Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2

Copyright © 2013-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Kubernetes

Table of Contents

[T [To [F L) Ao o RPN 1
1. Introducing Spring Cloud Data Flow for Kubernetesccoooviiiiiiiiiiiiniieci e, 2

[I. Spring Cloud Data FIOW OVEIVIEWviieiiiiieei e e et e e e e e e e e e e e e et e e et e e aanaeeees 3
2. Introducing Spring Cloud Data FIOWoiiiiiiii e 4

A I == 1 E] =2 P 4

3. Spring Cloud Data FIOW ArChItECIUIEcciuiiiiii e e e e s 5

I T I ©0] 1 4 0 Jo] g [T o | £ TP 5

TP ET= a1 o I3 = T (=T PP 6
4. Deploying Streams 0N KUDEIMNELESiiiiiiiiii e e e e e e 7

V. Server IMPIEMENTALIONiiiii e et e et e e e eaa e eees 11
B SEIVET PTOPEITIES ..ottt ettt e et e et e e et e e e et s 12

R 2N o] o 1= T [T~ PN 13
AL BUIIAING e e et ettt aaans 14

AN B To o .4 [= 1 7= i o) o [14

A.2. WOorking With the COUE ... coeeiiiii e e a e 14

Importing into eclipse With M2€ClPSEccovuiiiiiii e 14

Importing into eclipse without M2eclipSecooiiiiiiiiiii e 15

[0] o1 1011 1 oo 16

B.1. Sign the Contributor LicENSe AQreemENtc..oiiuuiiiiieii e 16

B.2. Code Conventions and HOUSEKEEPINGccuuuuiiiiiiiiiiiiii e 16

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes ii

Part I. Introduction

Spring Cloud Data Flow Server for Kubernetes

1. Introducing Spring Cloud Data Flow for
Kubernetes

This project provides support for deploying Spring Cloud Dataflow Stream definitions to Kubernetes.

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes

Part Il. Spring Cloud
Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think
of it as map for the rest of the document. You can read this reference guide in a linear fashion, or you
can skip sections if something doesn't interest you.

Spring Cloud Data Flow Server for Kubernetes

2. Introducing Spring Cloud Data Flow

A cloud native programming and operating model for composable data microservices on a structured
platform. With Spring Cloud Data Flow, developers can create, orchestrate and refactor data pipelines
through single programming model for common use cases such as data ingest, real-time analytics, and
data import/export.

Spring Cloud Data Flow is the cloud native redesign of Spring XD — a project that aimed to simplify
development of Big Data applications. The integration and batch modules from Spring XD are refactored
into Spring Boot data microservices applications that are now autonomous deployment units — thus
enabling them to take full advantage of platform capabilities "natively”, and they can independently
evolve in isolation.

Spring Cloud Data Flow defines best practices for distributed stream and batch microservice design
patterns.

2.1 Features

» Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry,
Apache YARN, Apache Mesos, and Kubernetes

» Separate runtime dependencies backed by ‘spring profiles’

» Consume stream and batch data-microservices as maven dependency

» Develop using: DSL, Shell, REST-APIs, Admin-Ul, and Flo

» Take advantage of metrics, health checks and remote management of data-microservices

» Scale stream and batch pipelines without interrupting data flows

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 4

http://projects.spring.io/spring-xd/
http://cloud.spring.io/spring-cloud-stream-modules/

Spring Cloud Data Flow Server for Kubernetes

3. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.

3.1 Components

The Core domain model includes the concept of a stream that is a composition of spring-cloud-stream
apps in a linear pipeline from a source to a sink, optionally including processor apps in between. The
domain also includes the concept of a task, which may be any process that does not run indefinitely,

including Spring Batch jobs.

The App Registry maintains the set of available apps, and their mappings to a URI. For
example, if relying on Maven coordinates, the URI would be of the format: maven://
<groupld>:<artifactld>: <version>

The Data Flow Server Core provides the REST API and Ul to be used in combination with an
implementation of the Deployer SPlI when creating a Data Flow Server for a given deployment
environment.

The Shell connects to the Data Flow Server's REST APl and supports a DSL that simplifies the process
of defining a stream and managing its lifecycle.

