
Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2

Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes iii

Table of Contents

I. Introduction .. 1
1. Introducing Spring Cloud Data Flow for Kubernetes .. 2
2. Spring Cloud Data Flow .. 3
3. Spring Cloud Stream ... 4
4. Spring Cloud Task .. 5

II. Architecture .. 6
5. Introduction ... 7
6. Microservice Architectural Style ... 9

6.1. Comparison to other Platform architectures ... 9
7. Streaming Applications .. 11

7.1. Imperative Programming Model ... 11
7.2. Functional Programming Model ... 11

8. Streams .. 12
8.1. Topologies ... 12
8.2. Concurrency ... 12
8.3. Partitioning ... 12
8.4. Message Delivery Guarantees .. 13

9. Analytics ... 15
10. Task Applications .. 16
11. Data Flow Server .. 17

11.1. Endpoints ... 17
11.2. Customization ... 17
11.3. Security .. 18

12. Runtime .. 19
12.1. Fault Tolerance .. 19
12.2. Resource Management ... 19
12.3. Scaling at runtime .. 19
12.4. Application Versioning .. 19

III. Getting Started ... 20
13. Deploying Streams on Kubernetes ... 21

IV. Streams ... 26
14. Introduction ... 27
15. Stream DSL .. 28
16. Register a Stream App .. 29

16.1. Whitelisting application properties .. 30
17. Creating a Stream ... 32

17.1. Application properties ... 32
Passing application properties when creating a stream 32

17.2. Deployment properties .. 34
Passing instance count as deployment property ... 34
Inline vs file reference properties ... 34
Passing application properties when deploying a stream 34
Passing Spring Cloud Stream properties for the application 35
Passing per-binding producer consumer properties ... 35
Passing stream partition properties during stream deployment 36
Passing application content type properties .. 37
Overriding application properties during stream deployment 37

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes iv

17.3. Deployment properties .. 37
Passing instance count as deployment property ... 38
Inline vs file reference properties ... 38

18. Destroying a Stream ... 39
19. Deploying and Undeploying Streams .. 40
20. Other Source and Sink Application Types .. 41
21. Simple Stream Processing ... 42
22. Stateful Stream Processing .. 43
23. Tap a Stream ... 44
24. Using Labels in a Stream .. 45
25. Explicit Broker Destinations in a Stream ... 46
26. Directed Graphs in a Stream ... 47

26.1. Common application properties ... 47
27. Stream applications with multiple binder configurations ... 48

V. Tasks ... 49
28. Introducing Spring Cloud Task ... 50
29. The Lifecycle of a task .. 51

29.1. Registering a Task Application .. 51
29.2. Creating a Task ... 52
29.3. Launching a Task ... 52
29.4. Reviewing Task Executions .. 52
29.5. Destroying a Task .. 53

30. Task Repository .. 54
30.1. Configuring the Task Execution Repository .. 54

Local .. 54
Task Application Repository .. 54

30.2. Datasource ... 54
31. Subscribing to Task/Batch Events .. 56
32. Launching Tasks from a Stream .. 57

32.1. TriggerTask .. 57
32.2. Translator ... 57

VI. Dashboard ... 58
33. Introduction ... 59
34. Apps ... 60

34.1. Bulk Import of Applications ... 60
35. Runtime .. 62
36. Streams .. 63
37. Create Stream .. 65
38. Tasks ... 66

38.1. Apps .. 66
Create a Task Definition from a selected Task App ... 66
View Task App Details .. 67

38.2. Definitions .. 67
Creating Task Definitions using the bulk define interface 67
Launching Tasks ... 68

38.3. Executions ... 69
39. Jobs ... 70

39.1. List job executions .. 70
Job execution details ... 71
Step execution details ... 71

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes v

Step Execution Progress ... 71
40. Analytics ... 73

VII. Server Implementation .. 74
41. Server Properties .. 75

VIII. ‘How-to’ guides .. 76
42. Configure Maven Properties .. 77
43. Logging ... 79

43.1. Deployment Logs ... 79
43.2. Application Logs ... 79

IX. Appendices .. 81
A. Migrating from Spring XD to Spring Cloud Data Flow ... 82

A.1. Terminology Changes .. 82
A.2. Modules to Applications ... 82

Custom Applications .. 82
Application Registration ... 82
Application Properties .. 83

A.3. Message Bus to Binders .. 83
Message Bus .. 83
Binders ... 83
Named Channels .. 84
Directed Graphs .. 84

A.4. Batch to Tasks .. 84
A.5. Shell/DSL Commands .. 85
A.6. REST-API .. 85
A.7. UI / Flo .. 85
A.8. Architecture Components ... 86

ZooKeeper .. 86
RDBMS .. 86
Redis .. 86
Cluster Topology ... 86

A.9. Central Configuration ... 86
A.10. Distribution ... 86
A.11. Hadoop Distribution Compatibility .. 87
A.12. YARN Deployment ... 87
A.13. Use Case Comparison ... 87

Use Case #1 .. 87
Use Case #2 .. 88
Use Case #3 .. 88

B. Building .. 90
B.1. Documentation ... 90
B.2. Working with the code ... 90

Importing into eclipse with m2eclipse ... 90
Importing into eclipse without m2eclipse ... 91

C. Contributing .. 92
C.1. Sign the Contributor License Agreement ... 92
C.2. Code Conventions and Housekeeping .. 92

Part I. Introduction

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 2

1. Introducing Spring Cloud Data Flow for
Kubernetes

This project provides support for orchestrating long-running (streaming) and short-lived (task/batch)
data microservices to Kubernetes.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 3

2. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native orchestration service for composable data microservices on
modern runtimes. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines
for common use cases such as data ingest, real-time analytics, and data import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams
are defined using a DSL or visually through the browser based designer UI. Streams are based on the
Spring Cloud Stream programming model while Tasks are based on the Spring Cloud Task programming
model. The sections below describe more information about creating your own custom Streams and
Tasks

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/htmlsingle/#spring-cloud-task-overview
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/html/_dsl_syntax.html
http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 4

3. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream’s reference guide.

There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/1.0.4.RELEASE/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/1.0.4.RELEASE/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 5

4. Spring Cloud Task

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow
short-lived JVM processes to be executed on demand in a production environment.

For more details about the core framework components and the supported features, please review
Spring Cloud Task’s reference guide.

There’s a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated
application-starters are available for use from Maven Repo. There are several samples available for
reference.

http://docs.spring.io/spring-cloud-task/1.1.0.M2/reference/htmlsingle/
http://docs.spring.io/spring-cloud-task-app-starters/docs/1.0.1.RELEASE/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/task/app/
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Part II. Architecture

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 7

5. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

• Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

• Short lived Task applications that process a finite set of data and then terminate.

Depending on the runtime, applications can be packaged in two ways

• Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

• Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

• Cloud Foundry

• Apache YARN

• Kubernetes

• Apache Mesos

• Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Hashicorp’s Nomad or Docker Swarm. Contributions are
welcome!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for interpreting

• A stream DSL that describes the logical flow of data through multiple applications.

• A deployment manifest that describes the mapping of applications onto the runtime. For example, to
set the initial number of instances, memory requirements, and data partitioning.

As an example, the DSL to describe the flow of data from an http source to an Apache Cassandra sink
would be written as “http | cassandra”. These names in the DSL are registered with the Data Flow Server
and map onto application artifacts that can be hosted in Maven or Docker repositories. Many source,
processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router) are provided by
the Spring Cloud Data Flow team. The pipe symbol represents the communication between the two
applications via messaging middleware. The two messaging middleware brokers that are supported are

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 8

• Apache Kafka

• RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

Figure 5.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the mapping
of DSL application names to Maven and Docker artifacts, the http source and cassandra sink application
are deployed on the target runtime.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 9

6. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the UI to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

6.1 Comparison to other Platform architectures

Spring Cloud Data Flow’s architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 10

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there’s multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 11

7. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

7.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@EnableBinding(Sink.class)

public class LoggingSink {

 @StreamListener(Sink.INPUT)

 public void log(String message) {

 System.out.println(message);

 }

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @EnableBinding annotation is what is used to tie together the input channel to the external
middleware.

