Spring Cloud Data Flow Admin for Mesos

1.0.0.M1

Copyright © 2013-2015Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Admin for Mesos

Table of Contents

IR [a1 ol [V L1 1 o] o H P PP UPPTRPPTUPTTRN 1
1. Introducing Spring Cloud Data Flow for Mesos and Marathoncccccooeviiiiiiiiineecinnnnnn. 2
[I. Spring Cloud Data FIOW OVEIVIEWviieiiiiieei e e et e e e e e e e e e e e e et e e et e e aanaeeees 3
2. Introducing Spring Cloud Data FIOWoiiiiiiii e 4
A I == 1 E] =2 P 4

3. Spring Cloud Data FIOW ArChItECIUIEcciuiiiiii e e e e s 5
I T I ©0] 1 4 0 Jo] g [T o | £ TP 5

TP ET= a1 o I3 = T (=T PP 6
4. Deploying Streams on Mesos and Marathoncccouiiiiiiiiiiii e e 7
Y /T To 11 = SRR UPTTRPPTPIN 9
LTS Yo U o2 PP 10
B Rl e e 10

(0] 01 (0] 1 1S TSP TUPTRPPRRPIN 10

ST i I = A o) TSP 11
1] 11 1 1 11

R T o I I I (01 0 0) LT U PP PP 12

5.4. Load Generator (I 0ad- gener at OF) ...ocoieueiiiiiiiieeeee e e 12
L] 11 1 1 12

SIS o L e (S 1 A o) TR TPOPPP 13
L0011 o] o 1= SO TP UPPPTRRUPPPIN 13

SN ST IO PSPPI SUPPPPPPPTTN 14
1001 (0] 1 1S SRR PR RPPTRPPN 14

AVAIIADIE DECOUETS ...t et e e e e e e e e aeae 15

LA T LT T 11 TS 15
1001 (0] 1 1S SRR PR RPPTRPPN 15

5.8. Twitter Stream (1 Wi T 5 SETEaANY «ovvui i 16
L] 11 1 1 16

B. PrOCESSOIS ...ttt ettt ettt et e e e ettt aans 17
B.1. FIltEr (F 1] L B) oo et 17
Filter With SPEL @XPIreSSIONcuuiiiiiiieii it et e e e e e e e e aa s 17

6.2. Groovy Filter (gr 00oVY-fil T er) . 17
L0011 o] o - SO TP UPPPTRRUPPPIN 17

6.3. Http Client (htt PCli €Nt) oo e e 17

0] 0] 1[0] 4 1S TSP TUPT PPN 17

LS N\ ToTo] o I (o To] o) SO PP UPPPR 18

6.5. Groovy Transform (gr oovy-t ransf orn)ccooeeiviiiiiiii e 18

(0] 0] 1[0] 1 1S ST PP PPN 18

6.6. Transform (L ransST OF M) ..o e 18
1] 11 1 1 18
Transform with SPEL @XPreSSIiONcc.uiiiiiiiiiiiii e 19

8.7 SPIILET et 19
JSON EXGMPIE oniieiiiiii i e e e 19

11 0] T PP UPPT 21
7.1. Cassandra (CASSANAI @) ..ueiiiruieieiii ettt ettt et e e rb e e eaa e e eaanns 21
1] 11 1 1 21

A o101 (=1 g (oo U1 | A =T o PP UPTRUPT 22

7.3. Field Value Counter (fi el d-val ue-count er)cccooveiiiiiiiiiiinie e, 22

1.0.0.M1

Spring Cloud Data Flow ii

Spring Cloud Data Flow Admin for Mesos

L0011 0] o 1 TP PPPPPTRPPPPIN 23

A 1 = = 23
@] 1PN 23

7.5, FTP SINK (£ D) 1eeitiietiii ettt ettt e et e et e e e e e e eneaaanas 24

7.6. GEMFIre (GEIMT I I) it 24
@] 1PN 24

7.7. Hadoop (HDFS) (NAf S) ..ot 25

1O 0] 1o o 1= PSPPI 29

Partition Path EXPreSSion ... e 30
ACCESSING PrOPEITIES ...t 30

L1013 (o] 3 1Y/ 11 1 T To £ 30

7.8. IDBC ([ADC) coeeeiiiiiiii ettt 32
L0011 o] o 1= ST OO UPPPTRRPPRPIN 32

48R e o (o T) PP UPPRT 33

A% O = To [(g =To L= N 33
L0011 o] o 1= ST OO UPPPTRRPPRPIN 33

705 5 T 18 =] o 34
@] 1PN 34

AVAIIADIE ENCOUEISuniiiieiei e e e e e e e e 34

RV Y o] o =] Lo [Tt PSSP 36
N = U1 113 T 37
AN B To ol 4 1= 0] =i o] o [P PP 37

A.2. Working With the COOEcoouuiiii e 37
Importing into eclipse With M2eCHPSEccvviiiiii i 37

Importing into eclipse without M2eclipSecoiiiiiiiiiii e 38

B. CONIDULING «.eeeiieieie et et e et e et e e e 39
B.1. Sign the Contributor LICENSE AQrEEMENTcivuiiiieiii e e e e e e e e e e 39

B.2. Code Conventions and HOUSEKEEPINGcceuuuiiiiiiieiiiiiiee e 39

1.0.0.M1

Spring Cloud Data Flow iii

Part I. Introduction

Spring Cloud Data Flow Admin for Mesos

1. Introducing Spring Cloud Data Flow for Mesos
and Marathon

This project provides support for deploying Spring Cloud Dataflow Stream definitions to Marathon on

Mesos.

1.0.0.M1 Spring Cloud Data Flow

Part Il. Spring Cloud
Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think
of it as map for the rest of the document. You can read this reference guide in a linear fashion, or you
can skip sections if something doesn't interest you.

Spring Cloud Data Flow Admin for Mesos

2. Introducing Spring Cloud Data Flow

A cloud native programming and operating model for composable data microservices on a structured
platform. With Spring Cloud Data Flow, developers can create, orchestrate and refactor data pipelines
through single programming model for common use cases such as data ingest, real-time analytics, and
data import/export.

Spring Cloud Data Flow is the cloud native redesign of Spring XD — a project that aimed to simplify
development of Big Data applications. The integration and batch modules from Spring XD are refactored
into Spring Boot data microservices applications that are now autonomous deployment units — thus
enabling them to take full advantage of platform capabilities "natively”, and they can independently
evolve in isolation.

Spring Cloud Data Flow defines best practices for distributed stream and batch microservice design
patterns.

2.1 Features

» Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry,
Apache YARN, Apache Mesos, and Kubernetes

» Separate runtime dependencies backed by ‘spring profiles’

» Consume stream and batch data-microservices as maven dependency

» Develop using: DSL, Shell, REST-APIs, Admin-Ul, and Flo

» Take advantage of metrics, health checks and remote management of data-microservices

» Scale stream and batch pipelines without interrupting data flows

1.0.0.M1 Spring Cloud Data Flow 4

http://projects.spring.io/spring-xd/
http://cloud.spring.io/spring-cloud-stream-modules/

Spring Cloud Data Flow Admin for Mesos

3. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.

3.1 Components

The Core domain module includes the concept of a stream that is a composition of spring-cloud-stream
modules in a linear pipeline from a source to a sink, optionally including processor modules in between.
The domain also includes the concept of a task, which may be any process that does not run indefinitely,

including Spring Batch jobs.

The Artifact Registry maintains the set of available modules, and their mappings to Maven coordinates.

The Module Deployer SPI provides the abstraction layer for deploying the modules of a given stream
across a variety of runtime environments, including:

e Local

Cloud Foundry
» Apache Yarn

» Apache Mesos

» Kubernetes
The Admin Starter provides the REST API and Ul for implementations of the Admin SPI.

The Shell connects to the Admin’s REST API and supports a DSL that simplifies the process of defining
a stream and managing its lifecycle.

1.0.0.M1 Spring Cloud Data Flow 5

https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-core
https://github.com/spring-projects/spring-batch
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-artifact-registry
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-module-deployer-spi
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-admin-local
https://github.com/spring-cloud/spring-cloud-dataflow-admin-cloudfoundry
https://github.com/spring-cloud/spring-cloud-dataflow-admin-yarn
https://github.com/spring-cloud/spring-cloud-dataflow-admin-mesos
https://github.com/spring-cloud/spring-cloud-dataflow-admin-kubernetes
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-admin-starter
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-shell

Part Ill. Getting Started

Spring Cloud Data Flow Admin for Mesos

4. Deploying Streams on Mesos and Marathon

In this getting started guide, the Admin server is run as a standalone application outside the Mesos
cluster. This also requires running a local instance of Redis to store available modules. A future version
will provide support for the admin server itself to run on Mesos.

