Spring Batch - Reference Documentation

3.0.0.RC2

Lucas Ward , Dave Syer , Thomas Risberg , Robert Kasanicky , Dan
Garrette , Wayne Lund , Michael Minella , Chris Schaefer , Gunnar Hillert

Copyright © 2009 2010 2011 2012 2013 2014 GoPivotal, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Batch

Table of Contents

1. Spring BatCh INtrOTUCTIONciiiiiiiieii et e et e et e e aaan s 1
O = 7 Voo | {0 T S 1
1.2, USAQE SCENAIIOS ...euniitueeti et ettt e et e et et e et et et e e et e e et e et ta e et e e et e e et e eetn e eeanaeanaeeen 2
1.3. Spring BatCh ArChItECIUIEiiiiii e 2
1.4. General Batch Principles and GUIENINESocvuiiiiiiiiiiii e 3
1.5. Batch Processing Srat@gieScouuiiiiiiiiiiei ettt e e e eaa s 4

2. What's New in Spring BatCh 3.0iiiiiiiiiiiiii e 11
2.1, JSR-352 SUPPOI .ieeeiitiiie ettt ettt et e 11
2.2. Promote Spring Batch Integration to Spring BatCh ..o 11
2.3. Upgrade to Support Spring 4 and Java 8cocuuiiiiiiiiiiiiiiiii e 11
P22 T [o o 1Yo u] o T J ST U] o] Lo o (0PN 12
A TS @ T | (SIS 0] o] oo] o A TP 12

3. The Domain Language Of BatChcooouiiiiiiii e 13
B J0D e 13

B [o] o] 4153 = T To = PPN 14
B [o] o] = 1= T 0 1 T=] (] 15
JOBEXECULION ...t r e e e e 15
TS (=] o I PP PP 17
(=] o] =N (o 1o o ISP 18
3.3, EXECULIONCONTEXEceeiiiiieiiti ettt ettt e e et et e e e e e e e ennneeaas 19
I [0 o] 2 (=T o[1S3 (o] 3 VAPPSR 21
G TS T o o] - T T - 21
3.6, TLEIM REAUEY ..ottt e e e e 21
T A 1 =T 0 BT] (Y PP UPTRPTRN 21
G C J (=] 0 I 0100 T 21
3.9. BaAtCh NAMESPACE ...vuiiiiiiiii it e e e e e e e e e e e e e et e e e aaans 22

4. Configuring and RUNNING @ JODoouiii e e ees 23

4.1, ConfigUIING @ JOD .oeiiiii e 23
RESTAMADIIILY ...ceveeii e 23
Intercepting JOD EXECULIONuiiiiiit et e et e e e e ea s 24
Inheriting from a Parent JODoiiiiiiiiii e 25
JOBPArametersValidatoroouuiiiiiiie e 25

4.2, .JAVA CONTIQG it e e 26

4.3. Configuring @ JODREPOSITONYiieiiiiieiii e e 27
Transaction Configuration for the JOBREPOSITOrYcovvviiiiiiiiiiiicie e 28
Changing the Table PrefiX ... e 28
IN-MEMOIY REPOSITOIY ..evtiiiiiii ettt ettt e e et e e e e e e b e e eanes 29
Non-standard Database Types in @ REPOSItONYoeviviiiiiiiiiiieeii e 29

4.4. Configuring @ JODLAUNCRETuiiii e e e e eenas 29

4.5, RUNNING @ JOD <.ttt ettt e e e e e s 30
Running Jobs from the Command LiNecooiiiiiiiiiiiii e e e 31

The CommandLineJODRUNNET ..o e 31
3 (@0 o = 32
Running Jobs from within @ Web CoNntainerccccoiiiiiiiiiii e 32

4.6. Advanced Meta-Data USAQgEc..oiiuuiiiiniiii e e e e e et e e e e 33
QuUENYING the REPOSITONYiiiiiii ettt et e e e e e e eai e ees 34
B [0 o] =0] 1 Y/ PP 35

Spring Batch - Reference
3.0.0.RC2 Documentation ii

Spring Batch

JObReEQiStryBeanPOStPIOCESSOrccvuiiiiieii e 35
AULOMALICIODREGISIIAN ... it 35

o] 0[@ 1] =1 o] APPSR PP 36
JObParametersSINCrEMENTETcuui et e e e e 37
SOPPING 8 JOD ot a e 38
ADOIING 8 JOD e e 38

T O] 1T 8T aTo =] (] o I 39
5.1. Chunk-Oriented PrOCESSINGciuuiiiiieiiiieie ettt e e e et e e eenaeaees 39
CONFIGUIING 8 STEP ..neiiiiii ettt ettt ettt e e e et e e e e e e enaes 40
INheriting from @ Parent STEPovcveiiii i 40
ADSITACT STEP .ttt e 41

MEIGING LISES ..iitiiiiiiii ettt 41

The CoMMIL INEEIVAL ... e e e 42
Configuring a Step fOr RESIAIoiiiiiie e 42
Setting @ SEArtLIMILoiiii e e 42
Restarting a completed StEPiviiiiiii e 42

Step Restart Configuration EXample ... 43
ConfiIguIING SKIP LOGIC .vvuueieiiiiieiiiiii ettt et e e e e eneans 44
(7] a1iTo 8 a1 aTe [l == VA 0T | o 45
Controlling ROIDACKoouei e e e e 45
Transactional REAUEISiiiiiiiiiie e e e e e 46
Transaction AIDULESooouniiiii et 46
Registering ItemStreams with the STEP ... 46
INtercepting StEP EXECULIONcoouuiiiiiii et 47
StEPEXECULIONLISIENET .. civiiii e e e e e eaes 48
CRUNKLISIENET ...ttt e e e et e e 48
HEMREAALISIENET ...t e e e e e e e e aanas 49
HEMPIOCESSLISIENET ..ot 49
EEMWWITEELISIENEL ..o et et e e e et eea e eaes 49
SKIPLISIENET ..t et 50

L 1= 1S 1= 6] (= P 51
TASKIBTAGAPLET ...t e ettt e 51
Example Tasklet Implementationcoouuiiiiiiii e 51

LR T @o] 1 (o] [TaTo IS (=T o TN o 52
SeqUENLIAI FIOW ...t ettt e aa e 53

L0 oo 11 10T =TI = (o Y 53
Batch Status VS. EXit STAtUSiiiiiiiiiiiiii e 54
ConfIgUIING FOr STOP .ceuniiiiie it e e e e 55

The 'BENd' EIBMENToiii e e e 56

The "Fail' EIBMENTeeii e e 56

The 'Stop' EIBMENTo e 57
Programmatic FIOW DECISIONScccouuuiiiiiiiieeiiii et 57

S 11 0 58
Externalizing Flow Definitions and Dependencies Between JObScc.ocoeviiiiiennnn. 58

5.4. Late Binding of Job and Step AttribUteSoooiiiiiiiiii 59
(= 0 TS Yo o1 60

JOD S0P i 60

6. ltemReaders and EMWWIIEISiiii e e e et e et e e eeeens 62
L 1 1= 0] == Vo [PSPPSR 62
B.2. IEBMWVIILET .ottt e et et e et e e et ettt e e ea e e et e e e an e eaneaes 62

Spring Batch - Reference
3.0.0.RC2 Documentation iii

Spring Batch

6.3, IEBMIPIOCESSON ...ttt ettt et et e e e eaas 63
ChainNing ItEMPIOCESSOIS ...ttt e et e e e e e e aans 64
FIltering RECOIAS .. .ot 66
= 0| B o] (=] = o Tod PP 66

R T 111 0 D57 1 (=T T o PP UPRPPTPI 66

6.5. The Delegate Pattern and Registering with the Stepccoiiiiiiiiinii 67

B.6. FIAt FIlES ..ooveiiiiii e e 67
TRE FIEIASEL ...t ettt e e e e e ea e 67
FIAtFIlEEMREAUET ... ceen i e e e e e e e e een s 68

[T T CT YT o o 1= PP 69
LINETOKENIZET ..t ettt e e et e e e e 69
FIRldSEtMAPPEL ..o e 70
DefaUtLINEMAPPEL . .een et e 70
Simple Delimited File Reading EXampleo 71
Mapping Fields DY NamMe ... 72
Automapping FieldSets to Domain OBJECtScoevvviiiiiiiiii e 72
Fixed Length File FOMMALSc..iiiiiiiiiii e 73
Multiple Record Types within a Single Filecccoooiiiiiii e 74
Exception Handling in Flat FilesSccoouiiiiiii e 75
FIatFIlEIEMWVIITET ..o e e et e e e eanas 76
[T gToY o o =T o= o] PP OTPTTR 76
Simplified File Writing EXamplecoooiiii e 76
[I [0 = T (o] PP 77
Delimited File Writing EXampleioi e 78
Fixed Width File Writing EXamplec.ooiiiiiiiiiiiei e e e eaae e 79
Handling File Creation ...t 79

6.7. XML Item Readers and WIScouui it e e e e e e eaeees 79
StaXEVeNtEMREATET i e 81
StAXEVENIEMWWIIIET . .oeeee e e e e e e 82

6.8. MUIL-FIlE TNPUL ..o ettt e e e e 83

B.9. DALADASEuiieiiiii e 84
Cursor Based ItEMREAUEIScoeuiiiiiiiii e 84

JABCCUIrSOrEMREATENceeeieii e e e 85
HibernateCursorlteMREAAE!iiiiiiiiei e 87
StoredProcedurelteMREAdErooieuiiiii i 88
Paging HEMREAAEISuuiiiiii et 90
JdbcPagingItEMREATETn i 90
JpaPagingItEMREAAE!iiii e 91
IbatisSPagingItEMREAUETcoouuiiiiiii e e 92
Database IEMWWIILEIScooui et e e 92

6.10. Reusing EXIStNG SEIVICESc.uuiiiuiiiiiiiii et e e aeens 94

6.11. Validating INPULoiiiiie ettt e e e e 95

6.12. Preventing State PerSiSIENCEc.uiiiiiiiiii et e 96

6.13. Creating Custom ItemReaders and HeMWIILEISoieuniiiiiiiiiei e 97
Custom ItemReader EXAMPIEcoouuiiiiiiiiei e 97

Making the | t enReader Restartableccoovvviiiiiii e, 98

Custom ItemWriter EXamPle ..o e 99

Making the | temW it er Restartablecoooviiiiiiiii 99

7. Scaling and Parallel PrOoCESSINGucvvuuiiiiieii it e e e e e e e 101
7.1, MUItI-tRIEAdEd STEP ...euneiiieie ettt e 101

Spring Batch - Reference
3.0.0.RC2 Documentation iv

Spring Batch

7.2, Parallel SIEPS ..vvvuiiiiiiii et 102

7.3. REMOLE CRUNKING ...uniiiiii e e e e e e eeas 102

A o= 14 111 o] o 11T RSP PTTTUPPRTTR 103
PartitioNHANAIET ... oo e 105
LT 11 (o] T PP U PPN 106

Binding INPUL Data t0 STEPS ...vvuiiiiiiiiei ittt e 107

S JR =T 1 108
8.1, REPEAITEMPIALE ...ttt et e e et e e e eaa e eees 108
REPEAICONTIEXE ..ottt e 109
REPEALSTALUSieiiieiii e e e e e e e e e e e 109

8.2. ComPIEtioN POLCIESoeeiiiiie e 109

8.3. EXCePtion HAaNAIINGuuniiiiiie e 109

S I 13 (T 1= £ PSPPI 110

8.5. Parallel ProCESSINGuciiiiiiiieiii et e e e e 110

8.6. DeClarative ItErationiiiiiiiiiie e e 110

LS TR =1 Y 112
9.1, REtTYTEMPIALE ...eneete ittt e et e e e e et e e e e aeas 112
REIIYCONIEXL ...ttt e 113
RECOVEIYCAIIDACKveieiciii e e 113

SHALEIESS REIIY ..ot et 113

STALETUI REINY e ettt 114

S T L= 1 YA =] o3 - 114

9.3. BACKOMT POIICIES ...t e e 115

LS T 1] (=T 1= 116

9.5, DECIAratiVE REIIY ..ot e e e e e e e 116

O U 1 B =1] o T PRSPPI 117
10.1. Creating @ UNit TESE ClASS .. .ceuuuuieiiiiiei et e e 117
10.2. End-To-End Testing of Batch JODScccoiiiiiii e 117
10.3. Testing INdIVIdUAl SEPSoeuniiiiiii et ees 118
10.4. Testing Step-Scoped COMPONENTSiiiiiiiieiiiie ettt 118
10.5. Validating OULPUL FlESccvuiiiii i e e e e ees 119
10.6. Mocking Domain ODJECLSoiiuiiiiiii e 120

11. CommoN BatCh PAtternscoouiiiiiiiii it e et e e e e e 122
11.1. Logging Item Processing and Failurescoooveiiiiiiiiiii i 122
11.2. Stopping a Job Manually for BUSINeSS REASONScc.iiiiiiiiiiiiiiiieiiieee e 123
11.3. AddiNg @ FOOEr RECOITuuiiiiiiiiieeeei e e 124
WItING @ SUMMAIY FOOLEE .. oiuiiiiiicii e e e e e e e aens 124

11.4. Driving Query Based IHEMREAAEISooouuiiiiiiiiie e 126
11.5. MUlti-LiN@ RECOIAS ...uuiiiiiiiiiei et e e e e et e e e e eaneaes 127
11.6. Executing System COmMMANASiiiiiiiiieiie e e e e e e e 129
11.7. Handling Step Completion When No Input is Foundcccoooiiiiiiiiiiiineen, 129
11.8. Passing Data to FULUIE STEPS ...couuuiiiiiiieieii e 130

N 1S e 1 72 T U o] o o o S 132
12.1. General Notes Spring Batch and JSR-352couuiiiiiiiiiiiii e 132
B2.2. SBIUPD ettt et e 132
12.3. Dependency INJECHIONciiuiiiiie e e e e e e e e an s 133
12.4. BACh PrOPEITIES ..ot e e aa s 135
PrOPEITY SUPPOIT ..ttt e r e e e 135

@Bat ChProperty annotationccooeuuiiiiiiiiii e e e e e 135

Property SUDSHIULIONooeeiie e e 135

Spring Batch - Reference
3.0.0.RC2 Documentation %

Spring Batch

12.5. Processing MOGEISociriiiiiiiiii e e e e e 136

[temM DASEA PrOCESSING ...cetniiiiiiii ettt e e e e e e e e e eeaens 136

CUStOM ChECKPOINTING ...eiiitieeeie et 136

2 G T =W T T 11 o = T o J S 137
R 0] ¢ (= £ T PP UPTUPTPPR 137
12.8. SEEP FIOW .ot 138
12.9. Scaling a JSR-352 hatCh JODouiiiiii e 138
=T 11 1o o] o o ORI 138

0 O T =211 o PSPPSR 139

RIS o g To T = 7= 1ol o T 01 4=To | = Lo} o SRS 140
13.1. Spring Batch Integration INtrodUCLIONccouiiiiiiiiii e 140
NaAMESPACE SUPPOIT ..ottt e e et e e e e e e eees 140
Launching Batch Jobs through MeSSagescc.vvviiiiiiiiiiiii e 141
Transforming a file into a JobLaunchRequestcocoiiiiiiiiiiiiii e, 142

The JODEXeCULION RESPONSEuuiiiiiiiiiiei ittt 142

Spring Batch Integration Configurationcccoeviiiiiiiiiii 143

Example ltemReader Configurationooouiiiiiiiiiiiiii e 143

Providing Feedback with Informational MeSSagescoovvvviiiiiiiiiinniiiiineei e, 144
ASYNCNIONOUS PrOCESSOIS ...uuiiiiiiiiieiii i et e et e et e e et e e e e et e et e et e e et s e e e eaneees 145
Externalizing Batch Process EXeCULIONcc.oiiiiiiiiiiiiii e 146

ReEMOtE CHUNKING ...vuiiiiiii e e 147

REMOtE PartitioNiNgccvviii e 150

A. List of ltemReaders and HEMWIITEIScouuiiiiiii et 152
N 1= o I == T [T P 152

F N 1 (=1 0 T 1 =T £ PP 153

B. Meta-Data SCREMQA ...t et ettt e e et e e e e e ean s 156
2 T 1T 1 156
EXAMPIE DDLU SCIIPS ovuuiiiiiiiiii it e et e e e e e e e e e e e e e e e eaas 156

V=] €510 o PP PTTPPRPN 157

o =701 (1Y TP TP UPPPTTRPPPIN 157

B.2. BATCH_JOB_INSTANCEcoiitiiiiiiiiie ettt e e s 157

B.3. BATCH_JOB_EXECUTION_PARAMS ..ottt 158

B.4. BATCH_JOB_EXECUTIONiiiiiiiiiiiiii ittt e e e ettt e e e e e eeeteti e e e e e e e eeeannnns 159

B.5. BATCH_STEP_EXECUTIONuuiiiiiiiiiiiiiiiie ettt n e e e e e eennes 159

B.6. BATCH_JOB_EXECUTION_CONTEXT ...ciiieiiiiiiiiiiiiaiae e eeeetiiia e e e e eeeeiiii s e e e eeaeennes 161

B.7. BATCH_STEP_EXECUTION_CONTEXTiiiiiiiiiiiiiiia e eeeeeeiiiiee e e e ee et eeaaeeeees 161

B.8. AICRHIVING ..oeiniiiiii e 162

B.9. International and Multi-byte Characters ... 162
B.10. Recommendations for Indexing Meta Data Tablescccooviiiiiiiiiiiiiii e, 162

C. Batch Processing and TranNSACONSiivuuiiiiieiii e e e e e e e e e e e et e e e eanes 164
C.1. Simple Batching With NO REIIYc..iiiiiii e 164

C.2. SIMPIE STALEIESS REIIY ...ouiiiiiiii ettt e e e e e e eba e ees 164

C.3. Typical Repeat-Retry Patternccccuiiiiiiiiie e e e e e 165

C.4. Asynchronous ChUnK ProCESSINGc..iiuuiiiiiiiieeci e e 166

C.5. ASynchronous Item ProCeSSINGuiiiiiiiiiiiiii et 166

C.6. Interactions Between Batching and Transaction Propagationcc.ccceveviiivviinneennnn. 167

C.7. Special Case: Transactions with Orthogonal ReSOUrCescccocoiieiiiiiiiiiiiiiinecineen, 168

C.8. Stateless Retry Cannot RECOVETiiiiiiiiiieiiiii et 169
L1017 170

Spring Batch - Reference
3.0.0.RC2 Documentation vi

Spring Batch

1. Spring Batch Introduction

Many applications within the enterprise domain require bulk processing to perform business operations
in mission critical environments. These business operations include automated, complex processing of
large volumes of information that is most efficiently processed without user interaction. These operations
typically include time based events (e.g. month-end calculations, notices or correspondence), periodic
application of complex business rules processed repetitively across very large data sets (e.g. Insurance
benefit determination or rate adjustments), or the integration of information that is received from internal
and external systems that typically requires formatting, validation and processing in a transactional
manner into the system of record. Batch processing is used to process billions of transactions every
day for enterprises.

Spring Batch is a lightweight, comprehensive batch framework designed to enable the development of
robust batch applications vital for the daily operations of enterprise systems. Spring Batch builds upon
the productivity, POJO-based development approach, and general ease of use capabilities people have
come to know from the Spring Framework, while making it easy for developers to access and leverage
more advance enterprise services when necessary. Spring Batch is not a scheduling framework. There
are many good enterprise schedulers available in both the commercial and open source spaces such
as Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace a
scheduler.

Spring Batch provides reusable functions that are essential in processing large volumes of records,
including logging/tracing, transaction management, job processing statistics, job restart, skip, and
resource management. It also provides more advance technical services and features that will
enable extremely high-volume and high performance batch jobs though optimization and partitioning
techniques. Simple as well as complex, high-volume batch jobs can leverage the framework in a highly
scalable manner to process significant volumes of information.

1.1 Background

While open source software projects and associated communities have focused greater attention on
web-based and SOA messaging-based architecture frameworks, there has been a notable lack of
focus on reusable architecture frameworks to accommodate Java-based batch processing needs,
despite continued needs to handle such processing within enterprise IT environments. The lack of a
standard, reusable batch architecture has resulted in the proliferation of many one-off, in-house solutions
developed within client enterprise IT functions.

SpringSource and Accenture have collaborated to change this. Accenture's hands-on industry and
technical experience in implementing batch architectures, SpringSource's depth of technical experience,
and Spring's proven programming model together mark a natural and powerful partnership to create
high-quality, market relevant software aimed at filling an important gap in enterprise Java. Both
companies are also currently working with a number of clients solving similar problems developing
Spring-based batch architecture solutions. This has provided some useful additional detail and real-life
constraints helping to ensure the solution can be applied to the real-world problems posed by clients.
For these reasons and many more, SpringSource and Accenture have teamed to collaborate on the
development of Spring Batch.

Accenture has contributed previously proprietary batch processing architecture frameworks, based
upon decades worth of experience in building batch architectures with the last several generations of
platforms, (i.e., COBOL/Mainframe, C++/Unix, and now Java/anywhere) to the Spring Batch project
along with committer resources to drive support, enhancements, and the future roadmap.

Spring Batch - Reference
3.0.0.RC2 Documentation 1

Spring Batch

The collaborative effort between Accenture and SpringSource aims to promote the standardization
of software processing approaches, frameworks, and tools that can be consistently leveraged by
enterprise users when creating batch applications. Companies and government agencies desiring to
deliver standard, proven solutions to their enterprise IT environments will benefit from Spring Batch.

1.2 Usage Scenarios

A typical batch program generally reads a large number of records from a database, file, or queue,
processes the data in some fashion, and then writes back data in a modified form. Spring Batch
automates this basic batch iteration, providing the capability to process similar transactions as a set,
typically in an offline environment without any user interaction. Batch jobs are part of most IT projects
and Spring Batch is the only open source framework that provides a robust, enterprise-scale solution.

Business Scenarios

» Commit batch process periodically

» Concurrent batch processing: parallel processing of a job

» Staged, enterprise message-driven processing

» Massively parallel batch processing

» Manual or scheduled restart after failure

» Sequential processing of dependent steps (with extensions to workflow-driven batches)
 Partial processing: skip records (e.g. on rollback)

» Whole-batch transaction: for cases with a small batch size or existing stored procedures/scripts
Technical Objectives

» Batch developers use the Spring programming model: concentrate on business logic; let the
framework take care of infrastructure.

» Clear separation of concerns between the infrastructure, the batch execution environment, and the
batch application.

» Provide common, core execution services as interfaces that all projects can implement.

» Provide simple and default implementations of the core execution interfaces that can be used ‘out
of the box'.

» Easy to configure, customize, and extend services, by leveraging the spring framework in all layers.

 All existing core services should be easy to replace or extend, without any impact to the infrastructure
layer.

* Provide a simple deployment model, with the architecture JARs completely separate from the
application, built using Maven.

1.3 Spring Batch Architecture

Spring Batch - Reference
3.0.0.RC2 Documentation 2

Spring Batch

Spring Batch is designed with extensibility and a diverse group of end users in mind. The figure below
shows a sketch of the layered architecture that supports the extensibility and ease of use for end-user
developers.

-
-

Batch Infrastructure

Figure 1.1: Spring Batch Layered Architecture

This layered architecture highlights three major high level components: Application, Core, and
Infrastructure. The application contains all batch jobs and custom code written by developers using
Spring Batch. The Batch Core contains the core runtime classes necessary to launch and control
a batch job. It includes things such as a JobLauncher, Job, and St ep implementations. Both
Application and Core are built on top of a common infrastructure. This infrastructure contains common
readers and writers, and services such as the Ret r yTenpl at e, which are used both by application
developers(l t enReader and | t em i t er) and the core framework itself. (retry)

1.4 General Batch Principles and Guidelines

The following are a number of key principles, guidelines, and general considerations to take into
consideration when building a batch solution.

» A batch architecture typically affects on-line architecture and vice versa. Design with both
architectures and environments in mind using common building blocks when possible.

» Simplify as much as possible and avoid building complex logical structures in single batch
applications.

» Process data as close to where the data physically resides as possible or vice versa (i.e., keep your
data where your processing occurs).

« Minimize system resource use, especially 1/0. Perform as many operations as possible in internal
memory.

» Review application I/O (analyze SQL statements) to ensure that unnecessary physical I/O is avoided.
In particular, the following four common flaws need to be looked for:

* Reading data for every transaction when the data could be read once and kept cached or in the
working storage;

« Rereading data for a transaction where the data was read earlier in the same transaction;
¢ Causing unnecessary table or index scans;

« Not specifying key values in the WHERE clause of an SQL statement.

Spring Batch - Reference
3.0.0.RC2 Documentation 3

Spring Batch

Do not do things twice in a batch run. For instance, if you need data summarization for reporting
purposes, increment stored totals if possible when data is being initially processed, so your reporting
application does not have to reprocess the same data.

Allocate enough memory at the beginning of a batch application to avoid time-consuming reallocation
during the process.

Always assume the worst with regard to data integrity. Insert adequate checks and record validation
to maintain data integrity.

Implement checksums for internal validation where possible. For example, flat files should have a
trailer record telling the total of records in the file and an aggregate of the key fields.

Plan and execute stress tests as early as possible in a production-like environment with realistic data
volumes.

In large batch systems backups can be challenging, especially if the system is running concurrent
with on-line on a 24-7 basis. Database backups are typically well taken care of in the on-line design,
but file backups should be considered to be just as important. If the system depends on flat files, file
backup procedures should not only be in place and documented, but regularly tested as well.

1.5 Batch Processing Strategies

To help design and implement batch systems, basic batch application building blocks and patterns
should be provided to the designers and programmers in form of sample structure charts and code
shells. When starting to design a batch job, the business logic should be decomposed into a series of
steps which can be implemented using the following standard building blocks:

Conversion Applications: For each type of file supplied by or generated to an external system, a
conversion application will need to be created to convert the transaction records supplied into a
standard format required for processing. This type of batch application can partly or entirely consist
of translation utility modules (see Basic Batch Services).

Validation Applications: Validation applications ensure that all input/output records are correct and
consistent. Validation is typically based on file headers and trailers, checksums and validation
algorithms as well as record level cross-checks.

Extract Applications: An application that reads a set of records from a database or input file, selects
records based on predefined rules, and writes the records to an output file.

Extract/Update Applications: An application that reads records from a database or an input file, and
makes changes to a database or an output file driven by the data found in each input record.

Processing and Updating Applications: An application that performs processing on input transactions
from an extract or a validation application. The processing will usually involve reading a database to
obtain data required for processing, potentially updating the database and creating records for output
processing.

Output/Format Applications: Applications reading an input file, restructures data from this record
according to a standard format, and produces an output file for printing or transmission to another
program or system.

Additionally a basic application shell should be provided for business logic that cannot be built using
the previously mentioned building blocks.

Spring Batch - Reference

3.0.0.RC2 Documentation 4

Spring Batch

In addition to the main building blocks, each application may use one or more of standard utility steps,
such as:

e Sort - A Program that reads an input file and produces an output file where records have been re-
sequenced according to a sort key field in the records. Sorts are usually performed by standard system
utilities.

» Split - A program that reads a single input file, and writes each record to one of several output files
based on a field value. Splits can be tailored or performed by parameter-driven standard system
utilities.

» Merge - A program that reads records from multiple input files and produces one output file with
combined data from the input files. Merges can be tailored or performed by parameter-driven standard
system utilities.

Batch applications can additionally be categorized by their input source:

» Database-driven applications are driven by rows or values retrieved from the database.
* File-driven applications are driven by records or values retrieved from a file.

» Message-driven applications are driven by messages retrieved from a message queue.

The foundation of any batch system is the processing strategy. Factors affecting the selection of
the strategy include: estimated batch system volume, concurrency with on-line or with another batch
systems, available batch windows (and with more enterprises wanting to be up and running 24x7, this
leaves no obvious batch windows).

Typical processing options for batch are:
» Normal processing in a batch window during off-line

» Concurrent batch / on-line processing

Parallel processing of many different batch runs or jobs at the same time

Partitioning (i.e. processing of many instances of the same job at the same time)
» A combination of these

The order in the list above reflects the implementation complexity, processing in a batch window being
the easiest and partitioning the most complex to implement.

Some or all of these options may be supported by a commercial scheduler.

In the following section these processing options are discussed in more detail. It is important to notice
that the commit and locking strategy adopted by batch processes will be dependent on the type of
processing performed, and as a rule of thumb and the on-line locking strategy should also use the same
principles. Therefore, the batch architecture cannot be simply an afterthought when designing an overall
architecture.

The locking strategy can use only normal database locks, or an additional custom locking service can
be implemented in the architecture. The locking service would track database locking (for example
by storing the necessary information in a dedicated db-table) and give or deny permissions to the

Spring Batch - Reference
3.0.0.RC2 Documentation 5

Spring Batch

application programs requesting a db operation. Retry logic could also be implemented by this
architecture to avoid aborting a batch job in case of a lock situation.

1. Normal processing in a batch window For simple batch processes running in a separate batch
window, where the data being updated is not required by on-line users or other batch processes,
concurrency is not an issue and a single commit can be done at the end of the batch run.

In most cases a more robust approach is more appropriate. A thing to keep in mind is that batch systems
have a tendency to grow as time goes by, both in terms of complexity and the data volumes they will
handle. If no locking strategy is in place and the system still relies on a single commit point, modifying
the batch programs can be painful. Therefore, even with the simplest batch systems, consider the need
for commit logic for restart-recovery options as well as the information concerning the more complex
cases below.

2. Concurrent batch / on-line processing Batch applications processing data that can simultaneously
be updated by on-line users, should not lock any data (either in the database or in files) which could
be required by on-line users for more than a few seconds. Also updates should be committed to the
database at the end of every few transaction. This minimizes the portion of data that is unavailable to
other processes and the elapsed time the data is unavailable.

Another option to minimize physical locking is to have a logical row-level locking implemented using
either an Optimistic Locking Pattern or a Pessimistic Locking Pattern.

e Optimistic locking assumes a low likelihood of record contention. It typically means inserting a
timestamp column in each database table used concurrently by both batch and on-line processing.
When an application fetches a row for processing, it also fetches the timestamp. As the application
then tries to update the processed row, the update uses the original timestamp in the WHERE clause.
If the timestamp matches, the data and the timestamp will be updated successfully. If the timestamp
does not match, this indicates that another application has updated the same row between the fetch
and the update attempt and therefore the update cannot be performed.

» Pessimistic locking is any locking strategy that assumes there is a high likelihood of record contention
and therefore either a physical or logical lock needs to be obtained at retrieval time. One type of
pessimistic logical locking uses a dedicated lock-column in the database table. When an application
retrieves the row for update, it sets a flag in the lock column. With the flag in place, other applications
attempting to retrieve the same row will logically fail. When the application that set the flag updates
the row, it also clears the flag, enabling the row to be retrieved by other applications. Please note,
that the integrity of data must be maintained also between the initial fetch and the setting of the flag,
for example by using db locks (e.g., SELECT FOR UPDATE). Note also that this method suffers from
the same downside as physical locking except that it is somewhat easier to manage building a time-
out mechanism that will get the lock released if the user goes to lunch while the record is locked.

These patterns are not necessarily suitable for batch processing, but they might be used for concurrent
batch and on-line processing (e.g. in cases where the database doesn't support row-level locking). As
a general rule, optimistic locking is more suitable for on-line applications, while pessimistic locking is
more suitable for batch applications. Whenever logical locking is used, the same scheme must be used
for all applications accessing data entities protected by logical locks.

Note that both of these solutions only address locking a single record. Often we may need to lock a
logically related group of records. With physical locks, you have to manage these very carefully in order
to avoid potential deadlocks. With logical locks, it is usually best to build a logical lock manager that
understands the logical record groups you want to protect and can ensure that locks are coherent and

Spring Batch - Reference
3.0.0.RC2 Documentation 6

Spring Batch

non-deadlocking. This logical lock manager usually uses its own tables for lock management, contention
reporting, time-out mechanism, etc.

3. Parallel Processing Parallel processing allows multiple batch runs/ jobs to run in parallel to minimize
the total elapsed batch processing time. This is not a problem as long as the jobs are not sharing the
same files, db-tables or index spaces. If they do, this service should be implemented using partitioned
data. Another option is to build an architecture module for maintaining interdependencies using a
control table. A control table should contain a row for each shared resource and whether it is in use
by an application or not. The batch architecture or the application in a parallel job would then retrieve
information from that table to determine if it can get access to the resource it needs or not.

If the data access is not a problem, parallel processing can be implemented through the use of additional
threads to process in parallel. In the mainframe environment, parallel job classes have traditionally been
used, in order to ensure adequate CPU time for all the processes. Regardless, the solution has to be
robust enough to ensure time slices for all the running processes.

Other key issues in parallel processing include load balancing and the availability of general system
resources such as files, database buffer pools etc. Also note that the control table itself can easily
become a critical resource.

4. Partitioning Using partitioning allows multiple versions of large batch applications to run concurrently.
The purpose of this is to reduce the elapsed time required to process long batch jobs. Processes which
can be successfully partitioned are those where the input file can be split and/or the main database
tables partitioned to allow the application to run against different sets of data.

In addition, processes which are partitioned must be designed to only process their assigned data set.
A partitioning architecture has to be closely tied to the database design and the database partitioning
strategy. Please note, that the database partitioning doesn't necessarily mean physical partitioning of
the database, although in most cases this is advisable. The following picture illustrates the partitioning
approach:

The architecture should be flexible enough to allow dynamic configuration of the number of partitions.
Both automatic and user controlled configuration should be considered. Automatic configuration may
be based on parameters such as the input file size and/or the number of input records.

4.1 Partitioning Approaches The following lists some of the possible partitioning approaches.
Selecting a partitioning approach has to be done on a case-by-case basis.

1. Fixed and Even Break-Up of Record Set

This involves breaking the input record set into an even number of portions (e.g. 10, where each portion
will have exactly 1/10th of the entire record set). Each portion is then processed by one instance of the
batch/extract application.

In order to use this approach, preprocessing will be required to split the recordset up. The result of this
split will be a lower and upper bound placement number which can be used as input to the batch/extract
application in order to restrict its processing to its portion alone.

Preprocessing could be a large overhead as it has to calculate and determine the bounds of each portion
of the record set.

2. Breakup by a Key Column

This involves breaking up the input record set by a key column such as a location code, and assigning
data from each key to a batch instance. In order to achieve this, column values can either be

Spring Batch - Reference
3.0.0.RC2 Documentation 7

Spring Batch

3. Assigned to a batch instance via a partitioning table (see below for details).
4. Assigned to a batch instance by a portion of the value (e.g. values 0000-0999, 1000 - 1999, etc.)

Under option 1, addition of new values will mean a manual reconfiguration of the batch/extract to ensure
that the new value is added to a particular instance.

Under option 2, this will ensure that all values are covered via an instance of the batch job. However,
the number of values processed by one instance is dependent on the distribution of column values (i.e.
there may be a large number of locations in the 0000-0999 range, and few in the 1000-1999 range).
Under this option, the data range should be designed with partitioning in mind.

Under both options, the optimal even distribution of records to batch instances cannot be realized. There
is no dynamic configuration of the number of batch instances used.

5. Breakup by Views

This approach is basically breakup by a key column, but on the database level. It involves breaking up
the recordset into views. These views will be used by each instance of the batch application during its
processing. The breakup will be done by grouping the data.

With this option, each instance of a batch application will have to be configured to hit a particular view
(instead of the master table). Also, with the addition of new data values, this new group of data will have
to be included into a view. There is no dynamic configuration capability, as a change in the number of
instances will result in a change to the views.

6. Addition of a Processing Indicator

This involves the addition of a new column to the input table, which acts as an indicator. As a
preprocessing step, all indicators would be marked to non-processed. During the record fetch stage of
the batch application, records are read on the condition that that record is marked non-processed, and
once they are read (with lock), they are marked processing. When that record is completed, the indicator
is updated to either complete or error. Many instances of a batch application can be started without a
change, as the additional column ensures that a record is only processed once.

With this option, I/O on the table increases dynamically. In the case of an updating batch application,
this impact is reduced, as a write will have to occur anyway.

7. Extract Table to a Flat File

This involves the extraction of the table into a file. This file can then be split into multiple segments and
used as input to the batch instances.

With this option, the additional overhead of extracting the table into a file, and splitting it, may cancel
out the effect of multi-partitioning. Dynamic configuration can be achieved via changing the file splitting
script.

8. Use of a Hashing Column

This scheme involves the addition of a hash column (key/index) to the database tables used to retrieve
the driver record. This hash column will have an indicator to determine which instance of the batch
application will process this particular row. For example, if there are three batch instances to be started,
then an indicator of 'A" will mark that row for processing by instance 1, an indicator of 'B' will mark that
row for processing by instance 2, etc.

Spring Batch - Reference
3.0.0.RC2 Documentation 8

Spring Batch

The procedure used to retrieve the records would then have an additional WHERE clause to select all
rows marked by a particular indicator. The inserts in this table would involve the addition of the marker
field, which would be defaulted to one of the instances (e.g. 'A").

A simple batch application would be used to update the indicators such as to redistribute the load
between the different instances. When a sufficiently large number of new rows have been added, this
batch can be run (anytime, except in the batch window) to redistribute the new rows to other instances.

Additional instances of the batch application only require the running of the batch application as above
to redistribute the indicators to cater for a new number of instances.

4.2 Database and Application design Principles

An architecture that supports multi-partitioned applications which run against partitioned database
tables using the key column approach, should include a central partition repository for storing partition
parameters. This provides flexibility and ensures maintainability. The repository will generally consist of
a single table known as the partition table.

Information stored in the partition table will be static and in general should be maintained by the DBA.
The table should consist of one row of information for each partition of a multi-partitioned application.
The table should have columns for: Program ID Code, Partition Number (Logical ID of the partition),
Low Value of the db key column for this partition, High Value of the db key column for this partition.

On program start-up the program id and partition number should be passed to the application from
the architecture (Control Processing Tasklet). These variables are used to read the partition table, to
determine what range of data the application is to process (if a key column approach is used). In addition
the partition number must be used throughout the processing to:

» Add to the output files/database updates in order for the merge process to work properly

* Report normal processing to the batch log and any errors that occur during execution to the
architecture error handler

4.3 Minimizing Deadlocks

When applications run in parallel or partitioned, contention in database resources and deadlocks may
occur. It is critical that the database design team eliminates potential contention situations as far as
possible as part of the database design.

Also ensure that the database index tables are designed with deadlock prevention and performance
in mind.

Deadlocks or hot spots often occur in administration or architecture tables such as log tables, control
tables, and lock tables. The implications of these should be taken into account as well. A realistic stress
test is crucial for identifying the possible bottlenecks in the architecture.

To minimize the impact of conflicts on data, the architecture should provide services such as wait-and-
retry intervals when attaching to a database or when encountering a deadlock. This means a built-in
mechanism to react to certain database return codes and instead of issuing an immediate error handling,
waiting a predetermined amount of time and retrying the database operation.

4.4 Parameter Passing and Validation

The partition architecture should be relatively transparent to application developers. The architecture
should perform all tasks associated with running the application in a partitioned mode including:

Spring Batch - Reference
3.0.0.RC2 Documentation 9

Spring Batch

» Retrieve partition parameters before application start-up

 Validate partition parameters before application start-up

» Pass parameters to application at start-up

The validation should include checks to ensure that:

« the application has sufficient partitions to cover the whole data range
« there are no gaps between partitions

If the database is partitioned, some additional validation may be necessary to ensure that a single
partition does not span database partitions.

Also the architecture should take into consideration the consolidation of partitions. Key questions
include:

» Must all the partitions be finished before going into the next job step?

* What happens if one of the partitions aborts?

Spring Batch - Reference
3.0.0.RC2 Documentation 10

Spring Batch

2. What's New in Spring Batch 3.0

The Spring Batch 3.0 release has five major themes:
* JSR-352 Support

» Upgrade to Support Spring 4 and Java 8

Promote Spring Batch Integration to Spring Batch

JobScope Support

SQLite Support

2.1 JSR-352 Support

JSR-352 is the new java specification for batch processing. Heavily inspired by Spring Batch, this
specification provides similar functionality to what Spring Batch already supports. However, Spring
Batch 3.0 has implemented the specification and now supports the definition of batch jobs in compliance
with the standard. An example of a batch job configured using JSR-352's Job Specification Language
(JSL) would look like below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<job id="myJob3" xm ns="http://xmns.jcp.org/xm/ns/javaee" version="1.0">
<step id="stepl" >
<batchl et ref="testBatchlet" />
</ st ep>
</ j ob>

See section JSR-352 Support for more details.

2.2 Promote Spring Batch Integration to Spring Batch

Spring Batch Integration has been a sub module of the Spring Batch Admin project now for a few years.
It provides functionality to better integrate the capabilities provided in Spring Integration with Spring
Batch. Specific functionality includes:

» Launching jobs via messages
» Asynchronous | t enPr ocessor s

» Providing feedback with information messages

Externalizing batch process execution via remote partitioning and remote chunking

See section Spring Batch Integration for details.

2.3 Upgrade to Support Spring 4 and Java 8

With the promotion of Spring Batch Integration to be a module of the Spring Batch project, it has been

updated to use Spring Integration 4. Spring Integration 4 moves the core messaging APIs to Spring
core. Because of this, Spring Batch 3 will now require Spring 4 or greater.

Spring Batch - Reference
3.0.0.RC2 Documentation 11

Spring Batch

As part of the dependency updates that have occurred with this major release, Spring Batch now
supports being run on Java 8. It will still execute on Java 6 or higher as well.

2.4 JobScope Support

The Spring scope "step" used in Spring Batch has had a pivotal role in batch applications, providing late
binding functionality for a long time now. With the 3.0 release Spring Batch now supports a "job" scope.
This new scope allows for the delayed construction of objects until a Job is actually launched as well
as providing a facility for new instances for each execution of a job. You can read the details about this
new bean scope in the section the section called “Job Scope”.

2.5 SQLite Support

SQLite has been added as a newly supported database option for the JobReposi t ory by adding job
repository ddl for SQLite. This provides a useful, file based, data store for testing purposes.

Spring Batch - Reference
3.0.0.RC2 Documentation 12

Spring Batch

3. The Domain Language of Batch

To any experienced batch architect, the overall concepts of batch processing used in Spring Batch
should be familiar and comfortable. There are "Jobs" and "Steps" and developer supplied processing
units called ltemReaders and ItemWriters. However, because of the Spring patterns, operations,
templates, callbacks, and idioms, there are opportunities for the following:

* significant improvement in adherence to a clear separation of concerns

« clearly delineated architectural layers and services provided as interfaces

» simple and default implementations that allow for quick adoption and ease of use out-of-the-box
* significantly enhanced extensibility

The diagram below is simplified version of the batch reference architecture that has been used for
decades. It provides an overview of the components that make up the domain language of batch
processing. This architecture framework is a blueprint that has been proven through decades of
implementations on the last several generations of platforms (COBOL/Mainframe, C++/Unix, and now
Java/anywhere). JCL and COBOL developers are likely to be as comfortable with the concepts as C++,
C# and Java developers. Spring Batch provides a physical implementation of the layers, components
and technical services commonly found in robust, maintainable systems used to address the creation
of simple to complex batch applications, with the infrastructure and extensions to address very complex
processing needs.

-
b4 e

Figure 2.1: Batch Stereotypes

The diagram above highlights the key concepts that make up the domain language of batch. A Job has
one to many steps, which has exactly one ltemReader, ItemProcessor, and ItemWriter. A job needs
to be launched (JobLauncher), and meta data about the currently running process needs to be stored
(JobRepository).

3.1Job

This section describes stereotypes relating to the concept of a batch job. A Job is an entity that
encapsulates an entire batch process. As is common with other Spring projects, a Job will be wired
together via an XML configuration file or Java based configuration. This configuration may be referred
to as the "job configuration". However, Job is just the top of an overall hierarchy:

Spring Batch - Reference
3.0.0.RC2 Documentation 13

Spring Batch

Joblnstance

\ The EndOfDay Job

* for 2007/05/05

The first attempt at
JobExecution * EndOfDay Job
for 2007/05/05

In Spring Batch, a Job is simply a container for Steps. It combines multiple steps that belong logically
together in a flow and allows for configuration of properties global to all steps, such as restartability.
The job configuration contains:

» The simple name of the job
 Definition and ordering of Steps
» Whether or not the job is restartable

A default simple implementation of the Job interface is provided by Spring Batch in the form of
the Si npl eJob class which creates some standard functionality on top of Job, however the batch
namespace abstracts away the need to instantiate it directly. Instead, the <j ob> tag can be used:

<j ob i d="f oot bal | Job" >
<step id="pl ayerl oad" next="ganeLoad"/>
<step id="ganeLoad" next="player Sumrari zati on"/>
<step id="pl ayer Sunmari zati on"/ >

</j ob>

Joblnstance

A Jobl nst ance refers to the concept of a logical job run. Let's consider a batch job that should be
run once at the end of the day, such as the 'EndOfDay' job from the diagram above. There is one
'EndOfDay' Job, but each individual run of the Job must be tracked separately. In the case of this job,
there will be one logical Jobl nst ance per day. For example, there will be a January 1st run, and a
January 2nd run. If the January 1st run fails the first time and is run again the next day, it is still the
January 1st run. (Usually this corresponds with the data it is processing as well, meaning the January 1st
run processes data for January 1st, etc). Therefore, each Jobl nst ance can have multiple executions
(JobExecut i on is discussed in more detail below) and only one Jobl nst ance corresponding to a
particular Job and identifying JobPar anet er s can be running at a given time.

The definition of a Jobl nst ance has absolutely no bearing on the data the will be loaded. It is entirely
up to the | t emrReader implementation used to determine how data will be loaded. For example, in the
EndOfDay scenario, there may be a column on the data that indicates the 'effective date' or 'schedule
date' to which the data belongs. So, the January 1st run would only load data from the 1st, and the
January 2nd run would only use data from the 2nd. Because this determination will likely be a business

Spring Batch - Reference
3.0.0.RC2 Documentation 14

Spring Batch

decision, itis left up to the | t emReader to decide. What using the same Jobl nst ance will determine,
however, is whether or not the 'state’ (i.e. the Execut i onCont ext , which is discussed below) from
previous executions will be used. Using a new Jobl nst ance will mean 'start from the beginning' and
using an existing instance will generally mean 'start from where you left off'.

