spring AMQP

2.0.0.M4 Spring AMQP 9

The MessageProperties interface defines several common properties such as messageId,
timestamp, contentType, and several more. Those properties can also be extended with user-defined
headers by calling the setHeader(String key, Object value) method.

Exchange

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to.
Each Exchange within a virtual host of a broker will have a unique name as well as a few other properties:

public interface Exchange {

 String getName();

 String getExchangeType();

 boolean isDurable();

 boolean isAutoDelete();

 Map<String, Object> getArguments();

}

As you can see, an Exchange also has a type represented by constants defined in ExchangeTypes.
The basic types are: Direct, Topic, Fanout, and Headers. In the core package you will find
implementations of the Exchange interface for each of those types. The behavior varies across these
Exchange types in terms of how they handle bindings to Queues. For example, a Direct exchange
allows for a Queue to be bound by a fixed routing key (often the Queue’s name). A Topic exchange
supports bindings with routing patterns that may include the * and # wildcards for exactly-one and zero-
or-more, respectively. The Fanout exchange publishes to all Queues that are bound to it without taking
any routing key into consideration. For much more information about these and the other Exchange
types, check out Chapter 5, Other Resources.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange that has
no name. All Queues that are declared will be bound to that default Exchange with their names
as routing keys. You will learn more about the default Exchange’s usage within Spring AMQP in
the section called “AmqpTemplate”.

Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like
the various Exchange classes, our implementation is intended to be an abstract representation of this
core AMQP type.

Spring AMQP

2.0.0.M4 Spring AMQP 10

public class Queue {

 private final String name;

 private volatile boolean durable;

 private volatile boolean exclusive;

 private volatile boolean autoDelete;

 private volatile Map<String, Object> arguments;

 /**

 * The queue is durable, non-exclusive and non auto-delete.

 *

 * @param name the name of the queue.

 */

 public Queue(String name) {

 this(name, true, false, false);

 }

 // Getters and Setters omitted for brevity

}

Notice that the constructor takes the Queue name. Depending on the implementation, the admin
template may provide methods for generating a uniquely named Queue. Such Queues can be useful
as a "reply-to" address or other temporary situations. For that reason, the exclusive and autoDelete
properties of an auto-generated Queue would both be set to true.

Note

See the section on queues in the section called “Configuring the broker” for information about
declaring queues using namespace support, including queue arguments.

Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings
that connect Queues to Exchanges are critical for connecting those producers and consumers via
messaging. In Spring AMQP, we define a Binding class to represent those connections. Let’s review
the basic options for binding Queues to Exchanges.

You can bind a Queue to a DirectExchange with a fixed routing key.

new Binding(someQueue, someDirectExchange, "foo.bar")

You can bind a Queue to a TopicExchange with a routing pattern.

new Binding(someQueue, someTopicExchange, "foo.*")

You can bind a Queue to a FanoutExchange with no routing key.

new Binding(someQueue, someFanoutExchange)

We also provide a BindingBuilder to facilitate a "fluent API" style.

Binding b = BindingBuilder.bind(someQueue).to(someTopicExchange).with("foo.*");

Spring AMQP

2.0.0.M4 Spring AMQP 11

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a static
import for the bind() method.

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it is
not an "active" component. However, as you will see later in the section called “Configuring the broker”,
Binding instances can be used by the AmqpAdmin class to actually trigger the binding actions on the
broker. Also, as you will see in that same section, the Binding instances can be defined using Spring’s
@Bean-style within @Configuration classes. There is also a convenient base class which further
simplifies that approach for generating AMQP-related bean definitions and recognizes the Queues,
Exchanges, and Bindings so that they will all be declared on the AMQP broker upon application startup.

The AmqpTemplate is also defined within the core package. As one of the main components
involved in actual AMQP messaging, it is discussed in detail in its own section (see the section called
“AmqpTemplate”).

Connection and Resource Management

Introduction

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our "spring-
rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the ConnectionFactory
interface. The responsibility of a ConnectionFactory implementation is to provide an
instance of org.springframework.amqp.rabbit.connection.Connection which is a wrapper
for com.rabbitmq.client.Connection. The only concrete implementation we provide is
CachingConnectionFactory which, by default, establishes a single connection proxy that can be
shared by the application. Sharing of the connection is possible since the "unit of work" for messaging
with AMQP is actually a "channel" (in some ways, this is similar to the relationship between a Connection
and a Session in JMS). As you can imagine, the connection instance provides a createChannel
method. The CachingConnectionFactory implementation supports caching of those channels, and
it maintains separate caches for channels based on whether they are transactional or not. When creating
an instance of CachingConnectionFactory, the hostname can be provided via the constructor. The
username and password properties should be provided as well. If you would like to configure the size
of the channel cache (the default is 25), you could call the setChannelCacheSize() method here
as well.

Starting with version 1.3, the CachingConnectionFactory can be configured to cache connections
as well as just channels. In this case, each call to createConnection() creates a new connection
(or retrieves an idle one from the cache). Closing a connection returns it to the cache (if the cache
size has not been reached). Channels created on such connections are cached too. The use of
separate connections might be useful in some environments, such as consuming from an HA cluster,
in conjunction with a load balancer, to connect to different cluster members. Set the cacheMode to
CacheMode.CONNECTION.

Note

This does not limit the number of connections, it specifies how many idle open connections are
allowed.

Spring AMQP

2.0.0.M4 Spring AMQP 12

Starting with version 1.5.5, a new property connectionLimit is provided. When this is
set, it limits the total number of connections allowed. When set, if the limit is reached, the
channelCheckoutTimeLimit is used to wait for a connection to become idle. If the time is exceeded,
an AmqpTimeoutException is thrown.

Important

When the cache mode is CONNECTION, automatic declaration of queues etc. (See the section
called “Automatic Declaration of Exchanges, Queues and Bindings”) is NOT supported.

Also, at the time of writing, the rabbitmq-client library creates a fixed thread pool for each
connection (5 threads) by default. When using a large number of connections, you should consider
setting a custom executor on the CachingConnectionFactory. Then, the same executor
will be used by all connections and its threads can be shared. The executor’s thread pool should
be unbounded, or set appropriately for the expected utilization (usually, at least one thread per
connection). If multiple channels are created on each connection then the pool size will affect the
concurrency, so a variable (or simple cached) thread pool executor would be most suitable.

It is important to understand that the cache size is (by default) not a limit, but merely the number of
channels that can be cached. With a cache size of, say, 10, any number of channels can actually be in
use. If more than 10 channels are being used and they are all returned to the cache, 10 will go in the
cache; the remainder will be physically closed.

Starting with version 1.6, the default channel cache size has been increased from 1 to 25. In high volume,
multi-threaded, environments, a small cache means that channels are created and closed at a high rate.
Increasing the default cache size will avoid this overhead. You should monitor the channels in use via
the RabbitMQ Admin UI and consider increasing the cache size further if you see many channels being
created and closed. The cache will only grow on-demand (to suit the concurrency requirements of the
application) so this change will not impact existing low-volume applications.

Starting with version 1.4.2, the CachingConnectionFactory has a property
channelCheckoutTimeout. When this property is greater than zero, the channelCacheSize
becomes a limit on the number of channels that can be created on a connection. If the limit is reached,
calling threads will block until a channel is available or this timeout is reached, in which case a
AmqpTimeoutException is thrown.

Warning

Channels used within the framework (e.g. RabbitTemplate) will be reliably returned to the
cache. If you create channels outside of the framework, (e.g. by accessing the connection(s)
directly and invoking createChannel()), you must return them (by closing) reliably, perhaps in
a finally block, to avoid running out of channels.

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("somehost");

connectionFactory.setUsername("guest");

connectionFactory.setPassword("guest");

Connection connection = connectionFactory.createConnection();

When using XML, the configuration might look like this:

Spring AMQP

2.0.0.M4 Spring AMQP 13

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

 <constructor-arg value="somehost"/>

 <property name="username" value="guest"/>

 <property name="password" value="guest"/>

</bean>

Note

There is also a SingleConnectionFactory implementation which is only available in the unit
test code of the framework. It is simpler than CachingConnectionFactory since it does not
cache channels, but it is not intended for practical usage outside of simple tests due to its lack of
performance and resilience. If you find a need to implement your own ConnectionFactory for
some reason, the AbstractConnectionFactory base class may provide a nice starting point.

A ConnectionFactory can be created quickly and conveniently using the rabbit namespace:

<rabbit:connection-factory id="connectionFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you. The
created instance will be a CachingConnectionFactory. Keep in mind that the default cache size for
channels is 25. If you want more channels to be cached set a larger value via the channelCacheSize
property. In XML it would look like this:

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

 <constructor-arg value="somehost"/>

 <property name="username" value="guest"/>

 <property name="password" value="guest"/>

 <property name="channelCacheSize" value="50"/>

</bean>

And with the namespace you can just add the channel-cache-size attribute:

<rabbit:connection-factory

 id="connectionFactory" channel-cache-size="50"/>

The default cache mode is CHANNEL, but you can configure it to cache connections instead; in this
case, we use connection-cache-size:

<rabbit:connection-factory

 id="connectionFactory" cache-mode="CONNECTION" connection-cache-size="25"/>

Host and port attributes can be provided using the namespace

<rabbit:connection-factory

 id="connectionFactory" host="somehost" port="5672"/>

Alternatively, if running in a clustered environment, use the addresses attribute.

<rabbit:connection-factory

 id="connectionFactory" addresses="host1:5672,host2:5672"/>

Here’s an example with a custom thread factory that prefixes thread names with rabbitmq-.

Spring AMQP

2.0.0.M4 Spring AMQP 14

<rabbit:connection-factory id="multiHost" virtual-host="/bar" addresses="host1:1234,host2,host3:4567"

 thread-factory="tf"

 channel-cache-size="10" username="user" password="password" />

<bean id="tf" class="org.springframework.scheduling.concurrent.CustomizableThreadFactory">

 <constructor-arg value="rabbitmq-" />

</bean>

Starting with version 2.0 a ConnectionNameStrategy is provided for the injection into the
AbstractionConnectionFactory. The generated name is used for the application-specific
identification of the target RabbitMQ connection. The connection name is displayed in the management
UI if RabbitMQ server supports it. This value doesn’t have to be unique and cannot be used as a
connection identifier e.g. in HTTP API requests. This value is supposed to be human-readable and is a
part of ClientProperties under connection_name key. Can be used as a simple Lambda:

connectionFactory.setConnectionNameStrategy(connectionFactory -> "MY_CONNECTION");

The ConnectionFactory argument can be used to distinguish target connection names by some
logic. By default a beanName of the AbstractConnectionFactory and an internal counter are used
to generate connection_name. The <rabbit:connection-factory> namespace component is
also supplied with the connection-name-strategy attribute.

Configuring the Underlying Client Connection Factory

The CachingConnectionFactory uses an instance of the Rabbit client ConnectionFactory; a
number of configuration properties are passed through (host, port, userName, password,
requestedHeartBeat, connectionTimeout for example) when setting the equivalent property
on the CachingConnectionFactory. To set other properties (clientProperties for example),
define an instance of the rabbit factory and provide a reference to it using the appropriate constructor
of the CachingConnectionFactory. When using the namespace as described above, provide a
reference to the configured factory in the connection-factory attribute. For convenience, a factory
bean is provided to assist in configuring the connection factory in a Spring application context, as
discussed in the next section.

<rabbit:connection-factory

 id="connectionFactory" connection-factory="rabbitConnectionFactory"/>

Note

The 4.0.x client enables automatic recovery by default; while compatible with this feature,
Spring AMQP has its own recovery mechanisms and the client recovery feature generally
isn’t needed. It is recommended to disable amqp-client automatic recovery, to avoid getting
AutoRecoverConnectionNotCurrentlyOpenException s when the broker is available,
but the connection has not yet recovered. You may notice this exception, for example, when a
RetryTemplate is configured in a RabbitTemplate, even when failing over to another broker
in a cluster. Since the auto recovering connection recovers on a timer, the connection may be
recovered faster using Spring AMQP’s recovery mechanisms. Starting with version 1.7.1, Spring
AMQP disables it unless you explicitly create your own RabbitMQ connection factory and provide
it to the CachingConnectionFactory. RabbitMQ ConnectionFactory instances created by
the RabbitConnectionFactoryBean will also have the option disabled by default.

Spring AMQP

2.0.0.M4 Spring AMQP 15

RabbitConnectionFactoryBean and Configuring SSL

Starting with version 1.4, a convenient RabbitConnectionFactoryBean is provided to enable
convenient configuration of SSL properties on the underlying client connection factory, using
dependency injection. Other setters simply delegate to the underlying factory. Previously you had to
configure the SSL options programmatically.

<rabbit:connection-factory id="rabbitConnectionFactory"

 connection-factory="clientConnectionFactory"

 host="${host}"

 port="${port}"

 virtual-host="${vhost}"

 username="${username}" password="${password}" />

<bean id="clientConnectionFactory"

 class="org.springframework.xd.dirt.integration.rabbit.RabbitConnectionFactoryBean">

 <property name="useSSL" value="true" />

 <property name="sslPropertiesLocation" value="file:/secrets/rabbitSSL.properties"/>

</bean>

Refer to the RabbitMQ Documentation for information about configuring SSL. Omit the keyStore
and trustStore configuration to connect over SSL without certificate validation. Key and trust store
configuration can be provided as follows:

The sslPropertiesLocation property is a Spring Resource pointing to a properties file containing
the following keys:

keyStore=file:/secret/keycert.p12

trustStore=file:/secret/trustStore

keyStore.passPhrase=secret

trustStore.passPhrase=secret

The keyStore and truststore are Spring Resources pointing to the stores. Typically this properties
file will be secured by the operating system with the application having read access.

Starting with Spring AMQP version 1.5, these properties can be set directly on the factory bean. If both
discrete properties and sslPropertiesLocation is provided, properties in the latter will override the
discrete values.

Routing Connection Factory

Starting with version 1.3, the AbstractRoutingConnectionFactory has been introduced.
This provides a mechanism to configure mappings for several ConnectionFactories and
determine a target ConnectionFactory by some lookupKey at runtime. Typically, the
implementation checks a thread-bound context. For convenience, Spring AMQP provides the
SimpleRoutingConnectionFactory, which gets the current thread-bound lookupKey from the
SimpleResourceHolder:

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.SimpleRoutingConnectionFactory">

 <property name="targetConnectionFactories">

 <map>

 <entry key="#{connectionFactory1.virtualHost}" ref="connectionFactory1"/>

 <entry key="#{connectionFactory2.virtualHost}" ref="connectionFactory2"/>

 </map>

 </property>

</bean>

<rabbit:template id="template" connection-factory="connectionFactory" />

https://www.rabbitmq.com/ssl.html

Spring AMQP

2.0.0.M4 Spring AMQP 16

public class MyService {

 @Autowired

 private RabbitTemplate rabbitTemplate;

 public void service(String vHost, String payload) {

 SimpleResourceHolder.bind(rabbitTemplate.getConnectionFactory(), vHost);

 rabbitTemplate.convertAndSend(payload);

 SimpleResourceHolder.unbind(rabbitTemplate.getConnectionFactory());

 }

}

It is important to unbind the resource after use. For more information see the JavaDocs of
AbstractRoutingConnectionFactory.

Starting with version 1.4, the RabbitTemplate supports the SpEL
sendConnectionFactorySelectorExpression and
receiveConnectionFactorySelectorExpression properties, which are evaluated on each
AMQP protocol interaction operation (send, sendAndReceive, receive or receiveAndReply),
resolving to a lookupKey value for the provided AbstractRoutingConnectionFactory. Bean
references, such as "@vHostResolver.getVHost(#root)" can be used in the expression. For
send operations, the Message to be sent is the root evaluation object; for receive operations, the
queueName is the root evaluation object.

The routing algorithm is: If the selector expression is null, or is evaluated to null, or the provided
ConnectionFactory isn’t an instance of AbstractRoutingConnectionFactory, everything
works as before, relying on the provided ConnectionFactory implementation. The same occurs if
the evaluation result isn’t null, but there is no target ConnectionFactory for that lookupKey and
the AbstractRoutingConnectionFactory is configured with lenientFallback = true. Of
course, in the case of an AbstractRoutingConnectionFactory it does fallback to its routing
implementation based on determineCurrentLookupKey(). But, if lenientFallback = false,
an IllegalStateException is thrown.

The Namespace support also provides the send-connection-factory-selector-

expression and receive-connection-factory-selector-expression attributes on the
<rabbit:template> component.

Also starting with version 1.4, you can configure a routing connection factory in a listener container. In
that case, the list of queue names is used as the lookup key. For example, if you configure the container
with setQueueNames("foo", "bar"), the lookup key will be "[foo,bar]" (no spaces).

Starting with version 1.6.9 you can add a qualifier to the lookup key using setLookupKeyQualifier
on the listener container. This would enable, for example, listening to queues with the same name, but
in different virtual host (where you would have a connection factory for each).

For example, with lookup key qualifier foo and a container listening to queue bar, the lookup key you
would register the target connection factory with would be foo[bar].

Queue Affinity and the LocalizedQueueConnectionFactory

When using HA queues in a cluster, for the best performance, it can be desirable to connect
to the physical broker where the master queue resides. While the CachingConnectionFactory
can be configured with multiple broker addresses; this is to fail over and the client will attempt
to connect in order. The LocalizedQueueConnectionFactory uses the REST API provided

Spring AMQP

2.0.0.M4 Spring AMQP 17

by the admin plugin to determine which node the queue is mastered. It then creates (or
retrieves from a cache) a CachingConnectionFactory that will connect to just that node. If
the connection fails, the new master node is determined and the consumer connects to it. The
LocalizedQueueConnectionFactory is configured with a default connection factory, in case the
physical location of the queue cannot be determined, in which case it will connect as normal to the
cluster.

The LocalizedQueueConnectionFactory is a RoutingConnectionFactory and the
SimpleMessageListenerContainer uses the queue names as the lookup key as discussed in the
section called “Routing Connection Factory” above.

Note

For this reason (the use of the queue name for the lookup), the
LocalizedQueueConnectionFactory can only be used if the container is configured to listen
to a single queue.

Note

The RabbitMQ management plugin must be enabled on each node.

Caution

This connection factory is intended for long-lived connections, such as those used by the
SimpleMessageListenerContainer. It is not intended for short connection use, such as
with a RabbitTemplate because of the overhead of invoking the REST API before making the
connection. Also, for publish operations, the queue is unknown, and the message is published to
all cluster members anyway, so the logic of looking up the node has little value.

Here is an example configuration, using Spring Boot’s RabbitProperties to configure the factories:

@Autowired

private RabbitProperties props;

private final String[] adminUris = { "http://host1:15672", "http://host2:15672" };

private final String[] nodes = { "rabbit@host1", "rabbit@host2" };

@Bean

public ConnectionFactory defaultConnectionFactory() {

 CachingConnectionFactory cf = new CachingConnectionFactory();

 cf.setAddresses(this.props.getAddresses());

 cf.setUsername(this.props.getUsername());

 cf.setPassword(this.props.getPassword());

 cf.setVirtualHost(this.props.getVirtualHost());

 return cf;

}

@Bean

public ConnectionFactory queueAffinityCF(

 @Qualifier("defaultConnectionFactory") ConnectionFactory defaultCF) {

 return new LocalizedQueueConnectionFactory(defaultCF,

 StringUtils.commaDelimitedListToStringArray(this.props.getAddresses()),

 this.adminUris, this.nodes,

 this.props.getVirtualHost(), this.props.getUsername(), this.props.getPassword(),

 false, null);

}

Spring AMQP

2.0.0.M4 Spring AMQP 18

Notice that the first three parameters are arrays of addresses, adminUris and nodes. These are
positional in that when a container attempts to connect to a queue, it determines on which node the
queue is mastered and connects to the address in the same array position.

Publisher Confirms and Returns

Confirmed and returned messages are supported by setting the CachingConnectionFactory's
publisherConfirms and publisherReturns properties to 'true' respectively.

When these options are set, Channel s created by the factory are wrapped in an
PublisherCallbackChannel, which is used to facilitate the callbacks. When such a channel is
obtained, the client can register a PublisherCallbackChannel.Listener with the Channel.
The PublisherCallbackChannel implementation contains logic to route a confirm/return to the
appropriate listener. These features are explained further in the following sections.

Tip

For some more background information, please see the following blog post by the RabbitMQ team
titled Introducing Publisher Confirms.

Connection and Channel Listeners

The connection factory supports registering ConnectionListener and ChannelListener
implementations. This allows you to receive notifications for connection and channel related events. (A
ConnectionListener is used by the RabbitAdmin to perform declarations when the connection is
established - see the section called “Automatic Declaration of Exchanges, Queues and Bindings” for
more information).

ConnectionListener.

@FunctionalInterface

public interface ConnectionListener {

 void onCreate(Connection connection);

 default void onClose(Connection connection) {

 }

 default void onShutDown(ShutdownSignalException signal) {

 }

}

ChannelListener.

@FunctionalInterface

public interface ChannelListener {

 void onCreate(Channel channel, boolean transactional);

 default void onShutDown(ShutdownSignalException signal) {

 }

}

See the section called “Publishing is Asynchronous - How to Detect Success and Failures” for one
scenario where you might want to register a ChannelListener.

http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

Spring AMQP

2.0.0.M4 Spring AMQP 19

Logging Channel Close Events

A mechanism to enable users to control logging levels was introduced in version 1.5.

The CachingConnectionFactory uses a default strategy to log channel closures as follows:

• Normal channel closes (200 OK) are not logged.

• If a channel is closed due to a failed passive queue declaration, it is logged at debug level.

• If a channel is closed because the basic.consume is refused due to an exclusive consumer
condition, it is logged at INFO level.

• All others are logged at ERROR level.

To modify this behavior, inject a custom ConditionalExceptionLogger into the
CachingConnectionFactory in its closeExceptionLogger property.

Also see the section called “Consumer Failure Events”.

Runtime Cache Properties

Staring with version 1.6, the CachingConnectionFactory now provides cache statistics via the
getCacheProperties() method. These statistics can be used to tune the cache to optimize it in
production. For example, the high water marks can be used to determine whether the cache size should
be increased. If it equals the cache size, you might want to consider increasing further.

Table 3.1. Cache properties for CacheMode.CHANNEL

Property Meaning

connectionName The name of the connection generated by the
ConnectionNameStrategy.

channelCacheSize The currently configured maximum channels that are allowed to
be idle.

localPort The local port for the connection (if available). This can be used to
correlate with connections/channels on the RabbitMQ Admin UI.

idleChannelsTx The number of transactional channels that are currently idle
(cached).

idleChannelsNotTx The number of non-transactional channels that are currently idle
(cached).

idleChannelsTxHighWater The maximum number of transactional channels that have been
concurrently idle (cached).

idleChannelsNotTxHighWater The maximum number of non-transactional channels have been
concurrently idle (cached).

Table 3.2. Cache properties for CacheMode.CONNECTION

Property Meaning

connectionName:<localPort> The name of the connection generated by the
ConnectionNameStrategy.

Spring AMQP

2.0.0.M4 Spring AMQP 20

Property Meaning

openConnections The number of connection objects representing connections to
brokers.

channelCacheSize The currently configured maximum channels that are allowed to
be idle.

connectionCacheSize The currently configured maximum connections that are allowed
to be idle.

idleConnections The number of connections that are currently idle.

idleConnectionsHighWater The maximum number of connections that have been
concurrently idle.

idleChannelsTx:<localPort> The number of transactional channels that are currently idle
(cached) for this connection. The localPort part of the property
name can be used to correlate with connections/channels on the
RabbitMQ Admin UI.

idleChannelsNotTx:<localPort> The number of non-transactional channels that are currently idle
(cached) for this connection. The localPort part of the property
name can be used to correlate with connections/channels on the
RabbitMQ Admin UI.

idleChannelsTxHighWater:

<localPort>

The maximum number of transactional channels that have been
concurrently idle (cached). The localPort part of the property
name can be used to correlate with connections/channels on the
RabbitMQ Admin UI.

idleChannelsNotTxHighWater:

<localPort>

The maximum number of non-transactional channels have been
concurrently idle (cached). The localPort part of the property
name can be used to correlate with connections/channels on the
RabbitMQ Admin UI.

The cacheMode property (CHANNEL or CONNECTION is also included).

Spring AMQP

2.0.0.M4 Spring AMQP 21

Figure 3.1. JVisualVM Example

RabbitMQ Automatic Connection/Topology recovery

Since the first version of Spring AMQP, the framework has provided its own connection and channel
recovery in the event of a broker failure. Also, as discussed in the section called “Configuring the
broker”, the RabbitAdmin will re-declare any infrastructure beans (queues etc) when the connection
is re-established. It therefore does not rely on the Auto Recovery that is now provided by the
amqp-client library. Spring AMQP now uses the 4.0.x version of amqp-client, which has auto
recovery enabled by default. Spring AMQP can still use its own recovery mechanisms if you wish,
disabling it in the client, (by setting the automaticRecoveryEnabled property on the underlying
RabbitMQ connectionFactory to false). However, the framework is completely compatible with
auto recovery being enabled. This means any consumers you create within your code (perhaps via
RabbitTemplate.execute()) can be recovered automatically.

Adding Custom Client Connection Properties

The CachingConnectionFactory now allows you to access the underlying connection factory to
allow, for example, setting custom client properties:

connectionFactory.getRabbitConnectionFactory().getClientProperties().put("foo", "bar");

These properties appear in the RabbitMQ Admin UI when viewing the connection.

https://www.rabbitmq.com/api-guide.html#recovery

Spring AMQP

2.0.0.M4 Spring AMQP 22

AmqpTemplate

Introduction

As with many other high-level abstractions provided by the Spring Framework and related projects,
Spring AMQP provides a "template" that plays a central role. The interface that defines the main
operations is called AmqpTemplate. Those operations cover the general behavior for sending and
receiving Messages. In other words, they are not unique to any implementation, hence the "AMQP" in
the name. On the other hand, there are implementations of that interface that are tied to implementations
of the AMQP protocol. Unlike JMS, which is an interface-level API itself, AMQP is a wire-level protocol.
The implementations of that protocol provide their own client libraries, so each implementation of
the template interface will depend on a particular client library. Currently, there is only a single
implementation: RabbitTemplate. In the examples that follow, you will often see usage of an
"AmqpTemplate", but when you look at the configuration examples, or any code excerpts where
the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AmqpTemplate interface defines all of the basic operations for sending and
receiving Messages. We will explore Message sending and reception, respectively, in the two sections
that follow.

See also the section called “AsyncRabbitTemplate”.

Adding Retry Capabilities

Starting with version 1.3 you can now configure the RabbitTemplate to use a RetryTemplate to
help with handling problems with broker connectivity. Refer to the spring-retry project for complete
information; the following is just one example that uses an exponential back off policy and the default
SimpleRetryPolicy which will make three attempts before throwing the exception to the caller.

Using the XML namespace:

<rabbit:template id="template" connection-factory="connectionFactory" retry-template="retryTemplate"/>

<bean id="retryTemplate" class="org.springframework.retry.support.RetryTemplate">

 <property name="backOffPolicy">

 <bean class="org.springframework.retry.backoff.ExponentialBackOffPolicy">

 <property name="initialInterval" value="500" />

 <property name="multiplier" value="10.0" />

 <property name="maxInterval" value="10000" />

 </bean>

 </property>

</bean>

Using @Configuration:

@Bean

public AmqpTemplate rabbitTemplate();

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 RetryTemplate retryTemplate = new RetryTemplate();

 ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy();

 backOffPolicy.setInitialInterval(500);

 backOffPolicy.setMultiplier(10.0);

 backOffPolicy.setMaxInterval(10000);

 retryTemplate.setBackOffPolicy(backOffPolicy);

 template.setRetryTemplate(retryTemplate);

 return template;

}

https://github.com/spring-projects/spring-retry

Spring AMQP

2.0.0.M4 Spring AMQP 23

Starting with version 1.4, in addition to the retryTemplate property, the
recoveryCallback option is supported on the RabbitTemplate. It is used as a second
argument for the RetryTemplate.execute(RetryCallback<T, E> retryCallback,

RecoveryCallback<T>recoveryCallback).

Note

The RecoveryCallback is somewhat limited in that the retry context only contains the
lastThrowable field. For more sophisticated use cases, you should use an external
RetryTemplate so that you can convey additional information to the RecoveryCallback via
the context’s attributes:

retryTemplate.execute(

 new RetryCallback<Object, Exception>() {

 @Override

 public Object doWithRetry(RetryContext context) throws Exception {

 context.setAttribute("message", message);

 return rabbitTemplate.convertAndSend(exchange, routingKey, message);

 }

 }, new RecoveryCallback<Object>() {

 @Override

 public Object recover(RetryContext context) throws Exception {

 Object message = context.getAttribute("message");

 Throwable t = context.getLastThrowable();

 // Do something with message

 return null;

 }

 });

}

In this case, you would not inject a RetryTemplate into the RabbitTemplate.

Publishing is Asynchronous - How to Detect Success and Failures

Publishing messages is an asynchronous mechanism and, by default, messages that can’t be routed
are simply dropped by RabbitMQ. For successful publishing you can receive an async confirmation
as described in the section called “Publisher Confirms and Returns” below. Let’s consider two failure
scenarios:

• publish to an exchange but there is no matching destination queue

• publish to a non-existent exchange

The first case is covered by publisher returns as described in the section called “Publisher Confirms
and Returns” below.

For the second case, the message is dropped, no return is generated; the underlying channel is closed
with an exception. By default, this exception is logged, but you can register a ChannelListener with
the CachingConnectionFactory to obtain notifications of such events:

Spring AMQP

2.0.0.M4 Spring AMQP 24

this.connectionFactory.addConnectionListener(new ConnectionListener() {

 @Override

 public void onCreate(Connection connection) {

 }

 @Override

 public void onShutDown(ShutdownSignalException signal) {

 ...

 }

});

You can examine the signal’s reason property to determine the problem that occurred.

To detect the exception on the sending thread, you can setChannelTransacted(true) on the
RabbitTemplate and the exception will be detected on the txCommit(). However, transactions
significantly impede performance so consider this carefully before enabling transactions for just this
one use case.

