Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Kubernetes

Table of Contents

[T =] 1] o I = T4 (Yo ST U PP UPTRUPTPPR 1
I 115 = 1 = o o Y 2
1.1. Create a KUbernetes CIUSTENuviiiiiiiiiii e 2

1.2. Deploying using KUDECHo e 2

1.3, DEPIOY SKIPPET ..ttt ettt ettt 5

2. HelM INSTAIALIONeeeiiiiii et e et n e e e e e e e e e eeene 8
T BT o] (o) V71 0 [o ST 1 (=711 < T PP UP PPN 11
3.1. Create Streams WIthOUL SKIPPETccoeuuiiiiiiiiiei et 11

3.2. Create Streams With SKIPPEIiiieiii e e e 12

3.3. Accessing app from outside the CIUSTErcoooiiiiiiii e 12

4. DEPIOYING TASKS ...uiiiiiiiiie ettt ettt ettt e e e 15
5. Application ConfigUIrationiiiiiiii e e e 16
5.1. Memory and CPU SetlNGSccuuiiiiniiiieii et e et e e e ean e 16

5.2. ENVIronmMeNt VariabIESo.uuiiiiiiiiiei et 17

5.3. Liveness and Readiness Probesccoooiiiiiiiiiiice e 17

1IN o] o] o= 1o o < S PP UPTRUPIRPN 18
LY o 1 =Tt U= 19
LS T oo ¥ Tox o] o H PRSPPI 20
7. Microservice ArchiteCtural Style ... e 22
7.1. Comparison to other Platform architeCturesccooviiiiiiiiiiiii e 22

TS (=T T] To T aY o] o] [{ox= 11 1] 1S 24
8.1. Imperative Programming MOAElcouiiiiiiiiii e 24

8.2. Functional Programming Modelcoooiiiiiiiiiiii e 24

LSS (=TT 01 PP 25
9.1, TOPOIOGIES ettt et et ettt eaa s 25

S I O] o[l U 1] o Ty PP PPT PP 25

LS IR T - Vg 111 11 o 25

9.4. Message DeliVery GUAIANTEESviiuuiiiieii e eaa e 26

L0, ANAIYEICS oottt ettt eaaas 28
B = T QY o] o] o o P 29
12. DA FIOW SEIVET ...ooiiiiiiiii ettt ettt et et e et e e e e e e nnans 30
0 T = 4 To [o To T | ST PT O SUPP PP PUOPPPTRRPPIN 30
12.2. CUSTOMIZALION ...oiiiiiiiii it e e e e e r e e e nnreeas 30
L2.3. SECUIMLY ittt ettt ettt et e et et e et e et e et eean e e et e e eaaaee 31

R TR 1 1101 P 32
13.1. FAUIt TOIBIANCE .cooviiii e e s 32
13.2. ReSoUrce ManagemMENTc.uiuuiei it e et et e e e e e e e e e enaens 32
13.3. Scaling At FUNLIMEiiii e e et e et e et e e enie e eeees 32
RS Y o o] o= 1 a1 IV /=T ¢7 T 11V [32

V. Server CONFIQUIALIONiiuiiii ettt e e e et e et e e e e e et r e et e eaaaeeees 33
14, FEALUIE TOQUIES ..ouiiiiiiiii ettt ettt e et e e e 34
15. General ConfIQUIAtioNiiiuiioiie e e e e e e e e e e et e e e e 35
15.1. Using ConfigMap and SECIELScc.uiiiiiiiii i e 35

16. Database CONfIQUIALIONuiiiiiiiieeiei et e e e e aa s 37
Y- ol Y/ P 38
18. Spring Cloud Deployer for Kubernetes Propertiescoiveiiiiiiiiiiiiiiiiici e 39
18.1. USING DEPIOYMENTSvuiiiiiiiiieeiiii ettt e e e s 39