JobParameters

Having discussed Jobl nst ance and how it differs from Job, the natural question to ask is: "how is one
Jobl nst ance distinguished from another?" The answer is: JobPar anet er s. JobPar aneters is a
set of parameters used to start a batch job. They can be used for identification or even as reference
data during the run:

‘________ The EndOfDay Job
_ / schedule.date = 2007/05/05

\ The EndOfDay Job

* for 2007/05/05

Joblnstance

The first attempt at
JobExecution * EndOfDay Job
for 2007/05/05

In the example above, where there are two instances, one for January 1st, and another for January 2nd,
there is really only one Job, one that was started with a job parameter of 01-01-2008 and another that
was started with a parameter of 01-02-2008. Thus, the contract can be defined as: Jobl nst ance =
Job + identifying JobPar anet er s. This allows a developer to effectively control how a Jobl nst ance
is defined, since they control what parameters are passed in.

© Note

Not all job parameters are required to contribute to the identification of a Jobl nst ance. By
default they do, however the framework allows the submission of a Job with parameters that do
not contribute to the identity of a Jobl nst ance as well.

JobExecution

A JobExecut i on refers to the technical concept of a single attempt to run a Job. An execution may end
in failure or success, but the Jobl nst ance corresponding to a given execution will not be considered
complete unless the execution completes successfully. Using the EndOfDay Job described above as
an example, consider a Jobl nst ance for 01-01-2008 that failed the first time it was run. If it is run
again with the same identifying job parameters as the first run (01-01-2008), a new JobExecut i on will
be created. However, there will still be only one Jobl nst ance.

A Job defines what a job is and how it is to be executed, and Jobl nst ance is a purely organizational
object to group executions together, primarily to enable correct restart semantics. A JobExecut i on,

Spring Batch - Reference
3.0.0.RC2 Documentation 15

Spring Batch

however, is the primary storage mechanism for what actually happened during a run, and as such
contains many more properties that must be controlled and persisted:

Table 3.1. JobExecution Properties

status

A Bat chSt at us object that indicates the status of the execution. While running,
it's BatchStatus.STARTED, if it fails, it's BatchStatus.FAILED, and if it finishes
successfully, it's BatchStatus. COMPLETED

startTime

endTime

Ajava. util . Dat e representing the current system time when the execution
was started.

Ajava. util . Dat e representing the current system time when the execution
finished, regardless of whether or not it was successful.

exitStatus

createTime

lastUpdated

The Exi t St at us indicating the result of the run. It is most important because it
contains an exit code that will be returned to the caller. See chapter 5 for more
details.

A java.util.Date representing the current system time when the
JobExecut i on was first persisted. The job may not have been started yet (and
thus has no start time), but it will always have a createTime, which is required by
the framework for managing job level Execut i onCont ext s.

Ajava. util . Dat e representing the last time a JobExecut i on was persisted.

executionContext

failureExceptions

The 'property bag' containing any user data that needs to be persisted between
executions.

The list of exceptions encountered during the execution of a Job. These can be
useful if more than one exception is encountered during the failure of a Job.

These properties are important because they will be persisted and can be used to completely determine
the status of an execution. For example, if the EndOfDay job for 01-01 is executed at 9:00 PM, and fails
at 9:30, the following entries will be made in the batch meta data tables:

Table 3.2. BATCH_JOB_INSTANCE

JOB_INST_ID JOB_NAME
1 EndOfDayJob
Table 3.3. BATCH_JOB_EXECUTION_PARAMS
JOB_EXECUTION_IDYPE_CD KEY_NAME DATE_VAL IDENTIFYING
1 DATE schedule.Date 2008-01-01 TRUE
Table 3.4. BATCH_JOB_EXECUTION
JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS
1 1 2008-01-01 21:00 2008-01-01 21:30 FAILED
© Note

column names may have been abbreviated or removed for clarity and formatting

3.0.0.RC2

Spring Batch - Reference
Documentation 16

Spring Batch

Now that the job has failed, let's assume that it took the entire course of the night for the problem to be
determined, so that the 'batch window' is now closed. Assuming the window starts at 9:00 PM, the job
will be kicked off again for 01-01, starting where it left off and completing successfully at 9:30. Because
it's now the next day, the 01-02 job must be run as well, which is kicked off just afterwards at 9:31, and
completes in its normal one hour time at 10:30. There is no requirement that one Jobl nst ance be
kicked off after another, unless there is potential for the two jobs to attempt to access the same data,
causing issues with locking at the database level. It is entirely up to the scheduler to determine when a
Job should be run. Since they're separate Jobl nst ances, Spring Batch will make no attempt to stop
them from being run concurrently. (Attempting to run the same Jobl nst ance while another is already
running will resultina JobExecut i onAl r eadyRunni ngExcept i on being thrown). There should now
be an extra entry in both the Jobl nst ance and JobPar anet er s tables, and two extra entries in the
JobExecut i on table:

Table 3.5. BATCH_JOB_INSTANCE

JOB_INST_ID JOB_NAME
1 EndOfDayJob
2 EndOfDayJob

Table 3.6. BATCH_JOB_EXECUTION_PARAMS

JOB_EXECUTION_IDYPE_CD KEY_NAME DATE_VAL IDENTIFYING

1 DATE schedule.Date 2008-01-01 TRUE
00:00:00

2 DATE schedule.Date 2008-01-01 TRUE
00:00:00

3 DATE schedule.Date 2008-01-02 TRUE
00:00:00

Table 3.7. BATCH_JOB_EXECUTION

JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS

1 1 2008-01-01 21:00 2008-01-01 21:30 FAILED

2 1 2008-01-02 21:00 2008-01-02 21:30 COMPLETED

3 2 2008-01-02 21:31 2008-01-02 22:29 COMPLETED
© Note

column names may have been abbreviated or removed for clarity and formatting

3.2 Step

A St ep is adomain object that encapsulates an independent, sequential phase of a batch job. Therefore,
every Job is composed entirely of one or more steps. A St ep contains all of the information necessary
to define and control the actual batch processing. This is a necessarily vague description because the

Spring Batch - Reference
3.0.0.RC2 Documentation 17

Spring Batch

contents of any given St ep are at the discretion of the developer writing a Job. A Step can be as simple
or complex as the developer desires. A simple St ep might load data from a file into the database,
requiring little or no code. (depending upon the implementations used) A more complex St ep may have
complicated business rules that are applied as part of the processing. As with Job, a St ep has an
individual St epExecut i on that corresponds with a unique JobExecut i on:

StepExecution

N

* _

Joblnstance

*

JobExecution \
StepExecution

A St epExecuti on represents a single attempt to execute a St ep. A new St epExecut i on will be
created each time a St ep is run, similar to JobExecut i on. However, if a step fails to execute because
the step before it fails, there will be no execution persisted for it. A St epExecut i on will only be created
when its St ep is actually started.

Step executions are represented by objects of the St epExecut i on class. Each execution contains
a reference to its corresponding step and JobExecuti on, and transaction related data such as
commit and rollback count and start and end times. Additionally, each step execution will contain
an Executi onCont ext, which contains any data a developer needs persisted across batch runs,
such as statistics or state information needed to restart. The following is a listing of the properties for

St epExecuti on:

Table 3.8. StepExecution Properties

status

startTime

A Bat chSt at us object that indicates the status of the execution. While
it's running, the status is BatchStatus.STARTED, if it fails, the status
is BatchStatus.FAILED, and if it finishes successfully, the status is
BatchStatus. COMPLETED

Ajava. util . Dat e representing the current system time when the execution
was started.

endTime

exitStatus

Ajava. util . Dat e representing the current system time when the execution
finished, regardless of whether or not it was successful.

The Exit St at us indicating the result of the execution. It is most important
because it contains an exit code that will be returned to the caller. See chapter
5 for more details.

3.0.0.RC2

Spring Batch - Reference
Documentation 18

Spring Batch

executionContext The 'property bag' containing any user data that needs to be persisted between

executions.
readCount The number of items that have been successfully read
writeCount The number of items that have been successfully written
commitCount The number transactions that have been committed for this execution
rollbackCount The number of times the business transaction controlled by the St ep has been
rolled back.
readSkipCount The number of times r ead has failed, resulting in a skipped item.

processSkipCount The number of times pr ocess has failed, resulting in a skipped item.

filterCount The number of items that have been 'filtered' by the | t enPr ocessor .

writeSkipCount The number of times wr i t e has failed, resulting in a skipped item.

3.3 ExecutionContext

An Execut i onCont ext represents a collection of key/value pairs that are persisted and controlled
by the framework in order to allow developers a place to store persistent state that is scoped to a
St epExecut i on or JobExecut i on. For those familiar with Quartz, it is very similar to JobDat aMap.
The best usage example is to facilitate restart. Using flat file input as an example, while processing
individual lines, the framework periodically persists the Execut i onCont ext at commit points. This
allows the | t enReader to store its state in case a fatal error occurs during the run, or even if the power
goes out. All that is needed is to put the current number of lines read into the context, and the framework
will do the rest:

execut i onCont ext . put Long(get Key(LI NES_READ COUNT), reader.getPosition());

Using the EndOfDay example from the Job Stereotypes section as an example, assume there's one
step: 'loadData’, that loads a file into the database. After the first failed run, the meta data tables would
look like the following:

Table 3.9. BATCH_JOB_INSTANCE

JOB_INST_ID JOB_NAME

1 EndOfDayJob

Table 3.10. BATCH_JOB_PARAMS

JOB_INST_ID TYPE_CD KEY_NAME DATE_VAL

1 DATE schedule.Date 2008-01-01

Table 3.11. BATCH_JOB_EXECUTION

JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS

1 1 2008-01-01 21:00 2008-01-01 21:30 FAILED

Spring Batch - Reference
3.0.0.RC2 Documentation 19

Spring Batch

Table 3.12. BATCH_STEP_EXECUTION

STEP_EXEC_IDJOB_EXEC_ID | STEP_NAME START_TIME END_TIME STATUS

1 1 loadDate 2008-01-01 2008-01-01 FAILED
21:00 21:30

Table 3.13. BATCH_STEP_EXECUTION_CONTEXT

STEP_EXEC_ID SHORT_CONTEXT

1 {piece.count=40321}

In this case, the St ep ran for 30 minutes and processed 40,321 'pieces’, which would represent lines
in a file in this scenario. This value will be updated just before each commit by the framework, and can
contain multiple rows corresponding to entries within the Execut i onCont ext . Being notified before a
commit requires one of the various St epLi st ener s, oran | t en5t r eam which are discussed in more
detail later in this guide. As with the previous example, it is assumed that the Job is restarted the next
day. When it is restarted, the values from the Execut i onCont ext of the last run are reconstituted
from the database, and when the | t enReader is opened, it can check to see if it has any stored state
in the context, and initialize itself from there:

i f (executionContext.contai nsKey(getKey(LI NES_ READ COUNT))) {
| og. debug("Initializing for restart. Restart data is: " + executionContext);

I ong i neCount = executi onContext. getLong(get Key(LI NES_READ COUNT)) ;
Li neReader reader = get Reader ();
bj ect record = ""

whil e (reader.getPosition() < lineCount & record != null) {
record = readLine();

}

In this case, after the above code is executed, the current line will be 40,322, allowing the St ep to
start again from where it left off. The Executi onCont ext can also be used for statistics that need
to be persisted about the run itself. For example, if a flat file contains orders for processing that exist
across multiple lines, it may be necessary to store how many orders have been processed (which is
much different from than the number of lines read) so that an email can be sent at the end of the St ep
with the total orders processed in the body. The framework handles storing this for the developer, in
order to correctly scope it with an individual Jobl nst ance. It can be very difficult to know whether an
existing Execut i onCont ext should be used or not. For example, using the 'EndOfDay' example from
above, when the 01-01 run starts again for the second time, the framework recognizes that it is the same
Jobl nst ance and on an individual St ep basis, pulls the Execut i onCont ext out of the database and
hands it as part of the St epExecut i on to the St ep itself. Conversely, for the 01-02 run the framework
recognizes that it is a different instance, so an empty context must be handed to the St ep. There are
many of these types of determinations that the framework makes for the developer to ensure the state
is given to them at the correct time. It is also important to note that exactly one Execut i onCont ext
exists per St epExecut i on at any given time. Clients of the Execut i onCont ext should be careful
because this creates a shared keyspace, so care should be taken when putting values in to ensure no
data is overwritten. However, the St ep stores absolutely no data in the context, so there is no way to
adversely affect the framework.

Spring Batch - Reference
3.0.0.RC2 Documentation 20

Spring Batch

It is also important to note that there is at least one Execut i onCont ext per JobExecut i on, and one
for every St epExecut i on. For example, consider the following code snippet:

Executi onCont ext ecStep = stepExecution. get Executi onCont ext ();
Execut i onCont ext ecJob = j obExecuti on. get Executi onCont ext () ;
|/ ecStep does not equal ecJob

As noted in the comment, ecStep will not equal ecJob; they are two different Execut i onCont ext s.
The one scoped to the St ep will be saved at every commit point in the St ep, whereas the one scoped
to the Job will be saved in between every St ep execution.

3.4 JobRepository

JobReposi t ory is the persistence mechanism for all of the Stereotypes mentioned above. It provides
CRUD operations for JobLauncher, Job, and St ep implementations. When a Job is first launched, a
JobExecut i on is obtained from the repository, and during the course of execution St epExecut i on
and JobExecut i on implementations are persisted by passing them to the repository:

<j ob-repository id="jobRepository"/>

3.5 JobLauncher

JobLauncher represents a simple interface for launching a Job with a given set of JobPar anet er s:

public interface JobLauncher {

publ i c JobExecution run(Job job, JobParaneters jobParaneters)
throws JobExecuti onAl readyRunni ngExcepti on, JobRestart Exception

It is expected that implementations will obtain a valid JobExecut i on from the JobReposi t ory and
execute the Job.

3.6 Item Reader

| t enReader is an abstraction that represents the retrieval of input for a St ep, one item at a time. When
the | t emReader has exhausted the items it can provide, it will indicate this by returning null. More
details about the | t enReader interface and its various implementations can be found in Chapter 6,
ItemReaders and ItemWriters.

3.7 ltem Writer

ItemNiter is an abstraction that represents the output of a St ep, one batch or chunk of items at
a time. Generally, an item writer has no knowledge of the input it will receive next, only the item that
was passed in its current invocation. More details about the | temW i t er interface and its various
implementations can be found in Chapter 6, temReaders and ItemWriters.

3.8 Item Processor

It enProcessor is an abstraction that represents the business processing of an item. While the
| t enReader reads oneitem,andthelt emW it er writesthem, thelt enPr ocessor provides access
to transform or apply other business processing. If, while processing the item, it is determined that the

Spring Batch - Reference
3.0.0.RC2 Documentation 21

Spring Batch

item is not valid, returning null indicates that the item should not be written out. More details about the
ItemProcessor interface can be found in Chapter 6, temReaders and IltemWriters.

3.9 Batch Namespace

Many of the domain concepts listed above need to be configured in a Spring Appl i cat i onCont ext .
While there are implementations of the interfaces above that can be used in a standard bean definition,
a namespace has been provided for ease of configuration:

<beans: beans xm ns="http://ww. spri ngfranework. or g/ schena/ bat ch"

xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"

xsi : schemaLocati on="
http://ww. springframework. or g/ schema/ beans
http://ww:. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmework. org/ schema/ bat ch
http://ww. springframework. or g/ schema/ bat ch/ spri ng- bat ch-2. 2. xsd">

<j ob id="i oSanpl eJob" >
<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemWNiter" comit-interval ="2"/>
</t askl et >
</ st ep>
</j ob>

</ beans: beans>

As long as the batch namespace has been declared, any of its elements can be used. More information
on configuring a Job can be found in Chapter 4, Configuring and Running a Job. More information on
configuring a Step can be found in Chapter 5, Configuring a Step.

Spring Batch - Reference
3.0.0.RC2 Documentation 22

Spring Batch

4. Configuring and Running a Job

In the domain section , the overall architecture design was discussed, using the following diagram as
a guide:

1 ItemReader
- —— -_- < ItemProcessor
:‘t :‘t 1': 1 ItemWriter

While the Job object may seem like a simple container for steps, there are many configuration options
of which a developers must be aware . Furthermore, there are many considerations for how a Job
will be run and how its meta-data will be stored during that run. This chapter will explain the various
configuration options and runtime concerns of a Job .

4.1 Configuring a Job

There are multiple implementations of the _Job_ interface, however, the namespace abstracts away
the differences in configuration. It has only three required dependencies: a name, JobRepository ,
and a list of St eps.

<j ob id="f oot bal | Job" >

<step id="pl ayer| oad" parent ="s1" next ="ganmeLoad"/ >
<step id="ganeLoad" par ent ="s2" next="pl ayer Sunmari zati on"/ >
<step id="player Summari zati on" parent="s3"/>

</j ob>

The examples here use a parent bean definition to create the steps; see the section on step configuration
for more options declaring specific step details inline. The XML namespace defaults to referencing a
repository with an id of 'jobRepository’, which is a sensible default. However, this can be overridden
explicitly:

<j ob id="footbal | Job" job-repository="speci al Repository">

<step id="pl ayer| oad" parent ="s1" next ="ganmeLoad"/ >
<step id="ganeLoad" par ent ="s3" next="pl ayer Sunmari zati on"/ >
<step id="player Sunmari zati on" parent="s3"/>

</j ob>

In addition to steps a job configuration can contain other elements that help with parallelisation (<spl i t /
>), declarative flow control (<deci si on/ >) and externalization of flow definitions (<f | ow >).

Restartability

One key issue when executing a batch job concerns the behavior of a Job when it is restarted. The
launching of a Job is considered to be a 'restart' if a JobExecut i on already exists for the particular

Spring Batch - Reference
3.0.0.RC2 Documentation 23

Spring Batch

Jobl nst ance. Ideally, all jobs should be able to start up where they left off, but there are scenarios
where this is not possible. It is entirely up to the developer to ensure that a new Jobl nst ance
is created in this scenario. However, Spring Batch does provide some help. If a Job should never
be restarted, but should always be run as part of a new Jobl nst ance, then the restartable property
may be set to ‘false":

<j ob id="footbal |l Job" restartabl e="fal se">

</ j ob>

To phrase it another way, setting restartable to false means "this Job does not support being started
again". Restarting a Job that is not restartable will cause a JobRest art Except i on to be thrown:

Job job = new Sinpl eJob();
job. set Restartabl e(fal se);

JobPar aneters jobParaneters = new JobParaneters();

JobExecution firstExecution = jobRepository.createJobExecution(job, jobParaneters);
j obReposi tory. saveOr Updat e(first Execution);

try {
j obReposi tory. creat eJobExecuti on(job, jobParaneters);

fail();
}
catch (JobRestart Exception e) {
/'l expected

}

This snippet of JUnit code shows how attempting to create a JobExecuti on the first time
for a non restartable j ob will cause no issues. However, the second attempt will throw a
JobRest art Excepti on.

Intercepting Job Execution

During the course of the execution of a Job, it may be useful to be notified of various events in its lifecycle
so that custom code may be executed. The Si npl eJob allows for this by calling a JobLi st ener at
the appropriate time:

public interface JobExecutionLi stener {
voi d beforeJob(JobExecuti on jobExecution);

voi d afterJob(JobExecution jobExecution);

JobLi st ener s can be added to a Si npl eJob via the listeners element on the job:

<j ob id="footbal | Job">
<step id="pl ayer| oad" parent ="s1" next="ganmelLoad"/>
<step id="ganeLoad" parent ="s2" next="pl ayer Sunmari zati on"/ >
<step id="player Sunmari zati on" parent="s3"/>
<listeners>
<l i stener ref="sanpl eListener"/>
</l|isteners>
</ j ob>

Spring Batch - Reference
3.0.0.RC2 Documentation 24

Spring Batch

It should be noted that af t er Job will be called regardless of the success or failure of the Job. If success
or failure needs to be determined it can be obtained from the JobExecut i on:

public void afterJob(JobExecution jobExecution){
i f(jobExecution.getStatus() == BatchStatus. COWLETED) {
//job success
}
el se if(jobExecution.getStatus() == BatchStat us. FAlI LED){
//job failure

}

The annotations corresponding to this interface are:
» @eforedob

e @XfterJob

Inheriting from a Parent Job

If a group of Jobs share similar, but not identical, configurations, then it may be helpful to define a
"parent” Job from which the concrete Jobs may inherit properties. Similar to class inheritance in Java,
the "child" Job will combine its elements and attributes with the parent's.

In the following example, "baseJob" is an abstract Job definition that defines only a list of listeners. The
Job "job1" is a concrete definition that inherits the list of listeners from "baseJob" and merges it with its
own list of listeners to produce a Job with two listeners and one St ep, "stepl".

<j ob i d="baseJob" abstract="true">
<l i steners>
<listener ref="IistenerOne"/>
<l i steners>
</ j ob>

<j ob id="jobl" parent="baseJob">
<step id="stepl" parent="standal oneStep"/>

<listeners nerge="true">
<listener ref="1istener Two"/>
<listeners>
</ j ob>

Please see the section on Inheriting from a Parent Step for more detailed information.

JobParametersValidator

A job declared in the XML namespace or using any subclass of AbstractJob can optionally declare a
validator for the job parameters at runtime. This is useful when for instance you need to assertthata job is
started with all its mandatory parameters. There is a DefaultJobParametersValidator that can be used to
constrain combinations of simple mandatory and optional parameters, and for more complex constraints
you can implement the interface yourself. The configuration of a validator is supported through the XML
namespace through a child element of the job, e.g:

<job id="jobl" parent="baseJob3">
<step id="stepl" parent="standal oneStep"/>
<val i dat or ref="paremetersValidator"/>

</ j ob>

Spring Batch - Reference
3.0.0.RC2 Documentation 25

Spring Batch

The validator can be specified as a reference (as above) or as a nested bean definition in the beans
namespace.

4.2 Java Config

Spring 3 brought the ability to configure applications via java instead of XML. As of Spring Batch 2.2.0,
batch jobs can be configured using the same java config. There are two components for the java based
configuration: the @nabl eBat chConf i gur at i on annotation and two builders.

The @tnabl eBat chPr ocessi ng works similarly to the other @nabl e* annotations in the Spring
family. In this case, @nabl eBat chPr ocessi ng provides a base configuration for building batch jobs.
Within this base configuration, an instance of St epScope is created in addition to a number of beans
made available to be autowired:

* JobReposi t ory - bean name "jobRepository”

JobLauncher - bean name "jobLauncher"

« JobRegi st ry - bean name "jobRegistry"

Pl at f or Mt ansact i onManager - bean name "transactionManager"

JobBui | der Fact ory - bean name "jobBuilders"

St epBui | der Fact ory - bean name "stepBuilders"

The core interface for this configuration is the Bat chConf i gur er . The defaultimplementation provides
the beans mentioned above and requires a Dat aSour ce as a bean within the context to be provided.
This data source will be used by the JobReposi tory.

© Note

Only one configuration class needs to have the @nabl eBat chPr ocessi ng annotation. Once
you have a class annotated with it, you will have all of the above available.

With the base configuration in place, a user can use the provided builder factories to configure
a job. Below is an example of a two step job configured via the JobBui | der Fact ory and the
St epBui | der Factory.

Spring Batch - Reference
3.0.0.RC2 Documentation 26

Spring Batch

@Configuration

@Enabl eBat chProcessi ng

@ npor t (Dat aSour ceCnfi gurati on. cl ass)
public class AppConfig {

@\ut owi r ed
private JobBuil derFactory jobs

@\ut owi r ed
private StepBuil der Factory steps

@Bean
public Job job() {
return jobs.get("nyJob").start(stepl()).next(step2()).build();

}

@ean
protected Step stepl(ltenReader<Person> reader, |tenProcessor<Person, Person>
processor, IltemNiter<Person> witer) ({
return steps.get("stepl")

. <Person, Person> chunk(10)
. reader (reader)
. processor (processor)
.writer(witer)
cbuild();

}

@ean
protected Step step2(Tasklet tasklet) {
return steps.get("step2")
.taskl et (taskl et)
Cbuild();

4.3 Configuring a JobRepository

As described in earlier, the JobRepository is used for basic CRUD operations of the various
persisted domain objects within Spring Batch, such as JobExecuti on and St epExecuti on. It is
required by many of the major framework features, such as the JobLauncher, Job, and St ep.
The batch namespace abstracts away many of the implementation details of the JobRepository
implementations and their collaborators. However, there are still a few configuration options available:

<j ob-repository id="jobRepository"
dat a- sour ce="dat aSour ce"
transacti on- manager ="transacti onManager"
i sol ation-1|evel -for-create="SERl ALl ZABLE"
tabl e- prefi x="BATCH_"
max- var char - | engt h="1000"/ >

None of the configuration options listed above are required except the id. If they are not set, the defaults
shown above will be used. They are shown above for awareness purposes. The nmax- var char -
| engt h defaults to 2500, which is the length of the long VARCHAR columns in the sample schema scripts
used to store things like exit code descriptions. If you don't modify the schema and you don't use multi-
byte characters you shouldn't need to change it.

Spring Batch - Reference
3.0.0.RC2 Documentation 27

Spring Batch

Transaction Configuration for the JobRepository

If the namespace is used, transactional advice will be automatically created around the repaository. This
is to ensure that the batch meta data, including state that is necessary for restarts after a failure, is
persisted correctly. The behavior of the framework is not well defined if the repository methods are not
transactional. The isolation level in the cr eat e* method attributes is specified separately to ensure that
when jobs are launched, if two processes are trying to launch the same job at the same time, only one
will succeed. The default isolation level for that method is SERIALIZABLE, which is quite aggressive:
READ_COMMITTED would work just as well; READ_UNCOMMITTED would be fine if two processes
are not likely to collide in this way. However, since a call to the cr eat e* method is quite short, it
is unlikely that the SERIALIZED will cause problems, as long as the database platform supports it.
However, this can be overridden:

<j ob-repository id="jobRepository"
i sol ation-|evel -for-creat e="REPEATABLE_READ' />

If the namespace or factory beans aren't used then it is also essential to configure the transactional
behavior of the repository using AOP:

<aop: confi g>
<aop: advi sor
poi nt cut =" executi on(* org.springframework. batch. core..*Repository+.*(..))"/>
<advi ce-ref ="t xAdvi ce" />
</ aop: confi g>

<t x:advi ce id="txAdvi ce" transacti on-manager="transacti onManager">
<tx:attributes>
</tx:attributes>

</tx:advi ce>

This fragment can be used as is, with almost no changes. Remember also to include the appropriate
namespace declarations and to make sure spring-tx and spring-aop (or the whole of spring) are on the
classpath.

Changing the Table Prefix

Another modifiable property of the JobReposi t or y is the table prefix of the meta-data tables. By default
they are all prefaced with BATCH_. BATCH_JOB_EXECUTION and BATCH_STEP_EXECUTION are
two examples. However, there are potential reasons to modify this prefix. If the schema names needs
to be prepended to the table names, or if more than one set of meta data tables is needed within the
same schema, then the table prefix will need to be changed:

<j ob-repository id="jobRepository"
t abl e- prefi x="SYSTEM TEST " />

Given the above changes, every query to the meta data tables will be prefixed with "SYSTEM.TEST_".
BATCH_JOB_EXECUTION will be referred to as SYSTEM.TEST_JOB_EXECUTION.

© Note

Only the table prefix is configurable. The table and column names are not.

Spring Batch - Reference
3.0.0.RC2 Documentation 28

Spring Batch

In-Memory Repository

There are scenarios in which you may not want to persist your domain objects to the database. One
reason may be speed; storing domain objects at each commit point takes extra time. Another reason
may be that you just don't need to persist status for a particular job. For this reason, Spring batch
provides an in-memory Map version of the job repository:

<bean i d="j obRepository"
cl ass="org. spri ngframewor k. bat ch. core. reposi tory. support. MapJobReposit oryFact or yBean" >
<property nane="transacti onManager" ref="transacti onManager"/>
</ bean>

Note that the in-memory repository is volatile and so does not allow restart between JVM instances. It
also cannot guarantee that two job instances with the same parameters are launched simultaneously,
and is not suitable for use in a multi-threaded Job, or a locally partitioned Step. So use the database
version of the repository wherever you need those features.

However it does require a transaction manager to be defined because there are rollback semantics
within the repository, and because the business logic might still be transactional (e.g. RDBMS access).
For testing purposes many people find the Resour cel essTransact i onManager useful.

Non-standard Database Types in a Repository

If you are using a database platform that is not in the list of supported platforms, you may be able to
use one of the supported types, if the SQL variant is close enough. To do this you can use the raw
JobReposi t or yFact or yBean instead of the namespace shortcut and use it to set the database type
to the closest match:

<bean i d="j obRepository" class="org...JobRepositoryFactoryBean">
<property nane="dat abaseType" val ue="db2"/>
<property nane="dat aSource" ref="dataSource"/>

</ bean>

(The JobReposi t or yFact or yBean tries to auto-detect the database type from the Dat aSour ce if it
is not specified.) The major differences between platforms are mainly accounted for by the strategy for
incrementing primary keys, so often it might be necessary to override the i ncr ement er Fact ory as
well (using one of the standard implementations from the Spring Framework).

If even that doesn't work, or you are not using an RDBMS, then the only option may be to implement
the various Dao interfaces that the Si npl eJobReposi t ory depends on and wire one up manually in
the normal Spring way.

4.4 Configuring a JobLauncher

The most basic implementation of the JobLauncher interface is the Si npl eJobLauncher . Its only
required dependency is a JobReposi t ory, in order to obtain an execution:

<bean i d="j obLauncher"
cl ass="org. spri ngframewor k. bat ch. core. | aunch. support. Si npl eJobLauncher" >
<property nane="j obRepository" ref="jobRepository" />
</ bean>

Once a JobExecut i on is obtained, it is passed to the execute method of Job, ultimately returning the
JobExecut i on to the caller:

Spring Batch - Reference
3.0.0.RC2 Documentation 29

Spring Batch

run()

executer)

: |
'
i
ExitStatus | .
;ﬂ i JorbEx?‘c‘u‘tpn,k_\

| |
S wiith Exitstatus FINISHED or FALED |

The sequence is straightforward and works well when launched from a scheduler. However, issues
arise when trying to launch from an HTTP request. In this scenario, the launching needs to be done
asynchronously so that the Si npl eJobLauncher returns immediately to its caller. This is because it
is not good practice to keep an HTTP request open for the amount of time needed by long running
processes such as batch. An example sequence is below:

run()

JobExecution
P ;
| / & | |
Starts fith executel) | H
ExitStapus UNKNOWN !
‘ ExitStatus | -

T i

i

The Si npl eJobLauncher can easily be configured to allow for this scenario by configuring a
TaskExecut or:

<bean i d="j obLauncher"
cl ass="org. spri ngframewor k. bat ch. core. | aunch. support. Si npl eJobLauncher" >
<property nane="j obRepository" ref="jobRepository" />
<property nane="t askExecutor">
<bean cl ass="org. spri ngframework. core.task. Si npl eAsyncTaskExecutor" />
</ property>
</ bean>

Any implementation of the spring TaskExecut or interface can be used to control how jobs are
asynchronously executed.

4.5 Running a Job

At a minimum, launching a batch job requires two things: the Job to be launched and a JobLauncher .
Both can be contained within the same context or different contexts. For example, if launching a job
from the command line, a new JVM will be instantiated for each Job, and thus every job will have its own
JobLauncher . However, if running from within a web container within the scope of an Ht t pRequest ,
there will usually be one JobLauncher, configured for asynchronous job launching, that multiple
requests will invoke to launch their jobs.

Spring Batch - Reference
3.0.0.RC2 Documentation 30

Spring Batch

Running Jobs from the Command Line

For users that want to run their jobs from an enterprise scheduler, the command line is the primary
interface. This is because most schedulers (with the exception of Quartz unless using the Nat i veJob)
work directly with operating system processes, primarily kicked off with shell scripts. There are many
ways to launch a Java process besides a shell script, such as Perl, Ruby, or even 'build tools' such as ant
or maven. However, because most people are familiar with shell scripts, this example will focus on them.

The CommandLineJobRunner

Because the script launching the job must kick off a Java Virtual Machine, there needs to be a class with
a main method to act as the primary entry point. Spring Batch provides an implementation that serves
just this purpose: CommandLi neJobRunner . It's important to note that this is just one way to bootstrap
your application, but there are many ways to launch a Java process, and this class should in no way be
viewed as definitive. The CommandLi neJobRunner performs four tasks:

» Load the appropriate Appl i cat i onCont ext

» Parse command line arguments into JobPar anet er s

Locate the appropriate job based on arguments
* Use the JobLauncher provided in the application context to launch the job.

All of these tasks are accomplished using only the arguments passed in. The following are required
arguments:

Table 4.1. CommandLineJobRunner arguments

jobPath The location of the XML file that will be used
to create an Appli cati onCont ext. This file
should contain everything needed to run the
complete Job

jobName The name of the job to be run.

These arguments must be passed in with the path first and the name second. All arguments after these
are considered to be JobParameters and must be in the format of 'name=value':

bash$ java CommandLi neJobRunner endOf DayJob. xml endOf Day schedul e. dat e(dat e) =2007/ 05/ 05

In most cases you would want to use a manifest to declare your main class in a jar, but for
simplicity, the class was used directly. This example is using the same 'EndOfDay' example from the
domain section. The first argument is 'endOfDayJob.xml', which is the Spring Appl i cat i onCont ext
containing the Job. The second argument, 'endOfDay' represents the job name. The final argument,
'schedule.date(date)=2007/05/05" will be converted into JobPar anet er s. An example of the XML
configuration is below:

<j ob i d="endO Day" >
<step id="stepl" parent="sinpleStep" />
</ j ob>

<!-- Launcher details renpved for clarity -->
<beans: bean i d="j obLauncher"
cl ass="org. spri ngframewor k. bat ch. core. | aunch. support. Si npl eJobLauncher" />

Spring Batch - Reference
3.0.0.RC2 Documentation 31

Spring Batch

This example is overly simplistic, since there are many more requirements to a run a batch job in Spring
Batch in general, but it serves to show the two main requirements of the CormandLi neJobRunner :
Job and JobLauncher

ExitCodes

When launching a batch job from the command-line, an enterprise scheduler is often used. Most
schedulers are fairly dumb and work only at the process level. This means that they only know about
some operating system process such as a shell script that they're invoking. In this scenario, the only
way to communicate back to the scheduler about the success or failure of a job is through return codes.
A return code is a number that is returned to a scheduler by the process that indicates the result of the
run. In the simplest case: 0 is success and 1 is failure. However, there may be more complex scenarios:
If job A returns 4 kick off job B, and if it returns 5 kick off job C. This type of behavior is configured at
the scheduler level, but it is important that a processing framework such as Spring Batch provide a way
to return a numeric representation of the 'Exit Code' for a particular batch job. In Spring Batch this is
encapsulated within an Exi t St at us, which is covered in more detail in Chapter 5. For the purposes of
discussing exit codes, the only important thing to know is that an Exi t St at us has an exit code property
that is set by the framework (or the developer) and is returned as part of the JobExecut i on returned
from the JobLauncher . The CommandLi neJobRunner converts this string value to a number using
the Exi t CodeMapper interface:

public interface ExitCodeMapper {

public int intValue(String exitCode);

The essential contract of an Exi t CodeMapper is that, given a string exit code, a number representation
will be returned. The default implementation used by the job runner is the SimpleJvmExitCodeMapper
that returns O for completion, 1 for generic errors, and 2 for any job runner errors such as not being
able to find a Job in the provided context. If anything more complex than the 3 values above is
needed, then a custom implementation of the Exi t CodeMapper interface must be supplied. Because
the CommandLi neJobRunner is the class that creates an Appl i cat i onCont ext, and thus cannot
be 'wired together', any values that need to be overwritten must be autowired. This means that if an
implementation of Exi t CodeMapper is found within the BeanFactory, it will be injected into the runner
after the context is created. All that needs to be done to provide your own Exi t CodeMapper is to
declare the implementation as a root level bean and ensure that it is part of the Appl i cat i onCont ext
that is loaded by the runner.

Running Jobs from within a Web Container

Historically, offline processing such as batch jobs have been launched from the command-line, as
described above. However, there are many cases where launching from an H t pRequest is a better
option. Many such use cases include reporting, ad-hoc job running, and web application support.
Because a batch job by definition is long running, the most important concern is ensuring to launch the
job asynchronously:

Spring Batch - Reference
3.0.0.RC2 Documentation 32

Spring Batch

run(}) N
JobExecution execute()

O

The controller in this case is a Spring MVC controller. More information on Spring MVC can
be found here: http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html. The
controller launches a Job using a JobLauncher that has been configured to launch asynchronously,
which immediately returns a JobExecuti on. The Job will likely still be running, however, this
nonblocking behaviour allows the controller to return immediately, which is required when handling an
Ht t pRequest . An example is below:

@ontroller
public class JobLauncherController {

@\ut owi r ed
JobLauncher jobLauncher;

@\ut owi r ed
Job j ob;

@Request Mappi ng("/j obLauncher. htm ")
public void handl e() throws Exception{
j obLauncher . run(job, new JobParaneters());

}

4.6 Advanced Meta-Data Usage

So far, both the JobLauncher and JobRepository interfaces have been discussed. Together, they
represent simple launching of a job, and basic CRUD operations of batch domain objects:

/

runfJob) l

-

CRUD operations

A JobLauncher uses the JobRepository to create new JobExecuti on objects and run them.
Job and St ep implementations later use the same JobReposi t ory for basic updates of the same
executions during the running of a Job. The basic operations suffice for simple scenarios, but in a large

Spring Batch - Reference
3.0.0.RC2 Documentation 33

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html

Spring Batch

batch environment with hundreds of batch jobs and complex scheduling requirements, more advanced
access of the meta data is required:

Combines all

runidob) ‘ \
_EE BN

CRUD operations \ l get” operations
The JobExpl orer and JobOper at or interfaces, which will be discussed below, add additional
functionality for querying and controlling the meta data.
Querying the Repository

The most basic need before any advanced features is the ability to query the repository for existing
executions. This functionality is provided by the JobExpl or er interface:

public interface JobExplorer {
Li st <Jobl nst ance> get Jobl nst ances(String j obNanme, int start, int count);
JobExecuti on get JobExecuti on(Long executionld);
St epExecuti on get St epExecuti on(Long j obExecutionld, Long stepExecutionld);
Jobl nst ance get Jobl nst ance(Long i nstanceld);
Li st <JobExecuti on> get JobExecuti ons(Jobl nstance jobl nst ance);

Set <JobExecuti on> fi ndRunni ngJobExecuti ons(String j obNane);

As is evident from the method signatures above, JobExpl orer is a read-only version of the
JobReposi t ory, and like the JobReposi t ory, it can be easily configured via a factory bean:

<bean i d="j obExpl orer" class="org.spr...JobExpl orerFact oryBean"
p: dat aSour ce- r ef =" dat aSour ce" />

Earlier in this chapter, it was mentioned that the table prefix of the JobReposi t ory can be modified
to allow for different versions or schemas. Because the JobExpl or er is working with the same tables,
it too needs the ability to set a prefix:

<bean i d="j obExpl orer" class="org.spr...JobExpl orerFact or yBean"
p: dat aSour ce-r ef =" dat aSour ce" p:tabl ePrefix="BATCH " />

Spring Batch - Reference
3.0.0.RC2 Documentation 34

Spring Batch

JobRegistry

A JobRegistry (and its parent interface JobLocator) is not mandatory, but it can be useful if you want to
keep track of which jobs are available in the context. It is also useful for collecting jobs centrally in an
application context when they have been created elsewhere (e.g. in child contexts). Custom JobRegistry
implementations can also be used to manipulate the names and other properties of the jobs that are
registered. There is only one implementation provided by the framework and this is based on a simple
map from job name to job instance. It is configured simply like this:

<bean i d="j obRegi stry" class="org.spr...MpJobRegistry" />

There are two ways to populate a JobRegistry automatically: using a bean post processor and using a
registrar lifecycle component. These two mechanisms are described in the following sections.

JobRegistryBeanPostProcessor

This is a bean post-processor that can register all jobs as they are created:

<bean i d="] obRegi st ryBeanPost Processor" cl ass="org. spr...JobRegi st ryBeanPost Processor" >
<property nane="j obRegi stry" ref="jobRegistry"/>
</ bean>

Athough it is not strictly necessary the post-processor in the example has been given an id so that it
can be included in child contexts (e.g. as a parent bean definition) and cause all jobs created there to
also be regsistered automatically.

AutomaticJobRegistrar

This is a lifecycle component that creates child contexts and registers jobs from those contexts as they
are created. One advantage of doing this is that, while the job names in the child contexts still have to
be globally unique in the registry, their dependencies can have "natural" names. So for example, you
can create a set of XML configuration files each having only one Job, but all having different definitions
of an | t enReader with the same bean name, e.g. "reader". If all those files were imported into the
same context, the reader definitions would clash and override one another, but with the automatic
regsistrar this is avoided. This makes it easier to integrate jobs contributed from separate modules of
an application.

<bean cl ass="org. spr...Automati cJobRegi strar">
<property nanme="appl i cati onCont ext Factori es">
<bean cl ass="org. spr...C asspat hXm Appl i cati onCont ext sFact or yBean" >
<property nane="resources" val ue="cl asspath*:/config/job*.xm" />
</ bean>
</ property>
<property nanme="jobLoader">
<bean cl ass="org. spr...Defaul t JobLoader" >
<property nane="jobRegi stry" ref="jobRegistry" />
</ bean>
</ property>
</ bean>

The registrar has two mandatory properties, one is an array of Appl i cati onCont ext Fact ory (here
created from a convenient factory bean), and the other is a JobLoader . The JobLoader is responsible
for managing the lifecycle of the child contexts and registering jobs in the JobRegi stry.

The Appli cati onCont ext Factory is responsible for creating the child context and the most
common usage would be as above using a Cl assPat hXnl Appl i cati onCont ext Factory.

Spring Batch - Reference
3.0.0.RC2 Documentation 35

Spring Batch

One of the features of this factory is that by default it copies some of the configuration
down from the parent context to the child. So for instance you don't have to re-define the
PropertyPl acehol der Confi gurer or AOP configuration in the child, if it should be the same as
the parent.

The Aut ormat i cJobRegi strar can be used in conjunction with a
JobRegi st ryBeanPost Pr ocessor if desired (as long as the Def aul t JobLoader is used as well).
For instance this might be desirable if there are jobs defined in the main parent context as well as in
the child locations.

JobOperator

As previously discussed, the JobReposi t ory provides CRUD operations on the meta-data, and
the JobExpl or er provides read-only operations on the meta-data. However, those operations are
most useful when used together to perform common monitoring tasks such as stopping, restarting, or
summarizing a Job, as is commonly done by batch operators. Spring Batch provides for these types of
operations via the JobQper at or interface:

public interface JobOperator {
Li st <Long> get Executi ons(l ong instanceld) throws NoSuchJobl nst anceExcepti on;

Li st <Long> get Jobl nstances(String jobName, int start, int count)
t hrows NoSuchJobExcepti on;

Set <Long> get Runni ngExecuti ons(String jobNane) throws NoSuchJobExcepti on;
String getParaneters(long executionld) throws NoSuchJobExecuti onExcepti on;

Long start(String jobNanme, String paraneters)
throws NoSuchJobException, Jobl nstanceAl readyExi st sExcepti on;

Long restart (|l ong executionld)
throws Jobl nst anceAl r eadyConpl et eExcepti on, NoSuchJobExecuti onExcepti on,
NoSuchJobExcepti on, JobRestart Excepti on;
Long startNextlnstance(String jobNane)
throws NoSuchJobException, JobParanet er sNot FoundExcepti on, JobRestartExcepti on,
JobExecut i onAl readyRunni ngExcepti on, Jobl nstanceAl r eadyConpl et eExcepti on;

bool ean stop(long executionld)
throws NoSuchJobExecuti onExcepti on, JobExecuti onNot Runni ngExcepti on;

String get Summary(l ong executionld) throws NoSuchJobExecuti onExcepti on;

Map<Long, String> get St epExecuti onSunmari es(| ong executi onl d)
t hrows NoSuchJobExecuti onExcepti on;

Set <String> get JobNanes();

The above operations represent methods from many different interfaces, such as JobLauncher,
JobReposi t ory, JobExpl or er, and JobRegi st ry. For this reason, the provided implementation of
JobQper at or, Si npl eJobQper at or, has many dependencies:

Spring Batch - Reference
3.0.0.RC2 Documentation 36

Spring Batch

<bean i d="j obOperator" class="org.spr...SinpleJobOperator">
<property nane="j obExpl orer" >
<bean cl ass="org. spr...JobExpl orer Fact or yBean" >
<property nane="dat aSource" ref="dataSource" />
</ bean>
</ property>
<property nane="j obRepository" ref="jobRepository" />
<property nane="j obRegi stry" ref="jobRegistry" />
<property nane="jobLauncher" ref="jobLauncher" />
</ bean>

@ Note

If you set the table prefix on the job repository, don't forget to set it on the job explorer as well.
JobParametersincrementer

Most of the methods on JobOper at or are self-explanatory, and more detailed explanations can
be found on the javadoc of the interface. However, the st art Next | nst ance method is worth
noting. This method will always start a new instance of a Job. This can be extremely useful if
there are serious issues in a JobExecuti on and the Job needs to be started over again from
the beginning. Unlike JobLauncher though, which requires a new JobPar anet er s object that will
trigger a new Jobl nst ance if the parameters are different from any previous set of parameters, the
st art Next | nst ance method will use the JobPar anet er sl ncr ement er tied to the Job to force the
Job to a new instance:

public interface JobParaneterslncrementer {

JobPar anet ers get Next (JobPar anet ers paraneters)

The contract of JobPar anet er sl ncr enent er is that, given a JobPar anet er s object, it will return
the 'next' JobPar anet er s object by incrementing any necessary values it may contain. This strategy
is useful because the framework has no way of knowing what changes to the JobPar anet er s make it
the 'next' instance. For example, if the only value in JobPar anet er s is a date, and the next instance
should be created, should that value be incremented by one day? Or one week (if the job is weekly for
instance)? The same can be said for any numerical values that help to identify the Job, as shown below:

public class Sanpl el ncrenenter inplenents JobParaneterslncrenenter {

publ i c JobParaneters get Next (JobParaneters paraneters) {
if (paraneters==null || paraneters.isEnpty()) {
return new JobParanet er sBui | der (). addLong("run.id", 1L).toJobParanmeters();
}
long id = paraneters.getlLong("run.id",1L) + 1
return new JobPar anet er sBui | der (). addLong("run.id", id).toJobParanmeters();

In this example, the value with a key of 'run.id' is used to discriminate between Jobl nst ances. If the
JobPar anet er s passed in is null, it can be assumed that the Job has never been run before and
thus its initial state can be returned. However, if not, the old value is obtained, incremented by one, and
returned. An incrementer can be associated with Job via the 'incrementer" attribute in the namespace:

Spring Batch - Reference
3.0.0.RC2 Documentation 37

http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/launch/JobOperator.html

Spring Batch

<j ob id="footbal | Job" increnenter="sanpl el ncrenmenter">

</ j ob>

Stopping a Job
One of the most common use cases of JobQper at or is gracefully stopping a Job:

Set <Long> executions = jobQOperator.get Runni ngExecuti ons("sanpl eJob");
j obQOper at or. stop(executions.iterator().next());

The shutdown is not immediate, since there is no way to force immediate shutdown, especially if the
execution is currently in developer code that the framework has no control over, such as a business
service. However, as soon as control is returned back to the framework, it will set the status of the current
St epExecut i ontoBat chSt at us. STOPPED, save it, then do the same for the JobExecut i on before
finishing.

