
Spring Cloud Data Flow Reference Guide

1.0.0.M2

Copyright © 2013-2015Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow ii

Table of Contents

I. Preface .. 1
1. About the documentation .. 2
2. Getting help .. 3

II. Spring Cloud Data Flow Overview ... 4
3. Introducing Spring Cloud Data Flow ... 5

3.1. Features .. 5
4. Spring Cloud Data Flow Architecture ... 6

4.1. Components .. 6
III. Getting started ... 7

5. System Requirements ... 8
6. Building Spring Cloud Data Flow ... 9
7. Deploying Spring Cloud Data Flow .. 10

7.1. Deploying 'local' ... 10
7.2. Deploying on Cloud Foundry ... 10

Deploying Admin app on Cloud Foundry .. 11
Running Admin app locally .. 11
Running Spring Cloud Data Flow Shell locally .. 12
Spring Cloud Data Flow Admin app configuration settings for Cloud Foundry 12

7.3. Deploying on YARN ... 13
IV. Using Spring Cloud Stream Modules .. 15

8. Sources .. 16
8.1. FTP (ftp) .. 16

Options ... 16
8.2. HTTP (http) ... 17
8.3. Time (time) ... 17
8.4. Twitter Stream (twitterstream) .. 18

9. Processors .. 19
9.1. Filter (filter) ... 19

Filter with SpEL expression ... 19
9.2. groovy-filter .. 19
9.3. groovy-transform .. 19
9.4. Transform (transform) ... 20

Transform with SpEL expression ... 20
10. Sinks .. 21

10.1. Counter (counter) .. 21
10.2. Hadoop (HDFS) (hdfs) .. 21

Options ... 25
Partition Path Expression .. 26

Accessing Properties ... 26
Custom Methods ... 26

10.3. Log (log) ... 29
10.4. Redis (redis) .. 29

Options ... 29
11. Tasks ... 30

11.1. Timestamp (timestamp) .. 30
V. Appendices .. 31

A. Building .. 32

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow iii

A.1. Documentation ... 32
A.2. Working with the code ... 32

Importing into eclipse with m2eclipse ... 32
Importing into eclipse without m2eclipse ... 33

B. Contributing .. 34
B.1. Sign the Contributor License Agreement ... 34
B.2. Code Conventions and Housekeeping .. 34

Part I. Preface

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 2

1. About the documentation

The Spring Cloud Data Flow reference guide is available as html, pdf and epub documents. The latest
copy is available at docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

http://docs.spring.io/spring-cloud-dataflow/docs/{version}/reference/html
http://docs.spring.io/spring-cloud-dataflow/docs/{version}/reference/pdf/spring-cloud-dataflow-reference.pdf
http://docs.spring.io/spring-cloud-dataflow/docs/{version}/reference/epub/spring-cloud-dataflow-reference.epub
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 3

2. Getting help

Having trouble with Spring Cloud Data Flow, We’d like to help!

• Ask a question - we monitor stackoverflow.com for questions tagged with spring-cloud.

• Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

Note

All of Spring Cloud Data Flow is open source, including the documentation! If you find problems
with the docs; or if you just want to improve them, please get involved.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud
https://github.com/spring-cloud/spring-cloud-dataflow/issues
http://github.com/spring-projects/spring-cloud-dataflow/tree/v1.0.0.M2

Part II. Spring Cloud
Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think
of it as map for the rest of the document. You can read this reference guide in a linear fashion, or you
can skip sections if something doesn’t interest you.

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 5

3. Introducing Spring Cloud Data Flow

A cloud native programming and operating model for composable data microservices on a structured
platform. With Spring Cloud Data Flow, developers can create, orchestrate and refactor data pipelines
through single programming model for common use cases such as data ingest, real-time analytics, and
data import/export.

Spring Cloud Data Flow is the cloud native redesign of Spring XD – a project that aimed to simplify
development of Big Data applications. The integration and batch modules from Spring XD are refactored
into Spring Boot data microservices applications that are now autonomous deployment units – thus
enabling them to take full advantage of platform capabilities "natively", and they can independently
evolve in isolation.

Spring Cloud Data Flow defines best practices for distributed stream and batch microservice design
patterns.

3.1 Features

• Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry,
Apache YARN, Apache Mesos, and Kubernetes

• Separate runtime dependencies backed by ‘spring profiles’

• Consume stream and batch data-microservices as maven dependency

• Develop using: DSL, Shell, REST-APIs, Admin-UI, and Flo

• Take advantage of metrics, health checks and remote management of data-microservices

• Scale stream and batch pipelines without interrupting data flows

http://projects.spring.io/spring-xd/
http://cloud.spring.io/spring-cloud-stream-modules/

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 6

4. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.

4.1 Components

The Core domain module includes the concept of a stream that is a composition of spring-cloud-stream
modules in a linear pipeline from a source to a sink, optionally including processor modules in between.
The domain also includes the concept of a task, which may be any process that does not run indefinitely,
including Spring Batch jobs.