7.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. There is initial support
for functional style programming via {spring-cloud-stream-docs}#_rxjava_support[RxJava Observable
APIs] and upcoming versions will support callback methods with Project Reactor’s Flux API and Apache
Kafka’s KStream API.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 12

8. Streams

8.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandra, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

8.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the {spring-cloud-
stream-docs}#_consumer_properties[Consumer properties] documentation for more information.

8.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

Figure 8.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a partitionKeyExpression producer property when deploying
the stream. The partitionKeyExpression identifies what part of the message will be used as the
key to partition data in the underlying middleware. An ingest stream can be defined as http |
averageprocessor | cassandra (Note that the Cassandra sink isn’t shown in the diagram above).
Suppose the payload being sent to the http source was in JSON format and had a field called sensorId.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 13

Deploying the stream with the shell command stream deploy ingest --propertiesFile

ingestStream.properties where the contents of the file ingestStream.properties are

app.http.count=3

app.averageprocessor.count=2

app.http.producer.partitionKeyExpression=payload.sensorId

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payload.sensorId %
partitionCount where the partitionCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties during stream deployment” for
additional strategies to partition streams during deployment and how they map onto the underlying
{spring-cloud-stream-docs}#_partitioning[Spring Cloud Stream Partitioning properties].

Also note, that you can’t currently scale partitioned streams. Read the section Section 12.3, “Scaling
at runtime” for more information.

8.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middlware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing {spring-cloud-
stream-docs}#_persistent_publish_subscribe_support[persistent publish-subscribe semantics].

The {spring-cloud-stream-docs}#_binders[Binder abstraction] in Spring Cloud Stream is what connects
the application to the middleware. There are several configuration properties of the binder that are
portable across all binder implementations and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message handling.
The retry policy is configured using the {spring-cloud-stream-docs}#_consumer_properties[common
consumer properties] maxAttempts, backOffInitialInterval, backOffMaxInterval, and
backOffMultiplier. The default values of these properties will retry the callback method invocation
3 times and wait one second for the first retry. A backoff multiplier of 2 is used for the second and third
attempts.

When the number of number of retry attempts has exceeded the maxAttempts value, the exception
and the failed message will become the payload of a message and be sent to the application’s error
channel. By default, the default message handler for this error channel logs the message. You can
change the default behavior in your application by creating your own message handler that subscribes
to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The
dead letter queue is a destination and its nature depends on the messaging middleware (e.g in the
case of Kafka it is a dedicated topic). To enable this for RabbitMQ set the {spring-cloud-stream-
docs}#_rabbitmq_consumer_properties[consumer properties] republishtoDlq and autoBindDlq
and the {spring-cloud-stream-docs}#_rabbit_producer_properties[producer property] autoBindDlq to
true when deploying the stream. To always apply these producer and consumer properties when
deploying streams, configure them as common application properties when starting the Data Flow
server.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 14

Additional messaging delivery guarantees are those provided by the underlying messaging
middleware that is chosen for the application for both producing and consuming
applications. Refer to the Kafka {spring-cloud-stream-docs}#_kafka_consumer_properties[Consumer]
and {spring-cloud-stream-docs}#_kafka_producer_properties[Producer] and Rabbit {spring-
cloud-stream-docs}#_rabbitmq_consumer_properties[Consumer] and {spring-cloud-stream-
docs}#_rabbit_producer_properties[Producer] documentation for more details. You will find extensive
declarative support for all the native QOS options.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 15

9. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

• Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

• Field Value Counter - Counts occurrences of unique values for a named field in a message payload

• Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 16

10. Task Applications

The Spring Cloud Task programming model provides:

• Persistence of the Task’s lifecycle events and exit code status.

• Lifecycle hooks to execute code before or after a task execution.

• Emit task events to a stream (as a source) during the task lifecycle.

• Integration with Spring Batch Jobs.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 17

11. Data Flow Server

11.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Figure 11.1. The Spring Cloud Data Flow Server

11.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let’s you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

https://github.com/SpringSource/spring-hateoas

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 18

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

11.3 Security

The Data Flow Server executable jars support basic http and OAuth 2.0 authentication to access its
endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 19

12. Runtime

12.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

12.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

12.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, UIs, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

12.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Part III. Getting Started

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 21

13. Deploying Streams on Kubernetes

In this getting started guide, the Data Flow Server is deployed to the Kubernetes cluster. This means
that we need to make available an RDBMS service for stream and task repositories, app registry plus
a transport option of either Kafka or Rabbit MQ.

1. Deploy a Kubernetes cluster.

The Kubernetes Getting Started guide lets you choose among many deployment options so you can
pick one that you are most comfortable using. We have successfully used the Vagrant option from
a downloaded Kubernetes release.

We have also used the Minikube project to run a local Kubernetes cluster for testing.

The rest of this getting started guide assumes that you have a working Kubernetes cluster and a
kubectl command line.

2. Create a Kafka service on the Kubernetes cluster.

The Kafka service will be used for messaging between modules in the stream. You can instead use
Rabbit MQ, but, in order to simplify, we only show the Kafka configurations in this guide. There are
sample replication controller and service YAML files in the spring-cloud-dataflow-server-
kubernetes repository that you can use as a starting point as they have the required metadata set
for service discovery by the modules.

$ git clone https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

$ cd spring-cloud-dataflow-server-kubernetes

$ kubectl create -f src/etc/kubernetes/kafka-controller.yml

$ kubectl create -f src/etc/kubernetes/kafka-service.yml

You can use the command kubectl get pods to verify that the controller and service is running.
Use the command kubectl get services to check on the state of the service. Use the commands
kubectl delete svc kafka and kubectl delete rc kafka to clean up afterwards.

3. Create a MySQL service on the Kubernetes cluster.

We are using MySQL for this guide, but you could use Postgres or H2 database instead. We include
JDBC drivers for all three of these databases, you would just have to adjust the database URL and
driver class name settings.

Before creating the MySQL service we need to create a persistent disk and modify the password in
the config file. To create a persistent disk you can use the following command:

$ gcloud compute disks create mysql-disk --size 200 --type pd-standard

Modify the password in the src/etc/kubernetes/mysql-controller.yml file inside the
spring-cloud-dataflow-server-kubernetes repository. Then run the following commands
to start the database service:

$ kubectl create -f src/etc/kubernetes/mysql-controller.yml

$ kubectl create -f src/etc/kubernetes/mysql-service.yml

Again, you can use the command kubectl get pods to verify that the controller is running. Note
that it can take a minute or so until there is an external IP address for the MySQL server. Use the
command kubectl get services to check on the state of the service and look for when there is

http://kubernetes.io/docs/getting-started-guides/
https://github.com/kubernetes/minikube

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 22

a value under the EXTERNAL_IP column. Use the commands kubectl delete svc mysql and
kubectl delete rc mysql to clean up afterwards. Use the EXTERNAL_IP address to connect
to the database and create a test database that we can use for our testing. Use your favorit SQL
developer tool for this:

CREATE DATABASE test;

4. Update configuration files with values needed to connect to Kubernetes and MySQL.

The Data Flow Server uses the Fabric8 Java client library to connect to the Kubernetes cluster.
We are using environment variables to set the values needed when deploying the Data Flow server
to Kubernetes. We are also using the Fabric8 Spring Cloud integration with Kubernetes library to
access Kubernetes ConfigMap and Secrets settings. The ConfigMap settings are specified in the
src/etc/kubernetes/scdf-config.yml file and the Secrets in the src/etc/kubernetes/
scdf-secrets.yml file. Modify the password for MySQL in the latter if you changed it. It has to
be provided encoded as base64.

This approach supports using one Data Flow Server instance per Kubernetes namespace.

5. Deploy the Spring Cloud Data Flow Server for Kubernetes using the Docker image and the
configuration settings you just modified.

$ kubectl create -f src/etc/kubernetes/scdf-config-kafka.yml

$ kubectl create -f src/etc/kubernetes/scdf-secrets.yml

$ kubectl create -f src/etc/kubernetes/scdf-service.yml

$ kubectl create -f src/etc/kubernetes/scdf-controller.yml

Note

We haven’t tuned the memory use of the OOTB apps yet, so to be on the safe
side we are increasing the memory for the pods by providing the following property:
spring.cloud.deployer.kubernetes.memory=640Mi

Use the kubectl get svc command to locate the EXTERNAL_IP address assigned to scdf, we
use that to connect from the shell.