1. Deploy a Mesos and Marathon cluster.

The Mesosphere getting started guide provides a number of options for you to deploy a cluster.
Many of the options listed there need some additional work to get going. For example, many Vagrant
provisioned VMs are using deprecated versions of the Docker client. One of the most straightforward
ways to setup a small cluster on your local development machine is to follow Exercises 1-4 and 12
from the Advanced Mesos Course. Note that in Exercise 12, it is preferable to install docker from
the official docker instructions and use only the mesos configuraiton steps listed in Exercise 12.
Minimesos also looks to be useful. For those wanted to setup a distributed cluster quickly, there is
also an option to spin up a cluster on AWS using Mesosphere’s Datacenter Operation System on
Amazon Web Services.

The rest of this getting started guide assumes that you have a working Mesos and Marathon cluster
and know the Marathon endpoint URL.

. Create a Redis service on the Mesos cluster.

The redis service will be used for messaging between modules in the stream. There is a sample
application JSON file for redis in the spr i ng- cl oud- dat af | ow adm n- nesos repository that you
can use as a starting point. The service discovery mechanism of the deployed modules depends on
finding an application with the name r edi s. Depending on how large your cluster is, you way want
to tweek the CPU and/or memory values.

Using the above JSON file and an Mesos and Marathon cluster installed you can deploy a Redis
application instance by issuing the following command

curl -X POST http://192.168.33.10: 8080/ v2/ apps -d @edis.json -H "Content-type: application/json"

Using the Marathon and Mesos Uls you can verify that redis is running on the cluster. Note the @
symbol to reference a file and that the Marathon endpoint URL is 192. 168. 33. 10: 8080 based on
the configuration used in the Advanced Mesos Course instructions.

. Run a local redis-server.

$ redis-sever

This is used by the locally running admin server to store the state of available module versions for
stream definitions.

Note

If you are switching between milestone and snapshot versions of the admin server, flush the
redis keys that contain the module’s version information. Calling f | ushdb is indiscriminate but
a handy way to start from a clean redis state.

4. Download and run the Spring Cloud Data Flow Admin server for Mesos and Marathon.

1.0.0.M1 Spring Cloud Data Flow 7

https://open.mesosphere.com/getting-started/tools/
https://open.mesosphere.com/advanced-course/installing-software/
https://docs.docker.com/engine/installation/centos/
http://minimesos.org/
https://mesosphere.com/amazon/
https://mesosphere.com/amazon/
https://github.com/spring-cloud/spring-cloud-dataflow-admin-mesos/blob/master/src/etc/marathon/redis.json
http://192.168.33.10:8080

Spring Cloud Data Flow Admin for Mesos

$ wget http://repo.spring.io/nlestone/org/springframework/cloud/spring-cl oud- dat af | ow admi n-
mesos/ 1. 0. 0. ML/ spri ng- cl oud- dat af | ow adm n- nesos-1.0. 0. ML. j ar

$ java -jar spring-cloud-datafl ow adnmi n-nmesos-1.0. 0. BU LD
SNAPSHOT. j ar - - mar at hon. api Endpoi nt =http://192. 168. 33. 10: 8080 - -
mar at hon. | auncher Properti es. renot eRepositories=https://repo.spring.io/libs-mlestone

You can also pass in properties to set default values for memory and cpu resource request. For
example - - mar at hon. cpu=0. 25 will by default allocate 25% of the CPU for the application vs.
the default value of 50%. You can see all the available options in the MarathonProperties.java file.
For the r enpt eReposi t ori es property, you can provide a command deliminted list of values. For
example, if you want to expose modules that are published to your local maven repository you can
run a small local web server to expose Maven'’s local repository directory

cd ~/.nR/repository
python -m Si npl eHTTPSer ver 8000

Then use --marathon.launcherProperties.remoteRepositories=https://repo.spring.io/libs-
milestone,http://<YourHostIP>:8000 when launching the admin server.

5. Download and run the Spring Cloud Data Flow shell.

$ wget http://repo.spring.io/mlestone/org/springframework/cloud/spring-cl oud-dat af | ow
shel 1 /1.0.0. M/ spri ng-cl oud-dat af | owshel | -1.0.0. M. j ar

$ java -jar spring-cloud-dataflowshell-1.0.0.M.jar

6. Deploy a simple stream in the shell

dat af | ow. >stream create --nanme ticktock --definition "time | |10og" --deploy

In the Mesos Ul you can then look at the logs for the log sink.

2015-12-29 06:27:29.702 INFO1 --- [main] s.b.c.e.t. Toncat EnbeddedSer vl et Cont ai ner :
Tontat started on port(s): 8080 (http)

2015-12-29 06:27:29.776 INFO1 --- [main] o.s.c.s.nodul e.| og. LogSi nkAppl i cati on
Started LogSi nkApplication in 169.9 seconds (JVMrunning for 239.813)

2015-12-29 06:27:31.017 INFO 1 --- [hannel -adapter1] |og.sink : 2015-12-29 06:27:28

2015-12-29 06:27:31.506 |INFO 1 --- [hannel -adapter1] |og.sink : 2015-12-29 06:27:31

2015-12-29 06:27:32.509 INFO 1 --- [hannel -adapter1] | og.sink : 2015-12-29 06:27:32

2015-12-29 06:27:33.517 [INFO 1 --- [hannel -adapter1] |o0g.sink : 2015-12-29 06: 27: 33

2015-12-29 06:27:34.525 [INFO 1 --- [hannel -adapter1] |og.sink : 2015-12-29 06:27: 34

7. Destroy the stream

dat af | ow. >stream destroy --nane ticktock

1.0.0.M1 Spring Cloud Data Flow 8

https://github.com/spring-cloud/spring-cloud-dataflow-admin-mesos/blob/master/spring-cloud-dataflow-admin-mesos/src/main/java/org/springframework/cloud/dataflow/module/deployer/marathon/MarathonProperties.java

Part IV. Modules

Spring Cloud Data Flow Admin for Mesos

5. Sources

5.1 File

The file source provides the contents of a File as a byte array by default. However, this can be
customized using the - - nbde option:

» ref Provides aj ava. i o. Fi | e reference
* lines Will split files line-by-line and emit a new message for each line
» contents The default. Provides the contents of a file as a byte array

When using - - node=l i nes, you can also provide the additional option - - wi t hMar ker s=t r ue. If
set to true, the underlying Fi |l eSplitter will emit additional start-of-file and end-of-file marker
messages before and after the actual data. The payload of these 2 additional marker messages is of
type Fi l eSplitter. Fil eMar ker. The option wi t hMar ker s defaults to f al se if not explicitly set.

Options
The file source has the following options:

dir
the absolute path to the directory to monitor for files (String, default: ™)

fixedDelay
the fixed delay polling interval specified in seconds (int, default: 5)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: - 1)

mode
specifies how the file is being read. By default the content of a file is provided as byte array
(FileReadingMode, default: cont ent s, possible values: ref, | i nes, content s)

pattern
a filter expression (Ant style) to accept only files that match the pattern (String, default: *)

preventDuplicates
whether to prevent the same file from being processed twice (boolean, default: t r ue)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

withMarkers
if true emits start of file/end of file marker messages before/after the data. Only valid with
FileReadingMode 'lines' (Boolean, no default)

The r ef option is useful in some cases in which the file contents are large and it would be more efficient
to send the file path.

1.0.0.M1 Spring Cloud Data Flow 10

Spring Cloud Data Flow Admin for Mesos

5.2 FTP (f t p)

This source module supports transfer of files using the FTP protocol. Files are transferred from the
r enot e directory tothe | ocal directory where the module is deployed. Messages emitted by the source
are provided as a byte array by default. However, this can be customized using the - - rode option:

» ref Provides aj ava. i o. Fi | e reference
* lines Will split files line-by-line and emit a new message for each line
» contents The default. Provides the contents of a file as a byte array

When using - - node=l i nes, you can also provide the additional option - - wi t hMar ker s=t r ue. If
set to true, the underlying Fi |l eSplitter will emit additional start-of-file and end-of-file marker
messages before and after the actual data. The payload of these 2 additional marker messages is of
type Fi l eSplitter. Fil eMar ker. The option wi t hMar ker s defaults to f al se if not explicitly set.

