Spring Cloud App Broker

Version 1.1.0.RC2

Table of Contents

1. Introduction
2. Getting Started
2.1. Maven Dependencies
2.2. Gradle Dependencies
2.3. Configuring the Service Broker
3. Advertising Services
4. Service Instances
4.1. Configuring App Deployment
4.1.1. Static Customization
Properties Configuration
Environment Configuration
Service Configuration
4.1.2. Dynamic Customization
Backing Application Target
Service Instance Parameters
Credentials Generation
4.2. Creating a Service Instance
4.3. Updating a Service Instance
4.4. Deleting a Service Instance
4.5. Persisting Service Instance State
4.5.1. Example Implementation
5. Service Bindings
5.1. Creating a Service Binding
5.2. Deleting a Service Binding
5.3. Persisting Service Instance Binding State
5.3.1. Example Implementation
6. Deployment Platforms

© © 00 00 OO0 O OO O U1 W W W W N

[T N T N T N N B N O o Y S S S Sy QY
O O O O O O Ul U1 Ul B b DN R

Spring Cloud App Broker is a framework for building Spring Boot applications
that implement the Open Service Broker API and deploy applications as
brokered services.

https://projects.spring.io/spring-boot/
https://www.openservicebrokerapi.org/

Chapter 1. Introduction

Spring Cloud App Broker builds on Spring Cloud Open Service Broker. It can be used to create a
service broker that complies with the Open Service Broker API and deploys applications and
backing services to a platform, such as Cloud Foundry or Kubernetes.

A service broker using Spring Cloud App Broker is a Spring Boot application. The broker can deploy
applications written in any language supported by the targeted platform.

https://spring.io/projects/spring-cloud-open-service-broker

Chapter 2. Getting Started

To get started, create a Spring Boot application and include the Spring Cloud App Broker
dependency in the application’s build file.

2.1. Maven Dependencies

If you use Maven, include the following in your application’s pom.xml file:

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-app-broker-cloudfoundry</artifactId>
<version>1.1.0.RC2</version>
</dependency>
</dependencies>

2.2. Gradle Dependencies

If you use Gradle, include the following in your application’s build.gradle file:

dependencies {

api 'org.springframework.cloud:spring-cloud-starter-app-broker-
cloudfoundry:1.1.0.RC2'
}

2.3. Configuring the Service Broker

The service broker is configured with Spring Boot externalized configuration, supplied by a YAML
or Java Properties file (for example, you can provide configuration in the application.yml file).
Because Spring Cloud App Broker builds on Spring Cloud Open Service Broker, you must provide
Spring Cloud Open Service Broker configuration to use Spring Cloud App Broker.

To do so, include Spring Cloud Open Servce Broker configuration using properties under
spring.cloud.openservicebroker as follows:

spring:
cloud:
openservicebroker:
catalog:
services:
- name: example
id: ebcabbfd-461d-415b-bba3-5e379d671c88
description: A useful service
bindable: true
tags:
- example
plans:
- name: standard
id: e19ebbc3-37¢1-4478-b70f-c7157ebbb28c
description: A standard plan
free: true

Then include Spring Cloud App Broker -configuration using
spring.cloud.appbroker, as follows:

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:
- name: example-service-app]l
path: classpath:appl.jar
- name: example-service-app2
path: classpath:app2.jar
deployer:
cloudfoundry:

api-host: api.sys.example.local
api-port: 443

username: admin

password: adminpass
default-org: test
default-space: development

properties

under

Chapter 3. Advertising Services

The service broker catalog, through which the broker advertises service offerings, is provided by
Spring Cloud Open Service Broker. In App Broker configuration (using properties under
spring.cloud.appbroker.services), you can list services and their plans. This listing must correspond
to the service and service plan listing given to Spring Cloud Open Service Broker (using properties
under spring.cloud.openservicebroker.catalog.services).