$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kafka 10.103.248.211 <none> 9092/TCP 14d

kubernetes 10.103.240.1 <none> 443/TCP 16d

mysql 10.103.251.179 104.154.246.220 3306/TCP 10d

scdf 10.103.246.82 130.211.203.246 9393/TCP 4m

zk 10.103.243.29 <none> 2181/TCP 14d

6. Download and run the Spring Cloud Data Flow shell.

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.1.0.M2/

spring-cloud-dataflow-shell-1.1.0.M2.jar

$ java -jar spring-cloud-dataflow-shell-1.1.0.M2.jar

Configure the Data Flow server URI with the following command (use the IP address from previous
step and at the moment we are using port 9393):

 ____ ____ _ __

 / ___| _ __ _ __(_)_ __ __ _ / ___| | ___ _ _ __| |

 ___ \| '_ \| '__| | '_ \ / _` | | | | |/ _ \| | | |/ _` |

 ___) | |_) | | | | | | | (_| | | |___| | (_) | |_| | (_| |

 |____/| .__/|_| |_|_| |_|__, | ____|_|___/ __,_|__,_|

https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/spring-cloud-kubernetes
http://kubernetes.io/docs/user-guide/configmap/
http://kubernetes.io/docs/user-guide/secrets/

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 23

 ____ |_| _ __|___/ __________

 | _ \ __ _| |_ __ _ | ___| | _____ __ \ \ \ \ \ \

 | | | |/ _` | __/ _` | | |_ | |/ _ \ \ /\ / / \ \ \ \ \ \

 | |_| | (_| | || (_| | | _| | | (_) \ V V / / / / / / /

 |____/ __,_|____,_| |_| |_|___/ _/_/ /_/_/_/_/_/

1.1.0.M2

Welcome to the Spring Cloud Data Flow shell. For assistance hit TAB or type "help".

server-unknown:>dataflow config server --uri http://130.211.203.246:9393

Successfully targeted http://130.211.203.246:9393

dataflow:>

7. Register the Kafka version of the time and log apps using the shell and also register the timestamp
app.

dataflow:>app register --type source --name time --uri docker:springcloudstream/time-source-

kafka:latest

dataflow:>app register --type sink --name log --uri docker:springcloudstream/log-sink-kafka:latest

dataflow:>app register --type task --name timestamp --uri docker:springcloudtask/timestamp-

task:latest

8. Alternatively, if you would like to register all out-of-the-box stream applications built with the Kafka
binder in bulk, you can with the following command. For more details, review how to register
applications.

dataflow:>app import --uri http://bit.ly/stream-applications-kafka-docker

9. Deploy a simple stream in the shell

dataflow:>stream create --name ticktock --definition "time | log" --deploy

You can use the command kubectl get pods to check on the state of the pods corresponding to
this stream. We can run this from the shell by running it as an OS command by adding a "!" before
the command.

dataflow:>! kubectl get pods

command is:kubectl get pods

NAME READY STATUS RESTARTS AGE

kafka-d207a 1/1 Running 0 50m

ticktock-log-qnk72 1/1 Running 0 2m

ticktock-time-r65cn 1/1 Running 0 2m

Look at the logs for the pod deployed for the log sink.

$ kubectl logs -f ticktock-log-qnk72

...

2015-12-28 18:50:02.897 INFO 1 --- [main] o.s.c.s.module.log.LogSinkApplication :

 Started LogSinkApplication in 10.973 seconds (JVM running for 50.055)

2015-12-28 18:50:08.561 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:08

2015-12-28 18:50:09.556 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:09

2015-12-28 18:50:10.557 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:10

2015-12-28 18:50:11.558 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:11

Note

If you need to specify any of the app specific configuration properties then you must use
"long-form" of them including the app specific prefix like --jdbc.tableName=TEST_DATA.
This is due to the server not being able to access the metadata for the Docker based starter

http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/html/spring-cloud-dataflow-register-apps.html
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/html/spring-cloud-dataflow-register-apps.html

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 24

apps. You will also not see the configuration properties listed when using the app info
command or in the Dashboard GUI.

Note

If you need to be able to connect from outside of the Kubernetes cluster to an app
that you deploy, like the http-source, then you can provide a deployment property
of spring.cloud.deployer.kubernetes.createLoadBalancer=true for the app
module to specify that you want to have a LoadBalancer with an external IP address created
for your app’s service.

To register the http-source and use it in a stream where you can post data to it, you can use the
following commands:

dataflow:>app register --type source --name http --uri docker:springcloudstream/http-source-

kafka:latest

dataflow:>stream create --name test --definition "http | log"

dataflow:>stream deploy test --properties

 "app.http.spring.cloud.deployer.kubernetes.createLoadBalancer=true"

Now, look up the external IP address for the http app (it can sometimes take a minute or two for
the external IP to get assigned):

dataflow:>! kubectl get service

command is:kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kafka 10.103.240.92 <none> 9092/TCP 7m

kubernetes 10.103.240.1 <none> 443/TCP 4h

test-http 10.103.251.157 130.211.200.96 8080/TCP 58s

test-log 10.103.240.28 <none> 8080/TCP 59s

zk 10.103.247.25 <none> 2181/TCP 7m

Next, post some data to the test-http app:

dataflow:>http post --target http://130.211.200.96:8080 --data "Hello"

Finally, look at the logs for the test-log pod:

dataflow:>! kubectl get pods

command is:kubectl get pods

NAME READY STATUS RESTARTS AGE

kafka-o20qq 1/1 Running 0 9m

test-http-9obkq 1/1 Running 0 2m

test-log-ysiz3 1/1 Running 0 2m

dataflow:>! kubectl logs test-log-ysiz3

command is:kubectl logs test-log-ysiz3

...

2016-04-27 16:54:29.789 INFO 1 --- [main] o.s.c.s.b.k.KafkaMessageChannelBinder$3 :

 started inbound.test.http.test

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 0

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 2147482647

2016-04-27 16:54:29.895 INFO 1 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :

 Tomcat started on port(s): 8080 (http)

2016-04-27 16:54:29.896 INFO 1 --- [kafka-binder-] log.sink :

 Hello

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, add the options --previous to view last terminated container log. You can also get more detailed
information about the pods by using the kubctl describe like:

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 25

kubectl describe pods/ticktock-log-qnk72

10.Destroy the stream

dataflow:>stream destroy --name ticktock

11.Create a task and launch it

Let’s create a simple task definition and launch it.

dataflow:>task create task1 --definition "timestamp"

dataflow:>task launch task1

We can now list the tasks and executions using these commands:

dataflow:>task list

#######################################

#Task Name#Task Definition#Task Status#

#######################################

#task1 #timestamp #running #

#######################################

dataflow:>task execution list

##

#Task Name#ID# Start Time # End Time #Exit Code#

##

#task1 #1 #Fri Jun 03 18:12:05 EDT 2016#Fri Jun 03 18:12:05 EDT 2016#0 #

##

12.Destroy the task

dataflow:>task destroy --name task1

Part IV. Streams
In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 27

14. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to
a sink that passes through any number of processors. Streams are composed of spring-cloud-stream
applications and the deployment of stream definitions is done via the Data Flow Server (REST API).
The Getting Started section shows you how to start these servers and how to start and use the Spring
Cloud Data Flow shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using -- options, such as

http --server.port=8091 | file --directory=/tmp/httpdata/

To create these stream definitions you use the shell or make an HTTP POST request to the Spring
Cloud Data Flow Server. More details can be found in the sections below.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 28

15. Stream DSL

In the examples above, we connected a source to a sink using the pipe symbol |. You can also pass
properties to the source and sink configurations. The property names will depend on the individual app
implementations, but as an example, the http source app exposes a server.port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream

The shell provides tab completion for application properties and also the shell command app info
provides some additional documentation.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 29

16. Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dataflow:>app register --name mysource --type source --uri maven://com.example:mysource:0.0.1-SNAPSHOT

dataflow:>app register --name myprocessor --type processor --uri file:///Users/example/

myprocessor-1.2.3.jar

dataflow:>app register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could do the following:

dataflow:>app register --name http --type source --uri maven://

org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT

dataflow:>app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:log-

sink-rabbit:1.0.0.BUILD-SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <type>.<name> and the values are the URIs.