The Artifact Registry maintains the set of available modules, and their mappings to Maven coordinates.

The Module Deployer SPI provides the abstraction layer for deploying the modules of a given stream
across a variety of runtime environments, including:

• Local

• Cloud Foundry

• Apache Yarn

• Apache Mesos

• Kubernetes

The Admin Starter provides the REST API and UI for implementations of the Admin SPI.

The Shell connects to the Admin’s REST API and supports a DSL that simplifies the process of defining
a stream and managing its lifecycle.

https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-core
https://github.com/spring-projects/spring-batch
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-artifact-registry
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-module-deployer-spi
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-admin-local
https://github.com/spring-cloud/spring-cloud-dataflow-admin-cloudfoundry
https://github.com/spring-cloud/spring-cloud-dataflow-admin-yarn
https://github.com/spring-cloud/spring-cloud-dataflow-admin-mesos
https://github.com/spring-cloud/spring-cloud-dataflow-admin-kubernetes
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-admin-starter
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-shell

Part III. Getting started
If you’re just getting started with Spring Cloud Data Flow, this is the section for you! Here we answer
the basic “what?”, “how?” and “why?” questions. You’ll find a gentle introduction to Spring Cloud Data
Flow along with installation instructions. We’ll then build our first Spring Cloud Data Flow application,
discussing some core principles as we go.

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 8

5. System Requirements

You need Java installed (Java 7 or better, we recommend Java 8) and to build you need to have Maven
installed as well.

You also need to have Redis installed and running if you plan on running a local system, or to run the
included tests.

http://redis.io/

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 9

6. Building Spring Cloud Data Flow

Start Redis:

cd $REDIS_INSTALL_DIRECTORY/src

./redis-server

Clone the GitHub repository:

git clone https://github.com/spring-cloud/spring-cloud-dataflow.git

Switch to the project directory:

cd spring-cloud-dataflow

Start a local Redis server to support testing:

redis-server

Build the project:

mvn clean install -s .settings.xml

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 10

7. Deploying Spring Cloud Data Flow

7.1 Deploying 'local'

1. download the Spring Cloud Data Flow Admin and Shell apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-admin/1.0.0.M2/

spring-cloud-dataflow-admin-local-1.0.0.M2.jar

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M2/

spring-cloud-dataflow-shell-1.0.0.M2.jar

2. launch the admin:

$ java -jar spring-cloud-dataflow-admin-local-1.0.0.M2.jar

3. launch the shell:

$ java -jar spring-cloud-dataflow-shell-1.0.0.M2.jar

thus far, only the following commands are supported in the shell when running singlenode:

• stream list

• stream create

• stream deploy

7.2 Deploying on Cloud Foundry

Note

The Cloud Foundry SPI implementation is a separate project.

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing
so, the Admin application can either run itself on Cloud Foundry, or on another installation (e.g. a simple
laptop).

The required configuration amounts to the same in either case, and is merely related to providing
credentials to the Cloud Foundry instance so that the admin can spawn applications itself. Any
Spring Boot compatible configuration mechanism can be used (passing program arguments, editing
configuration files before building the application, using Spring Cloud Config, using environment
variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.

1. provision a redis service instance on Cloud Foundry. Use cf marketplace to discover which plans
are available to you, depending on the details of your Cloud Foundry setup. For example when using
Pivotal Web Services:

cf create-service rediscloud 30mb redis

2. download the Spring Cloud Data Flow Admin and Shell apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-admin/1.0.0.M2/

spring-cloud-dataflow-admin-cloudfoundry-1.0.0.M2.jar

https://github.com/spring-cloud/spring-cloud-dataflow-admin-cloudfoundry
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-admin
https://github.com/spring-cloud/spring-cloud-config
https://run.pivotal.io/

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 11

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M2/

spring-cloud-dataflow-shell-1.0.0.M2.jar

Deploying Admin app on Cloud Foundry

3a. push the admin application on Cloud Foundry, configure it (see below) and start it

Note

You must use a unique name for your app; an app with the same name in the same organization
will cause your deployment to fail

cf push s-c-dataflow-admin --no-start -p spring-cloud-dataflow-admin-cloudfoundry-1.0.0.M2.jar

cf bind-service s-c-dataflow-admin redis

Now we can configure the app. This configuration is for Pivotal Web Services. You need to fill in {org},
{space}, {email} and {password} before running these commands.

Note

Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_API_ENDPOINT https://api.run.pivotal.io

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_ORGANIZATION {org}

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SPACE {space}

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_DOMAIN cfapps.io

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SERVICES redis

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_USERNAME {email}

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_PASSWORD {password}

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SKIP_SSL_VALIDATION false

We are now ready to start the app.

cf start s-c-dataflow-admin

Alternatively,

Running Admin app locally

3b. run the admin application locally, targeting your Cloud Foundry installation

First you need to configure the application either by passing in command line arguments (see below)
or setting a number of environment variables.