Publisher Confirms and Returns

The RabbitTemplate implementation of AmqpTemplate supports Publisher Confirms and Returns.

For returned messages, the template’s mandatory property must be set to true, or the
mandatory-expression must evaluate to true for a particular message. This feature requires
a CachingConnectionFactory that has its publisherReturns property set to true (see the
section called “Publisher Confirms and Returns”). Returns are sent to to the client by it registering
a RabbitTemplate.ReturnCallback by calling setReturnCallback(ReturnCallback

callback). The callback must implement this method:

void returnedMessage(Message message, int replyCode, String replyText,

 String exchange, String routingKey);

Only one ReturnCallback is supported by each RabbitTemplate. See also the section called
“Reply Timeout”.

For Publisher Confirms (aka Publisher Acknowledgements), the template requires a
CachingConnectionFactory that has its publisherConfirms property set to true. Confirms
are sent to to the client by it registering a RabbitTemplate.ConfirmCallback by calling
setConfirmCallback(ConfirmCallback callback). The callback must implement this method:

void confirm(CorrelationData correlationData, boolean ack, String cause);

The CorrelationData is an object supplied by the client when sending the original message. The
ack is true for an ack and false for a nack. For nack s, the cause may contain a reason for the nack,
if it is available when the nack is generated. An example is when sending a message to a non-existent
exchange. In that case the broker closes the channel; the reason for the closure is included in the cause.
cause was added in version 1.4.

Only one ConfirmCallback is supported by a RabbitTemplate.

Note

When a rabbit template send operation completes, the channel is closed; this would preclude the
reception of confirms or returns in the case when the connection factory cache is full (when there
is space in the cache, the channel is not physically closed and the returns/confirms will proceed

Spring AMQP

2.0.0.M4 Spring AMQP 25

as normal). When the cache is full, the framework defers the close for up to 5 seconds, in order to
allow time for the confirms/returns to be received. When using confirms, the channel will be closed
when the last confirm is received. When using only returns, the channel will remain open for the
full 5 seconds. It is generally recommended to set the connection factory’s channelCacheSize
to a large enough value so that the channel on which a message is published is returned to the
cache instead of being closed. You can monitor channel usage using the RabbitMQ management
plugin; if you see channels being opened/closed rapidly you should consider increasing the cache
size to reduce overhead on the server.

See also the section called “Scoped Operations” for a simpler mechanism for waiting for publisher
confirms.

Scoped Operations

Normally, when using the template, a Channel is checked out of the cache (or created), used for the
operation, and returned to the cache for reuse. In a multi-threaded environment, there is no guarantee
that the next operation will use the same channel. There may be times, however, where you want to
have more control over the use of a channel, and ensure that a number of operations are all performed
on the same channel.

Starting with version 2.0, a new method invoke is provided, with an OperationsCallback. Any
operations performed within the scope of the callback, and on the provided RabbitOperations
argument, will use the same dedicated Channel, which will be closed at the end (not returned to a
cache).

@FunctionalInterface

public interface OperationsCallback<T> {

 T doInRabbit(RabbitOperations operations);

}

One example of why you might need this is if you wish to use the waitForConfirms() method
on the underlying Channel. This method was not previously exposed using the Spring API because
the channel is, generally, cached and shared as discussed above. The RabbitTemplate now
provides waitForConfirms(long timeout) and waitForConfirmsOrDie(long timeout)

which delegate to the dedicated channel used within the scope of the OperationsCallback. The
methods cannot be used outside of that scope, for obvious reasons.

Note that a higher-level abstraction which allows you to correlate confirms to requests is provided
elsewhere (see the section called “Publisher Confirms and Returns”). You still need to set the connection
factory’s publisherConfirms property to true as discussed in that section, but for simple use cases
where you just want to wait until all confirms are received, you can use this technique here:

Collection<?> messages = getMessagesToSend();

Boolean result = this.template.invoke(t -> {

 messages.forEach(m -> t.convertAndSend(ROUTE, m));

 t.waitForConfirmsOrDie(10_000);

 return true;

});

Note

The above discussion is moot if the template operations are already performed within the scope of
an existing transaction. For example, when running on a transacted listener container thread and

Spring AMQP

2.0.0.M4 Spring AMQP 26

performing operations on a transacted template. In that case, the operations will be performed
on that channel and committed when the thread returns to the container; it is not necessary to
use invoke in that scenario.

Messaging integration

Starting with version 1.4 RabbitMessagingTemplate, built on top of RabbitTemplate,
provides an integration with the Spring Framework messaging abstraction, i.e.
org.springframework.messaging.Message. This allows you to send and receive messages
using the spring-messaging Message<?> abstraction. This abstraction is used by other Spring
projects such as Spring Integration and Spring’s STOMP support. There are two message converters
involved; one to convert between a spring-messaging Message<?> and Spring AMQP’s Message
abstraction, and one to convert between Spring AMQP’s Message abstraction and the format
required by the underlying RabbitMQ client library. By default, the message payload is converted
by the provided RabbitTemplate 's message converter. Alternatively, you can inject a custom
MessagingMessageConverter with some other payload converter:

MessagingMessageConverter amqpMessageConverter = new MessagingMessageConverter();

amqpMessageConverter.setPayloadConverter(myPayloadConverter);

rabbitMessagingTempalte.setAmqpMessageConverter(amqpMessageConverter);

Validated User Id

Starting with version 1.6, the template now supports a user-id-expression (userIdExpression
when using Java configuration). If a message is sent, the user id property is set (if not already set) after
evaluating this expression. The root object for the evaluation is the message to be sent.

Examples:

<rabbit:template ... user-id-expression="'guest'" />

<rabbit:template ... user-id-expression="@myConnectionFactory.username" />

The first example is a literal expression; the second obtains the username property from a connection
factory bean in the application context.

Sending messages

Introduction

When sending a Message, one can use any of the following methods:

void send(Message message) throws AmqpException;

void send(String routingKey, Message message) throws AmqpException;

void send(String exchange, String routingKey, Message message) throws AmqpException;

We can begin our discussion with the last method listed above since it is actually the most explicit. It
allows an AMQP Exchange name to be provided at runtime along with a routing key. The last parameter
is the callback that is responsible for actual creating of the Message instance. An example of using this
method to send a Message might look this this:

amqpTemplate.send("marketData.topic", "quotes.nasdaq.FOO",

 new Message("12.34".getBytes(), someProperties));

Spring AMQP

2.0.0.M4 Spring AMQP 27

The "exchange" property can be set on the template itself if you plan to use that template instance to
send to the same exchange most or all of the time. In such cases, the second method listed above may
be used instead. The following example is functionally equivalent to the previous one:

amqpTemplate.setExchange("marketData.topic");

amqpTemplate.send("quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting
only the Message may be used:

amqpTemplate.setExchange("marketData.topic");

amqpTemplate.setRoutingKey("quotes.nasdaq.FOO");

amqpTemplate.send(new Message("12.34".getBytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method
parameters will always override the template’s default values. In fact, even if you do not explicitly set
those properties on the template, there are always default values in place. In both cases, the default is
an empty String, but that is actually a sensible default. As far as the routing key is concerned, it’s not
always necessary in the first place (e.g. a Fanout Exchange). Furthermore, a Queue may be bound to
an Exchange with an empty String. Those are both legitimate scenarios for reliance on the default empty
String value for the routing key property of the template. As far as the Exchange name is concerned, the
empty String is quite commonly used because the AMQP specification defines the "default Exchange"
as having no name. Since all Queues are automatically bound to that default Exchange (which is a
Direct Exchange) using their name as the binding value, that second method above can be used for
simple point-to-point Messaging to any Queue through the default Exchange. Simply provide the queue
name as the "routingKey" - either by providing the method parameter at runtime:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange

template.send("queue.helloWorld", new Message("Hello World".getBytes(), someProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to a single
Queue, the following is perfectly reasonable:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange

template.setRoutingKey("queue.helloWorld"); // but we'll always send to this Queue

template.send(new Message("Hello World".getBytes(), someProperties));

Message Builder API

Starting with version 1.3, a message builder API is provided by the MessageBuilder and
MessagePropertiesBuilder; they provides a convenient "fluent" means of creating a message or
message properties:

Message message = MessageBuilder.withBody("foo".getBytes())

 .setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)

 .setMessageId("123")

 .setHeader("bar", "baz")

 .build();

or

MessageProperties props = MessagePropertiesBuilder.newInstance()

 .setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)

 .setMessageId("123")

 .setHeader("bar", "baz")

 .build();

Message message = MessageBuilder.withBody("foo".getBytes())

 .andProperties(props)

 .build();

Spring AMQP

2.0.0.M4 Spring AMQP 28

Each of the properties defined on the MessageProperties can be set. Other methods include
setHeader(String key, String value), removeHeader(String key), removeHeaders(),
and copyProperties(MessageProperties properties). Each property setting method has
a set*IfAbsent() variant. In the cases where a default initial value exists, the method is named
set*IfAbsentOrDefault().

Five static methods are provided to create an initial message builder:

public static MessageBuilder withBody(byte[] body) ❶

public static MessageBuilder withClonedBody(byte[] body) ❷

public static MessageBuilder withBody(byte[] body, int from, int to) ❸

public static MessageBuilder fromMessage(Message message) ❹

public static MessageBuilder fromClonedMessage(Message message) ❺

❶ The message created by the builder will have a body that is a direct reference to the argument.

❷ The message created by the builder will have a body that is a new array containing a copy of bytes
in the argument.

❸ The message created by the builder will have a body that is a new array containing the range of
bytes from the argument. See Arrays.copyOfRange() for more details.

❹ The message created by the builder will have a body that is a direct reference to the body of the
argument. The argument’s properties are copied to a new MessageProperties object.

❺ The message created by the builder will have a body that is a new array containing a copy of the
argument’s body. The argument’s properties are copied to a new MessageProperties object.

public static MessagePropertiesBuilder newInstance() ❶

public static MessagePropertiesBuilder fromProperties(MessageProperties properties) ❷

public static MessagePropertiesBuilder fromClonedProperties(MessageProperties properties) ❸

❶ A new message properties object is initialized with default values.

❷ The builder is initialized with, and build() will return, the provided properties object.,

❸ The argument’s properties are copied to a new MessageProperties object.

With the RabbitTemplate implementation of AmqpTemplate, each of the send() methods has an
overloaded version that takes an additional CorrelationData object. When publisher confirms are
enabled, this object is returned in the callback described in the section called “AmqpTemplate”. This
allows the sender to correlate a confirm (ack or nack) with the sent message.

Starting with version 1.6.7, the CorrelationAwareMessagePostProcessor interface was
introduced, allowing the correlation data to be modified after the message has been converted:

Message postProcessMessage(Message message, Correlation correlation);

In version 2.0, this interface is deprecated; the method has been moved to MessagePostProcessor
with a default implementation that delegates to postProcessMessage(Message message).

Also starting with version 1.6.7 a new callback interface is provided
CorrelationDataPostProcessor; this is invoked after all MessagePostProcessor s (provided
in the send() method as well as those provided in setBeforePublishPostProcessors()).
Implementations can update or replace the correlation data supplied in the send() method (if any).
The Message and original CorrelationData (if any) are provided as arguments.

http://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/MessageProperties.html

Spring AMQP

2.0.0.M4 Spring AMQP 29

CorrelationData postProcess(Message message, CorrelationData correlationData);

Publisher Returns

When the template’s mandatory property is true returned messages are provided by the callback
described in the section called “AmqpTemplate”.

Starting with version 1.4 the RabbitTemplate supports the SpEL mandatoryExpression property,
which is evaluated against each request message, as the root evaluation object, resolving to a boolean
value. Bean references, such as "@myBean.isMandatory(#root)" can be used in the expression.

Publisher returns can also be used internally by the RabbitTemplate in send and receive operations.
See the section called “Reply Timeout” for more information.

Batching

Starting with version 1.4.2, the BatchingRabbitTemplate has been introduced. This is a subclass
of RabbitTemplate with an overridden send method that batches messages according to the
BatchingStrategy; only when a batch is complete is the message sent to RabbitMQ.

public interface BatchingStrategy {

 MessageBatch addToBatch(String exchange, String routingKey, Message message);

 Date nextRelease();

 Collection<MessageBatch> releaseBatches();

}

Caution

Batched data is held in memory; unsent messages can be lost in the event of a system failure.

A SimpleBatchingStrategy is provided. It supports sending messages to a single exchange/routing
key. It has properties:

• batchSize - the number of messages in a batch before it is sent

• bufferLimit - the maximum size of the batched message; this will preempt the batchSize if
exceeded, and cause a partial batch to be sent

• timeout - a time after which a partial batch will be sent when there is no new activity adding messages
to the batch

The SimpleBatchingStrategy formats the batch by preceding each embedded message with a 4
byte binary length. This is communicated to the receiving system by setting the springBatchFormat
message property to lengthHeader4.

Important

Batched messages are automatically de-batched by listener containers (using the
springBatchFormat message header). Rejecting any message from a batch will cause the
entire batch to be rejected.

Spring AMQP

2.0.0.M4 Spring AMQP 30

Receiving messages

Introduction

Message reception is always a little more complicated than sending. There are two ways to receive a
Message. The simpler option is to poll for a single Message at a time with a polling method call. The
more complicated yet more common approach is to register a listener that will receive Messages on-
demand, asynchronously. We will look at an example of each approach in the next two sub-sections.

Polling Consumer

The AmqpTemplate itself can be used for polled Message reception. By default, if no message is
available, null is returned immediately; there is no blocking. Starting with version 1.5, you can now set
a receiveTimeout, in milliseconds, and the receive methods will block for up to that long, waiting for
a message. A value less than zero means block indefinitely (or at least until the connection to the broker
is lost). Version 1.6 introduced variants of the receive methods allowing the timeout to be passed in
on each call.

Caution

Since the receive operation creates a new QueueingConsumer for each message, this
technique is not really appropriate for high-volume environments; consider using an asynchronous
consumer, or a receiveTimeout of zero for those use cases.

There are four simple receive methods available. As with the Exchange on the sending side, there is
a method that requires a default queue property having been set directly on the template itself, and
there is a method that accepts a queue parameter at runtime. Version 1.6 introduced variants to accept
timeoutMillis to override receiveTimeout on a per-request basis.

Message receive() throws AmqpException;

Message receive(String queueName) throws AmqpException;

Message receive(long timeoutMillis) throws AmqpException;

Message receive(String queueName, long timeoutMillis) throws AmqpException;

Just like in the case of sending messages, the AmqpTemplate has some convenience methods for
receiving POJOs instead of Message instances, and implementations will provide a way to customize
the MessageConverter used to create the Object returned:

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

Message receiveAndConvert(long timeoutMillis) throws AmqpException;

Message receiveAndConvert(String queueName, long timeoutMillis) throws AmqpException;

Starting with version 2.0, there are variants of these methods that take an additional
ParameterizedTypeReference argument to convert complex types. The template must be
configured with a SmartMessageConverter; see the section called “Converting From a Message
With RabbitTemplate” for more information.

Similar to sendAndReceive methods, beginning with version 1.3, the AmqpTemplate has several
convenience receiveAndReply methods for synchronously receiving, processing and replying to
messages:

Spring AMQP

2.0.0.M4 Spring AMQP 31

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback)

 throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S> callback)

 throws AmqpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,

 String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S> callback,

 String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,

 ReplyToAddressCallback<S> replyToAddressCallback) throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S> callback,

 ReplyToAddressCallback<S> replyToAddressCallback) throws AmqpException;

The AmqpTemplate implementation takes care of the receive and reply phases. In most cases
you should provide only an implementation of ReceiveAndReplyCallback to perform some
business logic for the received message and build a reply object or message, if needed. Note, a
ReceiveAndReplyCallback may return null. In this case no reply is sent and receiveAndReply
works like the receive method. This allows the same queue to be used for a mixture of messages,
some of which may not need a reply.

Automatic message (request and reply) conversion is applied only if the provided callback is not
an instance of ReceiveAndReplyMessageCallback - which provides a raw message exchange
contract.

The ReplyToAddressCallback is useful for cases requiring custom logic to determine the replyTo
address at runtime against the received message and reply from the ReceiveAndReplyCallback.
By default, replyTo information in the request message is used to route the reply.

The following is an example of POJO-based receive and reply…

boolean received =

 this.template.receiveAndReply(ROUTE, new ReceiveAndReplyCallback<Order, Invoice>() {

 public Invoice handle(Order order) {

 return processOrder(order);

 }

 });

if (received) {

 log.info("We received an order!");

}

Asynchronous Consumer

Important

Spring AMQP also supports annotated-listener endpoints through the use of the
@RabbitListener annotation and provides an open infrastructure to register endpoints
programmatically. This is by far the most convenient way to setup an asynchronous consumer,
see the section called “Annotation-driven Listener Endpoints” for more details.

Message Listener

For asynchronous Message reception, a dedicated component (not the AmqpTemplate) is involved.
That component is a container for a Message consuming callback. We will look at the container and its
properties in just a moment, but first we should look at the callback since that is where your application

Spring AMQP

2.0.0.M4 Spring AMQP 32

code will be integrated with the messaging system. There are a few options for the callback starting with
an implementation of the MessageListener interface:

public interface MessageListener {

 void onMessage(Message message);

}

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use
the ChannelAwareMessageListener. It looks similar but with an extra parameter:

public interface ChannelAwareMessageListener {

 void onMessage(Message message, Channel channel) throws Exception;

}

MessageListenerAdapter

If you prefer to maintain a stricter separation between your application logic and the messaging API,
you can rely upon an adapter implementation that is provided by the framework. This is often referred
to as "Message-driven POJO" support.

Note

Version 1.5 introduced a more flexible mechanism for POJO messaging, the @RabbitListener
annotation - see the section called “Annotation-driven Listener Endpoints” for more information.

When using the adapter, you only need to provide a reference to the instance that the adapter itself
should invoke.

MessageListenerAdapter listener = new MessageListenerAdapter(somePojo);

listener.setDefaultListenerMethod("myMethod");

You can subclass the adapter and provide an implementation of getListenerMethodName() to
dynamically select different methods based on the message. This method has two parameters, the
originalMessage and extractedMessage, the latter being the result of any conversion. By default,
a SimpleMessageConverter is configured; see the section called “SimpleMessageConverter” for
more information and information about other converters available.

Starting with version 1.4.2, the original message has properties consumerQueue and consumerTag
which can be used to determine which queue a message was received from.

Starting with version 1.5, you can configure a map of consumer queue/tag to method name, to
dynamically select the method to call. If no entry is in the map, we fall back to the default listener method.
The default listener method (if not set) is handleMessage.

Starting with version 2.0, a convenient FunctionalInterface has been provided:

@FunctionalInterface

public interface ReplyingMessageListener<T, R> {

 R handleMessage(T t);

}

This facilitates convenient configuration of the adapter using Java 8 lamdas:

new MessageListenerAdapter((ReplyingMessageListener<String, String>) data -> {

 ...

 return result;

}));

Spring AMQP

2.0.0.M4 Spring AMQP 33

Container

Now that you’ve seen the various options for the Message-listening callback, we can turn our attention
to the container. Basically, the container handles the "active" responsibilities so that the listener
callback can remain passive. The container is an example of a "lifecycle" component. It provides
methods for starting and stopping. When configuring the container, you are essentially bridging the gap
between an AMQP Queue and the MessageListener instance. You must provide a reference to the
ConnectionFactory and the queue name(s) or Queue instance(s) from which that listener should
consume Messages.

With versions prior to version 2.0, there was one listener container - the
SimpleMessageListenerContainer; there is now a second container - the
DirectMessageListenerContainer. The differences between the containers and criteria you might
apply when choosing which to use are described in the section called “Choosing a Container”.

Here is the most basic example using the, SimpleMessageListenerContainer :

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

container.setConnectionFactory(rabbitConnectionFactory);

container.setQueueNames("some.queue");

container.setMessageListener(new MessageListenerAdapter(somePojo));

As an "active" component, it’s most common to create the listener container with a bean definition so
that it can simply run in the background. This can be done via XML:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">

 <rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>

</rabbit:listener-container>

or

<rabbit:listener-container connection-factory="rabbitConnectionFactory" type="direct">

 <rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>

</rabbit:listener-container>

will create a DirectMessageListenerContainer (notice the type attribute - it defaults to simple).

Or, you may prefer to use the @Configuration style which will look very similar to the actual code snippet
above:

Spring AMQP

2.0.0.M4 Spring AMQP 34

@Configuration

public class ExampleAmqpConfiguration {

 @Bean

 public SimpleMessageListenerContainer messageListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(rabbitConnectionFactory());

 container.setQueueName("some.queue");

 container.setMessageListener(exampleListener());

 return container;

 }

 @Bean

 public ConnectionFactory rabbitConnectionFactory() {

 CachingConnectionFactory connectionFactory =

 new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

 }

 @Bean

 public MessageListener exampleListener() {

 return new MessageListener() {

 public void onMessage(Message message) {

 System.out.println("received: " + message);

 }

 };

 }

}

Starting with RabbitMQ Version 3.2, the broker now supports consumer priority (see Using Consumer
Priorities with RabbitMQ). This is enabled by setting the x-priority argument on the consumer. The
SimpleMessageListenerContainer now supports setting consumer arguments:

container.setConsumerArguments(Collections.

<String, Object> singletonMap("x-priority", Integer.valueOf(10)));

For convenience, the namespace provides the priority attribute on the listener element:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">

 <rabbit:listener queues="some.queue" ref="somePojo" method="handle" priority="10" />

</rabbit:listener-container>

Starting with version 1.3 the queue(s) on which the container is listening can be modified at runtime;
see the section called “Listener Container Queues”.

auto-delete Queues

When a container is configured to listen to auto-delete queue(s), or the queue has an x-expires
option or the Time-To-Live policy is configured on the Broker, the queue is removed by the broker when
the container is stopped (last consumer is cancelled). Before version 1.3, the container could not be
restarted because the queue was missing; the RabbitAdmin only automatically redeclares queues etc,
when the connection is closed/opens, which does not happen when the container is stopped/started.

Starting with version 1.3, the container will now use a RabbitAdmin to redeclare any missing queues
during startup.

You can also use conditional declaration (the section called “Conditional Declaration”) together with an
auto-startup="false" admin to defer queue declaration until the container is started.

http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
http://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
http://www.rabbitmq.com/ttl.html

Spring AMQP

2.0.0.M4 Spring AMQP 35

<rabbit:queue id="otherAnon" declared-by="containerAdmin" />

<rabbit:direct-exchange name="otherExchange" auto-delete="true" declared-by="containerAdmin">

 <rabbit:bindings>

 <rabbit:binding queue="otherAnon" key="otherAnon" />

 </rabbit:bindings>

</rabbit:direct-exchange>

<rabbit:listener-container id="container2" auto-startup="false">

 <rabbit:listener id="listener2" ref="foo" queues="otherAnon" admin="containerAdmin" />

</rabbit:listener-container>

<rabbit:admin id="containerAdmin" connection-factory="rabbitConnectionFactory"

 auto-startup="false" />

In this case, the queue and exchange are declared by containerAdmin which has auto-
startup="false" so the elements are not declared during context initialization. Also, the container
is not started for the same reason. When the container is later started, it uses it’s reference to
containerAdmin to declare the elements.

Batched Messages

Batched messages are automatically de-batched by listener containers (using the
springBatchFormat message header). Rejecting any message from a batch will cause the entire
batch to be rejected. See the section called “Batching” for more information about batching.

Consumer Failure Events

The containers publish application events whenever a listener (consumer) experiences a failure of some
kind. The event ListenerContainerConsumerFailedEvent has the following properties:

• container - the listener container where the consumer experienced the problem.

• reason - a textual reason for the failure.

• fatal - a boolean indicating whether the failure was fatal; with non-fatal exceptions, the
container will attempt to restart the consumer, according to the recoveryInterval or
recoveryBackoff (for the SimpleMessageListenerContainer) or the monitorInterval
(for the DirectMessageListenerContainer).

• throwable - the Throwable that was caught.

These events can be consumed by implementing
ApplicationListener<ListenerContainerConsumerFailedEvent>.

Note

System-wide events (such as connection failures) will be published by all consumers when
concurrentConsumers is greater than 1.

If a consumer fails because one if its queues is being used exclusively, by default, as well
as publishing the event, a WARN log is issued. To change this logging behavior, provide
a custom ConditionalExceptionLogger in the SimpleMessageListenerContainer 's
exclusiveConsumerExceptionLogger property. See also the section called “Logging Channel
Close Events”.

Fatal errors are always logged at ERROR level; this it not modifiable.

Spring AMQP

2.0.0.M4 Spring AMQP 36

Consumer Tags

You can provide a strategy to generate consumer tags. By default, the consumer tag will be generated
by the broker.

public interface ConsumerTagStrategy {

 String createConsumerTag(String queue);

}

The queue is made available so it can (optionally) be used in the tag.

See the section called “Message Listener Container Configuration”.

Annotation-driven Listener Endpoints

Introduction

The easiest way to receive a message asynchronously is to use the annotated listener endpoint
infrastructure. In a nutshell, it allows you to expose a method of a managed bean as a Rabbit listener
endpoint.

@Component

public class MyService {

 @RabbitListener(queues = "myQueue")

 public void processOrder(String data) {

 ...

 }

}

The idea of the example above is that, whenever a message is available on the queue named myQueue,
the processOrder method is invoked accordingly (in this case, with the payload of the message).

The annotated endpoint infrastructure creates a message listener container behind the scenes for each
annotated method, using a RabbitListenerContainerFactory.

In the example above, myQueue must already exist and be bound to some exchange. The queue can
be declared and bound automatically, as long as a RabbitAdmin exists in the application context.

Spring AMQP

2.0.0.M4 Spring AMQP 37

@Component

public class MyService {

 @RabbitListener(bindings = @QueueBinding(

 value = @Queue(value = "myQueue", durable = "true"),

 exchange = @Exchange(value = "auto.exch", ignoreDeclarationExceptions = "true"),

 key = "orderRoutingKey")

)

 public void processOrder(Order order) {

 ...

 }

 @RabbitListener(bindings = @QueueBinding(

 value = @Queue,

 exchange = @Exchange(value = "auto.exch"),

 key = "invoiceRoutingKey")

)

 public void processInvoice(Invoice invoice) {

 ...

 }

 @RabbitListener(queuesToDeclare = @Queue(name = "${my.queue}", durable = "true"))

 public String handleWithSimpleDeclare(String data) {

 ...

 }

}

In the first example, a queue myQueue will be declared automatically (durable) together with the
exchange, if needed, and bound to the exchange with the routing key. In the second example, an
anonymous (exclusive, auto-delete) queue will be declared and bound. Multiple QueueBinding entries
can be provided, allowing the listener to listen to multiple queues. In the third example, a queue with
the name retrieved from property my.queue will be declared if necessary, with the default binding to
the default exchange using the queue name as the routing key.

Since version 2.0 the @Exchange annotation supports any exchange types, including custom. See more
information in the AMQP Concepts document.

Use normal @Bean definitions when more advanced configuration is required.

Notice ignoreDeclarationExceptions on the exchange in the first example. This allows, for
example, binding to an existing exchange that might have different settings (such as internal). By
default the properties of an existing exchange must match.

Starting with version 2.0, you can now bind a queue to an exchange with multiple routing keys:

...

 key = { "red", "yellow" }

...

You can also specify arguments within @QueueBinding annotations for queues, exchanges and
bindings. For example:

https://www.rabbitmq.com/tutorials/amqp-concepts.html

Spring AMQP

2.0.0.M4 Spring AMQP 38

@RabbitListener(bindings = @QueueBinding(

 value = @Queue(value = "auto.headers", autoDelete = "true",

 arguments = @Argument(name = "x-message-ttl", value = "10000",

 type = "java.lang.Integer")),

 exchange = @Exchange(value = "auto.headers", type = ExchangeTypes.HEADERS, autoDelete = "true"),

 arguments = {

 @Argument(name = "x-match", value = "all"),

 @Argument(name = "foo", value = "bar"),

 @Argument(name = "baz")

 })

)

public String handleWithHeadersExchange(String foo) {

 ...

}

Notice that the x-message-ttl argument is set to 10 seconds for the queue. Since the argument type
is not String, we have to specify its type; in this case Integer. As with all such declarations, if the
queue exists already, the arguments must match those on the queue. For the header exchange, we set
the binding arguments to match messages that have the header foo set to bar and the header baz
must be present with any value. The x-match argument means both conditions must be satisfied.

The argument name, value, and type can be property placeholders (${...}) or SpEL expressions
(#{...}). The name must resolve to a String; the expression for type must resolve to a Class or
the fully-qualified name of a class. The value must resolve to something that can be converted by the
DefaultConversionService to the type (such as the x-message-ttl in the above example).

If a name resolves to null or an empty String, that @Argument is ignored.

Meta-Annotations

Sometimes you may want to use the same configuration for multiple listeners. To reduce the boilerplate
configuration, you can use meta-annotations to create your own listener annotation:

@Target({ElementType.TYPE, ElementType.METHOD, ElementType.ANNOTATION_TYPE})

@Retention(RetentionPolicy.RUNTIME)

@RabbitListener(bindings = @QueueBinding(

 value = @Queue,

 exchange = @Exchange(value = "metaFanout", type = ExchangeTypes.FANOUT)))

public @interface MyAnonFanoutListener {

}

public class MetaListener {

 @MyAnonFanoutListener

 public void handle1(String foo) {

 ...

 }

 @MyAnonFanoutListener

 public void handle2(String foo) {

 ...

 }

}

In this example, each listener created by the @MyAnonFanoutListener annotation will bind an
anonymous, auto-delete queue to the fanout exchange metaFanout. The meta-annotation mechanism
is simple in that attributes on the user-defined annotation are not examined - so you can’t override
settings from the meta-annotation. Use normal @Bean definitions when more advanced configuration
is required.

Spring AMQP

2.0.0.M4 Spring AMQP 39

Enable Listener Endpoint Annotations

To enable support for @RabbitListener annotations add @EnableRabbit to one of your
@Configuration classes.