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

source.http=maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT

sink.log=maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.0.0.BUILD-SNAPSHOT

Then to import the apps in bulk, use the app import command and provide the location of the
properties file via --uri:

dataflow:>app import --uri file:///<YOUR_FILE_LOCATION>/stream-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Maven http://bit.ly/1-0-4-GA-stream-
applications-rabbit-maven

http://bit.ly/1-1-0-SNAPSHOT-
stream-applications-rabbit-
maven

RabbitMQ + Docker http://bit.ly/1-0-4-GA-stream-
applications-rabbit-docker

http://bit.ly/1-1-0-SNAPSHOT-
stream-applications-rabbit-
docker

http://bit.ly/1-0-4-GA-stream-applications-rabbit-maven
http://bit.ly/1-0-4-GA-stream-applications-rabbit-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/1-0-4-GA-stream-applications-rabbit-docker
http://bit.ly/1-0-4-GA-stream-applications-rabbit-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-docker

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 30

Artifact Type Stable Release SNAPSHOT Release

Kafka + Maven http://bit.ly/1-0-4-GA-stream-
applications-kafka-maven

http://bit.ly/1-1-0-SNAPSHOT-
stream-applications-kafka-
maven

Kafka + Docker http://bit.ly/1-0-4-GA-stream-
applications-kafka-docker

http://bit.ly/1-1-0-SNAPSHOT-
stream-applications-kafka-
docker

List of available Task Applicaiton Starters:

Artifact Type Stable Release SNAPSHOT Release

Maven http://bit.ly/1-0-1-GA-task-
applications-maven

http://bit.ly/1-0-2-SNAPSHOT-
task-applications-maven

Docker http://bit.ly/1-0-1-GA-task-
applications-docker

http://bit.ly/1-0-2-SNAPSHOT-
task-applications-docker

For example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dataflow:>app import --uri http://bit.ly/1-0-4-GA-stream-applications-rabbit-maven

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either app register or app import, if a stream app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the pre-existing
stream app, then include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

16.1 Whitelisting application properties

Stream applications are Spring Boot applications which are aware of many Section 26.1, “Common
application properties”, e.g. server.port but also families of properties such as those with the prefix
spring.jmx and logging. When creating your own application it is desirable to whitelist properties
so that the shell and the UI can display them first as primary properties when presenting options via
TAB completion or in drop-down boxes.

To whitelist application properties create a file named spring-configuration-metadata-
whitelist.properties in the META-INF resource directory. There are two property keys that can
be used inside this file. The first key is named configuration-properties.classes. The value
is a comma separated list of fully qualified @ConfigurationProperty class names. The second key
is configuration-properties.names whose value is a comma separated list of property names.
This can contain the full name of property, such as server.port or a partial name to whitelist a
category of property names, e.g. spring.jmx.

http://bit.ly/1-0-4-GA-stream-applications-kafka-maven
http://bit.ly/1-0-4-GA-stream-applications-kafka-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-maven
http://bit.ly/1-0-4-GA-stream-applications-kafka-docker
http://bit.ly/1-0-4-GA-stream-applications-kafka-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-docker
http://bit.ly/1-0-1-GA-task-applications-maven
http://bit.ly/1-0-1-GA-task-applications-maven
http://bit.ly/1-0-2-SNAPSHOT-task-applications-maven
http://bit.ly/1-0-2-SNAPSHOT-task-applications-maven
http://bit.ly/1-0-1-GA-task-applications-docker
http://bit.ly/1-0-1-GA-task-applications-docker
http://bit.ly/1-0-2-SNAPSHOT-task-applications-docker
http://bit.ly/1-0-2-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 31

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spring-configuration-metadata-whitelist.properties
file

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

If we also wanted to add server.port to be white listed, then it would look like this:

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

configuration-properties.names=server.port

Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

</dependency>

https://github.com/spring-cloud/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 32

17. Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’s walk through what happens if we execute the following shell command:

dataflow:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):

dataflow:> stream deploy --name ticktock

The Data Flow Server resolves time and log to maven coordinates and uses those to launch the time
and log applications of the stream.

2016-06-01 09:41:21.728 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481708/ticktock.log

2016-06-01 09:41:21.914 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.time instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481910/ticktock.time

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the stdout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/

ticktock-1464788481708/ticktock.log/stdout_0.log

2016-06-01 09:45:11.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:11

2016-06-01 09:45:12.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:12

2016-06-01 09:45:13.251 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:13

17.1 Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

Passing application properties when creating a stream

The following stream

dataflow:> stream create --definition "time | log" --name ticktock

can have application properties defined at the time of stream creation.

Getting-Started.xml#getting-started

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 33

The shell command app info displays the white-listed application properties for the application. For
more info on the property white listing refer to Section 16.1, “Whitelisting application properties”

Below are the white listed properties for the app time:

dataflow:> app info source:time

###

Option Name # Description # Default #

 Type #

###

#trigger.time-unit #The TimeUnit to apply to delay#<none>

 #java.util.concurrent.TimeUnit #

#values. # #

 #

#trigger.fixed-delay #Fixed delay for periodic #1

 #java.lang.Integer #

#triggers. # #

 #

#trigger.cron #Cron expression value for the #<none>

 #java.lang.String #

#Cron Trigger. # #

 #

#trigger.initial-delay #Initial delay for periodic #0

 #java.lang.Integer #

#triggers. # #

 #

#trigger.max-messages #Maximum messages per poll, -1 #1

 #java.lang.Long #

#means infinity. # #

 #

#trigger.date-format #Format for the date value. #<none>

 #java.lang.String #

###

Below are the white listed properties for the app log:

dataflow:> app info sink:log

###

Option Name # Description # Default #

 Type #

###

#log.name #The name of the logger to use.#<none>

 #java.lang.String #

#log.level #The level at which to log #<none>

 #org.springframework.integratio#

#messages. #

 #n.handler.LoggingHandler$Level#

#log.expression #A SpEL expression (against the#payload

 #java.lang.String #

#incoming message) to evaluate # #

 #

#as the logged message. # #

 #

###

The application properties for the time and log apps can be specified at the time of stream creation
as follows:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

Note that the properties fixed-delay and level defined above for the apps time and log are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 34

17.2 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as deployment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count.

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dataflow:> stream deploy --name ticktock --properties "app.time.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app.foo.bar.count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

Important

See Chapter 24, Using Labels in a Stream.

Inline vs file reference properties

When using the Spring Cloud Dataflow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the --properties shell option and list properties as a comma separated list of key=value
pairs, like so:

stream deploy foo

 --properties "app.transform.count=2,app.transform.producer.partitionKeyExpression=payload"

Using a file reference
use the --propertiesFile option and point it to a local Java .properties file (i.e. that lives in
the filesystem of the machine running the shell). Being read as a .properties file, normal rules
apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend using = as
a key-value pair delimiter for consistency:

stream deploy foo --propertiesFile myprops.properties

where myprops.properties contains:

app.transform.count=2

app.transform.producer.partitionKeyExpression=payload

Both the above properties will be passed as deployment properties for the stream foo above.

Passing application properties when deploying a stream

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 35

(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=5,app.log.level=ERROR"

When using the app label,

stream create ticktock --definition "a: time | b: log"

the application properties can be defined as:

stream deploy ticktock --properties "app.a.fixed-delay=4,app.b.level=ERROR"

Passing Spring Cloud Stream properties for the application

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spring.cloud.stream.bindings.<input/
output>.destination is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

For example, for the below stream

dataflow:> stream create --definition "http | transform --

expression=payload.getValue('hello').toUpperCase() | log" --name ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.binder=kafka,app.transform.spring.cloud.stream.bindings.input.binder=kafka,app.transform.spring.cloud.stream.bindings.output.binder=rabbit,app.log.spring.cloud.stream.bindings.input.binder=rabbit"

Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per-binding
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partitionKeyExpression, partitionKeyExtractorClass as described in
the section called “Passing stream partition properties during stream deployment”, all the supported
Spring Cloud Stream producer/consumer properties can be set as Spring Cloud Stream properties for
the app directly as well.