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes iii

Spring Cloud Data Flow Server for Kubernetes

18.2. CPU and Memory LIMILScoouuuiiiiiiiiieiiiii ettt et e e e e 39
18.3. Liveness and Rediness Probes Configurationsccccovviiiiiniiiiiinieiiieeecinn 39
18.4. Using SPRING_APPLICATION_JSONcuuiiiiiieiiiiiiiiiiie e 39

19. Monitoring and MaNAGEIMENTuuiiiiiii ettt e e e e e e e 40
19.1. INSPECHNG SEIVET LOUS ..evtniiiiiii ettt ettt e et e e e et e eeees 40
19.2. SIEAIMS ...ttt e e 40
TR T =] T PR 41

Y20 2 TP 42
b4 S =Y | @ o) o) 1N 43
21. Listing available COMMANGASoouuiiiiiiii e 44
P - o B Oe] 401] [1 To] o ISP UPPUTTRPN 45
23. White space and qUOLE TUIEScoeuniiiiii i e e 46
23.1. QUOtES and ESCAPING .. .coviriiiiiiiiiee et 46

S = | I] = 46

1] I 0T U671 g To T U1 1= 47

SpEL syntax and SPEL lIteralSoviiiiiiiiiiiiiii e 47

Putting it all tOGELNEr 48

B =T g PP 49
22 1o o To 18 ox 1T o PP 50
24.1. Stream PIPeling DSL ...ccoouuiiiiiii et 50

2 S Y o] o] [Tor= 11 To] T o] o] o =] £ 1T=T< PN 51

25. SHrea@m LIfECYCIE .. .ot e e et e e e 52
25.1. REQISIEr @ SIEAIM APP ettt et e e et e e et e e e et e eeeaba e eene 52
25.2. Register Supported Applications and Taskscccoevviiiiiiiiiiiiiiccie e 52
Whitelisting application Propertiesov oo eiiiiieee e 54

Creating and using a dedicated metadata artifactccoooeeiivviiiiiin e, 54

Using the companion artifactccoceiiiiiiiiiii e 55

25.3. Creating custom appliCationsiiiiiiiiiiiiiiii e 56
25.4. Creating @ SEAIMuuiiiiiii et e e e et e e et eeeaa s 56

PN o] o] o= LuTo] g T o] o] o1=T ¢ 11T N 57

Common appliCation PrOPEITIESueierrenieieiii ettt e e e eeeens 58

25.5. DEPIOYING 8 SIIEAMciiiiii ettt e e ettt e et e e et e e e et e e e eete e eeeae 58
[D=T 0] (o) VA aaT=T gl il o] o] o1=T 11T 59

Passing iNStANCE COUNTuuiiiiiiiii i 60

Inline vs file based Propertiesc.ocoeuuii i 60

Passing application Propertiescccvieiiiieiiiieiiii e e e e 61

Passing Spring Cloud Stream Propertiescocuueveieriiiereiiiieeeeieee e 61

Passing per-binding producer consumer propertiesccceeeveveveineeeennennn. 62

Passing stream partition Propertiesccccveviuiieiiiieiiii e ee e e e 62

Passing application content type propertiesccooeveveiieieiiinneiiiiineeeeien 63

Overriding application properties during stream deployment 64

25.6. DESIrOYiNg @ SIHEAM ...iuuuiiiiiiiii i e e et e e e e e e e e e et e e e eaaas 64
25.7. UNdePloyiNg SIrEAMS ... ciiiiiieiiiiie ettt ettt 64

26. Stream Lifecycle With SKIPPEToouuiii e 65
26.1. Creating and Deploying a Streamcooiiiiiiiiiiiii e e 65
26.2. UPdAting @ SEIIEAIM ...o.uuiiiiiiiii ettt ettt e et e et e e s 65
B TS (== 10 B =T €71 1S 66
26.4. Stream ManIfESSooieiiiiiiiii e 66
26.5. ROIIDACK @ SIrEAM . .oeiiit i e 67
AN AN o] o] o= 11o] ¢ I @20 11 1 AR PP 67