To use environment variables set the following:

export CLOUDFOUNDRY_API_ENDPOINT=https://api.run.pivotal.io

export CLOUDFOUNDRY_ORGANIZATION={org}

export CLOUDFOUNDRY_SPACE={space}

export CLOUDFOUNDRY_DOMAIN=cfapps.io

export CLOUDFOUNDRY_SERVICES=redis

export CLOUDFOUNDRY_USERNAME={email}

export CLOUDFOUNDRY_PASSWORD={password}

export CLOUDFOUNDRY_SKIP_SSL_VALIDATION=false

You need to fill in {org}, {space}, {email} and {password} before running these commands.

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 12

Note

Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Now we are ready to start the admin application:

java -jar spring-cloud-dataflow-admin-cloudfoundry-1.0.0.M2.jar [--option1=value1] [--option2=value2]

 [etc.]

Running Spring Cloud Data Flow Shell locally

1. run the shell and optionally target the Admin application if not running on the same host (will typically
be the case if deployed on Cloud Foundry as 3a.)

$ java -jar spring-cloud-dataflow-shell-1.0.0.M2.jar

server-unknown:>admin config server http://s-c-dataflow-admin.cfapps.io

Successfully targeted http://s-c-dataflow-admin.cfapps.io

dataflow:>

Spring Cloud Data Flow Admin app configuration settings for Cloud
Foundry

The following pieces of configuration must be provided, e.g. by setting variables in the apps environment,
or passing variables on the Java invocation:

Default values cited after the equal sign.

Example values, typical for Pivotal Web Services, cited as a comment

url of the CF API (used when using cf login -a for example), e.g. https://api.run.pivotal.io

(for setting env var use CLOUDFOUNDRY_API_ENDPOINT)

cloudfoundry.apiEndpoint=

name of the organization that owns the space above, e.g. youruser-org

(for setting env var use CLOUDFOUNDRY_ORGANIZATION)

cloudfoundry.organization=

name of the space into which modules will be deployed

(for setting env var use CLOUDFOUNDRY_SPACE)

cloudfoundry.space=<same space as admin when running on CF, or 'development'>

the root domain to use when mapping routes, e.g. cfapps.io

(for setting env var use CLOUDFOUNDRY_DOMAIN)

cloudfoundry.domain=

Comma separated set of service instance names to bind to the module.

Amongst other things, this should include a service that will be used

for Spring Cloud Stream binding

(for setting env var use CLOUDFOUNDRY_SERVICES)

cloudfoundry.services=redis

username and password of the user to use to create apps (modules)

(for setting env var use CLOUDFOUNDRY_USERNAME and CLOUDFOUNDRY_PASSWORD)

cloudfoundry.username=

cloudfoundry.password=

Whether to allow self-signed certificates during SSL validation

(for setting env var use CLOUDFOUNDRY_SKIP_SSL_VALIDATION)

cloudfoundry.skipSslValidation=false

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 13

7.3 Deploying on YARN

Note

The Apache YARN SPI implementation is a separate project.

For YARN deployments we run the Admin app as a standalone application and all modules used for
streams and tasks will be deployed on the YARN cluster that is configured to be used.

1. download the Spring Cloud Data Flow YARN distribution ZIP file which includes the Admin and the
Shell apps:

wget http://repo.spring.io/snapshot/org/springframework/cloud/dist/spring-cloud-dataflow-admin-yarn-

dist/1.0.0.M2/spring-cloud-dataflow-admin-yarn-dist-1.0.0.M2.zip

Unzip the distribution ZIP file and change to the directory containing the deployment files.

cd spring-cloud-dataflow-admin-yarn-1.0.0.M2

2. Make sure Hadoop and Redis are running. If either one is not running on localhost you need to
configure them in config/servers.yml

3. If this is the first time deploying make sure the user that runs the Admin app has rights to create and
write to /dataflow directory. If there is an existing deployment on hdfs remove it using:

$ hdfs dfs -rm -R /dataflow

4. start the Spring Cloud Data Flow Admin app for YARN

$./bin/dataflow-admin-yarn

5. start spring-cloud-dataflow-shell

$./bin/dataflow-shell

6. Test the deployment

Create a stream:

dataflow:>stream create --name "ticktock" --definition "time | hdfs --rollover=100" --deploy

List streams:

dataflow:>stream list

 Stream Name Stream Definition Status

 ----------- -------------------------- --------

 ticktock time | hdfs --rollover=100 deployed

After some time, destroy the stream:

dataflow:>stream destroy --name ticktock

YARN application is pushed and started automatically during a stream deployment process. However,
at the moment, this YARN application instance is not automatically stopped. This has to be done using
the provided YARN CLI for now. In future releases this should be done by the Admin app when the
stream is un-deployed.

https://github.com/spring-cloud/spring-cloud-dataflow-admin-yarn

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 14

From the Spring Cloud Data Flow Shell use:

dataflow:>! bin/dataflow-yarn-cli submitted

APPLICATION ID USER

------------------------------ ------------

application_1447944262603_0003 spring

Use the application id to kill the app using the CLI:

dataflow:>! bin/dataflow-yarn-cli kill -a application_1447944262603_0003

Kill request for application_1447944262603_0003 sent

Part IV. Using Spring
Cloud Stream Modules

This section dives into the details of using the modules from Spring Cloud Stream Modules with Spring
Cloud Data Flow.