The consumer properties can be set for the inbound channel name with the prefix app.
[app/label name].spring.cloud.stream.bindings.<channelName>.consumer. and the

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 36

producer properties can be set for the outbound channel name with the prefix app.[app/
label name].spring.cloud.stream.bindings.<channelName>.producer.. For example,
the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with producer/consumer properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.producer.requiredGroups=myGroup,app.time.spring.cloud.stream.bindings.output.producer.headerMode=raw,app.log.spring.cloud.stream.bindings.input.consumer.concurrency=3,app.log.spring.cloud.stream.bindings.input.consumer.maxAttempts=5"

The binder specific producer/consumer properties can also be specified in a similar way.

For instance

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.rabbit.bindings.output.producer.autoBindDlq=true,app.log.spring.cloud.stream.rabbit.bindings.input.consumer.transacted=true"

Passing stream partition properties during stream deployment

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default null)

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractorClass is null. If both are null, the app is not partitioned (default null)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default null)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[nextModule].count. If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default null)

In summary, an app is partitioned if its count is > 1 and the previous app has a
partitionKeyExtractorClass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSelectorClass, if present, or the partitionSelectorExpression %

partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSelectorClass nor a partitionSelectorExpression is present the
result is key.hashCode() % partitionCount.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 37

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the inputType and outputType properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dataflow:>stream create tuple --definition "http | filter --inputType=application/x-spring-tuple

 --expression=payload.hasFieldName('hello') | transform --

expression=payload.getValue('hello').toUpperCase()

 | log" --deploy

The http app is expected to send the data in JSON and the filter app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the inputType property on the filter app
to convert the data into the expected Spring Tuple format. The transform application processes the
Tuple data and sends the processed data to the downstream log application.

When sending some data to the http application:

dataflow:>http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://

localhost:<http-port>

At the log application you see the content as follows:

INFO 18745 --- [transform.tuple-1] log.sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the --outputType in the upstream app or as an --inputType in the downstream app. For
instance, in the above stream, instead of specifying the --inputType on the 'transform' application to
convert, the option --outputType=application/x-spring-tuple can also be specified on the
'http' application.

For the complete list of message conversion and message converters, please refer Spring Cloud Stream
documentation.

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

To override these application properties, one can specify the new property values during deployment:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=4,app.log.level=ERROR"

17.3 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as deployment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 38

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dataflow:> stream deploy --name ticktock --properties "app.time.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app.foo.bar.count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

Important

See Chapter 24, Using Labels in a Stream.

Inline vs file reference properties

When using the Spring Cloud Dataflow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the --properties shell option and list properties as a comma separated list of key=value
pairs, like so:

stream deploy foo

 --properties "app.transform.count=2,app.transform.producer.partitionKeyExpression=payload"

Using a file reference
use the --propertiesFile option and point it to a local .properties, .yaml or .yml file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a .properties file,
normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream deploy foo --propertiesFile myprops.properties

where myprops.properties contains:

app.transform.count=2

app.transform.producer.partitionKeyExpression=payload

Both the above properties will be passed as deployment properties for the stream foo above.

In case of using YAML as the format for the deployment properties, use the .yaml or .yml file extention
when deploying the stream,

stream deploy foo --propertiesFile myprops.yaml

where myprops.yaml contains:

app:

 transform:

 count: 2

 producer:

 partitionKeyExpression: payload

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 39

18. Destroying a Stream

You can delete a stream by issuing the stream destroy command from the shell:

dataflow:> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 40

19. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

dataflow:> stream undeploy --name ticktock

dataflow:> stream deploy --name ticktock

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 41

20. Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

dataflow:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

2016-06-01 09:47:58.920 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788878747/myhttpstream.log

2016-06-01 09:48:06.396 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.http instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788886383/myhttpstream.http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dataflow:> runtime apps

You should see that the corresponding http source has a url property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

dataflow:> http post --target http://localhost:1234 --data "hello"

dataflow:> http post --target http://localhost:1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016-06-01 09:50:22.121 INFO 79654 --- [kafka-binder-] log.sink : hello

2016-06-01 09:50:26.810 INFO 79654 --- [kafka-binder-] log.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file), to
hadoop (hdfs) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 42

21. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream --deploy

Posting some data (using a shell command)

dataflow:> http post --target http://localhost:1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

2016-06-01 09:54:37.749 INFO 80083 --- [kafka-binder-] log.sink : HELLO

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 43

22. Stateful Stream Processing

To demonstrate the data partitioning functionality, let’s deploy the following stream with Kafka as the
binder.

dataflow:>stream create --name words --definition "http --server.port=9900 | splitter --

expression=payload.split(' ') | log"

Created new stream 'words'

dataflow:>stream deploy words --properties

 "app.splitter.producer.partitionKeyExpression=payload,app.log.count=2"

Deployed stream 'words'

dataflow:>http post --target http://localhost:9900 --data "How much wood would a woodchuck chuck if a

 woodchuck could chuck wood"

> POST (text/plain;Charset=UTF-8) http://localhost:9900 How much wood would a woodchuck chuck if a

 woodchuck could chuck wood

> 202 ACCEPTED

You’ll see the following in the server logs.

2016-06-05 18:33:24.982 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 0

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

2016-06-05 18:33:24.988 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 1

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

Review the words.log instance 0 logs:

2016-06-05 18:35:47.047 INFO 58638 --- [kafka-binder-] log.sink : How

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

Review the words.log instance 1 logs:

2016-06-05 18:35:47.047 INFO 58639 --- [kafka-binder-] log.sink :

 much

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 wood

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 would

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : if

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 could

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 wood

This shows that payload splits that contain the same word are routed to the same application instance.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 44

23. Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2:

 transform --expression=payload+'!' | log" --name mainstream --deploy

taps can be created at the output of http, step1 and step2.

To create a stream that acts as a 'tap' on another stream requires to specify the source destination
name for the tap stream. The syntax for source destination name is:

`:<stream-name>.<label/app-name>`

To create a tap at the output of http in the stream above, the source destination name is
mainstream.http To create a tap at the output of the first transform app in the stream above, the
source destination name is mainstream.step1

The tap stream DSL looks like this:

stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy

stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 45

24. Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() |

 secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 46

25. Explicit Broker Destinations in a Stream

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
source or at the sink position.

The following stream has the destination name at the source position:

stream create --definition ":myDestination > log" --name ingest_from_broker --deploy

This stream receives messages from the destination myDestination located at the broker and
connects it to the log app.

The following stream has the destination name at the sink position:

stream create --definition "http > :myDestination" --name ingest_to_broker --deploy

This stream sends the messages from the http app to the destination myDestination located at
the broker.

From the above streams, notice that the http and log apps are interacting with each other via the
broker (through the destination myDestination) rather than having a pipe directly between http and
log within a single stream.

It is also possible to connect two different destinations (source and sink positions) at the broker in
a stream.

stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy

In the above stream, both the destinations (destination1 and destination2) are located in the
broker. The messages flow from the source destination to the sink destination via a bridge app that
connects them.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 47

26. Directed Graphs in a Stream

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant.

First, named destinations may be used as a way to combine the output from multiple streams or for
multiple consumers to share the output from a single stream. This can be done using the DSL syntax
http > :mydestination or :mydestination > log.

Second, you may need to determine the output channel of a stream based on some information that is
only known at runtime. In that case, a router may be used in the sink position of a stream definition. For
more information, refer to the Router Sink starter’s README.

26.1 Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring.cloud.dataflow.applicationProperties.stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the configuration server with the following options:

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.brokers=192.168.1.100:9092

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.zkNodes=192.168.1.100:2181

This will cause the properties spring.cloud.stream.kafka.binder.brokers and
spring.cloud.stream.kafka.binder.zkNodes to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app.http.spring.cloud.stream.kafka.binder.brokers will
override the common property).

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/router/spring-cloud-starter-stream-sink-router

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 48

27. Stream applications with multiple binder
configurations
 In some cases, a stream can have its applications bound to multiple spring cloud stream binders when

 they are required to connect to different messaging

middleware configurations. In those cases, it is important to make sure the applications are configured

 appropriately with their binder

configurations. For example, let's consider the following stream:

http | transform --expression=payload.toUpperCase() | log

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1)

Transform processor receives events from RabbitMQ (rabbit1) and sends the processed events into Kafka

 (kafka1)

Log sink receives events from Kafka (kafka1)

Here, rabbit1 and kafka1 are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder

Transform - Both Kafka and Rabbit binders

Log - Kafka binder

The spring-cloud-stream binder configuration properties can be set within the applications themselves.
If not, they can be passed via deployment properties when the stream is deployed.