Several Data Flow Server implementations exist, covering a range of runtime environments:

 Local (intended for development only)

e Cloud Foundry
» Apache Yarn

» Apache Mesos

» Kubernetes

As mentioned above, the Spring Cloud Data Flow Server implementations all rely upon corresponding
implementations of the Spring Cloud Deployer SPI, which provides the abstraction layer for deploying
the apps of a given stream or task. The following are links to the deployer SPI projects that correspond
to the Data Flow Servers listed above:

e Local

Cloud Foundry
» Apache Yarn

» Apache Mesos

» Kubernetes

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 5

https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-core
https://github.com/spring-projects/spring-batch
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-core
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-shell
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-local
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry
https://github.com/spring-cloud/spring-cloud-dataflow-server-yarn
https://github.com/spring-cloud/spring-cloud-dataflow-server-mesos
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud/spring-cloud-deployer/tree/master/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/spring-cloud/spring-cloud-deployer-yarn
https://github.com/spring-cloud/spring-cloud-deployer-mesos
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes

Part Ill. Getting Started

Spring Cloud Data Flow Server for Kubernetes

4. Deploying Streams on Kubernetes

In this getting started guide, the Data Flow Server is run as a standalone application outside the
Kubernetes cluster. A future version will allow the Data Flow Server itself to run on Kubernetes.

1. Deploy a Kubernetes cluster.

The Kubernetes Getting Started guide lets you choose among many deployment options so you can
pick one that you are most comfortable using. We have successfully used the Vagrant option from
a downloaded Kubernetes release.

Of note, the docker-compose-kubernetes is not among those options, but it was also used by the
developers of this project to run a local Kubernetes cluster using Docker Compose.

The rest of this getting started guide assumes that you have a working Kubernetes cluster and a
kubect| command line.

2. Create a Kafka service on the Kubernetes cluster.

The Kafka service will be used for messaging between modules in the stream. There are
sample replication controller and service YAML files in the spri ng- cl oud- dat af | ow server -
kuber net es repository that you can use as a starting point as they have the required metadata set
for service discovery by the modules.

$ git clone https://github. con spring-cloud/spring-cloud-datafl| ow server-kuber net es
$ cd spring-cl oud- dat af | ow server - kuber net es

$ kubect| create -f src/etc/kubernetes/kafka-controller.yni

$ kubect!| create -f src/etc/kubernetes/kafka-service.ym

You can use the command kubect| get pods to verify that the controller is running. Note that it
can take a minute or so until there is an external IP address for the kafka server. Use the command
kubect| get services to check on the state of the service and look for when there is a value
under the EXTERNAL_IP column. Use the commands kubect | del et e svc kaf kaandkubect |

del et e rc kaf ka to clean up afterwards.

3. Determine the location of your Kubernetes Master URL, for example:

$ kubect!| cluster-info
Kubernetes master is running at https://10.245.1.2

...other output omtted...

4. Export environment variables to connect to Kubernetes.

The Data Flow Server uses the fabric8 Java client library to connect to the Kubernetes cluster. It can
be configured using system properties, environment variables, and the Kube config file. In testing
using the Google Container Engine, only setting the environment variables KUBERNETES _MASTER
and KUBERNETES_NAMESPACE were required. Other configuration values were read from the Kube
config file.

$ export KUBERNETES_MASTER=https://10.245. 1.2/
$ export KUBERNETES_NAMESPACE=def aul t

This approach supports using one Data Flow Server instance per Kubernetes namespace.

5. Run a local Redis server.

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 7

http://kubernetes.io/docs/getting-started-guides/
https://github.com/olmoser/docker-compose-kubernetes
https://github.com/fabric8io/kubernetes-client
https://cloud.google.com/container-engine/docs/

Spring Cloud Data Flow Server for Kubernetes

$ cd <redis-install-dir>
$./src/redis-server

This is used by the locally running Data Flow Server to store the state of registered stream app
module URIs to be used for stream definitions.