Options
The ftp source has the following options:

autoCreatelLocalDir
local directory must be auto created if it does not exist (boolean, default: t r ue)

clientMode
client mode to use : 2 for passive mode and O for active mode (int, default: 0)

deleteRemoteFiles
delete remote files after transfer (boolean, default: f al se)

filenamePattern
simple filename pattern to apply to the filter (String, default: *)

fixedDelay
the rate at which to poll the remote directory (int, default: 1)

host
the host name for the FTP server (String, default: | ocal host)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

localDir
set the local directory the remote files are transferred to (String, default: ™)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: - 1)

mode
specifies how the file is being read. By default the content of a file is provided as byte array
(FileReadingMode, default: cont ent s, possible values: ref, | i nes, cont ent s)

password
the password for the FTP connection (Password, no default)

1.0.0.M1 Spring Cloud Data Flow 11

Spring Cloud Data Flow Admin for Mesos

port
the port for the FTP server (int, default: 21)

preserveTimestamp
whether to preserve the timestamp of files retrieved (boolean, default: t r ue)

remoteDir
the remote directory to transfer the files from (String, default: /)

remoteFileSeparator
file separator to use on the remote side (String, default: /)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

tmpFileSuffix
extension to use when downloading files (String, default: . t np)

username
the username for the FTP connection (String, no default)

withMarkers
if true emits start of file/end of file marker messages before/after the data. Only valid with
FileReadingMode 'lines' (Boolean, no default)

5.3 HTTP (ht t p)

A source module that listens for HTTP requests and emits the body as a message payload. If the
Content-Type matches 'text/*' or 'application/json’, the payload will be a String, otherwise the payload
will be a byte array.

To create a stream definition in the server using the Spring Cloud Data Flow shell

dat af | ow. > stream create --nanme httptest --definition "http --server.port=9000 | |o0g" --deploy

Post some data to the http server on port 9000

datafl ow. > http post --target http://local host: 9000 --data "hell o world"

See if the data ended up in the log.

5.4 Load Generator (I oad- gener at or)

A source that sends generated data and dispatches it to the stream. This is to provide a method for users
to identify the performance of Spring Cloud Data Flow in different environments and deployment types.

Options
The load-generator source has the following options:

messageCount
the number of messages to send (Integer, default: 100)

messageSize
the size of message to send (Integer, 1000)

1.0.0.M1 Spring Cloud Data Flow 12

Spring Cloud Data Flow Admin for Mesos

producers
the number of producers (Integer, 1)

outputType
how this module should emit messages it produces (MimeType, default: no default)

5.5 SFTP (sft p)

This source module supports transfer of files using the SFTP protocol. Files are transferred from the
r enot e directory to the | ocal directory where the module is deployed.

Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the - - nbde option:

» ref Provides aj ava. i 0. Fi | e reference
* lines Will split files line-by-line and emit a new message for each line
« contents The default. Provides the contents of a file as a byte array

When using - - node=l i nes, you can also provide the additional option - - wi t hMar ker s=t r ue. If
set to true, the underlying Fi |l eSplitter will emit additional start-of-file and end-of-file marker
messages before and after the actual data. The payload of these 2 additional marker messages is of
type Fil eSplitter. Fi | eMarker. The option wi t hMar ker s defaults to f al se if not explicitly set.

Options
The sftp source has the following options:

allowUnknownKeys
true to allow connecting to a host with an unknown or changed key (boolean, default: f al se)

autoCreatelLocalDir
if local directory must be auto created if it does not exist (boolean, default: t r ue)

deleteRemoteFiles
delete remote files after transfer (boolean, default: f al se)

fixedDelay
fixed delay in SECONDS to poll the remote directory (int, default: 1)

host
the remote host to connect to (String, default: | ocal host)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

knownHostsExpression
a SpEL expresssion location of known hosts file; required if 'allowUnknownKeys' is false; examples:
systemProperties['user.home"]+"/.ssh/known_hosts", "/foo/bar/known_hosts" (String, no default)
localDir
set the local directory the remote files are transferred to (String, default: ™)

1.0.0.M1 Spring Cloud Data Flow 13

Spring Cloud Data Flow Admin for Mesos

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: - 1)

mode
specifies how the file is being read. By default the content of a file is provided as byte array
(FileReadingMode, default: cont ent s, possible values: ref, | i nes, cont ent s)

passPhrase
the passphrase to use (String, default: ™)

password
the password for the provided user (String, default: ™)

pattern
simple filename pattern to apply to the filter (String, no default)

port
the remote port to connect to (int, default: 22)

privateKey
the private key location (a valid Spring Resource URL) (String, default: ™)

regexPattern
filename regex pattern to apply to the filter (String, no default)

remoteDir
the remote directory to transfer the files from (String, no default)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

tmpFileSuffix
extension to use when downloading files (String, default: . t np)

user
the username to use (String, no default)

withMarkers
if true emits start of file/end of file marker messages before/after the data. Only valid with
FileReadingMode 'lines' (Boolean, no default)

5.6 TCP

The t cp source acts as a server and allows a remote party to connect to Spring Cloud Data Flow and
submit data over a raw tcp socket.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of decoders are available, the default being 'CRLF' which is compatible with Telnet.

Messages produced by the TCP source module have a byt e[] payload.
Options

bufferSize
the size of the buffer (bytes) to use when decoding (int, default: 2048)

1.0.0.M1 Spring Cloud Data Flow 14

Spring Cloud Data Flow Admin for Mesos

decoder

the decoder to use when receiving messages (Encoding, default: CRLF, possible values:

CRLF, LF, NULL, STXETX, RAW L1, L2, L4)

nio
whether or not to use NIO (boolean, default: f al se)

port
the port on which to listen (int, default: 1234)

reverseLookup

perform a reverse DNS lookup on the remote IP Address (boolean, default: f al se)

socketTimeout

the timeout (ms) before closing the socket when no data is received (int, default: 120000)

useDirectBuffers
whether or not to use direct buffers (boolean, default: f al se)

Available Decoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)
Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 2161 bytes)

L4
data preceded by a four byte (signed) length field (up to 23t bytes)

5.7 Time (ti nme)
The time source will simply emit a String with the current time every so often.
Options

The time source has the following options:

1.0.0.M1 Spring Cloud Data Flow

15

Spring Cloud Data Flow Admin for Mesos

fixedDelay
time delay between messages, expressed in TimeUnits (seconds by default) (int, default: 1)

format
how to render the current time, using SimpleDateFormat (String, default: yyyy- MM dd
HH: nm ss)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

5.8 Twitter Stream (twi tterstrean)

This source ingests data from Twitter’s streaming API v1.1. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this
source, so it is easiest if you just add these as the following environment variables: CONSUMER_KEY,
CONSUMER_SECRET, ACCESS_TOKEN and ACCESS_TOKEN_SECRET.

Stream creation is then straightforward:

dataf |l ow. > stream create --nanme tweets --definition "twitterstream| |og" --deploy

Options
The twitterstream source has the following options:

accessToken
a valid OAuth access token (String, no default)

accessTokenSecret
an OAuth secret corresponding to the access token (String, no default)

consumerKey
a consumer key issued by twitter (String, no default)

consumerSecret
consumer secret corresponding to the consumer key (String, no default)

language
language code e.g. 'en' (String, default: ™)

Note

twitterstreamemit JSON in the native Twitter format.

1.0.0.M1 Spring Cloud Data Flow 16

https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/platform-objects/tweets

Spring Cloud Data Flow Admin for Mesos

6. Processors

6.1 Filter (filter)

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

The filter processor has the following options:

expression
a SpEL expression used to transform messages (String, default: payl oad. t oStri ng())

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream.
The expression should evaluate the message and return true or false. For example:

datafl ow. > stream create --nanme filtertest --definition "http --server.port=9000 | filter --
expr essi on=payl oad=="good" | |o0g" --deploy

This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good"
to the HTTP endpoint and you should see it in the Spring Cloud Data Flow logs:

datafl ow. > http post --target http://local host: 9000 --data "good"

Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.

6.2 Groovy Filter (gr oovy-filter)

A Processor module that retains or discards messages according to a predicate, expressed as a Groovy
script.

