
Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2

Copyright © 2013-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes ii

Table of Contents

I. Introduction .. 1
1. Introducing Spring Cloud Data Flow for Kubernetes .. 2

II. Spring Cloud Data Flow Overview ... 3
2. Introducing Spring Cloud Data Flow ... 4

2.1. Features .. 4
3. Spring Cloud Data Flow Architecture ... 5

3.1. Components .. 5
III. Getting Started .. 6

4. Deploying Streams on Kubernetes ... 7
IV. Server Implementation ... 11

5. Server Properties .. 12
V. Appendices .. 13

A. Building .. 14
A.1. Documentation ... 14
A.2. Working with the code ... 14

Importing into eclipse with m2eclipse ... 14
Importing into eclipse without m2eclipse ... 15

B. Contributing .. 16
B.1. Sign the Contributor License Agreement ... 16
B.2. Code Conventions and Housekeeping .. 16

Part I. Introduction

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 2

1. Introducing Spring Cloud Data Flow for
Kubernetes

This project provides support for deploying Spring Cloud Dataflow Stream definitions to Kubernetes.

Part II. Spring Cloud
Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think
of it as map for the rest of the document. You can read this reference guide in a linear fashion, or you
can skip sections if something doesn’t interest you.

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 4

2. Introducing Spring Cloud Data Flow

A cloud native programming and operating model for composable data microservices on a structured
platform. With Spring Cloud Data Flow, developers can create, orchestrate and refactor data pipelines
through single programming model for common use cases such as data ingest, real-time analytics, and
data import/export.

Spring Cloud Data Flow is the cloud native redesign of Spring XD – a project that aimed to simplify
development of Big Data applications. The integration and batch modules from Spring XD are refactored
into Spring Boot data microservices applications that are now autonomous deployment units – thus
enabling them to take full advantage of platform capabilities "natively", and they can independently
evolve in isolation.

Spring Cloud Data Flow defines best practices for distributed stream and batch microservice design
patterns.

2.1 Features

• Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry,
Apache YARN, Apache Mesos, and Kubernetes

• Separate runtime dependencies backed by ‘spring profiles’

• Consume stream and batch data-microservices as maven dependency

• Develop using: DSL, Shell, REST-APIs, Admin-UI, and Flo

• Take advantage of metrics, health checks and remote management of data-microservices

• Scale stream and batch pipelines without interrupting data flows

http://projects.spring.io/spring-xd/
http://cloud.spring.io/spring-cloud-stream-modules/

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 5

3. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.

3.1 Components

The Core domain model includes the concept of a stream that is a composition of spring-cloud-stream
apps in a linear pipeline from a source to a sink, optionally including processor apps in between. The
domain also includes the concept of a task, which may be any process that does not run indefinitely,
including Spring Batch jobs.

The App Registry maintains the set of available apps, and their mappings to a URI. For
example, if relying on Maven coordinates, the URI would be of the format: maven://

<groupId>:<artifactId>:<version>

The Data Flow Server Core provides the REST API and UI to be used in combination with an
implementation of the Deployer SPI when creating a Data Flow Server for a given deployment
environment.

The Shell connects to the Data Flow Server’s REST API and supports a DSL that simplifies the process
of defining a stream and managing its lifecycle.

Several Data Flow Server implementations exist, covering a range of runtime environments:

• Local (intended for development only)

• Cloud Foundry

• Apache Yarn

• Apache Mesos

• Kubernetes

As mentioned above, the Spring Cloud Data Flow Server implementations all rely upon corresponding
implementations of the Spring Cloud Deployer SPI, which provides the abstraction layer for deploying
the apps of a given stream or task. The following are links to the deployer SPI projects that correspond
to the Data Flow Servers listed above:

• Local

• Cloud Foundry

• Apache Yarn

• Apache Mesos

• Kubernetes

https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-core
https://github.com/spring-projects/spring-batch
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-core
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-shell
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-local
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry
https://github.com/spring-cloud/spring-cloud-dataflow-server-yarn
https://github.com/spring-cloud/spring-cloud-dataflow-server-mesos
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud/spring-cloud-deployer/tree/master/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/spring-cloud/spring-cloud-deployer-yarn
https://github.com/spring-cloud/spring-cloud-deployer-mesos
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes

Part III. Getting Started

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 7

4. Deploying Streams on Kubernetes
In this getting started guide, the Data Flow Server is run as a standalone application outside the
Kubernetes cluster. A future version will allow the Data Flow Server itself to run on Kubernetes.