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes iv

Spring Cloud Data Flow Server for Kubernetes

26.7. SKipper's Upgrade Strategyocoeeueieiiiiiieieiii ettt e e e e 67

S 1= 10 T 5 1 T 68
A =Y o B WY 1 (=T o PP 68
27.2. Using Labels in @ SIreamoooiiiiiiiiii et 68
27.3. Named DeSHNALIONSiiiiieiiieii e e e e e e e e e e et e e e eenaae 68
27.4. Fan-in @nd FAN-0ULcoiiiiiiiiiiiiii et e e e e e e e ennnee 69

28. Stream Java DSL ... e 70
S T T @ Y=Y 1 70
28.2. JAVA DSL StYIES ..uiiiiiiiii i 71

29. Stream applications with multiple binder configurationscccoeeviiiiiiinniiiiiin e, 74
O = T 4]][PR 75
30.1. Simple Stream ProCESSINGuiviiiiiiii et e e e e e e e e e e e e e et eeaneaees 75
30.2. Stateful Stream ProCESSINGc.uuu ittt ettt ettt eeer e aees 75
30.3. Other Source and Sink AppPliCation TYPESuiviiiiiiiieiiiii e 76

VII. Streams deployed USING SKIPPETciuuiiii et e e e e e e e e et e et e et e e eeaens 77
RV PO =T PRSI 82
G 30 I 1o To 11 o3 1T} o 83
32. The LIfeCyCle Of @ TaASK ...cccuiiiiiici e e e et eeaaees 84
32.1. Creating a Task APPLICALIONoiiiiiiiieiii e 84
Task Database Configurationc.oiioiiiiiii i 84

32.2. Registering a Task APPlICALIONcouuiiiiiiiiiiic e 85
32.3. Creating a Task DefiNitioNiveiiiiiieiiii e 86
32.4. LAUNCHING @ TASK ...uiiiiiiiiiieiii et e 86
Common application PropPertiesc..vciuiiiiiiii e e 86

32.5. Reviewing Task EXECULIONSccoiuiiiiiiiiiieieiii et e et e e e e 87
32.6. Destroying @ Task Definitioncoouuiiiiiiiiiii e 87

33. Subscribing to Task/BatCh EVENLScccouiiiiiiiiiii e 89
34, COMPOSEA TASKS ...eiitiiiiiiiti ettt ettt e e et e ettt e e e e et e e e ee e e e eeba e aeees 20
34.1. Configuring the Composed Task RUNNETcoooiiiiiiiiiii i 90
Registering the Composed Task RUNNETcocouiiiiiiiiiiii e 90
Configuring the Composed Task RUNNENcoouiiiiiiiiiiicii e 90

34.2. The Lifecycle of a Composed Taskcoooieiiiiiiiiiiii e 90
Creating @ CompoSEd TASKccuuiiiiiiiiiiieii e e e e e e e eaees 90

Task Application Parametersuiieiiiiiiieiiii e 91

Launching @ Composed Taskoviiiiiiiiiiii e 91

EXIT STAIUSES ...uuiii ettt e et e 91

Destroying a CompoSed TaASKcccuuiiiiiiiieiiiiie e 92

Stopping & COMPOSEA TASKueiiiiiieiiii e 92
Restarting a Composed TaSKcc.uiiiiiiiiiiiiiiie e e 92

35. COMPOSEA TASKS DSL ...iiiiiiieiiiii ettt et e e e e et e e e erb e e eene e eees 93
o I @ Lo 1o g = | I =3 =T od 1 11T o 93
35.2. Transitional EXECULIONcoouiiiiiiiieeeiiiiiiie et 95
BaSIC TranSItioNc..iiiiiiiii e 95

Transition With @ WIlACardoiiiiiiiiii e e 96

Transition With a Following Conditional EXECUtiONccoccuiiiiiiiiiiiiieiiieeeieee, 96

35.3. SPHE EXECULION .oouiiiiiiiie ettt e et e e 97

Split Containing Conditional EXECULIONviiiiiiiiiiiiiieeci e 98

36. Launching Tasks from @ SIreamcoiiiiiiiii i e e e 100
36.1. THOGEITASK ettt ettt e e et e s 100
36.2. TaskLaunchRequest-transformcoooiiiiiiiiii e 101