Aborting a Job

A job execution which is FAI LED can be restarted (if the Job is restartable). A job execution whose
status is ABANDONED will not be restarted by the framework. The ABANDONED status is also used in step
executions to mark them as skippable in a restarted job execution: if a job is executing and encounters
a step that has been marked ABANDONED in the previous failed job execution, it will move on to the next
step (as determined by the job flow definition and the step execution exit status).

Ifthe process died (" ki | | -9" orserver failure) the job is, of course, not running, but the JobRepository
has no way of knowing because no-one told it before the process died. You have to tell it manually that
you know that the execution either failed or should be considered aborted (change its status to FAI LED
or ABANDONED) - it's a business decision and there is no way to automate it. Only change the status to
FAI LEDif it is not restartable, or if you know the restart data is valid. There is a utility in Spring Batch
Admin JobSer vi ce to abort a job execution.

Spring Batch - Reference
3.0.0.RC2 Documentation 38

Spring Batch

5. Configuring a Step

As discussed in Batch Domain Language, a St ep is a domain object that encapsulates an independent,
sequential phase of a batch job and contains all of the information necessary to define and control the
actual batch processing. This is a necessarily vague description because the contents of any given
St ep are at the discretion of the developer writing a Job. A Step can be as simple or complex as the
developer desires. A simple St ep might load data from a file into the database, requiring little or no code.
(depending upon the implementations used) A more complex St ep may have complicated business
rules that are applied as part of the processing.

/ ItemReader

- ﬁ ItemProcessor

IltemWriter

5.1 Chunk-Oriented Processing

Spring Batch uses a 'Chunk Oriented' processing style within its most common implementation. Chunk
oriented processing refers to reading the data one at a time, and creating 'chunks' that will be
written out, within a transaction boundary. One item is read in from an | t enReader , handed to an
It enProcessor, and aggregated. Once the number of items read equals the commit interval, the
entire chunk is written out via the ItemWriter, and then the transaction is committed.

- ‘ ItemReader | | ItemProcessor | | ItemWriter
H .

execute() E

read() :
it :
tem process(item) '

i itemn] E
read() ! T i
ftem process(item)

item D

write(items)

ExitStatus

Below is a code representation of the same concepts shown above:

List items = new Arraylist();

for(int i =0; i < commtlnterval; i++){
hj ect item = itenReader. read()
Ohj ect processedltem = itenProcessor. process(iten);
i tens. add(processedltem;

}

itemWiter.wite(itens);

Spring Batch - Reference
3.0.0.RC2 Documentation 39

Spring Batch

Configuring a Step

Despite the relatively short list of required dependencies for a St ep, itis an extremely complex class that
can potentially contain many collaborators. In order to ease configuration, the Spring Batch namespace
can be used:

<j ob i d="sanpl eJob" job-repository="jobRepository">
<step id="stepl">
<t askl et transaction-manager="transacti onManager" >
<chunk reader="itenReader" witer="itenmWiter" conmt-interval ="10"/>
</t askl et >
</ st ep>
</ j ob>

The configuration above represents the only required dependencies to create a item-oriented step:

reader - The | t enReader that provides items for processing.
e writer- The I t em i t er that processes the items provided by the | t enReader .

 transaction-manager - Spring's Pl at f or nifr ansact i onManager that will be used to begin and
commit transactions during processing.

* job-repository - The JobReposi t or y that will be used to periodically store the St epExecut i on and
Execut i onCont ext during processing (just before committing). For an in-line <step/> (one defined
within a <job/>) it is an attribute on the <job/> element; for a standalone step, it is defined as an
attribute of the <tasklet/>.

» commit-interval - The number of items that will be processed before the transaction is committed.

It should be noted that, job-repository defaults to “jobRepository” and transaction-manager defaults to
"transactionManger". Furthermore, the | t enPr ocessor is optional, not required, since the item could
be directly passed from the reader to the writer.

Inheriting from a Parent Step

If a group of St eps share similar configurations, then it may be helpful to define a "parent" St ep from
which the concrete St eps may inherit properties. Similar to class inheritance in Java, the "child" St ep
will combine its elements and attributes with the parent's. The child will also override any of the parent's
St eps.

In the following example, the St ep "concreteStepl"” will inherit from "parentStep”. It will be instantiated
with ‘itemReader', ‘itemProcessor, ‘itemWriter', startLimit=5, and allowStartifComplete=true.
Additionally, the commitinterval will be '5' since it is overridden by the "concreteStepl":

<step id="parent Step">
<tasklet allowstart-if-conplete="true">
<chunk reader="itenReader" witer="itemWiter" comit-interval ="10"/>
</t askl et >
</ step>

<step id="concreteStepl" parent="parent Step">
<chunk processor="itenProcessor" commit-interval ="5"/>
</t askl et >
</ step>

Spring Batch - Reference
3.0.0.RC2 Documentation 40

Spring Batch

The id attribute is still required on the step within the job element. This is for two reasons:

1. The id will be used as the step name when persisting the StepExecution. If the same standalone step
is referenced in more than one step in the job, an error will occur.

2. When creating job flows, as described later in this chapter, the next attribute should be referring to
the step in the flow, not the standalone step.

Abstract Step

Sometimes it may be necessary to define a parent St ep that is not a complete St ep configuration. If, for
instance, the reader, writer, and tasklet attributes are left off of a St ep configuration, then initialization
will fail. If a parent must be defined without these properties, then the "abstract" attribute should be used.
An "abstract" St ep will not be instantiated; it is used only for extending.

In the following example, the St ep "abstractParentStep” would not instantiate if it were not declared to
be abstract. The St ep "concreteStep2" will have 'itemReader’, 'itemWriter', and commitinterval=10.

<step id="abstract Parent Step" abstract="true">
<t askl et >
<chunk commit-interval ="10"/>
</t askl et >
</ st ep>

<step id="concreteStep2" parent="abstractParent Step">
<t askl et >
<chunk reader="itenReader" witer="itenWiter"/>
</t askl et >
</ st ep>

Merging Lists

Some of the configurable elements on St eps are lists; the <listeners/> element, for instance. If both
the parent and child St eps declare a <listeners/> element, then the child's list will override the parent's.
In order to allow a child to add additional listeners to the list defined by the parent, every list element
has a "merge" attribute. If the element specifies that merge="true", then the child's list will be combined
with the parent's instead of overriding it.

In the following example, the St ep "concreteStep3" will be created will two listeners: | i st ener One
and | i st ener Two:

<step id="listenersParent Step" abstract="true">
<listeners>
<listener ref="IistenerCOne"/>
<li steners>
</ step>
<step id="concreteStep3" parent="1istenersParent Step">
<t askl et >

<chunk reader="itenReader" witer="itemWNiter" comit-interval ="5"/>
</t askl et >
<listeners nerge="true">
<listener ref="Iistener Two"/>
<l i steners>
</ st ep>

Spring Batch - Reference
3.0.0.RC2 Documentation 41

Spring Batch

The Commit Interval

As mentioned above, a step reads in and writes out items, periodically committing using the supplied
Pl at f or mlr ansact i onManager . With a commit-interval of 1, it will commit after writing each
individual item. This is less than ideal in many situations, since beginning and committing a transaction
is expensive. Ideally, it is preferable to process as many items as possible in each transaction, which is
completely dependent upon the type of data being processed and the resources with which the step is
interacting. For this reason, the number of items that are processed within a commit can be configured.

<j ob id="sanpl eJob" >
<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itenWiter" commit-interval ="10"/>
</t askl et >
</ step>
</ j ob>

In the example above, 10 items will be processed within each transaction. At the beginning of processing
a transaction is begun, and each time read is called on the | t enReader, a counter is incremented.
When it reaches 10, the list of aggregated items is passed to the It emW i t er, and the transaction
will be committed.

Configuring a Step for Restart

In Chapter 4, Configuring and Running a Job, restarting a Job was discussed. Restart has numerous
impacts on steps, and as such may require some specific configuration.

Setting a StartLimit

There are many scenarios where you may want to control the number of times a St ep may be started.
For example, a particular St ep might need to be configured so that it only runs once because it
invalidates some resource that must be fixed manually before it can be run again. This is configurable on
the step level, since different steps may have different requirements. A St ep that may only be executed
once can exist as part of the same Job as a St ep that can be run infinitely. Below is an example start
limit configuration:

<step id="stepl">
<tasklet start-limt="1">
<chunk reader="itenReader" witer="itemWNiter" comit-interval ="10"/>
</t askl et >
</ step>

The simple step above can be run only once. Attempting to run it again will cause an exception to be
thrown. It should be noted that the default value for the start-limit is | nt eger . MAX_VALUE.

Restarting a completed step

In the case of a restartable job, there may be one or more steps that should always be run, regardless
of whether or not they were successful the first time. An example might be a validation step, or a St ep
that cleans up resources before processing. During normal processing of a restarted job, any step with
a status of'COMPLETED', meaning it has already been completed successfully, will be skipped. Setting
allow-start-if-complete to "true" overrides this so that the step will always run:

Spring Batch - Reference
3.0.0.RC2 Documentation 42

Spring Batch

<step id="stepl">
<tasklet allowstart-if-conplete="true">
<chunk reader="itenReader" witer="itenWiter" commit-interval ="10"/>
</t askl et >
</ st ep>

Step Restart Configuration Example

<j ob id="footbal | Job" restartabl e="true">
<step id="pl ayerl oad" next="ganelLoad">
<t askl et >
<chunk reader="pl ayerFil eltenReader" witer="playerWiter"
comm t-interval ="10" />
</t askl et >
</ step>
<step id="ganeLoad" next="pl ayer Sunmari zati on">
<tasklet allowstart-if-conplete="true">
<chunk reader="ganeFil eltenReader" witer="ganeWiter"
conmi t-interval ="10"/>
</t askl et >
</ step>
<step id="player Sunmari zation">
<tasklet start-limt="3">
<chunk reader="pl ayer Sunmari zati onSour ce" writer="sunmaryWiter"
conm t-interval ="10"/>
</t askl et >
</ step>
</ j ob>

The above example configuration is for a job that loads in information about football games and
summarizes them. It contains three steps: playerLoad, gamelLoad, and playerSummarization. The
playerLoad St ep loads player information from a flat file, while the gamelLoad St ep does the same
for games. The final St ep, playerSummarization, then summarizes the statistics for each player based
upon the provided games. It is assumed that the file loaded by 'playerLoad' must be loaded only once,
but that 'gameLoad’ will load any games found within a particular directory, deleting them after they have
been successfully loaded into the database. As a result, the playerLoad St ep contains no additional
configuration. It can be started almost limitlessly, and if complete will be skipped. The '‘gameLoad' St ep,
however, needs to be run every time in case extra files have been dropped since it last executed. It has
‘allow-start-if-complete’ set to 'true' in order to always be started. (It is assumed that the database tables
games are loaded into has a process indicator on it, to ensure new games can be properly found by the
summarization step). The summarization St ep, which is the most important in the Job, is configured
to have a start limit of 3. This is useful because if the step continually fails, a new exit code will be
returned to the operators that control job execution, and it won't be allowed to start again until manual
intervention has taken place.

@ Note

This job is purely for example purposes and is not the same as the footballJob found in the
samples project.

Run 1:
1. playerLoad is executed and completes successfully, adding 400 players to the 'PLAYERS' table.

2. gamelLoad is executed and processes 11 files worth of game data, loading their contents into the
'GAMES' table.

Spring Batch - Reference
3.0.0.RC2 Documentation 43

Spring Batch

3. playerSummarization begins processing and fails after 5 minutes.
Run 2:

1. playerLoad is not run, since it has already completed successfully, and allow-start-if-complete is
'false' (the default).

2. gamelLoad is executed again and processes another 2 files, loading their contents into the 'GAMES'
table as well (with a process indicator indicating they have yet to be processed)

3. playerSummarization begins processing of all remaining game data (filtering using the process
indicator) and fails again after 30 minutes.

Run 3:

1. playerLoad is not run, since it has already completed successfully, and allow-start-if-complete is
‘false’ (the default).

2. gamelLoad is executed again and processes another 2 files, loading their contents into the 'GAMES'
table as well (with a process indicator indicating they have yet to be processed)

3. playerSummarization is not start, and the job is immediately killed, since this is the third execution
of playerSummarization, and its limit is only 2. The limit must either be raised, or the Job must be
executed as a new Jobl nst ance.

Configuring Skip Logic

There are many scenarios where errors encountered while processing should not result in St ep
failure, but should be skipped instead. This is usually a decision that must be made by someone who
understands the data itself and what meaning it has. Financial data, for example, may not be skippable
because it results in money being transferred, which needs to be completely accurate. Loading a list of
vendors, on the other hand, might allow for skips. If a vendor is not loaded because it was formatted
incorrectly or was missing necessary information, then there probably won't be issues. Usually these
bad records are logged as well, which will be covered later when discussing listeners.

<step id="stepl">
<t askl et >
<chunk reader="flatFileltenReader" witer="itemNiter"
comm t-interval ="10" skip-limt="10">
<ski ppabl e- excepti on-cl asses>
<i ncl ude cl ass="org. springfranmework. batch.itemfile.Fl atFil eParseException"/>
</ ski ppabl e- excepti on-cl asses>
</ chunk>
</t askl et>
</ st ep>

In this example, a Fl at Fi | el t emReader is used, and if at any point a Fl at Fi | ePar seExcepti on
is thrown, it will be skipped and counted against the total skip limit of 10. Separate counts are made of
skips on read, process and write inside the step execution, and the limit applies across all. Once the
skip limit is reached, the next exception found will cause the step to fail.

One problem with the example above is that any other exception besides a
Fl at Fi | ePar seExcept i on will cause the Job to fail. In certain scenarios this may be the correct
behavior. However, in other scenarios it may be easier to identify which exceptions should cause failure
and skip everything else:

Spring Batch - Reference
3.0.0.RC2 Documentation 44

Spring Batch

<step id="stepl">
<t askl et >
<chunk reader="flatFileltenReader" witer="itenWiter"
comit-interval ="10" skip-limt="10">
<ski ppabl e- excepti on- cl asses>
<i ncl ude cl ass="j ava. | ang. Excepti on"/>
<excl ude cl ass="j ava. i o. Fi | eNot FoundExcepti on"/>
</ ski ppabl e- excepti on- cl asses>
</ chunk>
</t askl et >
</ st ep>

By ‘including' j ava. | ang. Excepti on as a skippable exception class, the configuration indicates
that all Except i ons are skippable. However, by 'excluding' j ava. i 0. Fi | eNot FoundExcepti on,
the configuration refines the list of skippable exception classes to be all Excepti ons except
Fi | eNot FoundExcepti on. Any excluded exception classes will be fatal if encountered (i.e. not
skipped).

For any exception encountered, the skippability will be determined by the nearest superclass in the
class hierarchy. Any unclassifed exception will be treated as ‘fatal'. The order of the <i ncl ude/ > and
<excl ude/ > elements does not matter.

Configuring Retry Logic

In most cases you want an exception to cause either a skip or St ep failure. However, not all exceptions
are deterministic. If a Fl at Fi | ePar seExcepti on is encountered while reading, it will always be
thrown for that record; resetting the | t emReader will not help. However, for other exceptions, such as a
Deadl ockLoser Dat aAccessExcept i on, which indicates that the current process has attempted to
update a record that another process holds a lock on, waiting and trying again might result in success.
In this case, retry should be configured:

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemNiter"
commt-interval ="2" retry-limt="3">
<retryabl e- exception-cl asses>
<i ncl ude cl ass="org. spri ngfranewor k. dao. Deadl ockLoser Dat aAccessExcepti on"/>
</retryabl e-excepti on-cl asses>
</ chunk>
</t askl et >
</ st ep>

The St ep allows a limit for the number of times an individual item can be retried, and a list of exceptions
that are 'retryable’. More details on how retry works can be found in Chapter 9, Retry.

Controlling Rollback

By default, regardless of retry or skip, any exceptions thrown from the | tem\W it er will cause the
transaction controlled by the St ep to rollback. If skip is configured as described above, exceptions
thrown from the | t enrReader will not cause a rollback. However, there are many scenarios in which
exceptions thrown from the | t emW i t er should not cause a rollback because no action has taken
place to invalidate the transaction. For this reason, the St ep can be configured with a list of exceptions
that should not cause rollback.

Spring Batch - Reference
3.0.0.RC2 Documentation 45

Spring Batch

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemNiter" commit-interval ="2"/>
<no-rol | back-excepti on-cl asses>
<i ncl ude cl ass="org. springfranework. batch.item validator. Validati onException"/>
</ no-rol | back-excepti on-cl asses>
</t askl et >
</ st ep>

Transactional Readers

The basic contract of the | t emReader is that it is forward only. The step buffers reader input, so that
in the case of a rollback the items don't need to be re-read from the reader. However, there are certain
scenarios in which the reader is built on top of a transactional resource, such as a JMS queue. In this
case, since the queue is tied to the transaction that is rolled back, the messages that have been pulled
from the queue will be put back on. For this reason, the step can be configured to not buffer the items:

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itenWiter" commit-interval ="2"
i s-reader-transactional - queue="true"/>
</t askl et >
</ st ep>

Transaction Attributes

Transaction attributes can be used to control the isolation, propagation, and timeout settings. More
information on setting transaction attributes can be found in the spring core documentation.

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemWiter" comit-interval ="2"/>
<transaction-attributes isol ati on="DEFAULT"
propagat i on=" REQUI RED"
ti meout ="30"/>
</t askl et >
</ step>

Registering ItemStreams with the Step

The step has to take care of | t enf5t r eamcallbacks at the necessary points in its lifecycle. (for more
information on the | t enSt r eaminterface, please refer to Section 6.4, “ItemStream”) This is vital if a
step fails, and might need to be restarted, because the | t ent r eaminterface is where the step gets
the information it needs about persistent state between executions.

If the | t emReader, | t enProcessor, or ltemNiter itselfimplements the | t enSt r eaminterface,
then these will be registered automatically. Any other streams need to be registered separately. This is
often the case where there are indirect dependencies such as delegates being injected into the reader
and writer. A stream can be registered on the St ep through the 'streams' element, as illustrated below:

Spring Batch - Reference
3.0.0.RC2 Documentation 46

Spring Batch

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="conpositeWiter" commt-interval ="2">
<streans>
<streamref="fileltemWiterl"/>
<streamref="fileltemWiter2"/>
</ streans>
</ chunk>
</taskl et >
</ st ep>

<beans: bean i d="conpositeWiter"
cl ass="org. spri ngframewor k. bat ch. i tem support. ConpositeltemNiter">
<beans: property nane="del egat es" >
<beans:|ist>
<beans:ref bean="fileltemWiterl" />
<beans:ref bean="fileltemWiter2" />
</ beans:|ist>
</ beans: property>
</ beans: bean>

In the example above, the Conposi teltemNiter isnotan |tenttream but both of its delegates
are. Therefore, both delegate writers must be explicitly registered as streams in order for the framework
to handle them correctly. The 1t emReader does not need to be explicitly registered as a stream
because it is a direct property of the St ep. The step will now be restartable and the state of the reader
and writer will be correctly persisted in the event of a failure.

Intercepting Step Execution

Just as with the Job, there are many events during the execution of a St ep where a user may need
to perform some functionality. For example, in order to write out to a flat file that requires a footer, the
ItemNiter needs to be notified when the St ep has been completed, so that the footer can written.
This can be accomplished with one of many St ep scoped listeners.

Any class that implements one of the extensions of St epLi st ener (but not that interface itself since
it is empty) can be applied to a step via the listeners element. The listeners element is valid inside a
step, tasklet or chunk declaration. It is recommended that you declare the listeners at the level which its
function applies, or if it is multi-featured (e.g. St epExecut i onLi st ener and | t enReadLi st ener)
then declare it at the most granular level that it applies (chunk in the example given).

<step id="stepl">
<t askl et >
<chunk reader="reader" witer="witer" commt-interval ="10"/>
<l i steners>
<l i stener ref="chunkLi stener"/>
</listeners>
</t askl et >
</ st ep>

AnltenReader,|ltemWiter orltenProcessor thatitselfimplements one of the St epLi st ener
interfaces will be registered automatically with the St ep if using the namespace <st ep> element, or
one of the the * St epFact or yBean factories. This only applies to components directly injected into
the St ep: if the listener is nested inside another component, it needs to be explicitly registered (as
described above).

In addition to the St epLi st ener interfaces, annotations are provided to address the same concerns.
Plain old Java objects can have methods with these annotations that are then converted into the

Spring Batch - Reference
3.0.0.RC2 Documentation 47

Spring Batch

corresponding St epLi st ener type. It is also common to annotate custom implementations of chunk
components like | t enReader orltemN it er or Taskl et . The annotations are analysed by the XML
parser for the <l i st ener/ > elements, so all you need to do is use the XML namespace to register
the listeners with a step.

StepExecutionListener

St epExecut i onLi st ener represents the most generic listener for St ep execution. It allows for
notification before a St ep is started and after it has ends, whether it ended normally or failed:

public interface StepExecutionListener extends SteplListener {
voi d beforeStep(StepExecution stepExecution);

Exit Status afterStep(StepExecution stepExecution);

Exi t St at us is the return type of af t er St ep in order to allow listeners the chance to modify the exit
code that is returned upon completion of a St ep.

The annotations corresponding to this interface are:
» @eforeStep

« @MfterStep

ChunkListener

A chunk is defined as the items processed within the scope of a transaction. Committing a transaction,
at each commit interval, commits a 'chunk’. A ChunkLi st ener can be useful to perform logic before a
chunk begins processing or after a chunk has completed successfully:

public interface ChunkLi stener extends StepListener {

voi d beforeChunk();
voi d afterChunk();

The bef or eChunk method is called after the transaction is started, but before r ead is called on the
| t enReader . Conversely, af t er Chunk is called after the chunk has been committed (and not at all
if there is a rollback).

The annotations corresponding to this interface are:
o @Bef or eChunk
* @\t erChunk

A ChunkLi st ener can be applied when there is no chunk declaration: it is the Taskl et St ep that is
responsible for calling the ChunkLi st ener so it applies to a non-item-oriented tasklet as well (called
before and after the tasklet).

Spring Batch - Reference
3.0.0.RC2 Documentation 48

Spring Batch

ItemReadListener

When discussing skip logic above, it was mentioned that it may be beneficial to log the skipped
records, so that they can be deal with later. In the case of read errors, this can be done with an
| t enReader Li st ener:

public interface |tenReadListener<T> extends SteplListener {

voi d beforeRead();
void afterRead(T item;
voi d onReadError (Exception ex);

The bef or eRead method will be called before each call tor ead onthe | t enReader . The af t er Read
method will be called after each successful call to r ead, and will be passed the item that was read. If
there was an error while reading, the onReadEr r or method will be called. The exception encountered
will be provided so that it can be logged.

The annotations corresponding to this interface are:
o @ef or eRead

* @AfterRead

* @nReadError

ItemProcessListener

Just as with the | t enReadLi st ener, the processing of an item can be 'listened' to:

public interface ItenProcessListener<T, S> extends StepListener {

voi d beforeProcess(T item;
void afterProcess(T item S result);
voi d onProcessError(T item Exception e);

The bef or ePr ocess method will be called before pr ocess on the | t enPr ocessor, and is handed
the item that will be processed. The af t er Process method will be called after the item has been
successfully processed. If there was an error while processing, the onPr ocessEr r or method will be
called. The exception encountered and the item that was attempted to be processed will be provided,
so that they can be logged.

The annotations corresponding to this interface are:
o @ef oreProcess

e @\fterProcess

e @nProcessError

ItemWriteListener

The writing of an item can be 'listened' to with the | t emW i t eLi st ener:

Spring Batch - Reference
3.0.0.RC2 Documentation 49

Spring Batch

public interface ItemNitelListener<S> extends StepListener {

voi d beforeWite(List<? extends S> itens);
void afterWite(List<? extends S> itens);
void onWiteError(Exception exception, List<? extends S> itens);

The bef or eW i t e method will be called before wite ontheltem/Niter, and is handed the item
that will be written. The af t er Wi t e method will be called after the item has been successfully written.
If there was an error while writing, the onW i t eEr r or method will be called. The exception encountered
and the item that was attempted to be written will be provided, so that they can be logged.

The annotations corresponding to this interface are:
o @eforeWite

s GNfterWite

e @nWiteError

SkipListener

| t enReadLi st ener, It emProcessLi stener, and I temNiteLi stner all provide mechanisms
for being notified of errors, but none will inform you that a record has actually been skipped.
onWit eError, for example, will be called even if an item is retried and successful. For this reason,
there is a separate interface for tracking skipped items:

public interface SkipListener<T, S> extends SteplListener {
voi d onSki pl nRead(Throwabl e t);

voi d onSki pl nProcess(T item Throwable t);
voi d onSki plnWite(S item Throwable t);

onSki pl nRead will be called whenever an item is skipped while reading. It should be noted that
rollbacks may cause the same item to be registered as skipped more than once. onSki pl nWi t e will
be called when an item is skipped while writing. Because the item has been read successfully (and not
skipped), it is also provided the item itself as an argument.

The annotations corresponding to this interface are:
e @nSki pl nRead

e @nSkiplnWite

e @nSki pl nProcess

SkipListeners and Transactions

One of the most common use cases for a Ski pLi st ener is to log out a skipped item, so that another
batch process or even human process can be used to evaluate and fix the issue leading to the skip.
Because there are many cases in which the original transaction may be rolled back, Spring Batch makes
two guarantees:

Spring Batch - Reference
3.0.0.RC2 Documentation 50

Spring Batch

1. The appropriate skip method (depending on when the error happened) will only be called once per
item.

2. The Ski pLi st ener will always be called just before the transaction is committed. This is to ensure
that any transactional resources call by the listener are not rolled back by a failure within the
[temWiter.

5.2 TaskletStep

Chunk-oriented processing is not the only way to process in a St ep. What if a St ep must consist as a
simple stored procedure call? You could implement the call as an | t enrReader and return null after the
procedure finishes, but it is a bit unnatural since there would need to be a no-op | t emW i t er. Spring
Batch provides the Taskl et St ep for this scenario.

The Taskl et is a simple interface that has one method, execut e, which will be a called repeatedly by
the Taskl et St ep until it either returns Repeat St at us. FI NI SHED or throws an exception to signal a
failure. Each call to the Taskl et iswrapped in a transaction. Taskl et implementors might call a stored
procedure, a script, or a simple SQL update statement. To create a Taskl et St ep, the 'ref' attribute
of the <tasklet/> element should reference a bean defining a Taskl et object; no <chunk/> element
should be used within the <tasklet/>:

<step id="stepl">
<t askl et ref="nyTasklet"/>
</ st ep>

© Note

Taskl et St ep will automatically register the tasklet as St epLi st ener if it implements this
interface

TaskletAdapter

As with other adapters for the |t enReader and | tem it er interfaces, the Taskl et interface
contains an implementation that allows for adapting itself to any pre-existing class: Taskl et Adapt er .
An example where this may be useful is an existing DAO that is used to update a flag on a set of
records. The Taskl et Adapt er can be used to call this class without having to write an adapter for
the Taskl et interface:

<bean i d="nyTasklet" class="o0.s.b.core. step.taskl et. Met hodl nvoki ngTaskl et Adapt er" >
<property name="t ar get Cbj ect">
<bean cl ass="org. nyconpany. FoobDao"/ >
</ property>
<property nane="tar get Met hod" val ue="updat eFoo" />
</ bean>

Example Tasklet Implementation

Many batch jobs contain steps that must be done before the main processing begins in order to set
up various resources or after processing has completed to cleanup those resources. In the case of a
job that works heavily with files, it is often necessary to delete certain files locally after they have been
uploaded successfully to another location. The example below taken from the Spring Batch samples
project, is a Taskl et implementation with just such a responsibility:

Spring Batch - Reference
3.0.0.RC2 Documentation 51

Spring Batch

public class FileDel etingTaskl et inplenents Tasklet, InitializingBean {
private Resource directory

publ i c Repeat St atus execut e(StepContri bution contribution
ChunkCont ext chunkContext) throws Exception {
File dir = directory.getFile();
Assert.state(dir.isDirectory());

File[] files = dir.listFiles();
for (int i =0; i <files.length; i++) {
bool ean deleted = files[i].delete();
if (!deleted) {
t hrow new Unexpect edJobExecuti onExcepti on("Coul d not delete file " +
files[i].getPath());

}
return Repeat St atus. FI Nl SHED;

}

public void setDirectoryResource(Resource directory) {
this.directory = directory;

}

public void afterPropertiesSet() throws Exception {
Assert.notNul | (directory, "directory nust be set");

}

The above Taskl et implementation will delete all files within a given directory. It should be noted that
the execut e method will only be called once. All that is left is to reference the Taskl et from the St ep:

<j ob id="taskl et Job" >
<step id="del eteFileslnDir">
<tasklet ref="fileDel etingTasklet"/>
</ st ep>
</ j ob>

<beans: bean i d="fil eDel eti ngTaskl et"
cl ass="org. spri ngframewor k. bat ch. sanpl e. t askl et . Fi | eDel eti ngTaskl et ">
<beans: property name="di rect or yResource">
<beans: bean i d="directory"
cl ass="org. spri ngframework. core.io.Fil eSyst enResource">
<beans: constructor-arg value="target/test-outputs/test-dir" />
</ beans: bean>
</ beans: pr operty>
</ beans: bean>

5.3 Controlling Step Flow

With the ability to group steps together within an owning job comes the need to be able to control how
the job 'flows' from one step to another. The failure of a St ep doesn't necessarily mean that the Job
should fail. Furthermore, there may be more than one type of 'success' which determines which St ep
should be executed next. Depending upon how a group of Steps is configured, certain steps may not
even be processed at all.

Spring Batch - Reference
3.0.0.RC2 Documentation 52

Spring Batch

Sequential Flow

The simplest flow scenario is a job where all of the steps execute sequentially:

This can be achieved using the 'next' attribute of the step element:
<job id="job">
<step id="stepA' parent="sl1l" next="stepB" />
<step id="stepB" parent="s2" next="stepC'/>

<step id="stepC' parent="s3" />
</j ob>

In the scenario above, 'step A" will execute first because it is the first St ep listed. If 'step A" completes
normally, then 'step B' will execute, and so on. However, if 'step A' fails, then the entire Job will fail
and 'step B' will not execute.

© Note

With the Spring Batch namespace, the first step listed in the configuration will always be the first
step executed by the Job. The order of the other step elements does not matter, but the first
step must always appear first in the xml.

Conditional Flow

In the example above, there are only two possibilities:

1. The St ep is successful and the next St ep should be executed.
2. The St ep failed and thus the Job should fail.

In many cases, this may be sufficient. However, what about a scenario in which the failure of a St ep
should trigger a different St ep, rather than causing failure?

Spring Batch - Reference
3.0.0.RC2 Documentation 53

Spring Batch

Yesl i \No
ses || swe |

In order to handle more complex scenarios, the Spring Batch namespace allows transition elements to
be defined within the step element. One such transition is the "next" element. Like the "next" attribute, the
"next" element will tell the Job which St ep to execute next. However, unlike the attribute, any number
of "next" elements are allowed on a given St ep, and there is no default behavior the case of failure.
This means that if transition elements are used, then all of the behavior for the St ep's transitions must
be defined explicitly. Note also that a single step cannot have both a "next" attribute and a transition
element.

The next element specifies a pattern to match and the step to execute next:

<job id="job">
<step id="stepA' parent="sl1">
<next on="*" to="stepB" />
<next on="FAl LED"' to="stepC' />
</ st ep>
<step id="stepB" parent="s2" next="stepC' />
<step id="stepC' parent="s3" />
</j ob>

The "on" attribute of a transition element uses a simple pattern-matching scheme to match the
Exi t St at us that results from the execution of the St ep. Only two special characters are allowed in
the pattern:

» " will zero or more characters
« "?" will match exactly one character
For example, "c*t" will match "cat" and "count”, while "c?t" will match "cat" but not "count”.

While there is no limit to the number of transition elements on a St ep, if the St ep's execution results
in an Exi t St at us that is not covered by an element, then the framework will throw an exception and
the Job will fail. The framework will automatically order transitions from most specific to least specific.
This means that even if the elements were swapped for "stepA" in the example above, an Exi t St at us
of "FAILED" would still go to "stepC".

Batch Status vs. Exit Status

When configuring a Job for conditional flow, it is important to understand the difference between
Bat chStat us and Exit Status. BatchStatus is an enumeration that is a property of both
JobExecuti on and St epExecuti on and is used by the framework to record the status of a Job
or St ep. It can be one of the following values: COMPLETED, STARTING, STARTED, STOPPING,
STOPPED, FAILED, ABANDONED or UNKNOWN. Most of them are self explanatory: COMPLETED

Spring Batch - Reference
3.0.0.RC2 Documentation 54

Spring Batch

is the status set when a step or job has completed successfully, FAILED is set when it fails, and so on.
The example above contains the following 'next' element:

<next on="FAl LED"' to="stepB" />

At first glance, it would appear that the 'on' attribute references the Bat chSt at us of the St ep to
which it belongs. However, it actually references the Exi t St at us of the St ep. As the name implies,
Exi t St at us represents the status of a St ep after it finishes execution. More specifically, the 'next'
element above references the exit code of the Exi t St at us. To write it in English, it says: "go to stepB
if the exit code is FAILED". By default, the exit code is always the same as the Bat chSt at us for the
Step, which is why the entry above works. However, what if the exit code needs to be different? A good
example comes from the skip sample job within the samples project:

<step id="stepl" parent="sl1l">
<end on="FAlI LED"' />
<next on="COWPLETED W TH SKI PS" to="errorPrintl" />

<next on="*" to="step2" />
</ step>

The above step has three possibilities:
1. The St ep failed, in which case the job should fail.
2. The St ep completed successfully.

3. The St ep completed successfully, but with an exit code of 'COMPLETED WITH SKIPS'. In this case,
a different step should be run to handle the errors.

The above configuration will work. However, something needs to change the exit code based on the
condition of the execution having skipped records:

public class Ski pChecki ngLi stener extends StepExecutionLi stenerSupport {
public ExitStatus afterStep(StepExecution stepExecution) {
String exitCode = stepExecution. get ExitStatus().getExitCode();
if (!exitCode.equal s(ExitStatus. FAl LED. get Exit Code()) &&
st epExecuti on. get Ski pCount () > 0) {
return new ExitStatus("COVWLETED W TH SKI PS") ;
}
el se {
return null;

}

The above code is a St epExecuti onLi st ener that first checks to make sure the Step was
successful, and next if the skip count on the St epExecut i on is higher than 0. If both conditions are
met, a new Exi t St at us with an exit code of "COMPLETED WITH SKIPS" is returned.

Configuring for Stop

After the discussion of Bat chSt at us_and Exi t St at us, one might wonder how the Bat chSt at us
and Exi t St at us are determined for the Job. While these statuses are determined for the St ep by the
code that is executed, the statuses for the Job will be determined based on the configuration.

So far, all of the job configurations discussed have had at least one final St ep with no transitions. For
example, after the following step executes, the Job will end:

Spring Batch - Reference
3.0.0.RC2 Documentation 55

Spring Batch

<step id="stepC' parent="s3"/>

If no transitions are defined for a St ep, then the Job's statuses will be defined as follows:

« If the St ep ends with Exi t St at us FAILED, then the Job's Bat chSt at us and Exi t St at us will
both be FAILED.

» Otherwise, the Job's Bat chSt at us and Exi t St at us will both be COMPLETED.

While this method of terminating a batch job is sufficient for some batch jobs, such as a simple sequential
step job, custom defined job-stopping scenarios may be required. For this purpose, Spring Batch
provides three transition elements to stop a Job (in addition to the "next" element that we discussed
previously). Each of these stopping elements will stop a Job with a particular Bat chSt at us. It is
important to note that the stop transition elements will have no effect on either the Bat chSt at us or
Exi t St at us of any St eps in the Job: these elements will only affect the final statuses of the Job. For
example, it is possible for every step in a job to have a status of FAILED but the job to have a status
of COMPLETED, or vise versa.

The 'End' Element

The 'end' element instructs a Job to stop with a BatchStatus of COMPLETED. A Job
that has finished with status COMPLETED cannot be restarted (the framework will throw a
Jobl nst anceAl readyConpl et eExcepti on). The 'end' element also allows for an optional 'exit-
code' attribute that can be used to customize the Exi t St at us of the Job. If no 'exit-code' attribute is
given, then the Exi t St at us will be "COMPLETED" by default, to match the Bat chSt at us.

In the following scenario, if step2 fails, then the Job will stop with a Bat chSt at us of COMPLETED
and an Exi t St at us of "COMPLETED" and step3 will not execute; otherwise, execution will move to
step3. Note that if step2 fails, the Job will not be restartable (because the status is COMPLETED).

<step id="stepl" parent="s1" next="step2">

<step id="step2" parent="s2">
<end on="FAI LED'/ >

<next on="*" to="step3"/>
</ st ep>

<step id="step3" parent="s3">

The 'Fail' Element

The ‘fail' element instructs a Job to stop with a Bat chSt at us of FAILED. Unlike the ‘end' element, the
'fail' element will not prevent the Job from being restarted. The 'fail' element also allows for an optional
‘exit-code’ attribute that can be used to customize the Exi t St at us of the Job. If no 'exit-code' attribute
is given, then the Exi t St at us will be "FAILED" by default, to match the Bat chSt at us.

In the following scenario, if step2 fails, then the Job will stop with a Bat chSt at us of FAILED and an
Exi t St at us of "EARLY TERMINATION" and step3 will not execute; otherwise, execution will move to
step3. Additionally, if step2 fails, and the Job is restarted, then execution will begin again on step2.

Spring Batch - Reference
3.0.0.RC2 Documentation 56

Spring Batch

<step id="stepl" parent="sl1l" next="step2">

<step id="step2" parent="s2">
<fail on="FAlI LED' exit-code="EARLY TERM NATI ON'/ >

<next on="*" to="step3"/>
</ st ep>

<step id="step3" parent="s3">

The 'Stop' Element

The 'stop’ element instructs a Job to stop with a Bat chSt at us of STOPPED. Stopping a Job can
provide a temporary break in processing so that the operator can take some action before restarting
the Job. The 'stop’ element requires a 'restart' attribute that specifies the step where execution should
pick up when the Job is restarted.

In the following scenario, if stepl finishes with COMPLETE, then the job will then stop. Once it is
restarted, execution will begin on step2.

<step id="stepl" parent="sl1l">
<stop on="COWPLETED"' restart="step2"/>

</ step>

<step id="step2" parent="s2"/>

Programmatic Flow Decisions

In some situations, more information than the Exi t St at us may be required to decide which step to
execute next. In this case, a JobExecut i onDeci der can be used to assist in the decision.

public class MyDecider inplenents JobExecutionDecider {
publ i c Fl owExecutionSt at us deci de(JobExecuti on j obExecution, StepExecution
st epExecution) {
if (soneCondition) {
return "FAILED';

}
el se {

return " COWLETED';
}

In the job configuration, a "decision" tag will specify the decider to use as well as all of the transitions.

<job id="job">
<step id="stepl" parent="sl1l" next="decision" />

<deci si on i d="deci si on" deci der ="deci der" >
<next on="FAl LED' to="step2" />
<next on="COWPLETED' to="step3" />

</ deci si on>

<step id="step2" parent="s2" next="step3"/>
<step id="step3" parent="s3" />

</'j ob>

<beans: bean i d="deci der" cl ass="com MyDeci der"/>

Spring Batch - Reference
3.0.0.RC2 Documentation 57

Spring Batch

Split Flows

Every scenario described so far has involved a Job that executes its St eps one at a time in a linear
fashion. In addition to this typical style, the Spring Batch namespace also allows for a job to be configured
with parallel flows using the 'split' element. As is seen below, the 'split' element contains one or more
'flow' elements, where entire separate flows can be defined. A 'split' element may also contain any of the
previously discussed transition elements such as the 'next' attribute or the 'next’, 'end’, 'fail', or 'pause'
elements.

<split id="splitl" next="step4">
<f | ow>
<step id="stepl" parent="s1" next="step2"/>
<step id="step2" parent="s2"/>
</flow>
<f | ow>
<step id="step3" parent="s3"/>
</flow>
</split>
<step id="step4" parent="s4"/>

Externalizing Flow Definitions and Dependencies Between Jobs

Part of the flow in a job can be externalized as a separate bean definition, and then re-used. There are
two ways to do this, and the first is to simply declare the flow as a reference to one defined elsewhere:

<job id="job">
<flow id="j obl.fl owl" parent="flowl" next="step3"/>
<step id="step3" parent="s3"/>

</'j ob>

<flow id="fl owml">
<step id="stepl" parent="sl1" next="step2"/>
<step id="step2" parent="s2"/>

</fl ow>

The effect of defining an external flow like this is simply to insert the steps from the external flow into the
job as if they had been declared inline. In this way many jobs can refer to the same template flow and
compose such templates into different logical flows. This is also a good way to separate the integration
testing of the individual flows.

The other form of an externalized flow is to use a JobSt ep. A JobSt ep is similar to a FI owSt ep, but
actually creates and launches a separate job execution for the steps in the flow specified. Here is an
example:

<job id="jobStepJob" restartable="true">
<step i d="j obSt epJob. stepl">
<job ref="job" job-launcher="jobLauncher"
j ob- par anet er s- extract or ="j obPar amet er sExtract or"/ >
</ st ep>
</ j ob>

<job id="job" restartable="true">...</job>
<bean i d="j obParanet ersExtractor" class="org.spr...DefaultJobParanetersExtractor">

<property nane="keys" val ue="input.file"/>
</ bean>

Spring Batch - Reference
3.0.0.RC2 Documentation 58

Spring Batch

The job parameters extractor is a strategy that determines how a the Execut i onCont ext forthe St ep
is converted into JobPar anet er s for the Job that is executed. The JobSt ep is useful when you want
to have some more granular options for monitoring and reporting on jobs and steps. Using JobSt ep is
also often a good answer to the question: "How do | create dependencies between jobs?". It is a good
way to break up a large system into smaller modules and control the flow of jobs.

5.4 Late Binding of Job and Step Attributes

Both the XML and Flat File examples above use the Spring Resour ce abstraction to obtain a file. This
works because Resour ce has a getFile method, which returns aj ava. i o. Fi | e. Both XML and Flat
File resources can be configured using standard Spring constructs:

<bean id="fl atFil el t enReader"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource"
val ue="fil e://outputs/20070122. t est Stream Cust oner Report St ep. TEMP. t xt" />
</ bean>

The above Resour ce will load the file from the file system location specified. Note that absolute
locations have to start with a double slash ("//"). In most spring applications, this solution is good enough
because the names of these are known at compile time. However, in batch scenarios, the file name may
need to be determined at runtime as a parameter to the job. This could be solved using '-D' parameters,
i.e. a system property:

<bean id="fl atFil el t enReader"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource" value="${input.file.nane}" />
</ bean>

All that would be required for this solution to work would be a system argument (-Dinput.file.name="file://
file.txt"). (Note that although a PropertyPl acehol der Confi gurer can be used here, it is not
necessary if the system property is always set because the Resour ceEdi t or in Spring already filters
and does placeholder replacement on system properties.)

Often in a batch setting it is preferable to parameterize the file name in the JobPar anet er s of the
job, instead of through system properties, and access them that way. To accomplish this, Spring Batch
allows for the late binding of various Job and Step attributes:

<bean id="flatFileltenReader" scope="step"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property nane="resource" val ue="#{j obParaneters['input.file.nane']}" />
</ bean>

Both the JobExecuti on and St epExecuti on level Execut i onCont ext can be accessed in the
same way:

<bean id="flatFileltenReader" scope="step"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property nane="resource" val ue="#{j obExecuti onContext['input.file.name']}" />
</ bean>

<bean id="flatFileltenReader" scope="step"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property nanme="resource" val ue="#{stepExecutionContext['input.file.nane']}" />
</ bean>

Spring Batch - Reference
3.0.0.RC2 Documentation 59

Spring Batch

© Note

Any bean that uses late-binding must be declared with scope="step". See for the section called
“Step Scope” more information.

© Note

If you are using Spring 3.0 (or above) the expressions in step-scoped beans are in the Spring
Expression Language, a powerful general purpose language with many interesting features. To
provide backward compatibility, if Spring Batch detects the presence of older versions of Spring
it uses a native expression language that is less powerful, and has slightly different parsing rules.
The main difference is that the map keys in the example above do not need to be quoted with
Spring 2.5, but the quotes are mandatory in Spring 3.0.

Step Scope

All of the late binding examples from above have a scope of "step" declared on the bean definition:

<bean id="flatFil eltenReader" scope="step"
cl ass="org. springframework. batch.itemfile.FlatFileltenReader">
<property nanme="resource" val ue="#{j obParaneters[input.file.nane]}" />
</ bean>

Using a scope of St ep is required in order to use late binding since the bean cannot actually be
instantiated until the St ep starts, which allows the attributes to be found. Because it is not part of the
Spring container by default, the scope must be added explicitly, either by using the bat ch namespace:

<beans xm ns="http://wwmv. springframework. or g/ schena/ beans"
xm ns: bat ch="ht t p: // ww. spri ngf ramewor k. or g/ schena/ bat ch"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi: schemaLocation="...">

<batch:job .../>

</ beans>

or by including a bean definition explicitly for the St epScope (but not both):

<bean cl ass="org. spri ngframewor k. bat ch. core. scope. St epScope" />

Job Scope

Job scope, introduced in Spring Batch 3.0 is similar to Step scope in configuration but is a Scope for
the Job context so there is only one instance of such a bean per executing job. Additionally, support is
provided for late binding of references accessible from the JobContext using #{..} placeholders. Using
this feature, bean properties can be pulled from the job or job execution context and the job parameters.
E.g.