For more information about configuring the broker catalog, see the Spring Cloud Open Service
Broker documentation.

https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5/#service-catalog
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5/#service-catalog

Chapter 4. Service Instances

You can configure the details of services, including applications to deploy, application deployment
details, and backing services to create, in App Broker configuration properties. These properties are
generally under spring.cloud.appbroker.services.

4.1. Configuring App Deployment

Deployment details for a backing application can be configured statically in the service broker’s
application configuration and dynamically by using service instance parameters and customization
implementations.

4.1.1. Static Customization

You can statically configure backing application deployment details in the application configuration
for the service broker by using properties under spring.cloud.appbroker.

Properties Configuration

You can specify application deployment properties in configuration. These properties can have
default values and service-specific values.

For Cloud Foundry, you <can set default values for all services wunder
spring.cloud.appbroker.deployer.cloudfoundry.*, as follows:

spring:
cloud:
appbroker:
deployer:
cloudfoundry:
properties:
memory: 16
health-check: http
health-check-http-endpoint: /health
health-check-timeout: 180
api-polling-timeout: 300

You can set overriding values for a specific service in the service’s configuration under
spring.cloud.appbroker.services.?*, as follows:

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:

- name: example-service-app]l
path: classpath:appl.jar
properties:

memory: 2G
count: 2
no-route: true

The following table lists properties that can be set for all or for specific application deployments:

Property Description Default

count

memory

disk

host

target

buildpack The buildpack to use for deploying the
application.

domain The domain to use when mapping

routes for the deployed application.
domain and host are mutually exclusive
with routes.

routes The routes to which to bind the
deployed application.

health-check The type of health check to perform on PORT
the deployed application.

health-check-http-endpoint The path used by the HTTP health /health
check.

health-check-timeout The timeout value used by the health 120

check, in seconds.

api-timeout The timeout value used for blocking 360
API calls, in seconds

api-polling-timeout The timeout value used for polling 300
asynchronous API endpoints (for
example, CF create/update/delete
service instance), in seconds.

Property Description Default

status-timeout
staging-timeout
startup-timeout

delete-routes Whether to delete routes when un- true

deploying an application.
java-opts

Environment Configuration

You can provide environment variables to be set on a deployed application. Environment variables
are set by using properties under environment for the deployed application, as follows:

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:
- name: example-service-app]l
path: classpath:appl.jar
environment:
logging.level.spring.security: DEBUG
spring.profiles.active: cloud

Service Configuration

You can configure services that should be bound to a deployed application. Services are configured
by using properties under services for the deployed application, as follows:

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:
- name: example-service-app]l
path: classpath:appl.jar
services:
- service-instance-name: example-db
services:
- service-instance-name: example-db
name: mysql
plan: small
parameters:
param-key: param-value

4.1.2. Dynamic Customization

To customize the backing application deployment by using information that is only available when
performing a service broker operation or that must be generated per service instance, you can use
the service broker application configuration to provide the names of customization
implementations.

Backing Application Target

You can configure the target location for backing applications (in Cloud Foundry, an org and space)
using a target specification, as in the following example:

spring:
cloud:
appbroker:
services:

- service-name: example
plan-name: standard
target:
* name: SpacePerServicelnstance*

apps:
apps:

- name: example-service-app]l
path: classpath:appl.jar

By default (if you do not provide a target specification), all backing applications are deployed to the
default target specified under spring.cloud.appbroker.deployer. For Cloud Foundry, this is the org

named by spring.cloud.appbroker.deployer.cloudfoundry.default-org and the space named by
spring.cloud.appbroker.deployer.cloudfoundry.default-space.

The SpacePerServiceInstance Target

If you use the SpacePerServicelnstance target, App Broker deploys backing applications to a unique
target location that is named by using the service instance GUID provided by the platform at service
instance create time. For Cloud Foundry, this target location is the org named by
spring.cloud.appbroker.deployer.cloudfoundry.default-org, and a new space is created by using the
service instance GUID as the space name.