Options
The groovy-filter processor has the following options:

script
The script resource location (String, default: ™)

variables
Variable bindings as a comma delimited string of name-value pairs, e.g. 'foo=bar,baz=car' (String,
default: ™)

variablesLocation
The location of a properties file containing custom script variable bindings (String, default: ™)

6.3 Http Client (htt pcli ent)

A processor module that makes requests to an HTTP resource and emits the response body as a
message payload. This processor can be combined, e.g., with a time source module to periodically poll
results from a HTTP resource.

Options

The httpclient processor has the following options:

1.0.0.M1 Spring Cloud Data Flow 17

Spring Cloud Data Flow Admin for Mesos

url
The URL to issue an http request to, as a static value.

urlExpression
A SpEL expression against incoming message to determine the URL to use.

httpMethod
The kind of http method to use.

body
The (static) body of the request to use.

bodyExpression
A SpEL expression against incoming message to derive the request body to use.

headersExpression
A SpEL expression used to derive the http headers map to use.

expectedResponseType
The type used to interpret the response.

replyExpression
A SpEL expression used to compute the final result, applied against the whole http response.

6.4 Noop (noop)

A Processor module that returns messages that is passed in for performance testing.

6.5 Groovy Transform (gr oovy-transform
A Processor module that transforms messages using a Groovy script.
Options

The groovy-transform processor has the following options:

script
The script resource location (String, default: ™)

variables
Variable bindings as a comma delimited string of name-value pairs, e.g. ‘foo=bar,baz=car' (String,
default: ™)

variablesLocation
The location of a properties file containing custom script variable bindings (String, default: ™)

6.6 Transform (t r ansf orm
Use the transform module in a stream to convert a Message’s content or structure.
Options

The transform processor has the following options:

1.0.0.M1 Spring Cloud Data Flow 18

Spring Cloud Data Flow Admin for Mesos

expression
a SpEL expression used to transform messages (String, default: payl oad. t oStri ng())

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream.
The expression should return the modified message or payload. For example:

dat af | ow. > stream create --name transforntest --definition "http --server.port=9003 | transform --
expr essi on=payl oad. t oUpper Case() | |o0g" --depl oy

This transform will convert all message payloads to upper case. If sending the word "foo" to the HTTP
endpoint and you should see "FOQO" in the Spring Cloud Data Flow logs:

datafl ow. > http post --target http://local host: 9003 --data "foo"

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,'<json path expression>")

6.7 Splitter

The splitter module builds upon the concept of the same name in Spring Integration and allows the
splitting of a single message into several distinct messages.

expression
a SpEL expression which would typically evaluate to an array or collection (String, default: nul 1)

delimiters
A list of delimiters to tokenize a String payload (‘expression' must be null) (String, default: nul 1)

fileMarkers
Split File payloads, when true, START and END marker messages will be emitted, when false no
markers are emitted (String, default: nul)

charset
Split File payloads using this charset to convert bytes to String (String, default: nul I)

applySequence
Add correlation and sequence information to the message headers (String, default: t r ue)

When no expression, fil eMarkers, or charset is provided, a Def aul t MessageSplitter
is configured with (optional) delimters. When fileMarkers or charset is provided,
a FileSplitter is configured (you must provide either a fileMarkers or charset
to split files, which must be text-based - they are split into lines). Otherwise, an
Expr essi onEval uat i ngMessageSpl i tter is configured.

When splitting Fi | e payloads, the sequenceSi ze header is zero because the size cannot be
determined at the beginning.

Ambiguous properties are not allowed.
JSON Example

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #j sonPat h(payl oad, '<json path expression>').

1.0.0.M1 Spring Cloud Data Flow 19

Spring Cloud Data Flow Admin for Mesos

For example, consider the following JSON:

{ "store": {
"book": [
{
"category": "reference",
"author": "Nigel Rees",
"title": "Sayings of the Century",
"price": 8.95
}.
{
"category": "fiction",
"aut hor": "Evel yn Waugh",
"title": "Sword of Honour",
"price": 12.99
}.
{
"category": "fiction",
"author": "Herman Melville",
"title": "Mby Dick",
"isbn": "0-553-21311-3",
"price": 8.99
b
{
"category": "fiction",
"author": "J. R R Tol kien",
"title": "The Lord of the Rings",
"isbn": "0-395-19395-8",
"price": 22.99
}
B
"bicycle": {
"color": "red",
"price": 19.95
}
}}

and an expression #j sonPat h(payl oad, '$. store. book'); the result will be 4 messages, each
with a Map payload containing the properties of a single book.

1.0.0.M1 Spring Cloud Data Flow 20

Spring Cloud Data Flow Admin for Mesos

7. Sinks

7.1 Cassandra (cassandr a)

The Cassandra sink writes into a Cassandra table. Here is a simple example

dat af | ow. >stream create cassandrastream --definition "http --server.port=8888 --

spring. cl oud. stream bi ndi ngs. out put. cont ent Type="application/json' | cassandra --ingestQery='insert
into book (id, isbn, title, author) values (uuid(), ?, ?, ?)' --spring.cassandra.keyspace=cl ouddata" --
depl oy

Create a keyspace and a book table in Cassandra using:

CREATE KEYSPACE cl ouddata W TH REPLI CATION = { 'class' : 'org.apache.cassandra.locator.SinpleStrategy',
"replication_factor': '1' } AND DURABLE WRI TES = true;

USE cl ouddat a;

CREATE TABLE book (

id uui d PRI MARY KEY,
i sbn t ext,
aut hor t ext,
title text

You can then send data to this stream via

dat af | ow. >http post --contentType 'application/json' --data '{"isbn": "1599869772", "title": "The Art of
War", "author": "Sun Tzu"}' --target http://|ocal host: 8888/

> POST (application/json;charset=UTF-8) http://|ocal host:8888/ {"isbn": "1599869772", "title": "The Art
of War", "author": "Sun Tzu"}

> 202 ACCEPTED

and see the table contents using the CQL

SELECT * FROM cl ouddat a. book;

Options
The cassandra sink has the following options:

compressionType
the compression to use for the transport (CompressionType, default: NONE, possible values:
NONE, SNAPPY)

consistencyLevel
the consistencylLevel option of WriteOptions (ConsistencyLevel, no default, possible values:
ANY, ONE, TWO, THREE, QUOROM LOCAL_QUOROM EACH QUOROM ALL, LOCAL_ONE, SERI AL, LOCAL_SERI AL)

spring.cassandra.contactPoints
the comma-delimited string of the hosts to connect to Cassandra (String, default: | ocal host)

entityBasePackages
the base packages to scan for entities annotated with Table annotations (String[], default: [])

ingestQuery
the ingest Cassandra query (String, no default)

spring.cassandra.initScript
the path to file with CQL scripts (delimited by ;') to initialize keyspace schema (String, no default)

1.0.0.M1 Spring Cloud Data Flow 21

Spring Cloud Data Flow Admin for Mesos

spring.cassandra.keyspace
the keyspace name to connect to (String, default: <st r eam nane>)

metricsEnabled
enable/disable metrics collection for the created cluster (boolean, default: t r ue)

spring.cassandra.password
the password for connection (String, no default)

spring.cassandra.port
the port to use to connect to the Cassandra host (int, default: 9042)

queryType
the queryType for Cassandra Sink (Type, default: |NSERT, possible values:
| NSERT, UPDATE, DELETE, STATEMENT)

retryPolicy
the retryPolicy option of WriteOptions (RetryPolicy, no default, possible values:
DEFAULT, DOANGRADI NG_CONSI STENCY, FALLTHROUGH, LOGA NG

statementExpression
the expression in Cassandra query DSL style (String, no default)

spring.cassandra.schemaAction
schema action to perform (SchemaAction, default: NONE, possible values:
CREATE, NONE, RECREATE, RECREATE_DROP_UNUSED)

ttl
the time-to-live option of WriteOptions (int, default: 0)

spring.cassandra.username
the username for connection (String, no default)

7.2 Counter (count er)

A simple module that counts messages received, using Spring Boot metrics abstraction.
The counter sink has the following options:

name
The name of the counter to increment. (String, default: count s)

nameExpression
A SpEL expression (against the incoming Message) to derive the name of the counter to increment.
(String, default: ™)

store
The name of a store used to store the counter. (String, default: menor y, possible values: nenory,
redis)