1. Deploy a Kubernetes cluster.

The Kubernetes Getting Started guide lets you choose among many deployment options so you can
pick one that you are most comfortable using. We have successfully used the Vagrant option from
a downloaded Kubernetes release.

Of note, the docker-compose-kubernetes is not among those options, but it was also used by the
developers of this project to run a local Kubernetes cluster using Docker Compose.

The rest of this getting started guide assumes that you have a working Kubernetes cluster and a
kubectl command line.

2. Create a Kafka service on the Kubernetes cluster.

The Kafka service will be used for messaging between modules in the stream. There are
sample replication controller and service YAML files in the spring-cloud-dataflow-server-
kubernetes repository that you can use as a starting point as they have the required metadata set
for service discovery by the modules.

$ git clone https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

$ cd spring-cloud-dataflow-server-kubernetes

$ kubectl create -f src/etc/kubernetes/kafka-controller.yml

$ kubectl create -f src/etc/kubernetes/kafka-service.yml

You can use the command kubectl get pods to verify that the controller is running. Note that it
can take a minute or so until there is an external IP address for the kafka server. Use the command
kubectl get services to check on the state of the service and look for when there is a value
under the EXTERNAL_IP column. Use the commands kubectl delete svc kafka and kubectl
delete rc kafka to clean up afterwards.

3. Determine the location of your Kubernetes Master URL, for example:

$ kubectl cluster-info

Kubernetes master is running at https://10.245.1.2

 ...other output omitted...

4. Export environment variables to connect to Kubernetes.

The Data Flow Server uses the fabric8 Java client library to connect to the Kubernetes cluster. It can
be configured using system properties, environment variables, and the Kube config file. In testing
using the Google Container Engine, only setting the environment variables KUBERNETES_MASTER
and KUBERNETES_NAMESPACE were required. Other configuration values were read from the Kube
config file.

$ export KUBERNETES_MASTER=https://10.245.1.2/

$ export KUBERNETES_NAMESPACE=default

This approach supports using one Data Flow Server instance per Kubernetes namespace.

5. Run a local Redis server.

http://kubernetes.io/docs/getting-started-guides/
https://github.com/olmoser/docker-compose-kubernetes
https://github.com/fabric8io/kubernetes-client
https://cloud.google.com/container-engine/docs/

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 8

$ cd <redis-install-dir>

$./src/redis-server

This is used by the locally running Data Flow Server to store the state of registered stream app
module URIs to be used for stream definitions.

6. Download and run the Spring Cloud Data Flow Server for Kubernetes.

$ wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-server-

kubernetes/1.0.0.M2/spring-cloud-dataflow-server-kubernetes-1.0.0.M2.jar

$ java -jar spring-cloud-dataflow-server-kubernetes-1.0.0.M2.jar --

spring.cloud.deployer.kubernetes.memory=768Mi

Note

We haven’t tuned the memory use of the OOTB apps yet, so to be on the safe side
we are increasing the memory for the pods by providing the following property: --
spring.cloud.deployer.kubernetes.memory=768Mi

Note

If you are running Kubernetes using vagrant locally, then you might need
to increase the CPU for the deployed apps using the following property: --

spring.cloud.deployer.kubernetes.cpu=1

Ensure that the Data Flow Server is running in the same terminal session that has the Kubernetes
environment variables set.

7. Download and run the Spring Cloud Data Flow shell.

$ wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-

shell/1.0.0.M3/spring-cloud-dataflow-shell-1.0.0.M3.jar

$ java -jar spring-cloud-dataflow-shell-1.0.0.M3.jar

8. Register the Kafka version of the time and log app modules using the shell

dataflow:>module register --type source --name time --uri docker:springcloudstream/time-source-kafka

dataflow:>module register --type sink --name log --uri docker:springcloudstream/log-sink-kafka

9. Deploy a simple stream in the shell

dataflow:>stream create --name ticktock --definition "time | log" --deploy

You can use the command kubectl get pods to check on the state of the pods corresponding to
this stream. We can run this from the shell by running it as an OS command by adding a "!" before
the command.

dataflow:>! kubectl get pods

command is:kubectl get pods

NAME READY STATUS RESTARTS AGE

kafka-d207a 1/1 Running 0 50m

ticktock-log-qnk72 1/1 Running 0 2m

ticktock-time-r65cn 1/1 Running 0 2m

Look at the logs for the pod deployed for the log sink.

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 9

$ kubectl logs -f ticktock-log-qnk72

...