The ServiceInstanceGuidSuffix Target

If you use the ServiceInstanceGuidSuffix target, App Broker deploys backing applications by using a
unique name and hostname that incorporates the service instance GUID provided by the platform
at service instance create time. For Cloud Foundry, the target location is the org named by
spring.cloud.appbroker.deployer.cloudfoundry.default-org, the space named by
spring.cloud.appbroker.deployer.cloudfoundry.default-space, and an application name as [APP-
NAME]-[SI-GUID], where [APP-NAME] is the name listed for the application under
spring.cloud.appbroker.services.apps and [SI-GUID] is the service instance GUID. The application
also uses a hostname that incorporates the service instance GUID as a suffix, as [APP-NAME]-[SI-
GUID].

Creating a Custom Target

If you want to create a custom Target, App Broker provides a flexible way to add new targets by
creating a new Bean that extends from TargetFactory and implementing the create method, as
follows:

10

public class CustomSpaceTarget extends TargetFactory<CustomSpaceTarget.Config> {

public CustomSpaceTarget() {
super(Config.class);

}

public Target create(Config config) {
return this::apply;
}

private ArtifactDetails apply(Map<String, String> properties, String name,
String serviceInstanceld) {
String space = "my-custom-space"”;
properties.put(DeploymentProperties.TARGET_PROPERTY_KEY, space);

return ArtifactDetails.builder()
.name(name)
.properties(properties)
.build();
}

public static class Config {
}

Once configured, we can specify in our service the new custom Target, as follows:

spring:
cloud:
appbroker:
services:

- service-name: example
plan-name: standard
target:

name: CustomSpaceTarget

Service Instance Parameters

When a user provides parameters while creating or updating a service instance, App Broker can
transform these parameters into the details of the backing app deployment by using parameters
transformers. You can configure parameters transformers by using properties under parameters-
transformers, as follows:

11

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:
- name: example-service-app]l
path: classpath:appl.jar
parameters-transformers:
- name: EnvironmentMapping
args:
- include: parameter?,parameter2
- name: PropertyMapping
args:
- include: count,memory

The named parameters-transformers refer to Java objects that have been contributed to the Spring
application context. A parameters transformer can accept one or more arguments that configure its
behavior and can modify any aspect of the backing application deployment (properties,
environment variables, services, and so on).

The EnvironmentMapping Parameters Transformer

The EnvironmentMapping parameters transformer populates environment variables on the backing
application from parameters provided when a service instance is created or updated. It supports a
single argument, include, which specifies the names of parameters that are mapped to environment
variables.

The PropertyMapping Parameters Transformer

The PropertyMapping parameters transformer sets deployment properties of the backing application
from parameters provided when a service instance is created or updated. It supports a single
argument, include, which specifies the names of deployment properties that should be recognized.

Credentials Generation

App Broker can generate and assign unique credentials for each backing app deployment. You can
configure credential providers by using properties under credential-providers, as follows:

12

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:
- name: example-service-app]l
path: classpath:appl.jar
credential-providers:
- name: SpringSecurityBasicAuth
- name: SpringSecurityOAuth2

In this example, the named credential-providers refer to Java objects that have been contributed to
the Spring application context. A credential provider can accept one or more arguments that
configure its behavior. A credential provider typically generates credentials and sets environment
variables on the backing application.

The SpringSecurityBasicAuth Credential Provider

The SpringSecurityBasicAuth credential provider generates a username and password and sets
Spring Boot security properties to the generated values. Username and password generation can be
configured with arguments, as follows:

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:
- name: example-service-app]l
path: classpath:appl.jar
credential-providers:
- name: SpringSecurityBasicAuth
args:
length: 14
include-uppercase-alpha: true
include-lowercase-alpha: true
include-numeric: true
include-special: true

The SpringSecurityOAuth2 Credential Provider

The SpringSecurityOAuth2? credential provider creates an OAuth2 client in a token server (for