<bean id="..." class="..." scope="job">
<property nane="nane" val ue="#{j obParaneters[input]}" />
</ bean>

Spring Batch - Reference
3.0.0.RC2 Documentation 60

Spring Batch

<bean id="..." class="..." scope="job">
<property nane="nane" val ue="#{j obExecuti onContext['input.nane']}.txt" />
</ bean>

Because it is not part of the Spring container by default, the scope must be added explicitly, either by
using the bat ch namespace:

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: bat ch="htt p: //ww. spri ngf ramewor k. or g/ schema/ bat ch"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="...">

<batch:job .../>

</ beans>

Or by including a bean definition explicitly for the JobScope (but not both):

<bean cl ass="org. spri ngframework. bat ch. core. scope. JobScope" />

Spring Batch - Reference
3.0.0.RC2 Documentation 61

Spring Batch

6. ItemReaders and ltemWriters

All batch processing can be described in its most simple form as reading in large amounts of data,
performing some type of calculation or transformation, and writing the result out. Spring Batch provides
three key interfaces to help perform bulk reading and writing: |1t enReader, | t enPr ocessor and
[temWiter.

6.1 ltemReader

Although a simple concept, an | t enrReader is the means for providing data from many different types
of input. The most general examples include:

» Flat File- Flat File Item Readers read lines of data from a flat file that typically describe records with
fields of data defined by fixed positions in the file or delimited by some special character (e.g. Comma).

» XML - XML ItemReaders process XML independently of technologies used for parsing, mapping and
validating objects. Input data allows for the validation of an XML file against an XSD schema.

» Database - A database resource is accessed to return resultsets which can be mapped to objects for
processing. The default SQL ItemReaders invoke a Rowvapper to return objects, keep track of the
current row if restart is required, store basic statistics, and provide some transaction enhancements
that will be explained later.

There are many more possibilities, but we'll focus on the basic ones for this chapter. A complete list of

all available ItemReaders can be found in Appendix A.

| t enReader is a basic interface for generic input operations:

public interface ItenReader<T> {

T read() throws Exception, Unexpectedl nput Exception, ParseExcepti on;

The r ead method defines the most essential contract of the | t enReader ; calling it returns one Item or
null if no more items are left. An item might represent a line in a file, a row in a database, or an element
in an XML file. It is generally expected that these will be mapped to a usable domain object (i.e. Trade,
Foo, etc) but there is no requirement in the contract to do so.

It is expected that implementations of the | t enReader interface will be forward only. However, if the
underlying resource is transactional (such as a JMS queue) then calling read may return the same logical
item on subsequent calls in a rollback scenario. It is also worth noting that a lack of items to process by
an | t emReader will not cause an exception to be thrown. For example, a database | t emrReader that
is configured with a query that returns 0 results will simply return null on the first invocation of r ead.

6.2 ltemWriter

ItemNiter issimilarin functionality to an | t emReader , but with inverse operations. Resources still
need to be located, opened and closed but they differ in that an | t emWW i t er writes out, rather than
reading in. In the case of databases or queues these may be inserts, updates, or sends. The format of
the serialization of the output is specific to each batch job.

As with | t emrReader, I tenWi t er is a fairly generic interface:

Spring Batch - Reference
3.0.0.RC2 Documentation 62

Spring Batch

public interface ItemNiter<T> {

void wite(List<? extends T> itens) throws Exception;

As with read on | t enReader, wri t e provides the basic contract of I t emW i t er; it will attempt to
write out the list of items passed in as long as it is open. Because it is generally expected that items
will be 'batched' together into a chunk and then output, the interface accepts a list of items, rather than
an item by itself. After writing out the list, any flushing that may be necessary can be performed before
returning from the write method. For example, if writing to a Hibernate DAO, multiple calls to write can
be made, one for each item. The writer can then call close on the hibernate Session before returning.

6.3 ItemProcessor

The I t enReader and |t emW i t er interfaces are both very useful for their specific tasks, but what
if you want to insert business logic before writing? One option for both reading and writing is to use
the composite pattern: create an |t em\W i t er that contains anotherltemWiter,oranlt enReader
that contains another | t enReader . For example:

public class ConpositeltemWiter<T> inplenents ItemWiter<T> {
ItemWiter<T> itenWiter;

public ConpositeltenWiter(ltemWMiter<T> itemWiter) {
this.itemWiter = itemWiter;
}

public void wite(List<? extends T> itens) throws Exception {
/' Add business | ogic here
itemWiter.wite(item;

}

public void setDelegate(ltemNiter<T> itenmNiter){
this.itemWiter = itemWiter;
}

The class above contains another |t emW it er to which it delegates after having provided some
business logic. This pattern could easily be used for an | t enReader as well, perhaps to obtain more
reference data based upon the input that was provided by the main | t enReader . It is also useful if you
need to control the call towr i t e yourself. However, if you only want to 'transform’ the item passed in for
writing before it is actually written, there isn't much need to call wr i t e yourself: you just want to modify
the item. For this scenario, Spring Batch provides the | t enPr ocessor interface:

public interface ItenProcessor<l, O {

O process(l itenm) throws Exception;

An It enProcessor is very simple; given one object, transform it and return another. The provided
object may or may not be of the same type. The point is that business logic may be applied within
process, and is completely up to the developer to create. An | t enPr ocessor can be wired directly
into a step, For example, assuming an | t emrReader provides a class of type Foo, and it needs to be

Spring Batch - Reference
3.0.0.RC2 Documentation 63

Spring Batch

converted to type Bar before being written out. An | t enPr ocessor can be written that performs the
conversion:

public class Foo {}

public class Bar {
public Bar(Foo foo) {}

}

public class FooProcessor inplenents |ItenProcessor<Foo, Bar>{
public Bar process(Foo foo) throws Exception {
|/ Perform sinple transformati on, convert a Foo to a Bar
return new Bar (fo00);

}

public class BarWiter inplenents |ItemWiter<Bar>{
public void wite(List<? extends Bar> bars) throws Exception {
//wite bars

}

In the very simple example above, there is a class Foo, a class Bar , and a class FooPr ocessor that
adheres to the | t enPr ocessor interface. The transformation is simple, but any type of transformation
could be done here. The Bar Wi t er will be used to write out Bar objects, throwing an exception if any
other type is provided. Similarly, the FooPr ocessor will throw an exception if anything but a Foo is
provided. The FooPr ocessor can then be injected into a St ep:

<j ob id="i oSanpl eJob" >
<step nane="stepl">
<t askl et >
<chunk reader="fooReader" processor="fooProcessor" witer="barWiter"
comm t-interval ="2"/>
</t askl et >
</ st ep>
</'j ob>

Chaining ItemProcessors

Performing a single transformation is useful in many scenarios, but what if you want to 'chain
together multiple | t enPr ocessor s? This can be accomplished using the composite pattern mentioned
previously. To update the previous, single transformation, example, Foo will be transformed to Bar ,
which will be transformed to Foobar and written out:

Spring Batch - Reference
3.0.0.RC2 Documentation 64

Spring Batch

public class Foo {}

public class Bar {
public Bar(Foo foo) {}

public class Foobar {
publ i ¢ Foobar (Bar bar) {}

public class FooProcessor inplenents |tenProcessor<Foo, Bar >{
public Bar process(Foo foo) throws Exception {
/] Perform sinple transformation, convert a Foo to a Bar
return new Bar (f00);

public class BarProcessor inplenents |ItenProcessor<Bar, FooBar >{
publ i c FooBar process(Bar bar) throws Exception {
return new Foobar (bar)

public class FoobarWiter inplenents ItemNiter<FooBar>{
public void wite(List<? extends FooBar> itens) throws Exception {
/lwite itens

A FooPr ocessor and Bar Processor can be 'chained' together to give the resultant Foobar :

Conposi t el t enPr ocessor <Foo, Foobar > conposi t eProcessor =
new ConpositeltenProcessor <Foo, Foobar >();
Li st itenmProcessors = new ArraylList();
i tenProcessors. add(new FooTransformer());
i tenProcessors. add(new Bar Transforner());
conposi t eProcessor. set Del egat es(i t enProcessors);

Just as with the previous example, the composite processor can be configured into the St ep:

<job id="i oSanpl eJob" >
<step nane="stepl">
<t askl et >
<chunk reader="fooReader" processor="conpositeProcessor" witer="foobarWiter"
commit-interval ="2"/>
</ taskl et >
</ st ep>
</'j ob>

<bean i d="conpositeltenProcessor"
cl ass="org. spri ngframewor k. bat ch. i tem support. Conposi teltenProcessor">
<property name="del egat es" >

<list>
<bean cl ass="..FooProcessor" />
<bean cl ass="..Bar Processor" />

</list>

</ property>

</ bean>

Spring Batch - Reference
3.0.0.RC2 Documentation 65

Spring Batch

Filtering Records

One typical use for an item processor is to filter out records before they are passed to the ItemWriter.
Filtering is an action distinct from skipping; skipping indicates that a record is invalid whereas filtering
simply indicates that a record should not be written.

For example, consider a batch job that reads a file containing three different types of records: records
to insert, records to update, and records to delete. If record deletion is not supported by the system,
then we would not want to send any "delete" records to the | t emWW i t er . But, since these records are
not actually bad records, we would want to filter them out, rather than skip. As a result, the ltemWriter
would receive only "insert" and "update” records.

To filter a record, one simply returns "null" from the | t enPr ocessor . The framework will detect that
the result is "null" and avoid adding that item to the list of records delivered to the I tenWiter. As
usual, an exception thrown from the | t enPr ocessor will result in a skip.

Fault Tolerance

When a chunk is rolled back, items that have been cached during reading may be reprocessed. If a step
is configured to be fault tolerant (uses skip or retry processing typically), any ItemProcessor used should
be implemented in a way that is idempotent. Typically that would consist of performing no changes on
the input item for the ItemProcessor and only updating the instance that is the result.

6.4 ItemStream

Both | t emrReaders and | t emW i t er s serve their individual purposes well, but there is a common
concern among both of them that necessitates another interface. In general, as part of the scope of a
batch job, readers and writers need to be opened, closed, and require a mechanism for persisting state:

public interface |tenftream {
voi d open(Executi onCont ext executionContext) throws |tenftreanException;
voi d updat e(Executi onCont ext executionContext) throws |tenfttreanmException;

voi d close() throws |tenStreanException;

Before describing each method, we should mention the Executi onContext. Clients of an
| t enReader that also implement | t enSt r eamshould call open before any calls to r ead in order
to open any resources such as files or to obtain connections. A similar restriction applies to an
ItemWiter that implements | t enf5st r eam As mentioned in Chapter 2, if expected data is found in
the Execut i onCont ext , it may be used to start the | t enReader orltemN it er ata location other
than its initial state. Conversely, cl ose will be called to ensure that any resources allocated during
open will be released safely. updat e is called primarily to ensure that any state currently being held is
loaded into the provided Execut i onCont ext . This method will be called before committing, to ensure
that the current state is persisted in the database before commit.

In the special case where the client of an |t enStreamis a St ep (from the Spring Batch Core),
an Execut i onCont ext is created for each St epExecuti on to allow users to store the state of a
particular execution, with the expectation that it will be returned if the same Jobl nst ance is started
again. For those familiar with Quartz, the semantics are very similar to a Quartz JobDat aMap.

Spring Batch - Reference
3.0.0.RC2 Documentation 66

Spring Batch

6.5 The Delegate Pattern and Registering with the Step

Note that the Conpositel temW it er is an example of the delegation pattern, which is common in
Spring Batch. The delegates themselves might implement callback interfaces St epLi st ener . If they
do, and they are being used in conjunction with Spring Batch Core as part of a St ep in a Job, then
they almost certainly need to be registered manually with the St ep. A reader, writer, or processor
that is directly wired into the Step will be registered automatically if it implements | t enf5t r eamor a
St epLi st ener interface. But because the delegates are not known to the St ep, they need to be
injected as listeners or streams (or both if appropriate):

<j ob id="i oSanpl eJob" >
<step nanme="stepl">
<t askl et >

<chunk reader="fooReader" processor="fooProcessor" witer="conpositeltemNiter"
commit-interval ="2">
<streans>
<streamref="barWiter" />
</ streamnms>
</ chunk>
</t askl et >
</ st ep>
</ j ob>

<bean i d="conpositeltemWNiter" class="...CustonConpositeltemNiter">
<property name="del egate" ref="barWiter" />

</ bean>

<bean id="barWiter" class="...BarWiter" />

6.6 Flat Files

One of the most common mechanisms for interchanging bulk data has always been the flat file. Unlike
XML, which has an agreed upon standard for defining how it is structured (XSD), anyone reading a flat
file must understand ahead of time exactly how the file is structured. In general, all flat files fall into two
types: Delimited and Fixed Length. Delimited files are those in which fields are separated by a delimiter,
such as a comma. Fixed Length files have fields that are a set length.

The FieldSet

When working with flat files in Spring Batch, regardless of whether it is for input or output, one of the most
important classes is the Fi el dSet . Many architectures and libraries contain abstractions for helping
you read in from a file, but they usually return a String or an array of Strings. This really only gets you
halfway there. A Fi el dSet is Spring Batch's abstraction for enabling the binding of fields from a file
resource. It allows developers to work with file input in much the same way as they would work with
database input. A Fi el dSet is conceptually very similar to a Jdbc Resul t Set . FieldSets only require
one argument, a St ri ng array of tokens. Optionally, you can also configure in the names of the fields
so that the fields may be accessed either by index or name as patterned after Resul t Set :

String[] tokens = new String[]{"foo", "1", "true"};
Fiel dSet fs = new Defaul t Fi el dSet (t okens);

String nane = fs.readString(0);

int value = fs.readlnt(1);

bool ean bool eanVal ue = fs. readBool ean(2);

Spring Batch - Reference
3.0.0.RC2 Documentation 67

Spring Batch

There are many more options on the Fi el dSet interface, such as Dat e, long, Bi gDeci nal , etc.
The biggest advantage of the Fi el dSet is that it provides consistent parsing of flat file input. Rather
than each batch job parsing differently in potentially unexpected ways, it can be consistent, both when
handling errors caused by a format exception, or when doing simple data conversions.

FlatFileltemReader

A flat file is any type of file that contains at most two-dimensional (tabular) data. Reading flat files
in the Spring Batch framework is facilitated by the class Fl at Fi | el t enReader, which provides
basic functionality for reading and parsing flat files. The two most important required dependencies
of Fl at Fi | el t enrReader are Resource and Li neMapper. The Li neMapper interface will be
explored more in the next sections. The resource property represents a Spring Core Resour ce.
Documentation explaining how to create beans of this type can be found in Spring Framework, Chapter
5.Resources. Therefore, this guide will not go into the details of creating Resour ce objects. However,
a simple example of a file system resource can be found below:

Resource resource = new Fil eSyst enResource("resources/trades.csv");

In complex batch environments the directory structures are often managed by the EAI infrastructure
where drop zones for external interfaces are established for moving files from ftp locations to batch
processing locations and vice versa. File moving utilities are beyond the scope of the spring batch
architecture but it is not unusual for batch job streams to include file moving utilities as steps in the
job stream. It is sufficient that the batch architecture only needs to know how to locate the files to be
processed. Spring Batch begins the process of feeding the data into the pipe from this starting point.
However, Spring Integration provides many of these types of services.

The other properties in Fl at Fi | el t emReader allow you to further specify how your data will be
interpreted:

Table 6.1. FlatFileltemReader Properties
Property Type Description

comments String[] Specifies line prefixes that
indicate comment rows

encoding String Specifies what text encoding to
use - default is "1ISO-8859-1"

lineMapper LineMapper Convertsa Stri ng to an
hj ect representing the item.

linesToSkip int Number of lines to ignore at the
top of the file

recordSeparatorPolicy RecordSeparatorPolicy Used to determine where the
line endings are and do things
like continue over a line ending
if inside a quoted string.

resource Resource The resource from which to
read.
skippedLinesCallback LineCallbackHandler Interface which passes the raw

line content of the lines in the

Spring Batch - Reference
3.0.0.RC2 Documentation 68

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/resources.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/resources.html
http://projects.spring.io/spring-integration/

Spring Batch

Property Type Description

file to be skipped. If linesToSkip
is set to 2, then this interface
will be called twice.

strict boolean In strict mode, the reader
will throw an exception on
ExecutionContext if the input
resource does not exist.

LineMapper

As with Rowivapper , which takes a low level construct such as Resul t Set and returns an Qbj ect,
flat file processing requires the same construct to convert a St ri ng line into an Obj ect :

public interface LineMapper<T> {

T mapLine(String line, int lineNunber) throws Exception;

The basic contract is that, given the current line and the line number with which it is associated, the
mapper should return a resulting domain object. This is similar to RowMapper in that each line is
associated with its line number, just as each row in a Resul t Set is tied to its row number. This allows
the line number to be tied to the resulting domain object for identity comparison or for more informative
logging. However, unlike Rowvapper , the Li neMapper is given a raw line which, as discussed above,
only gets you halfway there. The line must be tokenized into a Fi el dSet , which can then be mapped
to an object, as described below.

LineTokenizer

An abstraction for turning a line of input into a line into a Fi el dSet is necessary because there can be
many formats of flat file data that need to be converted to a Fi el dSet . In Spring Batch, this interface
is the Li neTokeni zer:

public interface LineTokenizer {

Fi el dSet tokenize(String line);

The contract of a Li neTokeni zer is such that, given a line of input (in theory the St ri ng could
encompass more than one line), a Fi el dSet representing the line will be returned. This Fi el dSet
can then be passed to a Fi el dSet Mapper . Spring Batch contains the following Li neTokeni zer
implementations:

» Del m t edLi neTokeni zer - Used for files where fields in a record are separated by a delimiter. The
most common delimiter is a comma, but pipes or semicolons are often used as well.

» Fi xedLengt hTokeni zer - Used for files where fields in a record are each a 'fixed width'. The width
of each field must be defined for each record type.

e Patternhat chi ngConposi telLi neTokeni zer - Determines which among a list of
Li neTokeni zer s should be used on a particular line by checking against a pattern.

Spring Batch - Reference
3.0.0.RC2 Documentation 69

Spring Batch

FieldSetMapper

The Fi el dSet Mapper interface defines a single method, mapFi el dSet , which takes a Fi el dSet
object and maps its contents to an object. This object may be a custom DTO, a domain object, or a
simple array, depending on the needs of the job. The Fi el dSet Mapper is used in conjunction with the
Li neTokeni zer to translate a line of data from a resource into an object of the desired type:

public interface Fiel dSet Mapper<T> {

T mapFi el dSet (Fi el dSet fiel dSet);

The pattern used is the same as the Rowivapper used by JdbcTenpl at e.
DefaultLineMapper

Now that the basic interfaces for reading in flat files have been defined, it becomes clear that three
basic steps are required:

1. Read one line from the file.
2. Pass the string line into the Li neTokeni zer #t okeni ze() method, in order to retrieve a Fi el dSet .

3. Pass the Fi el dSet returned from tokenizing to a Fi el dSet Mapper, returning the result from the
| t enrReader #r ead() method.

The two interfaces described above represent two separate tasks: converting a line into a Fi el dSet,
and mapping a Fi el dSet to a domain object. Because the input of a Li neTokeni zer matches the
input of the Li neMapper (a line), and the output of a Fi el dSet Mapper matches the output of the
Li neMapper, a default implementation that uses both a Li neTokeni zer and Fi el dSet Mapper is
provided. The Def aul t Li neMapper represents the behavior most users will need:

public class DefaultLineMapper<T> i npl enents Li neMapper<T>, InitializingBean {
private LineTokenizer tokenizer;
private Fi el dSet Mapper<T> fi el dSet Mapper ;

public T mapLine(String line, int |ineNunber) throws Exception {
return fiel dSet Mapper. mapFi el dSet (t okeni zer. t okeni ze(line));
}

public void setLineTokeni zer (Li neTokeni zer tokenizer) {
this.tokenizer = tokenizer;

}

public void setFi el dSet Mapper (Fi el dSet Mapper <T> fi el dSet Mapper) {
this.fiel dSet Mapper = fi el dSet Mapper ;

}

The above functionality is provided in a default implementation, rather than being built into the reader
itself (as was done in previous versions of the framework) in order to allow users greater flexibility in
controlling the parsing process, especially if access to the raw line is needed.

Spring Batch - Reference
3.0.0.RC2 Documentation 70

Spring Batch

Simple Delimited File Reading Example

The following example will be used to illustrate this using an actual domain scenario. This particular
batch job reads in football players from the following file:

I D, | ast Name, fi rst Nange, posi tion, bi rt hYear, debut Year
" AbduKa00, Abdul - Jabbar, Kari m rb, 1974, 1996",

" AbduRa00, Abdul | ah, Rabi h, rb, 1975, 1999",

" Aber V0O, Aber cronbi e, Wal ter, rb, 1959, 1982",

" Abr aDa00, Abr amowi cz, Danny, w, 1945, 1967",

" AdanBo00, Adans, Bob, t e, 1946, 1969",

" Adanth00, Adans, Charli e, w, 1979, 2003"

The contents of this file will be mapped to the following Pl ayer domain object:

public class Player inplenents Serializable {

private String |D
private String | ast Name;
private String firstNamg;
private String position;
private int birthYear;
private int debut Year;

public String toString() {
return "PLAYER ID=" + ID + ", Last Nane=" + | astNane +
",First Name=" + firstName + ", Position=" + position +
",Birth Year=" + birthYear + ", Debut Year=" +
debut Year ;

/'l setters and getters...

In order to map a Fi el dSet into a Pl ayer object, a Fi el dSet Mapper that returns players needs
to be defined:

protected static class PlayerFiel dSet Mapper inpl enents Fi el dSet Mapper <Pl ayer> {
public Player mapFiel dSet (Fi el dSet fieldSet) {
Pl ayer player = new Pl ayer();

pl ayer.set| D(fiel dSet.readString(0));

pl ayer. set Last Nane(fi el dSet.readString(1));
pl ayer. set First Nane(fiel dSet.readString(2));
pl ayer.set Position(fieldSet.readString(3));
pl ayer.setBirthYear (fieldSet.readlnt(4));

pl ayer . set Debut Year (fi el dSet . readl nt(5));

return player;

The file can then be read by correctly constructing a Fl at Fi | el t enReader and calling r ead:

Spring Batch - Reference
3.0.0.RC2 Documentation 71

Spring Batch

Fl at Fi | el t enReader <Pl ayer> itenReader = new Fl at Fi | el t emReader <Pl ayer >();
i t enReader . set Resour ce(new Fi | eSyst enResour ce("resources/ pl ayers.csv"));
/1 DelimtedLi neTokeni zer defaults to comm as its delimter

Li neMapper <Pl ayer > | i neMapper = new Def aul t Li neMapper <Pl ayer >() ;

| i neMapper . set Li neTokeni zer (new Del i m t edLi neTokeni zer ());

I'i neMapper. set Fi el dSet Mapper (new Pl ayer Fi el dSet Mapper ());

i t emReader . set Li neMapper (| i neMapper) ;

i t enReader . open(new Executi onContext());

Pl ayer player = itenReader.read();

Each call to r ead will return a new Player object from each line in the file. When the end of the file is
reached, null will be returned.

Mapping Fields by Name

There is one additional piece of functionality that is allowed by both Del i m t edLi neTokeni zer and
Fi xedLengt hTokeni zer that is similar in function to a Jdbc Resul t Set . The names of the fields
can be injected into either of these Li neTokeni zer implementations to increase the readability of the
mapping function. First, the column names of all fields in the flat file are injected into the tokenizer:

t okeni zer. set Names(new String[]
{"ID", "lastNane", "firstNane", "position","birthYear", "debutYear"});

A Fi el dSet Mapper can use this information as follows:

public class PlayerMapper inplenents Fiel dSet Mapper <Pl ayer> {
public Player napFiel dSet (Fi el dSet fs) {

if(fs == null){
return null;

}

Pl ayer player = new Pl ayer();

pl ayer.setl D(fs.readString("1D"));

pl ayer . set Last Name(fs. readStri ng("l ast Name"));
pl ayer. set First Nane(fs.readString("firstNanme"));
pl ayer.set Position(fs.readString("position"));
pl ayer. set Debut Year (fs. readl nt ("debut Year"));

pl ayer.setBirthYear(fs.readlnt("birthYear"));

return player;

Automapping FieldSets to Domain Objects

For many, having to write a specific Fi el dSet Mapper is equally as cumbersome as writing a specific
RowMapper for a JdbcTenpl at e. Spring Batch makes this easier by providing a Fi el dSet Mapper
that automatically maps fields by matching a field name with a setter on the object using the JavaBean
specification. Again using the football example, the BeanW apper Fi el dSet Mapper configuration
looks like the following:

Spring Batch - Reference
3.0.0.RC2 Documentation 72

Spring Batch

<bean id="fi el dSet Mapper"
cl ass="org. springframework. batch.itemfil e. mappi ng. BeanW apper Fi el dSet Mapper " >
<property nane="prototypeBeanNane" val ue="pl ayer" />
</ bean>

<bean i d="pl ayer"
cl ass="org. spri ngf ramewor k. bat ch. sanpl e. donai n. Pl ayer"
scope="prototype" />

For each entry in the Fi el dSet , the mapper will look for a corresponding setter on a new instance of
the Pl ayer object (for this reason, prototype scope is required) in the same way the Spring container
will look for setters matching a property name. Each available field in the Fi el dSet will be mapped,
and the resultant Pl ayer object will be returned, with no code required.

Fixed Length File Formats

So far only delimited files have been discussed in much detail, however, they represent only half of the
file reading picture. Many organizations that use flat files use fixed length formats. An example fixed
length file is below:

UK21341EAH4121131. 11cust oner 1
UK21341EAH4221232. 11cust oner 2
UK21341EAH4321333. 11cust oner 3
UK21341EAH4421434. 11cust oner 4
UK21341EAH4521535. 11cust oner5

While this looks like one large field, it actually represent 4 distinct fields:
1. ISIN: Unique identifier for the item being order - 12 characters long.
2. Quantity: Number of this item being ordered - 3 characters long.

3. Price: Price of the item - 5 characters long.

4. Customer: Id of the customer ordering the item - 9 characters long.

When configuring the Fi xedLengt hLi neTokeni zer, each of these lengths must be provided in the
form of ranges:

<bean i d="fi xedLengt hLi neTokeni zer"
cl ass="org. springframework. batch.io.file.transform Fi xedLengt hTokeni zer" >
<property nane="nanes" value="ISIN, Quantity, Price, Custoner" />
<property nanme="col ums" val ue="1-12, 13-15, 16-20, 21-29" />
</ bean>

Because the Fi xedLengt hLi neTokeni zer uses the same Li neTokeni zer interface as discussed
above, it will return the same Fi el dSet as if a delimiter had been used. This allows the same
approaches to be used in handling its output, such as using the BeanW apper Fi el dSet Mapper .

© Note

Supporting the above syntax for ranges requires that a specialized property editor,
RangeAr rayPropert yEdi t or, be configured in the Appl i cati onCont ext . However, this
bean is automatically declared in an Appl i cati onCont ext where the batch namespace is
used.

Spring Batch - Reference
3.0.0.RC2 Documentation 73

Spring Batch

Multiple Record Types within a Single File

All of the file reading examples up to this point have all made a key assumption for simplicity's sake:
all of the records in a file have the same format. However, this may not always be the case. It is very
common that a file might have records with different formats that need to be tokenized differently and
mapped to different objects. The following excerpt from a file illustrates this:

USER; Smi t h; Peter; ; T; 20014539; F
LI NEA; 1044391041ABC037. 49G201XX1383. 12H
LI NEB; 2134776319DEF422. 99MDO5LI

In this file we have three types of records, "USER", "LINEA", and "LINEB". A "USER" line corresponds
to a User object. "LINEA" and "LINEB" both correspond to Line objects, though a "LINEA" has more
information than a "LINEB".

The |t enReader will read each line individually, but we must specify different Li neTokeni zer
and Fi el dSet Mapper objects so that the ItemNiter will receive the correct items. The
Pat t er nMat chi ngConposi t eLi neMapper makes this easy by allowing maps of patterns to
Li neTokeni zer s and patterns to Fi el dSet Mapper s to be configured:

<bean i d="orderFil eLi neMapper"
class="org. spr...PatternMat chi ngConposi teLi neMapper" >
<property nanme="tokeni zers">

<map>
<entry key="USER*" val ue-ref="user Tokeni zer" />
<entry key="LINEA*" val ue-ref="1ineATokeni zer" />
<entry key="LINEB*" val ue-ref="I1ineBTokeni zer" />
</ map>

</ property>
<property nanme="fi el dSet Mappers" >

<map>
<entry key="USER*" val ue-ref="userFi el dSet Mapper" />
<entry key="LINE*" val ue-ref="I1ineFi el dSet Mapper" />
</ map>
</ property>

</ bean>

In this example, "LINEA" and "LINEB" have separate Li neTokeni zer s but they both use the same
Fi el dSet Mapper .

The Patt er nMat chi ngConposi t eLi neMapper makes use of the PatternMat cher's mat ch
method in order to select the correct delegate for each line. The Patt er nMat cher allows for two
wildcard characters with special meaning: the question mark ("?") will match exactly one character, while
the asterisk ("*") will match zero or more characters. Note that in the configuration above, all patterns end
with an asterisk, making them effectively prefixes to lines. The Pat t er nMat cher will always match the
most specific pattern possible, regardless of the order in the configuration. So if "LINE*" and "LINEA*"
were both listed as patterns, "LINEA" would match pattern "LINEA*", while "LINEB" would match pattern
"LINE*". Additionally, a single asterisk ("*") can serve as a default by matching any line not matched
by any other pattern.

<entry key="*" val ue-ref="defaul tLi neTokeni zer" />

There is also a Pat t er nMat chi ngConposi t eLi neTokeni zer that can be used for tokenization
alone.

Spring Batch - Reference
3.0.0.RC2 Documentation 74

Spring Batch

Itis also common for a flat file to contain records that each span multiple lines. To handle this situation, a
more complex strategy is required. A demonstration of this common pattern can be found in Section 11.5,
“Multi-Line Records”.

Exception Handling in Flat Files

There are many scenarios when tokenizing a line may cause exceptions to be thrown. Many flat files
are imperfect and contain records that aren't formatted correctly. Many users choose to skip these
erroneous lines, logging out the issue, original line, and line number. These logs can later be inspected
manually or by another batch job. For this reason, Spring Batch provides a hierarchy of exceptions
for handling parse exceptions: Fl at Fi | ePar seExcepti on and Fl at Fi | eFor mat Excepti on.
Fl at Fi | ePar seExcepti on is thrown by the FlatFil eltenReader when any errors are
encountered while trying to read a file. Fl at Fi | eFor mat Except i on is thrown by implementations of
the Li neTokeni zer interface, and indicates a more specific error encountered while tokenizing.

IncorrectTokenCountException

Both Del i m t edLi neTokeni zer and Fi xedLengt hLi neTokeni zer have the ability to specify
column names that can be used for creating a Fi el dSet . However, if the number of column names
doesn't match the number of columns found while tokenizing a line the Fi el dSet can't be created, and
al ncorrect TokenCount Except i on is thrown, which contains the number of tokens encountered,
and the number expected:

t okeni zer. set Nanes(new String[] {"A", "B", "C', "D'});

try {
t okeni zer. t okeni ze("a, b, c");

}

cat ch(l ncorrect TokenCount Exception e){
assert Equal s(4, e.getExpectedCount());
assert Equal s(3, e.getActual Count());

Because the tokenizer was configured with 4 column names, but only 3 tokens were found in the file,
an | ncorrect TokenCount Except i on was thrown.

IncorrectLineLengthException

Files formatted in a fixed length format have additional requirements when parsing because, unlike a
delimited format, each column must strictly adhere to its predefined width. If the total line length doesn't
add up to the widest value of this column, an exception is thrown:

t okeni zer. set Col ums(new Range[] { new Range(1, 5),
new Range(6, 10),
new Range(11, 15) });
try {
t okeni zer. t okeni ze("12345");
fail ("Expected I ncorrectLineLengt hException");
}
catch (IncorrectLineLengt hException ex) {
assert Equal s(15, ex.get ExpectedLength());
assert Equal s(5, ex.getActual Length());

The configured ranges for the tokenizer above are: 1-5, 6-10, and 11-15, thus the total length
of the line expected is 15. However, in this case a line of length 5 was passed in, causing an
I ncorrectLi neLengt hExcepti on to be thrown. Throwing an exception here rather than only

Spring Batch - Reference
3.0.0.RC2 Documentation 75

Spring Batch

mapping the first column allows the processing of the line to fail earlier, and with more information than
it would if it failed while trying to read in column 2 in a Fi el dSet Mapper . However, there are scenarios
where the length of the line isn't always constant. For this reason, validation of line length can be turned
off via the 'strict' property:

t okeni zer. set Col umms(new Range[] { new Range(1, 5), new Range(6, 10) });
t okeni zer.set Strict(fal se);

Fi el dSet tokens = tokenizer.tokenize("12345");

assert Equal s("12345", tokens.readString(0));

assert Equal s("", tokens.readString(1));

The above example is almost identical to the one before it, except that tokenizer.setStrict(false) was
called. This setting tells the tokenizer to not enforce line lengths when tokenizing the line. AFi el dSet is
now correctly created and returned. However, it will only contain empty tokens for the remaining values.

FlatFileltemWriter

Writing out to flat files has the same problems and issues that reading in from a file must overcome. A
step must be able to write out in either delimited or fixed length formats in a transactional manner.

LineAggregator

Just as the Li neTokeni zer interface is necessary to take an item and turnitinto a St r i ng, file writing
must have a way to aggregate multiple fields into a single string for writing to a file. In Spring Batch
this is the Li neAggr egat or:

public interface LineAggregator<T> {

public String aggregate(T item;

The Li neAggr egat or is the opposite of a Li neTokeni zer . Li neTokeni zer takes a Stri ng and
returns a Fi el dSet , whereas Li neAggr egat or takes anit emand returns a St ri ng.

PassThroughLineAggregator

The most basic implementation of the LineAggregator interface is the
PassThr oughLi neAggr egat or , which simply assumes that the object is already a string, or that its
string representation is acceptable for writing:

public class PassThroughLi neAggr egat or <T> i npl enents Li neAggr egat or <T> {

public String aggregate(T item) {
return itemtoString();

}

The above implementation is useful if direct control of creating the string is required, but the advantages
ofaFlatFileltenWiter, such as transaction and restart support, are necessary.

Simplified File Writing Example

Now that the LineAggregator interface and its most basic implementation,
PassThr oughLi neAggr egat or, have been defined, the basic flow of writing can be explained:

1. The object to be written is passed to the Li neAggr egat or in order to obtaina St ri ng.

Spring Batch - Reference
3.0.0.RC2 Documentation 76

Spring Batch

2. The returned St ri ng is written to the configured file.

The following excerpt from the Fl at Fi | el t emW i t er expresses this in code:

public void wite(T itenm) throws Exception {
write(lineAggregator. aggregate(iten) + LINE_SEPARATOR);

}
A simple configuration would look like the following:

<bean id="itenWiter" class="org.spr...FlatFileltemWiter">
<property nanme="resource" value="file:target/test-outputs/output.txt" />
<property nanme="|i neAggregator">
<bean cl ass="org. spr...PassThroughLi neAggregator"/>
</ property>
</ bean>

FieldExtractor

The above example may be useful for the most basic uses of a writing to a file. However, most users of
the Flat Fil el temWV it er will have a domain object that needs to be written out, and thus must be
converted into a line. In file reading, the following was required:

1. Read one line from the file.
2. Pass the string line into the Li neTokeni zer #t okeni ze() method, in order to retrieve a Fi el dSet

3. Pass the Fi el dSet returned from tokenizing to a Fi el dSet Mapper, returning the result from the
| t enReader #r ead() method

File writing has similar, but inverse steps:
1. Pass the item to be written to the writer
2. convert the fields on the item into an array
3. aggregate the resulting array into a line

Because there is no way for the framework to know which fields from the object need to be written out,
a Fi el dExt r act or must be written to accomplish the task of turning the item into an array:

public interface Fiel dExtractor<T> {

hject[] extract(T iten;

Implementations of the Fi el dExt ract or interface should create an array from the fields of the
provided object, which can then be written out with a delimiter between the elements, or as part of a
field-width line.

PassThroughFieldExtractor

There are many cases where a collection, such as an array, Col | ecti on, or Fi el dSet, needs to be
written out. "Extracting" an array from a one of these collection types is very straightforward: simply
convert the collection to an array. Therefore, the PassThr oughFi el dExt r act or should be used
in this scenario. It should be noted, that if the object passed in is not a type of collection, then the
PassThr oughFi el dExt r act or will return an array containing solely the item to be extracted.

Spring Batch - Reference
3.0.0.RC2 Documentation 77

Spring Batch

BeanWrapperFieldExtractor

As with the BeanW apper Fi el dSet Mapper described in the file reading section, it is often preferable
to configure how to convert a domain object to an object array, rather than writing the conversion

yourself. The BeanW apper Fi el dExt r act or provides just this type of functionality:

BeanW apper Fi el dExt r act or <Name> extractor = new BeanW apper Fi el dExt r act or <Nanme>() ;
extractor.set Nanes(new String[] { "first", "last", "born" })

String first = "Alan";
String last = "Turing"
int born = 1912

Name n = new Name(first, last, born);
bj ect[] values = extractor.extract(n);

assert Equal s(first, values[O0]);
assert Equal s(l ast, val ues[1]);
assert Equal s(born, val ues[2]);

This extractor implementation has only one required property, the names of the fields to map. Just as
the BeanW apper Fi el dSet Mapper needs field names to map fields on the Fi el dSet to setters on
the provided object, the BeanW apper Fi el dExt r act or needs names to map to getters for creating
an object array. It is worth noting that the order of the names determines the order of the fields within

the array.

Delimited File Writing Example

The most basic flat file format is one in which all fields are separated by a delimiter. This can be
accomplished using a Del i ni t edLi neAggr egat or . The example below writes out a simple domain

object that represents a credit to a customer account:

public class CustonerCredit {
private int id;
private String nane

private BigDeci mal credit;

//getters and setters renoved for clarity

Because a domain object is being used, an implementation of the FieldExtractor interface must be

provided, along with the delimiter to use:

<property nanme="resource" ref="outputResource" />

<property nanme="|ineAggregator">
<bean cl ass="org.spr...DelimtedLi neAggregator">
<property nanme="delimter" value=","/>

<property name="fiel dExtractor">
<bean cl ass="org. spr...BeanW apper Fi el dExtractor">
<property nanme="nanes" val ue="nane, credit"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

<bean id="itemWNiter" class="org.springframework.batch.itemfile.FlatFileltemWiter">

Spring Batch - Reference
3.0.0.RC2 Documentation

78

Spring Batch

In this case, the BeanW apper Fi el dExt r act or described earlier in this chapter is used to turn the
name and credit fields within Cust omer Cr edi t into an object array, which is then written out with
commas between each field.

Fixed Width File Writing Example

Delimited is not the only type of flat file format. Many prefer to use a set width for each column to delineate
between fields, which is usually referred to as ‘fixed width'. Spring Batch supports this in file writing
via the For mat t er Li neAggr egat or . Using the same Cust oner Cr edi t domain object described
above, it can be configured as follows:

<bean id="itemWNiter" class="org.springframework.batch.itemfile.FlatFileltenmWiter">
<property nanme="resource" ref="out put Resource" />
<property nanme="|ineAggregator">
<bean cl ass="org. spr...FormatterLi neAggregator">
<property nanme="fiel dExtractor">
<bean cl ass="org. spr...BeanW apper Fi el dExt ract or" >
<property nane="nanes" val ue="name, credit" />
</ bean>
</ property>
<property nanme="format" val ue="% 9s% 2. 0f" />
</ bean>
</ property>
</ bean>

Most of the above example should look familiar. However, the value of the format property is new:

<property nane="format" val ue="% 9s% 2. 0f" />

The underlying implementation is built using the same For mat t er added as part of Java 5. The Java
For mat t er is based on the pri nt f functionality of the C programming language. Most details on how
to configure a formatter can be found in the javadoc of Formatter.

Handling File Creation

Fl at Fi | el t enReader has a very simple relationship with file resources. When the reader is initialized,
it opens the file if it exists, and throws an exception if it does not. File writing isn't quite so simple. At first
glance it seems like a similar straight forward contract should exist for Fl at Fi | el t em\W i t er : if the
file already exists, throw an exception, and if it does not, create it and start writing. However, potentially
restarting a Job can cause issues. In normal restart scenarios, the contract is reversed: if the file exists,
start writing to it from the last known good position, and if it does not, throw an exception. However,
what happens if the file name for this job is always the same? In this case, you would want to delete
the file if it exists, unless it's a restart. Because of this possibility, the Fl at Fi | el t emW i t er contains
the property, shoul dDel et el f Exi st s. Setting this property to true will cause an existing file with the
same name to be deleted when the writer is opened.

6.7 XML Item Readers and Writers

Spring Batch provides transactional infrastructure for both reading XML records and mapping them to
Java objects as well as writing Java objects as XML records.

Spring Batch - Reference
3.0.0.RC2 Documentation 79

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Spring Batch

@ Constraints on streaming XML

The StAX APl is used for I/O as other standard XML parsing APIs do not fit batch processing
requirements (DOM loads the whole input into memory at once and SAX controls the parsing
process allowing the user only to provide callbacks).

Lets take a closer look how XML input and output works in Spring Batch. First, there are a few concepts
that vary from file reading and writing but are common across Spring Batch XML processing. With XML
processing, instead of lines of records (FieldSets) that need to be tokenized, it is assumed an XML

resource is a collection of 'fragments' corresponding to individual records:

[Fragment 1

Fragment 2

[Fragment 3

<trade>
<isin>XYZ0001</isin>
<quantity>5</quantity>
<price>11.39</price>
<customer>Customeri</customer>
</trade>
<trade>
<isin>XYZ0002</isin>
<quantity>2</quantity>
<price>72.99</price>
<customer>Customer2c</customer>
<ltrade>
<trade>
<isin>XYZ0003</isin>
<quantity>9</quantity>
<price>99.99</price>
<customer>Customer3</customer>
</trade>

Figure 3.1: XML Input

The 'trade’' tag is defined as the 'root element' in the scenario above. Everything between '<trade>'and '</
trade>' is considered one 'fragment'. Spring Batch uses Object/XML Mapping (OXM) to bind fragments
to objects. However, Spring Batch is not tied to any particular XML binding technology. Typical use is to
delegate to Spring OXM, which provides uniform abstraction for the most popular OXM technologies.
The dependency on Spring OXM is optional and you can choose to implement Spring Batch specific
interfaces if desired. The relationship to the technologies that OXM supports can be shown as the

following:

Fragment 1 |

Any binding fraﬁ"lework

supported by Spring OXM

Figure 3.2: OXM Binding

Now with an introduction to OXM and how one can use XML fragments to represent records, let's take

a closer look at readers and writers.

Spring Batch - Reference
3.0.0.RC2 Documentation

80

http://docs.spring.io/spring-ws/site/reference/html/oxm.html

Spring Batch

StaxEventltemReader

The St axEvent | t enReader configuration provides a typical setup for the processing of records from
an XML input stream. First, lets examine a set of XML records that the St axEvent | t emrReader can

process.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<recor ds>
<trade xm ns="http://springfranework. org/batch/sanpl e/i o/ oxnl domai n" >
<i si n>XYZ0001</i si n>
<quantity>5</quantity>
<price>11.39</pri ce>
<cust oner >Cust oner 1</ cust oner >
</trade>
<trade xm ns="http://springfranmework. org/batch/sanpl e/i o/ oxnl domai n" >
<i si n>XYZ0002</ i si n>
<quantity>2</quantity>
<price>72.99</pri ce>
<cust oner >Cust onmer 2c</ cust oner >
</trade>
<trade xm ns="http://springfranework. org/batch/sanpl e/i o/ oxnl domai n" >
<i si n>XYZ0003</ i si n>
<quantity>9</quantity>
<pri ce>99. 99</ pri ce>
<cust oner >Cust oner 3</ cust oner >
</trade>
</records>

To be able to process the XML records the following is needed:

* Root Element Name - Name of the root element of the fragment that constitutes the object to be
mapped. The example configuration demonstrates this with the value of trade.

» Resource - Spring Resource that represents the file to be read.

* Unmar shal | er - Unmarshalling facility provided by Spring OXM for mapping the XML fragment to
an object.

<bean id="itenReader" cl ass="org.springframework.batch.item xm . StaxEvent|tenReader">
<property nane="fragnment Root El enent Nane" val ue="trade" />
<property nane="resource" val ue="data/iosanple/input/input.xm" />
<property name="unnmarshaller" ref="tradeMarshaller" />

</ bean>

Notice that in this example we have chosen to use an XSt r eamvar shal | er which accepts an alias
passed in as a map with the first key and value being the name of the fragment (i.e. root element) and
the object type to bind. Then, similar to a Fi el dSet , the names of the other elements that map to fields
within the object type are described as key/value pairs in the map. In the configuration file we can use
a Spring configuration utility to describe the required alias as follows:

Spring Batch - Reference
3.0.0.RC2 Documentation 81

Spring Batch

<bean id="tradeMarshaller"
cl ass="org. spri ngframewor k. oxm xstream XStreanvarshal | er">
<property nanme="al i ases">
<util:map id="aliases">
<entry key="trade"
val ue="org. spri ngframewor k. bat ch. sanpl e. dormai n. Trade" />
<entry key="price" val ue="java. mat h. Bi gDeci mal " />
<entry key="nanme" val ue="java.l ang. String" />
</util:map>
</ property>
</ bean>

On input the reader reads the XML resource until it recognizes that a new fragment is about to start (by
matching the tag name by default). The reader creates a standalone XML document from the fragment
(or at least makes it appear so) and passes the document to a deserializer (typically a wrapper around
a Spring OXM Unmar shal | er) to map the XML to a Java object.