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 16

8. Sources

8.1 FTP (ftp)

This source module supports transfer of files using the FTP protocol. Files are transferred from the
remote directory to the local directory where the module is deployed. Messages emitted by the source
are provided as a byte array by default. However, this can be customized using the --mode option:

• ref Provides a java.io.File reference

• lines Will split files line-by-line and emit a new message for each line

• contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true. If
set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker
messages before and after the actual data. The payload of these 2 additional marker messages is of
type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.

Options

The ftp source has the following options:

autoCreateLocalDir
local directory must be auto created if it does not exist (boolean, default: true)

clientMode
client mode to use : 2 for passive mode and 0 for active mode (int, default: 0)

deleteRemoteFiles
delete remote files after transfer (boolean, default: false)

filenamePattern
simple filename pattern to apply to the filter (String, default: *)

fixedDelay
the rate at which to poll the remote directory (int, default: 1)

host
the host name for the FTP server (String, default: localhost)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

localDir
set the local directory the remote files are transferred to (String, default: /tmp/xd/ftp)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: -1)

mode
specifies how the file is being read. By default the content of a file is provided as byte array
(FileReadingMode, default: contents, possible values: ref,lines,contents)

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 17

password
the password for the FTP connection (Password, no default)

port
the port for the FTP server (int, default: 21)

preserveTimestamp
whether to preserve the timestamp of files retrieved (boolean, default: true)

remoteDir
the remote directory to transfer the files from (String, default: /)

remoteFileSeparator
file separator to use on the remote side (String, default: /)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

tmpFileSuffix
extension to use when downloading files (String, default: .tmp)

username
the username for the FTP connection (String, no default)

withMarkers
if true emits start of file/end of file marker messages before/after the data. Only valid with
FileReadingMode 'lines' (Boolean, no default)

8.2 HTTP (http)

A source module that listens for HTTP requests and emits the body as a message payload. If the
Content-Type matches 'text/*' or 'application/json', the payload will be a String, otherwise the payload
will be a byte array.

To create a stream definition in the server using the XD shell

dataflow:> stream create --name httptest --definition "http | log" --deploy

Post some data to the http server on the default port of 9000

dataflow:> http post --target http://localhost:9000 --data "hello world"

See if the data ended up in the log.

8.3 Time (time)

The time source will simply emit a String with the current time every so often.

The time source has the following options:

fixedDelay
time delay between messages, expressed in TimeUnits (seconds by default) (int, default: 1)

format
how to render the current time, using SimpleDateFormat (String, default: yyyy-MM-dd
HH:mm:ss)

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 18

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

8.4 Twitter Stream (twitterstream)

This source ingests data from Twitter’s streaming API v1.1. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this
source, so it is easiest if you just add these as the following environment variables: CONSUMER_KEY,
CONSUMER_SECRET, ACCESS_TOKEN and ACCESS_TOKEN_SECRET.

Stream creation is then straightforward:

dataflow:> stream create --name tweets --definition "twitterstream | log" --deploy

The twitterstream source has the following options:

accessToken
a valid OAuth access token (String, no default)

accessTokenSecret
an OAuth secret corresponding to the access token (String, no default)

consumerKey
a consumer key issued by twitter (String, no default)

consumerSecret
consumer secret corresponding to the consumer key (String, no default)

language
language code e.g. 'en' (String, default: ``)

Note

twittersearch emit JSON in the native Twitter format.

https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/platform-objects/tweets

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 19

9. Processors

9.1 Filter (filter)

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

The filter processor has the following options:

expression
a SpEL expression used to transform messages (String, default: payload.toString())

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream.
The expression should evaluate the message and return true or false. For example:

dataflow:> stream create --name filtertest --definition "http | filter --expression=payload=='good' |

 log" --deploy

This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good"
to the HTTP endpoint and you should see it in the XD log:

dataflow:> http post --target http://localhost:9000 --data "good"

Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.

9.2 groovy-filter

A Processor module that retains or discards messages according to a predicate, expressed as a Groovy
script.

The groovy-filter processor has the following options:

script
The script resource location (String, default: ``)

variables
Variable bindings as a comma delimited string of name-value pairs, e.g. 'foo=bar,baz=car' (String,
default: ``)

variablesLocation
The location of a properties file containing custom script variable bindings (String, default: ``)

9.3 groovy-transform

A Processor module that transforms messages using a Groovy script.

The groovy-filter processor has the following options:

script
The script resource location (String, default: ``)

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 20

variables
Variable bindings as a comma delimited string of name-value pairs, e.g. 'foo=bar,baz=car' (String,
default: ``)

variablesLocation
The location of a properties file containing custom script variable bindings (String, default: ``)

9.4 Transform (transform)

Use the transform module in a stream to convert a Message’s content or structure.