@Configuration

@EnableRabbit

public class AppConfig {

 @Bean

 public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {

 SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory();

 factory.setConnectionFactory(connectionFactory());

 factory.setConcurrentConsumers(3);

 factory.setMaxConcurrentConsumers(10);

 return factory;

 }

}

Since version 2.0, a DirectMessageListenerContainerFactory is also available, which creates
DirectMessageListenerContainer s.

Note

To choose between the SimpleRabbitListenerContainerFactory and
DirectRabbitListenerContainerFactory see the section called “Choosing a Container”.

By default, the infrastructure looks for a bean named rabbitListenerContainerFactory as the
source for the factory to use to create message listener containers. In this case, and ignoring the
RabbitMQ infrastructure setup, the processOrder method can be invoked with a core poll size of 3
threads and a maximum pool size of 10 threads.

It is possible to customize the listener container factory to use per annotation or an explicit default can be
configured by implementing the RabbitListenerConfigurer interface. The default is only required
if at least one endpoint is registered without a specific container factory. See the javadoc for full details
and examples.

If you prefer XML configuration, use the <rabbit:annotation-driven> element; any beans
annotated with @RabbitListener will be detected.

For SimpleRabbitListenerContainer s:

<rabbit:annotation-driven/>

<bean id="rabbitListenerContainerFactory"

 class="org.springframework.amqp.rabbit.config.SimpleRabbitListenerContainerFactory">

 <property name="connectionFactory" ref="connectionFactory"/>

 <property name="concurrentConsumers" value="3"/>

 <property name="maxConcurrentConsumers" value="10"/>

</bean>

and for DirectMessageListenerContainer s:

<rabbit:annotation-driven/>

<bean id="rabbitListenerContainerFactory"

 class="org.springframework.amqp.rabbit.config.DirectRabbitListenerContainerFactory">

 <property name="connectionFactory" ref="connectionFactory"/>

 <property name="consumersPerQueue" value="3"/>

</bean>

Spring AMQP

2.0.0.M4 Spring AMQP 40

Starting with version 2.0, the @RabbitListener annotation has a concurrency property; it supports
SpEL expressions (#{...}) and property placeholders (${...}). Its meaning, and allowed values,
depend on the container type.

• For the DirectMessageListenerContainer, the value must be a single integer value, which sets
the consumersPerQueue property on the container.

• For the SimpleRabbitListenerContainer, the value can be a single integer value, which sets
the concurrentConsumers property on the container, or it can have the form m-n where m is the
concurrentConsumers property, and n is the maxConcurrentConsumers property.

In either case, this setting overrides the setting(s) on the factory. Previously you had to define different
container factories if you had listeners that required different concurrency.

Message Conversion for Annotated Methods

There are two conversion steps in the pipeline before invoking the listener. The first uses a
MessageConverter to convert the incoming Spring AMQP Message to a spring-messaging Message.
When the target method is invoked, the message payload is converted, if necessary, to the method
parameter type.

The default MessageConverter for the first step is a Spring AMQP SimpleMessageConverter that
handles conversion to String and java.io.Serializable objects; all others remain as a byte[].
In the following discussion, we call this the message converter.

The default converter for the second step is a GenericMessageConverter which delegates to
a conversion service (an instance of DefaultFormattingConversionService). In the following
discussion, we call this the method argument converter.

To change the message converter, simply add it as a property to the container factory bean:

@Bean

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {

 SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory();

 ...

 factory.setMessageConverter(new Jackson2JsonMessageConverter());

 ...

 return factory;

}

This configures a Jackson2 converter that expects header information to be present to guide the
conversion.

You can also consider a ContentTypeDelegatingMessageConverter which can handle
conversion of different content types.

In most cases, it is not necessary to customize the method argument converter unless, for example,
you want to use a custom ConversionService.

In versions prior to 1.6, the type information to convert the JSON had to be provided in message headers,
or a custom ClassMapper was required. Starting with version 1.6, if there are no type information
headers, the type can be inferred from the target method arguments.

Note

This type inference only works for @RabbitListener at the method level.

Spring AMQP

2.0.0.M4 Spring AMQP 41

See the section called “Jackson2JsonMessageConverter” for more information.

If you wish to customize the method argument converter, you can do so as follows:

@Configuration

@EnableRabbit

public class AppConfig implements RabbitListenerConfigurer {

 ...

 @Bean

 public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {

 DefaultMessageHandlerMethodFactory factory = new DefaultMessageHandlerMethodFactory();

 factory.setMessageConverter(new GenericMessageConverter(myConversionService()));

 return factory;

 }

 @Bean

 public ConversionService myConversionService() {

 DefaultConversionService conv = new DefaultConversionService();

 conv.addConverter(mySpecialConverter());

 return conv;

 }

 @Override

 public void configureRabbitListeners(RabbitListenerEndpointRegistrar registrar) {

 registrar.setMessageHandlerMethodFactory(myHandlerMethodFactory());

 }

 ...

}

Important

for multi-method listeners (see the section called “Multi-Method Listeners”), the method selection
is based on the payload of the message after the message conversion; the method argument
converter is only called after the method has been selected.

Programmatic Endpoint Registration

RabbitListenerEndpoint provides a model of a Rabbit endpoint and is responsible for configuring
the container for that model. The infrastructure allows you to configure endpoints programmatically in
addition to the ones that are detected by the RabbitListener annotation.

@Configuration

@EnableRabbit

public class AppConfig implements RabbitListenerConfigurer {

 @Override

 public void configureRabbitListeners(RabbitListenerEndpointRegistrar registrar) {

 SimpleRabbitListenerEndpoint endpoint = new SimpleRabbitListenerEndpoint();

 endpoint.setQueueNames("anotherQueue");

 endpoint.setMessageListener(message -> {

 // processing

 });

 registrar.registerEndpoint(endpoint);

 }

}

In the example above, we used SimpleRabbitListenerEndpoint which provides the actual
MessageListener to invoke but you could just as well build your own endpoint variant describing a
custom invocation mechanism.

Spring AMQP

2.0.0.M4 Spring AMQP 42

It should be noted that you could just as well skip the use of @RabbitListener altogether and only
register your endpoints programmatically through RabbitListenerConfigurer.

Annotated Endpoint Method Signature

So far, we have been injecting a simple String in our endpoint but it can actually have a very flexible
method signature. Let’s rewrite it to inject the Order with a custom header:

@Component

public class MyService {

 @RabbitListener(queues = "myQueue")

 public void processOrder(Order order, @Header("order_type") String orderType) {

 ...

 }

}

These are the main elements you can inject in listener endpoints:

The raw org.springframework.amqp.core.Message.

The com.rabbitmq.client.Channel on which the message was received

The org.springframework.messaging.Message representing the incoming AMQP message.
Note that this message holds both the custom and the standard headers (as defined by AmqpHeaders).

Note

Starting with version 1.6, the inbound deliveryMode header is now available
in the header with name AmqpHeaders.RECEIVED_DELIVERY_MODE instead of
AmqpHeaders.DELIVERY_MODE.

@Header-annotated method arguments to extract a specific header value, including standard AMQP
headers.

@Headers-annotated argument that must also be assignable to java.util.Map for getting access
to all headers.

A non-annotated element that is not one of the supported types (i.e. Message and Channel) is
considered to be the payload. You can make that explicit by annotating the parameter with @Payload.
You can also turn on validation by adding an extra @Valid.

The ability to inject Spring’s Message abstraction is particularly useful to benefit from all the information
stored in the transport-specific message without relying on transport-specific API.

@RabbitListener(queues = "myQueue")

public void processOrder(Message<Order> order) { ...

}

Handling of method arguments is provided by DefaultMessageHandlerMethodFactory which can
be further customized to support additional method arguments. The conversion and validation support
can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @Valid and configure the necessary validator as follows:

Spring AMQP

2.0.0.M4 Spring AMQP 43

@Configuration

@EnableRabbit

public class AppConfig implements RabbitListenerConfigurer {

 @Override

 public void configureRabbitListeners(RabbitListenerEndpointRegistrar registrar) {

 registrar.setMessageHandlerMethodFactory(myHandlerMethodFactory());

 }

 @Bean

 public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {

 DefaultMessageHandlerMethodFactory factory = new DefaultMessageHandlerMethodFactory();

 factory.setValidator(myValidator());

 return factory;

 }

}

Listening to Multiple Queues

When using the queues attribute, you can specify that the associated container can listen to multiple
queues. You can use a @Header annotation to make the queue name from which a message was
received available to the POJO method:

@Component

public class MyService {

 @RabbitListener(queues = { "queue1", "queue2" })

 public void processOrder(String data, @Header(AmqpHeaders.CONSUMER_QUEUE) String queue) {

 ...

 }

}

Starting with version 1.5, you can externalize the queue names using property placeholders, and SpEL:

@Component

public class MyService {

 @RabbitListener(queues = "#{'${property.with.comma.delimited.queue.names}'.split(',')}")

 public void processOrder(String data, @Header(AmqpHeaders.CONSUMER_QUEUE) String queue) {

 ...

 }

}

Prior to version 1.5, only a single queue could be specified this way; each queue needed a separate
property.

Reply Management

The existing support in MessageListenerAdapter already allows your method to have a non-void
return type. When that’s the case, the result of the invocation is encapsulated in a message sent either in
the address specified in the ReplyToAddress header of the original message or in the default address
configured on the listener. That default address can now be set using the @SendTo annotation of the
messaging abstraction.

Assuming our processOrder method should now return an OrderStatus, it is possible to write it as
follow to automatically send a reply:

Spring AMQP

2.0.0.M4 Spring AMQP 44

@RabbitListener(destination = "myQueue")

@SendTo("status")

public OrderStatus processOrder(Order order) {

 // order processing

 return status;

}

If you need to set additional headers in a transport-independent manner, you could return a Message
instead, something like:

@RabbitListener(destination = "myQueue")

@SendTo("status")

public Message<OrderStatus> processOrder(Order order) {

 // order processing

 return MessageBuilder

 .withPayload(status)

 .setHeader("code", 1234)

 .build();

}

The @SendTo value is assumed as a reply exchange and routingKey pair following the pattern
exchange/routingKey, where one of those parts can be omitted. The valid values are:

foo/bar - the replyTo exchange and routingKey.

foo/ - the replyTo exchange and default (empty) routingKey.

bar or /bar - the replyTo routingKey and default (empty) exchange.

/ or empty - the replyTo default exchange and default routingKey.

Also @SendTo can be used without a value attribute. This case is equal to an empty sendTo pattern.
@SendTo is only used if the inbound message does not have a replyToAddress property.

Starting with version 1.5, the @SendTo value can be a bean initialization SpEL Expression, for
example…

@RabbitListener(queues = "test.sendTo.spel")

@SendTo("#{spelReplyTo}")

public String capitalizeWithSendToSpel(String foo) {

 return foo.toUpperCase();

}

...

@Bean

public String spelReplyTo() {

 return "test.sendTo.reply.spel";

}

The expression must evaluate to a String, which can be a simple queue name (sent to the default
exchange) or with the form exchange/routingKey as discussed above.

Note

The #{...} expression is evaluated once, during initialization.

For dynamic reply routing, the message sender should include a reply_to message property or use
the alternate runtime SpEL expression described below.

Starting with version 1.6, the @SendTo can be a SpEL expression that is evaluated at runtime against
the request and reply:

Spring AMQP

2.0.0.M4 Spring AMQP 45

@RabbitListener(queues = "test.sendTo.spel")

@SendTo("!{'some.reply.queue.with.' + result.queueName}")

public Bar capitalizeWithSendToSpel(Foo foo) {

 return processTheFooAndReturnABar(foo);

}

The runtime nature of the SpEL expression is indicated with !{...} delimiters. The evaluation context
#root object for the expression has three properties:

• request - the o.s.amqp.core.Message request object.

• source - the o.s.messaging.Message<?> after conversion.

• result - the method result.

The context has a map property accessor, a standard type converter and a bean resolver, allowing
other beans in the context to be referenced (e.g. @someBeanName.determineReplyQ(request,
result)).

In summary, #{...} is evaluated once during initialization, with the #root object being the application
context; beans are referenced by their names. !{...} is evaluated at runtime for each message with
the root object having the properties above and beans are referenced with their names, prefixed by @.

Multi-Method Listeners

Starting with version 1.5.0, the @RabbitListener annotation can now be specified at the class level.
Together with the new @RabbitHandler annotation, this allows a single listener to invoke different
methods, based on the payload type of the incoming message. This is best described using an example:

@RabbitListener(id="multi", queues = "someQueue")

public class MultiListenerBean {

 @RabbitHandler

 @SendTo("my.reply.queue")

 public String bar(Bar bar) {

 ...

 }

 @RabbitHandler

 public String baz(Baz baz) {

 ...

 }

 @RabbitHandler

 public String qux(@Header("amqp_receivedRoutingKey") String rk, @Payload Qux qux) {

 ...

 }

}

In this case, the individual @RabbitHandler methods are invoked if the converted payload is a Bar,
Baz or Qux. It is important to understand that the system must be able to identify a unique method
based on the payload type. The type is checked for assignability to a single parameter that has no
annotations, or is annotated with the @Payload annotation. Notice that the same method signatures
apply as discussed in the method-level @RabbitListener described above.

Notice that the @SendTo must be specified on each method (if needed); it is not supported at the class
level.

Spring AMQP

2.0.0.M4 Spring AMQP 46

@Repeatable @RabbitListener

Starting with version 1.6, the @RabbitListener annotation is marked with @Repeatable. This means
that the annotation can appear on the same annotated element (method or class) multiple times. In
this case, a separate listener container is created for each annotation, each of which invokes the same
listener @Bean. Repeatable annotations can be used with Java 8 or above; when using Java 7 or earlier,
the same effect can be achieved by using the @RabbitListeners "container" annotation, with an
array of @RabbitListener annotations.

Proxy @RabbitListener and Generics

If your service is intended to be proxied (e.g. in case of @Transactional) there are some
considerations when the interface has generic parameters. With a generic interface and a particular
implementation, e.g.:

interface TxService<P> {

 String handle(P payload, String header);

}

static class TxServiceImpl implements TxService<Foo> {

 @Override

 @RabbitListener(...)

 public String handle(Foo foo, String rk) {

 ...

 }

}

you are forced to switch to the CGLIB target class proxy because the actual implementation of the
interface handle method is a bridge method. In the case of transaction management, the use of CGLIB
is configured using an annotation option - @EnableTransactionManagement(proxyTargetClass
= true). And in this case, all annotations have to be declared on the target method in the
implementation:

static class TxServiceImpl implements TxService<Foo> {

 @Override

 @Transactional

 @RabbitListener(...)

 public String handle(@Payload Foo foo, @Header("amqp_receivedRoutingKey") String rk) {

 ...

 }

}

Handling Exceptions

By default, if an annotated listener method throws an exception, it is thrown to the container and the
message will be requeued and redelivered, discarded, or routed to a Dead Letter Exchange, depending
on the container and broker configuration. Nothing is returned to the sender.

Starting with version 2.0, the @RabbitListener annotation has two new attributes: errorHandler
and returnExceptions.

These are not configured by default.

Use the errorHandler to provide the bean name of a RabbitListenerErrorHandler
implementation. This functional interface has one method:

Spring AMQP

2.0.0.M4 Spring AMQP 47

@FunctionalInterface

public interface RabbitListenerErrorHandler {

 Object handleError(Message amqpMessage, org.springframework.messaging.Message<?> message,

 ListenerExecutionFailedException exception) throws Exception;

}

As you can see, you have access to the raw message received from the container, the spring-messaging
Message<?> object produced by the message converter and the exception that was thrown by the
listener, wrapped in a ListenerExecutionFailedException. The error handler can either return
some result which will be sent as the reply, or throw the original or a new exception which will be thrown
to the container, or returned to the sender, depending on the returnExceptions setting.

The returnExceptions attribute, when "true" will cause exceptions to be returned to the sender.
The exception is wrapped in a RemoteInvocationResult object. On the sender side, there is
an available RemoteInvocationAwareMessageConverterAdapter which, if configured into the
RabbitTemplate, will re-throw the server-side exception, wrapped in an AmqpRemoteException.
The stack trace of the server exception will be synthesized by merging the server and client stack traces.

Important

This mechanism will generally only work with the default SimpleMessageConverter, which
uses Java serialization; exceptions are generally not "Jackson-friendly" so can’t be serialized to
JSON. If you are using JSON, consider using an errorHandler to return some other Jackson-
friendly Error object when an exception is thrown.

Container Management

Containers created for annotations are not registered with the application context. You
can obtain a collection of all containers by invoking getListenerContainers() on the
RabbitListenerEndpointRegistry bean. You can then iterate over this collection, for example,
to stop/start all containers or invoke the Lifecycle methods on the registry itself which will invoke the
operations on each container.

You can also get a reference to an individual container using
its id, using getListenerContainer(String id); for example
registry.getListenerContainer("multi") for the container created by the snippet above.

Starting with version 1.5.2, you can obtain the id s of the registered containers with
getListenerContainerIds().

Starting with version 1.5, you can now assign a group to the container on the RabbitListener
endpoint. This provides a mechanism to get a reference to a subset of containers; adding a group
attribute causes a bean of type Collection<MessageListenerContainer> to be registered with
the context with the group name.

Threading and Asynchronous Consumers

A number of different threads are involved with asynchronous consumers.

Threads from the TaskExecutor configured in the SimpleMessageListenerContainer are used
to invoke the MessageListener when a new message is delivered by RabbitMQ Client. If not

Spring AMQP

2.0.0.M4 Spring AMQP 48

configured, a SimpleAsyncTaskExecutor is used. If a pooled executor is used, ensure the pool size
is sufficient to handle the configured concurrency. With the DirectMessageListenerContainer,
the MessageListener is invoked directly on a RabbitMQ Client thread. In this case, the
taskExecutor is used for the task that monitors the consumers.

Note

When using the default SimpleAsyncTaskExecutor, for the threads the listener is invoked
on, the listener container beanName is used in the threadNamePrefix. This is useful for log
analysis; it’s generally recommended to always include the thread name in the logging appender
configuration. When a TaskExecutor is specifically provided via the taskExecutor property
on the container, it is used as is, without modification. It is recommended that you use a similar
technique to name the threads created by a custom TaskExecutor bean definition, to aid with
thread identification in log messages.

The Executor configured in the CachingConnectionFactory is passed into the RabbitMQ
Client when creating the connection, and its threads are used to deliver new messages to the listener
container. At the time of writing, if this is not configured, the client uses an internal thread pool executor
with a pool size of 5.

Important

With the DirectMessageListenerContainer you need to ensure that the connection factory
is configured with a task executor that had sufficient threads to support your desired concurrency,
across all listener containers that use that factory. At the time of writing, the default pool size is
only 5.

The RabbitMQ client uses a ThreadFactory to create threads for low-level I/O (socket) operations.
To modify this factory, you need to configure the underlying RabbitMQ ConnectionFactory, as
discussed in the section called “Configuring the Underlying Client Connection Factory”.

Choosing a Container

Version 2.0 introduced the DirectMessageListenerContainer (DMLC); previously, only the
SimpleMessageListenerContainer (SMLC) was available. The SMLC uses an internal queue
and a dedicated thread for each consumer; if a container is configured to listen to multiple
queues, the same consumer thread is used to process all the queues. Concurrency is controlled by
concurrentConsumers and other properties. As messages arrive from the RabbitMQ client, the client
thread hands them off to the consumer thread via the queue. This architecture was required because in
early versions of the RabbitMQ client, multiple concurrent deliveries were not possible. Newer versions
of the client have a revised threading model and can now support concurrency. This has allowed the
introduction of the DMLC where the listener is now invoked directly on the RabbitMQ Client thread. Its
architecture is therefore actually "simpler" than the SMLC. However, there are some limitations with
this approach and certain features of the SMLC are not available with the DMLC; also concurrency is
controlled by consumersPerQueue (and the client library’s thread pool); the concurrentConsumers
and associated properties are not available with this container.

The following features are available with the SMLC, but not the DMLC:

• txSize - with the SMLC, you can set this to reduce the number of acks, but it may cause the number
of duplicate deliveries to increase after a failure.

Spring AMQP

2.0.0.M4 Spring AMQP 49

• maxConcurrentConsumers and consumer scaling intervals/triggers - there is no auto-scaling in the
DMLC; it does, however, allow you to programatically change the consumersPerQueue property
and the consumers will be adjusted accordingly.

However, the DMLC has the following benefits over the SMLC:

• Adding and removing queues at runtime is more efficient; with the SMLC, the entire consumer thread
is restarted (all consumers canceled and re-created); with the DMLC, unaffected consumers are not
canceled.

• The context switch between the RabbitMQ Client thread and the consumer thread is avoided.

• Threads are shared across consumers rather than having a dedicated thread for each consumer in
the SMLC. However, see the IMPORTANT note about the connection factory configuration in the
section called “Threading and Asynchronous Consumers”.

See the section called “Message Listener Container Configuration” for information about which
configuration properties apply to each container.

Detecting Idle Asynchronous Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle - users might
want to take some action if no messages arrive for some period of time.

Starting with version 1.6, it is now possible to configure the listener container to publish a
ListenerContainerIdleEvent when some time passes with no message delivery. While the
container is idle, an event will be published every idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container:

xml

<rabbit:listener-container connection-factory="connectionFactory"

 ...

 idle-event-interval="60000"

 ...

 >

 <rabbit:listener id="container1" queue-names="foo" ref="myListener" method="handle" />

</rabbit:listener-container>

Java

@Bean

public SimpleMessageListenerContainer(ConnectionFactory connectionFactory) {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer(connectionFactory);

 ...

 container.setIdleEventInterval(60000L);

 ...

 return container;

}

@RabbitListener

@Bean

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {

 SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory();

 factory.setConnectionFactory(rabbitConnectionFactory());

 factory.setIdleEventInterval(60000L);

 ...

 return factory;

}

Spring AMQP

2.0.0.M4 Spring AMQP 50

In each of these cases, an event will be published once per minute while the container is idle.

Event Consumption

You can capture these events by implementing ApplicationListener - either a general listener, or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

The following example combines the @RabbitListener and @EventListener into a single class.
It’s important to understand that the application listener will get events for all containers so you may
need to check the listener id if you want to take specific action based on which container is idle. You
can also use the @EventListener condition for this purpose.

The events have 4 properties:

• source - the listener container instance

• id - the listener id (or container bean name)

• idleTime - the time the container had been idle when the event was published

• queueNames - the names of the queue(s) that the container listens to

public class Listener {

 @RabbitListener(id="foo", queues="#{queue.name}")

 public String listen(String foo) {

 return foo.toUpperCase();

 }

 @EventListener(condition = "event.listenerId == 'foo'")

 public void onApplicationEvent(ListenerContainerIdleEvent event) {

 ...

 }

}

Important

Event listeners will see events for all containers; so, in the example above, we narrow the events
received based on the listener ID.

Caution

If you wish to use the idle event to stop the lister container, you should not call
container.stop() on the thread that calls the listener - it will cause delays and unnecessary
log messages. Instead, you should hand off the event to a different thread that can then stop the
container.

Message Converters

Introduction

The AmqpTemplate also defines several methods for sending and receiving Messages that will
delegate to a MessageConverter. The MessageConverter itself is quite straightforward. It provides
a single method for each direction: one for converting to a Message and another for converting from a
Message. Notice that when converting to a Message, you may also provide properties in addition to the
object. The "object" parameter typically corresponds to the Message body.

Spring AMQP

2.0.0.M4 Spring AMQP 51

public interface MessageConverter {

 Message toMessage(Object object, MessageProperties messageProperties)

 throws MessageConversionException;

 Object fromMessage(Message message) throws MessageConversionException;

}

The relevant Message-sending methods on the AmqpTemplate are listed below. They are simpler than
the methods we discussed previously because they do not require the Message instance. Instead, the
MessageConverter is responsible for "creating" each Message by converting the provided object to
the byte array for the Message body and then adding any provided MessageProperties.

void convertAndSend(Object message) throws AmqpException;

void convertAndSend(String routingKey, Object message) throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message)

 throws AmqpException;

void convertAndSend(Object message, MessagePostProcessor messagePostProcessor)

 throws AmqpException;

void convertAndSend(String routingKey, Object message,

 MessagePostProcessor messagePostProcessor) throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message,

 MessagePostProcessor messagePostProcessor) throws AmqpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies
on the template’s "queue" property having been set.

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

Note

The MessageListenerAdapter mentioned in the section called “Asynchronous Consumer”
also uses a MessageConverter.

SimpleMessageConverter

The default implementation of the MessageConverter strategy is called
SimpleMessageConverter. This is the converter that will be used by an instance of RabbitTemplate
if you do not explicitly configure an alternative. It handles text-based content, serialized Java objects,
and simple byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain"), it will also check for the
content-encoding property to determine the charset to be used when converting the Message body
byte array to a Java String. If no content-encoding property had been set on the input Message, it will
use the "UTF-8" charset by default. If you need to override that default setting, you can configure an
instance of SimpleMessageConverter, set its "defaultCharset" property and then inject that into a
RabbitTemplate instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object", the
SimpleMessageConverter will attempt to deserialize (rehydrate) the byte array into a Java object.

Spring AMQP

2.0.0.M4 Spring AMQP 52

While that might be useful for simple prototyping, it’s generally not recommended to rely on Java
serialization since it leads to tight coupling between the producer and consumer. Of course, it also rules
out usage of non-Java systems on either side. With AMQP being a wire-level protocol, it would be
unfortunate to lose much of that advantage with such restrictions. In the next two sections, we’ll explore
some alternatives for passing rich domain object content without relying on Java serialization.

For all other content-types, the SimpleMessageConverter will return the Message body content
directly as a byte array.

See the section called “Java Deserialization” for important information.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the SimpleMessageConverter likewise
deals with byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the
case of byte arrays, there is nothing to convert), and it will set the content-type property accordingly. If
the Object to be converted does not match one of those types, the Message body will be null.

SerializerMessageConverter

This converter is similar to the SimpleMessageConverter except it can be configured with other
Spring Framework Serializer and Deserializer implementations for application/x-java-
serialized-object conversions.

See the section called “Java Deserialization” for important information.

Jackson2JsonMessageConverter

Converting to a Message

As mentioned in the previous section, relying on Java serialization is generally not recommended.
One rather common alternative that is more flexible and portable across different languages
and platforms is JSON (JavaScript Object Notation). The converter can be configured on any
RabbitTemplate instance to override its usage of the SimpleMessageConverter default. The
Jackson2JsonMessageConverter uses the com.fasterxml.jackson 2.x library.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <property name="connectionFactory" ref="rabbitConnectionFactory"/>

 <property name="messageConverter">

 <bean class="org.springframework.amqp.support.converter.Jackson2JsonMessageConverter">

 <!-- if necessary, override the DefaultClassMapper -->

 <property name="classMapper" ref="customClassMapper"/>

 </bean>

 </property>

</bean>

As shown above, Jackson2JsonMessageConverter uses a DefaultClassMapper by default.
Type information is added to (and retrieved from) the MessageProperties. If an inbound message
does not contain type information in the MessageProperties, but you know the expected type, you
can configure a static type using the defaultType property

<bean id="jsonConverterWithDefaultType"

 class="o.s.amqp.support.converter.Jackson2JsonMessageConverter">

 <property name="classMapper">

 <bean class="org.springframework.amqp.support.converter.DefaultClassMapper">

 <property name="defaultType" value="foo.PurchaseOrder"/>

 </bean>

 </property>

</bean>

Spring AMQP

2.0.0.M4 Spring AMQP 53

In addition, you can provide custom mappings from the value in the __TypeId__ header…

@Bean

public Jackson2JsonMessageConverter jsonMessageConverter() {

 Jackson2JsonMessageConverter jsonConverter = new Jackson2JsonMessageConverter();

 jsonConverter.setClassMapper(classMapper());

 return jsonConverter;

}

@Bean

public DefaultClassMapper classMapper() {

 DefaultClassMapper classMapper = new DefaultClassMapper();

 Map<String, Class<?>> idClassMapping = new HashMap<>();

 idClassMapping.put("foo", Foo.class);

 idClassMapping.put("bar", Bar.class);

 classMapper.setIdClassMapping(idClassMapping);

 return classMapper;

}

Now, if the sending system sets the header to foo, the converter will create a Foo object, etc. See the
the section called “Receiving JSON from Non-Spring Applications” sample application for a complete
discussion about converting messages from non-Spring applications.

Converting from a Message

Inbound messages are converted to objects according to the type information added to headers by the
sending system.

In versions prior to 1.6, if type information is not present, conversion would fail. Starting with version
1.6, if type information is missing, the converter will convert the JSON using Jackson defaults (usually
a map).

Also, starting with version 1.6, when using @RabbitListener annotations (on methods), the inferred
type information is added to the MessageProperties; this allows the converter to convert to the
argument type of the target method. This only applies if there is one parameter with no annotations
or a single parameter with the @Payload annotation. Parameters of type Message are ignored during
the analysis.

Important

By default, the inferred type information will override the inbound __TypeId__ and related
headers created by the sending system. This allows the receiving system to automatically convert
to a different domain object. This applies only if the parameter type is concrete (not abstract
or an interface) or it is from the java.util package. In all other cases, the __TypeId__
and related headers will be used. There are cases where you might wish to override the
default behavior and always use the __TypeId__ information. For example, let’s say you
have a @RabbitListener that takes a Foo argument but the message contains a Bar which
is a subclass of Foo (which is concrete). The inferred type would be incorrect. To handle
this situation, set the TypePrecedence property on the Jackson2JsonMessageConverter
to TYPE_ID instead of the default INFERRED. The property is actually on the converter’s
DefaultJackson2JavaTypeMapper but a setter is provided on the converter for convenience.
If you inject a custom type mapper, you should set the property on the mapper instead.