6. Download and run the Spring Cloud Data Flow Server for Kubernetes.

$ wget http://repo.spring.io/mlestone/org/springframework/cloud/spring-cloud-datafl ow server-
kuber net es/ 1. 0. 0. M2/ spri ng- cl oud- dat af | ow server - kubernetes-1. 0. 0. M2. j ar

$ java -jar spring-cloud-datafl ow server-kubernetes-1.0.0. M.jar --
spring. cl oud. depl oyer. kuber net es. menor y=768M

Note

We haven't tuned the memory use of the OOTB apps yet, so to be on the safe side
we are increasing the memory for the pods by providing the following property: - -
spring. cl oud. depl oyer. kuber net es. menor y=768M

Note

If you are running Kubernetes using vagrant locally, then you might need
to increase the CPU for the deployed apps using the following property: - -
spring. cl oud. depl oyer. kuber net es. cpu=1

Ensure that the Data Flow Server is running in the same terminal session that has the Kubernetes
environment variables set.

7. Download and run the Spring Cloud Data Flow shell.

$ wget http://repo.spring.io/nmlestone/org/springframework/cloud/spring-cl oud-dat af | ow
shel 1 /1.0.0. M3/ spring-cl oud-dat af | ow shel I -1.0.0. M3. j ar

$ java -jar spring-cloud-datafl owshell-1.0.0.M.jar

8. Register the Kafka version of the t i me and | og app modules using the shell

dat af | ow: >nodul e regi ster --type source --nane tinme --uri docker:springcloudstreanttine-source-kafka
dat af | ow: >npdul e regi ster --type sink --nanme log --uri docker:springcl oudstreani | og-si nk- kaf ka

9. Deploy a simple stream in the shell

dat af | ow: >stream create --name ticktock --definition "tine | |1og" --deploy

You can use the command kubect| get pods to check on the state of the pods corresponding to
this stream. We can run this from the shell by running it as an OS command by adding a "!I" before
the command.

dat af | ow. >! kubect| get pods
command i s: kubect| get pods

NAVE READY STATUS RESTARTS AGE
kaf ka- d207a 1/1 Runni ng 0 50m
ti cktock-1o0g-qnk72 1/1 Runni ng 0 2m
ticktock-tinme-r65cn 1/1 Runni ng 0 2m

Look at the logs for the pod deployed for the log sink.

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 8

Spring Cloud Data Flow Server for Kubernetes

$ kubect! logs -f ticktock-Iog-qnk72

2015-12-28 18:50:02.897 INFO1 --- [main] o.s.c.s.nmodul e.l og. LogSi nkAppl i cati on
Started LogSi nkApplication in 10.973 seconds (JVM running for 50.055)

2015-12-28 18:50:08.561 [INFO 1 --- [hannel -adapter1] |o0g.sink
2015-12- 28 18:50: 08

2015-12-28 18:50:09.556 |INFO 1 --- [hannel -adapter1] |og.sink
2015-12-28 18:50: 09

2015-12-28 18:50:10.557 INFO 1 --- [hannel -adapter1] |og.sink
2015-12- 28 18:50: 10

2015-12-28 18:50:11.558 [INFO 1 --- [hannel -adapter1] |og.sink
2015-12-28 18:50: 11

Note

If you need to be able to connect from outside of the Kubernetes cluster to an app
that you deploy, like the htt p-source, then you can provide a deployment property
of spring. cl oud. depl oyer. kuber net es. cr eat eLoadBal ancer =t rue for the app
module to specify that you want to have a LoadBalancer with an external IP address created
for your app’s service.

To register the htt p- source, deploy it so you can post data to it you can use the following
commands:

dat af | ow: >nodul e regi ster --type source --nane http --uri docker:springcloudstreant http-source-kaf ka
dat af | ow. >stream create --nanme test --definition "http | |o0g"
dat af | ow. >stream depl oy test --properties

"modul e. http. spring. cl oud. depl oyer. kuber net es. cr eat eLoadBal ancer =t r ue"

Now, look up the external IP address for the htt p app (it can sometimes take a minute or two for
the external IP to get assigned):

dat af | ow: >! kubect| get service

conmand i s: kubect| get service

NAME CLUSTER- | P EXTERNAL- | P PORT(S) AGE
kaf ka 10. 103. 240. 92 <none> 9092/ TCP 7m
kuber net es 10. 103. 240. 1 <none> 443/ TCP 4h
test-http 10. 103. 251. 157 130. 211. 200.96 8080/ TCP 58s
test-Ilog 10. 103. 240. 28 <none> 8080/ TCP 59s
zk 10. 103. 247. 25 <none> 2181/ TCP m