In summary, this procedure is analogous to the following scripted Java code which uses the injection
provided by the Spring configuration:

St axEvent | t emReader xnl St axEvent|tenReader = new StaxEvent|tenReader ()
Resource resource = new Byt eArrayResour ce(xm Resource. get Bytes())

Map al i ases = new HashMap();

al i ases. put ("trade", "org. spri ngframewor k. bat ch. sanpl e. donai n. Tr ade") ;
al i ases. put ("price","java. math. Bi gDeci mal ") ;

al i ases. put ("customer”, "java. |l ang. String");

Mar shal | er marshal |l er = new XStreanMarshal l er () ;

mar shal | er. set Al i ases(al i ases);

xm St axEvent | t enReader . set Unmar shal | er (narshal | er);

xm St axEvent | t enReader . set Resour ce(resource) ;

xm St axEvent | t emReader . set Fr agnment Root El ement Narme("trade") ;

xm St axEvent | t enReader . open(new Executi onContext());

bool ean hasNext = true
CustonerCredit credit = null
whi | e (hasNext) {
credit = xnml StaxEvent|tenReader.read();

if (credit == null) {
hasNext = fal se

}

el se {
Systemout.printin(credit);

}

StaxEventltemWriter

Output works symmetrically to input. The St axEvent | t emW i t er needs a Resour ce, a marshaller,
and a r oot TagNane. A Java object is passed to a marshaller (typically a standard Spring OXM
Mar shal | er) which writes to a Resour ce using a custom event writer that filters the St ar t Docunent
and EndDocunent events produced for each fragment by the OXM tools. We'll show this in an example
using the Mar shal | i ngEvent Wit er Seri al i zer. The Spring configuration for this setup looks as
follows:

Spring Batch - Reference
3.0.0.RC2 Documentation 82

Spring Batch

<bean id="itemWNiter" class="org.springframework.batch.item xm . StaxEventltenmWiter">
<property nanme="resource" ref="out put Resource" />
<property nane="marshal |l er" ref="custonerCreditMarshaller" />
<property nane="root TagNane" val ue="custoners" />
<property nane="overwiteCQutput" value="true" />
</ bean>

The configuration sets up the three required properties and optionally sets the overwriteOutput=true,
mentioned earlier in the chapter for specifying whether an existing file can be overwritten. It should be
noted the marshaller used for the writer is the exact same as the one used in the reading example from
earlier in the chapter:

<bean i d="cust omer Credi t Marshal | er"
cl ass="org. spri ngframewor k. oxm xstream XStreanarshal | er">
<property name="al i ases">
<util:map id="aliases">
<entry key="custoner"
val ue="org. spri ngf ramewor k. bat ch. sanpl e. donai n. CustonerCredi t" />
<entry key="credit" val ue="java. math. Bi gDeci nal " />
<entry key="nane" val ue="java.lang. String" />
</util: map>
</ property>
</ bean>

To summarize with a Java example, the following code illustrates all of the points discussed,
demonstrating the programmatic setup of the required properties:

StaxEventltenWiter staxltenmWiter = new StaxEventltenmWNiter()
Fi | eSyst emResource resource = new Fi |l eSyst enResource("data/outputFile.xm")

Map al i ases = new HashMap();

al i ases. put ("custoner", "org. spri ngframewor k. bat ch. sanpl e. domai n. CustonerCredit");
aliases.put(“credit","java. math. Bi gDeci mal ") ;

al i ases. put ("nane", "java.l ang. String");

Marshal | er marshall er = new XStreamMarshal |l er () ;

mar shal | er. set Al i ases(al i ases);

staxltemWiter. set Resource(resource);
staxltemNiter.set Marshal |l er(marshall er);
staxltemWiter. set Root TagNanme("trades");
staxltemWiter.setOverwiteCQutput(true);

Execut i onCont ext executi onContext = new Executi onContext ();
staxltemWiter.open(executi onContext);

CustonerCredit Credit = new CustonerCredit();

trade. setPrice(11.39);

credit. set Name(" Cust omer 1") ;

staxltemNiter.wite(trade);

6.8 Multi-File Input

It is a common requirement to process multiple files within a single St ep. Assuming the files all have
the same formatting, the Mul t i Resour cel t enReader supports this type of input for both XML and
flat file processing. Consider the following files in a directory:

file-1.txt file-2.txt ignored.txt

Spring Batch - Reference
3.0.0.RC2 Documentation 83

Spring Batch

file-1.txt and file-2.txt are formatted the same and for business reasons should be processed together.
The Mul i Resour cel t enReader can be used to read in both files by using wildcards:

<bean id="mul ti ResourceReader" class="org.spr...MiltiResourceltenReader">
<property nane="resources" val ue="cl asspath:data/input/file-*.txt" />
<property nane="del egate" ref="flatFileltenReader" />

</ bean>

The referenced delegate is a simple Fl at Fi | el t enReader . The above configuration will read input
from both files, handling rollback and restart scenarios. It should be noted that, aswith any | t enReader ,
adding extra input (in this case a file) could cause potential issues when restarting. It is recommended
that batch jobs work with their own individual directories until completed successfully.

6.9 Database

Like most enterprise application styles, a database is the central storage mechanism for batch. However,
batch differs from other application styles due to the sheer size of the datasets with which the system
must work. If a SQL statement returns 1 million rows, the result set probably holds all returned results
in memory until all rows have been read. Spring Batch provides two types of solutions for this problem:
Cursor and Paging database ItemReaders.

Cursor Based ItemReaders

Using a database cursor is generally the default approach of most batch developers, because it is
the database's solution to the problem of 'streaming' relational data. The Java Resul t Set class is
essentially an object orientated mechanism for manipulating a cursor. A Resul t Set maintains a cursor
to the current row of data. Calling next onaResul t Set moves this cursor to the next row. Spring Batch
cursor based ItemReaders open the a cursor on initialization, and move the cursor forward one row for
every call to r ead, returning a mapped object that can be used for processing. The cl ose method will
then be called to ensure all resources are freed up. The Spring core JdbcTenpl at e gets around this
problem by using the callback pattern to completely map all rows in a Resul t Set and close before
returning control back to the method caller. However, in batch this must wait until the step is complete.
Below is a generic diagram of how a cursor based | t emReader works, and while a SQL statement is
used as an example since it is so widely known, any technology could implement the basic approach:

FOO 2 Select * from FOO

id=2 where id > 1 and id < 7

name=foo2

P—— ID NAME |BAR
1 foo1 bar1

.F 003 2 foo2 bar2

id=3

name=foo3 3 foo3 bar3

bar=bar3 4 foo4 bard
) food bar5

.F 004 6 foo6 bar6

id=4

name=foo4 7 foo7 bar?

bar=bar4 8 foo8 bargd

This example illustrates the basic pattern. Given a 'FOQO' table, which has three columns: ID, NAME,
and BAR, select all rows with an ID greater than 1 but less than 7. This puts the beginning of the cursor
(row 1) on ID 2. The result of this row should be a completely mapped Foo object. Calling r ead() again

Spring Batch - Reference
3.0.0.RC2 Documentation 84

Spring Batch

moves the cursor to the next row, which is the Foo with an ID of 3. The results of these reads will be
written out after each r ead, thus allowing the objects to be garbage collected (assuming no instance
variables are maintaining references to them).

JdbcCursorltemReader

JdbcCur sor | t enReader is the Jdbc implementation of the cursor based technique. It works directly
with a Resul t Set and requires a SQL statement to run against a connection obtained from a
Dat aSour ce. The following database schema will be used as an example:

CREATE TABLE CUSTOMER (
I D Bl G NT | DENTI TY PRI MARY KEY,
NAMVE VARCHAR(45) ,
CREDI T FLOAT

Many people prefer to use a domain object for each row, so we'll use an implementation of the
RowMapper interface to map a Cust orer Cr edi t object:

public class CustonerCredit Rowivapper inpl enents RowMapper {

public static final String ID COLUW = "id";
public static final String NAME_COLUW = "nane";
public static final String CREDI T_COLUW = “"credit";

public Object mapRow(ResultSet rs, int rowNun) throws SQLException {
CustomerCredit customerCredit = new CustonerCredit();

customerCredit.setld(rs.getlnt(1D COLUW));
customer Credi t. set Name(rs. get Stri ng(NAVE_COLUW)) ;
custonmerCredit.setCredit(rs.getBi gDeci mal (CREDI T_COLUW)) ;

return custonerCredit;

Because JdbcTenpl at e is so familiar to users of Spring, and the JdbcCur sor | t enrReader shares
key interfaces with it, it is useful to see an example of how to read in this data with JdbcTenpl at e,
in order to contrast it with the | t enReader . For the purposes of this example, let's assume there are
1,000 rows in the CUSTOMER database. The first example will be using JdbcTenpl at e:

/I For sinmplicity sake, assunme a dataSource has al ready been obtai ned

JdbcTenpl at e j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;

Li st custonerCredits = jdbcTenpl ate. query("SELECT I D, NAME, CREDI T from CUSTOVER',
new Cust oner Cr edi t Rowivapper ());

After running this code snippet the customerCredits list will contain 1,000 Cust orrer Cr edi t objects.
In the query method, a connection will be obtained from the Dat aSour ce, the provided SQL will be run
against it, and the mapRow method will be called for each row in the Resul t Set . Let's contrast this with
the approach of the JdbcCur sor | t emReader :

Spring Batch - Reference
3.0.0.RC2 Documentation 85

Spring Batch

JdbcCur sor |t enReader itenmReader = new JdbcCursorltenReader();
i t enReader . set Dat aSour ce(dat aSour ce) ;

i t emReader. set Sql ("SELECT | D, NAVE, CREDI T from CUSTOVER');

i t emReader . set Rowivapper (new Cust oner Cr edi t Rowivapper ()) ;

int counter = 0;

Execut i onCont ext executi onContext = new ExecutionContext ();

i t emReader . open(executi onCont ext);

Obj ect custonmerCredit = new Object();

whi |l e(custonmerCredit !'= null){
custonmerCredit = itenReader.read();
count er ++;

}

i t emReader . cl ose(executi onCont ext);

After running this code snippet the counter will equal 1,000. If the code above had put the returned
customerCredit into a list, the result would have been exactly the same as with the JdbcTenpl at e
example. However, the big advantage of the | t emReader is that it allows items to be 'streamed'. The
read method can be called once, and the item written out via an | temW it er, and then the next
item obtained via r ead. This allows item reading and writing to be done in 'chunks' and committed
periodically, which is the essence of high performance batch processing. Furthermore, it is very easily
configured for injection into a Spring Batch St ep:

<bean id="itenReader" class="org.spr...JdbcCursorltenReader">
<property nane="dat aSource" ref="dataSource"/>
<property nane="sql" val ue="select ID, NAME, CREDIT from CUSTOVER'/ >
<property name="rowMapper">
<bean cl ass="org. spri ngframewor k. bat ch. sanpl e. dormai n. Cust oner Cr edi t Rowivapper "/ >
</ property>
</ bean>

Additional Properties

Because there are so many varying options for opening a cursor in Java, there are many properties on
the JdbcCust or | t emReader that can be set:

Table 6.2. JdbcCursorltemReader Properties

ignoreWarnings Determines whether or not SQLWarnings are
logged or cause an exception - default is true

fetchSize Gives the Jdbc driver a hint as to the number of
rows that should be fetched from the database
when more rows are needed by the Resul t Set
object used by the | t enReader . By default, no
hint is given.

maxRows Sets the limit for the maximum number of rows the
underlying Resul t Set can hold at any one time.

gueryTimeout Sets the number of seconds the driver will wait
for a St at ement object to execute to the given
number of seconds. If the limit is exceeded, a
Dat aAccessEcept i on is thrown. (Consult your
driver vendor documentation for details).

verifyCursorPosition Because the same Result Set held by the
| t enReader is passed to the RowMapper, it

Spring Batch - Reference
3.0.0.RC2 Documentation 86

Spring Batch

is possible for users to call Resul t Set . next ()
themselves, which could cause issues with the
reader's internal count. Setting this value to true
will cause an exception to be thrown if the cursor
position is not the same after the Rowivapper call
as it was before.

saveState Indicates whether or not the reader's state should
be saved in the Executi onCont ext provided
by I t entst r eam#updat e(Execut i onCont ext)
The default value is true.

driverSupportsAbsolute Defaults to false. Indicates whether the Jdbc
driver supports setting the absolute row on
a ResultSet. It is recommended that this
is set to true for Jdbc drivers that supports
Resul t Set . absol ute() as it may improve
performance, especially if a step fails while
working with a large data set.

setUseSharedExtendedConnection Defaults to false. Indicates whether the
connection used for the cursor should be used
by all other processing thus sharing the same
transaction. If this is set to false, which is
the default, then the cursor will be opened
using its own connection and will not participate
in any transactions started for the rest of
the step processing. If you set this flag to
true then you must wrap the Dat aSource in
an Ext endedConnecti onDat aSour cePr oxy
to prevent the connection from being closed and
released after each commit. When you set this
option to true then the statement used to open
the cursor will be created with both 'READ_ONLY"
and 'HOLD_CUSORS_OVER_COMMIT' options.
This allows holding the cursor open over
transaction start and commits performed in the
step processing. To use this feature you need
a database that supports this and a Jdbc driver
supporting Jdbc 3.0 or later.

HibernateCursorltemReader

Just as normal Spring users make important decisions about whether or not to use ORM solutions,
which affect whether or not they use a JdbcTenpl at e or a Hi ber nat eTenpl at e, Spring Batch
users have the same options. Hi ber nat eCur sor | t enReader is the Hibernate implementation of
the cursor technique. Hibernate's usage in batch has been fairly controversial. This has largely been
because Hibernate was originally developed to support online application styles. However, that doesn't
mean it can't be used for batch processing. The easiest approach for solving this problem is to use a
St at el essSessi on rather than a standard session. This removes all of the caching and dirty checking
hibernate employs that can cause issues in a batch scenario. For more information on the differences

Spring Batch - Reference
3.0.0.RC2 Documentation 87

Spring Batch

between stateless and normal hibernate sessions, refer to the documentation of your specific hibernate
release. The Hi ber nat eCur sor | t enReader allows you to declare an HQL statement and pass in
a Sessi onFact ory, which will pass back one item per call to r ead in the same basic fashion as
the JdbcCur sor | t enReader . Below is an example configuration using the same ‘customer credit'
example as the JDBC reader:

Hi ber nat eCur sor | t enReader itenmReader = new Hi bernat eCursorltenReader();
i t enReader . set QueryString("from CustonerCredit");

/'l For sinplicity sake, assune sessionFactory already obtained

i t emReader . set Sessi onFact or y(sessi onFactory);

i t enReader . set UseSt at el essSessi on(true);

int counter = O;

Execut i onCont ext executi onContext = new Executi onContext();

i t enReader . open(executi onCont ext);

bj ect custonerCredit = new Object();

whi l e(customerCredit != null){
custonerCredit = itenReader.read();
count er ++;

}

i t enReader . cl ose(executi onCont ext);

This configured 1t emrReader will return Cust omer Cr edi t objects in the exact same manner as
described by the JdbcCur sor |t enReader, assuming hibernate mapping files have been created
correctly for the Customer table. The 'useStatelessSession' property defaults to true, but has been
added here to draw attention to the ability to switch it on or off. It is also worth noting that the fetchSize
of the underlying cursor can be set via the setFetchSize property. As with JdbcCur sor | t enReader,
configuration is straightforward:

<bean id="itenReader"
cl ass="org. springframewor k. bat ch. i t em dat abase. Hi ber nat eCur sor | t enReader " >
<property nane="sessi onFactory" ref="sessionFactory" />
<property nane="queryString" val ue="from CustonerCredit" />
</ bean>

StoredProcedureltemReader

Sometimes it is necessary to obtain the cursor data using a stored procedure. The
St or edPr ocedur el t emReader works like the JdbcCur sor |t enReader except that instead of
executing a query to obtain a cursor we execute a stored procedure that returns a cursor. The stored
procedure can return the cursor in three different ways:

1. as a returned ResultSet (used by SQL Server, Sybase, DB2, Derby and MySQL)

2. as aref-cursor returned as an out parameter (used by Oracle and PostgreSQL)

3. as the return value of a stored function call

Below is a basic example configuration using the same 'customer credit' example as earlier:

<bean id="reader" class="0.s.batch.item database. St oredProcedurel t enReader" >
<property nane="dat aSource" ref="dataSource"/>
<property nane="procedureNanme" val ue="sp_customner_credit"/>
<property nane="rowMapper" >
<bean cl ass="org. spri ngfranmewor k. bat ch. sanpl e. domai n. Cust oner Cr edi t RowiVapper"/ >
</ property>
</ bean>

Spring Batch - Reference
3.0.0.RC2 Documentation 88

Spring Batch

This example relies on the stored procedure to provide a ResultSet as a returned result (option 1 above).

If the stored procedure returned a ref-cursor (option 2) then we would need to provide the position of
the out parameter that is the returned ref-cursor. Here is an example where the first parameter is the
returned ref-cursor:

<bean id="reader" class="0.s.batch.item database. St or edProcedurel t enReader" >
<property nane="dat aSource" ref="dataSource"/>
<property nanme="procedureNanme" val ue="sp_custoner_credit"/>
<property nane="ref CursorPosition" val ue="1"/>
<property nanme="rowivapper">
<bean cl ass="org. spri ngframewor k. bat ch. sanpl e. dormai n. Cust oner Cr edi t Rowivapper "/ >
</ property>
</ bean>

If the cursor was returned from a stored function (option 3) we would need to set the property
"f unction"totrue. It defaults to f al se. Here is what that would look like:

<bean id="reader" class="o0.s.batch.item database. St oredProcedurel t enReader" >
<property nane="dat aSource" ref="dataSource"/>
<property nane="procedur eNane" val ue="sp_custoner_credit"/>
<property nanme="function" val ue="true"/>
<property nanme="r owiVapper" >
<bean cl ass="org. spri ngframewor k. bat ch. sanpl e. dormei n. Cust oner Cr edi t Rowivapper "/ >
</ property>
</ bean>

In all of these cases we need to define a Rowapper as well as a Dat aSour ce and the actual procedure
name.

If the stored procedure or function takes in parameter then they must be declared and set via the
parameters property. Here is an example for Oracle that declares three parameters. The first one is
the out parameter that returns the ref-cursor, the second and third are in parameters that takes a value
of type INTEGER:

Spring Batch - Reference
3.0.0.RC2 Documentation 89

Spring Batch

<bean id="reader" class="o0.s.batch.item database. St oredProcedurel t enReader" >
<property nane="dat aSource" ref="dataSource"/>
<property nane="procedureNane" val ue="spring. cursor_func"/>
<property nanme="paraneters">
<list>
<bean cl ass="org. spri ngfranmework. jdbc. core. Sql Qut Par aneter" >
<constructor-arg index="0" val ue="new d"/>
<util:constant static-field="oracle.jdbc.O acl eTypes. CURSOR'/ >
</ const ruct or - ar g>
</ bean>
<bean cl ass="org. spri ngfranework. jdbc. core. Sql Paranet er" >
<constructor-arg index="0" val ue="anmount"/>
<util:constant static-field="java.sql.Types.|NTEGER'/ >
</ const ruct or - ar g>
</ bean>
<bean cl ass="org. spri ngfranework. jdbc. core. Sql Paranet er" >
<constructor-arg index="0" val ue="custid"/>
<util:constant static-field="java.sql.Types.|NTEGER'/ >
</ const ruct or - ar g>
</ bean>
</list>
</ property>
<property nane="row\Vapper" ref="rowVapper"/>
<property nanme="preparedStatenment Setter" ref="paraneterSetter"/>
</ bean>

In addition to the parameter declarations we need to specify a PreparedSt at enent Setter
implementation that sets the parameter values for the call. This works the same as for the
JdbcCur sor | t emReader above. All the additional properties listed in the section called “Additional
Properties” apply to the St or edPr ocedur el t enReader as well.

Paging ItemReaders

An alternative to using a database cursor is executing multiple queries where each query is bringing
back a portion of the results. We refer to this portion as a page. Each query that is executed must specify
the starting row number and the number of rows that we want returned for the page.

JdbcPagingltemReader

One implementation of a paging |tenReader is the JdbcPagi ngltenReader. The
JdbcPagi ngl t emReader needs a Pagi ngQuer yProvi der responsible for providing the SQL
queries used to retrieve the rows making up a page. Since each database has its own strategy for
providing paging support, we need to use a different Pagi ngQuer yPr ovi der for each supported
database type. There is also the Sql Pagi ngQuer yPr ovi der Fact or yBean that will auto-detect the
database that is being used and determine the appropriate Pagi ngQuer yPr ovi der implementation.
This simplifies the configuration and is the recommended best practice.

The Sql Pagi ngQuer yPr ovi der Fact or yBean requires that you specify a select clause and a from
clause. You can also provide an optional where clause. These clauses will be used to build an SQL
statement combined with the required sortKey.

After the reader has been opened, it will pass back one item per call to r ead in the same basic fashion
as any other | t enReader . The paging happens behind the scenes when additional rows are needed.

Spring Batch - Reference
3.0.0.RC2 Documentation 90

Spring Batch

Below is an example configuration using a similar 'customer credit' example as the cursor based
ltemReaders above:

<bean id="itenmReader" cl ass="org.spr...JdbcPagi ngltenReader" >
<property nane="dat aSource" ref="dataSource"/>
<property nanme="queryProvider">
<bean cl ass="org. spr. .. Sql Pagi ngQuer yProvi der Fact or yBean" >
<property nane="sel ect 0 ause" val ue="sel ect id, nane, credit"/>
<property nane="fronCl ause" val ue="from custoner"/>
<property nane="wher eC ause" val ue="where status=:status"/>
<property nanme="sortKey" val ue="id"/>
</ bean>
</ property>
<property nane="paraneter Val ues" >
<n’ap>
<entry key="status" val ue="NEW/>
</ map>
</ property>
<property nane="pageSi ze" val ue="1000"/>
<property nane="rowivapper" ref="custoner Mapper"/>
</ bean>

This configured | t emReader will return Cust oner Cr edi t objects using the Rowapper that must be
specified. The 'pageSize' property determines the number of entities read from the database for each
guery execution.

The 'parameterValues' property can be used to specify a Map of parameter values for the query. If you
use named parameters in the where clause the key for each entry should match the name of the named
parameter. If you use a traditional '?' placeholder then the key for each entry should be the number of
the placeholder, starting with 1.

JpaPagingltemReader

Another implementation of a paging | t enReader is the JpaPagi ngl t emReader . JPA doesn't have
a concept similar to the Hibernate St at el essSessi on so we have to use other features provided by
the JPA specification. Since JPA supports paging, this is a natural choice when it comes to using JPA
for batch processing. After each page is read, the entities will become detached and the persistence
context will be cleared in order to allow the entities to be garbage collected once the page is processed.

The JpaPagi ngltenReader allows you to declare a JPQL statement and pass in a
Entit yManager Fact ory. It will then pass back one item per call to r ead in the same basic fashion as
any other | t enReader . The paging happens behind the scenes when additional entities are needed.
Below is an example configuration using the same 'customer credit' example as the JDBC reader above:

<bean id="itenReader" class="org.spr...JpaPagi ngltenReader">
<property nane="entityManager Factory" ref="entityManagerFactory"/>
<property nane="queryString" val ue="select ¢ from CustonerCredit c"/>
<property nanme="pageSi ze" val ue="1000"/>

</ bean>

This configured | t emReader will return Cust oner Cr edi t objects in the exact same manner as
described by the JdbcPagi ngl t enReader above, assuming the Customer object has the correct JPA
annotations or ORM mapping file. The ‘pageSize' property determines the number of entities read from
the database for each query execution.

Spring Batch - Reference
3.0.0.RC2 Documentation 91

Spring Batch

IbatisPagingltemReader

© Note

This reader is deprecated as of Spring Batch 3.0.

If you use IBATIS for your data access then you can use the | bat i sPagi ngl t enReader which, as
the name indicates, is an implementation of a paging | t enReader . IBATIS doesn't have direct support
for reading rows in pages but by providing a couple of standard variables you can add paging support
to your IBATIS queries.

Here is an example of a configuration for a | bat i sPagi ngl t enReader reading CustomerCredits as
in the examples above:

<bean id="itenmReader" class="org.spr...|batisPagi ngltenReader">
<property nane="sql Mapdient" ref="sql Mapdient"/>
<property nane="queryld" val ue="get PagedCust oner Credits"/>
<property nane="pageSi ze" val ue="1000"/>

</ bean>

The 1batisPagi ngltenReader configuration above references an IBATIS query called
"getPagedCustomerCredits". Here is an example of what that query should look like for MySQL.

<sel ect id="getPagedCustonerCredits" resultMp="custonerCreditResult">
select id, name, credit fromcustonmer order by id asc LIMT #_skiprows#, #_pagesize#
</ sel ect >

The _ski prows and _pagesi ze variables are provided by the | bat i sPagi ngl t enReader and there
is also a_page variable that can be used if necessary. The syntax for the paging queries varies with the
database used. Here is an example for Oracle (unfortunately we need to use CDATA for some operators
since this belongs in an XML document):

<sel ect id="get PagedCustonerCredits" resultMap="custonerCreditResult">
select * from (
select * from (
select t.id, t.name, t.credit, ROMUM ROMUM_ from custonmer t order by id
)) where ROMNUM_ <! [CDATA[> |]> (#_page# * #_pagesize#)
) where ROMNNUM <! [CDATA[<= |]> #_pagesi ze#
</ sel ect >

Database ItemWriters

While both Flat Files and XML have specific ltemWriters, there is no exact equivalent in the database
world. This is because transactions provide all the functionality that is needed. ItemWriters are necessary
for files because they must act as if they're transactional, keeping track of written items and flushing
or clearing at the appropriate times. Databases have no need for this functionality, since the write is
already contained in a transaction. Users can create their own DAOSs that implement the [t emW i t er
interface or use one from a custom | t emW i t er that's written for generic processing concerns, either
way, they should work without any issues. One thing to look out for is the performance and error handling
capabilities that are provided by batching the outputs. This is most common when using hibernate as
anltenmWiter, but could have the same issues when using Jdbc batch mode. Batching database
output doesn't have any inherent flaws, assuming we are careful to flush and there are no errors in the
data. However, any errors while writing out can cause confusion because there is ho way to know which
individual item caused an exception, or even if any individual item was responsible, as illustrated below:

Spring Batch - Reference
3.0.0.RC2 Documentation 92

Spring Batch

erm\Ariter
]
Step ' Session TransactionManager
: i : |
exacute() _ I i i
— begin{) : ' -
write(items) | E . |
|
Update i
| |
|
i |
I |
— |
i]
rollback() : 0 L
o ! i '|:|

If items are buffered before being written out, any errors encountered will not be thrown until the buffer
is flushed just before a commit. For example, let's assume that 20 items will be written per chunk, and
the 15th item throws a DatalntegrityViolationException. As far as the Step is concerned, all 20 item will
be written out successfully, since there's no way to know that an error will occur until they are actually
written out. Once Sessi on#f | ush() is called, the buffer will be emptied and the exception will be hit. At
this point, there's nothing the St ep can do, the transaction must be rolled back. Normally, this exception
might cause the Item to be skipped (depending upon the skip/retry policies), and then it won't be written
out again. However, in the batched scenario, there's no way for it to know which item caused the issue,
the whole buffer was being written out when the failure happened. The only way to solve this issue is
to flush after each item:

Spring Batch - Reference
3.0.0.RC2 Documentation 93

Spring Batch

rollback()

em\\Titer
]
1
Step ' Session TransactionManager
1
| ! | I
execute() _ \ i
— begin{) : ' -
1 T
write(item) | : |
> update 1 I
I
flushi) !
o :
write(item) ! '
()=‘_ update ' I
|
I
flush \
rl 1
I
I
I

This is a common use case, especially when using Hibernate, and the simple guideline for
implementations of | t em i t er, is to flush on each call to wr i t e() . Doing so allows for items to be
skipped reliably, with Spring Batch taking care internally of the granularity of the callsto I t emWi t er
after an error.

6.10 Reusing Existing Services

Batch systems are often used in conjunction with other application styles. The most common is an
online system, but it may also support integration or even a thick client application by moving necessary
bulk data that each application style uses. For this reason, it is common that many users want to reuse
existing DAOs or other services within their batch jobs. The Spring container itself makes this fairly easy
by allowing any necessary class to be injected. However, there may be cases where the existing service
needs to act as an I t emrReader or I tem i t er, either to satisfy the dependency of another Spring
Batch class, or because it truly is the main | t enReader for a step. It is fairly trivial to write an adaptor
class for each service that needs wrapping, but because it is such a common concern, Spring Batch
provides implementations: | t enrReader Adapt er and |t em\W i t er Adapt er . Both classes implement
the standard Spring method invoking the delegate pattern and are fairly simple to set up. Below is an
example of the reader:

<bean id="itenReader" class="org.springfranework.batch.item adapter.|tenReader Adapter">
<property nanme="target Obj ect" ref="fooService" />
<property nane="tar get Met hod" val ue="gener at eFoo" />

</ bean>

<bean i d="fooService" class="org.springframework.batch.item sanpl e. FooServi ce" />

One important point to note is that the contract of the targetMethod must be the same as the contract for
r ead: when exhausted it will return null, otherwise an Obj ect . Anything else will prevent the framework

Spring Batch - Reference
3.0.0.RC2 Documentation 94

Spring Batch

from knowing when processing should end, either causing an infinite loop or incorrect failure, depending
upon the implementation of the It emW i ter. The ltemN it er implementation is equally as simple:

<bean id="itemWNiter" class="org.springframework.batch.item adapter.|ltemNiterAdapter">
<property nanme="t arget Obj ect" ref="fooService" />
<property nane="t arget Met hod" val ue="processFoo" />

</ bean>

<bean i d="fooService" class="org.springfranmework. batch.item sanpl e. FooService" />

6.11 Validating Input

During the course of this chapter, multiple approaches to parsing input have been discussed. Each major
implementation will throw an exception if it is not ‘well-formed'. The Fi xedLengt hTokeni zer will throw
an exception if a range of data is missing. Similarly, attempting to access an index in a Rowivapper
of Fi el dSet Mapper that doesn't exist or is in a different format than the one expected will cause an
exception to be thrown. All of these types of exceptions will be thrown before r ead returns. However,
they don't address the issue of whether or not the returned item is valid. For example, if one of the fields
is an age, it obviously cannot be negative. It will parse correctly, because it existed and is a number,
but it won't cause an exception. Since there are already a plethora of Validation frameworks, Spring
Batch does not attempt to provide yet another, but rather provides a very simple interface that can be
implemented by any number of frameworks:

public interface Validator {

voi d val i date(Qbj ect value) throws ValidationException

The contract is that the val i dat e method will throw an exception if the object is invalid, and return
normally if it is valid. Spring Batch provides an out of the box | t enPr ocessor :

Spring Batch - Reference
3.0.0.RC2 Documentation 95

Spring Batch

<bean cl ass="org. spri ngframework. batch.item validator. ValidatingltenProcessor">
<property nane="validator" ref="validator" />
</ bean>

<bean id="validator"
cl ass="org. springframewor k. batch.item validator. SpringValidator">
<property nane="val i dator">
<bean i d="order Val i dat or"
cl ass="org. spri ngnodul es. val i dati on. val ang. Val angVal i dat or" >
<property nanme="val ang">

<val ue>
<! [CDATA[
{ orderld : ? > 0 AND ? <= 9999999999 : 'Incorrect order |ID
‘error.order.id }
{ totalLines : ? = size(lineltens) : 'Bad count of order lines

"error.order.|ines. badcount'}
{ custoner.registered : custoner.businessCustomer = FALSE OR ? = TRUE
' Busi ness custoner nust be registered
: 'error.custoner.registration'}
{ custoner.conpanyNanme : custoner. busi nessCustomer = FALSE OR ? HAS TEXT
: ' Conmpany nane for business custoner is mandatory
‘error.custoner. conpanynane' }
11>
</ val ue>
</ property>
</ bean>
</ property>
</ bean>

This simple example shows a simple Val angVal i dat or that is used to validate an order object. The
intent is not to show Valang functionality as much as to show how a validator could be added.

6.12 Preventing State Persistence

By default, all of the It enReader and It enW it er implementations store their current state in the
Execut i onCont ext before it is committed. However, this may not always be the desired behavior.
For example, many developers choose to make their database readers 'rerunnable’ by using a process
indicator. An extra column is added to the input data to indicate whether or not it has been processed.
When a patrticular record is being read (or written out) the processed flag is flipped from false to
true. The SQL statement can then contain an extra statement in the where clause, such as "where
PROCESSED_IND =false", thereby ensuring that only unprocessed records will be returned in the case
of a restart. In this scenario, it is preferable to not store any state, such as the current row number, since
it will be irrelevant upon restart. For this reason, all readers and writers include the 'saveState' property:

Spring Batch - Reference
3.0.0.RC2 Documentation 96

Spring Batch

<bean i d="pl ayer Sunmari zat i onSour ce" cl ass="org.spr...JdbcCursorltenReader">
<property nanme="dat aSource" ref="dataSource" />
<property nane="rowivapper">
<bean cl ass="org. spri ngframewor k. bat ch. sanpl e. Pl ayer Sumar yMapper" />
</ property>
<property name="saveState" val ue="fal se" />
<property nane="sql ">
<val ue>
SELECT ganes. pl ayer _i d, ganes.year_no, SUM COWLETES),
SUM ATTEMPTS), SUM PASSI NG _YARDS), SUM PASSI NG TD),
SUM | NTERCEPTI ONS), SUM RUSHES), SUM RUSH_YARDS),
SUM RECEPTI ONS), SUM RECEPTI ONS_YARDS), SUM TOTAL_TD)
from ganes, players where players.player_id =
ganes. pl ayer _id group by ganes. pl ayer_id, ganes.year_no
</val ue>
</ property>
</ bean>

The |t enReader configured above will not make any entries in the Executi onCont ext for any
executions in which it participates.

6.13 Creating Custom ItemReaders and ItemWriters

So far in this chapter the basic contracts that exist for reading and writing in Spring Batch and some
common implementations have been discussed. However, these are all fairly generic, and there are
many potential scenarios that may not be covered by out of the box implementations. This section will
show, using a simple example, how to create a custom | t enReader and | t emW i t er implementation
and implement their contracts correctly. The | t enrReader will also implement | t entSt r eam in order
to illustrate how to make a reader or writer restartable.

Custom IltemReader Example

For the purpose of this example, a simple | t emReader implementation that reads from a provided list
will be created. We'll start out by implementing the most basic contract of | t enReader , r ead:

public class Custom tenReader <T> i npl enents |tenReader <T>{
Li st<T> itens;

publ i c CustonmltenReader (List<T> itens) {
this.items = itens;

}

public T read() throws Exception, Unexpectedl nput Excepti on,
NoWor kFoundExcept i on, Par seException {

if (litens.isEnpty()) {
return itens.renove(0);

}

return null;

This very simple class takes a list of items, and returns them one at a time, removing each from the list.
When the list is empty, it returns null, thus satisfying the most basic requirements of an | t emrReader ,
as illustrated below:

Spring Batch - Reference
3.0.0.RC2 Documentation 97

Spring Batch

List<String> items = new ArrayList<String>();
itenms.add("1");
itens.add("2");
items. add("3");

I tenReader itenReader = new Custom tenReader<String>(itens);
assert Equal s("1", itenReader.read());

assert Equal s("2", itenReader.read());

assert Equal s("3", itenReader.read());

assertNul | (i temReader.read());

Making the | t enReader Restartable

The final challenge now is to make the | t enReader restartable. Currently, if the power goes out, and
processing begins again, the | t emReader must start at the beginning. This is actually valid in many
scenarios, but it is sometimes preferable that a batch job starts where it left off. The key discriminant
is often whether the reader is stateful or stateless. A stateless reader does not need to worry about
restartability, but a stateful one has to try and reconstitute its last known state on restart. For this reason,
we recommend that you keep custom readers stateless if possible, so you don't have to worry about
restartability.

If you do need to store state, then the | t enfst r eaminterface should be used:

public class Custom tenReader<T> i npl enents |tenReader<T>, |tenftream {

Li st <T> i tems;
int currentlndex = 0;
private static final String CURRENT_I NDEX = "current.index";

publ i c CustonltenReader (List<T> itens) {
this.itens = itenmns;

}

public T read() throws Exception, Unexpectedl nput Excepti on,
Par seException {

if (currentlndex < items.size()) {
return itens.get(currentlndex++);

}

return null;

}

public voi d open(Executi onContext executionContext) throws |tenttreanException {
i f (executi onCont ext . cont ai nsKey(CURRENT_| NDEX)) {
current | ndex = new Long(executi onCont ext.getLong(CURRENT_| NDEX)) . i nt Val ue();

}
el se{

currentlndex = 0;
}

}

publ i c voi d updat e(Executi onCont ext executi onContext) throws |tenftreanException {
execut i onCont ext . put Long(CURRENT_| NDEX, new Long(current|ndex).|ongVal ue());

}

public void close() throws |tenfstreanException {}

Spring Batch - Reference
3.0.0.RC2 Documentation 98

Spring Batch

Oneachcalltothe | t ent r eamupdat e method, the currentindex of the | t enReader will be stored in
the provided Execut i onCont ext with a key of 'current.index’. When the | t enf5t r eamopen method
is called, the Execut i onCont ext is checked to see if it contains an entry with that key. If the key is
found, then the current index is moved to that location. This is a fairly trivial example, but it still meets
the general contract:

Execut i onCont ext executi onContext = new Executi onContext();
((ltentStrean)itenReader). open(executi onContext);

assert Equal s("1", itenReader.read());
((ltenBtrean)itenReader) . updat e(executi onCont ext) ;

List<String> items = new ArrayList<String>();
items. add("1");

itenms.add("2");

itens.add("3");

i temReader = new Customl t emReader <String>(itens);

((ltenStreamitenReader) . open(executi onContext);
assert Equal s("2", itenReader.read());

Most ItemReaders have much more sophisticated restart logic. The JdbcCur sor | t enReader, for
example, stores the row id of the last processed row in the Cursor.

It is also worth noting that the key used within the Execut i onCont ext should not be trivial. That is
because the same Execut i onCont ext is used for all | t enf5t r eans within a St ep. In most cases,
simply prepending the key with the class name should be enough to guarantee uniqueness. However,
in the rare cases where two of the same type of | t enfst r eamare used in the same step (which can
happen if two files are need for output) then a more unique name will be needed. For this reason, many
of the Spring Batch | t enReader and | t emV i t er implementations have a set Narre() property that
allows this key name to be overridden.

Custom ItemWriter Example

Implementing a Custom | t emW i t er is similar in many ways to the | t enReader example above, but
differs in enough ways as to warrant its own example. However, adding restartability is essentially the
same, so it won't be covered in this example. As with the | t emReader example, a Li st will be used
in order to keep the example as simple as possible:

public class CustomtemWiter<T> inplenents ItemWiter<T> {
Li st <T> out put = Transacti onAwar eProxyFact ory. creat eTransacti onal Li st ();

public void wite(List<? extends T> itens) throws Exception {
out put. addAl | (itemns);

}

public List<T> getQutput() {
return output;

}

Making the | t em\W i t er Restartable

To make the ItemWriter restartable we would follow the same process as for the | t enrReader , adding
and implementing the | t en5t r eaminterface to synchronize the execution context. In the example we
might have to count the number of items processed and add that as a footer record. If we needed to do

Spring Batch - Reference
3.0.0.RC2 Documentation 99

Spring Batch

that, we could implement | t enst r eamin our | t emV i t er so that the counter was reconstituted from
the execution context if the stream was re-opened.

In many realistic cases, custom ItemWriters also delegate to another writer that itself is restartable (e.g.
when writing to a file), or else it writes to a transactional resource so doesn't need to be restartable
because it is stateless. When you have a stateful writer you should probably also be sure to implement
ItenStreamas wellas It emW i t er . Remember also that the client of the writer needs to be aware
of the | t enSt r eam so you may need to register it as a stream in the configuration xml.

Spring Batch - Reference
3.0.0.RC2 Documentation 100

Spring Batch

7. Scaling and Parallel Processing

Many batch processing problems can be solved with single threaded, single process jobs, so it is
always a good idea to properly check if that meets your needs before thinking about more complex
implementations. Measure the performance of a realistic job and see if the simplest implementation
meets your needs first: you can read and write a file of several hundred megabytes in well under a
minute, even with standard hardware.

When you are ready to start implementing a job with some parallel processing, Spring Batch offers a
range of options, which are described in this chapter, although some features are covered elsewhere.
At a high level there are two modes of parallel processing: single process, multi-threaded; and multi-
process. These break down into categories as well, as follows:

Multi-threaded Step (single process)

Parallel Steps (single process)

Remote Chunking of Step (multi process)

Partitioning a Step (single or multi process)

Next we review the single-process options first, and then the multi-process options.

7.1 Multi-threaded Step

The simplest way to start parallel processing is to add a TaskExecut or to your Step configuration,
e.g. as an attribute of the t askl et :

<step id="|oadi ng">
<t askl et task-executor="taskExecutor">...</tasklet>
</ st ep>

In this example the taskExecutor is a reference to another bean definition, implementing the
TaskExecut or interface. TaskExecut or is a standard Spring interface, so consult the Spring User
Guide for details of available implementations. The simplest multi-threaded TaskExecut or is a
Si npl eAsyncTaskExecut or .

The result of the above configuration will be that the Step executes by reading, processing and writing
each chunk of items (each commit interval) in a separate thread of execution. Note that this means
there is no fixed order for the items to be processed, and a chunk might contain items that are non-
consecutive compared to the single-threaded case. In addition to any limits placed by the task executor
(e.qg. ifitis backed by a thread pool), there is a throttle limit in the tasklet configuration which defaults to
4. You may need to increase this to ensure that a thread pool is fully utilised, e.g.

<step id="I oadi ng"> <t askl et
t ask- execut or ="t askExecut or "
throttle-limt="20">...</tasklet>
</ st ep>

Note also that there may be limits placed on concurrency by any pooled resources used in your step,
such as a Dat aSour ce. Be sure to make the pool in those resources at least as large as the desired
number of concurrent threads in the step.

Spring Batch - Reference
3.0.0.RC2 Documentation 101

Spring Batch

There are some practical limitations of using multi-threaded Steps for some common Batch use cases.
Many participants in a Step (e.g. readers and writers) are stateful, and if the state is not segregated by
thread, then those components are not usable in a multi-threaded Step. In particular most of the off-
the-shelf readers and writers from Spring Batch are not designed for multi-threaded use. It is, however,
possible to work with stateless or thread safe readers and writers, and there is a sample (parallelJob)
in the Spring Batch Samples that show the use of a process indicator (see Section 6.12, “Preventing
State Persistence”) to keep track of items that have been processed in a database input table.

Spring Batch provides some implementations of | t emW i t er and | t enReader . Usually they say in
the Javadocs if they are thread safe or not, or what you have to do to avoid problems in a concurrent
environment. If there is no information in Javadocs, you can check the implementation to see if there
is any state. If a reader is not thread safe, it may still be efficient to use it in your own synchronizing
delegator. You can synchronize the call to read() and as long as the processing and writing is the
most expensive part of the chunk your step may still complete much faster than in a single threaded
configuration.

7.2 Parallel Steps

As long as the application logic that needs to be parallelized can be split into distinct responsibilities,
and assigned to individual steps then it can be parallelized in a single process. Parallel Step execution
is easy to configure and use, for example, to execute steps (st epl, st ep2) in parallel with st ep3,
you could configure a flow like this:

<job id="j obl">
<split id="splitl" task-executor="taskExecutor" next="step4">
<f | ow>
<step id="stepl" parent="sl1" next="step2"/>
<step id="step2" parent="s2"/>

</ fl ow>
<fl ow>
<step id="step3" parent="s3"/>
</fl ow>
</split>
<step id="step4" parent="s4"/>

</j ob>

<beans: bean i d="taskExecutor" class="org.spr...SinpleAsyncTaskExecutor"/>

The configurable "task-executor" attribute is used to specify which TaskExecutor implementation should
be used to execute the individual flows. The default is SyncTaskExecut or, but an asynchronous
TaskExecutor is required to run the steps in parallel. Note that the job will ensure that every flow in the
split completes before aggregating the exit statuses and transitioning.

See the section on the section called “Split Flows” for more detail.

7.3 Remote Chunking

In Remote Chunking the Step processing is split across multiple processes, communicating with each
other through some middleware. Here is a picture of the pattern in action:

Spring Batch - Reference
3.0.0.RC2 Documentation 102

Spring Batch

Remote Chunking

Master: Slave:
<<Step>> <<Listener=>
S
.
L]
5 |3 al |y
= | = =
| M 8|,15
-.m,_r& :"-—nh-—.'g >
E C = E L
ol |5 c| (&8
= | 2 |=
0 L =
(]
& .
I'I:

——

The Master component is a single process, and the Slaves are multiple remote processes. Clearly this
pattern works best if the Master is not a bottleneck, so the processing must be more expensive than the
reading of items (this is often the case in practice).

The Master is just an implementation of a Spring Batch St ep, with the ItemWriter replaced with
a generic version that knows how to send chunks of items to the middleware as messages. The
Slaves are standard listeners for whatever middleware is being used (e.g. with JMS they would
be Messsageli steners), and their role is to process the chunks of items using a standard
ItemWiter orltenProcessor plusltemNiter,throughthe ChunkProcessor interface. One of
the advantages of using this pattern is that the reader, processor and writer components are off-the-shelf
(the same as would be used for a local execution of the step). The items are divided up dynamically and
work is shared through the middleware, so if the listeners are all eager consumers, then load balancing
is automatic.

The middleware has to be durable, with guaranteed delivery and single consumer for each message.
JMS is the obvious candidate, but other options exist in the grid computing and shared memory product
space (e.g. Java Spaces).

7.4 Partitioning

Spring Batch also provides an SPI for partitioning a Step execution and executing it remotely. In this
case the remote participants are simply Step instances that could just as easily have been configured
and used for local processing. Here is a picture of the pattern in action:

Spring Batch - Reference
3.0.0.RC2 Documentation 103

Spring Batch

Partitioning Overview

Job
‘ ote | Slave |
P / Slave |
‘ Ma:ter Iéffrf’*| Slave |
*| Slave |
‘ St“ | Slave |
ep
Slave |

The Job is executing on the left hand side as a sequence of Steps, and one of the Steps is labelled as a
Master. The Slaves in this picture are all identical instances of a Step, which could in fact take the place
of the Master resulting in the same outcome for the Job. The Slaves are typically going to be remote
services, but could also be local threads of execution. The messages sent by the Master to the Slaves
in this pattern do not need to be durable, or have guaranteed delivery: Spring Batch meta-data in the
JobReposi t or y will ensure that each Slave is executed once and only once for each Job execution.

The SPI in Spring Batch consists of a special implementation of Step (the Parti ti onSt ep), and two
strategy interfaces that need to be implemented for the specific environment. The strategy interfaces are
Partiti onHandl er and St epExecuti onSplitter,and theirrole is show in the sequence diagram
below:

Spring Batch - Reference
3.0.0.RC2 Documentation 104

Spring Batch

PartitionStep

: Step
: PartitionHandler :
execute() | : _ _ !
handle) . StepExecultlonSplltter i
- split() ! |
i i
(— 5 execute() |
i u repeat
..... ...r..
N join . .
1 l
o ! !
 20gregatk | l :
- : ! i

The Step on the right in this case is the "remote" Slave, so potentially there are many objects and or
processes playing this role, and the PartitionStep is shown driving the execution. The PartitionStep
configuration looks like this:

<step id="stepl. master">
<partition step="stepl" partitioner="partitioner">
<handl er grid-size="10" task-executor="taskExecutor"/>
</partition>
</ step>

Similar to the multi-threaded step's throttle-limit attribute, the grid-size attribute prevents the task
executor from being saturated with requests from a single step.