For example,

dataflow:>stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream

dataflow:>stream deploy mystream --properties

 "app.http.spring.cloud.stream.bindings.output.binder=rabbit1,app.transform.spring.cloud.stream.bindings.input.binder=rabbit1,

app.transform.spring.cloud.stream.bindings.output.binder=kafka1,app.log.spring.cloud.stream.bindings.input.binder=kafka1"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Part V. Tasks
This section goes into more detail about how you can work with Spring Cloud Tasks. It covers topics
such as creating and running task applications.

If you’re just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 50

28. Introducing Spring Cloud Task

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @EnableTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 51

29. The Lifecycle of a task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Register a Task App

2. Create a Task Definition

3. Launch a Task

4. Task Execution

5. Destroy a Task Definition

29.1 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dataflow:>app register --name task1 --type task --uri maven://com.example:mytask:1.0.2

dataflow:>app register --name task2 --type task --uri file:///Users/example/mytask-1.0.2.jar

dataflow:>app register --name task3 --type task --uri http://example.com/mytask-1.0.2.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <type>.<name> and the values are the URIs. For example, this would be
a valid properties file:

task.foo=file:///tmp/foo.jar

task.bar=file:///tmp/bar.jar

Then use the app import command and provide the location of the properties file via --uri:

app import --uri file:///tmp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

• Maven based Task Applications: bit.ly/task-applications-maven

• Docker based Task Applications: bit.ly/task-applications-docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

http://bit.ly/task-applications-maven
http://bit.ly/task-applications-docker

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 52

dataflow:>app import --uri http://bit.ly/task-applications-maven

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either app register or app import, if a task app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

29.2 Creating a Task

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the task create command to create the task definition.
For example:

dataflow:>task create mytask --definition "timestamp --format=\"yyyy\""

 Created new task 'mytask'

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the task list command.

29.3 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the task launch command. For Example:

dataflow:>task launch mytask

 Launched task 'mytask'

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dataflow:>task launch mytask --arguments "--server.port=8080,--foo=bar"

29.4 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:

• Task Name

• Start Time

• End Time

• Exit Code

• Exit Message

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 53

• Last Updated Time

• Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the task execution list command.

To get a list of task executions for just one task definition, add --name and the task definition name, for
example task execution list --name foo. To retrieve full details for a task execution use the
task display command with the id of the task execution , for example task display --id 549.

29.5 Destroying a Task

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the task destroy command.
For Example:

dataflow:>task destroy mytask

 Destroyed task 'mytask'

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Note: This will not stop any currently executing tasks for this definition, this just removes the definition.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 54

30. Task Repository

Out of the box Spring Cloud Data Flow offers an embedded instance of the H2 database. The H2 is
good for development purposes but is not recommended for production use.

30.1 Configuring the Task Execution Repository

To add a driver for the database that will store the Task Execution information, a dependency for the
driver will need to be added to a maven pom file and the Spring Cloud Data Flow will need to be rebuilt.
Since Spring Cloud Data Flow is comprised of an SPI for each environment it supports, please review
the SPI’s documentation on which POM should be updated to add the dependency and how to build.
This document will cover how to setup the dependency for local SPI.

Local

1. Open the spring-cloud-dataflow-server-local/pom.xml in your IDE.

2. In the dependencies section add the dependency for the database driver required. In the sample
below postgresql has been chosen.

<dependencies>

...

 <dependency>

 <groupId>org.postgresql</groupId>

 <artifactId>postgresql</artifactId>

 </dependency>

...

</dependencies>

3. Save the changed pom.xml

4. Build the application as described here: Building Spring Cloud Data Flow

Task Application Repository

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Dataflow is
set to use Postgresql be sure that the task application also has Postgresql as a dependency.

Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its UI, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

30.2 Datasource

To configure the datasource Add the following properties to the dataflow-server.yml or via environment
variables:

a. spring.datasource.url

b. spring.datasource.username

appendix-building.xml#building

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 55

c. spring.datasource.password

d. spring.datasource.driver-class-name

For example adding postgres would look something like this:

• Environment variables:

export spring_datasource_url=jdbc:postgresql://localhost:5432/mydb

export spring_datasource_username=myuser

export spring_datasource_password=mypass

export spring_datasource_driver-class-name="org.postgresql.Driver"

• dataflow-server.yml

spring:

 datasource:

 url: jdbc:postgresql://localhost:5432/mydb

 username: myuser

 password: mypass

 driver-class-name:org.postgresql.Driver

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 56

31. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spring-cloud-task-stream
and spring-cloud-stream-binder-kafka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: task-events, job-
execution-events etc.,).

dataflow:>task create myTask --definition “myBatchJob"

dataflow:>task launch myTask

dataflow:>stream create task-event-subscriber1 --definition ":task-events > log" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dataflow:>task launch myTask --properties "spring.cloud.stream.bindings.task-

events.destination=myTaskEvents"

dataflow:>stream create task-event-subscriber2 --definition ":myTaskEvents > log" --deploy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 31.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events job-execution-events

Step Execution events step-execution-events

Item Read events item-read-events

Item Process events item-process-events

Item Write events item-write-events

Skip events skip-events

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 57

32. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available task-launcher sinks. Currently
the only available task-launcher sink is the task-launcher-local which will launch a task on
your local machine.

Note

task-launcher-local is meant for development purposes only.

A task-launcher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the task-launcher will obtain the URI of the artifact to be launched
as well as the properties and command line arguments to be used by the task.

The task-launcher-local can be added to the available sinks by executing the app register
command as follows:

app register --name task-launcher-local --type sink --uri maven://

org.springframework.cloud.stream.app:task-launcher-local-sink-kafka:jar:1.0.0.BUILD-SNAPSHOT

32.1 TriggerTask

One way to launch a task using the task-launcher is to use the triggertask source. The
triggertask source will emit a message with a TaskLaunchRequest object containing the required
launch information. An example of this would be to launch the timestamp task once every 5 seconds,
the stream to implement this would look like:

stream create foo --definition "triggertask --triggertask.uri=maven://

org.springframework.cloud.task.app:timestamp-task:jar:1.0.0.BUILD-SNAPSHOT --trigger.fixed-delay=5 |

 task-launcher-local" --deploy

32.2 Translator

Another option to start a task using the task-launcher would be to create a stream using a your own
translator (as a processor) to translate a message payload to a TaskLaunchRequest. For example:

http --server.port=9000 | my-task-processor | task-launcher-local

Part VI. Dashboard
This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 59

33. Introduction

Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:

• Apps Lists all available applications and provides the control to register/unregister them

• Runtime Provides the Data Flow cluster view with the list of all running applications

• Streams Deploy/undeploy Stream Definitions

• Tasks List, create, launch and destroy Task Definitions

• Jobs Perform Batch Job related functions

• Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

http://<host>:<port>/dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at https://localhost:9393/dashboard. If you
have enabled security, a login form is available at http://localhost:9393/dashboard/#/login.

Note: The default Dashboard server port is 9393

Figure 33.1. The Spring Cloud Data Flow Dashboard

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 60

34. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

Figure 34.1. List of Available Applications

34.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>.<name> = <coordinates>

For example:

task.timestamp=maven://org.springframework.cloud.task.app:timestamp-

task:1.0.0.BUILD-SNAPSHOT

processor.transform=maven://org.springframework.cloud.stream.app:transform-

processor-rabbit:1.0.3.BUILD-SNAPSHOT

At the top of the bulk import page a Uri can be specified that points to a properties file stored elsewhere,
it should contain properties formatted as above. Alternatively, using the textbox labelled Apps as
Properties it is possible to directly list each property string. Finally, if the properties are stored in a local
file the Select Properties File option will open a local file browser to select the file. After setting your
definitions via one of these routes, click Import.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 61

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

Figure 34.2. Bulk Import Applications

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 62

35. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Figure 35.1. List of Running Applications

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 63

36. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Figure 36.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 64

Figure 36.2. Stream Details Page

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 65

37. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

• Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

• Write pipelines via DSL with content-assist and auto-complete

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Figure 37.1. Flo for Spring Cloud Data Flow

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 66

38. Tasks

The Tasks section of the Dashboard currently has three tabs:

• Apps

• Definitions

• Executions

38.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note: You will also use this tab to create Batch Jobs.