7.3 Field Value Counter (fi el d-val ue-count er)

A field value counter is a Metric used for counting occurrences of unique values for a named field in a
message payload. Spring Cloud Data Flow supports the following payload types out of the box:

* POJO (Java bean)

1.0.0.M1 Spring Cloud Data Flow 22

Spring Cloud Data Flow Admin for Mesos

* Tuple
» JSON String

For example suppose a message source produces a payload with a field named user :

class Foo {
String user;
public Foo(String user) {
this.user = user;

}

If the stream source produces messages with the following objects:

new Foo("fred")
new Foo("sue")
new Foo("dave")
new Foo("sue")

The field value counter on the field user will contain:

fred: 1, sue:2, dave:1l

Multi-value fields are also supported. For example, if a field contains a list, each value will be counted
once:

users:["dave", "fred", "sue"]
users:["sue","jon"]

The field value counter on the field users will contain:

dave: 1, fred:1, sue:2, jon:1

Options
The field-value-counter sink has the following options:

fieldName
the name of the field for which values are counted (String, no default)

name
the name of the metric to contribute to (will be created if necessary) (String, default: <stream
nane>)

nameExpression
a SpEL expression to compute the name of the metric to contribute to (String, no default)

7.4File (file)

This module writes each message it receives to a file.
Options

The file sink has the following options:

binary
if false, will append a newline character at the end of each line (boolean, default: f al se)

1.0.0.M1 Spring Cloud Data Flow 23

Spring Cloud Data Flow Admin for Mesos

charset
the charset to use when writing a String payload (String, default: UTF- 8)

dir
the directory in which files will be created (String, default: ™)

dirExpression
spring expression used to define directory name (String, no default)

mode
what to do if the file already exists (Mode, default: APPEND, possible values:
APPEND, REPLACE, FAI L, | GNORE)

name
filename pattern to use (String, default: <st r eam nane>)

nameExpression
spring expression used to define filename (String, no default)

suffix
filename extension to use (String, no default)

7.5 FTP Sink (f t p)

FTP sink is a simple option to push files to an FTP server from incoming messages.

Ituses an f t p- out bound- adapt er, therefore incoming messages could be eitherajava.io.Fil e
object, a St ri ng (content of the file) or an array of byt es (file content as well).

To use this sink, you need a username and a password to login.

Note

By default Spring Integration will use o.s.i.fil e. Defaul t Fi | eNanmeGener at or if none is
specified. Def aul t Fi | eNameGener at or will determine the file name based on the value of the
fil e_name header (if it exists) in the MessageHeader s, or if the payload of the Message is
already a j ava. i 0. Fi | e, then it will use the original name of that file.

7.6 Gemfire (genfire)

A sink module that allows one to write message payloads to a Gemfire server.
Options
The gemfire sink has the following options:

hostAddresses
a comma separated list of [host]:[port] specifying either locator or server addresses for the client
connection pool (String, | ocal host : 10334)

keyExpression
a SpEL expression which is evaluated to create a cache key (String, default: the value is
currently the message payl oad')

1.0.0.M1 Spring Cloud Data Flow 24

Spring Cloud Data Flow Admin for Mesos

port
port of the cache server or locator (if useLocator=true). May be a comma delimited list (String, no
default)

regionName
name of the region to use when storing data (String, default: ${ spri ng. appl i cati on. nane})

connectType
'server' or 'locator' (String, default: | ocat or)

7.7 Hadoop (HDFS) (hdf s)

If you do not have Hadoop installed, you can install Hadoop as described in our separate guide.

Once Hadoop is up and running, you can then use the hdf s sink when creating a stream

dat af | ow. > stream create --name nyhdfsstreanl --definition "tine | hdfs" --deploy

In the above example, we've scheduled t i ne source to automatically send ticks to hdf s once in every
second. If you wait a little while for data to accumuluate you can then list can then list the files in the
hadoop filesystem using the shell’s built in hadoop fs commands. Before making any access to HDFS in
the shell you first need to configure the shell to point to your name node. This is done using the hadoop
confi g command.

dat af | ow. >hadoop config fs --nanmenode hdfs://1 ocal host: 8020

In this example the hdfs protocol is used but you may also use the webhdfs protocol. Listing the contents
in the output directory (named by default after the stream name) is done by issuing the following
command.

dat af | ow. >hadoop fs |s /xd/ nyhdf sstreamndl

Found 1 itens

STWr--T-- 3 jval keal ahti supergroup 0 2013-12-18 18: 10 /xd/ myhdf sst reant/
nyhdf sstreant-0. txt.tnp

While the file is being written to it will have the t np suffix. When the data written exceeds the rollover
size (default 1GB) it will be renamed to remove the t np suffix. There are several options to control the in
use file file naming options. These are - - i nUsePr efi x and - - i nUseSuf f i x set the file name prefix
and suffix respectfully.

When you destroy a stream

dat af | ow. >stream destroy --nanme nyhdfsstreanl

and list the stream directory again, in use file suffix doesn’t exist anymore.

dat af | ow. >hadoop fs |s /xd/ nyhdfsstreantl
Found 1 itemns
STWr--T-- 3 jval keal ahti supergroup 380 2013-12-18 18:10 /xd/ nyhdf sstreandl/ nyhdf sstreant- 0. t xt

To list the list the contents of a file directly from a shell execute the hadoop cat command.

dat af | ow. > hadoop fs cat /xd/ nyhdf sstreaml/ nyhdf sstreaml- 0.t xt
2013-12-18 18:10: 07
2013-12-18 18:10: 08
2013-12-18 18:10: 09

1.0.0.M1 Spring Cloud Data Flow 25

Spring Cloud Data Flow Admin for Mesos

In the above examples we didn’t yet go through why the file was written in a specific directory and
why it was named in this specific way. Default location of a file is defined as / xd/ <st r eam nane>/
<stream nanme>-<rol l i ng part>.txt. These can be changed using options - - di r ect ory and
- - fi | eName respectively. Example is shown below.

dat af | ow. >stream create --nanme nyhdfsstrean? --definition "time | hdfs --directory=/xd/tnmp --
fil eNane=dat a" --depl oy

dat af | ow. >stream destroy --name nyhdf sstrean®

dat af | ow: >hadoop fs I's /xd/tnp

Found 1 itens

STWr--r-- 3 jval keal ahti supergroup 120 2013-12-18 18: 31 /xd/tnp/data-0.txt

It is also possible to control the size of a files written into HDFS. The - - r ol | over option can be used
to control when file currently being written is rolled over and a new file opened by providing the rollover
size in bytes, kilobytes, megatypes, gigabytes, and terabytes.

dat af | ow: >stream create --nanme nyhdfsstreanB --definition "time | hdfs --rollover=100" --depl oy
dat af | ow. >stream destroy --nanme nyhdf sstreanB

dat af | ow. >hadoop fs |s /xd/ nyhdf sstreanB

Found 3 itens

STWr--r-- 3 jval keal ahti supergroup 100 2013-12-18 18: 41 /xd/ nyhdf sstreanB/ nyhdf sstreanB-0. t xt
STWr--r-- 3 jval keal ahti supergroup 100 2013-12-18 18: 41 /xd/ nyhdf sstreanB/ nyhdf sstreanB- 1.t xt
STWr--T-- 3 jval keal ahti supergroup 100 2013-12-18 18:41 /xd/ nyhdf sstreanB/ nyhdf sstreanB- 2. t xt

Shortcuts to specify sizes other than bytes are written as - -rol | over =64M - -r ol | over =512Gor
--roll over=1T.

The stream can also be compressed during the write operation. Example of this is shown below.

dat af | ow. >stream create --nanme nyhdfsstreamd --definition "time | hdfs --codec=gzi p" --depl oy
dat af | ow. >stream destroy --name nyhdf sstreamt

dat af | ow. >hadoop fs |s /xd/ nyhdf sstreamt

Found 1 itemns

STWr--r-- 3 jval keal ahti supergroup 80 2013-12-18 18:48 /xd/ nyhdf sstreamd/

nmyhdf sstreamd- 0. t xt. gzi p

From a native os shell we can use hadoop’s fs commands and pipe data into gunzip.

bin/hadoop fs -cat /xd/ nyhdfsstreamd/ nyhdfsstreamd-0.txt.gzip | gunzip
2013-12-18 18:48:10
2013-12-18 18:48:11

Often a stream of data may not have a high enough rate to roll over files frequently, leaving the file in
an opened state. This prevents users from reading a consistent set of data when running mapreduce
jobs. While one can alleviate this problem by using a small rollover value, a better way is to use the
i dl eTi meout option that will automatically close the file if there was no writes during the specified
period of time. This feature is also useful in cases where burst of data is written into a stream and you'd
like that data to become visible in HDFS.