There is a simple example which can be copied and extended in the unit test suite for Spring Batch
Samples (see *Partiti onJob. xm configuration).

Spring Batch creates step executions for the partitions called "stepl:partition0", etc., SO many people
prefer to call the master step "stepl:master” for consistency. With Spring 3.0 you can do this using an
alias for the step (specifying the nane attribute instead of the i d).

PartitionHandler

The PartitionHandl er is the component that knows about the fabric of the remoting or grid
environment. Itis able to send St epExecut i on requests to the remote Steps, wrapped in some fabric-
specific format, like a DTO. It does not have to know how to split up the input data, or how to aggregate
the result of multiple Step executions. Generally speaking it probably also doesn't need to know about
resilience or failover, since those are features of the fabric in many cases, and anyway Spring Batch

Spring Batch - Reference
3.0.0.RC2 Documentation 105

Spring Batch

always provides restartability independent of the fabric: a failed Job can always be restarted and only
the failed Steps will be re-executed.

The PartitionHandl er interface can have specialized implementations for a variety of fabric types:
e.g. simple RMI remoting, EJB remoting, custom web service, JMS, Java Spaces, shared memory grids
(like Terracotta or Coherence), grid execution fabrics (like GridGain). Spring Batch does not contain
implementations for any proprietary grid or remoting fabrics.

Spring Batch does however provide a useful implementation of Parti ti onHandl er that executes
Steps locally in separate threads of execution, using the TaskExecut or strategy from Spring. The
implementation is called TaskExecut or Par ti ti onHandl er, and itis the default for a step configured
with the XML namespace as above. It can also be configured explicitly like this:

<step id="stepl. master">
<partition step="stepl" handl er="handl er"/>
</ st ep>

<bean cl ass="org. spr... TaskExecutorPartitionHandl er">
<property nane="t askExecutor" ref="taskExecutor"/>
<property nane="step" ref="stepl" />
<property nane="gri dSi ze" val ue="10" />

</ bean>

The gri dSi ze determines the number of separate step executions to create, so it can be matched to
the size of the thread pool in the TaskExecut or, or else it can be set to be larger than the number of
threads available, in which case the blocks of work are smaller.

The TaskExecut or Partiti onHandl er is quite useful for 10 intensive Steps, like copying large
numbers of files or replicating filesystems into content management systems. It can also be used for
remote execution by providing a Step implementation that is a proxy for a remote invocation (e.g. using
Spring Remoting).

Partitioner

The Partitioner has a simpler responsibility: to generate execution contexts as input parameters for new
step executions only (no need to worry about restarts). It has a single method:

public interface Partitioner {
Map<String, ExecutionContext> partition(int gridSize);
}

The return value from this method associates a unique name for each step execution (the St ri ng),
with input parameters in the form of an Execut i onCont ext . The names show up later in the Batch
meta data as the step name in the partitioned St epExecut i ons. The Execut i onCont ext is just a
bag of name-value pairs, so it might contain a range of primary keys, or line numbers, or the location
of an input file. The remote St ep then normally binds to the context input using #{. . .} placeholders
(late binding in step scope), as illustrated in the next section.

The names of the step executions (the keys in the Map returned by Parti ti oner) need to be unique
amongst the step executions of a Job, but do not have any other specific requirements. The easiest way
to do this, and to make the names meaningful for users, is to use a prefix+suffix naming convention,
where the prefix is the name of the step that is being executed (which itself is unique in the Job), and
the suffix is just a counter. There is a Si npl eParti ti oner inthe framework that uses this convention.

Spring Batch - Reference
3.0.0.RC2 Documentation 106

Spring Batch

An optional interface Partiti oneNaneProvi der can be used to provide the partition names
separately from the partitions themselves. IfaPar t i t i oner implements this interface then on a restart
only the names will be queried. If partitioning is expensive this can be a useful optimisation. Obviously the
names provided by the Par ti t i oneNanePr ovi der must match those provided by the Parti ti oner.

Binding Input Data to Steps

It is very efficient for the steps that are executed by the PartitionHandler to have identical configuration,
and for their input parameters to be bound at runtime from the ExecutionContext. This is easy to do
with the StepScope feature of Spring Batch (covered in more detail in the section on Late Binding). For
example ifthe Parti ti oner creates Executi onCont ext instances with an attribute key f i | eNane,
pointing to a different file (or directory) for each step invocation, the Parti ti oner output might look
like this:

Table 7.1. Example step execution name to execution context provided by Partitioner targeting directory
processing

Step Execution Name (key) ExecutionContext (value)
filecopy:partitionO fileName=/home/data/one
filecopy:partitionl fileName=/home/data/two
filecopy:partition2 fileName=/home/data/three

Then the file name can be bound to a step using late binding to the execution context:

<bean i d="itenReader" scope="step"
class="org.spr...MiltiResourceltenReader">
<property nanme="resource" val ue="#{stepExecutionContext[fileName]}/*"/>
</ bean>

Spring Batch - Reference
3.0.0.RC2 Documentation 107

Spring Batch

8. Repeat

8.1 RepeatTemplate

Batch processing is about repetitive actions - either as a simple optimization, or as part of a job. To
strategize and generalize the repetition as well as to provide what amounts to an iterator framework,
Spring Batch has the Repeat Oper at i ons interface. The Repeat Oper at i ons interface looks like this:

public interface RepeatOperations {

Repeat St at us iterate(Repeat Cal | back cal |l back) throws Repeat Exception;

The callback is a simple interface that allows you to insert some business logic to be repeated:

public interface RepeatCallback {

Repeat St at us dol nlterati on(Repeat Cont ext context) throws Exception;

The callback is executed repeatedly until the implementation decides that the iteration should end. The
return value in these interfaces is an enumeration that can either be Repeat St at us. CONT|I NUABLE
or Repeat St at us. FI Nl SHED. A Repeat St at us conveys information to the caller of the repeat
operations about whether there is any more work to do. Generally speaking, implementations of
Repeat Qper at i ons should inspect the Repeat St at us and use it as part of the decision to end the
iteration. Any callback that wishes to signal to the caller that there is no more work to do can return
Repeat St at us. FI NI SHED.

The simplest general purpose implementation of Repeat Oper at i ons is Repeat Tenpl at e. It could
be used like this:

Repeat Tenpl ate tenpl ate = new Repeat Tenpl ate();
tenpl at e. set Conpl eti onPol i cy(new Fi xedChunkSi zeConpl eti onPolicy(2));
tenpl ate.iterate(new Repeat Cal | back() {

public ExitStatus dolnlterati on(Repeat Context context) {

/1l Do stuff in batch...
return ExitStatus. CONTI NUABLE;

1)

In the example we return Repeat St at us. CONTI NUABLE to show that there is more work to do. The
callback can also return Exi t St at us. FI NI SHEDif it wants to signal to the caller that there is no more
work to do. Some iterations can be terminated by considerations intrinsic to the work being done in
the callback, others are effectively infinite loops as far as the callback is concerned and the completion
decision is delegated to an external policy as in the case above.

Spring Batch - Reference
3.0.0.RC2 Documentation 108

Spring Batch

RepeatContext

The method parameter for the Repeat Cal | back is a Repeat Cont ext . Many callbacks will simply
ignore the context, but if necessary it can be used as an attribute bag to store transient data for the
duration of the iteration. After the i t er at e method returns, the context will no longer exist.

A Repeat Cont ext will have a parent context if there is a nested iteration in progress. The parent
context is occasionally useful for storing data that need to be shared between calls to i t er at e. This
is the case for instance if you want to count the number of occurrences of an event in the iteration and
remember it across subsequent calls.

RepeatStatus

Repeat St at us is an enumeration used by Spring Batch to indicate whether processing has finished.
These are possible Repeat St at us values:

Table 8.1. ExitStatus Properties

Value Description
CONTINUABLE There is more work to do.
FINISHED No more repetitions should take place.

Repeat St at us values can also be combined with a logical AND operation using the and() method in
Repeat St at us. The effect of this is to do a logical AND on the continuable flag. In other words, if either
status is FI NI SHED, then the result will be FI NI SHED.

8.2 Completion Policies

Inside a Repeat Tenpl at e the termination of the loop in the it er at e method is determined by a
Conpl eti onPol i cy which is also a factory for the Repeat Cont ext. The Repeat Tenpl at e has
the responsibility to use the current policy to create a Repeat Cont ext and pass that in to the
Repeat Cal | back at every stage in the iteration. After a callback completes its dol nl t er ati on, the
Repeat Tenpl at e has to make a call to the Conpl et i onPol i cy to ask it to update its state (which
will be stored in the Repeat Cont ext). Then it asks the policy if the iteration is complete.

Spring Batch provides some simple general purpose implementations of Conpl eti onPolicy.
The Si npl eConpl eti onPol i cy just allows an execution up to a fixed number of times (with
Repeat St at us. FI NI SHED forcing early completion at any time).

Users might need to implement their own completion policies for more complicated decisions. For

example, a batch processing window that prevents batch jobs from executing once the online systems
are in use would require a custom policy.

8.3 Exception Handling

If there is an exception thrown inside a Repeat Cal | back, the Repeat Tenpl at e consults an
Except i onHandl er which can decide whether or not to re-throw the exception.

Spring Batch - Reference
3.0.0.RC2 Documentation 109

Spring Batch

public interface ExceptionHandl er {

voi d handl eExcepti on(Repeat Cont ext context, Throwabl e throwabl e)
throws Runti neExcepti on;

}

A common use case is to count the number of exceptions of a given type, and fail when a limit is
reached. For this purpose Spring Batch provides the Si npl eLi i t Except i onHandl er and slightly
more flexible Ret hr owOnThr eshol dExcept i onHandl er. The Si npl eLi m t Excepti onHandl er
has a limit property and an exception type that should be compared with the current exception - all
subclasses of the provided type are also counted. Exceptions of the given type are ignored until the limit
is reached, and then rethrown. Those of other types are always rethrown.

An important optional property of the Si npl elLi nit Excepti onHandl er is the boolean flag
usePar ent . It is false by default, so the limit is only accounted for in the current Repeat Cont ext .
When set to true, the limit is kept across sibling contexts in a nested iteration (e.g. a set of chunks
inside a step).

8.4 Listeners

Often it is useful to be able to receive additional callbacks for cross cutting concerns across a number
of different iterations. For this purpose Spring Batch provides the Repeat Li st ener interface. The
Repeat Tenpl at e allows users to register Repeat Li st ener s, and they will be given callbacks with
the Repeat Cont ext and Repeat St at us where available during the iteration.

The interface looks like this:

public interface RepeatlListener {
voi d bef or e(Repeat Cont ext context);
voi d after(Repeat Context context, RepeatStatus result);
voi d open(Repeat Cont ext context);
voi d onError (Repeat Context context, Throwable e);
voi d cl ose(Repeat Cont ext context);

}

The open and cl ose callbacks come before and after the entire iteration. bef or e, af t er and onEr r or
apply to the individual RepeatCallback calls.

Note that when there is more than one listener, they are in a list, so there is an order. In this case open
and bef or e are called in the same order while af t er, onEr r or and cl ose are called in reverse order.

8.5 Parallel Processing

Implementations of Repeat Oper at i ons are not restricted to executing the callback sequentially. It is
quite important that some implementations are able to execute their callbacks in parallel. To this end,
Spring Batch provides the TaskExecut or Repeat Tenpl at e, which uses the Spring TaskExecut or
strategy to run the Repeat Cal | back. The defaultis to use a Synchr onousTaskExecut or , which has
the effect of executing the whole iteration in the same thread (the same as a normal Repeat Tenpl at e).

8.6 Declarative Iteration

Sometimes there is some business processing that you know you want to repeat every time it happens.
The classic example of this is the optimization of a message pipeline - it is more efficient to process a

Spring Batch - Reference
3.0.0.RC2 Documentation 110

Spring Batch

batch of messages, if they are arriving frequently, than to bear the cost of a separate transaction for every
message. Spring Batch provides an AOP interceptor that wraps a method call in a Repeat Oper at i ons
for just this purpose. The Repeat Oper at i onsl nt er cept or executes the intercepted method and
repeats according to the Conpl et i onPol i cy in the provided Repeat Tenpl at e.

Here is an example of declarative iteration using the Spring AOP namespace to repeat a service call
to a method called pr ocessMessage (for more detail on how to configure AOP interceptors see the
Spring User Guide):

<aop: confi g>
<aop: poi ntcut id="transactional"
expressi on="executi on(* com .*Service. processMessage(..))" />
<aop: advi sor poi ntcut-ref="transactional "
advi ce-ref="retryAdvi ce" order="-1"/>
</ aop: confi g>

<bean id="retryAdvice" class="org.spr...Repeat Operationslnterceptor"/>

The example above uses a default Repeat Tenpl at e inside the interceptor. To change the policies,
listeners etc. you only need to inject an instance of Repeat Tenpl at e into the interceptor.

If the intercepted method returns voi d then the interceptor always returns ExitStatus. CONTINUABLE
(so there is a danger of an infinite loop if the Conpl et i onPol i cy does not have a finite end point).
Otherwise it returns Exi t St at us. CONTI NUABLE until the return value from the intercepted method is
null, at which point it returns Exi t St at us. FI Nl SHED. So the business logic inside the target method
can signal that there is no more work to do by returning nul | , or by throwing an exception that is re-
thrown by the Except i onHandl er in the provided Repeat Tenpl at e.

Spring Batch - Reference
3.0.0.RC2 Documentation 111

Spring Batch

9. Retry

9.1 RetryTemplate

© Note

The retry functionality was pulled out of Spring Batch as of 2.2.0. It is now part of a new library,
Spring Retry.

To make processing more robust and less prone to failure, sometimes it helps to automatically retry a
failed operation in case it might succeed on a subsequent attempt. Errors that are susceptible to this
kind of treatment are transient in nature. For example a remote call to a web service or RMI service
that fails because of a network glitch or a DeadLockLoser Excepti on in a database update may
resolve themselves after a short wait. To automate the retry of such operations Spring Batch has the
Ret r yOper at i ons strategy. The Ret r yOper at i ons interface looks like this:

public interface RetryOperations {
<T> T execute(RetryCal | back<T> retryCal | back) throws Excepti on;

<T> T execute(RetryCal | back<T> retryCal | back, RecoveryCal |l back<T> recoveryCall back)
throws Excepti on;

<T> T execute(RetryCal | back<T> retryCal | back, RetryState retryState)
throws Exception, ExhaustedRetryException;

<T> T execute(RetryCal | back<T> retryCal | back, RecoveryCal |l back<T> recoveryCall back,
RetryState retryState) throws Exception;

The basic callback is a simple interface that allows you to insert some business logic to be retried:
public interface RetryCall back<T> {

T doWthRetry(RetryContext context) throws Throwabl e;

The callback is executed and if it fails (by throwing an Except i on), it will be retried until either it
is successful, or the implementation decides to abort. There are a number of overloaded execut e
methods in the Ret r yOper at i ons interface dealing with various use cases for recovery when all retry
attempts are exhausted, and also with retry state, which allows clients and implementations to store
information between calls (more on this later).

The simplest general purpose implementation of Ret r yOper ati ons is Ret r yTenpl at e. It could be
used like this

Spring Batch - Reference
3.0.0.RC2 Documentation 112

Spring Batch

RetryTenpl ate tenplate = new RetryTenpl ate();

Ti meout RetryPol i cy policy = new Ti neout RetryPolicy();
pol i cy. set Ti meout (30000L) ;

tenpl ate. set RetryPol i cy(policy);
Foo result = tenpl ate. execut e(new RetryCal | back<Foo>() ({
public Foo doWthRetry(RetryContext context) {

/1 Do stuff that might fail, e.g. webservice operation
return result;

1)

In the example we execute a web service call and return the result to the user. If that call fails then it
is retried until a timeout is reached.

RetryContext

The method parameter for the Ret r yCal | back is a Ret r yCont ext . Many callbacks will simply ignore
the context, but if necessary it can be used as an attribute bag to store data for the duration of the
iteration.

A Ret r yCont ext will have a parent context if there is a nested retry in progress in the same thread. The
parent context is occasionally useful for storing data that need to be shared between calls to execut e.

RecoveryCallback

When a retry is exhausted the Ret ryQperati ons can pass control to a different callback, the
Recover yCal | back. To use this feature clients just pass in the callbacks together to the same method,
for example:

Foo foo = tenpl ate. execute(new RetryCal | back<Foo>() {
public Foo doWthRetry(RetryContext context) {
/'l business |ogic here
}
new RecoveryCal | back<Foo>() {
Foo recover (RetryContext context) throws Exception {
/'l recover logic here

}
1)

If the business logic does not succeed before the template decides to abort, then the client is given the
chance to do some alternate processing through the recovery callback.

Stateless Retry

In the simplest case, a retry is just a while loop: the Ret r yTenpl at e can just keep trying until it either
succeeds or fails. The Ret r yCont ext contains some state to determine whether to retry or abort, but
this state is on the stack and there is no need to store it anywhere globally, so we call this stateless
retry. The distinction between stateless and stateful retry is contained in the implementation of the
RetryPol i cy (the RetryTenpl at e can handle both). In a stateless retry, the callback is always
executed in the same thread on retry as when it failed.

Spring Batch - Reference
3.0.0.RC2 Documentation 113

Spring Batch

Stateful Retry

Where the failure has caused a transactional resource to become invalid, there are some special
considerations. This does not apply to a simple remote call because there is no transactional resource
(usually), but it does sometimes apply to a database update, especially when using Hibernate. In
this case it only makes sense to rethrow the exception that called the failure immediately so that the
transaction can roll back and we can start a new valid one.

In these cases a stateless retry is not good enough because the re-throw and roll back necessarily
involve leaving the RetryQper ati ons. execut e() method and potentially losing the context that
was on the stack. To avoid losing it we have to introduce a storage strategy to lift it off the stack
and put it (at a minimum) in heap storage. For this purpose Spring Batch provides a storage strategy
Ret r yCont ext Cache which can be injected into the Ret r yTenpl at e. The default implementation of
the Ret r yCont ext Cache is in memory, using a simple Map. Advanced usage with multiple processes
in a clustered environment might also consider implementing the Ret r yCont ext Cache with a cluster
cache of some sort (though, even in a clustered environment this might be overkill).

Part of the responsibility of the Ret r yOper at i ons is to recognize the failed operations when they come
back in a new execution (and usually wrapped in a new transaction). To facilitate this, Spring Batch
provides the Ret r ySt at e abstraction. This works in conjunction with a special execut e methods in
the Ret ryQper ati ons.

The way the failed operations are recognized is by identifying the state across multiple invocations of the
retry. To identify the state, the user can provide an Ret r ySt at e object that is responsible for returning
a unigue key identifying the item. The identifier is used as a key in the Ret r yCont ext Cache.

© Warning

Be very careful with the implementation of Obj ect . equal s() and Cbj ect . hashCode() in
the key returned by Ret r ySt at e. The best advice is to use a business key to identify the items.
In the case of a JMS message the message ID can be used.

When the retry is exhausted there is also the option to handle the failed item in a different way, instead
of calling the RetryCal | back (which is presumed now to be likely to fail). Just like in the stateless
case, this option is provided by the Recover yCal | back, which can be provided by passing it in to the
execut e method of Ret r yOper at i ons.

The decision to retry or not is actually delegated to a regular Ret r yPol i cy, so the usual concerns
about limits and timeouts can be injected there (see below).

9.2 Retry Policies

Inside a RetryTenpl at e the decision to retry or fail in the execute method is determined
by a RetryPolicy which is also a factory for the RetryContext. The RetryTenpl ate has
the responsibility to use the current policy to create a RetryContext and pass that in to the
Ret ryCal | back at every attempt. After a callback fails the Ret r yTenpl at e has to make a call to
the Ret r yPol i cy to ask it to update its state (which will be stored in the Ret r yCont ext), and then
it asks the policy if another attempt can be made. If another attempt cannot be made (e.g. a limit is
reached or a timeout is detected) then the policy is also responsible for handling the exhausted state.
Simple implementations will just throw Ret r yExhaust edExcept i on which will cause any enclosing
transaction to be rolled back. More sophisticated implementations might attempt to take some recovery
action, in which case the transaction can remain intact.

Spring Batch - Reference
3.0.0.RC2 Documentation 114

Spring Batch

@ Tip

Failures are inherently either retryable or not - if the same exception is always going to be thrown
from the business logic, it doesn't help to retry it. So don't retry on all exception types - try to focus
on only those exceptions that you expect to be retryable. It's not usually harmful to the business
logic to retry more aggressively, but it's wasteful because if a failure is deterministic there will be
time spent retrying something that you know in advance is fatal.

Spring Batch provides some simple general purpose implementations of stateless Ret r yPol i cy, for
example a Si npl eRet ryPol i cy, and the Ti meout Ret r yPol i cy used in the example above.

The Si npl eRet ryPol i cy just allows a retry on any of a named list of exception types, up to a fixed
number of times. It also has a list of "fatal” exceptions that should never be retried, and this list overrides
the retryable list so that it can be used to give finer control over the retry behavior:

Si npl eRetryPolicy policy = new Sinpl eRetryPolicy();

/] Set the max retry attenpts

pol i cy. set MaxAtt enpt s(5);

/! Retry on all exceptions (this is the default)

policy. set Ret ryabl eExcepti ons(new C ass[] {Exception.class});

/1l ... but never retry Ill|egal StateException

pol i cy. set Fat al Excepti ons(new C ass[] {II1egal StateException.class});

/'l Use the policy...
RetryTenpl ate tenplate = new RetryTenpl ate();
tenpl ate. set RetryPol i cy(policy);
tenpl at e. execut e(new RetryCal | back<Foo>() {
public Foo doWthRetry(RetryContext context) {
/'l business |ogic here
}
)

There is also a more flexible implementation called Excepti onCl assi fi er RetryPol i cy, which
allows the user to configure different retry behavior for an arbitrary set of exception types though
the Excepti ond assi fi er abstraction. The policy works by calling on the classifier to convert an
exception into a delegate Ret r yPol i cy, so for example, one exception type can be retried more times
before failure than another by mapping it to a different policy.

Users might need to implement their own retry policies for more customized decisions. For instance, if
there is a well-known, solution-specific, classification of exceptions into retryable and not retryable.

9.3 Backoff Policies

When retrying after a transient failure it often helps to wait a bit before trying again, because usually the
failure is caused by some problem that will only be resolved by waiting. If a Ret r yCal | back fails, the
Ret r yTenpl at e can pause execution according to the Backof f Pol i cy in place.

public interface BackoffPolicy {
BackOf f Cont ext start (RetryContext context);

voi d backO f (BackOf f Cont ext backOf f Cont ext)
throws BackOf f I nt erruptedExcepti on;

Spring Batch - Reference
3.0.0.RC2 Documentation 115

Spring Batch

A Backof f Pol i cy is free to implement the backOff in any way it chooses. The policies provided
by Spring Batch out of the box all use Cbject.wait(). A common use case is to backoff
with an exponentially increasing wait period, to avoid two retries getting into lock step and both
failing - this is a lesson learned from the ethernet. For this purpose Spring Batch provides the
Exponent i al Backof f Pol i cy.

9.4 Listeners

Often it is useful to be able to receive additional callbacks for cross cutting concerns across a
number of different retries. For this purpose Spring Batch provides the Ret r yLi st ener interface. The
Ret r yTenpl at e allows users to register Ret r yLi st ener s, and they will be given callbacks with the
Ret r yCont ext and Thr owabl e where available during the iteration.

The interface looks like this:
public interface RetryListener {
voi d open(RetryContext context, RetryCallback<T> call back);
voi d onError(RetryContext context, RetryCallback<T> callback, Throwable e);

voi d cl ose(RetryContext context, RetryCallback<T> call back, Throwable e);

The open and cl ose callbacks come before and after the entire retry in the simplest case and onEr r or
applies to the individual Ret r yCal | back calls. The cl ose method might also receive a Thr owabl e;
if there has been an error it is the last one thrown by the Ret r yCal | back.

Note that when there is more than one listener, they are in a list, so there is an order. In this case open
will be called in the same order while onEr r or and cl ose will be called in reverse order.

9.5 Declarative Retry

Sometimes there is some business processing that you know you want to retry every time
it happens. The classic example of this is the remote service call. Spring Batch provides an
AOP interceptor that wraps a method call in a RetryQperations for just this purpose. The
Ret ryQper at i onsl nt er cept or executes the intercepted method and retries on failure according to
the Ret ryPol i cy in the provided Repeat Tenpl at e.

Here is an example of declarative iteration using the Spring AOP namespace to repeat a service call
to a method called r enot eCal | (for more detail on how to configure AOP interceptors see the Spring
User Guide):

<aop: confi g>
<aop: poi ntcut id="transactional"
expressi on="execution(* com.*Service.remoteCall(..))" />
<aop: advi sor pointcut-ref="transacti onal "
advi ce-ref="retryAdvi ce" order="-1"/>
</ aop: confi g>

<bean id="retryAdvice"
class="org. springframework. batch.retry.interceptor. RetryQperationslnterceptor"/>

The example above uses a default Ret r yTenpl at e inside the interceptor. To change the policies or
listeners, you only need to inject an instance of Ret r yTenpl at e into the interceptor.

Spring Batch - Reference
3.0.0.RC2 Documentation 116

Spring Batch

10. Unit Testing

Just as with other application styles, it is extremely important to unit test any code written as part of a
batch job as well. The Spring core documentation covers how to unit and integration test with Spring
in great detail, so it won't be repeated here. It is important, however, to think about how to 'end to end'
test a batch job, which is what this chapter will focus on. The spring-batch-test project includes classes
that will help facilitate this end-to-end test approach.

10.1 Creating a Unit Test Class

In order for the unit test to run a batch job, the framework must load the job's ApplicationContext. Two
annotations are used to trigger this:

e @unWth(SpringJUnit4d assRunner. cl ass): Indicates that the class should use Spring's
JUnit facilities

* @ontextConfiguration(locations = {...}): Indicates which XML files contain the
ApplicationContext.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@ont ext Configurati on(l ocations = { "/sinple-job-launcher-context.xm",
"/ jobs/ ski pSanpl eJob. xm " })

public class Ski pSanpl eFuncti onal Tests extends AbstractJobTests { ... }

10.2 End-To-End Testing of Batch Jobs

'End To End' testing can be defined as testing the complete run of a batch job from beginning to end.
This allows for a test that sets up a test condition, executes the job, and verifies the end result.

In the example below, the batch job reads from the database and writes to a flat file. The test
method begins by setting up the database with test data. It clears the CUSTOMER table and then
inserts 10 new records. The test then launches the Job using the | aunchJob() method. The
I aunchJob() method is provided by the Abstract JobTest s parent class. Also provided by the
super class is | aunchJob(JobPar anet er s), which allows the test to give particular parameters.
The | aunchJob() method returns the JobExecut i on object which is useful for asserting particular
information about the Job run. In the case below, the test verifies that the Job ended with status
"COMPLETED".

Spring Batch - Reference
3.0.0.RC2 Documentation 117

Spring Batch

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@Cont ext Confi guration(locations = { "/sinple-job-launcher-context.xm",
"/jobs/ski pSanpl eJob. xm " })

public class Ski pSanpl eFuncti onal Tests {

@\ut owi r ed
private JobLauncherTestUtils jobLauncherTestUtils;

private SinpleldbcTenpl ate si npl eJdbcTenpl at e;

@\ut owi r ed
public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;

}

@est
public void testJob() throws Exception {
si npl eJdbcTenpl at e. updat e(" del ete from CUSTOVER") ;
for (int i =1; i <= 10; i++) {
si mpl eJdbcTenpl at e. update("insert into CUSTOVER values (?, 0, ?, 100000)",
i, "customer" + i);

}

JobExecution jobExecution = jobLauncherTest Uil s.launchJob().getStatus();

Assert . assert Equal s(" COWLETED', jobExecution.getExitStatus());

10.3 Testing Individual Steps

For complex batch jobs, test cases in the end-to-end testing approach may become unmanageable.
It these cases, it may be more useful to have test cases to test individual steps on their own. The
Abst ract JobTest s class contains a method | aunchSt ep that takes a step name and runs just that
particular St ep. This approach allows for more targeted tests by allowing the test to set up data for just
that step and to validate its results directly.

JobExecution jobExecution = jobLauncherTestUils.|aunchStep("l oadFileStep");

10.4 Testing Step-Scoped Components

Often the components that are configured for your steps at runtime use step scope and late binding to
inject context from the step or job execution. These are tricky to test as standalone components unless
you have a way to set the context as if they were in a step execution. That is the goal of two components
in Spring Batch: the St epScopeTest Execut i onLi st ener and the St epScopeTest Uti | s.

The listener is declared at the class level, and its job is to create a step execution context for each test
method. For example:

Spring Batch - Reference
3.0.0.RC2 Documentation 118

Spring Batch

@Cont ext Confi gurati on

@est Executi onLi steners({ Dependencyl nj ecti onTest Executi onLi stener. cl ass,
St epScopeTest Execut i onLi st ener. cl ass })

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

public class StepScopeTest Executi onLi stener|ntegrationTests {

/1 This conmponent is defined step-scoped, so it cannot be injected unless
/'l a step is active...

@\ut owi r ed

private |tenReader<String> reader;

publ i c StepExecution getStepExection() {
St epExecuti on executi on = MetaDat al nst anceFact ory. creat eSt epExecuti on();
execution. get Executi onContext (). putString("input.data", "foo,bar, spant');
return execution;

}

@est

public void testReader() ({
/'l The reader is initialized and bound to the input data
assertNot Nul | (reader.read());

There are two Test Execut i onLi st ener s, one from the regular Spring Test framework and handles
dependency injection from the configured application context, injecting the reader, and the other is the
Spring Batch St epScopeTest Execut i onLi st ener . It works by looking for a factory method in the
test case for a St epExecut i on, and using that as the context for the test method, as if that execution
was active in a Step at runtime. The factory method is detected by its signature (it just has to return a
St epExecut i on). If a factory method is not provided then a default St epExecut i on is created.

The listener approach is convenient if you want the duration of the step scope to be the execution of the
test method. For a more flexible, but more invasive approach you can use the St epScopeTest Uti | s.
For example, to count the number of items available in the reader above:

int count = StepScopeTestUtils. dol nSt epScope(st epExecuti on,
new Cal | abl e<l nteger>() {
public Integer call() throws Exception {

int count = O;

while (reader.read() != null) {
count ++;

}

return count;

1)

10.5 Validating Output Files

When a batch job writes to the database, it is easy to query the database to verify that the output is
as expected. However, if the batch job writes to a file, it is equally important that the output be verified.
Spring Batch provides a class Assert Fi | e to facilitate the verification of output files. The method
assert Fi | eEqual s takes two Fi | e objects (or two Resour ce objects) and asserts, line by line, that
the two files have the same content. Therefore, it is possible to create a file with the expected output
and to compare it to the actual result:

Spring Batch - Reference
3.0.0.RC2 Documentation 119

Spring Batch

private static final String EXPECTED FILE = "src/nmin/resources/datal/input.txt"
private static final String OUTPUT_FILE = "target/test-outputs/output.txt";

AssertFil e. assertFi | eEqual s(new Fi |l eSyst enResour ce(EXPECTED_FI LE) ,
new Fi | eSyst enResour ce(OUTPUT_FI LE)) ;

10.6 Mocking Domain Objects

Another common issue encountered while writing unit and integration tests for Spring Batch components
is how to mock domain objects. A good example is a St epExecut i onLi st ener, as illustrated below:

public class NowrkFoundSt epExecuti onLi st ener extends StepExecutionLi stener Support {

public ExitStatus afterStep(StepExecution stepExecution) {
if (stepExecution.getReadCount() == 0) {
t hrow new NoWor kFoundExcepti on("Step has not processed any itens");

}
return stepExecution. getExitStatus();

The above listener is provided by the framework and checks a St epExecut i on for an empty read
count, thus signifying that no work was done. While this example is fairly simple, it serves to illustrate
the types of problems that may be encountered when attempting to unit test classes that implement
interfaces requiring Spring Batch domain objects. Consider the above listener's unit test:

private NoWr kFoundSt epExecuti onLi stener tested = new NoWr kFoundSt epExecuti onLi st ener () ;

@est
public void testAfterStep() {
St epExecuti on stepExecution = new St epExecuti on("NoProcessi ngStep",
new JobExecuti on(new Jobl nstance(1L, new JobParaneters(),
"NoPr ocessi ngJob")));

st epExecut i on. set ReadCount (0) ;

try {
tested. after St ep(st epExecution);
fail();
} catch (Nowor kFoundException e) {
assert Equal s("Step has not processed any itenms", e.getMessage());

Because the Spring Batch domain model follows good object orientated principles, the StepExecution
requires a JobExecut i on, which requires a Jobl nst ance and JobPar anet er s in order to create a
valid St epExecut i on. While this is good in a solid domain model, it does make creating stub objects for
unit testing verbose. To address this issue, the Spring Batch test module includes a factory for creating
domain objects: Met aDat al nst anceFact or y. Given this factory, the unit test can be updated to be
more concise:

Spring Batch - Reference
3.0.0.RC2 Documentation 120

Spring Batch

private NoWr kFoundSt epExecuti onLi stener tested = new NoWr kFoundSt epExecuti onLi st ener () ;

@est
public void testAfterStep() {
St epExecuti on stepExecuti on = Met aDat al nst anceFact ory. creat eSt epExecuti on();

st epExecut i on. set ReadCount (0) ;

try {
tested. after St ep(st epExecution);
fail();
} catch (Nowor kFoundException e) {
assert Equal s("Step has not processed any itens", e.getMessage());

}

The above method for creating a simple St epExecut i on is just one convenience method available
within the factory. A full method listing can be found in its Javadoc.

Spring Batch - Reference
3.0.0.RC2 Documentation 121

http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/test/MetaDataInstanceFactory.html

Spring Batch

11. Common Batch Patterns

Some batch jobs can be assembled purely from off-the-shelf components in Spring Batch. For instance
the I tenReader and I'tenmWiter implementations can be configured to cover a wide range of
scenarios. However, for the majority of cases, custom code will have to be written. The main API
entry points for application developers are the Taskl et , | t enmReader, | t em i t er and the various
listener interfaces. Most simple batch jobs will be able to use off-the-shelf input from a Spring Batch
I t enReader, but it is often the case that there are custom concerns in the processing and writing,
which require developers to implementan | t emW i ter orltenProcessor.

Here, we provide a few examples of common patterns in custom business logic. These examples
primarily feature the listener interfaces. It should be noted that an | t enReader or I temNiter can
implement a listener interface as well, if appropriate.

11.1 Logging Item Processing and Failures

A common use case is the need for special handling of errors in a step, item by item, perhaps logging
to a special channel, or inserting a record into a database. A chunk-oriented St ep (created from the
step factory beans) allows users to implement this use case with a simple | t enReadLi st ener, for
errors on read, and an | temW i t eLi st ener, for errors on write. The below code snippets illustrate
a listener that logs both read and write failures:

public class |tenfail ureLoggerlListener extends |tenlistenerSupport {
private static Log | ogger = LogFactory.getlLog("itemerror");

public voi d onReadError (Exception ex) {
| ogger.error("Encountered error on read", e);

}

public void onWiteError(Exception ex, Cbject item ({
| ogger.error("Encountered error on wite", e);

}

Having implemented this listener it must be registered with the step:
<step id="sinpl eStep">

<listeners>
<listener>
<bean cl ass="org. exanpl e. .. |tenfail ureLoggerListener"/>
</listener>
</listeners>
</ st ep>

Remember that if your listener does anything in an onEr r or () method, it will be inside a transaction
that is going to be rolled back. If you need to use a transactional resource such as a database inside
an onError () method, consider adding a declarative transaction to that method (see Spring Core
Reference Guide for details), and giving its propagation attribute the value REQUIRES NEW.

Spring Batch - Reference
3.0.0.RC2 Documentation 122

Spring Batch

11.2 Stopping a Job Manually for Business Reasons

Spring Batch provides a st op() method through the JobLauncher interface, but this is really for use by
the operator rather than the application programmer. Sometimes it is more convenient or makes more
sense to stop a job execution from within the business logic.

The simplest thing to do is to throw a Runt i neExcept i on (one thatisn't retried indefinitely or skipped).
For example, a custom exception type could be used, as in the example below:

public class PoisonPillltemNiter inplenents ItemWiter<T> {

public void wite(T itenm) throws Exception {
if (isPoisonPill(item) {
throw new Poi sonPi | | Exception("Posion pill detected: " + item;

Another simple way to stop a step from executing is to simply return nul | from the | t enReader :

public class EarlyConpl etionltenReader inplenents |ItenReader<T> {
private |tenReader<T> del egat e;
public void setDel egat e(ltenReader <T> del egate) { ... }

public T read() throws Exception {
T item = del egate.read();
if (isEndlten(item)) {
return null; // end the step here

}

return item

The previous example actually relies on the fact that there is a default implementation of the
Conpl et i onPol i cy strategy which signals a complete batch when the item to be processed is null.
A more sophisticated completion policy could be implemented and injected into the St ep through the
Si npl eSt epFact or yBean:

<step id="sinpl eStep">
<t askl et >
<chunk reader="reader" witer="witer" commt-interval ="10"
chunk- conpl eti on-pol i cy="conpl eti onPol i cy"/>
</t askl et >
</ st ep>

<bean i d="conpl etionPolicy" class="org.exanple...Special Conpl eti onPolicy"/>

An alternative is to set a flag in the St epExecut i on, which is checked by the St ep implementations in
the framework in between item processing. To implement this alternative, we need access to the current
St epExecut i on, and this can be achieved by implementing a St epLi st ener and registering it with
the St ep. Here is an example of a listener that sets the flag:

Spring Batch - Reference
3.0.0.RC2 Documentation 123

Spring Batch

public class CustomtemNiter extends |tenListenerSupport inplenents Steplistener {
private StepExecution stepExecution;

public void beforeStep(StepExecution stepExecution) {
thi s. st epExecuti on = stepExecuti on;

}

public void afterRead(bject item {
if (isPoisonPill(item) ({
st epExecuti on. set Term nat eOnl y(true);

The default behavior here when the flag is set is for the step to throw a Jobl nt er r upt edExcept i on.
This can be controlled through the St epl nt er r upt i onPol i cy, but the only choice is to throw or not
throw an exception, so this is always an abnormal ending to a job.

11.3 Adding a Footer Record

Often when writing to flat files, a "footer" record must be appended to the end of the file, after all
processing has be completed. This can also be achieved using the Fl at Fi | eFoot er Cal | back
interface provided by Spring Batch. The Fl at Fi | eFoot er Cal | back (and its counterpart, the
Fl at Fi | eHeader Cal | back) are optional properties of the Fl at Fil el temW it er:

<bean id="itenmWiter" class="org.spr...FlatFileltemWiter">
<property nanme="resource" ref="out put Resource" />
<property nanme="|ineAggregator" ref="IineAggregator"/>
<property nanme="header Cal | back" ref="headerCal | back" />
<property nanme="footerCal | back" ref="footerCallback" />
</ bean>

The footer callback interface is very simple. It has just one method that is called when the footer must
be written:

public interface FlatFileFooterCallback {

void witeFooter(Witer witer) throws | OException;

Writing a Summary Footer

A very common requirement involving footer records is to aggregate information during the output
process and to append this information to the end of the file. This footer serves as a summarization of
the file or provides a checksum.

For example, if a batch job is writing Tr ade records to a flat file, and there is a requirement that the
total amount from all the Tr ades is placed in a footer, then the following I t em\W i t er implementation
can be used:

Spring Batch - Reference
3.0.0.RC2 Documentation 124

Spring Batch

public class TradeltemWiter inplenments ItemNiter<Trade>,
Fl at Fi | eFoot er Cal | back {

private ItemWiter<Trade> del egate;
private BigDeci mal total Ambunt = Bi gDeci mal . ZERG,

public void wite(List<? extends Trade> itens) {
Bi gDeci mal chunkTotal = Bi gDeci mal . ZERG,
for (Trade trade : itens) {
chunkTot al = chunkTot al . add(trade. get Amount ());
}

del egate.wite(itens);

/| After successfully witing all itemns
tot al Amount = total Amount. add(chunkTotal);
}

public void witeFooter(Witer witer) throws |OException {
witer.wite("Total Anpunt Processed: " + total Anbunt);

}

public void setDel egate(ltenWiter delegate) {...}

This Tradel temW it er stores at ot al Anmount value that is increased with the anbunt from each
Tr ade item written. After the last Tr ade is processed, the framework will call wr i t eFoot er , which will
put that t ot al Anmount into the file. Note that the wr i t e method makes use of a temporary variable,
chunkTot al Anbunt , that stores the total of the trades in the chunk. This is done to ensure that if
a skip occurs in the wri t e method, that the totalAmount will be left unchanged. It is only at the end
of the wr i t e method, once we are guaranteed that no exceptions will be thrown, that we update the
t ot al Anount .

In order for the witeFooter method to be called, the TradeltemWiter (which
implements Fl at Fi | eFoot er Cal | back) must be wired into the FlatFileltenmNiter as the
f oot er Cal | back:

<bean id="tradeltemWiter" class="..TradeltemWiter">
<property nane="del egate" ref="flatFileltemWiter" />
</ bean>

<bean id="flatFileltemWiter" class="org.spr...FlatFileltemNiter">
<property nane="resource" ref="out put Resource" />

<property nane="|ineAggregator" ref="IineAggregator"/>
<property nanme="footerCal |l back" ref="tradeltenWiter" />
</ bean>

The way that the Tradel temWiter has been so far will only function correctly if the St ep is
not restartable. This is because the class is stateful (since it stores the t ot al Amount), but the
t ot al Anpunt is not persisted to the database, and therefore, it cannot be retrieved in the event of a
restart. In order to make this class restartable, the | t enfst r eaminterface should be implemented along
with the methods open and updat e:

Spring Batch - Reference
3.0.0.RC2 Documentation 125

Spring Batch

public voi d open(ExecutionContext executionContext) {
i f (executionContext.containsKey("total.anmount") {
t ot al Amount = (Bi gDeci mal) executionContext.get("total.anmunt");
}
}

public voi d updat e(Executi onCont ext executionContext) {
executionCont ext. put(“total.anmunt", total Amount);

}

The updat e method will store the most current version of t ot al Anobunt to the Execut i onCont ext
just before that object is persisted to the database. The open method will retrieve any existing
t ot al Anount from the Execut i onCont ext and use it as the starting point for processing, allowing
the Tradel t emW i t er to pick up on restart where it left off the previous time the St ep was executed.

11.4 Driving Query Based ItemReaders

In the chapter on readers and writers, database input using paging was discussed. Many database
vendors, such as DB2, have extremely pessimistic locking strategies that can cause issues if the table
being read also needs to be used by other portions of the online application. Furthermore, opening
cursors over extremely large datasets can cause issues on certain vendors. Therefore, many projects
prefer to use a 'Driving Query' approach to reading in data. This approach works by iterating over keys,
rather than the entire object that needs to be returned, as the following example illustrates:

Select ID from FOO
where id > 1 and id < 7

D NAME |BAR
1 foo1 bar1
2 foo?2 bar2
3 foo3 bar3
I 4 food bard
5 fooh5 bar5
6 foo6 barg
7 foo7 bar?
8 foo8 bar8

As you can see, this example uses the same 'FOQO' table as was used in the cursor based example.
However, rather than selecting the entire row, only the ID's were selected in the SQL statement. So,
rather than a FOO object being returned from r ead, an Integer will be returned. This number can then
be used to query for the 'details’, which is a complete Foo object:

Spring Batch - Reference
3.0.0.RC2 Documentation 126

Spring Batch

Job

* Datahase

E

Y
JdbcltemReader
ItemProcessor
JdbcltemWriter

Y SR
__ Query for details using
" Existing “_'_,--"—— kEy as parameter
Keys ohtained at step initialization DAO

An ItemProcessor should be used to transform the key obtained from the driving query into a full 'Foo'
object. An existing DAO can be used to query for the full object based on the key.

11.5 Multi-Line Records

While it is usually the case with flat files that one each record is confined to a single line, it is common
that a file might have records spanning multiple lines with multiple formats. The following excerpt from
a file illustrates this:

HEA; 0013100345; 2007- 02- 15

NCU; Smit h; Peter;; T; 20014539; F

BAD; ; Cak Street 31/A;; Small Town; 00235; 1 L; US
FOT; 2; 2; 267. 34

Everything between the line starting with 'HEA' and the line starting with 'FOT" is considered one record.
There are a few considerations that must be made in order to handle this situation correctly:

* Instead of reading one record at a time, the | t enReader must read every line of the multi-line record
as a group, so that it can be passedtothe | t emW i t er intact.

» Each line type may need to be tokenized differently.

Because a single record spans multiple lines, and we may not know how many lines there are, the
| t enReader must be careful to always read an entire record. In order to do this, a custom | t enReader
should be implemented as a wrapper for the Fl at Fi | el t emrReader .

Spring Batch - Reference
3.0.0.RC2 Documentation 127

Spring Batch

<bean id="itenmReader" class="org.spr...MiltiLineTradeltenReader">
<property nanme="del egate">
<bean cl ass="org. spri ngfranework. batch.itemfile.FlatFileltenReader">
<property nane="resource" val ue="data/iosanple/input/multiline.txt" />

<property name="|i neMapper" >
<bean cl ass="org. spr...Defaul tLi neMapper" >
<property nanme="|i neTokeni zer" ref="orderFil eTokenizer"/>

<property name="fi el dSet Mapper" >
<bean cl ass="org. spr...PassThroughFi el dSet Mapper" />
</ property>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

To ensure that each line is tokenized properly, which is especially important for fixed
length input, the Patt er nivat chi ngConpositelLi neTokeni zer can be used on the delegate
Fl at Fi | el t enReader . See the section called “Multiple Record Types within a Single File” for more
details. The delegate reader will then use a PassThr oughFi el dSet Mapper to deliver a Fi el dSet
for each line back to the wrapping | t enReader .