Note

When converting from the Message, an incoming MessageProperties.getContentType()
must be JSON-compliant (the logic contentType.contains("json") is used). Otherwise,

Spring AMQP

2.0.0.M4 Spring AMQP 54

a WARN log message Could not convert incoming message with content-type
[...], is emitted and message.getBody() is returned as is - as a byte[]`. So, to meet
the Jackson2JsonMessageConverter requirements on the consumer side, the producer must
add the contentType message property, e.g. as application/json, text/x-json or simply
use the Jackson2JsonMessageConverter, which will set the header automatically.

@RabbitListener

public void foo(Foo foo) {...}

@RabbitListener

public void foo(@Payload Foo foo, @Header("amqp_consumerQueue") String queue) {...}

@RabbitListener

public void foo(Foo foo, o.s.amqp.core.Message message) {...}

@RabbitListener

public void foo(Foo foo, o.s.messaging.Message<Foo> message) {...}

@RabbitListener

public void foo(Foo foo, String bar) {...}

@RabbitListener

public void foo(Foo foo, o.s.messaging.Message<?> message) {...}

In the first four cases above the converter will attempt to convert to the Foo type. The fifth example
is invalid because we can’t determine which argument should receive the message payload. With the
sixth example, the Jackson defaults will apply due to the generic type being a WildcardType.

You can, however, create a custom converter and use the targetMethod message property to decide
which type to convert the JSON to.

Note

This type inference can only be achieved when the @RabbitListener annotation is declared
at the method level. With class-level @RabbitListener, the converted type is used to select
which @RabbitHandler method to invoke. For this reason, the infrastructure provides the
targetObject message property which can be used by a custom converter to determine the
type.

Converting From a Message With RabbitTemplate

As mentioned above, type information is conveyed in message headers to assist the converter when
converting from a message. This works fine in most cases, but when using generic types, it can
only convert simple objects and known "container" objects (lists, arrays, maps). Starting with version
2.0, the Jackson2JsonMessageConverter implements SmartMessageConverter which allows it
to be used with the new RabbitTemplate methods that take a ParameterizedTypeReference
argument; this allows conversion of complex generic types. For example:

Foo<Bar<Baz, Qux>> foo =

 rabbitTemplate.receiveAndConvert(new ParameterizedTypeReference<Foo<Bar<Baz, Qux>>>() { });

MarshallingMessageConverter

Yet another option is the MarshallingMessageConverter. It delegates to the Spring OXM library’s
implementations of the Marshaller and Unmarshaller strategy interfaces. You can read more about
that library here. In terms of configuration, it’s most common to provide the constructor argument only
since most implementations of Marshaller will also implement Unmarshaller.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Spring AMQP

2.0.0.M4 Spring AMQP 55

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <property name="connectionFactory" ref="rabbitConnectionFactory"/>

 <property name="messageConverter">

 <bean class="org.springframework.amqp.support.converter.MarshallingMessageConverter">

 <constructor-arg ref="someImplemenationOfMarshallerAndUnmarshaller"/>

 </bean>

 </property>

</bean>

ContentTypeDelegatingMessageConverter

This class was introduced in version 1.4.2 and allows delegation to a specific MessageConverter
based on the content type property in the MessageProperties. By default, it will delegate to a
SimpleMessageConverter if there is no contentType property, or a value that matches none of
the configured converters.

<bean id="contentTypeConverter" class="ContentTypeDelegatingMessageConverter">

 <property name="delegates">

 <map>

 <entry key="application/json" value-ref="jsonMessageConverter" />

 <entry key="application/xml" value-ref="xmlMessageConverter" />

 </map>

 </property>

</bean>

Java Deserialization

Important

There is a possible vulnerability when deserializing java objects from untrusted sources.

If you accept messages from untrusted sources with a content-type application/
x-java-serialized-object, you should consider configuring which packages/classes
are allowed to be deserialized. This applies to both the SimpleMessageConverter and
SerializerMessageConverter when it is configured to use a DefaultDeserializer -
either implicitly, or via configuration.

By default, the white list is empty, meaning all classes will be deserialized.

You can set a list of patterns, such as foo.*, foo.bar.Baz or *.MySafeClass.

The patterns will be checked in order until a match is found. If there is no match, a
SecurityException is thrown.

Set the patterns using the whiteListPatterns property on these converters.

Message Properties Converters

The MessagePropertiesConverter strategy interface is used to convert between the Rabbit
Client BasicProperties and Spring AMQP MessageProperties. The default implementation
(DefaultMessagePropertiesConverter) is usually sufficient for most purposes but you can
implement your own if needed. The default properties converter will convert BasicProperties
elements of type LongString to String s when the size is not greater than 1024 bytes. Larger
LongString s are not converted (see below). This limit can be overridden with a constructor argument.

Starting with version 1.6, headers longer than the long string limit (default 1024) are now left as
LongString s by default by the DefaultMessagePropertiesConverter. You can access the
contents via the getBytes[], toString(), or getStream() methods.

Spring AMQP

2.0.0.M4 Spring AMQP 56

Previously, the DefaultMessagePropertiesConverter "converted" such headers to a
DataInputStream (actually it just referenced the LongString's DataInputStream). On output,
this header was not converted (except to a String, e.g. java.io.DataInputStream@1d057a39 by
calling toString() on the stream).

Large incoming LongString headers are now correctly "converted" on output too (by default).

A new constructor is provided to allow you to configure the converter to work as before:

/**

 * Construct an instance where LongStrings will be returned

 * unconverted or as a java.io.DataInputStream when longer than this limit.

 * Use this constructor with 'true' to restore pre-1.6 behavior.

 * @param longStringLimit the limit.

 * @param convertLongLongStrings LongString when false,

 * DataInputStream when true.

 * @since 1.6

 */

public DefaultMessagePropertiesConverter(int longStringLimit, boolean convertLongLongStrings) { ... }

Also starting with version 1.6, a new property correlationIdString has been added to
MessageProperties. Previously, when converting to/from BasicProperties used by the
RabbitMQ client, an unnecessary byte[] <-> String conversion was performed because
MessageProperties.correlationId is a byte[] but BasicProperties uses a String.
(Ultimately, the RabbitMQ client uses UTF-8 to convert the String to bytes to put in the protocol
message).

To provide maximum backwards compatibility, a new property correlationIdPolicy

has been added to the DefaultMessagePropertiesConverter. This takes an
DefaultMessagePropertiesConverter.CorrelationIdPolicy enum argument. By default it
is set to BYTES which replicates the previous behavior.

For inbound messages:

• STRING - just the correlationIdString property is mapped

• BYTES - just the correlationId property is mapped

• BOTH - both properties are mapped

For outbound messages:

• STRING - just the correlationIdString property is mapped

• BYTES - just the correlationId property is mapped

• BOTH - Both properties will be considered, with the String property taking precedence

Also starting with version 1.6, the inbound deliveryMode property is
no longer mapped to MessageProperties.deliveryMode, it is mapped to
MessageProperties.receivedDeliveryMode instead. Also, the inbound userId

property is no longer mapped to MessageProperties.userId, it is mapped to
MessageProperties.receivedUserId instead. These changes are to avoid unexpected
propagation of these properties if the same MessageProperties object is used for an outbound
message.

Spring AMQP

2.0.0.M4 Spring AMQP 57

Modifying Messages - Compression and More

A number of extension points exist where you can perform some processing on a message, either before
it is sent to RabbitMQ, or immediately after it is received.

As can be seen in the section called “Message Converters”, one such extension
point is in the AmqpTemplate convertAndReceive operations, where you can provide
a MessagePostProcessor. For example, after your POJO has been converted, the
MessagePostProcessor enables you to set custom headers or properties on the Message.

Starting with version 1.4.2, additional extension points have been added to the RabbitTemplate
- setBeforePublishPostProcessors() and setAfterReceivePostProcessors(). The first
enables a post processor to run immediately before sending to RabbitMQ. When using batching (see
the section called “Batching”), this is invoked after the batch is assembled and before the batch is sent.
The second is invoked immediately after a message is received.

These extension points are used for such features as compression and, for this purpose, several
MessagePostProcessor s are provided:

• GZipPostProcessor

• ZipPostProcessor

for compressing messages before sending, and

• GUnzipPostProcessor

• UnzipPostProcessor

for decompressing received messages.

Similarly, the SimpleMessageListenerContainer also has a
setAfterReceivePostProcessors() method, allowing the decompression to be performed after
messages are received by the container.

Request/Reply Messaging

Introduction

The AmqpTemplate also provides a variety of sendAndReceive methods that accept the same
argument options that you have seen above for the one-way send operations (exchange, routingKey,
and Message). Those methods are quite useful for request/reply scenarios since they handle the
configuration of the necessary "reply-to" property before sending and can listen for the reply message
on an exclusive Queue that is created internally for that purpose.

Similar request/reply methods are also available where the MessageConverter is applied to both
the request and reply. Those methods are named convertSendAndReceive. See the Javadoc of
AmqpTemplate for more detail.

Starting with version 1.5.0, each of the sendAndReceive method variants has an overloaded version
that takes CorrelationData. Together with a properly configured connection factory, this enables
the receipt of publisher confirms for the send side of the operation. See the section called “Publisher
Confirms and Returns” and the javadoc for RabbitOperations for more information.

Spring AMQP

2.0.0.M4 Spring AMQP 58

Starting with version 2.0, there are variants of these methods (convertSendAndReceiveAsType)
that take an additional ParameterizedTypeReference argument to convert complex returned types.
The template must be configured with a SmartMessageConverter; see the section called “Converting
From a Message With RabbitTemplate” for more information.

Reply Timeout

By default, the send and receive methods will timeout after 5 seconds and return null. This can be
modified by setting the replyTimeout property. Starting with version 1.5, if you set the mandatory
property to true (or the mandatory-expression evaluates to true for a particular message), if the
message cannot be delivered to a queue an AmqpMessageReturnedException will be thrown. This
exception has returnedMessage, replyCode, replyText properties, as well as the exchange and
routingKey used for the send.

Note

This feature uses publisher returns and is enabled by setting publisherReturns to true on the
CachingConnectionFactory (see the section called “Publisher Confirms and Returns”). Also,
you must not have registered your own ReturnCallback with the RabbitTemplate.

RabbitMQ Direct reply-to

Important

Starting with version 3.4.0, the RabbitMQ server now supports Direct reply-to; this eliminates the
main reason for a fixed reply queue (to avoid the need to create a temporary queue for each
request). Starting with Spring AMQP version 1.4.1 Direct reply-to will be used by default (if
supported by the server) instead of creating temporary reply queues. When no replyQueue
is provided (or it is set with the name amq.rabbitmq.reply-to), the RabbitTemplate will
automatically detect whether Direct reply-to is supported and either use it or fall back to using
a temporary reply queue. When using Direct reply-to, a reply-listener is not required and
should not be configured.

Reply listeners are still supported with named queues (other than amq.rabbitmq.reply-to),
allowing control of reply concurrency etc.

Starting with version 1.6 if, for some reason, you wish to use a temporary, exclusive, auto-delete queue
for each reply, set the useTemporaryReplyQueues property to true. This property is ignored if you
you set a replyAddress.

The decision whether or not to use direct reply-to can be changed to use different criteria by subclassing
RabbitTemplate and overriding useDirectReplyTo(). The method is called once only; when the
first request is sent.

With versions earlier than verion 2.0, the RabbitTemplate created a new consumer for each request
and canceled the consumer when the reply was received (or timed out). Now, the template uses a
DirectReplyToMessageListenerContainer instead, allowing the consumers to be reused; the
template still takes care of correlating the replies so there is no danger of a late reply going to a different
sender. If you want to revert to the previous behavior, set property useDirectReplyToContainer
(direct-reply-to-container when using XML configuration) to false.

The AsynRabbitTemplate has no such option - it always used a DirectReplyToContainer for
replies when direct replyTo is being used.

http://www.rabbitmq.com/direct-reply-to.html

Spring AMQP

2.0.0.M4 Spring AMQP 59

Message Correlation With A Reply Queue

When using a fixed reply queue (other than amq.rabbitmq.reply-to), it is necessary to provide
correlation data so that replies can be correlated to requests. See RabbitMQ Remote Procedure Call
(RPC). By default, the standard correlationId property will be used to hold the correlation data.
However, if you wish to use a custom property to hold correlation data, you can set the correlation-
key attribute on the <rabbit-template/>. Explicitly setting the attribute to correlationId is the same
as omitting the attribute. Of course, the client and server must use the same header for correlation data.

Note

Spring AMQP version 1.1 used a custom property spring_reply_correlation for this data.
If you wish to revert to this behavior with the current version, perhaps to maintain compatibility
with another application using 1.1, you must set the attribute to spring_reply_correlation.

Reply Listener Container

When using RabbitMQ versions prior to 3.4.0, a new temporary queue is used for each reply. However,
a single reply queue can be configured on the template, which can be more efficient, and also allows
you to set arguments on that queue. In this case, however, you must also provide a <reply-listener/>
sub element. This element provides a listener container for the reply queue, with the template being the
listener. All of the the section called “Message Listener Container Configuration” attributes allowed on a
<listener-container/> are allowed on the element, except for connection-factory and message-converter,
which are inherited from the template’s configuration.

Important

If you run multiple instances of your application or use multiple RabbitTemplate s, you MUST
use a unique reply queue for each - RabbitMQ has no capability to select messages from a queue
so, if they all use the same queue, each instance would compete for replies and not necessarily
receive their own.

<rabbit:template id="amqpTemplate"

 connection-factory="connectionFactory"

 reply-queue="replies"

 reply-address="replyEx/routeReply">

 <rabbit:reply-listener/>

</rabbit:template>

While the container and template share a connection factory, they do not share a channel and therefore
requests and replies are not performed within the same transaction (if transactional).

Note

Prior to version 1.5.0, the reply-address attribute was not available, replies were always routed
using the default exchange and the reply-queue name as the routing key. This is still the
default but you can now specify the new reply-address attribute. The reply-address can
contain an address with the form <exchange>/<routingKey> and the reply will be routed to the
specified exchange and routed to a queue bound with the routing key. The reply-address has
precedence over reply-queue. The <reply-listener> must be configured as a separate
<listener-container> component, when only reply-address is in use, anyway reply-
address and reply-queue (or queues attribute on the <listener-container>) must refer
to the same queue logically.

http://www.rabbitmq.com/tutorials/tutorial-six-java.html
http://www.rabbitmq.com/tutorials/tutorial-six-java.html

Spring AMQP

2.0.0.M4 Spring AMQP 60

With this configuration, a SimpleListenerContainer is used to receive the replies; with
the RabbitTemplate being the MessageListener. When defining a template with the
<rabbit:template/> namespace element, as shown above, the parser defines the container and
wires in the template as the listener.

Note

When the template does not use a fixed replyQueue (or is using Direct reply-to - see the section
called “RabbitMQ Direct reply-to”) a listener container is not needed. Direct reply-to is the
preferred mechanism when using RabbitMQ 3.4.0 or later.

If you define your RabbitTemplate as a <bean/>, or using an @Configuration class to define it
as an @Bean, or when creating the template programmatically, you will need to define and wire up the
reply listener container yourself. If you fail to do this, the template will never receive the replies and will
eventually time out and return null as the reply to a call to a sendAndReceive method.

Starting with version 1.5, the RabbitTemplate will detect if it has been configured as a
MessageListener to receive replies. If not, attempts to send and receive messages with a reply
address will fail with an IllegalStateException (because the replies will never be received).

Further, if a simple replyAddress (queue name) is used, the reply listener container will verify that it
is listening to a queue with the same name. This check cannot be performed if the reply address is an
exchange and routing key and a debug log message will be written.

Important

When wiring the reply listener and template yourself, it is important to ensure that the template’s
replyQueue and the container’s queues (or queueNames) properties refer to the same queue.
The template inserts the reply queue into the outbound message replyTo property.

The following are examples of how to manually wire up the beans.

<bean id="amqpTemplate" class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <constructor-arg ref="connectionFactory" />

 <property name="exchange" value="foo.exchange" />

 <property name="routingKey" value="foo" />

 <property name="replyQueue" ref="replyQ" />

 <property name="replyTimeout" value="600000" />

</bean>

<bean class="org.springframework.amqp.rabbit.listener.SimpleMessageListenerContainer">

 <constructor-arg ref="connectionFactory" />

 <property name="queues" ref="replyQ" />

 <property name="messageListener" ref="amqpTemplate" />

</bean>

<rabbit:queue id="replyQ" name="my.reply.queue" />

Spring AMQP

2.0.0.M4 Spring AMQP 61

 @Bean

 public RabbitTemplate amqpTemplate() {

 RabbitTemplate rabbitTemplate = new RabbitTemplate(connectionFactory());

 rabbitTemplate.setMessageConverter(msgConv());

 rabbitTemplate.setReplyQueue(replyQueue());

 rabbitTemplate.setReplyTimeout(60000);

 return rabbitTemplate;

 }

 @Bean

 public SimpleMessageListenerContainer replyListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(connectionFactory());

 container.setQueues(replyQueue());

 container.setMessageListener(amqpTemplate());

 return container;

 }

 @Bean

 public Queue replyQueue() {

 return new Queue("my.reply.queue");

 }

A complete example of a RabbitTemplate wired with a fixed reply queue, together with a "remote"
listener container that handles the request and returns the reply is shown in this test case.

Important

When the reply times out (replyTimeout), the sendAndReceive() methods return null.

Prior to version 1.3.6, late replies for timed out messages were simply logged. Now, if a late reply is
received, it is rejected (the template throws an AmqpRejectAndDontRequeueException). If the reply
queue is configured to send rejected messages to a dead letter exchange, the reply can be retrieved
for later analysis. Simply bind a queue to the configured dead letter exchange with a routing key equal
to the reply queue’s name.

Refer to the RabbitMQ Dead Letter Documentation for more information about configuring dead lettering.
You can also take a look at the FixedReplyQueueDeadLetterTests test case for an example.

AsyncRabbitTemplate

Version 1.6 introduced the AsyncRabbitTemplate. This has similar sendAndReceive (and
convertSendAndReceive) methods to those on the AmqpTemplate but instead of blocking, they
return a ListenableFuture.

The sendAndReceive methods return a RabbitMessageFuture; the convertSendAndReceive
methods return a RabbitConverterFuture.

You can either synchronously retrieve the result later, by invoking get() on the future, or you can
register a callback which will be called asynchronously with the result.

https://github.com/spring-projects/spring-amqp/tree/master/spring-rabbit/src/test/java/org/springframework/amqp/rabbit/listener/JavaConfigFixedReplyQueueTests.java
https://www.rabbitmq.com/dlx.html
#amqp-template

Spring AMQP

2.0.0.M4 Spring AMQP 62

@Autowired

private AsyncRabbitTemplate template;

...

public void doSomeWorkAndGetResultLater() {

 ...

 ListenableFuture<String> future = this.template.convertSendAndReceive("foo");

 // do some more work

 String reply = null;

 try {

 reply = future.get();

 }

 catch (ExecutionException e) {

 ...

 }

 ...

}

public void doSomeWorkAndGetResultAsync() {

 ...

 RabbitConverterFuture<String> future = this.template.convertSendAndReceive("foo");

 future.addCallback(new ListenableFutureCallback<String>() {

 @Override

 public void onSuccess(String result) {

 ...

 }

 @Override

 public void onFailure(Throwable ex) {

 ...

 }

 });

 ...

}

If mandatory is set, and the message can’t be delivered, the future will throw an
ExecutionException with a cause of AmqpMessageReturnedException which encapsulates the
returned message and information about the return.

If enableConfirms is set, the future will have a property confirm which is itself a
ListenableFuture<Boolean> with true indicating a successful publish. If the confirm future is
false, the RabbitFuture will have a further property nackCause - the reason for the failure, if available.

Important

The publisher confirm is discarded if it is received after the reply - since the reply implies a
successful publish.

Set the receiveTimeout property on the template to time out replies (it defaults to 30000 - 30
seconds). If a timeout occurs, the future will be completed with an AmqpReplyTimeoutException.

Spring AMQP

2.0.0.M4 Spring AMQP 63

The template implements SmartLifecycle; stopping the template while there are pending replies will
cause the pending Future s to be canceled.

Starting with version 2.0, the async template now supports Direct reply-to instead of a configured reply
queue. To enable this feature, use one of the following constructors:

public AsyncRabbitTemplate(ConnectionFactory connectionFactory, String exchange, String routingKey)

public AsyncRabbitTemplate(RabbitTemplate template)

See the section called “RabbitMQ Direct reply-to” to use Direct reply-to with the synchronous
RabbitTemplate.

Starting with version 2.0, there are variants of these methods (convertSendAndReceiveAsType) that
take an additional ParameterizedTypeReference argument to convert complex returned types. The
underlying RabbitTemplate must be configured with a SmartMessageConverter; see the section
called “Converting From a Message With RabbitTemplate” for more information.

Spring Remoting with AMQP

The Spring Framework has a general remoting capability, allowing Remote Procedure Calls (RPC)
using various transports. Spring-AMQP supports a similar mechanism with a AmqpProxyFactoryBean
on the client and a AmqpInvokerServiceExporter on the server. This provides RPC over AMQP.
On the client side, a RabbitTemplate is used as described above; on the server side, the invoker
(configured as a MessageListener) receives the message, invokes the configured service, and
returns the reply using the inbound message’s replyTo information.

The client factory bean can be injected into any bean (using its serviceInterface); the client can
then invoke methods on the proxy, resulting in remote execution over AMQP.

Note

With the default MessageConverter s, the method parameters and returned value must be
instances of Serializable.

On the server side, the AmqpInvokerServiceExporter has both AmqpTemplate and
MessageConverter properties. Currently, the template’s MessageConverter is not used. If you
need to supply a custom message converter, then you should provide it using the messageConverter
property. On the client side, a custom message converter can be added to the AmqpTemplate which
is provided to the AmqpProxyFactoryBean using its amqpTemplate property.

Sample client and server configurations are shown below.

https://www.rabbitmq.com/direct-reply-to.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/remoting.html

Spring AMQP

2.0.0.M4 Spring AMQP 64

<bean id="client"

 class="org.springframework.amqp.remoting.client.AmqpProxyFactoryBean">

 <property name="amqpTemplate" ref="template" />

 <property name="serviceInterface" value="foo.ServiceInterface" />

</bean>

<rabbit:connection-factory id="connectionFactory" />

<rabbit:template id="template" connection-factory="connectionFactory" reply-timeout="2000"

 routing-key="remoting.binding" exchange="remoting.exchange" />

<rabbit:admin connection-factory="connectionFactory" />

<rabbit:queue name="remoting.queue" />

<rabbit:direct-exchange name="remoting.exchange">

 <rabbit:bindings>

 <rabbit:binding queue="remoting.queue" key="remoting.binding" />

 </rabbit:bindings>

</rabbit:direct-exchange>

<bean id="listener"

 class="org.springframework.amqp.remoting.service.AmqpInvokerServiceExporter">

 <property name="serviceInterface" value="foo.ServiceInterface" />

 <property name="service" ref="service" />

 <property name="amqpTemplate" ref="template" />

</bean>

<bean id="service" class="foo.ServiceImpl" />

<rabbit:connection-factory id="connectionFactory" />

<rabbit:template id="template" connection-factory="connectionFactory" />

<rabbit:queue name="remoting.queue" />

<rabbit:listener-container connection-factory="connectionFactory">

 <rabbit:listener ref="listener" queue-names="remoting.queue" />

</rabbit:listener-container>

Important

The AmqpInvokerServiceExporter can only process properly formed messages, such as
those sent from the AmqpProxyFactoryBean. If it receives a message that it cannot interpret, a
serialized RuntimeException will be sent as a reply. If the message has no replyToAddress
property, the message will be rejected and permanently lost if no Dead Letter Exchange has been
configured.

Note

By default, if the request message cannot be delivered, the calling thread will eventually timeout
and a RemoteProxyFailureException will be thrown. The timeout is 5 seconds by default,
and can be modified by setting the replyTimeout property on the RabbitTemplate. Starting
with version 1.5, setting the mandatory property to true, and enabling returns on the connection
factory (see the section called “Publisher Confirms and Returns”), the calling thread will throw
an AmqpMessageReturnedException. See the section called “Reply Timeout” for more
information.

Spring AMQP

2.0.0.M4 Spring AMQP 65

Configuring the broker

Introduction

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges
and Bindings on the broker. These operations which are portable from the 0.8 specification
and higher are present in the AmqpAdmin interface in the org.springframework.amqp.core
package. The RabbitMQ implementation of that class is RabbitAdmin located in the
org.springframework.amqp.rabbit.core package.

The AmqpAdmin interface is based on using the Spring AMQP domain abstractions and is shown below:

public interface AmqpAdmin {

 // Exchange Operations

 void declareExchange(Exchange exchange);

 void deleteExchange(String exchangeName);

 // Queue Operations

 Queue declareQueue();

 String declareQueue(Queue queue);

 void deleteQueue(String queueName);

 void deleteQueue(String queueName, boolean unused, boolean empty);

 void purgeQueue(String queueName, boolean noWait);

 // Binding Operations

 void declareBinding(Binding binding);

 void removeBinding(Binding binding);

 Properties getQueueProperties(String queueName);

}

The getQueueProperties() method returns some limited information about the queue (message
count and consumer count). The keys for the properties returned are available as constants in
the RabbitTemplate (QUEUE_NAME, QUEUE_MESSAGE_COUNT, QUEUE_CONSUMER_COUNT). The
RabbitMQ REST API provides much more information in the QueueInfo object.

The no-arg declareQueue() method defines a queue on the broker with a name that is
automatically generated. The additional properties of this auto-generated queue are exclusive=true,
autoDelete=true, and durable=false.

The declareQueue(Queue queue) method takes a Queue object and returns the name of the
declared queue. If the provided Queue's name property is an empty String, the broker declares the queue
with a generated name and that name is returned to the caller. The Queue object itself is not changed.
This functionality can only be used programmatically by invoking the RabbitAdmin directly. It is not
supported for auto-declaration by the admin by defining a queue declaratively in the application context.

This is in contrast to an AnonymousQueue where the framework generates a unique (UUID) name and
sets durable to false and exclusive, autoDelete to true. A <rabbit:queue/> with an empty,
or missing, name attribute will always create an AnonymousQueue.

Spring AMQP

2.0.0.M4 Spring AMQP 66

See the section called “AnonymousQueue” to understand why AnonymousQueue is preferred over
broker-generated queue names, as well as how to control the format of the name. Declarative queues
must have fixed names because they might be referenced elsewhere in the context, for example, in
a listener:

<rabbit:listener-container>

 <rabbit:listener ref="listener" queue-names="#{someQueue.name}" />

</rabbit:listener-container>

See the section called “Automatic Declaration of Exchanges, Queues and Bindings”.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring
XML would look like this:

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:admin id="amqpAdmin" connection-factory="connectionFactory"/>

When the CachingConnectionFactory cache mode is CHANNEL (the default), the RabbitAdmin
implementation does automatic lazy declaration of Queues, Exchanges and Bindings declared in
the same ApplicationContext. These components will be declared as s0on as a Connection is
opened to the broker. There are some namespace features that make this very convenient, e.g. in the
Stocks sample application we have:

<rabbit:queue id="tradeQueue"/>

<rabbit:queue id="marketDataQueue"/>

<fanout-exchange name="broadcast.responses"

 xmlns="http://www.springframework.org/schema/rabbit">

 <bindings>

 <binding queue="tradeQueue"/>

 </bindings>

</fanout-exchange>

<topic-exchange name="app.stock.marketdata"

 xmlns="http://www.springframework.org/schema/rabbit">

 <bindings>

 <binding queue="marketDataQueue" pattern="${stocks.quote.pattern}"/>

 </bindings>

</topic-exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names
generated by the framework, not by the broker) and refer to them by ID. We can also declare Queues
with explicit names, which also serve as identifiers for their bean definitions in the context. E.g.

<rabbit:queue name="stocks.trade.queue"/>

Tip

You can provide both an id and a name attribute. This allows you to refer to the queue (for
example in a binding) by an id that is independent of the queue name. It also allows standard
Spring features such as property placeholders, and SpEL expressions for the queue name; these
features are not available when using the name as the bean identifier.

Queues can be configured with additional arguments, for example, x-message-ttl or x-ha-policy. Using
the namespace support, they are provided in the form of a Map of argument name/argument value pairs,
using the <rabbit:queue-arguments> element.

Spring AMQP

2.0.0.M4 Spring AMQP 67

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-ha-policy" value="all"/>

 </rabbit:queue-arguments>

</rabbit:queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs
to be provided.

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments value-type="java.lang.Long">

 <entry key="x-message-ttl" value="100"/>

 </rabbit:queue-arguments>

</rabbit:queue>

When providing arguments of mixed types, the type is provided for each entry element:

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-message-ttl">

 <value type="java.lang.Long">100</value>

 </entry>

 <entry key="x-ha-policy" value="all"/>

 </rabbit:queue-arguments>

</rabbit:queue>

With Spring Framework 3.2 and later, this can be declared a little more succinctly:

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-message-ttl" value="100" value-type="java.lang.Long"/>

 <entry key="x-ha-policy" value="all"/>

 </rabbit:queue-arguments>

</rabbit:queue>

Important

The RabbitMQ broker will not allow declaration of a queue with mismatched arguments. For
example, if a queue already exists with no time to live argument, and you attempt to declare
it with, say, key="x-message-ttl" value="100", an exception will be thrown.

By default, the RabbitAdmin will immediately stop processing all declarations when any exception
occurs; this could cause downstream issues - such as a listener container failing to initialize because
another queue (defined after the one in error) is not declared.

This behavior can be modified by setting the ignore-declaration-exceptions attribute to
true on the RabbitAdmin. This option instructs the RabbitAdmin to log the exception, and
continue declaring other elements. When configuring the RabbitAdmin using java, this property is
ignoreDeclarationExceptions. This is a global setting which applies to all elements, queues,
exchanges and bindings have a similar property which applies to just those elements.

Prior to version 1.6, this property only took effect if an IOException occurred on the channel - such
as when there is a mismatch between current and desired properties. Now, this property takes effect
on any exception, including TimeoutException etc.