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes Y

Spring Cloud Data Flow Server for Kubernetes

36.3. Launching a Composed Task From a Streamccooeevviiiiiiiiinneiiiiineeeeiiee 101

G = 11 o] o Yo = 1o 103
K 10110 To (1Tt i o] o R TP P TP TIPSR 104
K T Y o] S TP PRTPPTRPIN 106
38.1. Bulk Import of APPIICALIONSccovuniiiiiiieeee e 106

3. RUNTIMIE ottt e e ettt e e bt e e e e et e e e bbb r e e e e e e eeentbenneaeeeaeeens 108
0. SEIEAIMNS ...ieiei ittt ettt e ettt ettt a e e e e e et h e h e et et e e ea e e e e aen 109
O O == 1 (IS (== 1 o 111
N - T RSP PP SRRP 112
A L] o TP PT T PPTPPTPP 112
Create a Task Definition from a selected Task ApPPovvvviiiiiiiiiiiniei e, 113

View Task APP DELailSccuuiiiiiiiiiii e 113

A B 1Y {11 T 1 PP 113
Creating Task Definitions using the bulk define interfaceccccoooiiiiiiiinnnn. 113

Creating Composed Task Definitionscccooviiiiiiiiiiiin e, 115
LAUNCNING TASKS .. it e e 116

A T (= o U o] o 116

43, JODS ittt e e et e e e e e enaraa 117
43.1. LiSt JOD EXECULIONSuuiiiiiieiieiie ettt ettt e s 117

JOb eXeCUtioN dEeLAlSiieieii e 118

Step eXeCUution AEtalScoivuiiiiiii i 118

Step EXECULION PrOQIESSciiiiiiieiiiii ettt e ettt ettt e et e e et eeeena e eees 119

N N - 1)1 (o= PP 120
X REST API GUITE ...ttt e e e et e bbb e e e e e et e e n bt s e e e e aeeenns 121
DTN o] o 1= g o [[of = T TP UPPPTTPPPPIN 122
AL THOW-TO' QUILES ..ottt et e et e e e e e 123
0 R 1 To o 1T TP 123
DEPIOYMENT LOGS ..eetnieiiiti ettt et e et e et e e et e e 123
YY) o] Tor=1 1o o N e o PP 123

B. Data FIOW TEMPIALEiiiiii e e e e e e e e e aan s 124
B.1. Using the Data FIOW TemMPIatecoouuiiiiiiiiieiiii e 124

C. SPriNG XD 10 SCDF ...ttt et e et et e e 126
C.1. Terminology ChanQEScccuuiiiiiiiiii e e e e e eens 126

C.2. Modules tO APPIICALIONSuuuiiiiiiieieii et e 126

OIUS] (0] o I o] o] o%=1 o] o PP 126
Application REGISITAtiONcoouiiiiiiiiii e e 126
APPIICAtION PrOPEITIES ...ciiviieiiiii et 127

C.3. Message BUS 10 BINUEIScieuiiiiiiii ettt e eees 127
MESSAGE BUS vttt 127

2] o = = PRSP 127

= T 1= o B O o =T o 1= 128

D1 = Tox (=To €] =1] 1= 128

C.4. BAtCh 10 TASKS ..uiiiiiiiiiii it e et e e e 128

C.5. Shell/DSL COMMANGASciueiiiiiieiiieee e e e e e e e e e e e e e e e eean s 129

C.68. REST AP L.t e et e 129

C.7. UL T FIO ettt e e e e e et e e e e e e eanae 129

C.8. Architecture COMPONENLSoiiiiiiieeiii ettt e e et e et e e 130

pAo o] (C=T=T 01T PP PPN 130

RDBIMS .t ettt a e a b 130

=0 1 130

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes Vi

Spring Cloud Data Flow Server for Kubernetes

ClIUSEEN TOPOIOGY ettt et 130

C.9. Central ConfiQUIALtIONuieiiiuiieieiie et e e 130
C.10. DISHIIDULION ..ttt e e e e e e e e e s b e e e e e 130
C.11. Hadoop Distribution Compatibilityooiiiiiiiiiiiiii e 131
C.12. YARN DEPIOYMENT ...euiiiiiiiiie ittt e e e 131
C.13. Use Case COMPAIISONcccuuieiiiieiiiieiiiieeeiie et ee et a e e et e e st e e st eeaaeeat e e et eranaeenes 131