Next, post some data to the t est - ht t p app:

dat af | ow. >http post --target http://130.211.200.96: 8080 --data "Hell 0"

Finally, look at the logs for the t est - | og pod:

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 9

Spring Cloud Data Flow Server for Kubernetes

dat af | ow: >! kubect| get pods
conmand i s: kubect| get pods

NAME READY STATUS RESTARTS AGE
kaf ka- 020qq 1/1 Runni ng 0 9m
test - htt p- 9obkq 1/1 Runni ng 0 2m
test-1og-ysiz3 1/1 Runni ng 0 2m

dat af | ow: >! kubect!| |ogs test-1o0g-ysiz3
command i s: kubect| |ogs test-Ilog-ysiz3

2016- 04- 27 16:54:29.789 INFO1 --- [mai n] o.s.c.s.b. k. Kaf kaMessageChannel Bi nder $3

started inbound.test. http.test

2016- 04-27 16:54:29.799 INFO 1 --- [mai n] o.s.c.support.Defaul tLifecycl eProcessor
Starting beans in phase 0

2016- 04-27 16:54:29.799 INFO 1 --- [mai n] o.s.c.support. Defaul tLifecycl eProcessor
Starting beans in phase 2147482647

2016- 04-27 16:54:29.895 INFO 1 --- [main] s.b.c.e.t. Toncat EnbeddedSer vl et Cont ai ner :
Tontat started on port(s): 8080 (http)

2016- 04- 27 16:54:29.896 INFO 1 --- [kafka-binder-] |og.sink
Hel I o

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, add the options - - pr evi ous to view last terminated container log. You can also get more detailed
information about the pods by using the kubct| descri be like:

‘ kubect| describe pods/ticktock-1o0g-qnk72

10Destroy the stream

‘ dat af | ow. >stream destroy --nane ticktock

Warning

If you stop and restart the Data Flow Server when streams are deployed, you will not be able
to destroy them via shell commands. You would have to destroy the services and replication
containers using the kubect| command. This is a bug that is being addressed in a future
release.

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 10

Part IV. Server Implementation

Spring Cloud Data Flow Server for Kubernetes

5. Server Properties

The Spring Data Flow Kubernetes Server has several properties you can configure that let you control
the default values to set the cpu and menor y requirements for the pods. The configuration is controlled
by configuration properties under the spri ng. cl oud. depl oyer . kuber net es prefix. For example
you might declare the following section in an appli cation. properties file or pass them as
command line arguments when starting the Server.

spring. cl oud. depl oyer. kuber net es. menor y=512M
spring. cl oud. depl oyer. kuber net es. cpu=500m

See KubernetesAppDeployerProperties for more of the supported options.

Data Flow Server properties that are common across all of the Data Flow Server implementations that
concern maven repository settings can also be set in a similar manner. See the section on Common
Data Flow Server Properties for more information.

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 12

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesAppDeployerProperties.java

Part V. Appendices

Spring Cloud Data Flow Server for Kubernetes

Appendix A. Building

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./nm/nw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer nSi ze=128m We
try to cover this in the . mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ym , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./nmvnw cl ean package - DskipTests -P full -pl {project-artifactld} -am

A.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xnl file for the projects. If you do not do this

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 14

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Kubernetes

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from . setti ngs. xnl into your own ~/ . n2/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./ mvnw eclipse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting projects from the
fil e menu.

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 15

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Kubernetes

Appendix B. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

B.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor's agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

B.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
« A few unit tests would help a lot as well— someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

Spring Cloud Data Flow
1.0.0.M2 Server Kubernetes 16

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Kubernetes
	Table of Contents
	Part I. Introduction
	1. Introducing Spring Cloud Data Flow for Kubernetes

	Part II. Spring Cloud Data Flow Overview
	2. Introducing Spring Cloud Data Flow
	2.1 Features

	3. Spring Cloud Data Flow Architecture
	3.1 Components

	Part III. Getting Started
	4. Deploying Streams on Kubernetes

	Part IV. Server Implementation
	5. Server Properties

	Part V. Appendices
	Appendix A. Building
	A.1 Documentation
	A.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix B. Contributing
	B.1 Sign the Contributor License Agreement
	B.2 Code Conventions and Housekeeping