<bean i d="orderFil eTokeni zer" class="org.spr...PatternMatchi ngConpositelLi neTokeni zer">
<property name="t okeni zers" >
<map>
<entry key="HEA*" val ue-ref="header RecordTokeni zer" />
<entry key="FOT*" val ue-ref="foot er RecordTokeni zer" />
<entry key="NCU*" val ue-ref="custonerLi neTokeni zer" />
<entry key="BAD*" val ue-ref="billingAddressLi neTokeni zer" />
</ map>
</ property>
</ bean>

This wrapper will have to be able recognize the end of a record so that it can continually call r ead() on
its delegate until the end is reached. For each line that is read, the wrapper should build up the item to
be returned. Once the footer is reached, the item can be returned for delivery to the | t enPr ocessor
andltenWiter.

Spring Batch - Reference
3.0.0.RC2 Documentation 128

Spring Batch

private FlatFileltenReader <Fi el dSet > del egat e;

public Trade read() throws Exception {
Trade t = null;

for (FieldSet line = null; (line = this.delegate.read()) != null;) {

String prefix = line.readString(0);

if (prefix.equals("HEA")) {
t = new Trade(); // Record nust start w th header

}

else if (prefix.equals("NCU")) {
Assert.notNul | (t, "No header was found.");
t.setlLast(line.readString(1));
t.setFirst(line.readString(2));

}

else if (prefix.equals("BAD")) {
Assert.notNul | (t, "No header was found.");
t.setCity(line.readString(4));
t.setState(line.readString(6));

}
else if (prefix.equals("FOT")) {
return t; // Record nust end with footer

}
}
Assert.isNull(t, "No "END was found.");
return null;

11.6 Executing System Commands

Many batch jobs may require that an external command be called from within the batch job. Such a
process could be kicked off separately by the scheduler, but the advantage of common meta-data about
the run would be lost. Furthermore, a multi-step job would also need to be split up into multiple jobs
as well.

Because the need is so common, Spring Batch provides a Taskl et implementation for calling system
commands:

<bean cl ass="org. spri ngframewor k. bat ch. core. st ep. t askl et. Syst emConmandTaskl et ">
<property nane="conmand" val ue="echo hello" />

<l-- 5 second tinmeout for the conmand to conplete -->
<property nane="tineout" val ue="5000" />
</ bean>

11.7 Handling Step Completion When No Input is Found

In many batch scenarios, finding no rows in a database or file to process is not exceptional. The St ep
is simply considered to have found no work and completes with 0O items read. All of the | t enReader
implementations provided out of the box in Spring Batch default to this approach. This can lead to
some confusion if nothing is written out even when input is present. (which usually happens if a file was
misnamed, etc) For this reason, the meta data itself should be inspected to determine how much work
the framework found to be processed. However, what if finding no input is considered exceptional? In
this case, programmatically checking the meta data for no items processed and causing failure is the
best solution. Because this is a common use case, a listener is provided with just this functionality:

Spring Batch - Reference
3.0.0.RC2 Documentation 129

Spring Batch

public class NoWwrkFoundSt epExecuti onLi st ener extends StepExecutionLi stener Support {

public ExitStatus afterStep(StepExecution stepExecution) {
i f (stepExecution.getReadCount() == 0) {
return ExitStatus. FAl LED,
}

return null;

The above St epExecut i onLi st ener inspects the readCount property of the St epExecut i on during
the 'afterStep' phase to determine if no items were read. If that is the case, an exit code of FAILED is
returned, indicating that the St ep should fail. Otherwise, null is returned, which will not affect the status
of the St ep.

11.8 Passing Data to Future Steps

It is often useful to pass information from one step to another. This can be done using the
Execut i onCont ext . The catch is that there are two Execut i onCont ext s: one at the St ep level
and one at the Job level. The St ep Execut i onCont ext lives only as long as the step while the Job
Execut i onCont ext lives through the whole Job. On the other hand, the St ep Execut i onCont ext
is updated every time the St ep commits a chunk while the Job Execut i onCont ext is updated only
at the end of each St ep.

The consequence of this separation is that all data must be placed in the St ep Execut i onCont ext
while the St ep is executing. This will ensure that the data will be stored properly while the St ep is
on-going. If data is stored to the Job Executi onCont ext , then it will not be persisted during St ep
execution and if the St ep fails, that data will be lost.

public class SavingltemWiter inplenments |temWiter<Object> {
private StepExecution stepExecution;

public void wite(List<? extends Object> itens) throws Exception {
...

Executi onCont ext stepContext = this.stepExecution.getExecutionContext();
st epCont ext . put (" sonmeKey", soneQbject);

}

@Bef or eSt ep
public void saveSt epExecuti on(St epExecuti on st epExecution) {
thi s. stepExecuti on = stepExecuti on;

}

To make the data available to future Steps, it will have to be "promoted" to
the Job ExecutionContext after the step has finished. Spring Batch provides the
Execut i onCont ext Pronot i onLi st ener for this purpose. The listener must be configured with the
keys related to the data in the Execut i onCont ext that must be promoted. It can also, optionally, be
configured with a list of exit code patterns for which the promotion should occur ("COMPLETED" is the
default). As with all listeners, it must be registered on the St ep.

Spring Batch - Reference
3.0.0.RC2 Documentation 130

Spring Batch

<job id="j obl">
<step id="stepl">
<t askl et >
<chunk reader="reader" witer="savingWiter" commt-interval ="10"/>
</t askl et >
<listeners>
<l istener ref="pronotionListener"/>
</listeners>
</ st ep>

<step id="step2">
</ st ep>
</ j ob>
<beans: bean i d="pronotionLi stener" class="org.spr....Executi onContextPronotionLi stener">

<beans: property nanme="keys" val ue="sonmeKey"/>
</ beans: bean>

Finally, the saved values must be retrieved from the Job Exeuct i onCont ext :

public class RetrievingltemNiter inplenents ItemWiter<Cbject> {
private bject sonebject;

public void wite(List<? extends bject> itens) throws Exception {
/1

@ef oreSt ep

public void retrievel nterstepDat a(St epExecuti on stepExecution) {
JobExecution jobExecution = stepExecution. get JobExecution();
Execut i onCont ext j obContext = jobExecution. get Executi onContext ();
thi s. soneObj ect = j obContext. get("someKey");

Spring Batch - Reference
3.0.0.RC2 Documentation 131

Spring Batch

12. JSR-352 Support

As of Spring Batch 3.0 support for JSR-352 has been fully implemented. This section is not a
replacement for the spec itself and instead, intends to explain how the JSR-352 specific concepts apply
to Spring Batch. Additional information on JSR-352 can be found via the JCP here: https://jcp.org/en/
jsr/detail ?id=352

12.1 General Notes Spring Batch and JSR-352

Spring Batch and JSR-352 are structurally the same. They both have jobs
that are made wup of steps. They both have readers, processors, writers,
and listeners. However, their interactions are subtly different. For example, the
org. spri ngfranmewor k. bat ch. core. Ski pLi st ener #onSki pl nWite(S item Throwable
t) within Spring Batch receives two parameters: the item that was skipped and
the Exception that caused the skip. The JSR-352 version of the same method
(j avax. bat ch. api . chunk. | i stener. Ski pW it eLi st ener #onSki pWit el t en{Li st <Cbj ect >
i tems, Exception ex))alsoreceivestwo parameters. However the firstoneisali st ofallthe items
within the current chunk with the second being the Except i on that caused the skip. Because of these
differences, it is important to note that there are two paths to execute a job within Spring Batch: either
a traditional Spring Batch job or a JSR-352 based job. While the use of Spring Batch artifacts (readers,
writers, etc) will work within a job configured via JSR-352's JSL and executed via the Jsr JobOper at or,
they will behave according to the rules of JSR-352. It is also important to note that batch artifacts that
have been developed against the JSR-352 interfaces will not work within a traditional Spring Batch job.

12.2 Setup

JSR-352 requires a very simple path to executing a batch job. The following code is all that is needed
to execute your first batch job:

JobQOper at or operator = BatchRunti ne. get JobOperator();
jobQperator.start("nyJob", new Properties());

While that is convenient for developers, the devil is in the details. Spring Batch bootstraps a bit of
infrastructure behind the scenes that a developer may want to override. The following is bootstrapped
the first time Bat chRunt i me. get JobOper at or () is called:

Bean Name Default Configuration Notes
dataSource Apache DBCP By default, HSQLDB is
BasicDataSource with bootstrapped.

configured values.

transacti onManager org. spri ngframework. j dbc. &efereaues theDddtaSouraeTr ansact i onManag
bean defined above.

A Datasource initializer This is configured to execute
the scripts configured via the
bat ch. drop. scri pt and
bat ch. schema. scri pt
properties. By default,

the schema scripts for

Spring Batch - Reference
3.0.0.RC2 Documentation 132

https://jcp.org/en/jsr/detail?id=352
https://jcp.org/en/jsr/detail?id=352

Spring Batch

HSQLDB are executed. This
behavior can be disabled via
bat ch. dat a. source.init

property.
jobRepository A JDBC based This JobReposi t ory uses
Si npl eJobReposi tory. the previously mentioned

data source and transaction
manager. The schema's
table prefix is configurable
(defaults to BATCH_) via
the bat ch. tabl e. prefi x

property.
jobLauncher org. spri ngf ramewor k. bat chUsedédo llaurabhjobsippor t . Si npl eJobLaunche
batchJobOperator org. spri ngf ramewor k. bat chToerJsrlJab@iersumpowta nmpl eJobOper at «

this to provide most of it's
functionality.

jobExplorer or g. spri ngframewor k. bat chUseddo exdressdoskygpor t . JobExpl or er Fact
functionality provided by the
Jsr JobQper at or .

jobParametersConverter org. spri ngfranmewor k. bat chJBR-852 spedfic JobPar anet er sConvert er
implementation of the
JobPar anet er sConverter.

jobRegistry org. spri ngframewor k. bat chUseddayctbef i gur ati on. support. MapJobRe(
Si mpl eJobOper at or.

placeholderProperties or g. spri ngframewor k. beans Lbads$ tre/piopeftias Pr opert yPl acehol der C
file bat ch-

${ ENVI RONMENT: hsql }. properti es
to configure the properties

mentioned above.

ENVIRONMENT is a System

property (defaults to hsql) that

can be used to specify any of

the supported databases Spring

Batch currently supports.

© Note

None of the above beans are optional for executing JSR-352 based jobs. All may be overriden
to provide customized functionality as needed.

12.3 Dependency Injection

JSR-352 is based heavily on the Spring Batch programming model. As such, while not explicitly requiring
a formal dependency injection implementation, DI of some kind implied. Spring Batch supports all three
methods for loading batch artifacts defined by JSR-352:

Spring Batch - Reference
3.0.0.RC2 Documentation 133

Spring Batch

« Implementation Specific Loader - Spring Batch is built upon Spring and so supports Spring
dependency injection within JSR-352 batch jobs.

» Archive Loader - JSR-352 defines the existing of a batch.xml file that provides mappings between a
logical name and a class name. This file must be found within the /META-INF/ directory if it is used.

» Thread Context Class Loader - JSR-352 allows configurations to specify batch artifact
implementations in their JSL by providing the fully qualified class name inline. Spring Batch supports
this as well in JSR-352 configured jobs.

To use Spring dependency injection within a JSR-352 based batch job consists of configuring batch
artifacts using a Spring application context as beans. Once the beans have been defined, a job can
refer to them as it would any bean defined within the batch.xml.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://xm ns.jcp.org/ xm/ns/javaee
http://xm ns.jcp.org/xm/ns/javaee/jobXM._1_0. xsd" >

<l -- javax. batch. api.Batchl et inplenmentation -->

<bean i d="fooBatchlet" class="io.spring. FooBatchlet">
<property nanme="prop" val ue="bar"/>

</ bean>

<l-- Job is defined using the JSL schema provided in JSR-352 -->
<job id="fooJob" xm ns="http://xmns.jcp.org/xm/ns/javaee" version="1.0">
<step id="stepl">
<batchl et ref="fooBatchlet"/>
</ st ep>
</ j ob>
</ beans>

The assembly of Spring contexts (imports, etc) works with JSR-352 jobs just as it would with any other
Spring based application. The only difference with a JSR-352 based job is that the entry point for the
context definition will be the job definition found in /META-INF/batch-jobs/.

To use the thread context class loader approach, all you need to do is provide the fully qualified class
name as the ref. It is important to note that when using this approach or the batch.xml approach, the
class referenced requires a no argument constructor which will be used to create the bean.

<?xm version="1.0" encodi ng="UTF-8"?>
<j ob id="fooJob" xm ns="http://xmns.jcp.org/xm/ns/javaee" version="1.0">
<step id="stepl" >
<batchl et ref="io.spring. FooBatchlet" />
</ st ep>
</ j ob>

Spring Batch - Reference
3.0.0.RC2 Documentation 134

Spring Batch

12.4 Batch Properties

Property Support

JSR-352 allows for properties to be defined at the Job, Step and batch artifact level by way of
configuration in the JSL. Batch properties are configured at each level in the following way:

<properties>
<property nane="propertyNamel" val ue="propertyVal uel"/>
<property nanme="propertyName2" val ue="propertyVal ue2"/>
</ properties>

Properties may be configured on any batch artifact.
@Bat chPr operty annotation

Properties are referenced in batch artifacts by annotating class fields with the @at chPr operty and
@ nj ect annotations (both annotations are required by the spec). As defined by JSR-352, fields for
properties must be String typed. Any type conversion is up to the implementing developer to perform.

Anj avax. bat ch. api . chunk. I t enReader artifact could be configured with a properties block such
as the one described above and accessed as such:

public class MyltenReader extends Abstract!tenReader {
@ nj ect
@Bat chProperty
private String propertyNanel,;

The value of the field "propertyNamel" will be "propertyValuel"
Property Substitution

Property substitution is provided by way of operators and simple conditional expressions. The general
usage is #{operator['’key']}.

Supported operators:

» jobParameters - access job parameter values that the job was started/restarted with.

jobProperties - access properties configured at the job level of the JSL.

» systemProperties - access named system properties.

partitionPlan - access hamed property from the partition plan of a partitioned step.

#{j obPar anet er s[' unresol vi ng. prop']} ?: #{systenProperties['file.separator']}

The left hand side of the assignment is the expected value, the right hand side is the default
value. In this example, the result will resolve to a value of the system property file.separator as
#{jobParameters['unresolving.prop]} is assumed to not be resolvable. If neither expressions can be
resolved, an empty String will be returned. Multiple conditions can be used, which are separated by a';'".

Spring Batch - Reference
3.0.0.RC2 Documentation 135

Spring Batch

12.5 Processing Models

JSR-352 provides the same two basic processing models that Spring Batch does:

e Item based processing - Using an javax. batch. api.chunk.|tenReader, an optional
j avax. bat ch. api . chunk. | t enPr ocessor,andanj avax. bat ch. api . chunk. [temWiter.

» Task based processing - Using a j avax. bat ch. api . Bat chl et implementation. This processing
model is the same as the org. spri ngfranmework. bat ch. core. step. taskl et. Taskl et
based processing currently available.

Item based processing

Item based processing in this context is a chunk size being set by the number of items read by
an | t emReader . To configure a step this way, specify the i t em count (which defaults to 10) and
optionally configure the checkpoi nt - pol i cy as item (this is the default).

<step id="stepl">
<chunk checkpoi nt-policy="item item count="3">
<reader ref="fooReader"/>
<processor ref="fooProcessor"/>
<witer ref="fooWiter"/>
</ chunk>
</ st ep>

If item based checkpointing is chosen, an additional attribute ti ne-|i m t is supported. This sets a
time limit for how long the number of items specified has to be processed. If the timeout is reached, the
chunk will complete with however many items have been read by then regardless of what the i t em
count is configured to be.

Custom checkpointing

JSR-352 calls the process around the commit interval within a step "checkpointing”. Item based
checkpointing is one approach as mentioned above. However, this will not be robust enough in many
cases. Because of this, the spec allows for the implementation of a custom checkpointing algorithm by
implementing the j avax. bat ch. api . chunk. Checkpoi nt Al gori t hminterface. This functionality
is functionally the same as Spring Batch's custom completion policy. To use an implementation of
Checkpoi nt Al gori t hm configure your step with the custom checkpoi nt - pol i cy as shown below
where fooCheckpointer refers to an implementation of Checkpoi nt Al gori t hm

<step id="stepl">
<chunk checkpoi nt - pol i cy="cust oni' >
<checkpoi nt -al gorithm ref="f ooCheckpoi nter"/>
<reader ref="fooReader"/>
<processor ref="fooProcessor"/>
<witer ref="fooWiter"/>
</ chunk>
</ st ep>

Spring Batch - Reference
3.0.0.RC2 Documentation 136

Spring Batch

12.6 Running a job

The entrance to executing a JSR-352 based job is through the
j avax. bat ch. oper ati ons. JobOper ator. Spring Batch provides our own implementation
to this interface (org. spri ngframewor k. batch. core.jsr.launch. JsrJobOperat or). This
implementation is loaded via the j avax. bat ch. runti me. Bat chRunt i ne. Launching a JSR-352
based batch job is implemented as follows:

JobQper ator jobOperator = BatchRuntine. get JobOperator();
| ong j obExecutionld = jobOperator.start("fooJob", new Properties());

The above code does the following:

» Bootstraps a base ApplicationContext - In order to provide batch functionality, the framework needs
some infrastructure bootstrapped. This occurs once per JVM. The components that are bootstrapped
are similar to those provided by @nabl eBat chPr ocessi ng. Specific details can be found in the
javadoc for the Jsr JobQOper at or .

» Loads an Appl i cat i onCont ext for the job requested - In the example above, the framework will
look in /IMETA-INF/batch-jobs for a file named fooJob.xml and load a context that is a child of the
shared context mentioned previously.

e Launch the job - The job defined within the context will be executed asynchronously. The
JobExecuti on's id will be returned.

© Note

All JSR-352 based batch jobs are executed asynchronously.

When JobOper at or#start is called using Si npl eJobQper at or, Spring Batch determines if
the call is an initial run or a retry of a previously executed run. Using the JSR-352 based
JobQpeator#start (String jobXM_Nane, Properties jobParaneters),the framework will
always create a new Jobl nst ance (JSR-352 job parameters are non-identifying). In order to restart a
job, acallto JobOper at or#restart (1 ong executionld, Properties restartParaneters)
is required.

12.7 Contexts

JSR-352 defines two context objects that are used to interact with the meta-data of a
job or step from within a batch artifact: j avax. bat ch. runti me. cont ext. JobCont ext and
j avax. bat ch. runti me. cont ext . St epCont ext . Both of these are available in any step level
artifact (Bat chl et , I t emReader, etc) with the JobCont ext being available to job level artifacts as
well (JobLi st ener for example).

To obtain a reference to the JobCont ext or St epCont ext within the current scope, simply use the
@ nj ect annotation:

@ nj ect
JobCont ext j obCont ext ;

Spring Batch - Reference
3.0.0.RC2 Documentation 137

Spring Batch

© @Autowire for JSR-352 contexts

Using Spring's @Autowire is not supported for the injection of these contexts.

In Spring Batch, the JobContext and StepContext wrap their corresponding
execution objects (JobExecution and StepExecution respectively). Data stored via
St epCont ext #per si st ent #set Per si st ent User Dat a(Seri al i zabl e dat a) is stored in the
Spring Batch St epExecut i on#execut i onCont ext .

12.8 Step Flow

Within a JSR-352 based job, the flow of steps works similarly as it does within Spring Batch. However,
there are a few subtle differences:

» Decision's are steps - In a regular Spring Batch job, a decision is a state that does not have an
independent St epExecut i on or any of the rights and responsibilities that go along with being a full
step.. However, with JSR-352, a decision is a step just like any other and will behave just as any other
steps (transactionality, it gets a St epExecut i on, etc). This means that they are treated the same
as any other step on restarts as well.

e next attribute and step transitions - In a regular job, these are allowed to appear together in the same
step. JSR-352 allows them to both be used in the same step with the next attribute taking precedence
in evaluation.

 Transition element ordering - In a standard Spring Batch job, transition elements are sorted from most
specific to least specific and evaluated in that order. JSR-352 jobs evaluate transition elements in the
order they are specified in the XML.

12.9 Scaling a JSR-352 batch job

Traditional Spring Batch jobs have four ways of scaling (the last two capable of being executed across
multiple JVMs):

» Split - Running multiple steps in parallel.

Multiple threads - Executing a single step via multiple threads.

« Partitioning - Dividing the data up for parallel processing (master/slave).

Remote Chunking - Executing the processor piece of logic remotely.

JSR-352 provides two options for scaling batch jobs. Both options support only a single JVM:

» Split - Same as Spring Batch

« Partitioning - Conceptually the same as Spring Batch however implemented slightly different.
Partitioning

Conceptually, partitioning in JSR-352 is the same as it is in Spring Batch. Meta-data is provided to each
slave to identify the input to be processed with the slaves reporting back to the master the results upon
completion. However, there are some important differences:

Spring Batch - Reference
3.0.0.RC2 Documentation 138

Spring Batch

 Partitioned Bat chl et - This will run multiple instances of the configured Bat chl et on multiple
threads. Each instance will have it's own set of properties as provided by the JSL or the
PartitionPl an

e PartitionPl an - With Spring Batch's partitioning, an Execut i onCont ext is provided for each
partition. With JSR-352, a single j avax. batch. api . partition. PartitionPl an is provided
with an array of Pr oper ti es providing the meta-data for each partition.

e PartitionMapper - JSR-352 provides two ways to generate partition meta-data. One
is via the JSL (partition properties). The second is via an implementation of the
j avax. batch. api . partition. Partiti onMapper interface. Functionally, this interface is
similar to the org.springfranework. batch.core.partition.support.Partitioner
interface provided by Spring Batch in that it provides a way to programmaticaly generate meta-data
for partitioning.

e St epExecutions - In Spring Batch, partitioned steps are run as master/slave. Within JSR-352,
the same configuration occurs. However, the slave steps do not get official St epExecut i ons.
Because of that, calls to Jsr JobOper at or #get St epExecut i ons(| ong j obExecuti onl d) will
only return the St epExecut i on for the master.

© Note

The child St epExecutions still exist in the job repository and are available via the
JobExpl or er and Spring Batch Admin.

» Compensating logic - Since Spring Batch implements the master/slave logic of partitioning using
steps, St epExecuti onLi st ener s can be used to handle compensating logic if something goes
wrong. However, since the slaves JSR-352 provides a collection of other components for the ability
to provide compensating logic when errors occur and to dynamically set the exit status. These
components include the following:

Artifact Interface Description

javax. batch. api . partition. PartitionColPtaidesa way for slave steps to send
information back to the master. There is one
instance per slave thread.

javax. batch. api . partition. PartitionAnBhgpemt that receives the information
collected by the Partiti onCol | ect or as
well as the resulting statuses from a completed
partition.

javax. batch. api . partition. Partiti onRedwdes the ability to provide compensating
logic for a partitioned step.

12.10 Testing

Since all JSR-352 based jobs are executed asynchronously, it can be difficult to
determine when a job has completed. To help with testing, Spring Batch provides the
org. springframework. batch. core.jsr.JsrTest Uil s. This utility class provides the ability
to start a job and restart a job and wait for it to complete. Once the job completes, the associated
JobExecut i on is returned.

Spring Batch - Reference
3.0.0.RC2 Documentation 139

Spring Batch

13. Spring Batch Integration

13.1. Spring Batch Integration Introduction

Many users of Spring Batch may encounter requirements that are outside the scope of Spring Batch, yet
may be efficiently and concisely implemented using Spring Integration. Conversely, Spring Batch users
may encounter Spring Batch requirements and need a way to efficiently integrate both frameworks. In
this context several patterns and use-cases emerge and Spring Batch Integration will address those
requirements.

The line between Spring Batch and Spring Integration is not always clear, but there are guidelines that
one can follow. Principally, these are: think about granularity, and apply common patterns. Some of
those common patterns are described in this reference manual section.

Adding messaging to a batch process enables automation of operations, and also separation and
strategizing of key concerns. For example a message might trigger a job to execute, and then the
sending of the message can be exposed in a variety of ways. Or when a job completes or fails that might
trigger a message to be sent, and the consumers of those messages might have operational concerns
that have nothing to do with the application itself. Messaging can also be embedded in a job, for example
reading or writing items for processing via channels. Remote partitioning and remote chunking provide
methods to distribute workloads over an number of workers.

Some key concepts that we will cover are:

* Namespace Support

» Launching Batch Jobs through Messages

Providing Feedback with Informational Messages

* Asynchronous Processors

Externalizing Batch Process Execution

Namespace Support

Since Spring Batch Integration 1.3, dedicated XML Namespace support was added, with the aim to
provide an easier configuration experience. In order to activate the namespace, add the following
namespace declarations to your Spring XML Application Context file:

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: batch-int="http://ww. springfranmework. org/ schema/ bat ch-integration"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ bat ch-i ntegrati on
http://ww. springfranework. or g/ schema/ bat ch-i ntegrati on/ spring-batch-integration.xsd">

</ beans>

A fully configured Spring XML Application Context file for Spring Batch Integration may look like the
following:

Spring Batch - Reference
3.0.0.RC2 Documentation 140

Spring Batch

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns:int="http://ww.springframework. org/schema/integration”

xm ns: bat ch="htt p: //ww. spri ngf ramewor k. or g/ schena/ bat ch"

xm ns: batch-int="http://ww.springframework. or g/ schenma/ bat ch-i ntegration”

xsi : schemalLocat i on="
http://ww. springframework. or g/ scherma/ bat ch-i ntegrati on
http://ww. springframework. org/ schema/ bat ch-i ntegrati on/ spring-batch-integration. xsd
http://ww. springfranewor k. org/ schema/ bat ch
http://ww. springframewor k. or g/ schema/ bat ch/ spri ng- bat ch. xsd
http://ww. springframework. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframewor k. org/ schema/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd">

</ beans>

Appending version numbers to the referenced XSD file is also allowed but, as a version-less declaration
will always use the latest schema, we generally don't recommend appending the version number to the
XSD name. Adding a version number, for instance, would create possibly issues when updating the
Spring Batch Integration dependencies as they may require more recent versions of the XML schema.

Launching Batch Jobs through Messages

When starting batch jobs using the core Spring Batch API you basically have 2 options:
* Command line via the ConmandLi neJobRunner

» Programatically via either JobQper at or. start () or JobLauncher. run().

For example, you may want to use the CormandLi neJobRunner when invoking Batch Jobs using a
shell script. Alternatively, you may use the JobOper at or directly, for example when using Spring Batch
as part of a web application. However, what about more complex use-cases? Maybe you need to poll a
remote (S)FTP server to retrieve the data for the Batch Job. Or your application has to support multiple
different data sources simultaneously. For example, you may receive data files not only via the web, but
also FTP etc. Maybe additional transformation of the input files is needed before invoking Spring Batch.

Therefore, it would be much more powerful to execute the batch job using Spring Integration and its
numerous adapters. For example, you can use a File Inbound Channel Adapter to monitor a directory
in the file-system and start the Batch Job as soon as the input file arrives. Additionally you can create
Spring Integration flows that use multiple different adapters to easily ingest data for your Batch Jobs
from multiple sources simultaneously using configuration only. Implementing all these scenarios with
Spring Integration is easy as it allow for an decoupled event-driven execution of the JobLauncher .

Spring Batch Integration provides the JobLaunchi ngMessageHandl er class that you can use
to launch batch jobs. The input for the JobLaunchi ngMessageHandl| er is provided by a Spring
Integration message, which payload is of type JobLaunchRequest . This class is a wrapper around
the Job that needs to be launched as well as the JobPar anet er s necessary to launch the Batch job.

The following image illustrates the typical Spring Integration message flow in order to start a Batch job.
The EIP (Enterprise IntegrationPatterns) website provides a full overview of messaging icons and their
descriptions.

Spring Batch - Reference
3.0.0.RC2 Documentation 141

http://www.eaipatterns.com/toc.html

Spring Batch

Inbound Channel Adapter Transformer
"a
F1P ol]DE*E*@@*:* 0
= "_/f O
File
JobLaunchRequest

JobLauncher

Transforming a file into a JobLaunchRequest
package i 0.spring.sbi;

i nport org.springfranmework. bat ch. core. Job;

i mport org. springframework. bat ch. core. JobPar anmet er sBui | der ;

i nport org.springfranmework. batch.integration.|aunch. JobLaunchRequest ;
i mport org.springframework.integration.annotation. Transf or ner;

i mport org.springframewor k. messagi ng. Message;

inport java.io.File;

public class Fil eMessageToJobRequest {
private Job job;
private String fil eParanet er Nane;

public void setFil eParaneterNane(String fil eParaneterNane) {
this.fil eParaneterName = fil eParanet er Nane;

}

public void setJob(Job job) {
this.job = job;
}

@r ansf or mer
publ i ¢ JobLaunchRequest toRequest (Message<Fil e> nmessage) {
JobPar anet er sBui | der j obPar anet er sBui | der =
new JobPar anet er sBui | der () ;

j obPar amet er sBui | der . addStri ng(fil eParanet er Name,
nessage. get Payl oad() . get Absol ut ePat h());

return new JobLaunchRequest (j ob, jobParanetersBuil der.toJobParaneters());

The JobExecution Response

When a Batch Job is being executed, a JobExecut i on instance is returned. This instance can be used
to determine the status of an execution. If a JobExecut i on was able to be created successfully, it will
always be returned, regardless of whether or not the actual execution was successful.

The exact behavior on how the JobExecuti on instance is returned depends on the provided
TaskExecut or. If a synchronous (single-threaded) TaskExecut or implementation is used, the
JobExecut i on response is only returned af t er the job completes. When using an asynchr onous
TaskExecut or, the JobExecut i on instance is returned immediately. Users can then take the i d
of JobExecut i on instance (JobExecut i on. get Jobl d()) and query the JobReposi t ory for the

Spring Batch - Reference
3.0.0.RC2 Documentation 142

Spring Batch

job's updated status using the JobExpl or er . For more information, please refer to the Spri ng Bat ch
reference documentation on Querying the Repository.

The following configuration will create a file i nbound- channel - adapt er to listen for CSV files in the
provided directory, hand them off to our transformer (Fi | eMessageToJobRequest), launch the job
via the Job Launching Gateway then simply log the output of the JobExecut i on via the | oggi ng-
channel - adapt er.

Spring Batch Integration Configuration

<i nt:channel id="inboundFileChannel"/>
<i nt:channel id="outboundJobRequest Channel"/>
<i nt:channel id="jobLaunchRepl yChannel"/>

<int-file:inbound-channel -adapter id="filePoller"
channel ="i nboundFi | eChannel "
directory="file:/tnmp/ nyfiles/"
fil enane-pattern="*.csv">
<int:poller fixed-rate="1000"/>
</int-file:inbound-channel -adapter>

<int:transfornmer input-channel="inboundFil eChannel"
out put - channel =" out boundJobRequest Channel " >
<bean cl ass="i 0. spring.sbhi.Fi |l eMessageToJobRequest" >
<property nane="j ob" ref="personJob"/>
<property nane="fil eParaneter Nane" val ue="input.file.name"/>
</ bean>
</int:transformer>

<bat ch-i nt:j ob-| aunchi ng- gat eway request -channel =" out boundJobRequest Channel "
repl y-channel ="j obLaunchRepl yChannel "/ >

<i nt: | oggi ng- channel - adapt er channel ="j obLaunchRepl yChannel "/ >

Now that we are polling for files and launching jobs, we need to configure for example our Spring Batch
I t enReader to utilize found file represented by the job parameter "input.file.name":

Example ItemReader Configuration

<bean id="itenReader" class="org.springframework.batch.itemfile.FlatFileltenReader"
scope="step" >
<property nane="resource" value="file://#{jobParaneters['input.file.name']}"/>
</ bean>
The main points of interest here are injecting the value of
#{jobParanmeters['input.file.name']} as the Resource property value and setting the

ltemReader bean to be of Step scope to take advantage of the late binding support which allows access
to the j obPar anet er s variable.

Available Attributes of the Job-Launching Gateway

« i d Identifies the underlying Spring bean definition, which is an instance of either:
e Event Dri venConsuner
e Pol I'i ngConsuner

The exact implementation depends on whether the component's input channel is a:

Spring Batch - Reference
3.0.0.RC2 Documentation 143

http://docs.spring.io/spring-batch/reference/html/configureJob.html#queryingRepository

Spring Batch

¢ Subscri babl eChannel or
¢ Pol | abl eChannel

» aut o- st art up Boolean flag to indicate that the endpoint should start automatically on startup. The
default istrue.

* request -channel The input MessageChannel of this endpoint.
» reply-channel Message Channel to which the resulting JobExecut i on payload will be sent.

* reply-tinmeout Allows you to specify how long this gateway will wait for the reply message to be
sent successfully to the reply channel before throwing an exception. This attribute only applies when
the channel might block, for example when using a bounded queue channel that is currently full.
Also, keep in mind that when sending to a Di r ect Channel , the invocation will occur in the sender's
thread. Therefore, the failing of the send operation may be caused by other components further
downstream. The r epl y-ti meout attribute maps to the sendTi neout property of the underlying
Messagi ngTenpl at e instance. The attribute will default, if not specified, to-1, meaning that by
default, the Gateway will wait indefinitely. The value is specified in milliseconds.

* job-launcher Pass in a custom JobLauncher bean reference. This attribute is optional. If not
specified the adapter will re-use the instance that is registered under the id j obLauncher. If no
default instance exists an exception is thrown.

» order Specifies the order for invocation when this endpoint is connected as a subscriber to a
Subscri babl eChannel .

Sub-Elements

When this Gateway is receiving messages from a Pol | abl eChannel , you must either provide a global
default Poller or provide a Poller sub-element to the Job Launchi ng Gat eway:

<bat ch-i nt:j ob-| aunchi ng- gat eway request - channel =" queueChannel "
repl y-channel ="repl yChannel " j ob-1auncher="j obLauncher">
<int:poller fixed-rate="1000"/>
</ bat ch-int:job-|aunchi ng- gat eway>

Providing Feedback with Informational Messages

As Spring Batch jobs can run for long times, providing progress information will be critical. For example,
stake-holders may want to be notified if a some or all parts of a Batch Job has failed. Spring Batch
provides support for this information being gathered through:

« Active polling or
» Event-driven, using listeners.

When starting a Spring Batch job asynchronously, e.g. by using the Job Launchi ng Gat eway, a
JobExecut i oninstanceisreturned. Thus, JobExecut i on. get Jobl d() can be used to continuously
poll for status updates by retrieving updated instances of the JobExecut i on from the JobReposi tory
using the JobExpl or er . However, this is considered sub-optimal and an event-driven approach should
be preferred.

Therefore, Spring Batch provides listeners such as:

» StepListener

Spring Batch - Reference
3.0.0.RC2 Documentation 144

Spring Batch

e ChunkListener
» JobExecutionListener

In the following example, a Spring Batch job was configured with a St epExecut i onLi st ener. Thus,
Spring Integration will receive and process any step before/after step events. For example, the received
St epExecut i on can be inspected using a Rout er . Based on the results of that inspection, various
things can occur for example routing a message to a Mail Outbound Channel Adapter, so that an Email
notification can be send out based on some condition.

Status Status ; Email
Changes Router Emalls Adapter
Batch Job Execution _.,,f'— —
= -—— = -
‘IIEEHEI'I — — [}__

Relaunch

Launcher

—
Bid

7
&
A

Below is an example of how a listener is configured to send a message to a Gateway for
St epExecut i on events and log its output to a | oggi ng- channel - adapt er :

First create the notifications integration beans:
<i nt:channel id="stepExecuti onsChannel"/>
<int:gateway id="notificationExecutionsListener"
servi ce-interface="org. springfranmework. bat ch. core. St epExecuti onLi st ener"

def aul t -request - channel =" st epExecut i onsChannel "/ >

<i nt: | oggi ng- channel - adapt er channel =" st epExecuti onsChannel "/ >

Then modify your job to add a step level listener:

<j ob id="inportPaynents">
<step id="stepl">
<tasklet ../>
<chunk ../>
<listeners>
<listener ref="notificati onExecutionsListener"/>
</listeners>
</t askl et >
</ st ep>
</j ob>

Asynchronous Processors

Asynchronous Processors help you to to scale the processing of items. In the asynchronous processor
use-case, an Asyncl t enPr ocessor serves as a dispatcher, executing the | t enPr ocessor 's logic
for an item on a new thread. The Fut ur e is passed to the AsynchltemA it er to be written once
the processor completes.

Spring Batch - Reference
3.0.0.RC2 Documentation 145

Spring Batch

Therefore, you can increase performance by using asynchronous item processing, basically allowing
you to implement fork-join scenarios. The Asyncl t em\W i t er will gather the results and write back the
chunk as soon as all the results become available.

Configuration of both the AsyncltenProcessor and AsyncltemWiter are simple, first the
Asyncl t enPr ocessor:

<bean i d="processor"
cl ass="org. spri ngframewor k. bat ch. i nt egrati on. async. Asyncl t enPr ocessor " >
<property nanme="del egate">
<bean cl ass="your.|tenProcessor"/>
</ property>
<property name="t askExecutor">
<bean cl ass="org. springframework. core.task. Si npl eAsyncTaskExecut or"/ >
</ property>
</ bean>

The property "del egate" is actually a reference to your |tenProcessor bean and the
"t askExecut or " property is a reference to the TaskExecut or of your choice.

Then we configure the AsyncltemWiter:

<bean id="itemWiter"
cl ass="org. springframework. bat ch.integration.async. AsyncltenNiter">
<property nanme="del egate">
<bean id="itenWiter" class="your.ltemWiter"/>
</ property>
</ bean>

Again, the property "del egat e" is actually a reference to your I t emW i t er bean.
Externalizing Batch Process Execution

The integration approaches discussed so far suggest use-cases where Spring Integration wraps Spring
Batch like an outer-shell. However, Spring Batch can also use Spring Integration internally. Using
this approach, Spring Batch users can delegate the processing of items or even chunks to outside
processes. This allows you to offload complex processing. Spring Batch Integration provides dedicated
support for:

* Remote Chunking

» Remote Partitioning

Spring Batch - Reference
3.0.0.RC2 Documentation 146

Spring Batch

Remote Chunking

Step Step2

ItemReader

ItemReader

ltemProcessor ItemProcessor

[temWriter [temWriter

[temWriter

I
|

ltemReader

ltemReader ltemReader

ltemProcessor

ItemProcessor ltemProcessor

ltemWriter ltemWriter ltemWriter

Taking things one step further, one can also externalize the chunk processing using the
ChunkMessageChannel |t emW it er which is provided by Spring Batch Integration which will
send items out and collect the result. Once sent, Spring Batch will continue the process of
reading and grouping items, without waiting for the results. Rather it is the responsibility of the
ChunkMessageChannel | t emW i t er to gather the results and integrate them back into the Spring
Batch process.

Using Spring Integration you have full control over the concurrency of your processes, for instance by
using a QueueChannel instead of a Di r ect Channel . Furthermore, by relying on Spring Integration's
rich collection of Channel Adapters (E.g. JIMS or AMQP), you can distribute chunks of a Batch job to
external systems for processing.

A simple job with a step to be remotely chunked would have a configuration similar to the following:

<j ob i d="personJob">
<step i d="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemNiter" conmt-interval ="200"/>
</taskl et >
</ st ep>
</j ob>

The ItemReader reference would point to the bean you would like to use for reading data on the master.
The ltemWriter reference points to a special ItemWriter "ChunkMessageChannel [temNiter" as
described above. The processor (if any) is left off the master configuration as it is configured on the
slave. The following configuration provides a basic master setup. It's advised to check any additional
component properties such as throttle limits and so on when implementing your use case.

Spring Batch - Reference
3.0.0.RC2 Documentation 147

Spring Batch

<bean i d="connectionFactory" class="org.apache. acti veng. Acti veMXonnecti onFact ory">
<property nane="broker URL" val ue="tcp://| ocal host: 61616"/ >
</ bean>

<i nt -j ns: out bound- channel - adapt er i d="requests" desti nati on-name="requests"/>

<bean i d="nmessagi ngTenpl at e"
cl ass="org. springfranmework.integration.core. Messagi ngTenpl ate" >
<property nane="def aul t Channel " ref="requests"/>
<property nanme="recei veTi neout" val ue="2000"/>
</ bean>

<bean id="itenmWiter"
cl ass="org. spri ngfranmewor k. bat ch. i nt egrati on. chunk. ChunkMessageChannel | temNiter"
scope="step" >
<property nane="messagi ngOperations" ref="messagi ngTenpl ate"/>
<property nanme="repl yChannel " ref="replies"/>
</ bean>

<bean i d="chunkHandl er*"
cl ass="org. spri ngframewor k. bat ch. i nt egrati on. chunk. Renot eChunkHandl er Fact or yBean" >
<property nanme="chunkWiter" ref="itemWiter"/>
<property nane="step" ref="stepl"/>
</ bean>

<int:channel id="replies">
<i nt:queue/ >
</'int:channel >

<i nt-jns: nessage-dri ven-channel - adapter id="jnsReplies"
desti nati on-name="repl i es"
channel ="replies"/>

This configuration provides us with a number of beans. We configure our messaging
middleware using ActiveMQ and inbound/outbound JMS adapters provided by Spring Integration.
As shown, our itemWiter bean which is referenced by our job step utilizes the
ChunkMessageChannel It emW i t er for writing chunks over the configured middleware.

Now lets move on to the slave configuration:

Spring Batch - Reference
3.0.0.RC2 Documentation 148

Spring Batch

<bean i d="connectionFactory" class="org.apache. acti veng. Acti veMXonnecti onFact ory">
<property nane="broker URL" val ue="tcp://| ocal host: 61616"/ >
</ bean>

<i nt:channel id="requests"/>
<int:channel id="replies"/>

<i nt-j ns: nessage-dri ven-channel - adapt er id="j nsln"
desti nati on- nane="r equest s"
channel ="requests"/ >

<i nt - j ns: out bound- channel - adapt er i d="out goi ngRepl i es"
desti nati on-name="repl i es"
channel ="replies">

</int-j ms: out bound- channel - adapt er >

<int:service-activator id="serviceActivator"
i nput - channel ="r equest s"
out put - channel ="repl i es"
r ef =" chunkPr ocessor ChunkHandl er "
met hod="handl eChunk"/ >

<bean i d="chunkProcessor ChunkHandl er "
cl ass="org. spri ngframewor k. bat ch. i nt egrati on. chunk. ChunkPr ocessor ChunkHandl er " >
<property name="chunkProcessor">
<bean cl ass="org. spri ngfranewor k. bat ch. core. step.item Si npl eChunkProcessor" >
<property name="itemMNiter">
<bean cl ass="i 0. spring. shi.PersonltemNiter"/>
</ property>
<property name="itenProcessor">
<bean cl ass="i 0. spri ng. sbhi . PersonltenProcessor"/ >
</ property>
</ bean>
</ property>
</ bean>

Most of these configuration items should look familiar from the master configuration. Slaves do not need
access to things like the Spring Batch JobReposi t or y nor access to the actual job configuration file.
The main bean of interest is the "chunkPr ocessor ChunkHandl er". The chunkPr ocessor property
of ChunkPr ocessor ChunkHandl er takes a configured Si npl eChunkPr ocessor which is where
you would provide a reference to your I t em\W i t er and optionally your | t enPr ocessor that will run
on the slave when it receives chunks from the master.

For more information, please also consult the Spring Batch manual, specifically the chapter on Remote
Chunking.

Spring Batch - Reference
3.0.0.RC2 Documentation 149

http://docs.spring.io/spring-batch/reference/html/scalability.html#remoteChunking
http://docs.spring.io/spring-batch/reference/html/scalability.html#remoteChunking

Spring Batch

Remote Partitioning

Stepl Master

ItemReader ItemReader

B ——— B ———
ltemProcessor Partitioner [temProcessor

ltemWriter ltemWriter

'
Slave 3

ltemReader

ltemReader ltemReader

ltemProcessor

ltemProcessar ltemProcessar

ltemWriter ltemWriter ltemWriter

Remote Partitioning, on the other hand, is useful when the problem is not the processing of
items, but the associated 1/O represents the bottleneck. Using Remote Partitioning, work can be
farmed out to slaves that execute complete Spring Batch steps. Thus, each slave has its own
It enReader,|tenProcessor andltemN it er. For this purpose, Spring Batch Integration provides
the MessageChannel Partiti onHandl er.

This implementation of the Parti ti onHandl er interface uses MessageChannel instances to send
instructions to remote workers and receive their responses. This provides a nice abstraction from the
transports (E.g. JMS or AMQP) being used to communicate with the remote workers.

The reference manual section Remote Partitioning provides an overview of the concepts and
components needed to configure Remote Partitioning and shows an example of using the default
TaskExecut or Partiti onHandl er to partition in separate local threads of execution. For Remote
Partitioning to multiple JVM's, two additional components are required:

¢ Remoting fabric or grid environment
A PartitionHandler implementation that supports the desired remoting fabric or grid environment

Similar to Remote Chunking JMS can be used as the "remoting fabric" and the PartitionHandler
implementation to be used as described above is the MessageChannel Partiti onHandl er.
The example shown below assumes an existing partitioned job and focuses on the
MessageChannel Parti ti onHandl er and JMS configuration:

Spring Batch - Reference
3.0.0.RC2 Documentation 150

http://docs.spring.io/spring-batch/reference/html/scalability.html#partitioning

Spring Batch

<bean id="partitionHandl er"

<property nane="stepNanme" val ue="stepl"/>
<property nanme="gri dSi ze" val ue="3"/>
<property nane="repl yChannel " ref="out bound-replies"/>
<property nane="nessagi ngOperati ons">
<bean cl ass="org. springframework.integration.core. Messagi ngTenpl at e">
<property nane="def aul t Channel " ref="out bound-requests"/>
<property nane="recei veTi neout" val ue="100000"/>
</ bean>
</ property>
</ bean>

<i nt:channel id="outbound-requests"/>
<i nt-j ns: out bound- channel - adapt er desti nati on="request sQueue"
channel =" out bound- r equest s"/ >
<i nt:channel id="inbound-requests"/>
<int-jns: message-dri ven-channel - adapt er destinati on="request sQueue"
channel ="i nbound- r equests"/ >
<bean i d="st epExecuti onRequest Handl er"
<property nane="j obExpl orer" ref="j obExplorer"/>
<property nanme="stepLocator" ref="stepLocator"/>
</ bean>

out put - channel =" out bound- st agi ng"/ >

<

nt: channel i d="out bound-stagi ng"/>
<i nt -j ns: out bound- channel - adapt er desti nati on="st agi ngQueue"
channel =" out bound- st agi ng"/ >

<

nt: channel id="inbound-stagi ng"/>
<int-jns: message-driven-channel - adapt er desti nati on="st agi ngQueue"
channel ="i nbound- st agi ng"/ >

<

nt:aggregator ref="partitionHandl er" input-channel ="i nbound- st agi ng"
out put - channel =" out bound-replies"/>

<

nt: channel id="outbound-replies">
<i nt:queue/ >
</int:channel >

<bean i d="stepLocator"

Also ensure the partition handl er attribute maps to the partiti onHandl er bean:

cl ass="org. spri ngfranmewor k. bat ch. i ntegration. partition.StepExecuti onRequest Handl er" >

<int:service-activator ref="stepExecutionRequestHandl er" input-channel ="i nbound-requests"

cl ass="org. springfranmewor k. bat ch. i ntegration. partition. BeanFactoryStepLocator" />

cl ass="org. spri ngfranmewor k. bat ch. i ntegration. partition. MessageChannel Partiti onHandl er">

<j ob i d="personJob">
<step id="stepl. master">
<partition partitioner="partitioner" handler="partitionHandl er"/>
</ st ep>
</j ob>

Spring Batch - Reference
3.0.0.RC2 Documentation

151

Spring Batch

Appendix A. List of temReaders and
ltemWriters

A.l Item Readers

Table A.1. Available Iltem Readers

Item Reader Description

AbstractlitemCountingltemStreamltemReader Abstract base class that provides basic restart
capabilities by counting the number of items
returned from an | t enReader .