Note

The idleTinmeout value should not exceed the timeout values set on the
Hadoop cluster. These are typically configured using the dfs. socket.tinmeout and/or
df s. dat anode. socket. write.ti neout properties in the hdfs-site.xm configuration
file.

dat af | ow. > stream create --name nyhdfsstreanb --definition "http --server.port=8000 | hdfs --rollover=20
--idl eTi meout =10000" - - depl oy

1.0.0.M1 Spring Cloud Data Flow 26

Spring Cloud Data Flow Admin for Mesos

In the above example we changed a source to ht t p order to control what we write into a hdf s sink.
We defined a small rollover size and a timeout of 10 seconds. Now we can simply post data into this
stream via source end point using a below command.

datafl ow > http post --target http://|ocal host: 8000 --data "hell 0"

If we repeat the command very quickly and then wait for the timeout we should be able to see that some
files are closed before rollover size was met and some were simply rolled because of a rollover size.

dat af | ow. >hadoop fs |s /xd/ nyhdf sstreanb
Found 4 itens

STWT--T-- 3 jval keal ahti supergroup 12 2013-12-18 19: 02 /xd/ nyhdf sstreanb/ nyhdf sstreanb- 0. t xt
SITWr--r-- 3 jval keal ahti supergroup 24 2013-12-18 19: 03 /xd/ nyhdf sstreanb/ nyhdf sstreanb- 1. t xt
STWr--T-- 3 jval keal ahti supergroup 24 2013-12-18 19: 03 / xd/ nyhdf sstreanb/ nyhdf sstreanb- 2. t xt
STWr--T-- 3 jval keal ahti supergroup 18 2013-12-18 19: 03 /xd/ myhdf sst reanb/ myhdf sst r eanb- 3. t xt

Files can be automatically partitioned using a parti ti onPat h expression. If we create a stream with
i dl eTi meout and partiti onPat h with simple format yyyy/ MM dd/ HH mmwe should see writes
ending into its own files within every minute boundary.

dat af | ow. >stream create --nanme nyhdfsstreanb --definition "time|hdfs --idleTi meout =10000 - -
partitionPat h=dat eFor mat (' yyyy/ MM dd/ HH/ nm)" - - depl oy

Let a stream run for a short period of time and list files.

dat af | ow: >hadoop fs |I's --recursive true --dir /xd/ nyhdfsstreant

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 09: 42 /xd/ nyhdf sstreanb/ 2014

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 09: 42 /xd/ nyhdf sstreant/ 2014/ 05

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 09: 42 / xd/ nyhdf sstreanb/ 2014/ 05/ 28

dr wxr - Xr - x - jval keal ahti supergroup 0 2014- 05-28 09: 45 / xd/ nyhdf sstreanb/ 2014/ 05/ 28/ 09

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 09: 43 / xd/ nyhdf sstreant/ 2014/ 05/ 28/ 09/ 42
STWr--r-- 3 jval keal ahti supergroup 140 2014- 05-28 09: 43 / xd/ nyhdf sstreant/ 2014/ 05/ 28/ 09/ 42/
nyhdf sstreanb- 0. t xt

dr wxr - xr - x - jval keal ahti supergroup 0 2014- 05-28 09: 44 /xd/ myhdf sst reant/ 2014/ 05/ 28/ 09/ 43
STWr--T-- 3 jval keal ahti supergroup 1200 2014- 05-28 09: 44 / xd/ myhdf sst reant/ 2014/ 05/ 28/ 09/ 43/
nmyhdf sst reanb- 0. t xt

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 09: 45 / xd/ nyhdf sstreant/ 2014/ 05/ 28/ 09/ 44
STWr--r-- 3 jval keal ahti supergroup 1200 2014- 05-28 09: 45 / xd/ nyhdf sstreant/ 2014/ 05/ 28/ 09/ 44/
nyhdf sstreanb- 0. t xt

Partitioning can also be based on defined lists. In a below example we simulate feeding data by
using a ti me and a t r ansf or melements. Data passed to hdf s sink has a content APPO: f oobar ,
APP1: f oobar, APP2: f oobar or APP3: f oobar .

dat af | ow. >stream create --name nyhdfsstreanv --definition "time | transform --expression=

\"" APP' +T(Mat h) . round(T(Math).randon()*3)+ :foobar'\" | hdfs --idleTineout=10000 --

partitionPat h=pat h(dat eFornmat (' yyyy/ MM dd/ HH), | ist(payload.split(':")[O],{{ OTOL',' APPO',"' APP1'},
{'2TQ8',' APP2',' APP3'}}))" --depl oy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

dat af | ow. >stream destroy --nanme nyhdf sstreanv

Destroyed stream ' nyhdfsstreanv'

dat af | ow: >hadoop fs I's --recursive true --dir /xd

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 / xd/ nyhdf sstreanv

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 / xd/ nyhdf sstreani/ 2014

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 / xd/ nyhdf sst reanv/ 2014/ 05

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 / xd/ nyhdf sstreani/ 2014/ 05/ 28
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 / xd/ nyhdf sstreanv/ 2014/ 05/ 28/ 19
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19:24 /xd/

nyhdf sstreani’/ 2014/ 05/ 28/ 19/ OTOL_|I i st

STWr--T-- 3 jval keal ahti supergroup 108 2014-05-28 19:24 /xd/

nmyhdf sst reani’/ 2014/ 05/ 28/ 19/ 0TOL_I i st/ nmyhdf sst reani’- 0. t xt

1.0.0.M1 Spring Cloud Data Flow 27

Spring Cloud Data Flow Admin for Mesos

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 19:24 /xd/
nyhdf sstrean/ 2014/ 05/ 28/ 19/ 2TCB_I i st
STWr--T-- 3 jval keal ahti supergroup 180 2014-05-28 19:24 /xd/

nmyhdf sst reani’/ 2014/ 05/ 28/ 19/ 2TGB_1 i st/ nmyhdf sst r eani’- 0. t xt

dat af | ow: >hadoop fs cat /xd/ nmyhdf sstreani// 2014/ 05/ 28/ 19/ 0TOL_I i st/ nmyhdf sst reani- 0. t xt
APP1: f oobar

APP1: f oobar

APPO: f oobar

APPO: f oobar

APP1: f oobar

Partitioning can also be based on defined ranges. In a below example we simulate feeding data by using
atine andatransformelements. Data passed to hdf s sink has a content ranging from APPO to
APP15. We simple parse the number part and use it to do a partition with ranges { 3, 5, 10} .

dat af | ow. >stream create --nanme nyhdfsstreanB --definition "time | transform--

expression=\"" APP' +T(Mat h) . round(T(Mat h).random()*15)\" | hdfs --idl eTi meout =10000 - -
partitionPat h=pat h(dat eFornmat (' yyyy/ MM dd/ HH), range(T(| nt eger) . par sel nt (payl oad. substring(3)),
{3,5,10}))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

dat af | ow. >stream destroy --nanme nyhdf sstrean8
Destroyed stream ' nyhdfsstreanB'
dat af | ow: >hadoop fs |Is --recursive true --dir /xd

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 / xd/ nyhdf sstreanB

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 / xd/ nyhdf sstrean8/ 2014

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/ nyhdf sstrean8/ 2014/ 05
drwxr-xr-x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/ nyhdf sstreanB/ 2014/ 05/ 28
dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/ nyhdf sstreanB/ 2014/ 05/ 28/ 19
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/

nyhdf sst reanB/ 2014/ 05/ 28/ 19/ 10_r ange

STWr--T-- 3 jval keal ahti supergroup 16 2014-05-28 19: 34 /xd/

nyhdf sstreanB/ 2014/ 05/ 28/ 19/ 10_r ange/ nyhdf sst r eanB- 0. t xt

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 19:34 /xd/

nmyhdf sstreanB/ 2014/ 05/ 28/ 19/ 3_r ange

STWr--T-- 3 jval keal ahti supergroup 35 2014-05-28 19: 34 /xd/

nyhdf sst reanB/ 2014/ 05/ 28/ 19/ 3_r ange/ nyhdf sst r eanB- 0. t xt

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/

nyhdf sstreanB/ 2014/ 05/ 28/ 19/ 5_r ange

STWr--T-- 3 jval keal ahti supergroup 5 2014-05-28 19:34 /xd/

nmyhdf sst reanB/ 2014/ 05/ 28/ 19/ 5_r ange/ nyhdf sst r eanB- 0. t xt

dat af | ow: >hadoop fs cat /xd/ nyhdf sstreanB/ 2014/ 05/ 28/ 19/ 3_r ange/ nyhdf sst reanB- 0. t xt
APP3