Figure 38.1. List of Task Apps

On this screen you can perform the following actions:

• View details such as the task app options.

• Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note: Each parameter is only included if the Include checkbox is selected.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 67

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

38.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

Figure 38.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

Figure 38.3. Bulk Define Tasks

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 68

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<task-definition-name> = <task-application> <options>

For example:

demo-timestamp = timestamp --format=hhmmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the UI will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input which could
not be used as task definitions. These can then be fixed up and creation repeated. There is an import
file button to open a file browser on the local file system if the definitions are in a file and it is easier
to import than copy/paste.

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:

• Parameter Key

• Parameter Value

Task parameters are not typed.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 69

38.3 Executions

Figure 38.4. List of Task Executions

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 70

39. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Figure 39.1. List of Job Executions

39.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 71

Job execution details

Figure 39.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 72

Figure 39.3. Step Execution History

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 73

40. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

• Counters

• Field-Value Counters

For example, if you have created the springtweets stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metric Type, select Counters from the select box

2. Under Stream, select tweetcount

3. Under Visualization, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Part VII. Server Implementation

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 75

41. Server Properties

The Spring Data Flow Kubernetes Server has several properties you can configure that let you control
the default values to set the cpu and memory requirements for the pods. The configuration is controlled
by configuration properties under the spring.cloud.deployer.kubernetes prefix. For example
you might declare the following section in an application.properties file or pass them as
command line arguments when starting the Server.

spring.cloud.deployer.kubernetes.memory=512Mi

spring.cloud.deployer.kubernetes.cpu=500m

See KubernetesAppDeployerProperties for more of the supported options.

Data Flow Server properties that are common across all of the Data Flow Server implementations that
concern maven repository settings can also be set in a similar manner. See the section on Common
Data Flow Server Properties for more information.

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesAppDeployerProperties.java

Part VIII. ‘How-to’ guides
This section provides answers to some common ‘how do I do that…’ type of questions that often arise
when using Spring Cloud Data Flow.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spring-cloud-dataflow tag).

We’re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.

http://stackoverflow.com/tags/spring-cloud-dataflow
http://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 77

42. Configure Maven Properties

You can set the maven properties such as local maven repository location, remote maven repositories
and their authentication credentials including the proxy server properties via commandline properties
when starting the Dataflow server or using the SPRING_APPLICATION_JSON environment property for
the Dataflow server.

The remote maven repositories need to be configured explicitly if the apps are resolved using maven
repository as except local Data Flow server, other Data Flow server implementations (that use maven
resources for app artifacts resolution) have no default value for remote repositories. The local server
has repo.spring.io/libs-snapshot as the default remote repository.

To pass the properties as commandline options:

$ java -jar <dataflow-server>.jar --maven.localRepository=mylocal

--maven.remote-repositories.repo1.url=https://repo1

--maven.remote-repositories.repo1.auth.username=repo1user

--maven.remote-repositories.repo1.auth.password=repo1pass

--maven.remote-repositories.repo2.url=https://repo2 --maven.proxy.host=proxyhost

--maven.proxy.port=9018 --maven.proxy.auth.username=proxyuser

--maven.proxy.auth.password=proxypass

or, using the SPRING_APPLICATION_JSON environment property:

export SPRING_APPLICATION_JSON='{ "maven": { "local-repository": "local","remote-repositories":

 { "repo1": { "url": "https://repo1", "auth": { "username": "repo1user", "password": "repo1pass" } },

"repo2": { "url": "https://repo2" } }, "proxy": { "host": "proxyhost", "port":

 9018, "auth": { "username": "proxyuser", "password": "proxypass" } } } }'

Formatted JSON:

SPRING_APPLICATION_JSON='{

 "maven": {

 "local-repository": "local",

 "remote-repositories": {

 "repo1": {

 "url": "https://repo1",

 "auth": {

 "username": "repo1user",

 "password": "repo1pass"

 }

 },

 "repo2": {

 "url": "https://repo2"

 }

 },

 "proxy": {

 "host": "proxyhost",

 "port": 9018,

 "auth": {

 "username": "proxyuser",

 "password": "proxypass"

 }

 }

 }

}'

Note

Depending on Spring Cloud Data Flow server implementation, you may have
to pass the environment properties using the platform specific environment-setting

https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 78

capabilities. For instance, in Cloud Foundry, you’d be passing them as cf set-env

SPRING_APPLICATION_JSON.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 79

43. Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

43.1 Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it’d be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you’d like to enable DEBUG logs for the local-deployer, you’d be starting the server
with following.

$ java -jar <dataflow-server>.jar --logging.level.org.springframework.cloud.deployer.spi.local=DEBUG

(where, org.springframework.cloud.deployer.spi.local is the global package for
everything local-deployer related)

2. For instance, if you’d like to enable DEBUG logs for the cloudfoundry-deployer, you’d be setting the
following environment variable and upon restaging the dataflow-server, we will see more logs around
request, response and the elaborate stack traces (upon failures). The cloudfoundry-deployer uses
cf-java-client, so we will have to enable DEBUG logs for this library.

$ cf set-env dataflow-server JAVA_OPTS '-Dlogging.level.cloudfoundry-client=DEBUG'

$ cf restage dataflow-server

(where, cloudfoundry-client is the global package for everything cf-java-client related)

3. If there’s a need to review Reactor logs, which is used by the cf-java-client, then the following
would be helpful.

$ cf set-env dataflow-server JAVA_OPTS '-Dlogging.level.cloudfoundry-client=DEBUG -

Dlogging.level.reactor.ipc.netty=DEBUG'

$ cf restage dataflow-server

(where, reactor.ipc.netty is the global package for everything reactor-netty related)

Note

Similar to the local-deployer and cloudfoundry-deployer options as discussed above,
there are equivalent settings available for Apache YARN, Apache Mesos and Kubernetes
variants, too. Check out the respective SPI implementations to find out more details about the
packages to configure for logging.

43.2 Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer
https://github.com/spring-cloud/spring-cloud-deployer/tree/master/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/cloudfoundry/cf-java-client
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 80

For instance, if you’d have to troubleshoot the header and payload specifics that are being passed
around source, processor and sink channels, you’d be deploying the stream with the following options.

dataflow:>stream create foo --definition "http --logging.level.org.springframework.integration=DEBUG

 | transform --logging.level.org.springframework.integration=DEBUG | log --

logging.level.org.springframework.integration=DEBUG" --deploy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via deployment properties when deploying the stream.

dataflow:>stream deploy foo --properties "app.*.logging.level.org.springframework.integration=DEBUG"

Part IX. Appendices

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 82

Appendix A. Migrating from Spring
XD to Spring Cloud Data Flow
A.1 Terminology Changes

Old New

XD-Admin Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A

Modules Applications

Admin UI Dashboard

Message Bus Binders

Batch / Job Task

A.2 Modules to Applications

If you have custom Spring XD modules, you’d have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

• Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

• There are also some samples for Stream and Task applications for reference

• If you’d like to create a brand new custom application, use the getting started guide for Stream and
Task applications and as well as review the development guide

• Alternatively, if you’d like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

• Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts from http, file, or as hdfs
coordinates

• Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you’re expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

https://github.com/spring-cloud/spring-cloud-stream-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#getting-started
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-docs/src/main/asciidoc/getting-started.adoc#developing-your-first-spring-cloud-task-application
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#creating-your-own-applications
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#patching-pre-built-applications
http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/html/_dsl_syntax.html#_register_a_stream_app

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 83

• By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

• Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

• counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the counter-
sink, then redis becomes required, and you’re expected to have your own running redis cluster

• field-value-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the field-
value-counter-sink, then redis becomes required, and you’re expected to have your own
running redis cluster

• aggregate-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the
aggregate-counter-sink, then redis becomes required, and you’re expected to have your
own running redis cluster

A.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases. We also have an experimental version of the Gemfire binder.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you’re to
choose Kafka as the binder, you’d register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you’d add the following dependency
in the classpath.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-kafka</artifactId>

 <version>1.0.2.RELEASE</version>

</dependency>

• Spring Cloud Stream supports Apache Kafka, RabbitMQ and an experimental Gemfire binder
implementation. All binder implementations are maintained and managed in their individual
repositories

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 84

• Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use
as maven artifacts [stream / task] or docker images [stream / task] Changing the binder requires
selecting the right binder dependency. Alternatively, you can download the pre-built application from
this version of Spring Initializr with the desired “binder-starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by topics or topic-exchange and there’s no representation
of queues in the new architecture.