In addition, any declaration exceptions result in the publishing of a DeclarationExceptionEvent,
which is an ApplicationEvent that can be consumed by any ApplicationListener in the
context. The event contains a reference to the admin, the element that was being declared, and the
Throwable.

Spring AMQP

2.0.0.M4 Spring AMQP 68

Starting with version 1.3 the HeadersExchange can be configured to match on multiple headers; you
can also specify whether any or all headers must match:

<rabbit:headers-exchange name="headers-test">

 <rabbit:bindings>

 <rabbit:binding queue="bucket">

 <rabbit:binding-arguments>

 <entry key="foo" value="bar"/>

 <entry key="baz" value="qux"/>

 <entry key="x-match" value="all"/>

 </rabbit:binding-arguments>

 </rabbit:binding>

 </rabbit:bindings>

</rabbit:headers-exchange>

Starting with version 1.6 Exchanges can be configured with an internal flag (defaults to false) and
such an Exchange will be properly configured on the Broker via a RabbitAdmin (if one is present in
the application context). If the internal flag is true for an exchange, RabbitMQ will not allow clients
to use the exchange. This is useful for a dead letter exchange, or exchange-to-exchange binding, where
you don’t wish the exchange to be used directly by publishers.

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample application,
where there is the @Configuration class AbstractStockRabbitConfiguration which in turn
has RabbitClientConfiguration and RabbitServerConfiguration subclasses. The code for
AbstractStockRabbitConfiguration is shown below

@Configuration

public abstract class AbstractStockAppRabbitConfiguration {

 @Bean

 public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory =

 new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

 }

 @Bean

 public RabbitTemplate rabbitTemplate() {

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 template.setMessageConverter(jsonMessageConverter());

 configureRabbitTemplate(template);

 return template;

 }

 @Bean

 public MessageConverter jsonMessageConverter() {

 return new Jackson2JsonMessageConverter();

 }

 @Bean

 public TopicExchange marketDataExchange() {

 return new TopicExchange("app.stock.marketdata");

 }

 // additional code omitted for brevity

}

In the Stock application, the server is configured using the following @Configuration class:

Spring AMQP

2.0.0.M4 Spring AMQP 69

@Configuration

public class RabbitServerConfiguration extends AbstractStockAppRabbitConfiguration {

 @Bean

 public Queue stockRequestQueue() {

 return new Queue("app.stock.request");

 }

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. There is no binding
of the TopicExchange to a queue in the server configuration, as that is done in the client application.
The stock request queue however is automatically bound to the AMQP default exchange - this behavior
is defined by the specification.

The client @Configuration class is a little more interesting and is shown below.

@Configuration

public class RabbitClientConfiguration extends AbstractStockAppRabbitConfiguration {

 @Value("${stocks.quote.pattern}")

 private String marketDataRoutingKey;

 @Bean

 public Queue marketDataQueue() {

 return amqpAdmin().declareQueue();

 }

 /**

 * Binds to the market data exchange.

 * Interested in any stock quotes

 * that match its routing key.

 */

 @Bean

 public Binding marketDataBinding() {

 return BindingBuilder.bind(

 marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

 }

 // additional code omitted for brevity

}

The client is declaring another queue via the declareQueue() method on the AmqpAdmin, and it binds
that queue to the market data exchange with a routing pattern that is externalized in a properties file.

Builder API for Queues and Exchanges

Version 1.6 introduces a convenient fluent API for configuring Queue and Exchange objects when using
Java configuration:

Spring AMQP

2.0.0.M4 Spring AMQP 70

@Bean

public Queue queue() {

 return QueueBuilder.nonDurable("foo")

 .autoDelete()

 .exclusive()

 .withArgument("foo", "bar")

 .build();

}

@Bean

public Exchange exchange() {

 return ExchangeBuilder.directExchange("foo")

 .autoDelete()

 .internal()

 .withArgument("foo", "bar")

 .build();

}

See the javadocs for org.springframework.amqp.core.QueueBuilder and
org.springframework.amqp.core.ExchangeBuilder for more information.

Starting with version 2.0, the ExchangeBuilder now creates durable exchanges by default, to be
consistent with the simple constructors on the individual AbstractExchange classes. To make a
non-durable exchange with the builder, use .durable(false) before invoking .build(). The
durable() method with no parameter is no longer provided.

Declaring Collections of Exchanges, Queues, Bindings

Starting with version 1.5, it is now possible to declare multiple entities with one @Bean, by returning
a collection.

Only collections where the first element is a Declarable are considered, and only Declarable
elements from such collections are processed.

Spring AMQP

2.0.0.M4 Spring AMQP 71

@Configuration

public static class Config {

 @Bean

 public ConnectionFactory cf() {

 return new CachingConnectionFactory("localhost");

 }

 @Bean

 public RabbitAdmin admin(ConnectionFactory cf) {

 return new RabbitAdmin(cf);

 }

 @Bean

 public DirectExchange e1() {

 return new DirectExchange("e1", false, true);

 }

 @Bean

 public Queue q1() {

 return new Queue("q1", false, false, true);

 }

 @Bean

 public Binding b1() {

 return BindingBuilder.bind(q1()).to(e1()).with("k1");

 }

 @Bean

 public List<Exchange> es() {

 return Arrays.<Exchange>asList(

 new DirectExchange("e2", false, true),

 new DirectExchange("e3", false, true)

);

 }

 @Bean

 public List<Queue> qs() {

 return Arrays.asList(

 new Queue("q2", false, false, true),

 new Queue("q3", false, false, true)

);

 }

 @Bean

 public List<Binding> bs() {

 return Arrays.asList(

 new Binding("q2", DestinationType.QUEUE, "e2", "k2", null),

 new Binding("q3", DestinationType.QUEUE, "e3", "k3", null)

);

 }

 @Bean

 public List<Declarable> ds() {

 return Arrays.<Declarable>asList(

 new DirectExchange("e4", false, true),

 new Queue("q4", false, false, true),

 new Binding("q4", DestinationType.QUEUE, "e4", "k4", null)

);

 }

}

Conditional Declaration

By default, all queues, exchanges, and bindings are declared by all RabbitAdmin instances (that have
auto-startup="true") in the application context.

Spring AMQP

2.0.0.M4 Spring AMQP 72

Note

Starting with the 1.2 release, it is possible to conditionally declare these elements. This is
particularly useful when an application connects to multiple brokers and needs to specify with
which broker(s) a particular element should be declared.

The classes representing these elements implement Declarable which has two methods:
shouldDeclare() and getDeclaringAdmins(). The RabbitAdmin uses these methods to
determine whether a particular instance should actually process the declarations on its Connection.

The properties are available as attributes in the namespace, as shown in the following examples.

<rabbit:admin id="admin1" connection-factory="CF1" />

<rabbit:admin id="admin2" connection-factory="CF2" />

<rabbit:queue id="declaredByBothAdminsImplicitly" />

<rabbit:queue id="declaredByBothAdmins" declared-by="admin1, admin2" />

<rabbit:queue id="declaredByAdmin1Only" declared-by="admin1" />

<rabbit:queue id="notDeclaredByAny" auto-declare="false" />

<rabbit:direct-exchange name="direct" declared-by="admin1, admin2">

 <rabbit:bindings>

 <rabbit:binding key="foo" queue="bar"/>

 </rabbit:bindings>

</rabbit:direct-exchange>

Note

The auto-declare attribute is true by default and if the declared-by is not supplied (or is
empty) then all RabbitAdmin s will declare the object (as long as the admin’s auto-startup
attribute is true; the default).

Similarly, you can use Java-based @Configuration to achieve the same effect. In this example, the
components will be declared by admin1 but not admin2:

Spring AMQP

2.0.0.M4 Spring AMQP 73

@Bean

public RabbitAdmin admin() {

 RabbitAdmin rabbitAdmin = new RabbitAdmin(cf1());

 rabbitAdmin.afterPropertiesSet();

 return rabbitAdmin;

}

@Bean

public RabbitAdmin admin2() {

 RabbitAdmin rabbitAdmin = new RabbitAdmin(cf2());

 rabbitAdmin.afterPropertiesSet();

 return rabbitAdmin;

}

@Bean

public Queue queue() {

 Queue queue = new Queue("foo");

 queue.setAdminsThatShouldDeclare(admin());

 return queue;

}

@Bean

public Exchange exchange() {

 DirectExchange exchange = new DirectExchange("bar");

 exchange.setAdminsThatShouldDeclare(admin());

 return exchange;

}

@Bean

public Binding binding() {

 Binding binding = new Binding("foo", DestinationType.QUEUE, exchange().getName(), "foo", null);

 binding.setAdminsThatShouldDeclare(admin());

 return binding;

}

A Note On "id" and "name" Attributes

The name attribute on <rabbit:queue/> and <rabbit:exchange/> elements reflects the name of
the entity in the broker. For queues, if the name is omitted, an anonymous queue is created (see the
section called “AnonymousQueue” below).

In versions prior to 2.0, the name was also registered as a bean name alias (similar to name on <bean/
> elements).

This caused two problems:

• it prevented the declaration of a queue and exchange with the same name

• the alias was not resolved if it contained a SpEL expression (#{...})

Starting with version 2.0, if you declare one of these elements with both an id and a name attribute, the
name will no longer be declared as a bean name alias. If you wish to declare a queue and exchange
with the same name, you must provide an id.

There is no change if the element has just a name attribute, the bean can still be referenced by the
name, for example in binding declarations, but you still can’t reference it if the name contains SpEL -
provide an id for reference purposes.

AnonymousQueue

In general, when needing a uniquely-named, exclusive, auto-delete queue, it is recommended that the
AnonymousQueue is used instead of broker-defined queue names (using "" as a Queue name will
cause the broker to generate the queue name).

Spring AMQP

2.0.0.M4 Spring AMQP 74

This is because:

1. The queues are actually declared when the connection to the broker is established; this is long after
the beans are created and wired together; beans using the queue need to know its name. In fact, the
broker might not even be running when the app is started.

2. If the connection to the broker is lost for some reason, the admin will re-declare the AnonymousQueue
with the same name. If we used broker-declared queues, the queue name would change.

You can control the format of the queue name used by AnonymousQueue s.

By default, the queue name is prefixed by spring.gen- followed by a base64 representation of the
UUID, for example: spring.gen-MRBv9sqISkuCiPfOYfpo4g.

You can provide an AnonymousQueue.NamingStrategy implementation in a constructor argument.

@Bean

public Queue anon1() {

 return new AnonymousQueue();

}

@Bean

public Queue anon2() {

 return new AnonymousQueue(new AnonymousQueue.Base64UrlNamingStrategy("foo-"));

}

@Bean

public Queue anon3() {

 return new AnonymousQueue(AnonymousQueue.UUIDNamingStrategy.DEFAULT);

}

The first will generate a queue name prefixed by spring.gen- followed by a base64 representation of
the UUID, for example: spring.gen-MRBv9sqISkuCiPfOYfpo4g. The second will generate a queue
name prefixed by foo- followed by a base64 representation of the UUID. The third will generate a name
using just the UUID (no base64 conversion), e.g. f20c818a-006b-4416-bf91-643590fedb0e.

The base64 encoding uses the "URL and Filename Safe Alphabet" from RFC 4648; trailing padding
characters (=) are removed.

You can provide your own naming strategy, whereby you can include other information (e.g. application,
client host) in the queue name.

The naming strategy can be specified when using XML configuration; the naming-strategy
attribute is present on the <rabbit:queue> element for a bean reference that implements
AnonymousQueue.NamingStrategy.

<rabbit:queue id="uuidAnon" />

<rabbit:queue id="springAnon" naming-strategy="uuidNamer" />

<rabbit:queue id="customAnon" naming-strategy="customNamer" />

<bean id="uuidNamer" class="org.springframework.amqp.core.AnonymousQueue.UUIDNamingStrategy" />

<bean id="customNamer" class="org.springframework.amqp.core.AnonymousQueue.Base64UrlNamingStrategy">

 <constructor-arg value="custom.gen-" />

</bean>

The first creates names like spring.gen-MRBv9sqISkuCiPfOYfpo4g. The second creates
names with a String representation of a UUID. The third creates names like custom.gen-
MRBv9sqISkuCiPfOYfpo4g.

Spring AMQP

2.0.0.M4 Spring AMQP 75

Of course, you can provide your own naming strategy bean.

Delayed Message Exchange

Version 1.6 introduces support for the Delayed Message Exchange Plugin

Note

The plugin is currently marked as experimental but has been available for over a year (at
the time of writing). If changes to the plugin make it necessary, we will add support for such
changes as soon as practical. For that reason, this support in Spring AMQP should be considered
experimental, too. This functionality was tested with RabbitMQ 3.6.0 and version 0.0.1 of the
plugin.

To use a RabbitAdmin to declare an exchange as delayed, simply set the delayed property on the
exchange bean to true. The RabbitAdmin will use the exchange type (Direct, Fanout etc) to set the
x-delayed-type argument and declare the exchange with type x-delayed-message.

The delayed property (default false) is also available when configuring exchange beans using XML.

<rabbit:topic-exchange name="topic" delayed="true" />

To send a delayed message, it’s simply a matter of setting the x-delay header, via the
MessageProperties:

MessageProperties properties = new MessageProperties();

properties.setDelay(15000);

template.send(exchange, routingKey,

 MessageBuilder.withBody("foo".getBytes()).andProperties(properties).build());

or

rabbitTemplate.convertAndSend(exchange, routingKey, "foo", new MessagePostProcessor() {

 @Override

 public Message postProcessMessage(Message message) throws AmqpException {

 message.getMessageProperties().setDelay(15000);

 return message;

 }

});

To check if a message was delayed, use the getReceivedDelay() method on the
MessageProperties. It is a separate property to avoid unintended propagation to an output message
generated from an input message.

RabbitMQ REST API

When the management plugin is enabled, the RabbitMQ server exposes a REST API to monitor
and configure the broker. A Java Binding for the API is now provided. In general, you can use
that API directly, but a convenience wrapper is provided to use the familiar Spring AMQP Queue,
Exchange, and Binding domain objects with the API. Much more information is available for
these objects when using the com.rabbitmq.http.client.Client API directly (QueueInfo,
ExchangeInfo, and BindingInfo respectively). The following operations are available on the
RabbitManagementTemplate:

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/
https://github.com/rabbitmq/hop

Spring AMQP

2.0.0.M4 Spring AMQP 76

public interface AmqpManagementOperations {

 void addExchange(Exchange exchange);

 void addExchange(String vhost, Exchange exchange);

 void purgeQueue(Queue queue);

 void purgeQueue(String vhost, Queue queue);

 void deleteQueue(Queue queue);

 void deleteQueue(String vhost, Queue queue);

 Queue getQueue(String name);

 Queue getQueue(String vhost, String name);

 List<Queue> getQueues();

 List<Queue> getQueues(String vhost);

 void addQueue(Queue queue);

 void addQueue(String vhost, Queue queue);

 void deleteExchange(Exchange exchange);

 void deleteExchange(String vhost, Exchange exchange);

 Exchange getExchange(String name);

 Exchange getExchange(String vhost, String name);

 List<Exchange> getExchanges();

 List<Exchange> getExchanges(String vhost);

 List<Binding> getBindings();

 List<Binding> getBindings(String vhost);

 List<Binding> getBindingsForExchange(String vhost, String exchange);

}

Refer to the javadocs for more information.

Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For example,
there are a lot of cases where IOExceptions may be thrown. The RabbitTemplate,
SimpleMessageListenerContainer, and other Spring AMQP components will catch those Exceptions
and convert into one of the Exceptions within our runtime hierarchy. Those are defined in the
org.springframework.amqp package, and AmqpException is the base of the hierarchy.

When a listener throws an exception, it is wrapped in a ListenerExecutionFailedException and,
normally the message is rejected and requeued by the broker. Setting defaultRequeueRejected
to false will cause messages to be discarded (or routed to a dead letter exchange). As discussed
in the section called “Message Listeners and the Asynchronous Case”, the listener can throw an
AmqpRejectAndDontRequeueException to conditionally control this behavior.

However, there is a class of errors where the listener cannot control the behavior. When a message
that cannot be converted is encountered (for example an invalid content_encoding header), some

Spring AMQP

2.0.0.M4 Spring AMQP 77

exceptions are thrown before the message reaches user code. With defaultRequeueRejected set
to true (default), such messages would be redelivered over and over. Before version 1.3.2, users
needed to write a custom ErrorHandler, as discussed in the section called “Exception Handling” to
avoid this situation.

Starting with version 1.3.2, the default ErrorHandler is now a
ConditionalRejectingErrorHandler which will reject (and not requeue) messages that fail with
an irrecoverable error:

• o.s.amqp...MessageConversionException

• o.s.messaging...MessageConversionException

• o.s.messaging...MethodArgumentNotValidException

• o.s.messaging...MethodArgumentTypeMismatchException

• java.lang.NoSuchMethodException

• java.lang.ClassCastException

The first can be thrown when converting the incoming message payload using a MessageConverter.
The second may be thrown by the conversion service if additional conversion is required when mapping
to a @RabbitListener method. The third may be thrown if validation (e.g. @Valid) is used in the
listener and the validation fails. The fourth may be thrown if the inbound message was converted to a
type that is not correct for the target method. For example, the parameter is declared as Message<Foo>
but Message<Bar> is received.

The fifth and sixth were added in version 1.6.3.

An instance of this error handler can be configured with a FatalExceptionStrategy

so users can provide their own rules for conditional message rejection, e.g. a delegate
implementation to the BinaryExceptionClassifier from Spring Retry (the section called “Message
Listeners and the Asynchronous Case”). In addition, the ListenerExecutionFailedException
now has a failedMessage property which can be used in the decision. If the
FatalExceptionStrategy.isFatal() method returns true, the error handler throws an
AmqpRejectAndDontRequeueException. The default FatalExceptionStrategy logs a warning
message when an exception is determined to be fatal.

Since version 1.6.3 a convenient way to add user exceptions to the fatal list is to subclass
ConditionalRejectingErrorHandler.DefaultExceptionStrategy and override the method
isUserCauseFatal(Throwable cause) to return true for fatal exceptions.

Transactions

Introduction

The Spring Rabbit framework has support for automatic transaction management in the synchronous
and asynchronous use cases with a number of different semantics that can be selected declaratively,
as is familiar to existing users of Spring transactions. This makes many if not most common messaging
patterns very easy to implement.

There are two ways to signal the desired transaction semantics to the framework. In both the
RabbitTemplate and SimpleMessageListenerContainer there is a flag channelTransacted
which, if true, tells the framework to use a transactional channel and to end all operations

Spring AMQP

2.0.0.M4 Spring AMQP 78

(send or receive) with a commit or rollback depending on the outcome, with an exception
signaling a rollback. Another signal is to provide an external transaction with one of Spring’s
PlatformTransactionManager implementations as a context for the ongoing operation. If there
is already a transaction in progress when the framework is sending or receiving a message, and the
channelTransacted flag is true, then the commit or rollback of the messaging transaction will be
deferred until the end of the current transaction. If the channelTransacted flag is false, then no
transaction semantics apply to the messaging operation (it is auto-acked).

The channelTransacted flag is a configuration time setting: it is declared and processed once when
the AMQP components are created, usually at application startup. The external transaction is more
dynamic in principle because the system responds to the current Thread state at runtime, but in practice
is often also a configuration setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with RabbitTemplate the external transaction is provided by the caller,
either declaratively or imperatively according to taste (the usual Spring transaction model). An example
of a declarative approach (usually preferred because it is non-invasive), where the template has been
configured with channelTransacted=true:

@Transactional

public void doSomething() {

 String incoming = rabbitTemplate.receiveAndConvert();

 // do some more database processing...

 String outgoing = processInDatabaseAndExtractReply(incoming);

 rabbitTemplate.convertAndSend(outgoing);

}

A String payload is received, converted and sent as a message body inside a method marked as
@Transactional, so if the database processing fails with an exception, the incoming message will be
returned to the broker, and the outgoing message will not be sent. This applies to any operations with the
RabbitTemplate inside a chain of transactional methods (unless the Channel is directly manipulated
to commit the transaction early for instance).

For asynchronous use cases with SimpleMessageListenerContainer if an external transaction is
needed it has to be requested by the container when it sets up the listener. To signal that an external
transaction is required the user provides an implementation of PlatformTransactionManager to
the container when it is configured. For example:

@Configuration

public class ExampleExternalTransactionAmqpConfiguration {

 @Bean

 public SimpleMessageListenerContainer messageListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(rabbitConnectionFactory());

 container.setTransactionManager(transactionManager());

 container.setChannelTransacted(true);

 container.setQueueName("some.queue");

 container.setMessageListener(exampleListener());

 return container;

 }

}

In the example above, the transaction manager is added as a dependency injected from another bean
definition (not shown), and the channelTransacted flag is also set to true. The effect is that if
the listener fails with an exception the transaction will be rolled back, and the message will also be
returned to the broker. Significantly, if the transaction fails to commit (e.g. a database constraint error,
or connectivity problem), then the AMQP transaction will also be rolled back, and the message will

Spring AMQP

2.0.0.M4 Spring AMQP 79

be returned to the broker. This is sometimes known as a Best Efforts 1 Phase Commit, and is a very
powerful pattern for reliable messaging. If the channelTransacted flag was set to false in the example
above, which is the default, then the external transaction would still be provided for the listener, but all
messaging operations would be auto-acked, so the effect is to commit the messaging operations even
on a rollback of the business operation.

Conditional Rollback

Prior to version 1.6.6, adding a rollback rule to a container’s transactionAttribute, when using an
external transaction manager (e.g. JDBC) had no effect; exceptions always rolled back the transaction.

Also, when using a transaction advice in the container’s advice chain, conditional rollback was not very
useful because all listener exceptions are wrapped in a ListenerExecutionFailedException.

The first problem has been corrected and the rules are now applied properly. Further, the
ListenerFailedRuleBasedTransactionAttribute is now provided; it is a subclass of
RuleBasedTransactionAttribute, with the only difference being that it is aware of the
ListenerExecutionFailedException and uses the cause of such exceptions for the rule. This
transaction attribute can be used directly in the container, or via a transaction advice.

An example of using this rule follows:

@Bean

public AbstractMessageListenerContainer container() {

 ...

 container.setTransactionManager(transactionManager);

 RuleBasedTransactionAttribute transactionAttribute =

 new ListenerFailedRuleBasedTransactionAttribute();

 transactionAttribute.setRollbackRules(Collections.singletonList(

 new NoRollbackRuleAttribute(DontRollBackException.class)));

 container.setTransactionAttribute(transactionAttribute);

 ...

}

A note on Rollback of Received Messages

AMQP transactions only apply to messages and acks sent to the broker, so when there is a rollback
of a Spring transaction and a message has been received, what Spring AMQP has to do is not just
rollback the transaction, but also manually reject the message (sort of a nack, but that’s not what the
specification calls it). The action taken on message rejection is independent of transactions and depends
on the defaultRequeueRejected property (default true). For more information about rejecting
failed messages, see the section called “Message Listeners and the Asynchronous Case”.

For more information about RabbitMQ transactions, and their limitations, refer to RabbitMQ Broker
Semantics.

Note

Prior to RabbitMQ 2.7.0, such messages (and any that are unacked when a channel is closed or
aborts) went to the back of the queue on a Rabbit broker, since 2.7.0, rejected messages go to
the front of the queue, in a similar manner to JMS rolled back messages.

Note

Previously, message requeue on transaction rollback was inconsistent between local transactions
and when a TransactionManager was provided. In the former case, the normal requeue logic

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/transaction.html#transaction-declarative
http://www.rabbitmq.com/semantics.html
http://www.rabbitmq.com/semantics.html

Spring AMQP

2.0.0.M4 Spring AMQP 80

(AmqpRejectAndDontRequeueException or defaultRequeueRejected=false) applied
(see the section called “Message Listeners and the Asynchronous Case”); with a transaction
manager, the message was unconditionally requeued on rollback. Starting with version 2.0, the
behavior is consistent and the normal requeue logic is applied in both cases. To revert to the
previous behavior, set the container’s alwaysRequeueWithTxManagerRollback property to
true. See the section called “Message Listener Container Configuration”.

Using the RabbitTransactionManager

The RabbitTransactionManager is an alternative to executing Rabbit operations within, and
synchronized with, external transactions. This Transaction Manager is an implementation of the
PlatformTransactionManager interface and should be used with a single Rabbit ConnectionFactory.

Important

This strategy is not able to provide XA transactions, for example in order to share transactions
between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources
via ConnectionFactoryUtils.getTransactionalResourceHolder(ConnectionFactory,
boolean) instead of a standard Connection.createChannel() call with subsequent Channel
creation. When using Spring AMQP’s RabbitTemplate, it will autodetect a thread-bound Channel and
automatically participate in its transaction.

With Java Configuration you can setup a new RabbitTransactionManager using:

@Bean

public RabbitTransactionManager rabbitTransactionManager() {

 return new RabbitTransactionManager(connectionFactory);

}

If you prefer using XML configuration, declare the following bean in your XML Application Context file:

<bean id="rabbitTxManager"

 class="org.springframework.amqp.rabbit.transaction.RabbitTransactionManager">

 <property name="connectionFactory" ref="connectionFactory"/>

</bean>

Message Listener Container Configuration

There are quite a few options for configuring a SimpleMessageListenerContainer (SMLC) and
DirectMessageListenerContainer (DMLC) related to transactions and quality of service, and
some of them interact with each other. Properties that apply to the SMLC or DMLC are indicated by the
check mark in the appropriate column. See the section called “Choosing a Container” for information to
help you decide which container is appropriate for your application.

The table below shows the container property names and their equivalent attribute names (in
parentheses) when using the namespace to configure a <rabbit:listener-container/>. The
type attribute on that element can be simple (default) or direct to specify an SMLC or DMLC
respectively.

Some properties are not exposed by the namespace; indicated by N/A for the attribute.

http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://static.springsource.org/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Spring AMQP

2.0.0.M4 Spring AMQP 81

Table 3.3. Configuration options for a message listener container

Property (Attribute) Description SMLC DMLC

(group) This is only available when using the
namespace. When specified, a bean of type
Collection<MessageListenerContainer> is
registered with this name, and the container for each
<listener/> element is added to the collection.
This allows, for example, starting/stopping the
group of containers by iterating over the collection.
If multiple <listener-container/> elements
have the same group value, the containers in
the collection is an aggregate of all containers so
designated.

channelTransacted

(channel-transacted)

Boolean flag to signal that all messages should be
acknowledged in a transaction (either manually or
automatically)

acknowledgeMode

(acknowledge)

• NONE = no acks will be sent (incompatible with
channelTransacted=true). RabbitMQ calls
this "autoack" because the broker assumes all
messages are acked without any action from the
consumer.

• MANUAL = the listener must acknowledge all
messages by calling Channel.basicAck().

• AUTO = the container will acknowledge
the message automatically, unless the
MessageListener throws an exception. Note
that acknowledgeMode is complementary to
channelTransacted - if the channel is transacted
then the broker requires a commit notification in
addition to the ack. This is the default mode. See
also txSize.

transactionManager

(transaction-manager)

External transaction manager for the operation
of the listener. Also complementary to
channelTransacted - if the Channel is transacted
then its transaction will be synchronized with the
external transaction.

prefetchCount

(prefetch)

The number of messages to accept from the broker
in one socket frame. The higher this is the faster
the messages can be delivered, but the higher
the risk of non-sequential processing. Ignored if
the acknowledgeMode is NONE. This will be
increased, if necessary, to match the txSize or
messagePerAck.