The transform processor has the following options:

expression
a SpEL expression used to transform messages (String, default: payload.toString())

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream.
The expression should return the modified message or payload. For example:

dataflow:> stream create --name transformtest --definition "http --port=9003 | transform --

expression=payload.toUpperCase() | log" --deploy

This transform will convert all message payloads to upper case. If sending the word "foo" to the HTTP
endpoint and you should see "FOO" in the XD log:

dataflow:> http post --target http://localhost:9003 --data "foo"

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,'<json path expression>')

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 21

10. Sinks

10.1 Counter (counter)

A simple module that counts messages received, using Spring Boot metrics abstraction.

The counter sink has the following options:

name
The name of the counter to increment. (String, default: counts)

nameExpression
A SpEL expression (against the incoming Message) to derive the name of the counter to increment.
(String, default: ``)

store
The name of a store used to store the counter. (String, default: memory, possible values: memory,
redis)

10.2 Hadoop (HDFS) (hdfs)

If you do not have Hadoop installed, you can install Hadoop as described in our separate guide. Spring
XD supports 4 Hadoop distributions, see using Hadoop for more information on how to start Spring XD
to target a specific distribution.

Once Hadoop is up and running, you can then use the hdfs sink when creating a stream

dataflow:> stream create --name myhdfsstream1 --definition "time | hdfs" --deploy

In the above example, we’ve scheduled time source to automatically send ticks to hdfs once in every
second. If you wait a little while for data to accumuluate you can then list can then list the files in the
hadoop filesystem using the shell’s built in hadoop fs commands. Before making any access to HDFS in
the shell you first need to configure the shell to point to your name node. This is done using the hadoop
config command.

dataflow:>hadoop config fs --namenode hdfs://localhost:8020

In this example the hdfs protocol is used but you may also use the webhdfs protocol. Listing the contents
in the output directory (named by default after the stream name) is done by issuing the following
command.

dataflow:>hadoop fs ls /xd/myhdfsstream1

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 0 2013-12-18 18:10 /xd/myhdfsstream1/

myhdfsstream1-0.txt.tmp

While the file is being written to it will have the tmp suffix. When the data written exceeds the rollover
size (default 1GB) it will be renamed to remove the tmp suffix. There are several options to control the in
use file file naming options. These are --inUsePrefix and --inUseSuffix set the file name prefix
and suffix respectfully.

When you destroy a stream

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 22

dataflow:>stream destroy --name myhdfsstream1

and list the stream directory again, in use file suffix doesn’t exist anymore.

dataflow:>hadoop fs ls /xd/myhdfsstream1

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 380 2013-12-18 18:10 /xd/myhdfsstream1/myhdfsstream1-0.txt

To list the list the contents of a file directly from a shell execute the hadoop cat command.

dataflow:> hadoop fs cat /xd/myhdfsstream1/myhdfsstream1-0.txt

2013-12-18 18:10:07

2013-12-18 18:10:08

2013-12-18 18:10:09

...

In the above examples we didn’t yet go through why the file was written in a specific directory and
why it was named in this specific way. Default location of a file is defined as /xd/<stream name>/
<stream name>-<rolling part>.txt. These can be changed using options --directory and
--fileName respectively. Example is shown below.

dataflow:>stream create --name myhdfsstream2 --definition "time | hdfs --directory=/xd/tmp --

fileName=data" --deploy

dataflow:>stream destroy --name myhdfsstream2

dataflow:>hadoop fs ls /xd/tmp

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 120 2013-12-18 18:31 /xd/tmp/data-0.txt

It is also possible to control the size of a files written into HDFS. The --rollover option can be used
to control when file currently being written is rolled over and a new file opened by providing the rollover
size in bytes, kilobytes, megatypes, gigabytes, and terabytes.

dataflow:>stream create --name myhdfsstream3 --definition "time | hdfs --rollover=100" --deploy

dataflow:>stream destroy --name myhdfsstream3

dataflow:>hadoop fs ls /xd/myhdfsstream3

Found 3 items

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-0.txt

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-1.txt

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-2.txt

Shortcuts to specify sizes other than bytes are written as --rollover=64M, --rollover=512G or
--rollover=1T.

The stream can also be compressed during the write operation. Example of this is shown below.

dataflow:>stream create --name myhdfsstream4 --definition "time | hdfs --codec=gzip" --deploy

dataflow:>stream destroy --name myhdfsstream4

dataflow:>hadoop fs ls /xd/myhdfsstream4

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 80 2013-12-18 18:48 /xd/myhdfsstream4/

myhdfsstream4-0.txt.gzip

From a native os shell we can use hadoop’s fs commands and pipe data into gunzip.

bin/hadoop fs -cat /xd/myhdfsstream4/myhdfsstream4-0.txt.gzip | gunzip

2013-12-18 18:48:10

2013-12-18 18:48:11

...