13

example, UAA for Cloud Foundry) by using details provided as arguments and a generated client
secret. It also sets Spring Boot security properties to the generated values. Client secret generation
can also be configured with arguments, as follows:

spring:
cloud:
appbroker:
services:
- service-name: example
plan-name: standard
apps:
- name: example-service-app]l
path: classpath:appl.jar
credential-providers:
- name: SpringSecurityOAuth2
args:
registration: my-client-1
client-id: example-client
client-name: example-client
scopes: ["uaa.resource"]
authorities: ["uaa.resource"]
grant-types: ["client_credentials"]
identity-zone-subdomain:
identity-zone-id:
length: 14
include-uppercase-alpha: true
include-lowercase-alpha: true
include-numeric: true
include-special: true

4.2. Creating a Service Instance

Spring Cloud App Broker provides the AppDeploymentCreateServicelnstanceWorkflow workflow,
which handles deploying the configured backing applications and services, as illustrated in the
previous sections. The service broker application can implement the CreateServiceInstanceWorkflow
interface to further modify the deployment. Multiple workflows can be annotated with @0rder so as
to process the workflows in a specific order. Alternatively, the service broker application can
implement the ServiceInstanceService interface provided by Spring Cloud Open Service Broker. See
Service Instances in the Spring Cloud Open Service Broker documentation.

4.3. Updating a Service Instance

Spring Cloud App Broker provides the AppDeploymentUpdateServiceInstanceWorkflow workflow,
which handles updating the configured backing applications and services, as illustrated in the
previous sections. If the list of backing services is updated, the default behavior is to create and
bind the new backing service instances and to unbind and delete the existing backing service

14

https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/workflow/instance/AppDeploymentCreateServiceInstanceWorkflow.html
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/service/CreateServiceInstanceWorkflow.html
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//#service-instances
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/workflow/instance/AppDeploymentUpdateServiceInstanceWorkflow.html

instances that are no longer listed in the configuration.

The service broker application can implement the UpdateServicelnstanceWorkflow interface to
further modify the deployment. Multiple workflows can be annotated with @0rder so as to process
the workflows in a specific order. Alternatively, the service broker application can implement the
ServicelInstanceService interface provided by Spring Cloud Open Service Broker. See Service
Instances in the Spring Cloud Open Service Broker documentation.

o Modifying certain properties, such as disk and memory, when updating an
application, may result in downtime.

4.4. Deleting a Service Instance

Spring Cloud App Broker provides the AppDeploymentDeleteServicelnstanceWorkflow workflow,
which handles deleting the configured backing applications and services, as illustrated in the
previous sections. The service broker application can implement the DeleteServiceInstanceWorkflow
interface to further modify the deployment. Multiple workflows can be annotated with @0rder so as
to process the workflows in a specific order. Alternatively, the service broker application can
implement the ServiceInstanceService interface provided by Spring Cloud Open Service Broker. See
Service Instances in the Spring Cloud Open Service Broker documentation.

4.5. Persisting Service Instance State

Spring Cloud App Broker provides the ServiceInstanceStateRepository interface for persisting
service instance state. The default implementation is InMemoryServiceInstanceStateRepository,
which uses an in memory Map to save state and offers an easy getting-started experience. To use a
proper database for persisting state, you can implement ServiceInstanceStateRepository in your
application.

ﬁ The InMemoryServiceInstanceStateRepository is provided for demonstration and
testing purposes only. It is not suitable for production applications!

4.5.1. Example Implementation

The following example shows a service instance state repository implementation:

15

https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/service/UpdateServiceInstanceWorkflow.html
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//#service-instances
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//#service-instances
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/workflow/instance/AppDeploymentDeleteServiceInstanceWorkflow.html
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/service/DeleteServiceInstanceWorkflow.html
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//#service-instances
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/state/ServiceInstanceStateRepository.html
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/state/InMemoryServiceInstanceStateRepository.html

package com.example.appbroker;
import reactor.core.publisher.Mono;

import org.springframework.cloud.appbroker.state.ServiceInstanceState;
import org.springframework.cloud.appbroker.state.ServiceInstanceStateRepository;
import org.springframework.cloud.servicebroker.model.instance.OperationState;

class ExampleServicelnstanceStateRepository implements
ServicelnstanceStateRepository {

private final ServicelnstanceStateCrudRepository
servicelnstanceStateCrudRepository;