Spring AMQP

2.0.0.M4 Spring AMQP 82

Property (Attribute) Description SMLC DMLC

shutdownTimeout

(N/A)

When a container shuts down (e.g. if its enclosing
ApplicationContext is closed) it waits for in-
flight messages to be processed up to this limit.
Defaults to 5 seconds. After the limit is reached,
if the channel is not transacted messages will be
discarded.

txSize

(transaction-size)

When used with acknowledgeMode AUTO, the
container will attempt to process up to this number
of messages before sending an ack (waiting for
each one up to the receive timeout setting). This is
also when a transactional channel is committed. If
the prefetchCount is less than the txSize, it will
be increased to match the txSize.

messagesPerAck

(N/A)

The number of messages to receive between acks.
Use this to reduce the number of acks sent to the
broker (at the cost of increasing the possibility of
redelivered messages). Generally, you should only
set this property on high-volume listener containers.
If this is set, and a message is rejected (exception
thrown), pending acks will be acknowledged and the
failed message rejected. Not allowed with transacted
channels. If the prefetchCount is less than the
messagesPerAck, it will be increased to match the
messagesPerAck. Default: ack every message.
See also ackTimeout.

ackTimeout

(N/A)

When messagesPerAck is set, this timeout is
used as an alternative to send an ack. When
a new message arrives, the count of unacked
messages is compared to messagesPerAck,
and the time since the last ack is compared to
this value; if either condition is true, the message
is acknowledged. When no new messages
arrive, and there are unacked messages, this
timeout is approximate since the condition is only
checked each monitorInterval. See also
messagesPerAck, monitorInterval.

receiveTimeout

(receive-timeout)

The maximum time to wait for each message.
If acknowledgeMode=NONE this has very little
effect - the container just spins round and asks for
another message. It has the biggest effect for a
transactional Channel with txSize > 1, since it
can cause messages already consumed not to be
acknowledged until the timeout expires.

autoStartup

(auto-startup)

Flag to indicate that the container should start when
the ApplicationContext does (as part of the

Spring AMQP

2.0.0.M4 Spring AMQP 83

Property (Attribute) Description SMLC DMLC

SmartLifecycle callbacks which happen after all
beans are initialized). Defaults to true, but set it to
false if your broker might not be available on startup,
and then call start() later manually when you
know the broker is ready.

phase

(phase)

When autoStartup is true, the lifecycle phase within
which this container should start and stop. The lower
the value the earlier this container will start and the
later it will stop. The default is Integer.MAX_VALUE
meaning the container will start as late as possible
and stop as soon as possible.

adviceChain

(advice-chain)

An array of AOP Advice to apply to the listener
execution. This can be used to apply additional
cross cutting concerns such as automatic retry
in the event of broker death. Note that simple re-
connection after an AMQP error is handled by the
CachingConnectionFactory, as long as the
broker is still alive.

taskExecutor

(task-executor)

A reference to a Spring TaskExecutor (or standard
JDK 1.5+ Executor) for executing listener invokers.
Default is a SimpleAsyncTaskExecutor, using
internally managed threads.

errorHandler

(error-handler)

A reference to an ErrorHandler strategy for handling
any uncaught Exceptions that may occur during
the execution of the MessageListener. Default:
ConditionalRejectingErrorHandler

consumersPerQueue

(consumers-per-queue)

The number of consumers to create for each
condigured queue. See the section called “Listener
Concurrency”.

concurrentConsumers

(concurrency)

The number of concurrent consumers to initially start
for each listener. See the section called “Listener
Concurrency”.

maxConcurrent

Consumers

(max-concurrency)

The maximum number of concurrent consumers to
start, if needed, on demand. Must be greater than
or equal to concurrentConsumers. See the section
called “Listener Concurrency”.

concurrency

(N/A)

m-n The range of concurrent consumers for each
listener (min, max). If only n is provided, n is a
fixed number of consumers. See the section called
“Listener Concurrency”.

startConsumerMin

Interval

(min-start-interval)

The time in milliseconds which must elapse before
each new consumer is started on demand. See the

Spring AMQP

2.0.0.M4 Spring AMQP 84

Property (Attribute) Description SMLC DMLC

section called “Listener Concurrency”. Default 10000
(10 seconds).

stopConsumerMin

Interval

(min-stop-interval)

The time in milliseconds which must elapse before a
consumer is stopped, since the last consumer was
stopped, when an idle consumer is detected. See
the section called “Listener Concurrency”. Default
60000 (1 minute).

consecutiveActive

Trigger

(min-consecutive-

active)

The minimum number of consecutive messages
received by a consumer, without a receive timeout
occurring, when considering starting a new
consumer. Also impacted by txSize. See the section
called “Listener Concurrency”. Default 10.

consecutiveIdle

Trigger

(min-consecutive-idle)

The minimum number of receive timeouts a
consumer must experience before considering
stopping a consumer. Also impacted by txSize. See
the section called “Listener Concurrency”. Default
10.

connectionFactory

(connection-factory)

A reference to the ConnectionFactory; when
configuring using the XML namespace, the default
referenced bean name is "rabbitConnectionFactory".

defaultRequeue

Rejected

(requeue-rejected)

Determines whether messages that are rejected
because the listener threw an exception should be
requeued or not. Default true.

recoveryInterval

(recovery-interval)

Determines the time in milliseconds between
attempts to start a consumer if it fails to start for non-
fatal reasons. Default 5000. Mutually exclusive with
recoveryBackOff.

recoveryBackOff

(recovery-back-off)

Specifies the BackOff for intervals between
attempts to start a consumer if it fails to start for
non-fatal reasons. Default is FixedBackOff with
unlimited retries every 5 seconds. Mutually exclusive
with recoveryInterval.

exclusive

(exclusive)

Determines whether the single consumer in this
container has exclusive access to the queue(s).
The concurrency of the container must be 1 when
this is true. If another consumer has exclusive
access, the container will attempt to recover
the consumer, according to the recovery-
interval or recovery-back-off. When using
the namespace, this attribute appears on the
<rabbit:listener/> element along with the queue
names. Default false.

Spring AMQP

2.0.0.M4 Spring AMQP 85

Property (Attribute) Description SMLC DMLC

rabbitAdmin

(admin)

When a listener container listens to at least one
auto-delete queue and it is found to be missing
during startup, the container uses a RabbitAdmin
to declare the queue and any related bindings and
exchanges. If such elements are configured to
use conditional declaration (see the section called
“Conditional Declaration”), the container must use
the admin that was configured to declare those
elements. Specify that admin here; only required
when using auto-delete queues with conditional
declaration. If you do not wish the auto-delete
queue(s) to be declared until the container is
started, set auto-startup to false on the admin.
Defaults to a RabbitAdmin that will declare all non-
conditional elements.

missingQueuesFatal

(missing-queues-fatal)

When set to true (default), if none of the configured
queues are available on the broker, it is considered
fatal. This causes the application context to fail to
initialize during startup; also, when the queues are
deleted while the container is running, by default, the
consumers make 3 retries to connect to the queues
(at 5 second intervals) and stop the container if
these attempts fail.

This was not configurable in previous versions.

When set to false, after making the 3 retries,
the container will go into recovery mode, as with
other problems, such as the broker being down.
The container will attempt to recover according to
the recoveryInterval property. During each
recovery attempt, each consumer will again try 4
times to passively declare the queues at 5 second
intervals. This process will continue indefinitely.

You can also use a properties bean to set the
property globally for all containers, as follows:

<util:properties id="spring.amqp.global.properties">

 <prop key="smlc.missing.queues.fatal">false</

prop>

</util:properties>

This global property will not be applied
to any containers that have an explicit
missingQueuesFatal property set.

Spring AMQP

2.0.0.M4 Spring AMQP 86

Property (Attribute) Description SMLC DMLC

The default retry properties (3 retries at 5 second
intervals) can be overridden using the properties
below.

mismatchedQueuesFatal

(mismatched-queues-

fatal)

When the container starts, if this property is true
(default: false), the container checks that all queues
declared in the context are compatible with queues
already on the broker. If mismatched properties (e.g.
auto-delete) or arguments (e.g. x-message-
ttl) exist, the container (and application context)
will fail to start with a fatal exception.

If the problem is detected during recovery (e.g. after
a lost connection), the container will be stopped.

There must be a single RabbitAdmin in the
application context (or one specifically configured
on the container using the rabbitAdmin property);
otherwise this property must be false.

Note

If the broker is not available during initial
startup, the container will start and the
conditions will be checked when the
connection is established.

Important

the check is done against all queues in the
context, not just the queues that a particular
listener is configured to use. If you wish to
limit the checks to just those queues used by
a container, you should configure a separate
RabbitAdmin for the container, and provide
a reference to it using the rabbitAdmin
property. See the section called “Conditional
Declaration” for more information.

autoDeclare

(auto-declare)

When set to true (default), the container will use
a RabbitAdmin to redeclare all AMQP objects
(Queues, Exchanges, Bindings), if it detects that
at least one of its queues is missing during startup,
perhaps because it’s an auto-delete or an
expired queue, but the redeclaration will proceed
if the queue is missing for any reason. To disable
this behavior, set this property to false. Note that
the container will fail to start if all of its queues are
missing.

Spring AMQP

2.0.0.M4 Spring AMQP 87

Property (Attribute) Description SMLC DMLC

Note

Prior to version 1.6, if there was more than
one admin in the context, the container would
randomly select one. If there were no admins,
it would create one internally. In either case,
this could cause unexpected results. Starting
with version 1.6, for autoDeclare to work,
there must be exactly one RabbitAdmin
in the context, or a reference to a specific
instance must be configured on the container
using the rabbitAdmin property.

declarationRetries

(declaration-retries)

The number of retry attempts when passive queue
declaration fails. Passive queue declaration occurs
when the consumer starts or, when consuming from
multiple queues, when not all queues were available
during initialization. When none of the configured
queues can be passively declared (for any reason)
after the retries are exhausted, the container
behavior is controlled by the 'missingQueuesFatal`
property above. Default: 3 retries (4 attempts).

failedDeclaration

RetryInterval

(failed-declaration-

retry-

interval)

The interval between passive queue declaration
retry attempts. Passive queue declaration occurs
when the consumer starts or, when consuming from
multiple queues, when not all queues were available
during initialization. Default: 5000 (5 seconds).

retryDeclaration

Interval

(missing-queue-retry-

interval)

If a subset of the configured queues are available
during consumer initialization, the consumer
starts consuming from those queues. The
consumer will attempt to passively declare the
missing queues using this interval. When this
interval elapses, the declarationRetries and
failedDeclarationRetryInterval will again be used.
If there are still missing queues, the consumer will
again wait for this interval before trying again. This
process will continue indefinitely until all queues are
available. Default: 60000 (1 minute).

consumerTagStrategy

(consumer-tag-

strategy)

Set an implementation of ConsumerTagStrategy,
enabling the creation of a (unique) tag for each
consumer.

idleEventInterval

(idle-event-interval)

See the section called “Detecting Idle Asynchronous
Consumers”.

Spring AMQP

2.0.0.M4 Spring AMQP 88

Property (Attribute) Description SMLC DMLC

monitorInterval

(monitor-interval)

With the DMLC, a task is scheduled to run at this
interval to monitor the state of the consumers and
recover any that have failed.

taskScheduler

(task-scheduler)

With the DMLC, the scheduler used to run the
monitor task at the monitorInterval.

exclusiveConsumer

ExceptionLogger

(N/A)

An exception logger used when an exclusive
consumer can’t gain access to a queue. By default,
this is logged at the WARN level.

statefulRetry

FatalWithNull

MessageId

(N/A)

When using a stateful retry advice; if a message
with a missing messageId property is received, it
is considered fatal for the consumer (it is stopped)
by default. Set this to false, to discard (or route to a
dead-letter queue) such messages.

alwaysRequeueWithTx

ManagerRollback

(N/A)

Set to true to always requeue messages on
rollback when a transaction manager is configured.

Listener Concurrency

SimpleMessageListenerContainer

By default, the listener container will start a single consumer which will receive messages from the
queue(s).

When examining the table in the previous section, you will see a number of properties/attributes that
control concurrency. The simplest is concurrentConsumers, which simply creates that (fixed) number
of consumers which will concurrently process messages.

Prior to version 1.3.0, this was the only setting available and the container had to be stopped and started
again to change the setting.

Since version 1.3.0, you can now dynamically adjust the concurrentConsumers property. If it is
changed while the container is running, consumers will be added or removed as necessary to adjust
to the new setting.

In addition, a new property maxConcurrentConsumers has been added and the container
will dynamically adjust the concurrency based on workload. This works in conjunction
with four additional properties: consecutiveActiveTrigger, startConsumerMinInterval,
consecutiveIdleTrigger, stopConsumerMinInterval. With the default settings, the algorithm
to increase consumers works as follows:

If the maxConcurrentConsumers has not been reached and an existing consumer is active for 10
consecutive cycles AND at least 10 seconds has elapsed since the last consumer was started, a new
consumer is started. A consumer is considered active if it received at least one message in txSize *
receiveTimeout milliseconds.

With the default settings, the algorithm to decrease consumers works as follows:

Spring AMQP

2.0.0.M4 Spring AMQP 89

If there are more than concurrentConsumers running and a consumer detects 10 consecutive
timeouts (idle) AND the last consumer was stopped at least 60 seconds ago, a consumer will be stopped.
The timeout depends on the receiveTimeout and the txSize properties. A consumer is considered
idle if it receives no messages in txSize * receiveTimeout milliseconds. So, with the default timeout
(1 second) and a txSize of 4, stopping a consumer will be considered after 40 seconds of idle time
(4 timeouts correspond to 1 idle detection).

Note

Practically, consumers will only be stopped if the whole container is idle for some time. This is
because the broker will share its work across all the active consumers.

A single channel is used by each consumer, regardless of the number of configured queues.

Starting with version 2.0 the concurrentConsumers and maxConcurrentConsumers properties
can be set with the single property concurrency; e.g. "2-4".

DirectMessageListenerContainer

With this container, concurrency is based on the configured queues and consumersPerQueue. Each
consumer for each queue uses a separate channel and the concurrency is controlled by the rabbit client
library; it uses a pool of 5 threads by default; you can configure a taskExecutor to provide the required
maximum concurrency.

Exclusive Consumer

Also starting with version 1.3, the listener container can be configured with a single exclusive consumer;
this prevents other containers from consuming from the queue(s) until the current consumer is cancelled.
The concurrency of such a container must be 1.

When using exclusive consumers, other containers will attempt to consume from the queue(s) according
to the recoveryInterval property, and log a WARNing if the attempt fails.

Listener Container Queues

version 1.3 introduced a number of improvements for handling multiple queues in a listener container.

The container must be configured to listen on at least one queue; this was the case previously too, but
now queues can be added and removed at runtime. The container will recycle (cancel and re-create)
the consumers when any pre-fetched messages have been processed. See methods addQueues,
addQueueNames, removeQueues and removeQueueNames. When removing queues, at least one
queue must remain.

A consumer will now start if any of its queues are available - previously the container would stop if any
queues were unavailable. Now, this is only the case if none of the queues are available. If not all queues
are available, the container will attempt to passively declare (and consume from) the missing queue(s)
every 60 seconds.

Also, if a consumer receives a cancel from the broker (for example if a queue is deleted) the consumer
will attempt to recover and the recovered consumer will continue to process messages from any other
configured queues. Previously a cancel on one queue cancelled the entire consumer and eventually
the container would stop due to the missing queue.

Spring AMQP

2.0.0.M4 Spring AMQP 90

If you wish to permanently remove a queue, you should update the container before or after deleting to
queue, to avoid future attempts to consume from it.

Resilience: Recovering from Errors and Broker Failures

Introduction

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with
recovery and automatic re-connection in the event of a protocol error or broker failure. We have seen
all the relevant components already in this guide, but it should help to bring them all together here and
call out the features and recovery scenarios individually.

The primary reconnection features are enabled by the CachingConnectionFactory

itself. It is also often beneficial to use the RabbitAdmin auto-declaration features. In
addition, if you care about guaranteed delivery, you probably also need to use the
channelTransacted flag in RabbitTemplate and SimpleMessageListenerContainer

and also the AcknowledgeMode.AUTO (or manual if you do the acks yourself) in the
SimpleMessageListenerContainer.

Automatic Declaration of Exchanges, Queues and Bindings

The RabbitAdmin component can declare exchanges, queues and bindings on startup. It does this
lazily, through a ConnectionListener, so if the broker is not present on startup it doesn’t matter. The
first time a Connection is used (e.g. by sending a message) the listener will fire and the admin features
will be applied. A further benefit of doing the auto declarations in a listener is that if the connection is
dropped for any reason (e.g. broker death, network glitch, etc.) they will be applied again when the
connection is re-established.

Note

Queues declared this way must have fixed names; either explicitly declared, or generated by the
framework for AnonymousQueue s. Anonymous queues are non-durable, exclusive, and auto-
delete.

Important

Automatic declaration is only performed when the CachingConnectionFactory cache mode
is CHANNEL (the default). This limitation exists because exclusive and auto-delete queues are
bound to the connection.

See also the section called “RabbitMQ Automatic Connection/Topology recovery”.

Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using RabbitTemplate
(for instance), then Spring AMQP will throw an AmqpException (usually but not always
AmqpIOException). We don’t try to hide the fact that there was a problem, so you have to be able to
catch and respond to the exception. The easiest thing to do if you suspect that the connection was lost,
and it wasn’t your fault, is to simply try the operation again. You can do this manually, or you could look
at using Spring Retry to handle the retry (imperatively or declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the
parameters of the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP
also provides some convenience factory beans for creating Spring Retry interceptors in a convenient

Spring AMQP

2.0.0.M4 Spring AMQP 91

form for AMQP use cases, with strongly typed callback interfaces for you to implement custom
recovery logic. See the Javadocs and properties of StatefulRetryOperationsInterceptor and
StatelessRetryOperationsInterceptor for more detail. Stateless retry is appropriate if there
is no transaction or if a transaction is started inside the retry callback. Note that stateless retry is
simpler to configure and analyse than stateful retry, but it is not usually appropriate if there is an
ongoing transaction which must be rolled back or definitely is going to roll back. A dropped connection
in the middle of a transaction should have the same effect as a rollback, so for reconnection where
the transaction is started higher up the stack, stateful retry is usually the best choice. Stateful retry
needs a mechanism to uniquely identify a message. The simplest approach is to have the sender put a
unique value in the MessageId message property. The provided message converters provide an option
to do this - set createMessageIds to true. Otherwise, you can inject a MessageKeyGenerator
implementation into the interceptor; the key generator must return a unique key for each message. In
versions prior to version 2.0, a MissingMessageIdAdvice was provided which enabled messages
without a messageId property to be retried exactly once (ignoring the retry settings). This advice is no
longer provided since, along with spring-retry version 1.2, its functionality is built into the interceptor
and message listener containers.

Note

For backwards compatibility, a message with a null message id is considered fatal for the
consumer (consumer is stopped) by default (after one retry). To replicate the functionality provided
by the MissingMessageIdAdvice, set the statefulRetryFatalWithNullMessageId
property to false on the listener container. With that setting the consumer will continue to run and
the message will be rejected (after one retry); it will be discarded, or routed to the dead letter
queue, if so configured.

Starting with version 1.3, a builder API is provided to aid in assembling these interceptors using Java
(or in @Configuration classes), for example:

@Bean

public StatefulRetryOperationsInterceptor interceptor() {

 return RetryInterceptorBuilder.stateful()

 .maxAttempts(5)

 .backOffOptions(1000, 2.0, 10000) // initialInterval, multiplier, maxInterval

 .build();

}

Only a subset of retry capabilities can be configured this way; more advanced features would need the
configuration of a RetryTemplate as a Spring bean. See the Spring Retry Javadocs for complete
information about available policies and their configuration.

Message Listeners and the Asynchronous Case

If a MessageListener fails because of a business exception, the exception is handled by the message
listener container and then it goes back to listening for another message. If the failure is caused by a
dropped connection (not a business exception), then the consumer that is collecting messages for the
listener has to be cancelled and restarted. The SimpleMessageListenerContainer handles this
seamlessly, and it leaves a log to say that the listener is being restarted. In fact it loops endlessly trying
to restart the consumer, and only if the consumer is very badly behaved indeed will it give up. One side
effect is that if the broker is down when the container starts, it will just keep trying until a connection
can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need more
thought and some custom configuration, especially if transactions and/or container acks are in use. Prior

http://static.springsource.org/spring-retry/docs/api/current/

Spring AMQP

2.0.0.M4 Spring AMQP 92

to 2.8.x, RabbitMQ had no definition of dead letter behaviour, so by default a message that is rejected
or rolled back because of a business exception can be redelivered ad infinitum. To put a limit in the
client on the number of re-deliveries, one choice is a StatefulRetryOperationsInterceptor in
the advice chain of the listener. The interceptor can have a recovery callback that implements a custom
dead letter action: whatever is appropriate for your particular environment.

Another alternative is to set the container’s defaultRequeueRejected property to false. This causes
all failed messages to be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering
the message to a Dead Letter Exchange.

Or, you can throw a AmqpRejectAndDontRequeueException; this prevents message requeuing,
regardless of the setting of the defaultRequeueRejected property.

Often, a combination of both techniques will be used. Use a
StatefulRetryOperationsInterceptor in the advice chain, with a MessageRecoverer that
throws an AmqpRejectAndDontRequeueException. The MessageRecover is called when all
retries have been exhausted. The RejectAndDontRequeueRecoverer does exactly that. The default
MessageRecoverer simply consumes the errant message and emits a WARN message.

Starting with version 1.3, a new RepublishMessageRecoverer is provided, to allow publishing of
failed messages after retries are exhausted:

When a recoverer consumes the final exception, the message is ACK’d and won’t be sent to the Dead
Letter Exchange, if any.

@Bean

RetryOperationsInterceptor interceptor() {

 return RetryInterceptorBuilder.stateless()

 .maxAttempts(5)

 .recoverer(new RepublishMessageRecoverer(amqpTemplate(), "bar", "baz"))

 .build();

}

The RepublishMessageRecoverer publishes the message with additional information in message
headers, such as the exception message, stack trace, original exchange and routing key. Additional
headers can be added by creating a subclass and overriding additionalHeaders().

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The
default configuration will retry for all exceptions. Given that user exceptions will be wrapped in a
ListenerExecutionFailedException we need to ensure that the classification examines the
exception causes. The default classifier just looks at the top level exception.

Since Spring Retry 1.0.3, the BinaryExceptionClassifier has a property traverseCauses
(default false). When true it will traverse exception causes until it finds a match or there is no cause.

To use this classifier for retry, use a SimpleRetryPolicy created with the constructor that takes the
max attempts, the Map of Exception s and the boolean (traverseCauses), and inject this policy into
the RetryTemplate.

Debugging

Spring AMQP provides extensive logging, especially at DEBUG level.

If you wish to monitor the AMQP protocol between the application and broker, you could use a tool
such as WireShark, which has a plugin to decode the protocol. Alternatively the RabbitMQ java client

Spring AMQP

2.0.0.M4 Spring AMQP 93

comes with a very useful class Tracer. When run as a main, by default, it listens on port 5673 and
connects to port 5672 on localhost. Simply run it, and change your connection factory configuration to
connect to port 5673 on localhost. It displays the decoded protocol on the console. Refer to the Tracer
javadocs for more information.

3.2 Logging Subsystem AMQP Appenders

The framework provides logging appenders for several popular logging subsystems:

• logback (since Spring AMQP version 1.4)

• log4j2 (since Spring AMQP version 1.6)

The appenders are configured using the normal mechanisms for the logging subsystem, available
properties are specified in the following sections.

Common properties

The following properties are available with all appenders:

Table 3.4. Common Appender Properties

Property Default Description

exchangeName logs Name of the exchange to publish log events to.

exchangeType topic Type of the exchange to publish log events
to - only needed if the appender declares the
exchange. See declareExchange.

routingKeyPattern %c.%p Logging subsystem pattern format to use to
generate a routing key.

applicationId Application ID - added to the routing key if the
pattern includes %X{applicationId}.

senderPoolSize 2 The number of threads to use to publish log
events.

maxSenderRetries 30 How many times to retry sending a message if
the broker is unavailable or there is some other
error. Retries are delayed like: N ^ log(N),
where N is the retry number.

addresses A comma-delimited list of broker addresses:
host:port[,host:port]* - overrides host
and port.

host localhost RabbitMQ host to connect to.

port 5672 RabbitMQ port to connect to.

virtualHost / RabbitMQ virtual host to connect to.

username guest RabbitMQ user to connect as.

Spring AMQP

2.0.0.M4 Spring AMQP 94

Property Default Description

password guest RabbitMQ password for this user.

useSsl false Use SSL for the RabbitMQ connection. See the
section called “RabbitConnectionFactoryBean
and Configuring SSL”

sslAlgorithm null The SSL algorithm to use.

sslPropertiesLocation null Location of the SSL properties file.

keyStore null Location of the keystore.

keyStorePassphrase null Passphrase for the keystore.

keyStoreType JKS The keystore type.

trustStore null Location of the truststore.

trustStorePassphrase null Passphrase for the truststore.

trustStoreType JKS The truststore type.

contentType text/plain content-type property of log messages.

contentEncoding content-encoding property of log messages.

declareExchange false Whether or not to declare the configured
exchange when this appender starts. Also see
durable and autoDelete.

durable true When declareExchange is true the durable
flag is set to this value.

autoDelete false When declareExchange is true the auto
delete flag is set to this value.

charset null Charset to use when converting String to byte[],
default null (system default charset used). If the
charset is unsupported on the current platform,
we fall back to using the system charset.

deliveryMode PERSISTENT PERSISTENT or NON_PERSISTENT to
determine whether or not RabbitMQ should
persist the messages.

generateId false Used to determine whether the messageId
property is set to a unique value.

clientConnection

Properties

null A comma-delimited list of key:value pairs
for custom client properties to the RabbitMQ
connection.

Spring AMQP

2.0.0.M4 Spring AMQP 95

Log4j2 Appender

Example log4j2.xml Snippet.

<Appenders>

 ...

 <RabbitMQ name="rabbitmq"

 addresses="foo:5672,bar:5672" user="guest" password="guest" virtualHost="/"

 exchange="log4j2" exchangeType="topic" declareExchange="true" durable="true" autoDelete="false"

 applicationId="myAppId" routingKeyPattern="%X{applicationId}.%c.%p"

 contentType="text/plain" contentEncoding="UTF-8" generateId="true" deliveryMode="NON_PERSISTENT"

 charset="UTF-8"

 senderPoolSize="3" maxSenderRetries="5">

 </RabbitMQ>

</Appenders>

Logback Appender

Example logback.xml Snippet.

<appender name="AMQP" class="org.springframework.amqp.rabbit.logback.AmqpAppender">

 <layout>

 <pattern><![CDATA[%d %p %t [%c] - <%m>%n]]></pattern>

 </layout>

 <addresses>foo:5672,bar:5672</addresses>

 <abbreviation>36</abbreviation>

 <includeCallerData>false</includeCallerData>

 <applicationId>myApplication</applicationId>

 <routingKeyPattern>%property{applicationId}.%c.%p</routingKeyPattern>

 <generateId>true</generateId>

 <charset>UTF-8</charset>

 <durable>false</durable>

 <deliveryMode>NON_PERSISTENT</deliveryMode>

 <declareExchange>true</declareExchange>

</appender>

Starting with version 1.7.1, the Logback AmqpAppender provides an includeCallerData option
which is false by default. Extracting caller data can be rather expensive because the log event has
to create a throwable and inspect it to determine the calling location. Therefore, by default, caller data
associated with an event is not extracted when the event added to the event queue. You can configure
the appender to include caller data by setting the includeCallerData property to true.

Customizing the Messages

Each of the appenders can be subclassed, allowing you to modify the messages before publishing.

Customizing the Log Messages.

public class MyEnhancedAppender extends AmqpAppender {

 @Override

 public Message postProcessMessageBeforeSend(Message message, Event event) {

 message.getMessageProperties().setHeader("foo", "bar");

 return message;

 }

}

Customizing the Client Properties

Simple String Properties

Each appender supports adding client properties to the RabbitMQ connection.

Spring AMQP

2.0.0.M4 Spring AMQP 96

logback.

<appender name="AMQP" ...>

 ...

 <clientConnectionProperties>foo:bar,baz:qux</clientConnectionProperties>

 ...

</appender>

log4j2.

<Appenders>

 ...

 <RabbitMQ name="rabbitmq"

 ...

 clientConnectionProperties="foo:bar,baz:qux"

 ...

 </RabbitMQ>

</Appenders>

The properties are a comma-delimited list of key:value pairs; keys and values cannot contain commas
or colons.

These properties appear on the RabbitMQ Admin UI when viewing the connection.

Advanced Technique for Logback

The Logback appender can be subclassed, allowing you to modify the client connection properties
before the connection is established:

Customizing the Client Connection Properties.

public class MyEnhancedAppender extends AmqpAppender {

 private String foo;

 @Override

 protected void updateConnectionClientProperties(Map<String, Object> clientProperties) {

 clientProperties.put("foo", this.foo);

 }

 public void setFoo(String foo) {

 this.foo = foo;

 }

}

Then add <foo>bar</foo> to logback.xml.

Of course, for simple String properties like this example, the previous technique can be used; subclasses
allow richer properties (such as adding a Map or numeric property).

With log4j2, subclasses are not supported, due to the way log4j2 uses static factory methods.

3.3 Sample Applications

Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello World"
example that demonstrates both synchronous and asynchronous message reception. It provides an
excellent starting point for acquiring an understanding of the essential components. The second sample

https://github.com/SpringSource/spring-amqp-samples

Spring AMQP

2.0.0.M4 Spring AMQP 97

is based on a stock-trading use case to demonstrate the types of interaction that would be common in
real world applications. In this chapter, we will provide a quick walk-through of each sample so that you
can focus on the most important components. The samples are both Maven-based, so you should be
able to import them directly into any Maven-aware IDE (such as SpringSource Tool Suite).

Hello World

Introduction

The Hello World sample demonstrates both synchronous and asynchronous message reception. You
can import the spring-rabbit-helloworld sample into the IDE and then follow the discussion
below.

Synchronous Example

Within the src/main/java directory, navigate to the org.springframework.amqp.helloworld
package. Open the HelloWorldConfiguration class and notice that it contains the
@Configuration annotation at class-level and some @Bean annotations at method-level. This is an
example of Spring’s Java-based configuration. You can read more about thathttp://docs.spring.io/spring/
docs/current/spring-framework-reference/html/beans.html#beans-java[here].

@Bean

public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory =

 new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

}

The configuration also contains an instance of RabbitAdmin, which by default looks for any beans of
type Exchange, Queue, or Binding and then declares them on the broker. In fact, the "helloWorldQueue"
bean that is generated in HelloWorldConfiguration is an example simply because it is an instance of
Queue.

@Bean

public Queue helloWorldQueue() {

 return new Queue(this.helloWorldQueueName);

}

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue’s
name set as its "queue" property (for receiving Messages) and for its "routingKey" property (for sending
Messages).

Now that we’ve explored the configuration, let’s look at the code that actually uses these components.
First, open the Producer class from within the same package. It contains a main() method where the
Spring ApplicationContext is created.

public static void main(String[] args) {

 ApplicationContext context =

 new AnnotationConfigApplicationContext(RabbitConfiguration.class);

 AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);

 amqpTemplate.convertAndSend("Hello World");

 System.out.println("Sent: Hello World");

}

As you can see in the example above, the AmqpTemplate bean is retrieved and used for sending a
Message. Since the client code should rely on interfaces whenever possible, the type is AmqpTemplate

http://www.springsource.org/sts

Spring AMQP

2.0.0.M4 Spring AMQP 98

rather than RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an
instance of RabbitTemplate, relying on the interface means that this code is more portable (the
configuration can be changed independently of the code). Since the convertAndSend() method is
invoked, the template will be delegating to its MessageConverter instance. In this case, it’s using
the default SimpleMessageConverter, but a different implementation could be provided to the
"rabbitTemplate" bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means
it will be sharing the "rabbitTemplate" bean. That’s why we configured that template with both a
"routingKey" (for sending) and "queue" (for receiving). As you saw in the section called “AmqpTemplate”,
you could instead pass the routingKey argument to the send method and the queue argument
to the receive method. The Consumer code is basically a mirror image of the Producer, calling
receiveAndConvert() rather than convertAndSend().

public static void main(String[] args) {

 ApplicationContext context =

 new AnnotationConfigApplicationContext(RabbitConfiguration.class);

 AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);

 System.out.println("Received: " + amqpTemplate.receiveAndConvert());

}

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello
World" in the console output.