Often a stream of data may not have a high enough rate to roll over files frequently, leaving the file in
an opened state. This prevents users from reading a consistent set of data when running mapreduce

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 23

jobs. While one can alleviate this problem by using a small rollover value, a better way is to use the
idleTimeout option that will automatically close the file if there was no writes during the specified
period of time. This feature is also useful in cases where burst of data is written into a stream and you’d
like that data to become visible in HDFS.

Note

The idleTimeout value should not exceed the timeout values set on the
Hadoop cluster. These are typically configured using the dfs.socket.timeout and/or
dfs.datanode.socket.write.timeout properties in the hdfs-site.xml configuration
file.

dataflow:> stream create --name myhdfsstream5 --definition "http --port=8000 | hdfs --rollover=20 --

idleTimeout=10000" --deploy

In the above example we changed a source to http order to control what we write into a hdfs sink.
We defined a small rollover size and a timeout of 10 seconds. Now we can simply post data into this
stream via source end point using a below command.

dataflow:> http post --target http://localhost:8000 --data "hello"

If we repeat the command very quickly and then wait for the timeout we should be able to see that some
files are closed before rollover size was met and some were simply rolled because of a rollover size.

dataflow:>hadoop fs ls /xd/myhdfsstream5

Found 4 items

-rw-r--r-- 3 jvalkealahti supergroup 12 2013-12-18 19:02 /xd/myhdfsstream5/myhdfsstream5-0.txt

-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-1.txt

-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-2.txt

-rw-r--r-- 3 jvalkealahti supergroup 18 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-3.txt

Files can be automatically partitioned using a partitionPath expression. If we create a stream with
idleTimeout and partitionPath with simple format yyyy/MM/dd/HH/mm we should see writes
ending into its own files within every minute boundary.

dataflow:>stream create --name myhdfsstream6 --definition "time|hdfs --idleTimeout=10000 --

partitionPath=dateFormat('yyyy/MM/dd/HH/mm')" --deploy

Let a stream run for a short period of time and list files.

dataflow:>hadoop fs ls --recursive true --dir /xd/myhdfsstream6

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05/28

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42

-rw-r--r-- 3 jvalkealahti supergroup 140 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42/

myhdfsstream6-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43

-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43/

myhdfsstream6-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44

-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44/

myhdfsstream6-0.txt

Partitioning can also be based on defined lists. In a below example we simulate feeding data by
using a time and a transform elements. Data passed to hdfs sink has a content APP0:foobar,
APP1:foobar, APP2:foobar or APP3:foobar.

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 24

dataflow:>stream create --name myhdfsstream7 --definition "time | transform --expression=

\"'APP'+T(Math).round(T(Math).random()*3)+':foobar'\" | hdfs --idleTimeout=10000 --

partitionPath=path(dateFormat('yyyy/MM/dd/HH'),list(payload.split(':')[0],{{'0TO1','APP0','APP1'},

{'2TO3','APP2','APP3'}}))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

dataflow:>stream destroy --name myhdfsstream7

Destroyed stream 'myhdfsstream7'

dataflow:>hadoop fs ls --recursive true --dir /xd

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/0TO1_list

-rw-r--r-- 3 jvalkealahti supergroup 108 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/2TO3_list

-rw-r--r-- 3 jvalkealahti supergroup 180 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/2TO3_list/myhdfsstream7-0.txt

dataflow:>hadoop fs cat /xd/myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt

APP1:foobar

APP1:foobar

APP0:foobar

APP0:foobar

APP1:foobar

Partitioning can also be based on defined ranges. In a below example we simulate feeding data by using
a time and a transform elements. Data passed to hdfs sink has a content ranging from APP0 to
APP15. We simple parse the number part and use it to do a partition with ranges {3,5,10}.

dataflow:>stream create --name myhdfsstream8 --definition "time | transform --

expression=\"'APP'+T(Math).round(T(Math).random()*15)\" | hdfs --idleTimeout=10000 --

partitionPath=path(dateFormat('yyyy/MM/dd/HH'),range(T(Integer).parseInt(payload.substring(3)),

{3,5,10}))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

dataflow:>stream destroy --name myhdfsstream8

Destroyed stream 'myhdfsstream8'

dataflow:>hadoop fs ls --recursive true --dir /xd

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/10_range

-rw-r--r-- 3 jvalkealahti supergroup 16 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/3_range

-rw-r--r-- 3 jvalkealahti supergroup 35 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/5_range

-rw-r--r-- 3 jvalkealahti supergroup 5 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt

dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt

APP3

APP3

APP1

APP0

APP1

dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 25

APP4

dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt

APP6

APP15

APP7

Partition using a dateFormat can be based on content itself. This is a good use case if old log files
needs to be processed where partitioning should happen based on timestamp of a log entry. We create
a fake log data with a simple date string ranging from 1970-01-10 to 1970-01-13.