ExampleServiceInstanceStateRepository(ServicelnstanceStateCrudRepository
servicelnstanceStateCrudRepository) {
this.serviceInstanceStateCrudRepository =
servicelnstanceStateCrudRepository;

}

public Mono<ServicelnstanceState> saveState(String servicelnstanceld,
OperationState state, String description) {
return servicelnstanceStateCrudRepository.findByServiceInstanceld
(servicelnstanceld)
.switchIfEmpty(Mono.just(new ServiceInstance()))
.flatMap(servicelnstance -> {
serviceInstance.setServiceInstanceId(servicelInstanceld);
servicelnstance.setOperationState(state);
servicelnstance.setDescription(description);
return Mono.just(servicelnstance);
})
.flatMap(serviceInstanceStateCrudRepository::save)
.map(ExampleServicelnstanceStateRepository::
toServiceInstanceState);

}

public Mono<ServiceInstanceState> getState(String servicelnstanceld) {
return serviceInstanceStateCrudRepository.findByServiceInstanceld
(servicelnstanceld)
.switchIfEmpty(Mono.error(new I1legalArgumentException("Unknown
service instance ID " + serviceInstanceld)))
.map(ExampleServicelnstanceStateRepository::
toServiceInstanceState);

}

public Mono<ServiceInstanceState> removeState(String serviceInstanceld) {

return getState(servicelnstanceld)
.doOnNext(serviceInstanceState ->
serviceInstanceStateCrudRepository.deleteByServiceInstanceId(serviceInstanceld));

}

private static ServiceInstanceState toServiceInstanceState(ServiceInstance
serviceInstance) {
return new ServiceInstanceState(serviceInstance.getOperationState(),
servicelnstance.getDescription(), null);

}

One option for persisting service instance state is to use a Spring Data CrudRepository. The following
example shows a ReactiveCrudRepository implementation:

package com.example.appbroker;
import reactor.core.publisher.Mono;

import org.springframework.data.r2dbc.repository.Query;
import org.springframework.data.repository.query.Param;
import org.springframework.data.repository.reactive.ReactiveCrudRepository;

interface ServicelnstanceStateCrudRepository extends ReactiveCrudRepository
<ServiceInstance, Long> {

("select * from service_instance where service_instance_id =
:service_instance_id")
Mono<ServiceInstance> findByServiceInstancelId(("service_instance_id")
String serviceInstanceld);

("delete from service_instance where service_instance_id =
:service_instance_id")
Mono<Void> deleteByServiceInstanceId(("service_instance_id") String
servicelnstanceld);

A model object is necessary for persisting data with a CrudRepository. The following example shows
a ServiceInstance model:

17

package com.example.appbroker;

import org.springframework.cloud.servicebroker.model.instance.OperationState;
import org.springframework.data.annotation.Id;

class Servicelnstance {

private Long id;

private String servicelnstanceld;
private String description;

private OperationState operationState;
public ServiceInstance() {

}

public ServicelInstance(String servicelnstanceld, String description,
OperationState operationState) {
this.serviceInstanceld = servicelInstanceld;
this.description = description;
this.operationState = operationState;

}

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
}

public String getServiceInstanceld() {
return servicelnstanceld;

}

public void setServiceInstanceId(String serviceInstanceld) {
this.serviceInstanceld = servicelnstanceld;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public OperationState getOperationState() {
return operationState;

}

public void setOperationState(OperationState operationState) {
this.operationState = operationState;

}

19

Chapter 5. Service Bindings

By default, Spring Cloud App Broker does not include functionality for managing bindings to its
service instances. App Broker provides interfaces that service broker authors can implement to
control service bindings.

5.1. Creating a Service Binding

The service broker application can implement the CreateServiceInstanceAppBindingWorkflow
interface. Alternatively, the service broker application can implement the
ServicelInstanceBindingService interface provided by Spring Cloud Open Service Broker. See Service
Bindings in the Spring Cloud Open Service Broker documentation.