Asynchronous Example

Now that we’ve walked through the synchronous Hello World sample, it’s time to move
on to a slightly more advanced but significantly more powerful option. With a few
modifications, the Hello World sample can provide an example of asynchronous reception,
a.k.a. Message-driven POJOs. In fact, there is a sub-package that provides exactly that:
org.springframework.amqp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it
creates a "connectionFactory" and "rabbitTemplate" bean. This time, since the configuration is dedicated
to the message sending side, we don’t even need any Queue definitions, and the RabbitTemplate only
has the routingKey property set. Recall that messages are sent to an Exchange rather than being sent
directly to a Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are
bound to that default Exchange with their name as the routing key. That is why we only need to provide
the routing key here.

public RabbitTemplate rabbitTemplate() {

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 template.setRoutingKey(this.helloWorldQueueName);

 return template;

}

Since this sample will be demonstrating asynchronous message reception, the producing side
is designed to continuously send messages (if it were a message-per-execution model like the
synchronous version, it would not be quite so obvious that it is in fact a message-driven consumer).
The component responsible for sending messages continuously is defined as an inner class within the
ProducerConfiguration. It is configured to execute every 3 seconds.

Spring AMQP

2.0.0.M4 Spring AMQP 99

static class ScheduledProducer {

 @Autowired

 private volatile RabbitTemplate rabbitTemplate;

 private final AtomicInteger counter = new AtomicInteger();

 @Scheduled(fixedRate = 3000)

 public void sendMessage() {

 rabbitTemplate.convertAndSend("Hello World " + counter.incrementAndGet());

 }

}

You don’t need to understand all of the details since the real focus should be on the receiving side (which
we will cover momentarily). However, if you are not yet familiar with Spring task scheduling support, you
can learn more here. The short story is that the "postProcessor" bean in the ProducerConfiguration is
registering the task with a scheduler.

Now, let’s turn to the receiving side. To emphasize the Message-driven POJO behavior will start with
the component that is reacting to the messages. The class is called HelloWorldHandler.

public class HelloWorldHandler {

 public void handleMessage(String text) {

 System.out.println("Received: " + text);

 }

}

Clearly, that is a POJO. It does not extend any base class, it doesn’t implement any interfaces,
and it doesn’t even contain any imports. It is being "adapted" to the MessageListener
interface by the Spring AMQP MessageListenerAdapter. That adapter can then be configured
on a SimpleMessageListenerContainer. For this sample, the container is created in the
ConsumerConfiguration class. You can see the POJO wrapped in the adapter there.

@Bean

public SimpleMessageListenerContainer listenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(connectionFactory());

 container.setQueueName(this.helloWorldQueueName);

 container.setMessageListener(new MessageListenerAdapter(new HelloWorldHandler()));

 return container;

}

The SimpleMessageListenerContainer is a Spring lifecycle component and will start automatically
by default. If you look in the Consumer class, you will see that its main() method consists of nothing
more than a one-line bootstrap to create the ApplicationContext. The Producer’s main() method
is also a one-line bootstrap, since the component whose method is annotated with @Scheduled will
also start executing automatically. You can start the Producer and Consumer in any order, and you
should see messages being sent and received every 3 seconds.

Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World
sample. However, the configuration is very similar - just a bit more involved. Since we’ve walked through
the Hello World configuration in detail, here we’ll focus on what makes this sample different. There is a
server that pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe to the
market data feed by binding a Queue with a routing pattern (e.g. app.stock.quotes.nasdaq.*).
The other main feature of this demo is a request-reply "stock trade" interaction that is initiated by the

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html#scheduling-annotation-support

Spring AMQP

2.0.0.M4 Spring AMQP 100

client and handled by the server. That involves a private "replyTo" Queue that is sent by the client within
the order request Message itself.

The Server’s core configuration is in the RabbitServerConfiguration class within
the org.springframework.amqp.rabbit.stocks.config.server package. It extends the
AbstractStockAppRabbitConfiguration. That is where the resources common to the Server and
Client(s) are defined, including the market data Topic Exchange (whose name is app.stock.marketdata)
and the Queue that the Server exposes for stock trades (whose name is app.stock.request). In that
common configuration file, you will also see that a Jackson2JsonMessageConverter is configured
on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on
the RabbitTemplate so that it does not need to provide that exchange name with every call to send
a Message. It does this within an abstract callback method defined in the base configuration class.

public void configureRabbitTemplate(RabbitTemplate rabbitTemplate) {

 rabbitTemplate.setExchange(MARKET_DATA_EXCHANGE_NAME);

}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case,
because it will be bound to the default no-name exchange with its own name as the routing key. As
mentioned earlier, the AMQP specification defines that behavior.

@Bean

public Queue stockRequestQueue() {

 return new Queue(STOCK_REQUEST_QUEUE_NAME);

}

Now that you’ve seen the configuration of the Server’s AMQP resources, navigate to the
org.springframework.amqp.rabbit.stocks package under the src/test/java directory.
There you will see the actual Server class that provides a main() method. It creates an
ApplicationContext based on the server-bootstrap.xml config file. In there you will see
the scheduled task that publishes dummy market data. That configuration relies upon Spring’s "task"
namespace support. The bootstrap config file also imports a few other files. The most interesting one
is server-messaging.xml which is directly under src/main/resources. In there you will see the
"messageListenerContainer" bean that is responsible for handling the stock trade requests. Finally have
a look at the "serverHandler" bean that is defined in "server-handlers.xml" (also in src/main/resources).
That bean is an instance of the ServerHandler class and is a good example of a Message-driven
POJO that is also capable of sending reply Messages. Notice that it is not itself coupled to the framework
or any of the AMQP concepts. It simply accepts a TradeRequest and returns a TradeResponse.

public TradeResponse handleMessage(TradeRequest tradeRequest) { ...

}

Now that we’ve seen the most important configuration and code for the Server, let’s turn
to the Client. The best starting point is probably RabbitClientConfiguration within the
org.springframework.amqp.rabbit.stocks.config.client package. Notice that it declares
two queues without providing explicit names.

Spring AMQP

2.0.0.M4 Spring AMQP 101

@Bean

public Queue marketDataQueue() {

 return amqpAdmin().declareQueue();

}

@Bean

public Queue traderJoeQueue() {

 return amqpAdmin().declareQueue();

}

Those are private queues, and unique names will be generated automatically. The first generated
queue is used by the Client to bind to the market data exchange that has been exposed by the Server.
Recall that in AMQP, consumers interact with Queues while producers interact with Exchanges. The
"binding" of Queues to Exchanges is what instructs the broker to deliver, or route, messages from a
given Exchange to a Queue. Since the market data exchange is a Topic Exchange, the binding can be
expressed with a routing pattern. The RabbitClientConfiguration declares that with a Binding
object, and that object is generated with the BindingBuilder fluent API.

@Value("${stocks.quote.pattern}")

private String marketDataRoutingKey;

@Bean

public Binding marketDataBinding() {

 return BindingBuilder.bind(

 marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

}

Notice that the actual value has been externalized in a properties file ("client.properties" under src/main/
resources), and that we are using Spring’s @Value annotation to inject that value. This is generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making
changes to the routing pattern used for binding. Let’s try that now.

Start by running org.springframework.amqp.rabbit.stocks.Server and then
org.springframework.amqp.rabbit.stocks.Client. You should see dummy quotes for
NASDAQ stocks because the current value associated with the stocks.quote.pattern key in
client.properties is app.stock.quotes.nasdaq.. Now, while keeping the existing Server and Client running,
change that property value to app.stock.quotes.nyse. and start a second Client instance. You should
see that the first client is still receiving NASDAQ quotes while the second client receives NYSE quotes.
You could instead change the pattern to get all stocks or even an individual ticker.

The final feature we’ll explore is the request-reply interaction from the
Client’s perspective. Recall that we have already seen the ServerHandler that
is accepting TradeRequest objects and returning TradeResponse objects. The
corresponding code on the Client side is RabbitStockServiceGateway in the
org.springframework.amqp.rabbit.stocks.gateway package. It delegates to the
RabbitTemplate in order to send Messages.

Spring AMQP

2.0.0.M4 Spring AMQP 102

public void send(TradeRequest tradeRequest) {

 getRabbitTemplate().convertAndSend(tradeRequest, new MessagePostProcessor() {

 public Message postProcessMessage(Message message) throws AmqpException {

 message.getMessageProperties().setReplyTo(new Address(defaultReplyToQueue));

 try {

 message.getMessageProperties().setCorrelationId(

 UUID.randomUUID().toString().getBytes("UTF-8"));

 }

 catch (UnsupportedEncodingException e) {

 throw new AmqpException(e);

 }

 return message;

 }

 });

}

Notice that prior to sending the message, it sets the "replyTo" address. It’s providing the queue that was
generated by the "traderJoeQueue" bean definition shown above. Here’s the @Bean definition for the
StockServiceGateway class itself.

@Bean

public StockServiceGateway stockServiceGateway() {

 RabbitStockServiceGateway gateway = new RabbitStockServiceGateway();

 gateway.setRabbitTemplate(rabbitTemplate());

 gateway.setDefaultReplyToQueue(traderJoeQueue());

 return gateway;

}

If you are no longer running the Server and Client, start them now. Try sending a request with the format
of 100 TCKR. After a brief artificial delay that simulates "processing" of the request, you should see a
confirmation message appear on the Client.

Receiving JSON from Non-Spring Applications

Spring applications, when sending JSON, set the __TypeId__ header to the fully qualified class name
to assist the receiving application in converting the JSON back to a Java object.

The spring-rabbit-json sample explores several techniques to convert the JSON from a non-
Spring application.

See also the section called “Jackson2JsonMessageConverter” as well as the Javadoc for the
DefaultClassMapper.

3.4 Testing Support

Introduction

Writing integration for asynchronous applications is necessarily more complex than testing simpler
applications. This is made more complex when abstractions such as the @RabbitListener
annotations come into the picture. The question being how to verify that, after sending a message, the
listener received the message as expected.

The framework itself has many unit and integration tests; some using mocks, others using integration
testing with a live RabbitMQ broker. You can consult those tests for some ideas for testing scenarios.

Spring AMQP version 1.6 introduced the spring-rabbit-test jar which provides support for testing
some of these more complex scenarios. It is anticipated that this project will expand over time but we
need community feedback to make suggestions for features needed to help with testing. Please use
JIRA or GitHub Issues to provide such feedback.

http://docs.spring.io/spring-amqp/docs/current/api/index.html?org/springframework/amqp/support/converter/DefaultClassMapper.html
http://docs.spring.io/spring-amqp/docs/current/api/index.html?org/springframework/amqp/support/converter/DefaultClassMapper.html
https://jira.spring.io/browse/AMQP
https://github.com/spring-projects/spring-amqp/issues

Spring AMQP

2.0.0.M4 Spring AMQP 103

Mockito Answer<?> Implementations

There are currently two Answer<?> implementations to help with testing:

The first, LatchCountDownAndCallRealMethodAnswer provides an Answer<Void> that returns
null and counts down a latch.

LatchCountDownAndCallRealMethodAnswer answer = new LatchCountDownAndCallRealMethodAnswer(2);

doAnswer(answer)

 .when(listener).foo(anyString(), anyString());

...

assertTrue(answer.getLatch().await(10, TimeUnit.SECONDS));

The second, LambdaAnswer<T> provides a mechanism to optionally call the real method and provides
an opportunity to return a custom result, based on the InvocationOnMock and the result (if any).

public class Foo {

 public String foo(String foo) {

 return foo.toUpperCase();

 }

}

Foo foo = spy(new Foo());

doAnswer(new LambdaAnswer<String>(true, (i, r) -> r + r))

 .when(foo).foo(anyString());

assertEquals("FOOFOO", foo.foo("foo"));

doAnswer(new LambdaAnswer<String>(true, (i, r) -> r + i.getArguments()[0]))

 .when(foo).foo(anyString());

assertEquals("FOOfoo", foo.foo("foo"));

doAnswer(new LambdaAnswer<String>(false, (i, r) ->

 "" + i.getArguments()[0] + i.getArguments()[0])).when(foo).foo(anyString());

assertEquals("foofoo", foo.foo("foo"));

When using Java 7 or earlier:

doAnswer(new LambdaAnswer<String>(true, new ValueToReturn<String>() {

 @Override

 public String apply(InvocationOnMock i, String r) {

 return r + r;

 }

})).when(foo).foo(anyString());

@RabbitListenerTest and RabbitListenerTestHarness

Annotating one of your @Configuration classes with @RabbitListenerTest will cause the
framework to replace the standard RabbitListenerAnnotationBeanPostProcessor with a
subclass RabbitListenerTestHarness (it will also enable @RabbitListener detection via
@EnableRabbit).

The RabbitListenerTestHarness enhances the listener in two ways - it wraps it in a Mockito
Spy, enabling normal Mockito stubbing and verification operations. It can also add an Advice to the
listener enabling access to the arguments, result and or exceptions thrown. You can control which (or
both) of these are enabled with attributes on the @RabbitListenerTest. The latter is provided for
access to lower-level data about the invocation - it also supports blocking the test thread until the async
listener is called.

Spring AMQP

2.0.0.M4 Spring AMQP 104

Important

final @RabbitListener methods cannot be spied or advised; also, only listeners with an id
attribute can be spied or advised.

Let’s take a look at some examples.

Using spy:

@Configuration

@RabbitListenerTest

public class Config {

 @Bean

 public Listener listener() {

 return new Listener();

 }

 ...

}

public class Listener {

 @RabbitListener(id="foo", queues="#{queue1.name}")

 public String foo(String foo) {

 return foo.toUpperCase();

 }

 @RabbitListener(id="bar", queues="#{queue2.name}")

 public void foo(@Payload String foo, @Header("amqp_receivedRoutingKey") String rk) {

 ...

 }

}

public class MyTests {

 @Autowired

 private RabbitListenerTestHarness harness; ❶

 @Test

 public void testTwoWay() throws Exception {

 assertEquals("FOO", this.rabbitTemplate.convertSendAndReceive(this.queue1.getName(), "foo"));

 Listener listener = this.harness.getSpy("foo"); ❷

 assertNotNull(listener);

 verify(listener).foo("foo");

 }

 @Test

 public void testOneWay() throws Exception {

 Listener listener = this.harness.getSpy("bar");

 assertNotNull(listener);

 LatchCountDownAndCallRealMethodAnswer answer = new LatchCountDownAndCallRealMethodAnswer(2); ❸

 doAnswer(answer).when(listener).foo(anyString(), anyString()); ❹

 this.rabbitTemplate.convertAndSend(this.queue2.getName(), "bar");

 this.rabbitTemplate.convertAndSend(this.queue2.getName(), "baz");

 assertTrue(answer.getLatch().await(10, TimeUnit.SECONDS));

 verify(listener).foo("bar", this.queue2.getName());

 verify(listener).foo("baz", this.queue2.getName());

 }

}

Spring AMQP

2.0.0.M4 Spring AMQP 105

❶ Inject the harness into the test case so we can get access to the spy.

❷ Get a reference to the spy so we can verify it was invoked as expected. Since this is a send and
receive operation, there is no need to suspend the test thread because it was already suspended
in the RabbitTemplate waiting for the reply.

❸ In this case, we’re only using a send operation so we need a latch to wait for the asynchronous
call to the listener on the container thread. We use one of the Answer<?> implementations to help
with that.

❹ Configure the spy to invoke the Answer.

#mockito-answer

Spring AMQP

2.0.0.M4 Spring AMQP 106

Using the capture advice:

@Configuration

@ComponentScan

@RabbitListenerTest(spy = false, capture = true)

public class Config {

}

@Service

public class Listener {

 private boolean failed;

 @RabbitListener(id="foo", queues="#{queue1.name}")

 public String foo(String foo) {

 return foo.toUpperCase();

 }

 @RabbitListener(id="bar", queues="#{queue2.name}")

 public void foo(@Payload String foo, @Header("amqp_receivedRoutingKey") String rk) {

 if (!failed && foo.equals("ex")) {

 failed = true;

 throw new RuntimeException(foo);

 }

 failed = false;

 }

}

public class MyTests {

 @Autowired

 private RabbitListenerTestHarness harness; ❶

 @Test

 public void testTwoWay() throws Exception {

 assertEquals("FOO", this.rabbitTemplate.convertSendAndReceive(this.queue1.getName(), "foo"));

 InvocationData invocationData =

 this.harness.getNextInvocationDataFor("foo", 0, TimeUnit.SECONDS); ❷

 assertThat(invocationData.getArguments()[0], equalTo("foo")); ❸

 assertThat((String) invocationData.getResult(), equalTo("FOO"));

 }

 @Test

 public void testOneWay() throws Exception {

 this.rabbitTemplate.convertAndSend(this.queue2.getName(), "bar");

 this.rabbitTemplate.convertAndSend(this.queue2.getName(), "baz");

 this.rabbitTemplate.convertAndSend(this.queue2.getName(), "ex");

 InvocationData invocationData =

 this.harness.getNextInvocationDataFor("bar", 10, TimeUnit.SECONDS); ❹

 Object[] args = invocationData.getArguments();

 assertThat((String) args[0], equalTo("bar"));

 assertThat((String) args[1], equalTo(queue2.getName()));

 invocationData = this.harness.getNextInvocationDataFor("bar", 10, TimeUnit.SECONDS);

 args = invocationData.getArguments();

 assertThat((String) args[0], equalTo("baz"));

 invocationData = this.harness.getNextInvocationDataFor("bar", 10, TimeUnit.SECONDS);

 args = invocationData.getArguments();

 assertThat((String) args[0], equalTo("ex"));

 assertEquals("ex", invocationData.getThrowable().getMessage()); ❺

 }

}

Spring AMQP

2.0.0.M4 Spring AMQP 107

❶ Inject the harness into the test case so we can get access to the spy.

❷ Use harness.getNextInvocationDataFor() to retrieve the invocation data - in this case
since it was a request/reply scenario there is no need to wait for any time because the test thread
was suspended in the RabbitTemplate waiting for the result.

❸ We can then verify that the argument and result was as expected.

❹ This time we need some time to wait for the data, since it’s an async operation on the container
thread and we need to suspend the test thread.

❺ When the listener throws an exception, it is available in the throwable property of the invocation
data.

TestRabbitTemplate

The TestRabbitTemplate is provided to perform some basic integration testing without the need for
a broker. When adding it as @Bean in your test case, it discovers all the listener containers in the context,
either declared as @Bean, <bean/>`s or using the `@RabbitListener annotation. It currently
only supports routing by queue name. The template extracts the message listener from the container,
and invokes it directly on the test thread. Request/Reply messaging (sendAndReceive methods) is
supported for listeners that return replies.

Here is a simple test case that uses the template:

Spring AMQP

2.0.0.M4 Spring AMQP 108

@RunWith(SpringRunner.class)

public class TestRabbitTemplateTests {

 @Autowired

 private TestRabbitTemplate template;

 @Autowired

 private Config config;

 @Test

 public void testSimpleSends() {

 this.template.convertAndSend("foo", "hello1");

 assertThat(this.config.fooIn, equalTo("foo:hello1"));

 this.template.convertAndSend("bar", "hello2");

 assertThat(this.config.barIn, equalTo("bar:hello2"));

 assertThat(this.config.smlc1In, equalTo("smlc1:"));

 this.template.convertAndSend("foo", "hello3");

 assertThat(this.config.fooIn, equalTo("foo:hello1"));

 this.template.convertAndSend("bar", "hello4");

 assertThat(this.config.barIn, equalTo("bar:hello2"));

 assertThat(this.config.smlc1In, equalTo("smlc1:hello3hello4"));

 this.template.setBroadcast(true);

 this.template.convertAndSend("foo", "hello5");

 assertThat(this.config.fooIn, equalTo("foo:hello1foo:hello5"));

 this.template.convertAndSend("bar", "hello6");

 assertThat(this.config.barIn, equalTo("bar:hello2bar:hello6"));

 assertThat(this.config.smlc1In, equalTo("smlc1:hello3hello4hello5hello6"));

 }

 @Test

 public void testSendAndReceive() {

 assertThat(this.template.convertSendAndReceive("baz", "hello"), equalTo("baz:hello"));

 }

 @Configuration

 @EnableRabbit

 public static class Config {

 public String fooIn = "";

 public String barIn = "";

 public String smlc1In = "smlc1:";

 @Bean

 public TestRabbitTemplate template() throws IOException {

 return new TestRabbitTemplate(connectionFactory());

 }

 @Bean

 public ConnectionFactory connectionFactory() throws IOException {

 ConnectionFactory factory = mock(ConnectionFactory.class);

 Connection connection = mock(Connection.class);

 Channel channel = mock(Channel.class);

 willReturn(connection).given(factory).createConnection();

 willReturn(channel).given(connection).createChannel(anyBoolean());

 given(channel.isOpen()).willReturn(true);

 return factory;

 }

 @Bean

 public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() throws IOException {

 SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory();

 factory.setConnectionFactory(connectionFactory());

 return factory;

 }

 @RabbitListener(queues = "foo")

 public void foo(String in) {

 this.fooIn += "foo:" + in;

 }

 @RabbitListener(queues = "bar")

 public void bar(String in) {

 this.barIn += "bar:" + in;

 }

 @RabbitListener(queues = "baz")

 public String baz(String in) {

 return "baz:" + in;

 }

 @Bean

 public SimpleMessageListenerContainer smlc1() throws IOException {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer(connectionFactory());

 container.setQueueNames("foo", "bar");

 container.setMessageListener(new MessageListenerAdapter(new Object() {

 @SuppressWarnings("unused")

 public void handleMessage(String in) {

 smlc1In += in;

 }

 }));

 return container;

 }

 }

}

Spring AMQP

2.0.0.M4 Spring AMQP 109

JUnit @Rules

Spring AMQP version 1.7 provides an additional jar spring-rabbit-junit; this jar contains a couple
of utility @Rule s for use when running JUnit tests.

BrokerRunning

BrokerRunning provides a mechanism to allow tests to succeed when a broker is not running (on
localhost, by default).

It also has utility methods to initialize/empty queues, and delete queues and exchanges.

Usage:

@ClassRule

public static BrokerRunning brokerRunning = BrokerRunning.isRunningWithEmptyQueues("foo", "bar");

@AfterClass

public static void tearDown() {

 brokerRunning.removeTestQueues("some.other.queue.too") // removes foo, bar as well

}

There are several isRunning... static methods such as isBrokerAndManagementRunning()
which verifies the broker has the management plugin enabled.

Configuring the Rule

There are times when you want tests to fail if there is no broker, such as a nightly CI build. To disable
the rule at runtime, set an environment variable RABBITMQ_SERVER_REQUIRED to true.

You can override the broker properties, such as hostname in several ways:

• Setters

@ClassRule

public static BrokerRunning brokerRunning = BrokerRunning.isRunningWithEmptyQueues("foo", "bar");

static {

 brokerRunning.setHostName("10.0.0.1")

}

@AfterClass

public static void tearDown() {

 brokerRunning.removeTestQueues("some.other.queue.too") // removes foo, bar as well

}

• Environment Variables

The following environment variables are provided:

public static final String BROKER_ADMIN_URI = "RABBITMQ_TEST_ADMIN_URI";

public static final String BROKER_HOSTNAME = "RABBITMQ_TEST_HOSTNAME";

public static final String BROKER_PORT = "RABBITMQ_TEST_PORT";

public static final String BROKER_USER = "RABBITMQ_TEST_USER";

public static final String BROKER_PW = "RABBITMQ_TEST_PASSWORD";

public static final String BROKER_ADMIN_USER = "RABBITMQ_TEST_ADMIN_USER";

public static final String BROKER_ADMIN_PW = "RABBITMQ_TEST_ADMIN_PASSWORD";

These will override the default settings (localhost:5672 for amqp and http://

localhost:15672/api/ for the management REST API).

Spring AMQP

2.0.0.M4 Spring AMQP 110

Changing the host name affects both the amqp and management REST API connection (unless the
admin uri is explicitly set).

BrokerRunning also provides a static method: setEnvironmentVariableOverrides where
you can pass in a map containing these variables; they override system environment variables.
This might be useful if you wish to use different configuration for tests in multiple test suites.
IMPORTANT: The method must be called before invoking any of the isRunning() static methods
that create the rule instance. Variable values will be applied to all instances created after this. Invoke
clearEnvironmentVariableOverrides() to reset the rule to use defaults (including any actual
environment variables).

In your test cases, you can use those properties when creating the connection factory:

@Bean

public ConnectionFactory rabbitConnectionFactory() {

 CachingConnectionFactory connectionFactory = new CachingConnectionFactory();

 connectionFactory.setHost(brokerRunning.getHostName());

 connectionFactory.setPort(brokerRunning.getPort());

 connectionFactory.setUsername(brokerRunning.getUser());

 connectionFactory.setPassword(brokerRunning.getPassword());

 return connectionFactory;

}

LongRunningIntegrationTest

LongRunningIntegrationTest is a rule that disables long running tests; you might want to use this
on a developer system but ensure that the rule is disabled on, for example, nightly CI builds.

Usage:

@Rule

public LongRunningIntegrationTest longTests = new LongRunningIntegrationTest();

To disable the rule at runtime, set an environment variable RUN_LONG_INTEGRATION_TESTS to true.

Spring AMQP

2.0.0.M4 Spring AMQP 111

4. Spring Integration - Reference
This part of the reference documentation provides a quick introduction to the AMQP support within the
Spring Integration project.

4.1 Spring Integration AMQP Support

Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon
the Spring AMQP project. Those adapters are developed and released in the Spring Integration
project. In Spring Integration, "Channel Adapters" are unidirectional (one-way) whereas "Gateways"
are bidirectional (request-reply). We provide an inbound-channel-adapter, outbound-channel-adapter,
inbound-gateway, and outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation will be available
as part of the Spring Integration distribution. As a taster, we just provide a quick overview of the main
features here.

Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel-adapter>

<amqp:inbound-channel-adapter channel="fromAMQP"

 queue-names="some.queue"

 connection-factory="rabbitConnectionFactory"/>

Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A routing-key
may optionally be provided in addition to the exchange name.

<amqp:outbound-channel-adapter channel="toAMQP"

 exchange-name="some.exchange"

 routing-key="foo"

 amqp-template="rabbitTemplate"/>

Inbound Gateway

To receive an AMQP Message from a Queue, and respond to its reply-to address, configure an
<inbound-gateway>.

<amqp:inbound-gateway request-channel="fromAMQP"

 reply-channel="toAMQP"

 queue-names="some.queue"

 connection-factory="rabbitConnectionFactory"/>

Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from a remote client, configure
an <outbound-gateway>. A routing-key may optionally be provided in addition to the exchange name.

<amqp:outbound-gateway request-channel="toAMQP"

 reply-channel="fromAMQP"

 exchange-name="some.exchange"

 routing-key="foo"

 amqp-template="rabbitTemplate"/>

http://www.springsource.org/spring-integration

Spring AMQP

2.0.0.M4 Spring AMQP 112

5. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you
learn about AMQP.

5.1 Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course
the authoritative source of information, and the Spring AMQP code should be very easy to understand
for anyone who is familiar with the spec. Our current implementation of the RabbitMQ support is based
on their 2.8.x version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1
document.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started
page. Since that is currently the only supported implementation for Spring AMQP, we also recommend
that as a general starting point for all broker-related concerns.

http://www.amqp.org/resources/download
http://www.rabbitmq.com/how.html

Spring AMQP

2.0.0.M4 Spring AMQP 113

Appendix A. Change History
A.1 Current Release

See Section 2.2, “What’s New”.

A.2 Previous Releases

Changes in 1.6 Since 1.5

Testing Support

A new testing support library is now provided. See Section 3.4, “Testing Support” for more information.

Builder

Builders are now available providing a fluent API for configuring Queue and Exchange objects. See the
section called “Builder API for Queues and Exchanges” for more information.

Namespace Changes

Connection Factory

It is now possible to add a thread-factory to a connection factory bean declaration, for example
to name the threads created by the amqp-client library. See the section called “Connection and
Resource Management” for more information.

When using CacheMode.CONNECTION, you can now limit the total number of connections allowed.
See the section called “Connection and Resource Management” for more information.

Queue Definitions

It is now possible to provide a naming strategy for anonymous queues; see the section called
“AnonymousQueue” for more information.

Listener Container Changes

Idle Message Listener Detection

It is now possible to configure listener containers to publish ApplicationEvent s when idle. See the
section called “Detecting Idle Asynchronous Consumers” for more information.

Mismatched Queue Detection

By default, when a listener container starts, if queues with mismatched properties or arguments were
detected, the container would log the exception but continue to listen. The container now has a property
mismatchedQueuesFatal which will prevent the container (and context) from starting if the problem
is detected during startup. It will also stop the container if the problem is detected later, such as after
recovering from a connection failure. See the section called “Message Listener Container Configuration”
for more information.

Listener Container Logging

Now listener container provides its beanName into the internal SimpleAsyncTaskExecutor as a
threadNamePrefix. It is useful for logs analysis.

Spring AMQP

2.0.0.M4 Spring AMQP 114

Default Error Handler

The default error handler (ConditionalRejectingErrorHandler) now considers irrecoverable
@RabbitListener exceptions as fatal. See the section called “Exception Handling” for more
information.

AutoDeclare and RabbitAdmins

See the section called “Message Listener Container Configuration” (autoDeclare) for some changes
to the semantics of that option with respect to the use of RabbitAdmin s in the application context.

AmqpTemplate: receive with timeout

A number of new receive() methods with timeout have been introduced for the AmqpTemplate and
its RabbitTemplate implementation. See the section called “Polling Consumer” for more information.

AsyncRabbitTemplate

A new AsyncRabbitTemplate has been introduced. This template provides a number of send and
receive methods, where the return value is a ListenableFuture, which can be used later to obtain
the result either synchronously, or asynchronously. See the section called “AsyncRabbitTemplate” for
more information.

RabbitTemplate Changes

1.4.1 introduced the ability to use Direct reply-to when the broker supports it; it is more efficient than
using a temporary queue for each reply. This version allows you to override this default behavior and
use a temporary queue by setting the useTemporaryReplyQueues property to true. See the section
called “RabbitMQ Direct reply-to” for more information.