dataflow:>stream create --name myhdfsstream9 --definition "time | transform --expression=

\"'1970-01-'+1+T(Math).round(T(Math).random()*3)\" | hdfs --idleTimeout=10000 --

partitionPath=path(dateFormat('yyyy/MM/dd/HH',payload,'yyyy-MM-DD'))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files. If you
see the partition paths, those are based on year 1970, not present year.

dataflow:>stream destroy --name myhdfsstream9

Destroyed stream 'myhdfsstream9'

dataflow:>hadoop fs ls --recursive true --dir /xd

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/10

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00

-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00/

myhdfsstream9-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/11

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00

-rw-r--r-- 3 jvalkealahti supergroup 99 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00/

myhdfsstream9-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/12

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00

-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00/

myhdfsstream9-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/13

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00

-rw-r--r-- 3 jvalkealahti supergroup 55 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00/

myhdfsstream9-0.txt

dataflow:>hadoop fs cat /xd/myhdfsstream9/1970/01/10/00/myhdfsstream9-0.txt

1970-01-10

1970-01-10

1970-01-10

1970-01-10

Options

The hdfs sink has the following options:

closeTimeout
timeout in ms, regardless of activity, after which file will be automatically closed (long, default: 0)

codec
compression codec alias name (gzip, snappy, bzip2, lzo, or slzo) (String, default: ``)

directory
where to output the files in the Hadoop FileSystem (String, default: /tmp/hdfs-sink)

fileExtension
the base filename extension to use for the created files (String, default: txt)

fileName
the base filename to use for the created files (String, default: <stream name>)

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 26

fileOpenAttempts
maximum number of file open attempts to find a path (int, default: 10)

fileUuid
whether file name should contain uuid (boolean, default: false)

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

idleTimeout
inactivity timeout in ms after which file will be automatically closed (long, default: 0)

inUsePrefix
prefix for files currently being written (String, default: ``)

inUseSuffix
suffix for files currently being written (String, default: .tmp)

overwrite
whether writer is allowed to overwrite files in Hadoop FileSystem (boolean, default: false)

partitionPath
a SpEL expression defining the partition path (String, default: ``)

rollover
threshold in bytes when file will be automatically rolled over (String, default: 1G)

Note

In the context of the fileOpenAttempts option, attempt is either one rollover request or failed
stream open request for a path (if another writer came up with a same path and already opened it).

Partition Path Expression

SpEL expression is evaluated against a Spring Messaging Message passed internally into a HDFS
writer. This allows expression to use headers and payload from that message. While you could do a
custom processing within a stream and add custom headers, timestamp is always going to be there.
Data to be written is then available in a payload.

Accessing Properties

Using a payload simply returns whatever is currently being written. Access to headers is via
headers property. Any other property is automatically resolved from headers if found. For example
headers.timestamp is equivalent to timestamp.

Custom Methods

Addition to a normal SpEL functionality, few custom methods has been added to make it easier to build
partition paths. These custom methods can be used to work with a normal partition concepts like date
formatting, lists, ranges and hashes.

path

path(String... paths)

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 27

Concatenates paths together with a delimiter /. This method can be used to make the expression less
verbose than using a native SpEL functionality to combine path parts together. To create a path part1/
part2, expression 'part1' + '/' + 'part2' is equivalent to path('part1','part2').

Parameters

paths
Any number of path parts

Return Value. Concatenated value of paths delimited with /.

dateFormat

dateFormat(String pattern)

dateFormat(String pattern, Long epoch)

dateFormat(String pattern, Date date)

dateFormat(String pattern, String datestring)

dateFormat(String pattern, String datestring, String dateformat)

Creates a path using date formatting. Internally this method delegates into SimpleDateFormat and
needs a Date and a pattern. On default if no parameter used for conversion is given, timestamp
is expected. Effectively dateFormat('yyyy') equals to dateFormat('yyyy', timestamp) or
dateFormat('yyyy', headers.timestamp).

Method signature with three parameters can be used to create a custom Date object which is then
passed to SimpleDateFormat conversion using a dateformat pattern. This is useful in use cases
where partition should be based on a date or time string found from a payload content itself. Default
dateformat pattern if omitted is yyyy-MM-dd.

Parameters

pattern
Pattern compatible with SimpleDateFormat to produce a final output.

epoch
Timestamp as Long which is converted into a Date.

date
A Date to be formatted.

dateformat
Secondary pattern to convert datestring into a Date.

datestring
Date as a String

Return Value. A path part representation which can be a simple file or directory name or a directory
structure.

list

list(Object source, List<List<Object>> lists)

Creates a partition path part by matching a source against a lists denoted by lists.

Lets assume that data is being written and it’s possible to extrace an appid

either from headers or payload. We can automatically do a list based partition
by using a partition method list(headers.appid,{{'1TO3','APP1','APP2','APP3'},

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 28

{'4TO6','APP4','APP5','APP6'}}). This method would create three partitions, 1TO3_list,
4TO6_list and list. Latter is used if no match is found from partition lists passed to lists.