2015-12-28 18:50:02.897 INFO 1 --- [main] o.s.c.s.module.log.LogSinkApplication :

 Started LogSinkApplication in 10.973 seconds (JVM running for 50.055)

2015-12-28 18:50:08.561 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:08

2015-12-28 18:50:09.556 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:09

2015-12-28 18:50:10.557 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:10

2015-12-28 18:50:11.558 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:11

Note

If you need to be able to connect from outside of the Kubernetes cluster to an app
that you deploy, like the http-source, then you can provide a deployment property
of spring.cloud.deployer.kubernetes.createLoadBalancer=true for the app
module to specify that you want to have a LoadBalancer with an external IP address created
for your app’s service.

To register the http-source, deploy it so you can post data to it you can use the following
commands:

dataflow:>module register --type source --name http --uri docker:springcloudstream/http-source-kafka

dataflow:>stream create --name test --definition "http | log"

dataflow:>stream deploy test --properties

 "module.http.spring.cloud.deployer.kubernetes.createLoadBalancer=true"

Now, look up the external IP address for the http app (it can sometimes take a minute or two for
the external IP to get assigned):

dataflow:>! kubectl get service

command is:kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kafka 10.103.240.92 <none> 9092/TCP 7m

kubernetes 10.103.240.1 <none> 443/TCP 4h

test-http 10.103.251.157 130.211.200.96 8080/TCP 58s

test-log 10.103.240.28 <none> 8080/TCP 59s

zk 10.103.247.25 <none> 2181/TCP 7m

Next, post some data to the test-http app:

dataflow:>http post --target http://130.211.200.96:8080 --data "Hello"

Finally, look at the logs for the test-log pod:

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 10

dataflow:>! kubectl get pods

command is:kubectl get pods

NAME READY STATUS RESTARTS AGE

kafka-o20qq 1/1 Running 0 9m

test-http-9obkq 1/1 Running 0 2m

test-log-ysiz3 1/1 Running 0 2m

dataflow:>! kubectl logs test-log-ysiz3

command is:kubectl logs test-log-ysiz3

...

2016-04-27 16:54:29.789 INFO 1 --- [main] o.s.c.s.b.k.KafkaMessageChannelBinder$3 :

 started inbound.test.http.test

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 0

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 2147482647

2016-04-27 16:54:29.895 INFO 1 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :

 Tomcat started on port(s): 8080 (http)

2016-04-27 16:54:29.896 INFO 1 --- [kafka-binder-] log.sink :

 Hello

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, add the options --previous to view last terminated container log. You can also get more detailed
information about the pods by using the kubctl describe like:

kubectl describe pods/ticktock-log-qnk72

10.Destroy the stream

dataflow:>stream destroy --name ticktock

Warning

If you stop and restart the Data Flow Server when streams are deployed, you will not be able
to destroy them via shell commands. You would have to destroy the services and replication
containers using the kubectl command. This is a bug that is being addressed in a future
release.

Part IV. Server Implementation

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 12

5. Server Properties

The Spring Data Flow Kubernetes Server has several properties you can configure that let you control
the default values to set the cpu and memory requirements for the pods. The configuration is controlled
by configuration properties under the spring.cloud.deployer.kubernetes prefix. For example
you might declare the following section in an application.properties file or pass them as
command line arguments when starting the Server.

spring.cloud.deployer.kubernetes.memory=512Mi

spring.cloud.deployer.kubernetes.cpu=500m

See KubernetesAppDeployerProperties for more of the supported options.

Data Flow Server properties that are common across all of the Data Flow Server implementations that
concern maven repository settings can also be set in a similar manner. See the section on Common
Data Flow Server Properties for more information.

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesAppDeployerProperties.java

Part V. Appendices

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 14

Appendix A. Building
To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl {project-artifactId} -am

A.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 15

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Kubernetes

1.0.0.M2
Spring Cloud Data Flow

Server Kubernetes 16

Appendix B. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

B.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

B.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Kubernetes
	Table of Contents
	Part I. Introduction
	1. Introducing Spring Cloud Data Flow for Kubernetes

	Part II. Spring Cloud Data Flow Overview
	2. Introducing Spring Cloud Data Flow
	2.1 Features

	3. Spring Cloud Data Flow Architecture
	3.1 Components

	Part III. Getting Started
	4. Deploying Streams on Kubernetes

	Part IV. Server Implementation
	5. Server Properties

	Part V. Appendices
	Appendix A. Building
	A.1 Documentation
	A.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix B. Contributing
	B.1 Sign the Contributor License Agreement
	B.2 Code Conventions and Housekeeping