• ${xd.module.index} is not supported anymore; instead, you can directly interact with named
destinations

• stream.index changes to :<stream-name>.<label/app-name>

• for instance: ticktock.0 changes to :ticktock.time

• “topic/queue” prefixes are not required to interact with named-channels

• for instance: topic:foo changes to :foo

• for instance: stream create stream1 --definition ":foo > log"

Directed Graphs

If you’re building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'queue:foo':'queue:bar'"

 --deploy

for instance, in Spring Cloud Data Flow:

stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?':foo':':bar'" --deploy

A.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

• Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a link: Spring
Cloud Task applications

• Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs%2Fsrc%2Fmain%2Fasciidoc%2Fspring-cloud-stream-overview.adoc#binder-selection
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 85

A.5 Shell/DSL Commands

Old Command New Command

module upload app register / app import

module list app list

module info app info

admin config server dataflow config server

job create task create

job launch task launch

job list task list

job status task status

job display task display

job destroy task destroy

job execution list task execution list

runtime modules runtime apps

A.6 REST-API

Old API New API

/modules /apps

/runtime/modules /runtime/apps

/runtime/modules/(moduleId} /runtime/apps/{appId}

/jobs/definitions /task/definitions

/jobs/deployments /task/deployments

A.7 UI / Flo

The Admin-UI is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

• (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

• Runtime: Container changes to Runtime. The notion of xd-container is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 86

• Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

• (New) Tasks:

• The sub-tab “Modules” is renamed to “Apps”

• The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

• The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

A.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper

ZooKeeper is not used in the new architecture.

RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqlServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the counter-
sink, field-value-counter-sink, or aggregate-counter-sink applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd-admin and xd-container server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

A.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

A.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 87

apache yarn, kubernetes, or apache mesos). For example, if you’re running Spring Cloud Data Flow
on Cloud Foundry, you’d download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

A.11 Hadoop Distribution Compatibility

The hdfs-sink application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

• Cloudera - cdh5

• Pivotal Hadoop - phd30

• Hortonworks Hadoop - hdp24

• Hortonworks Hadoop - hdp23

• Vanilla Hadoop - hadoop26

• Vanilla Hadoop - 2.7.x (default)

A.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.

• Deploy the server directly in a YARN cluster

• Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

A.13 Use Case Comparison

Let’s review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ticktock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_ambari

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 88

Spring XD Spring Cloud Data Flow

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Create ticktock stream

xd:>stream create ticktock --

definition “time | log” --deploy

Create ticktock stream

dataflow:>stream create ticktock --

definition “time | log” --deploy

Review ticktock results in the xd-
singlenode server console

Review ticktock results by tailing the
ticktock.log/stdout_log application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “processor” module to transform
payload to a desired format

xd:>module upload --name

toupper --type processor --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “processor” application to
transform payload to a desired format

dataflow:>app register --name

toupper --type processor --uri

<MAVEN_URI_COORDINATES>

Create a stream with custom module

xd:>stream create testupper --

definition “http | toupper | log” --

deploy

Create a stream with custom application

dataflow:>stream create testupper --

definition “http | toupper | log” --

deploy

Review results in the xd-singlenode server
console

Review results by tailing the testupper.log/
stdout_log application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 89

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “batch-job” module

xd:>module upload --name

simple-batch --type job --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “batch-job” as task application

dataflow:>app register --name

simple-batch --type task --uri

<MAVEN_URI_COORDINATES>

Create a job with custom batch-job module

xd:>job create batchtest --

definition “simple-batch”

Create a task with custom batch-job application

dataflow:>task create batchtest --

definition “simple-batch”

Deploy job

xd:>job deploy batchtest

NA

Launch job

xd:>job launch batchtest

Launch task

dataflow:>task launch batchtest

Review results in the xd-singlenode server
console as well as Jobs tab in UI (executions
sub-tab should include all step details)

Review results by tailing the batchtest/
stdout_log application logs as well as Task
tab in UI (executions sub-tab should include all
step details)

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 90

Appendix B. Building
To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl spring-cloud-dataflow-server-

kubernetes-docs -am

B.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 91

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Kubernetes

1.1.0.M2
Spring Cloud Data Flow

Server Kubernetes 92

Appendix C. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

C.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

C.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Kubernetes
	Table of Contents
	Part I. Introduction
	1. Introducing Spring Cloud Data Flow for Kubernetes
	2. Spring Cloud Data Flow
	3. Spring Cloud Stream
	4. Spring Cloud Task

	Part II. Architecture
	5. Introduction
	6. Microservice Architectural Style
	6.1 Comparison to other Platform architectures

	7. Streaming Applications
	7.1 Imperative Programming Model
	7.2 Functional Programming Model

	8. Streams
	8.1 Topologies
	8.2 Concurrency
	8.3 Partitioning
	8.4 Message Delivery Guarantees

	9. Analytics
	10. Task Applications
	11. Data Flow Server
	11.1 Endpoints
	11.2 Customization
	11.3 Security

	12. Runtime
	12.1 Fault Tolerance
	12.2 Resource Management
	12.3 Scaling at runtime
	12.4 Application Versioning

	Part III. Getting Started
	13. Deploying Streams on Kubernetes

	Part IV. Streams
	14. Introduction
	15. Stream DSL
	16. Register a Stream App
	16.1 Whitelisting application properties

	17. Creating a Stream
	17.1 Application properties
	Passing application properties when creating a stream

	17.2 Deployment properties
	Passing instance count as deployment property
	Inline vs file reference properties
	Passing application properties when deploying a stream
	Passing Spring Cloud Stream properties for the application
	Passing per-binding producer consumer properties
	Passing stream partition properties during stream deployment
	Passing application content type properties
	Overriding application properties during stream deployment

	17.3 Deployment properties
	Passing instance count as deployment property
	Inline vs file reference properties

	18. Destroying a Stream
	19. Deploying and Undeploying Streams
	20. Other Source and Sink Application Types
	21. Simple Stream Processing
	22. Stateful Stream Processing
	23. Tap a Stream
	24. Using Labels in a Stream
	25. Explicit Broker Destinations in a Stream
	26. Directed Graphs in a Stream
	26.1 Common application properties

	27. Stream applications with multiple binder configurations

	Part V. Tasks
	28. Introducing Spring Cloud Task
	29. The Lifecycle of a task
	29.1 Registering a Task Application
	29.2 Creating a Task
	29.3 Launching a Task
	29.4 Reviewing Task Executions
	29.5 Destroying a Task

	30. Task Repository
	30.1 Configuring the Task Execution Repository
	Local
	Task Application Repository

	30.2 Datasource

	31. Subscribing to Task/Batch Events
	32. Launching Tasks from a Stream
	32.1 TriggerTask
	32.2 Translator

	Part VI. Dashboard
	33. Introduction
	34. Apps
	34.1 Bulk Import of Applications

	35. Runtime
	36. Streams
	37. Create Stream
	38. Tasks
	38.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	38.2 Definitions
	Creating Task Definitions using the bulk define interface
	Launching Tasks

	38.3 Executions

	39. Jobs
	39.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	40. Analytics

	Part VII. Server Implementation
	41. Server Properties

	Part VIII. ‘How-to’ guides
	42. Configure Maven Properties
	43. Logging
	43.1 Deployment Logs
	43.2 Application Logs

	Part IX. Appendices
	Appendix A. Migrating from Spring XD to Spring Cloud Data Flow
	A.1 Terminology Changes
	A.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	A.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	A.4 Batch to Tasks
	A.5 Shell/DSL Commands
	A.6 REST-API
	A.7 UI / Flo
	A.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	A.9 Central Configuration
	A.10 Distribution
	A.11 Hadoop Distribution Compatibility
	A.12 YARN Deployment
	A.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix B. Building
	B.1 Documentation
	B.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix C. Contributing
	C.1 Sign the Contributor License Agreement
	C.2 Code Conventions and Housekeeping