Parameters

source
An Object to be matched against lists.

lists
A definition of list of lists.

Return Value. A path part prefixed with a matched key i.e. XXX_list or list if no match.

range

range(Object source, List<Object> list)

Creates a partition path part by matching a source against a list denoted by list using a simple binary
search.

The partition method takes a source as first argument and list as a second argument. Behind the
scenes this is using jvm’s binarySearch which works on an Object level so we can pass in anything.
Remember that meaningful range match only works if passed in Object and types in list are of same
type like Integer. Range is defined by a binarySearch itself so mostly it is to match against an upper
bound except the last range in a list. Having a list of {1000,3000,5000} means that everything above
3000 will be matched with 5000. If that is an issue then simply adding Integer.MAX_VALUE as last
range would overflow everything above 5000 into a new partition. Created partitions would then be
1000_range, 3000_range and 5000_range.

Parameters

source
An Object to be matched against list.

list
A definition of list.

Return Value. A path part prefixed with a matched key i.e. XXX_range.

hash

hash(Object source, int bucketcount)

Creates a partition path part by calculating hashkey using source`s hashCode and bucketcount.
Using a partition method hash(timestamp,2) would then create partitions named 0_hash, 1_hash
and 2_hash. Number suffixed with _hash is simply calculated using Object.hashCode() %

bucketcount.

Parameters

source
An Object which hashCode will be used.

bucketcount
A number of buckets

Return Value. A path part prefixed with a hash key i.e. XXX_hash.

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 29

10.3 Log (log)

Probably the simplest option for a sink is just to log the data. The log sink uses the application logger
to output the data for inspection. The log level is set to WARN and the logger name is created from the
stream name. To create a stream using a log sink you would use a command like

dataflow:> stream create --name mylogstream --definition "http --port=8000 | log" --deploy

You can then try adding some data. We’ve used the http source on port 8000 here, so run the following
command to send a message

dataflow:> http post --target http://localhost:8000 --data "hello"

and you should see the following output in the XD container console.

13/06/07 16:12:18 INFO Received: hello

10.4 Redis (redis)

Redis sink can be used to ingest data into redis store. You can choose queue, topic or key with
selcted collection type to point to a specific data store.

For example,

dataflow:>stream create store-into-redis --definition "http | redis --queue=myList" --deploy

dataflow:>Created and deployed new stream 'store-into-redis'

Options

The redis sink has the following options:

topicExpression
a SpEL expression to use for topic (String, no default)

queueExpression
a SpEL expression to use for queue (String, no default)

keyExpression
a SpEL expression to use for keyExpression (String, no default)

key
name for the key (String, no default)

queue
name for the queue (String, no default)

topic
name for the topic (String, no default)

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 30

11. Tasks

11.1 Timestamp (timestamp)

Executes a batch job that logs a timestamp.

The timestamp task has the following options:

format
The timestamp format (String, default: yyyy-MM-dd HH:mm:ss.SSS)

Part V. Appendices

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 32

Appendix A. Building
To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl spring-cloud-dataflow-modules-

docs -am

A.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 33

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Reference Guide

1.0.0.M2 Spring Cloud Data Flow 34

Appendix B. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

B.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

B.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Reference Guide
	Table of Contents
	Part I. Preface
	1. About the documentation
	2. Getting help

	Part II. Spring Cloud Data Flow Overview
	3. Introducing Spring Cloud Data Flow
	3.1 Features

	4. Spring Cloud Data Flow Architecture
	4.1 Components

	Part III. Getting started
	5. System Requirements
	6. Building Spring Cloud Data Flow
	7. Deploying Spring Cloud Data Flow
	7.1 Deploying 'local'
	7.2 Deploying on Cloud Foundry
	Deploying Admin app on Cloud Foundry
	Running Admin app locally
	Running Spring Cloud Data Flow Shell locally
	Spring Cloud Data Flow Admin app configuration settings for Cloud Foundry

	7.3 Deploying on YARN

	Part IV. Using Spring Cloud Stream Modules
	8. Sources
	8.1 FTP (ftp)
	Options

	8.2 HTTP (http)
	8.3 Time (time)
	8.4 Twitter Stream (twitterstream)

	9. Processors
	9.1 Filter (filter)
	Filter with SpEL expression

	9.2 groovy-filter
	9.3 groovy-transform
	9.4 Transform (transform)
	Transform with SpEL expression

	10. Sinks
	10.1 Counter (counter)
	10.2 Hadoop (HDFS) (hdfs)
	Options
	Partition Path Expression
	Accessing Properties
	Custom Methods
	path
	dateFormat
	list
	range
	hash

	10.3 Log (log)
	10.4 Redis (redis)
	Options

	11. Tasks
	11.1 Timestamp (timestamp)

	Part V. Appendices
	Appendix A. Building
	A.1 Documentation
	A.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix B. Contributing
	B.1 Sign the Contributor License Agreement
	B.2 Code Conventions and Housekeeping