AggregateltemReader An ItemReader that delivers a list as its
item, storing up objects from the injected
IltemReader until they are ready to be packed
out as a collection. This ItemReader should
mark the beginning and end of records
with the constant values in FieldSetMapper
AggregateltemReader#BEGIN_RECORD and
AggregateltemReader#END_RECORD

AmgpltemReader Given a Spring AmgpTemplate it provides
synchronous receive methods. The
receiveAndConvert() method lets you receive
POJO objects.

FlatFileltemReader Reads from a flat file. Includes ItemStream and
Skippable functionality. See section on Read
from a File

HibernateCursorltemReader Reads from a cursor based on an HQL query.

See section on Reading from a Database
HibernatePagingltemReader Reads from a paginated HQL query

IbatisPagingltemReader Reads via iBATIS based on a query. Pages
through the rows so that large datasets can
be read without running out of memory.
See HOWTO - Read from a Database. This
ItemReader is now deprecated as of Spring

Batch 3.0.
ltemReaderAdapter Adapts any class to the | t enReader interface.
JdbcCursorltemReader Reads from a database cursor via JDBC. See

HOWTO - Read from a Database

JdbcPagingltemReader Given a SQL statement, pages through the rows,
such that large datasets can be read without
running out of memory

Spring Batch - Reference
3.0.0.RC2 Documentation 152

Spring Batch

Iltem Reader

Description

JmsltemReader

Given a Spring JmsOperations object and a JMS
Destination or destination name to send errors,
provides items received through the injected
JmsOperations receive() method

JpaPagingltemReader

Given a JPQL statement, pages through the
rows, such that large datasets can be read
without running out of memory

ListitemReader

Provides the items from a list, one at a time

MongoltemReader

Neo4jltemReader

Given a MongoOperations object and JSON
based MongoDB query, proides items received
from the MongoOperations find method

Given a Neo4jOperations object and
the components of a Cyhper query,
items are returned as the result of the
Neo4jOperations.query method

RepositoryltemReader

StoredProcedureltemReader

Given a Spring Data
PagingAndSortingRepository object, a Sort
and the name of method to execute, returns
items provided by the Spring Data repository
implementation

Reads from a database cursor resulting from the
execution of a database stored procedure. See
HOWTO - Read from a Database

StaxEventltemReader

Reads via StAX. See HOWTO - Read from a File

A.2 Item Writers

Table A.2. Available Item Writers

Item Writer

AbstractltemStreamltemWriter

Description

Abstract base class that combines the
ItenStreamand | tenmWi t er interfaces.

AmqpltemWriter

Given a Spring AmgpTemplate it provides

for synchronous send method. The
convertAndSend(Object) method lets you send
POJO objects.

CompositeltemWriter

FlatFileltemWriter

Passes an item to the process method of each in
an injected List of temWriter objects

Writes to a flat file. Includes ItemStream and
Skippable functionality. See section on Writing to
a File

3.0.0.RC2

Spring Batch - Reference
Documentation 153

Spring Batch

Item Writer Description

GemfireltemWriter Using a GemfireOperations object, items wre
either written or removed from the Gemfire
instance based on the configuration of the delete
flag

HibernateltemWriter This item writer is hibernate session aware
and handles some transaction-related work
that a non-"hibernate aware" item writer would
not need to know about and then delegates to
another item writer to do the actual writing.

IbatisBatchltemWriter Writes items in a batch using the iBatis API's
directly. This ItemWriter is deprecated as of
Spring Batch 3.0.

ltemWriterAdapter Adapts any class tothe | t enmWW i t er interface.

JdbcBatchltemWriter Uses batching features from a
Pr epar edSt at enment , if available, and can
take rudimentary steps to locate a failure during
aflush.

JmsltemWriter Using a JmsOperations object, items
are written to the default queue via the
JmsOperations.convertAndSend() method

JpaltemWriter This item writer is JPA EntityManager aware and
handles some transaction-related work that a
non-"jpa aware" | t em i t er would not need to
know about and then delegates to another writer
to do the actual writing.

MimeMessageltemWriter Using Spring's JavaMailSender, items of type
M neMessage are sent as mail messages

MongoltemWriter Given a MongoOperations object, items are
written via the MongoOperations.save(Object)
method. The actual write is delayed until the
last possible moment before the transaction
commits.

NeodjltemWriter Given a Neo4jOperations object, items are
persisted via the save(Object) method or deleted
via the delete(Object) perthe I temWiter's
configuration

PropertyExtractingDelegatingltemWriter Extends AbstractMethodinvokingDelegator
creating arguments on the fly. Arguments
are created by retrieving the values from
the fields in the item to be processed (via a
SpringBeanWrapper) based on an injected array
of field name

Spring Batch - Reference
3.0.0.RC2 Documentation 154

Spring Batch

Item Writer Description

RepositoryltemWriter Given a Spring Data CrudRepository
implementation, items are saved via the method
specified in the configuration.

StaxEventltemWriter Uses an ObjectToXmlSerializer implementation
to convert each item to XML and then writes it to
an XML file using StAX.

Spring Batch - Reference
3.0.0.RC2 Documentation 155

Spring Batch

Appendix B. Meta-Data Schema

B.1 Overview

The Spring Batch Meta-Data tables very closely match the Domain objects that represent them in
Java. For example, Jobl nst ance, JobExecuti on, JobPar anet ers, and St epExecuti on map
to BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION, BATCH_JOB_EXECUTION_PARAMS,
and BATCH_STEP_EXECUTION, respectively. Executi onCont ext maps to both
BATCH_JOB_EXECUTION_CONTEXT and BATCH_STEP_EXECUTION_CONTEXT. The
JobReposi t ory is responsible for saving and storing each Java object into its correct table. The
following appendix describes the meta-data tables in detail, along with many of the design decisions
that were made when creating them. When viewing the various table creation statements below, it
is important to realize that the data types used are as generic as possible. Spring Batch provides
many schemas as examples, which all have varying data types due to variations in individual database
vendors' handling of data types. Below is an ERD model of all 6 tables and their relationships to one
another:
| BATCH_STEP_EXECUTION_CONTEXT ¥

STEP_EXECUTION_ID BIGINT(20)
SHORT_CONTEXT YARCHAR(2500)

SERIALIZED_CONTEXT TEXT ‘ :I BATCH JOB INSTANCE ¥

< JOB_INSTANCE_ID BIGINT(20)

VERSION BIGINT{20)

JOB_NAME VARCHAR(100)

JOB_KEY VARGHAR(32)

] BATCH_STEP_EXECUTION ¥ =
STEP_EXECUTION_ID BIGINT{20) *
VERSION BIGINT{20) |
STEP_NAME VARCHAR(100) *
® JOB_EXECUTION_ID BIGINT(20) "] BATCH_JOB_EXECUTION v

START_TIME DATETIME JOB_EXECUTION_ID BIGINT(20) _| BATCH_JOB_EXECUTION_PARAMS ¥
END_TIME DATETIME VERSION BIGINT(20) % JOB_EXECUTION_ID BIGINT(20)
STATUS VARCHAR(10) & JOB_INSTANGE_ID BIGINT{20) TYPE_CD VARCHAR(6)
COMMIT_COUNT BIGINT(20) CREATE_TIME DATETIME KEY_NAME VARGHAR(1 00)
READ_COUNT BIGINT(20) START_TIME DATETIME STRING_VAL VARCHAR{250)
FILTER_GOUNT BIGINT(20) P enp_TiME DATETIVE # =4S DATE VAL DATETME
WRITE_COUNT BIGINT{20) STATUS VARCHAR({10) LONG_VAL BIGINT(20)
READ_SKIP_GOUNT BIGINT(20) EXIT_CODE VARCHAR(100) DOUBLE_VAL DOUBLE
WRITE_SKIP_COUNT BIGINT{20) EXIT_MESSAGE VARGHAR(2500) IDENTIFYING GHAR(1)
PROCESS_SKIP_GOUNT BIGINT(20) LAST_UPDATED DATETIME >
ROLLBAGK_COUNT BIGINT{20) -
EXIT_CODE VARCHAR(100)
EXIT_MESSAGE VARCHAR(2500) I
LAST_UPDATED DATETIME

> | BATCH_JOB_EXECUTION_CONTEXT ¥
JOB_EXECUTION_ID BIGINT{20)

SHORT_CONTEXT VARCHAR(2500)

SERIALIZED_CONTEXT TEXT

>

Example DDL Scripts

The Spring Batch Core JAR file contains example scripts to create the relational tables for a number of
database platforms (which are in turn auto-detected by the job repository factory bean or namespace
equivalent). These scripts can be used as is, or modified with additional indexes and constraints as
desired. The file names are in the form schema- *. sql , where "*" is the short name of the target
database platform. The scripts are in the package or g. spri ngf r anmewor k. bat ch. core.

Spring Batch - Reference
3.0.0.RC2 Documentation 156

Spring Batch

Version

Many of the database tables discussed in this appendix contain a version column. This column is
important because Spring Batch employs an optimistic locking strategy when dealing with updates to
the database. This means that each time a record is 'touched' (updated) the value in the version column
is incremented by one. When the repository goes back to try and save the value, if the version number
has change it will throw Opt i mi sti cLocki ngFai | ur eExcept i on, indicating there has been an error
with concurrent access. This check is necessary since, even though different batch jobs may be running
in different machines, they are all using the same database tables.

Identity

BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION, and BATCH_STEP_EXECUTION each
contain columns ending in _ID. These fields act as primary keys for their respective tables. However,
they are not database generated keys, but rather they are generated by separate sequences. This
is necessary because after inserting one of the domain objects into the database, the key it is given
needs to be set on the actual object so that they can be uniquely identified in Java. Newer database
drivers (Jdbc 3.0 and up) support this feature with database generated keys, but rather than requiring
it, sequences were used. Each variation of the schema will contain some form of the following:

CREATE SEQUENCE BATCH STEP_EXECUTI ON_SEQ
CREATE SEQUENCE BATCH JOB_EXECUTI ON_SEQ
CREATE SEQUENCE BATCH JOB_SEQ

Many database vendors don't support sequences. In these cases, work-arounds are used, such as the
following for MySQL.:

CREATE TABLE BATCH STEP_EXECUTI ON_SEQ (I D BI G NT NOT NULL) type=MYl SAM
I NSERT | NTO BATCH_STEP_EXECUTI ON_SEQ val ues(0);

CREATE TABLE BATCH JOB_EXECUTI ON_SEQ (I D BI G NT NOT NULL) type=MYl SAM
I NSERT | NTO BATCH JOB_EXECUTI ON_SEQ val ues(0);

CREATE TABLE BATCH JOB _SEQ (I D BI G NT NOT NULL) type=Myl SAM

I NSERT | NTO BATCH JOB_SEQ val ues(0);

In the above case, a table is used in place of each sequence. The Spring core class
MySQ_MaxVal uel ncr enent er will then increment the one column in this sequence in order to give
similar functionality.

B.2 BATCH_JOB_INSTANCE

The BATCH_JOB_INSTANCE table holds all information relevant to a Jobl nst ance, and serves as
the top of the overall hierarchy. The following generic DDL statement is used to create it:

CREATE TABLE BATCH JOB_| NSTANCE (
JOB_I NSTANCE_| D BI G/ NT PRI MARY KEY |,
VERS| ON Bl GI NT,

JOB_NAME VARCHAR(100) NOT NULL ,
JOB_KEY VARCHAR(2500)

Below are descriptions of each column in the table:

* JOB_INSTANCE_ID: The unique id that will identify the instance, which is also the primary key. The
value of this column should be obtainable by calling the get | d method on Jobl nst ance.

Spring Batch - Reference
3.0.0.RC2 Documentation 157

Spring Batch

* VERSION: See above section.

» JOB_NAME: Name of the job obtained from the Job object. Because it is required to identify the
instance, it must not be null.

» JOB_KEY: A serialization of the JobPar anet er s that uniquely identifies separate instances of
the same job from one another. (Jobl nst ances with the same job name must have different
JobPar anet er s, and thus, different JOB_KEY values).

B.3 BATCH_JOB_EXECUTION_PARAMS

The BATCH_JOB_EXECUTION_PARAMS table holds all information relevant to the JobPar anet er s
object. It contains 0 or more key/value pairs passed to a Job and serve as a record of the parameters
a job was run with. For each parameter that contributes to the generation of a job's identity, the
IDENTIFYING flag is set to true. It should be noted that the table has been denormalized. Rather than
creating a separate table for each type, there is one table with a column indicating the type:

CREATE TABLE BATCH JOB_EXECUTI ON_PARAMS (
JOB_EXECUTI ON_I D BI G NT NOT NULL ,

TYPE_CD VARCHAR(6) NOT NULL ,

KEY_NAME VARCHAR(100) NOT NULL |,

STRI NG_VAL VARCHAR(250) ,

DATE_VAL DATETI ME DEFAULT NULL |,

LONG VAL BI G NT ,

DOUBLE_VAL DOUBLE PREC! S| ON ,

| DENTI FYI NG CHAR(1) NOT NULL ,

constrai nt JOB_EXEC PARAMS_FK foreign key (JOB_EXECUTI ON_| D)
references BATCH JOB_EXECUTI ON(JOB_EXECUTI ON_| D)

Below are descriptions for each column:

e JOB_EXECUTION_ID: Foreign Key from the BATCH_JOB_EXECUTION table that indicates the job
execution the parameter entry belongs to. It should be noted that multiple rows (i.e key/value pairs)
may exist for each execution.

» TYPE_CD: String representation of the type of value stored, which can be either a string, date, long,
or double. Because the type must be known, it cannot be null.

» KEY_NAME: The parameter key.

* STRING_VAL: Parameter value, if the type is string.
 DATE_VAL: Parameter value, if the type is date.

» LONG_VAL: Parameter value, if the type is a long.

» DOUBLE_VAL: Parameter value, if the type is double.

« IDENTIFYING: Flag indicating if the parameter contributed to the identity of the related
Jobl nst ance.

It is worth noting that there is no primary key for this table. This is simply because the framework has
no use for one, and thus doesn't require it. If a user so chooses, one may be added with a database
generated key, without causing any issues to the framework itself.

Spring Batch - Reference
3.0.0.RC2 Documentation 158

Spring Batch

B.4 BATCH_JOB_EXECUTION

The BATCH_JOB_EXECUTION table holds all information relevant to the JobExecut i on object. Every
time a Job is run there will always be a new JobExecut i on, and a new row in this table:

CREATE TABLE BATCH JOB_EXECUTI ON (

JOB_EXECUTI ON_I D BIG NT PRI MARY KEY ,

VERSI ON BI G NT,

JOB_| NSTANCE_|I D BI G NT NOT NULL,

CREATE_TI ME TI MESTAMP NOT NULL,

START_TI ME TI MESTAMP DEFAULT NULL,

END_TI ME TI MESTAMP DEFAULT NULL,

STATUS VARCHAR(10),

EXI T_CODE VARCHAR(20) ,

EXI T_MESSAGE VARCHAR(2500),

LAST_UPDATED TI MESTAMP,

constrai nt JOB_|I NSTANCE_EXECUTI ON_FK foreign key (JOB_I NSTANCE | D)
ref erences BATCH_JOB_| NSTANCE(JOB_| NSTANCE_| D)

Below are descriptions for each column:

» JOB_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this column
is obtainable by calling the get | d method of the JobExecut i on object.

* VERSION: See above section.

» JOB_INSTANCE_ID: Foreign key from the BATCH_JOB_INSTANCE table indicating the instance to
which this execution belongs. There may be more than one execution per instance.

* CREATE_TIME: Timestamp representing the time that the execution was created.
» START_TIME: Timestamp representing the time the execution was started.

« END_TIME: Timestamp representing the time the execution was finished, regardless of success or
failure. An empty value in this column even though the job is not currently running indicates that there
has been some type of error and the framework was unable to perform a last save before failing.

» STATUS: Character string representing the status of the execution. This may be COMPLETED,
STARTED, etc. The object representation of this column is the Bat chSt at us enumeration.

» EXIT_CODE: Character string representing the exit code of the execution. In the case of a command
line job, this may be converted into a number.

» EXIT_MESSAGE: Character string representing a more detailed description of how the job exited. In
the case of failure, this might include as much of the stack trace as is possible.

 LAST_UPDATED: Timestamp representing the last time this execution was persisted.

B.5 BATCH_STEP_EXECUTION

The BATCH_STEP_EXECUTION table holds all information relevant to the St epExecut i on object.
This table is very similar in many ways to the BATCH_JOB_EXECUTION table and there will always be
at least one entry per St ep for each JobExecut i on created:

Spring Batch - Reference
3.0.0.RC2 Documentation 159

Spring Batch

CREATE TABLE BATCH _STEP_EXECUTI ON (
STEP_EXECUTI ON_I D BI G NT PRI MARY KEY ,
VERSI ON Bl G NT NOT NULL,

STEP_NAME VARCHAR(100) NOT NULL,

JOB_EXECUTI ON_I D BI G NT NOT NULL,

START_TI ME TI MESTAMP NOT NULL |,

END_TI ME TI MESTAMP DEFAULT NULL,

STATUS VARCHAR(10) ,

COVM T_COUNT BI G NT

READ_COUNT BI G NT ,

FI LTER_COUNT Bl G NT ,

WRI TE_COUNT BI G NT ,

READ_SKI P_COUNT Bl G NT ,

VRl TE_SKI P_COUNT BI GI NT

PROCESS_SKI P_COUNT BI G NT

ROLLBACK_COUNT BI G NT

EXI T_CODE VARCHAR(20) ,

EXI T_MESSAGE VARCHAR(2500) |,

LAST_UPDATED TI MESTAMP,

constrai nt JOB_EXECUTI ON_STEP_FK forei gn key (JOB_EXECUTI ON_| D)
references BATCH JOB_EXECUTI ON(JOB_EXECUTI ON_| D)

Below are descriptions for each column;

STEP_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this column
should be obtainable by calling the get | d method of the St epExecut i on object.

VERSION: See above section.
STEP_NAME: The name of the step to which this execution belongs.

JOB_EXECUTION_ID: Foreign key from the BATCH_JOB_EXECUTION table indicating the
JobExecution to which this StepExecution belongs. There may be only one St epExecut i on for a
given JobExecut i on for a given St ep name.

START_TIME: Timestamp representing the time the execution was started.

END_TIME: Timestamp representing the time the execution was finished, regardless of success or
failure. An empty value in this column even though the job is not currently running indicates that there
has been some type of error and the framework was unable to perform a last save before failing.

STATUS: Character string representing the status of the execution. This may be COMPLETED,
STARTED, etc. The object representation of this column is the Bat chSt at us enumeration.

COMMIT_COUNT: The number of times in which the step has committed a transaction during this
execution.

READ_COUNT: The number of items read during this execution.

FILTER_COUNT: The number of items filtered out of this execution.
WRITE_COUNT: The number of items written and committed during this execution.
READ_SKIP_COUNT: The number of items skipped on read during this execution.
WRITE_SKIP_COUNT: The number of items skipped on write during this execution.

PROCESS_SKIP_COUNT: The number of items skipped during processing during this execution.

Spring Batch - Reference

3.0.0.RC2 Documentation 160

Spring Batch

« ROLLBACK_COUNT: The number of rollbacks during this execution. Note that this count includes
each time rollback occurs, including rollbacks for retry and those in the skip recovery procedure.

» EXIT_CODE: Character string representing the exit code of the execution. In the case of a command
line job, this may be converted into a number.

» EXIT_MESSAGE: Character string representing a more detailed description of how the job exited. In
the case of failure, this might include as much of the stack trace as is possible.

* LAST_UPDATED: Timestamp representing the last time this execution was persisted.

B.6 BATCH_JOB_EXECUTION_CONTEXT

The BATCH_JOB_EXECUTION_CONTEXT table holds all information relevant to an Job's
Execut i onCont ext . There is exactly one Job Executi onCont ext per JobExecuti on, and it
contains all of the job-level data that is needed for a particular job execution. This data typically
represents the state that must be retrieved after a failure so that a Jobl nst ance can 'start from where
it left off".

CREATE TABLE BATCH JOB_EXECUTI ON_CONTEXT (

JOB_EXECUTI ON_I D BI G NT PRI MARY KEY,

SHORT_CONTEXT VARCHAR(2500) NOT NULL,

SERI ALl ZED_CONTEXT CLOB,

constraint JOB_EXEC CTX FK foreign key (JOB_EXECUTI ON_| D)
references BATCH JOB_EXECUTI ON(JOB_EXECUTI ON_| D)

Below are descriptions for each column;

» JOB_EXECUTION_ID: Foreign key representing the JobExecut i on to which the context belongs.
There may be more than one row associated to a given execution.

* SHORT_CONTEXT: A string version of the SERIALIZED_CONTEXT.

e SERIALIZED_CONTEXT: The entire context, serialized.

B.7 BATCH_STEP_EXECUTION_CONTEXT

The BATCH_STEP_EXECUTION_CONTEXT table holds all information relevant to an Step's
Execut i onCont ext . There is exactly one Execut i onCont ext per St epExecut i on, and it contains
all of the data that needs to persisted for a particular step execution. This data typically represents the
state that must be retrieved after a failure so that a Jobl nst ance can 'start from where it left off'.

CREATE TABLE BATCH _STEP_EXECUTI ON_CONTEXT (

STEP_EXECUTI ON_I D BI G NT PRI MARY KEY,

SHORT_CONTEXT VARCHAR(2500) NOT NULL,

SERI ALl ZED_CONTEXT CLOB,

constrai nt STEP_EXEC CTX FK foreign key (STEP_EXECUTI ON_| D)
ref erences BATCH STEP_EXECUTI ON(STEP_EXECUTI ON_| D)

Below are descriptions for each column;

» STEP_EXECUTION_ID: Foreign key representing the St epExecution to which the context
belongs. There may be more than one row associated to a given execution.

Spring Batch - Reference
3.0.0.RC2 Documentation 161

Spring Batch

 SHORT_CONTEXT: A string version of the SERIALIZED_CONTEXT.

e SERIALIZED_CONTEXT: The entire context, serialized.

B.8 Archiving

Because there are entries in multiple tables every time a batch job is run, it is common to create an
archive strategy for the meta-data tables. The tables themselves are designed to show a record of what
happened in the past, and generally won't affect the run of any job, with a couple of notable exceptions
pertaining to restart:

» The framework will use the meta-data tables to determine if a particular Joblnstance has been run
before. If it has been run, and the job is not restartable, then an exception will be thrown.

 If an entry for a Joblnstance is removed without having completed successfully, the framework will
think that the job is new, rather than a restart.

 Ifajobis restarted, the framework will use any data that has been persisted to the ExecutionContext to
restore the Job's state. Therefore, removing any entries from this table for jobs that haven't completed
successfully will prevent them from starting at the correct point if run again.

B.9 International and Multi-byte Characters

If you are using multi-byte character sets (e.g. Chines or Cyrillic) in your business processing, then
those characters might need to be persisted in the Spring Batch schema. Many users find that simply
changing the schema to double the length of the VARCHAR columns is enough. Others prefer to configure
the JobReposi t ory with max- var char - | engt h half the value of the VARCHAR column length is
enough. Some users have also reported that they use NVARCHAR in place of VARCHAR in their schema
definitions. The best result will depend on the database platform and the way the database server has
been configured locally.

B.10 Recommendations for Indexing Meta Data Tables

Spring Batch provides DDL samples for the meta-data tables in the Core jar file for several common
database platforms. Index declarations are not included in that DDL because there are too many
variations in how users may want to index depending on their precise platform, local conventions and
also the business requirements of how the jobs will be operated. The table below provides some
indication as to which columns are going to be used in a WHERE clause by the Dao implementations
provided by Spring Batch, and how frequently they might be used, so that individual projects can make
up their own minds about indexing.

Table B.1. Where clauses in SQL statements (excluding primary keys) and their approximate frequency
of use.

Default Table Name Where Clause Frequency

BATCH_JOB_INSTANCE JOB_NAME = ? and JOB_KEY Every time a job is launched
=?

BATCH_JOB_EXECUTION JOB_INSTANCE_ID =7? Every time a job is restarted

BATCH_EXECUTION_CONTEXTEXECUTION_ID = ? and Oncommitinterval, a.k.a. chunk
KEY_NAME =7

Spring Batch - Reference
3.0.0.RC2 Documentation 162

Spring Batch

BATCH_STEP_EXECUTION VERSION =7 On commit interval, a.k.a. chunk
(and at start and end of step)

BATCH_STEP_EXECUTION STEP_NAME = ? and Before each step execution
JOB_EXECUTION_ID =?

Spring Batch - Reference
3.0.0.RC2 Documentation 163

Spring Batch

Appendix C. Batch Processing and
Transactions

C.1 Simple Batching with No Retry

Consider the following simple example of a nested batch with no retries. This is a very common scenario
for batch processing, where an input source is processed until exhausted, but we commit periodically
at the end of a "chunk" of processing.

| REPEAT(until =exhausted) ({

TX {
REPEAT(si ze=5) {
i nput ;
out put ;

N

-

The input operation (3.1) could be a message-based receive (e.g. JMS), or a file-based read, but to
recover and continue processing with a chance of completing the whole job, it must be transactional.
The same applies to the operation at (3.2) - it must be either transactional or idempotent.

If the chunk at REPEAT(3) fails because of a database exception at (3.2), then TX(2) will roll back the
whole chunk.

C.2 Simple Stateless Retry

It is also useful to use a retry for an operation which is not transactional, like a call to a web-service or
other remote resource. For example:

This is actually one of the most useful applications of a retry, since a remote call is much more likely to
fail and be retryable than a database update. As long as the remote access (2.1) eventually succeeds,
the transaction TX(0) will commit. If the remote access (2.1) eventually fails, then the transaction TX(0)
is guaranteed to roll back.

Spring Batch - Reference
3.0.0.RC2 Documentation 164

Spring Batch

C.3 Typical Repeat-Retry Pattern

The most typical batch processing pattern is to add a retry to the inner block of the chunk in the Simple
Batching example. Consider this:

| REPEAT(until =exhausted, exception=not critical) {

I T {
| REPEAT(si ze=5) {

| RETRY(stateful, excepti on=deadl ock | oser) {
1| i nput ;
| } PROCESS ({
1| out put ;
| } SKIP and RECOVER {

notify;

o U UAAT WOWNT R

}

-

The inner RETRY (4) block is marked as "stateful” - see the typical use case for a description of a stateful
retry. This means that if the the retry PROCESS(5) block fails, the behaviour of the RETRY(4) is as
follows.

e Throw an exception, rolling back the transaction TX(2) at the chunk level, and allowing the item to
be re-presented to the input queue.

* When the item re-appears, it might be retried depending on the retry policy in place, executing
PROCESS(5) again. The second and subsequent attempts might fail again and rethrow the exception.

» Eventually the item re-appears for the final time: the retry policy disallows another attempt, so
PROCESS(5) is never executed. In this case we follow a RECOVER(6) path, effectively "skipping"
the item that was received and is being processed.

Notice that the notation used for the RETRY(4) in the plan above shows explictly that the the input step
(4.1) is part of the retry. It also makes clear that there are two alternate paths for processing: the normal
case is denoted by PROCESS(5), and the recovery path is a separate block, RECOVER(6). The two
alternate paths are completely distinct: only one is ever taken in normal circumstances.

In special cases (e.g. a special Tr anscat i onVal i dExcept i on type), the retry policy might be able to
determine that the RECOVER(6) path can be taken on the last attempt after PROCESS(5) has just failed,
instead of waiting for the item to be re-presented. This is not the default behavior because it requires
detailed knowledge of what has happened inside the PROCESS(5) block, which is not usually available
- e.g. if the output included write access before the failure, then the exception should be rethrown to
ensure transactional integrity.

The completion policy in the outer, REPEAT(1) is crucial to the success of the above plan. If the
output(5.1) fails it may throw an exception (it usually does, as described), in which case the transaction
TX(2) fails and the exception could propagate up through the outer batch REPEAT(1). We do not want
the whole batch to stop because the RETRY(4) might still be successful if we try again, so we add the
exception=not critical to the outer REPEAT(1).

Spring Batch - Reference
3.0.0.RC2 Documentation 165

Spring Batch

Note, however, that if the TX(2) fails and we do try again, by virtue of the outer completion policy, the
item that is next processed in the inner REPEAT(3) is not guaranteed to be the one that just failed. It
might well be, but it depends on the implementation of the input(4.1). Thus the output(5.1) might fail
again, on a new item, or on the old one. The client of the batch should not assume that each RETRY(4)
attempt is going to process the same items as the last one that failed. E.g. if the termination policy for
REPEAT(1) is to fail after 10 attempts, it will fail after 10 consecutive attempts, but not necessarily at
the same item. This is consistent with the overall retry strategy: it is the inner RETRY(4) that is aware
of the history of each item, and can decide whether or not to have another attempt at it.

C.4 Asynchronous Chunk Processing

The inner batches or chunks in the typical example above can be executed concurrently by configuring
the outer batch to use an AsyncTaskExecut or . The outer batch waits for all the chunks to complete
before completing.

| REPEAT(until =exhausted, concurrent, exception=not critical) {

| X A{
| REPEAT(si ze=5) {

| RETRY(stateful, excepti on=deadl ock | oser) {
1| i nput ;
| } PROCESS {
out put ;
| } RECOVER {
recover;

o— AR WN— R

-

C.5 Asynchronous Item Processing

The individual items in chunks in the typical can also in principle be processed concurrently. In this case
the transaction boundary has to move to the level of the individual item, so that each transaction is on
a single thread:

Spring Batch - Reference
3.0.0.RC2 Documentation 166

Spring Batch

| REPEAT(until =exhausted, exception=not critical) {
| REPEAT(si ze=5, concurrent) {

I > {
| RETRY(stateful, excepti on=deadl ock | oser) {
1| i nput;
| } PROCESS ({
out put ;
| } RECOVER {
recover;

}

O— AR W NT R

This plan sacrifices the optimisation benefit, that the simple plan had, of having all the transactional
resources chunked together. It is only useful if the cost of the processing (5) is much higher than the
cost of transaction management (3).

C.6 Interactions Between Batching and Transaction
Propagation

There is a tighter coupling between batch-retry and TX management than we would ideally like. In
particular a stateless retry cannot be used to retry database operations with a transaction manager that
doesn't support NESTED propagation.

For a simple example using retry without repeat, consider this:

| TX{

| i nput;

| dat abase access

| RETRY {

| T {

| dat abase access

Again, and for the same reason, the inner transaction TX(3) can cause the outer transaction TX(1) to
fail, even if the RETRY(2) is eventually successful.

Unfortunately the same effect percolates from the retry block up to the surrounding repeat batch if there
is one:

Spring Batch - Reference
3.0.0.RC2 Documentation 167

Spring Batch

TX {

REPEAT(si ze=5) {
i nput;
dat abase access;
RETRY {
TX {
dat abase access;

AR WOWNNNT R
N e

IR

[

Now if TX(3) rolls back it can pollute the whole batch at TX(1) and force it to roll back at the end.
What about non-default propagation?

* In the last example PROPAGATION_REQUIRES_NEW at TX(3) will prevent the outer TX(1) from
being polluted if both transactions are eventually successful. But if TX(3) commits and TX(1) rolls
back, then TX(3) stays committed, so we violate the transaction contract for TX(1). If TX(3) rolls back,
TX(1) does not necessarily (but it probably will in practice because the retry will throw a roll back
exception).

« PROPAGATION_NESTED at TX(3) works as we require in the retry case (and for a batch with skips):
TX(3) can commit, but subsequently be rolled back by the outer transaction TX(1). If TX(3) rolls back,
again TX(1) will roll back in practice. This option is only available on some platforms, e.g. not Hibernate
or JTA, but it is the only one that works consistently.

So NESTED is best if the retry block contains any database access.

C.7 Special Case: Transactions with Orthogonal Resources

Default propagation is always OK for simple cases where there are no nested database transactions.
Consider this (where the SESSION and TX are not global XA resources, so their resources are
orthogonal):

| SESSION {

| i nput ;

| RETRY {

I > {

| dat abase access;

—— — W wNr O

Here there is a transactional message SESSION(0), but it doesn't participate in other transactions
with Pl at f or nifr ansact i onManager , so doesn't propagate when TX(3) starts. There is no database
access outside the RETRY(2) block. If TX(3) fails and then eventually succeeds on a retry, SESSION(0)
can commit (it can do this independent of a TX block). This is similar to the vanilla "best-efforts-one-
phase-commit" scenario - the worst that can happen is a duplicate message when the RETRY(2)
succeeds and the SESSION(0) cannot commit, e.g. because the message system is unavailable.

Spring Batch - Reference
3.0.0.RC2 Documentation 168

Spring Batch

C.8 Stateless Retry Cannot Recover

The distinction between a stateless and a stateful retry in the typical example above is important. It is
actually ultimately a transactional constraint that forces the distinction, and this constraint also makes
it obvious why the distinction exists.

We start with the observation that there is no way to skip an item that failed and successfully commit
the rest of the chunk unless we wrap the item processing in a transaction. So we simplify the typical
batch execution plan to look like this:

| REPEAT(until =exhausted) ({

I T {
| REPEAT(si ze=5) {

| RETRY(st at el ess) {
| XA
1] i nput;
2| dat abase access;
}
| } RECOVER {
| ski p;

g o— s~rDAWT MR O

1

Here we have a stateless RETRY(3) with a RECOVER(5) path that kicks in after the final attempt fails.
The "stateless" label just means that the block will be repeated without rethrowing any exception up to
some limit. This will only work if the transaction TX(4) has propagation NESTED.

If the TX(3) has default propagation properties and it rolls back, it will pollute the outer TX(1). The inner
transaction is assumed by the transaction manager to have corrupted the transactional resource, and
so it cannot be used again.

Support for NESTED propagation is sufficiently rare that we choose not to support recovery with
stateless retries in current versions of Spring Batch. The same effect can always be achieved (at the
expense of repeating more processing) using the typical pattern above.

Spring Batch - Reference
3.0.0.RC2 Documentation 169

Spring Batch

Glossary

Spring Batch Glossary

Batch

Batch Application Style

Batch Processing

Batch Window

Step

Tasklet

Batch Job Type

Driving Query

Item

Logicial Unit of Work (LUW)

Commit Interval

An accumulation of business transactions over time.

Term used to designate batch as an application style in its own right
similar to online, Web or SOA. It has standard elements of input,
validation, transformation of information to business model, business
processing and output. In addition, it requires monitoring at a macro
level.

The handling of a batch of many business transactions that have
accumulated over a period of time (e.g. an hour, day, week, month, or
year). It is the application of a process, or set of processes, to many
data entities or objects in a repetitive and predictable fashion with either
no manual element, or a separate manual element for error processing.

The time frame within which a batch job must complete. This can be
constrained by other systems coming online, other dependent jobs
needing to execute or other factors specific to the batch environment.

It is the main batch task or unit of work controller. It initializes the
business logic, and controls the transaction environment based on
commit interval setting, etc.

A component created by application developer to process the business
logic for a Step.

Job Types describe application of jobs for particular type of processing.
Common areas are interface processing (typically flat files), forms
processing (either for online pdf generation or print formats), report
processing.

A driving query identifies the set of work for a job to do; the job then
breaks that work into individual units of work. For instance, identify all
financial transactions that have a status of "pending transmission"” and
send them to our partner system. The driving query returns a set of
record IDs to process; each record ID then becomes a unit of work. A
driving query may involve a join (if the criteria for selection falls across
two or more tables) or it may work with a single table.

An item represents the smallest ammount of complete data for
processing. In the simplest terms, this might mean a line in a file, a row
in a database table, or a particular element in an XML file.

A batch job iterates through a driving query (or another input source
such as a file) to perform the set of work that the job must accomplish.
Each iteration of work performed is a unit of work.

A set of LUWSs processed within a single transaction.

3.0.0.RC2

Spring Batch - Reference
Documentation 170

Spring Batch

Partitioning

Staging Table

Restartable

Rerunnable

Repeat

Retry

Recover

Skip

Splitting a job into multiple threads where each thread is responsible for
a subset of the overall data to be processed. The threads of execution
may be within the same JVM or they may span JVMs in a clustered
environment that supports workload balancing.

A table that holds temporary data while it is being processed.

A job that can be executed again and will assume the same identity as
when run initially. In othewords, it is has the same job instance id.

A job that is restartable and manages its own state in terms of previous
run's record processing. An example of a rerunnable step is one based
on a driving query. If the driving query can be formed so that it will limit
the processed rows when the job is restarted than it is re-runnable. This
is managed by the application logic. Often times a condition is added
to the where statement to limit the rows returned by the driving query
with something like "and processedFlag != true".

One of the most basic units of batch processing, that defines
repeatability calling a portion of code until it is finished, and while there
is no error. Typically a batch process would be repeatable as long as
there is input.

Simplifies the execution of operations with retry semantics most
frequently associated with handling transactional output exceptions.
Retry is slightly different from repeat, rather than continually calling a
block of code, retry is stateful, and continually calls the same block of
code with the same input, until it either succeeds, or some type of retry
limit has been exceeded. It is only generally useful if a subsequent
invocation of the operation might succeed because something in the
environment has improved.

Recover operations handle an exception in such a way that a repeat
process is able to continue.

Skip is a recovery strategy often used on file input sources as the
strategy for ignoring bad input records that failed validation.

3.0.0.RC2

Spring Batch - Reference
Documentation 171

	Spring Batch - Reference Documentation
	Table of Contents
	1. Spring Batch Introduction
	1.1 Background
	1.2 Usage Scenarios
	1.3 Spring Batch Architecture
	1.4 General Batch Principles and Guidelines
	1.5 Batch Processing Strategies

	2. What's New in Spring Batch 3.0
	2.1 JSR-352 Support
	2.2 Promote Spring Batch Integration to Spring Batch
	2.3 Upgrade to Support Spring 4 and Java 8
	2.4 JobScope Support
	2.5 SQLite Support

	3. The Domain Language of Batch
	3.1 Job
	JobInstance
	JobParameters
	JobExecution

	3.2 Step
	StepExecution

	3.3 ExecutionContext
	3.4 JobRepository
	3.5 JobLauncher
	3.6 Item Reader
	3.7 Item Writer
	3.8 Item Processor
	3.9 Batch Namespace

	4. Configuring and Running a Job
	4.1 Configuring a Job
	Restartability
	Intercepting Job Execution
	Inheriting from a Parent Job
	JobParametersValidator

	4.2 Java Config
	4.3 Configuring a JobRepository
	Transaction Configuration for the JobRepository
	Changing the Table Prefix
	In-Memory Repository
	Non-standard Database Types in a Repository

	4.4 Configuring a JobLauncher
	4.5 Running a Job
	Running Jobs from the Command Line
	The CommandLineJobRunner
	ExitCodes

	Running Jobs from within a Web Container

	4.6 Advanced Meta-Data Usage
	Querying the Repository
	JobRegistry
	JobRegistryBeanPostProcessor
	AutomaticJobRegistrar

	JobOperator
	JobParametersIncrementer
	Stopping a Job
	Aborting a Job

	5. Configuring a Step
	5.1 Chunk-Oriented Processing
	Configuring a Step
	Inheriting from a Parent Step
	Abstract Step
	Merging Lists

	The Commit Interval
	Configuring a Step for Restart
	Setting a StartLimit
	Restarting a completed step
	Step Restart Configuration Example

	Configuring Skip Logic
	Configuring Retry Logic
	Controlling Rollback
	Transactional Readers

	Transaction Attributes
	Registering ItemStreams with the Step
	Intercepting Step Execution
	StepExecutionListener
	ChunkListener
	ItemReadListener
	ItemProcessListener
	ItemWriteListener
	SkipListener
	SkipListeners and Transactions

	5.2 TaskletStep
	TaskletAdapter
	Example Tasklet Implementation

	5.3 Controlling Step Flow
	Sequential Flow
	Conditional Flow
	Batch Status vs. Exit Status

	Configuring for Stop
	The 'End' Element
	The 'Fail' Element
	The 'Stop' Element

	Programmatic Flow Decisions
	Split Flows
	Externalizing Flow Definitions and Dependencies Between Jobs

	5.4 Late Binding of Job and Step Attributes
	Step Scope
	Job Scope

	6. ItemReaders and ItemWriters
	6.1 ItemReader
	6.2 ItemWriter
	6.3 ItemProcessor
	Chaining ItemProcessors
	Filtering Records
	Fault Tolerance

	6.4 ItemStream
	6.5 The Delegate Pattern and Registering with the Step
	6.6 Flat Files
	The FieldSet
	FlatFileItemReader
	LineMapper
	LineTokenizer
	FieldSetMapper
	DefaultLineMapper
	Simple Delimited File Reading Example
	Mapping Fields by Name
	Automapping FieldSets to Domain Objects
	Fixed Length File Formats
	Multiple Record Types within a Single File
	Exception Handling in Flat Files
	IncorrectTokenCountException
	IncorrectLineLengthException

	FlatFileItemWriter
	LineAggregator
	PassThroughLineAggregator

	Simplified File Writing Example
	FieldExtractor
	PassThroughFieldExtractor
	BeanWrapperFieldExtractor

	Delimited File Writing Example
	Fixed Width File Writing Example
	Handling File Creation

	6.7 XML Item Readers and Writers
	StaxEventItemReader
	StaxEventItemWriter

	6.8 Multi-File Input
	6.9 Database
	Cursor Based ItemReaders
	JdbcCursorItemReader
	Additional Properties

	HibernateCursorItemReader
	StoredProcedureItemReader

	Paging ItemReaders
	JdbcPagingItemReader
	JpaPagingItemReader
	IbatisPagingItemReader

	Database ItemWriters

	6.10 Reusing Existing Services
	6.11 Validating Input
	6.12 Preventing State Persistence
	6.13 Creating Custom ItemReaders and ItemWriters
	Custom ItemReader Example
	Making the ItemReader Restartable

	Custom ItemWriter Example
	Making the ItemWriter Restartable

	7. Scaling and Parallel Processing
	7.1 Multi-threaded Step
	7.2 Parallel Steps
	7.3 Remote Chunking
	7.4 Partitioning
	PartitionHandler
	Partitioner
	Binding Input Data to Steps

	8. Repeat
	8.1 RepeatTemplate
	RepeatContext
	RepeatStatus

	8.2 Completion Policies
	8.3 Exception Handling
	8.4 Listeners
	8.5 Parallel Processing
	8.6 Declarative Iteration

	9. Retry
	9.1 RetryTemplate
	RetryContext
	RecoveryCallback
	Stateless Retry
	Stateful Retry

	9.2 Retry Policies
	9.3 Backoff Policies
	9.4 Listeners
	9.5 Declarative Retry

	10. Unit Testing
	10.1 Creating a Unit Test Class
	10.2 End-To-End Testing of Batch Jobs
	10.3 Testing Individual Steps
	10.4 Testing Step-Scoped Components
	10.5 Validating Output Files
	10.6 Mocking Domain Objects

	11. Common Batch Patterns
	11.1 Logging Item Processing and Failures
	11.2 Stopping a Job Manually for Business Reasons
	11.3 Adding a Footer Record
	Writing a Summary Footer

	11.4 Driving Query Based ItemReaders
	11.5 Multi-Line Records
	11.6 Executing System Commands
	11.7 Handling Step Completion When No Input is Found
	11.8 Passing Data to Future Steps

	12. JSR-352 Support
	12.1 General Notes Spring Batch and JSR-352
	12.2 Setup
	12.3 Dependency Injection
	12.4 Batch Properties
	Property Support
	@BatchProperty annotation
	Property Substitution

	12.5 Processing Models
	Item based processing
	Custom checkpointing

	12.6 Running a job
	12.7 Contexts
	12.8 Step Flow
	12.9 Scaling a JSR-352 batch job
	Partitioning

	12.10 Testing

	13. Spring Batch Integration
	13.1. Spring Batch Integration Introduction
	Namespace Support
	Launching Batch Jobs through Messages
	Transforming a file into a JobLaunchRequest
	The JobExecution Response
	Spring Batch Integration Configuration
	Example ItemReader Configuration
	Available Attributes of the Job-Launching Gateway
	Sub-Elements

	Providing Feedback with Informational Messages
	Asynchronous Processors
	Externalizing Batch Process Execution
	Remote Chunking
	Remote Partitioning

	Appendix A. List of ItemReaders and ItemWriters
	A.1 Item Readers
	A.2 Item Writers

	Appendix B. Meta-Data Schema
	B.1 Overview
	Example DDL Scripts
	Version
	Identity

	B.2 BATCH_JOB_INSTANCE
	B.3 BATCH_JOB_EXECUTION_PARAMS
	B.4 BATCH_JOB_EXECUTION
	B.5 BATCH_STEP_EXECUTION
	B.6 BATCH_JOB_EXECUTION_CONTEXT
	B.7 BATCH_STEP_EXECUTION_CONTEXT
	B.8 Archiving
	B.9 International and Multi-byte Characters
	B.10 Recommendations for Indexing Meta Data Tables

	Appendix C. Batch Processing and Transactions
	C.1 Simple Batching with No Retry
	C.2 Simple Stateless Retry
	C.3 Typical Repeat-Retry Pattern
	C.4 Asynchronous Chunk Processing
	C.5 Asynchronous Item Processing
	C.6 Interactions Between Batching and Transaction Propagation
	C.7 Special Case: Transactions with Orthogonal Resources
	C.8 Stateless Retry Cannot Recover

	Glossary