5.2. Deleting a Service Binding

The service broker application can implement the DeleteServiceInstanceBindingWorkflow interface.
Alternatively, the service broker application can implement the ServiceInstanceBindingService
interface provided by Spring Cloud Open Service Broker. See Service Bindings in the Spring Cloud
Open Service Broker documentation.

5.3. Persisting Service Instance Binding State

Spring Cloud App Broker provides the ServicelnstanceBindingStateRepository interface for
persisting service instance binding state. The default implementation is
InMemoryServiceInstanceBindingStateRepository, which uses an in memory Map to save state and
offers an easy getting started experience. In order to use a proper database for persisting state,
implement ServiceInstanceBindingStateRepository in your application.

ﬁ The InMemoryServicelnstanceBindingStateRepository is provided for demonstration
and testing purposes only. It is not suitable for production applications!

5.3.1. Example Implementation

The following example shows a service instance binding state repository implementation:

20

https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/service/CreateServiceInstanceAppBindingWorkflow.html
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//#service-bindings
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//#service-bindings
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/service/DeleteServiceInstanceBindingWorkflow.html
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//#service-bindings
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//
https://docs.spring.io/spring-cloud-open-service-broker/docs/current/reference/html5//
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/state/ServiceInstanceBindingStateRepository.html
https://docs.spring.io/spring-cloud-app-broker/docs/1.1.0.RC2/api//org/springframework/cloud/appbroker/state/InMemoryServiceInstanceBindingStateRepository.html

package com.example.appbroker;
import reactor.core.publisher.Mono;

import
org.springframework.cloud.appbroker.state.ServiceInstanceBindingStateRepository;
import org.springframework.cloud.appbroker.state.ServiceInstanceState;

import org.springframework.cloud.servicebroker.model.instance.OperationState;

class ExampleServicelnstanceBindingStateRepository implements
ServicelnstanceBindingStateRepository {

private final ServiceInstanceBindingStateCrudRepository
servicelnstanceBindingStateCrudRepository;

ExampleServiceInstanceBindingStateRepository(
ServicelnstanceBindingStateCrudRepository
servicelnstanceBindingStateCrudRepository) {
this.servicelnstanceBindingStateCrudRepository =
servicelnstanceBindingStateCrudRepository;

}

public Mono<ServiceInstanceState> saveState(String serviceInstanceld, String
bindingld, OperationState state,
String description) {
return serviceInstanceBindingStateCrudRepository
.findByServiceInstanceIdAndBindingId(serviceInstanceld, bindingIld)
.switchIfEmpty(Mono.just(new ServiceInstanceBinding()))
.flatMap(binding -> {
binding.setServiceInstanceld(serviceInstanceld);
binding.setBindingId(bindingld);
binding.setOperationState(state);
binding.setDescription(description);
return Mono.just(binding);
})
.flatMap(serviceInstanceBindingStateCrudRepository::save)
.map(ExampleServiceInstanceBindingStateRepository:
:toServicelnstanceState);

}

public Mono<ServicelnstanceState> getState(String serviceInstanceld, String
bindingld) {
return serviceInstanceBindingStateCrudRepository
.findByServiceInstanceIdAndBindingId(serviceInstanceld, bindingld)
.switchIfEmpty(Mono.error(new IllegalArgumentException(
"Unknown binding: serviceInstanceld=" + servicelnstanceld
+ ", bindingId=" + bindingId)))

21

.map(ExampleServiceInstanceBindingStateRepository:
:toServiceInstanceState);

}

public Mono<ServiceInstanceState> removeState(String serviceInstanceld, String

bindingld) {
return getState(servicelnstanceld, bindingld)
.doOnNext(serviceInstanceState ->
servicelnstanceBindingStateCrudRepository
.deleteByServiceInstanceIdAndBindingId(serviceInstanceld,

bindingld));

}

private static ServiceInstanceState toServicelnstanceState
(ServiceInstanceBinding binding) {
return new ServicelInstanceState(binding.getOperationState(), binding
.getDescription(), null);
}