APP3

APP1

APPO

APP1

dat af | ow: >hadoop fs cat /xd/ nyhdf sstreanB/ 2014/ 05/ 28/ 19/ 5_r ange/ nyhdf sst reanB- 0. t xt
APP4

dat af | ow. >hadoop fs cat /xd/ nmyhdf sstreanB/ 2014/ 05/ 28/ 19/ 10_r ange/ nyhdf sstreanB- 0. t xt
APP6

APP15

APP7

Partition using a dat eFor mat can be based on content itself. This is a good use case if old log files
needs to be processed where partitioning should happen based on timestamp of a log entry. We create
a fake log data with a simple date string ranging from 1970- 01- 10 to 1970- 01- 13.

dat af | ow. >stream create --nanme nyhdfsstreamd® --definition "time | transform --expression=
\"*"1970-01-"' +1+T(Mat h) . round(T(Mat h) . randon() *3)\" | hdfs --idl eTi meout =10000 - -
partitionPat h=pat h(dat eFornmat (' yyyy/ MM dd/ HH , payl oad, ' yyyy-MW DD))" --depl oy

Let the stream run few seconds, destroy it and check what got written in those partitioned files. If you
see the partition paths, those are based on year 1970, not present year.

1.0.0.M1 Spring Cloud Data Flow 28

Spring Cloud Data Flow Admin for Mesos

dat af | ow: >stream destroy --nanme nyhdf sstreand
Destroyed stream ' nyhdf sstreand’
dat af | ow. >hadoop fs |Is --recursive true --dir /xd
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 56 /xd/ nyhdf sstreand
dr wWxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19:56 /xd/ nyhdf sstreand/ 1970
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 56 /xd/ nyhdf sstreand/ 1970/ 01
dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 19:56 /xd/ nyhdfsstreand/ 1970/ 01/ 10
drwxr-xr-x - jval keal ahti supergroup 0 2014-05-28 19: 57 /xd/ nyhdf sstreanB/ 1970/ 01/ 10/ 00
STWr--r-- 3 jval keal ahti supergroup 44 2014-05-28 19:57 /xd/ nmyhdf sstreand/ 1970/ 01/ 10/ 00/
nmyhdf sst reand- 0. t xt
dr wWxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19:56 /xd/ nyhdf sstreand/ 1970/ 01/ 11
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 57 /xd/ nyhdf sstreanB/ 1970/ 01/ 11/ 00
STWr--r-- 3 jval keal ahti supergroup 99 2014-05-28 19:57 /xd/ nyhdf sstreand/ 1970/ 01/ 11/ 00/
nyhdf sstreand- 0. t xt
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19:56 /xd/ nyhdf sstreanB/ 1970/ 01/ 12
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 57 / xd/ nyhdf sstreand/ 1970/ 01/ 12/ 00
STWr--T-- 3 jval keal ahti supergroup 44 2014- 05-28 19: 57 /xd/ nyhdf sstreanB/ 1970/ 01/ 12/ 00/
nyhdf sst reand- 0. t xt
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19:56 /xd/ nyhdfsstreand/ 1970/ 01/ 13
drwxr-xr-x - jval keal ahti supergroup 0 2014-05-28 19: 57 /xd/ nyhdf sstreanB/ 1970/ 01/ 13/ 00
STWr--r-- 3 jval keal ahti supergroup 55 2014-05-28 19:57 /xd/ nmyhdf sstreand/ 1970/ 01/ 13/ 00/
nmyhdf sstreand- 0. t xt
dat af | ow. >hadoop fs cat /xd/ nmyhdfsstreanB/ 1970/ 01/ 10/ 00/ nyhdf sst reand- 0. t xt
1970- 01- 10
1970- 01- 10
1970-01- 10
1970-01- 10

Options

The hdfs sink has the following options:

closeTimeout

timeout in ms, regardless of activity, after which file will be automatically closed (long, default: 0)

codec

compression codec alias name (gzip, snappy, bzip2, 1zo, or slzo) (String, default: ™)

directory

where to output the files in the Hadoop FileSystem (String, default: / t np/ hdf s- si nk)

fileExtension

the base filename extension to use for the created files (String, default: t xt)

fileName

the base filename to use for the created files (String, default: <st r eam nane>)

fileOpenAttempts

maximum number of file open attempts to find a path (int, default: 10)

fileUuid

whether file name should contain uuid (boolean, default: f al se)

fsUri

the URI to use to access the Hadoop FileSystem (String, default: ${ spri ng. hadoop. fsUri })

idleTimeout

inactivity timeout in ms after which file will be automatically closed (long, default: 0)

inUsePrefix

prefix for files currently being written (String, default: ™)

1.0.0.M1

Spring Cloud Data Flow

29

Spring Cloud Data Flow Admin for Mesos

inUseSuffix
suffix for files currently being written (String, default: . t np)

overwrite
whether writer is allowed to overwrite files in Hadoop FileSystem (boolean, default: f al se)

partitionPath
a SpEL expression defining the partition path (String, default: ™)

rollover
threshold in bytes when file will be automatically rolled over (String, default: 1G
Note

In the context of the f i | eQpenAt t enpt s option, attempt is either one rollover request or failed
stream open request for a path (if another writer came up with a same path and already opened it).

Partition Path Expression

SpEL expression is evaluated against a Spring Messaging Message passed internally into a HDFS
writer. This allows expression to use header s and payl oad from that message. While you could do a
custom processing within a stream and add custom headers, t i mest anp is always going to be there.
Data to be written is then available in a pay! oad.

Accessing Properties

Using a payl oad simply returns whatever is currently being written. Access to headers is via
header s property. Any other property is automatically resolved from headers if found. For example
headers. ti nest anp is equivalentto t i mest anp.

Custom Methods

Addition to a normal SpEL functionality, few custom methods has been added to make it easier to build
partition paths. These custom methods can be used to work with a normal partition concepts like dat e
formatting,lists, ranges and hashes.

path

path(String... paths)

Concatenates paths together with a delimiter / . This method can be used to make the expression less
verbose than using a native SpEL functionality to combine path parts together. To create a path part 1/
part 2, expression' partl' + '/' + 'part2' isequivalenttopath(' partl','part2').
Parameters

paths
Any number of path parts

Return Value. Concatenated value of paths delimited with / .

dateFormat

dat eFormat (String pattern)

dateFormat (String pattern, Long epoch)

dateFormat (String pattern, Date date)

dateFormat (String pattern, String datestring)

dateFormat (String pattern, String datestring, String dateformt)

1.0.0.M1 Spring Cloud Data Flow 30

Spring Cloud Data Flow Admin for Mesos

Creates a path using date formatting. Internally this method delegates into Si npl eDat eFor nmat and
needs a Dat e and a pat t er n. On default if no parameter used for conversion is given, ti mest anp
is expected. Effectively dat eFor mat (' yyyy') equals to dat eFormat (' yyyy', tinestanp) or
dat eFormat (' yyyy', headers.timestanp).

Method signature with three parameters can be used to create a custom Dat e object which is then
passed to Si nmpl eDat eFor mat conversion using a dat ef or mat pattern. This is useful in use cases
where partition should be based on a date or time string found from a payload content itself. Default
dat ef or mat pattern if omitted is yyyy- MM dd.

Parameters

pattern
Pattern compatible with Si npl eDat eFor mat to produce a final output.

epoch
Timestamp as Long which is converted into a Dat e.

date
A Dat e to be formatted.

dateformat
Secondary pattern to convert dat est ri ng into a Dat e.

datestring
DateasaString

Return Value. A path part representation which can be a simple file or directory name or a directory
structure.

list

list(Object source, List<List<Object>> |ists)

Creates a partition path part by matching a sour ce against a lists denoted by | i st s.