The RabbitTemplate now supports a user-id-expression (userIdExpression when using
Java configuration). See Validated User-ID RabbitMQ documentation and the section called “Validated
User Id” for more information.

Message Properties

CorrelationId

The correlationId message property can now be a String. See the section called “Message
Properties Converters” for more information.

Long String Headers

Previously, the DefaultMessagePropertiesConverter "converted" headers longer than the long
string limit (default 1024) to a DataInputStream (actually it just referenced the LongString's
DataInputStream). On output, this header was not converted (except to a String, e.g.
java.io.DataInputStream@1d057a39 by calling toString() on the stream).

With this release, long LongString s are now left as LongString s by default; you can access
the contents via the getBytes[], toString(), or getStream() methods. A large incoming
LongString is now correctly "converted" on output too.

See the section called “Message Properties Converters” for more information.

Inbound Delivery Mode

The deliveryMode property is no longer mapped to the MessageProperties.deliveryMode;
this is to avoid unintended propagation if the the same MessageProperties object is used

https://www.rabbitmq.com/direct-reply-to.html
https://www.rabbitmq.com/validated-user-id.html

Spring AMQP

2.0.0.M4 Spring AMQP 115

to send an outbound message. Instead, the inbound deliveryMode header is mapped to
MessageProperties.receivedDeliveryMode.

See the section called “Message Properties Converters” for more information.

When using annotated endpoints, the header is provided in the header named
AmqpHeaders.RECEIVED_DELIVERY_MODE.

See the section called “Annotated Endpoint Method Signature” for more information.

Inbound User ID

The user_id property is no longer mapped to the MessageProperties.userId; this
is to avoid unintended propagation if the the same MessageProperties object is used
to send an outbound message. Instead, the inbound userId header is mapped to
MessageProperties.receivedUserId.

See the section called “Message Properties Converters” for more information.

When using annotated endpoints, the header is provided in the header named
AmqpHeaders.RECEIVED_USER_ID.

See the section called “Annotated Endpoint Method Signature” for more information.

RabbitAdmin Changes

Declaration Failures

Previously, the ignoreDeclarationFailures flag only took effect for IOException on the
channel (such as mis-matched arguments). It now takes effect for any exception (such as
TimeoutException). In addition, a DeclarationExceptionEvent is now published whenever
a declaration fails. The RabbitAdmin last declaration event is also available as a property
lastDeclarationExceptionEvent. See the section called “Configuring the broker” for more
information.

@RabbitListener Changes

Multiple Containers per Bean

When using Java 8 or later, it is now possible to add multiple @RabbitListener annotations to @Bean
classes or their methods. When using Java 7 or earlier, you can use the @RabbitListeners container
annotation to provide the same functionality. See the section called “@Repeatable @RabbitListener”
for more information.

@SendTo SpEL Expressions

@SendTo for routing replies with no replyTo property can now be SpEL expressions evaluated against
the request/reply. See the section called “Reply Management” for more information.

@QueueBinding Improvements

You can now specify arguments for queues, exchanges and bindings in @QueueBinding annotations.
Header exchanges are now supported by @QueueBinding. See the section called “Annotation-driven
Listener Endpoints” for more information.

Spring AMQP

2.0.0.M4 Spring AMQP 116

Delayed Message Exchange

Spring AMQP now has first class support for the RabbitMQ Delayed Message Exchange plugin. See
the section called “Delayed Message Exchange” for more information.

Exchange internal flag

Any Exchange definitions can now be marked as internal and the RabbitAdmin will pass the value
to the broker when declaring the exchange. See the section called “Configuring the broker” for more
information.

CachingConnectionFactory Changes

CachingConnectionFactory Cache Statistics

The CachingConnectionFactory now provides cache properties at runtime and over JMX. See the
section called “Runtime Cache Properties” for more information.

Access the Underlying RabbitMQ Connection Factory

A new getter has been added to provide access to the underlying factory. This can be used, for example,
to add custom connection properties. See the section called “Adding Custom Client Connection
Properties” for more information.

Channel Cache

The default channel cache size has been increased from 1 to 25. See the section called “Connection
and Resource Management” for more information.

In addition, the SimpleMessageListenerContainer no longer adjusts the cache size to be at
least as large as the number of concurrentConsumers - this was superfluous, since the container
consumer channels are never cached.

RabbitConnectionFactoryBean

The factory bean now exposes a property to add client connection properties to connections made by
the resulting factory.

Java Deserialization

A "white list" of allowable classes can now be configured when using Java deserialization. It is important
to consider creating a white list if you accept messages with serialized java objects from untrusted
sources. See the section called “Java Deserialization” for more information.

JSON MessageConverter

Improvements to the JSON message converter now allow the consumption of messages that don’t
have type information in message headers. See the section called “Message Conversion for Annotated
Methods” and the section called “Jackson2JsonMessageConverter” for more information.

Logging Appenders

Log4j2

A log4j2 appender has been added, and the appenders can now be configured with an addresses
property to connect to a broker cluster.

Spring AMQP

2.0.0.M4 Spring AMQP 117

Client Connection Properties

You can now add custom client connection properties to RabbitMQ connections.

See Section 3.2, “Logging Subsystem AMQP Appenders” for more information.

Changes in 1.5 Since 1.4

spring-erlang is No Longer Supported

The spring-erlang jar is no longer included in the distribution. Use the section called “RabbitMQ
REST API” instead.

CachingConnectionFactory Changes

Empty Addresses Property in CachingConnectionFactory

Previously, if the connection factory was configured with a host/port, but an empty String was also
supplied for addresses, the host and port were ignored. Now, an empty addresses String is treated
the same as a null, and the host/port will be used.

URI Constructor

The CachingConnectionFactory has an additional constructor, with a URI parameter, to configure
the broker connection.

Connection Reset

A new method resetConnection() has been added to allow users to reset the connection (or
connections). This might be used, for example, to reconnect to the primary broker after failing over to
the secondary broker. This will impact in-process operations. The existing destroy() method does
exactly the same, but the new method has a less daunting name.

Properties to Control Container Queue Declaration Behavior

When the listener container consumers start, they attempt to passively declare the queues to ensure
they are available on the broker. Previously, if these declarations failed, for example because the
queues didn’t exist, or when an HA queue was being moved, the retry logic was fixed at 3 retry
attempts at 5 second intervals. If the queue(s) still do not exist, the behavior is controlled by the
missingQueuesFatal property (default true). Also, for containers configured to listen from multiple
queues, if only a subset of queues are available, the consumer retried the missing queues on a fixed
interval of 60 seconds.

These 3 properties (declarationRetries, failedDeclarationRetryInterval,

retryDeclarationInterval) are now configurable. See the section called “Message Listener
Container Configuration” for more information.

Class Package Change

The RabbitGatewaySupport class has been moved from o.s.amqp.rabbit.core.support to
o.s.amqp.rabbit.core.

DefaultMessagePropertiesConverter

The DefaultMessagePropertiesConverter can now be configured to determine the maximum
length of a LongString that will be converted to a String rather than a DataInputStream. The

Spring AMQP

2.0.0.M4 Spring AMQP 118

converter has an alternative constructor that takes the value as a limit. Previously, this limit was hard-
coded at 1024 bytes. (Also available in 1.4.4).

@RabbitListener Improvements

@QueueBinding for @RabbitListener

The bindings attribute has been added to the @RabbitListener annotation as mutually exclusive
with the queues attribute to allow the specification of the queue, its exchange and binding for
declaration by a RabbitAdmin on the Broker.

SpEL in @SendTo

The default reply address (@SendTo) for a @RabbitListener can now be a SpEL expression.

Multiple Queue Names Via Properties

It is now possible to use a combination of SpEL and property placeholders to specify multiple queues
for a listener.

See the section called “Annotation-driven Listener Endpoints” for more information.

Automatic Exchange, Queue, Binding Declaration

It is now possible to declare beans that define a collection of these entities and the RabbitAdmin will
add the contents to the list of entities that it will declare when a connection is established. See the
section called “Declaring Collections of Exchanges, Queues, Bindings” for more information.

RabbitTemplate Changes

reply-address

The reply-address attribute has been added to the <rabbit-template> component as an
alternative reply-queue. See the section called “Request/Reply Messaging” for more information.
(Also available in 1.4.4 as a setter on the RabbitTemplate).

Blocking Receive Methods

The RabbitTemplate now supports blocking in receive and convertAndReceive methods. See
the section called “Polling Consumer” for more information.

Mandatory with SendAndReceive Methods

When the mandatory flag is set when using sendAndReceive and convertSendAndReceive
methods, the calling thread will throw an AmqpMessageReturnedException if the request message
can’t be deliverted. See the section called “Reply Timeout” for more information.

Improper Reply Listener Configuration

The framework will attempt to verify proper configuration of a reply listener container when using a
named reply queue.

See the section called “Reply Listener Container” for more information.

The RabbitManagementTemplate

The RabbitManagementTemplate has been introduced to monitor and configure the RabbitMQ
Broker using the REST API provided by its Management Plugin. See the section called “RabbitMQ
REST API” for more information.

https://www.rabbitmq.com/management.html

Spring AMQP

2.0.0.M4 Spring AMQP 119

Listener Container Bean Names (XML)

Important

The id attribute on the <listener-container/> element has been removed. Starting with this
release, the id on the <listener/> child element is used alone to name the listener container
bean created for each listener element.

Normal Spring bean name overrides are applied; if a later <listener/> is parsed with the same
id as an existing bean, the new definition will override the existing one. Previously, bean names
were composed from the ids of the <listener-container/> and <listener/> elements.

When migrating to this release, if you have id s on your <listener-container/> elements,
remove them and set the id on the child <listener/> element instead.

However, to support starting/stopping containers as a group, a new group attribute has been added.
When this attribute is defined, the containers created by this element are added to a bean with this
name, of type Collection<SimpleMessageListenerContainer. You can iterate over this group
to start/stop containers.

Class-Level @RabbitListener

The @RabbitListener annotation can now be applied at the class level. Together with the new
@RabbitHandler method annotation, this allows the handler method to be selected based on payload
type. See the section called “Multi-Method Listeners” for more information.

SimpleMessageListenerContainer: BackOff support

The SimpleMessageListenerContainer can now be supplied with a BackOff instance for
consumer startup recovery. See the section called “Message Listener Container Configuration” for
more information.

Channel Close Logging

A mechanism to control the log levels of channel closure has been introduced. See the section called
“Logging Channel Close Events”.

Application Events

The SimpleMessageListenerContainer now emits application events when consumers fail. See
the section called “Consumer Failure Events” for more information.

Consumer Tag Configuration

Previously, the consumer tags for asynchronous consumers were generated by the broker. With this
release, it is now possible to supply a naming strategy to the listener container. See the section called
“Consumer Tags”.

MessageListenerAdapter

The MessageListenerAdapter now supports a map of queue names (or consumer tags) to method
names, to determine which delegate method to call based on the queue the message was received from.

LocalizedQueueConnectionFactory

A new connection factory that connects to the node in a cluster where a mirrored queue actually resides.

Spring AMQP

2.0.0.M4 Spring AMQP 120

See the section called “Queue Affinity and the LocalizedQueueConnectionFactory”.

Anonymous Queue Naming

Starting with version 1.5.3, you can now control how AnonymousQueue names are generated. See the
section called “AnonymousQueue” for more information.

Changes in 1.4 Since 1.3

@RabbitListener Annotation

POJO listeners can be annotated with @RabbitListener, enabled by @EnableRabbit or
<rabbit:annotation-driven />. Spring Framework 4.1 is required for this feature. See the section
called “Annotation-driven Listener Endpoints” for more information.

RabbitMessagingTemplate

A new RabbitMessagingTemplate is provided to allow users to interact with RabbitMQ using
spring-messaging Message`s. It uses the `RabbitTemplate internally which can be
configured as normal. Spring Framework 4.1 is required for this feature. See the section called
“Messaging integration” for more information.

Listener Container Missing Queues Fatal Attribute

1.3.5 introduced the missingQueuesFatal property on the SimpleMessageListenerContainer.
This is now available on the listener container namespace element. See the section called “Message
Listener Container Configuration”.

RabbitTemplate ConfirmCallback Interface

The confirm method on this interface has an additional parameter cause. When available, this
parameter will contain the reason for a negative acknowledgement (nack). See the section called
“Publisher Confirms and Returns”.

RabbitConnectionFactoryBean

A factory bean is now provided to create the underlying RabbitMQ ConnectionFactory used by the
CachingConnectionFactory. This enables configuration of SSL options using Spring’s dependency
injection. See the section called “Configuring the Underlying Client Connection Factory”.

CachingConnectionFactory

The CachingConnectionFactory now allows the connectionTimeout to be set as a
property or as an attribute in the namespace. It sets the property on the underlying RabbitMQ
ConnectionFactory See the section called “Configuring the Underlying Client Connection Factory”.

Log Appender

The Logback org.springframework.amqp.rabbit.logback.AmqpAppender has been
introduced. It provides similar options like
org.springframework.amqp.rabbit.log4j.AmqpAppender. For more info see JavaDocs of
these classes.

The Log4j AmqpAppender now supports the deliveryMode property (PERSISTENT or
NON_PERSISTENT, default: PERSISTENT). Previously, all log4j messages were PERSISTENT.

Spring AMQP

2.0.0.M4 Spring AMQP 121

The appender also supports modification of the Message before sending - allowing, for example, the
addition of custom headers. Subclasses should override the postProcessMessageBeforeSend().

Listener Queues

The listener container now, by default, redeclares any missing queues during startup. A new auto-
declare attribute has been added to the <rabbit:listener-container> to prevent these
redeclarations. See the section called “auto-delete Queues”.

RabbitTemplate: mandatory and connectionFactorySelector Expressions

The mandatoryExpression and sendConnectionFactorySelectorExpression and
receiveConnectionFactorySelectorExpression SpEL Expression`s properties

have been added to the `RabbitTemplate. The mandatoryExpression

is used to evaluate a mandatory boolean value against each request
message, when a ReturnCallback is in use. See the section called
“Publisher Confirms and Returns”. The sendConnectionFactorySelectorExpression

and receiveConnectionFactorySelectorExpression are used when an
AbstractRoutingConnectionFactory is provided, to determine the lookupKey for the target
ConnectionFactory at runtime on each AMQP protocol interaction operation. See the section called
“Routing Connection Factory”.

Listeners and the Routing Connection Factory

A SimpleMessageListenerContainer can be configured with a routing connection factory to
enable connection selection based on the queue names. See the section called “Routing Connection
Factory”.

RabbitTemplate: RecoveryCallback option

The recoveryCallback property has been added to be used in the retryTemplate.execute().
See the section called “Adding Retry Capabilities”.

MessageConversionException

This exception is now a subclass of AmqpException; if you have code like the following:

try {

 template.convertAndSend("foo", "bar", "baz");

}

catch (AmqpException e) {

 ...

}

catch (MessageConversionException e) {

 ...

}

The second catch block will no longer be reachable and needs to be moved above the catch-all
AmqpException catch block.

RabbitMQ 3.4 Compatibility

Spring AMQP is now compatible with the RabbitMQ 3.4, including direct reply-to; see the section called
“Compatibility” and the section called “RabbitMQ Direct reply-to” for more information.

Spring AMQP

2.0.0.M4 Spring AMQP 122

ContentTypeDelegatingMessageConverter

The ContentTypeDelegatingMessageConverter has been introduced to select the
MessageConverter to use, based on the contentType property in the MessageProperties. See
the section called “Message Converters” for more information.

Changes in 1.3 Since 1.2

Listener Concurrency

The listener container now supports dynamic scaling of the number of consumers based on workload,
or the concurrency can be programmatically changed without stopping the container. See the section
called “Listener Concurrency”.

Listener Queues

The listener container now permits the queue(s) on which it is listening to be modified at runtime. Also,
the container will now start if at least one of its configured queues is available for use. See the section
called “Listener Container Queues”

This listener container will now redeclare any auto-delete queues during startup. See the section called
“auto-delete Queues”.

Consumer Priority

The listener container now supports consumer arguments, allowing the x-priority argument to be
set. See the section called “Container”.

Exclusive Consumer

The SimpleMessageListenerContainer can now be configured with a single exclusive
consumer, preventing other consumers from listening to the queue. See the section called “Exclusive
Consumer”.

Rabbit Admin

It is now possible to have the Broker generate the queue name, regardless of durable, autoDelete and
exclusive settings. See the section called “Configuring the broker”.

Direct Exchange Binding

Previously, omitting the key attribute from a binding element of a direct-exchange configuration
caused the queue or exchange to be bound with an empty string as the routing key. Now it is bound with
the the name of the provided Queue or Exchange. Users wishing to bind with an empty string routing
key need to specify key="".

AMQP Template

The AmqpTemplate now provides several synchronous receiveAndReply methods. These are
implemented by the RabbitTemplate. For more information see the section called “Receiving
messages”.

The RabbitTemplate now supports configuring a RetryTemplate to attempt retries (with optional
back off policy) for when the broker is not available. For more information see the section called “Adding
Retry Capabilities”.

Spring AMQP

2.0.0.M4 Spring AMQP 123

Caching Connection Factory

The caching connection factory can now be configured to cache Connection`s and their

`Channel s instead of using a single connection and caching just Channel s. See the section called
“Connection and Resource Management”.

Binding Arguments

The <exchange>'s <binding> now supports parsing of the <binding-arguments> sub-element.
The <headers-exchange>'s <binding> now can be configured with a key/value attribute pair
(to match on a single header) or with a <binding-arguments> sub-element, allowing matching on
multiple headers; these options are mutually exclusive. See the section called “Introduction”.

Routing Connection Factory

A new SimpleRoutingConnectionFactory has been introduced, to allow configuration of
ConnectionFactories mapping to determine the target ConnectionFactory to use at runtime.
See the section called “Routing Connection Factory”.

MessageBuilder and MessagePropertiesBuilder

"Fluent APIs" for building messages and/or message properties is now provided. See the section called
“Message Builder API”.

RetryInterceptorBuilder

A "Fluent API" for building listener container retry interceptors is now provided. See the section called
“Failures in Synchronous Operations and Options for Retry”.

RepublishMessageRecoverer

This new MessageRecoverer is provided to allow publishing a failed message to another queue
(including stack trace information in the header) when retries are exhausted. See the section called
“Message Listeners and the Asynchronous Case”.

Default Error Handler (Since 1.3.2)

A default ConditionalRejectingErrorHandler has been added to the listener container. This
error handler detects message conversion problems (which are fatal) and instructs the container to
reject the message to prevent the broker from continually redelivering the unconvertible message. See
the section called “Exception Handling”.

Listener Container 'missingQueuesFatal` Property (Since 1.3.5)

The SimpleMessageListenerContainer now has a property missingQueuesFatal (default
true). Previously, missing queues were always fatal. See the section called “Message Listener
Container Configuration”.

Changes to 1.2 Since 1.1

RabbitMQ Version

Spring AMQP now using RabbitMQ 3.1.x by default (but retains compatibility with earlier versions).
Certain deprecations have been added for features no longer supported by RabbitMQ 3.1.x - federated
exchanges and the immediate property on the RabbitTemplate.

Spring AMQP

2.0.0.M4 Spring AMQP 124

Rabbit Admin

The RabbitAdmin now provides an option to allow exchange, queue, and binding declarations to
continue when a declaration fails. Previously, all declarations stopped on a failure. By setting ignore-
declaration-exceptions, such exceptions are logged (WARN), but further declarations continue.
An example where this might be useful is when a queue declaration fails because of a slightly different
ttl setting would normally stop other declarations from proceeding.

The RabbitAdmin now provides an additional method getQueueProperties(). This can be used to
determine if a queue exists on the broker (returns null for a non-existent queue). In addition, the current
number of messages in the queue, as well as the current number of consumers is returned.

Rabbit Template

Previously, when using the ...sendAndReceive() methods were used with a fixed reply queue, two
custom headers were used for correlation data and to retain/restore reply queue information. With this
release, the standard message property correlationId is used by default, although the user can
specifiy a custom property to use instead. In addition, nested replyTo information is now retained
internally in the template, instead of using a custom header.

The immediate property is deprecated; users must not set this property when using RabbitMQ 3.0.x
or greater.

JSON Message Converters

A Jackson 2.x MessageConverter is now provided, along with the existing converter that uses
Jackson 1.x.

Automatic Declaration of Queues, etc

Previously, when declaring queues, exchanges and bindings, it was not possible to define which
connection factory was used for the declarations, each RabbitAdmin would declare all components
using its connection.

Starting with this release, it is now possible to limit declarations to specific RabbitAdmin instances.
See the section called “Conditional Declaration”.

AMQP Remoting

Facilities are now provided for using Spring Remoting techniques, using AMQP as the transport for the
RPC calls. For more information see the section called “Spring Remoting with AMQP”

Requested Heart Beats

Several users have asked for the underlying client connection factory’s requestedHeartBeats
property to be exposed on the Spring AMQP CachingConnectionFactory. This is now available;
previously, it was necessary to configure the AMQP client factory as a separate bean and provide a
reference to it in the CachingConnectionFactory.

Changes to 1.1 Since 1.0

General

Spring-AMQP is now built using gradle.

Spring AMQP

2.0.0.M4 Spring AMQP 125

Adds support for publisher confirms and returns.

Adds support for HA queues, and broker failover.

Adds support for Dead Letter Exchanges/Dead Letter Queues.

AMQP Log4j Appender

Adds an option to support adding a message id to logged messages.

Adds an option to allow the specification of a Charset name to be used when converting String s
to byte[].

	Spring AMQP
	Table of Contents
	1. Preface
	2. Introduction
	2.1 Quick Tour for the impatient
	Introduction
	Compatibility
	Very, Very Quick
	With XML Configuration
	With Java Configuration

	2.2 What’s New
	Changes in 2.0 Since 1.7
	AMQP Client library
	General Changes
	Deleted classes
	New Listener Container
	Log4j Appender
	Logback Appender
	RabbitTemplate Changes
	Listener Adapter
	Listener Container Changes
	Message Count
	Transaction Rollback behavior

	Connection Factory Changes
	Retry Changes
	Anonymous Queue Naming
	@RabbitListener Changes
	Container Conditional Rollback
	Remove Jackson 1.x support
	JSON Message Converter
	XML Parsers

	Earlier Releases

	3. Reference
	3.1 Using Spring AMQP
	AMQP Abstractions
	Introduction
	Message
	Exchange
	Queue
	Binding

	Connection and Resource Management
	Introduction
	Configuring the Underlying Client Connection Factory
	RabbitConnectionFactoryBean and Configuring SSL
	Routing Connection Factory
	Queue Affinity and the LocalizedQueueConnectionFactory
	Publisher Confirms and Returns
	Connection and Channel Listeners
	Logging Channel Close Events
	Runtime Cache Properties
	RabbitMQ Automatic Connection/Topology recovery

	Adding Custom Client Connection Properties
	AmqpTemplate
	Introduction
	Adding Retry Capabilities
	Publishing is Asynchronous - How to Detect Success and Failures
	Publisher Confirms and Returns
	Scoped Operations
	Messaging integration
	Validated User Id

	Sending messages
	Introduction
	Message Builder API
	Publisher Returns
	Batching

	Receiving messages
	Introduction
	Polling Consumer
	Asynchronous Consumer
	Message Listener
	MessageListenerAdapter
	Container
	auto-delete Queues

	Batched Messages
	Consumer Failure Events
	Consumer Tags
	Annotation-driven Listener Endpoints
	Introduction
	Meta-Annotations
	Enable Listener Endpoint Annotations
	Message Conversion for Annotated Methods
	Programmatic Endpoint Registration
	Annotated Endpoint Method Signature
	Listening to Multiple Queues
	Reply Management
	Multi-Method Listeners
	@Repeatable @RabbitListener
	Proxy @RabbitListener and Generics
	Handling Exceptions
	Container Management

	Threading and Asynchronous Consumers
	Choosing a Container
	Detecting Idle Asynchronous Consumers
	xml
	Java
	@RabbitListener
	Event Consumption

	Message Converters
	Introduction
	SimpleMessageConverter
	Converting From a Message
	Converting To a Message

	SerializerMessageConverter
	Jackson2JsonMessageConverter
	Converting to a Message
	Converting from a Message
	Converting From a Message With RabbitTemplate

	MarshallingMessageConverter
	ContentTypeDelegatingMessageConverter
	Java Deserialization
	Message Properties Converters

	Modifying Messages - Compression and More
	Request/Reply Messaging
	Introduction
	Reply Timeout
	RabbitMQ Direct reply-to
	Message Correlation With A Reply Queue
	Reply Listener Container
	AsyncRabbitTemplate
	Spring Remoting with AMQP

	Configuring the broker
	Introduction
	Builder API for Queues and Exchanges
	Declaring Collections of Exchanges, Queues, Bindings
	Conditional Declaration
	A Note On "id" and "name" Attributes
	AnonymousQueue

	Delayed Message Exchange
	RabbitMQ REST API
	Exception Handling
	Transactions
	Introduction
	Conditional Rollback
	A note on Rollback of Received Messages
	Using the RabbitTransactionManager

	Message Listener Container Configuration
	Listener Concurrency
	SimpleMessageListenerContainer
	DirectMessageListenerContainer

	Exclusive Consumer
	Listener Container Queues
	Resilience: Recovering from Errors and Broker Failures
	Introduction
	Automatic Declaration of Exchanges, Queues and Bindings
	Failures in Synchronous Operations and Options for Retry
	Message Listeners and the Asynchronous Case
	Exception Classification for Retry

	Debugging

	3.2 Logging Subsystem AMQP Appenders
	Common properties
	Log4j2 Appender
	Logback Appender
	Customizing the Messages
	Customizing the Client Properties
	Simple String Properties
	Advanced Technique for Logback

	3.3 Sample Applications
	Introduction
	Hello World
	Introduction
	Synchronous Example
	Asynchronous Example

	Stock Trading
	Receiving JSON from Non-Spring Applications

	3.4 Testing Support
	Introduction
	Mockito Answer<?> Implementations
	@RabbitListenerTest and RabbitListenerTestHarness
	TestRabbitTemplate
	JUnit @Rules
	BrokerRunning
	Configuring the Rule

	LongRunningIntegrationTest

	4. Spring Integration - Reference
	4.1 Spring Integration AMQP Support
	Introduction
	Inbound Channel Adapter
	Outbound Channel Adapter
	Inbound Gateway
	Outbound Gateway

	5. Other Resources
	5.1 Further Reading

	Appendix A. Change History
	A.1 Current Release
	A.2 Previous Releases
	Changes in 1.6 Since 1.5
	Testing Support
	Builder
	Namespace Changes
	Connection Factory
	Queue Definitions

	Listener Container Changes
	Idle Message Listener Detection
	Mismatched Queue Detection
	Listener Container Logging
	Default Error Handler

	AutoDeclare and RabbitAdmins
	AmqpTemplate: receive with timeout
	AsyncRabbitTemplate
	RabbitTemplate Changes
	Message Properties
	CorrelationId
	Long String Headers
	Inbound Delivery Mode
	Inbound User ID

	RabbitAdmin Changes
	Declaration Failures

	@RabbitListener Changes
	Multiple Containers per Bean
	@SendTo SpEL Expressions
	@QueueBinding Improvements

	Delayed Message Exchange
	Exchange internal flag
	CachingConnectionFactory Changes
	CachingConnectionFactory Cache Statistics
	Access the Underlying RabbitMQ Connection Factory
	Channel Cache

	RabbitConnectionFactoryBean
	Java Deserialization
	JSON MessageConverter
	Logging Appenders
	Log4j2
	Client Connection Properties

	Changes in 1.5 Since 1.4
	spring-erlang is No Longer Supported
	CachingConnectionFactory Changes
	Empty Addresses Property in CachingConnectionFactory
	URI Constructor
	Connection Reset

	Properties to Control Container Queue Declaration Behavior
	Class Package Change
	DefaultMessagePropertiesConverter
	@RabbitListener Improvements
	@QueueBinding for @RabbitListener
	SpEL in @SendTo
	Multiple Queue Names Via Properties

	Automatic Exchange, Queue, Binding Declaration
	RabbitTemplate Changes
	reply-address
	Blocking Receive Methods
	Mandatory with SendAndReceive Methods
	Improper Reply Listener Configuration

	The RabbitManagementTemplate
	Listener Container Bean Names (XML)
	Class-Level @RabbitListener
	SimpleMessageListenerContainer: BackOff support
	Channel Close Logging
	Application Events
	Consumer Tag Configuration
	MessageListenerAdapter
	LocalizedQueueConnectionFactory
	Anonymous Queue Naming

	Changes in 1.4 Since 1.3
	@RabbitListener Annotation
	RabbitMessagingTemplate
	Listener Container Missing Queues Fatal Attribute
	RabbitTemplate ConfirmCallback Interface
	RabbitConnectionFactoryBean
	CachingConnectionFactory
	Log Appender
	Listener Queues
	RabbitTemplate: mandatory and connectionFactorySelector Expressions
	Listeners and the Routing Connection Factory
	RabbitTemplate: RecoveryCallback option
	MessageConversionException
	RabbitMQ 3.4 Compatibility
	ContentTypeDelegatingMessageConverter

	Changes in 1.3 Since 1.2
	Listener Concurrency
	Listener Queues
	Consumer Priority
	Exclusive Consumer
	Rabbit Admin
	Direct Exchange Binding
	AMQP Template
	Caching Connection Factory
	Binding Arguments
	Routing Connection Factory
	MessageBuilder and MessagePropertiesBuilder
	RetryInterceptorBuilder
	RepublishMessageRecoverer
	Default Error Handler (Since 1.3.2)
	Listener Container 'missingQueuesFatal` Property (Since 1.3.5)

	Changes to 1.2 Since 1.1
	RabbitMQ Version
	Rabbit Admin
	Rabbit Template
	JSON Message Converters
	Automatic Declaration of Queues, etc
	AMQP Remoting
	Requested Heart Beats

	Changes to 1.1 Since 1.0
	General
	AMQP Log4j Appender