One option for persisting service instance binding state is to use a Spring Data CrudRepository. The
following example shows a ReactiveCrudRepository implementation:

22

package com.example.appbroker;
import reactor.core.publisher.Mono;

import org.springframework.data.r2dbc.repository.Query;
import org.springframework.data.repository.query.Param;
import org.springframework.data.repository.reactive.ReactiveCrudRepository;

interface ServicelnstanceBindingStateCrudRepository extends
ReactiveCrudRepository<ServicelnstanceBinding, Long> {

@Query("select * from service_instance_binding " +
"where service_instance_id = :service_instance_id " +
"and binding_id = :binding_id")
Mono<ServicelInstanceBinding> findByServiceInstanceIdAndBindingId(
@Param("service_instance_id") String servicelInstanceld,
@Param("binding_id") String bindingld);

@Query("delete from service_instance_binding " +
"where service_instance_id = :service_instance_ id " +
"and binding_id = :binding_id")

Mono<Void> deleteByServiceInstanceIdAndBindingId(
@Param("service_instance_id") String servicelInstanceld,
@Param("binding_id") String bindingId);

A model object is necessary for persisting data with a CrudRepository. The following example shows
a ServiceInstanceBinding model:

23

24

package com.example.appbroker;

import org.springframework.cloud.servicebroker.model.instance.OperationState;
import org.springframework.data.annotation.Id;

class ServiceInstanceBinding {

private Long id;

private String bindingld;

private String servicelInstanceld;
private String description;

private OperationState operationState;
public ServiceInstanceBinding() {

}

public ServiceInstanceBinding(String bindingId, String servicelnstanceld,
String description,
OperationState operationState) {
this.bindingld = bindingld;
this.serviceInstanceld = servicelnstanceld;
this.description = description;
this.operationState = operationState;

}

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
}

public String getBindingId() {
return bindingld;
}

public void setBindingId(String bindingId) {
this.bindingld = bindingld;
}

public String getServiceInstanceld() {
return servicelnstanceld;

}

public void setServiceInstanceId(String serviceInstanceld) {
this.serviceInstanceld = servicelnstanceld;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public OperationState getOperationState() {
return operationState;

}

public void setOperationState(OperationState operationState) {
this.operationState = operationState;

}

25

Chapter 6. Deployment Platforms

You can configure details of deployment platforms in App Broker configuration properties. These
properties are under spring.cloud.appbroker.deployer. Currently, Spring Cloud App Broker supports
only Cloud Foundry as a deployment platform.

To configure a Cloud Foundry deployment platform, use properties under
spring.cloud.appbroker.deployer.cloudfoundry, as follows:

spring:
cloud:
appbroker:
deployer:
cloudfoundry:

api-host: api.sys.example.local
api-port: 443
username: admin
password: adminpass
client-id: EXAMPLE_ID
client-secret: EXAMPLE_SECRET
default-org: test
default-space: development

The two properties, username and password, and the two properties, client-id and
o client-secret, are mutually exclusive. The client-id and client-secret properties
are for use with OAuth 2.0.

26

	Spring Cloud App Broker
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	2.1. Maven Dependencies
	2.2. Gradle Dependencies
	2.3. Configuring the Service Broker

	Chapter 3. Advertising Services
	Chapter 4. Service Instances
	4.1. Configuring App Deployment
	4.1.1. Static Customization
	Properties Configuration
	Environment Configuration
	Service Configuration

	4.1.2. Dynamic Customization
	Backing Application Target
	Service Instance Parameters
	Credentials Generation

	4.2. Creating a Service Instance
	4.3. Updating a Service Instance
	4.4. Deleting a Service Instance
	4.5. Persisting Service Instance State
	4.5.1. Example Implementation

	Chapter 5. Service Bindings
	5.1. Creating a Service Binding
	5.2. Deleting a Service Binding
	5.3. Persisting Service Instance Binding State
	5.3.1. Example Implementation

	Chapter 6. Deployment Platforms