Lets assume that data is being written and it's possible to extrace an appid
either from headers or payload. We can automatically do a list based partition
by using a partition method |i st (headers.appid, {{'1TCG3',"' APP1',"' APP2' ,' APP3'},
{'4TC6' ,' APP4' ' APP5' ,' APP6' }}). This method would create three partitions, 1TG3_| i st ,
4TO6 _list and i st. Latter is used if no match is found from partition lists passed to | i st s.
Parameters

source
An (bj ect to be matched against | i st s.

lists
A definition of list of lists.

Return Value. A path part prefixed with a matched key i.e. XXX_1 i st orli st if no match.

range

range(Obj ect source, List<Cbject> |ist)

Creates a partition path part by matching a sour ce against a list denoted by | i st using a simple binary
search.

1.0.0.M1 Spring Cloud Data Flow 31

Spring Cloud Data Flow Admin for Mesos

The partition method takes a sour ce as first argument and | i st as a second argument. Behind the
scenes this is using jvm’s bi nar y Sear ch which works on an Qbj ect level so we can pass in anything.
Remember that meaningful range match only works if passed in Obj ect and types in list are of same
type like | nt eger . Range is defined by a binarySearch itself so mostly it is to match against an upper
bound except the last range in a list. Having a list of { 1000, 3000, 5000} means that everything above
3000 will be matched with 5000. If that is an issue then simply adding | nt eger . MAX_VALUE as last
range would overflow everything above 5000 into a new partition. Created partitions would then be
1000_r ange, 3000_r ange and 5000_r ange.

Parameters

source
An (bj ect to be matched against | i st .

list
A definition of list.

Return Value. A path part prefixed with a matched key i.e. XXX_r ange.

hash

hash(Obj ect source, int bucketcount)

Creates a partition path part by calculating hashkey using sour ce™ s hashCode and bucket count .
Using a partition method hash(ti nest anp, 2) would then create partitions named 0_hash, 1_hash
and 2_hash. Number suffixed with _hash is simply calculated using Obj ect. hashCode() %
bucket count .

Parameters

source
An (bj ect which hashCode will be used.

bucketcount
A number of buckets

Return Value. A path part prefixed with a hash key i.e. XXX_hash.

7.8 JDBC (j dbc)

A module that writes its incoming payload to an RDBMS using JDBC.
Options
The jdbc sink has the following options:

expression
a SpEL expression used to transform messages (String, default: ™)

tableName
String (String, default: <st r eam nane)

columns
the names of the columns that shall receive data, as a set of column[:SpEL] mappings, also used
at initialization time to issue the DDL (String, default: payl oad)

1.0.0.M1 Spring Cloud Data Flow 32

Spring Cloud Data Flow Admin for Mesos

initialize
String (Boolean, default: f al se)

batchSize
String (long, default: 10000)

The module also uses Spring Boot's DataSource support for configuring the database connection, so
properties like spri ng. dat asour ce. ur | etc. apply.

7.9 Log (Il og)

Probably the simplest option for a sink is just to log the data. The | og sink uses the application logger
to output the data for inspection. The log level is set to WARN and the logger name is created from the
stream name. To create a stream using a | og sink you would use a command like

‘dataflow> stream create --nanme nyl ogstream --definition "http --server.port=8000 | |og" --deploy

You can then try adding some data. We've used the ht t p source on port 8000 here, so run the following
command to send a message

datafl ow. > http post --target http://local host: 8000 --data "hell 0"

and you should see the following output in the Spring Cloud Data Flow console.

‘ 13/ 06/ 07 16:12:18 | NFO Recei ved: hello

7.10 Redis (redi s)

Redis sink can be used to ingest data into redis store. You can choose queue, t opi ¢ or key with
selcted collection type to point to a specific data store.

For example,

dat af | ow: >stream create store-into-redis --definition "http | redis --queue=nyList" --depl oy
dat af | ow. >Creat ed and depl oyed new stream 'store-into-redis'

Options
The redis sink has the following options:

topicExpression
a SpEL expression to use for topic (String, no default)

gueueExpression
a SpEL expression to use for queue (String, no default)

keyExpression
a SpEL expression to use for keyExpression (String, no default)

key
name for the key (String, no default)

queue
name for the queue (String, no default)

1.0.0.M1 Spring Cloud Data Flow 33

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-configure-datasource

Spring Cloud Data Flow Admin for Mesos

topic
name for the topic (String, no default)

7.11 TCP Sink

The TCP Sink provides for outbound messaging over TCP; messages sent to the sink can have St ri ng
or byt e[] payloads.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of encoders are available, the default being 'CRLF".

Options
The tcp sink has the following options:

charset
the charset used when converting from String to bytes (String, default: UTF- 8)

close
whether to close the socket after each message (boolean, default: f al se)

encoder
the encoder to use when sending messages (Encoding, default: CRLF, possible values:
CRLF, LF, NULL, STXETX, RAW L1, L2, L4)

host

the remote host to connect to (String, default: | ocal host)
nio

whether or not to use NIO (boolean, default: f al se)

port
the port on the remote host to connect to (int, default: 1234)

reverseLookup
perform a reverse DNS lookup on the remote IP Address (boolean, default: f al se)

socketTimeout
the timeout (ms) before closing the socket when no data is received (int, default: 120000)

useDirectBuffers
whether or not to use direct buffers (boolean, default: f al se)

Available Encoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

1.0.0.M1 Spring Cloud Data Flow 34

Spring Cloud Data Flow Admin for Mesos

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)
Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 2.1 bytes)

L4
data preceded by a four byte (signed) length field (up to 23t bytes)

1.0.0.M1 Spring Cloud Data Flow

35

Part V. Appendices

Spring Cloud Data Flow Admin for Mesos

Appendix A. Building

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./nm/nw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer nSi ze=128m We
try to cover this in the . mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ym , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./ nmvnw cl ean package - DskipTests -P full -pl {project-doc-nodul e} -am

A.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xnl file for the projects. If you do not do this

1.0.0.M1 Spring Cloud Data Flow 37

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Admin for Mesos

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from . setti ngs. xnl into your own ~/ . n2/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./ mvnw eclipse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting projects from the
fil e menu.

1.0.0.M1 Spring Cloud Data Flow 38

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Admin for Mesos

Appendix B. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

B.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor's agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

B.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
« A few unit tests would help a lot as well— someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

1.0.0.M1 Spring Cloud Data Flow 39

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Admin for Mesos
	Table of Contents
	Part I. Introduction
	1. Introducing Spring Cloud Data Flow for Mesos and Marathon

	Part II. Spring Cloud Data Flow Overview
	2. Introducing Spring Cloud Data Flow
	2.1 Features

	3. Spring Cloud Data Flow Architecture
	3.1 Components

	Part III. Getting Started
	4. Deploying Streams on Mesos and Marathon

	Part IV. Modules
	5. Sources
	5.1 File
	Options

	5.2 FTP (ftp)
	Options

	5.3 HTTP (http)
	5.4 Load Generator (load-generator)
	Options

	5.5 SFTP (sftp)
	Options

	5.6 TCP
	Options
	Available Decoders

	5.7 Time (time)
	Options

	5.8 Twitter Stream (twitterstream)
	Options

	6. Processors
	6.1 Filter (filter)
	Filter with SpEL expression

	6.2 Groovy Filter (groovy-filter)
	Options

	6.3 Http Client (httpclient)
	Options

	6.4 Noop (noop)
	6.5 Groovy Transform (groovy-transform)
	Options

	6.6 Transform (transform)
	Options
	Transform with SpEL expression

	6.7 Splitter
	JSON Example

	7. Sinks
	7.1 Cassandra (cassandra)
	Options

	7.2 Counter (counter)
	7.3 Field Value Counter (field-value-counter)
	Options

	7.4 File (file)
	Options

	7.5 FTP Sink (ftp)
	7.6 Gemfire (gemfire)
	Options

	7.7 Hadoop (HDFS) (hdfs)
	Options
	Partition Path Expression
	Accessing Properties
	Custom Methods
	path
	dateFormat
	list
	range
	hash

	7.8 JDBC (jdbc)
	Options

	7.9 Log (log)
	7.10 Redis (redis)
	Options

	7.11 TCP Sink
	Options
	Available Encoders

	Part V. Appendices
	Appendix A. Building
	A.1 Documentation
	A.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix B. Contributing
	B.1 Sign the Contributor License Agreement
	B.2 Code Conventions and Housekeeping