USE CaASE L oiiiiiiiiiiii e 131

USE CASE HH2 oottt 132

USE CaSE H3 ittt 132

D. BUIAING .t 134
[20 I To Lol U =Y o 7= 4o] ET PSP 134

D.2. Working With the COOEcovniiiii e 134
Importing into eclipse with M2eClipSe ... 134

Importing into eclipse without M2ecClipSeccoouiiiiiiiii e 135

L O] o1 11011 1 o T 136
E.1. Sign the Contributor License AgQree€meNntovviiiiiiiiiiiiieeeiii e 136

E.2. Code Conventions and HOUSEKEEPINGcoveuuuiiiiiiiiiiiiiiieeeei e 136

1.3.0.M3

Spring Cloud Data Flow
Server Kubernetes Vil

Part |. Getting Started

Spring Cloud Data Flow is a toolkit for building data integration and real-time data processing pipelines.

Pipelines consist of Spring Boot apps, built using the Spring Cloud Stream or Spring Cloud Task
microservice frameworks. This makes Spring Cloud Data Flow suitable for a range of data processing
use cases, from import/export to event streaming and predictive analytics.

This project provides support for using Spring Cloud Data Flow with Kubernetes as the runtime for these
pipelines with apps packaged as Docker images.

http://cloud.spring.io/spring-cloud-dataflow/

Spring Cloud Data Flow Server for Kubernetes

1. Installation

In this section we will install the Spring Cloud Data Flow Server on a Kubernetes cluster. Spring Cloud
Data Flow depends on a few services and their availability. For example, we need an RDBMS service
for the app registry, stream/task repositories and task management. For streaming pipelines, we also
need a transport option such as Apache Kafka or Rabbit MQ. In addition to this, we need a Redis service
if the analytics features are in use.

@ Important

This guide describes setting up an environment for testing Spring Cloud Data Flow on Google
Kubernetes Engine and is not meant to be a definitive guide for setting up a production
environment. Feel free to adjust the suggestions to fit your test set-up. Please remember that
a production environment requires much more consideration for persistent storage of message
gueues, high availability, security etc.

@ Note

Currently, only apps registered with a - -uri property pointing to a Docker resource are
supported by the Data Flow Server for Kubernetes.

Note that we do support Maven resources for the - - met adat a- uri property.

E.g. the below app registration is valid:

dat af | ow. >app register --type source --nanme time --uri docker://springcl oudstreantime-source-
rabbit: 1. 3. 0. RELEASE --netadata-uri maven://org. springframework. cl oud. stream app: ti me-source-
rabbit:jar: metadata: 1. 3. 0. RELEASE

but any app registered with a Maven, HTTP or File resource for the executable jar (using a - -
uri property prefixed with maven: //,http:// orfile://)isnot supported.

1.1 Create a Kubernetes cluster

The Kubernetes Picking the Right Solution guide lets you choose among many options so you can pick
one that you are most comfortable using.

All our testing is done using the Google Kubernetes Engine that is part of the Google Cloud Platform.
That is a also the target platform for this section. We have also successfully deployed using Minikube
and we will note where you need to adjust for deploying on Minikube.

@ Note

When starting Minikube you should allocate some extra resources since we will be deploying
several services. We have used m ni kube start --cpus=4 --nmenory=4096 to start.

The rest of this getting started guide assumes that you have a working Kubernetes cluster and a
kubect | command line utility. See the docs for installation instructions: Installing and Setting up kubectl.

1.2 Deploying using kubectl

1. Get the Kubernetes configuration files.

There are sample deployment and service YAML files in the https://github.com/spring-cloud/spring-
cloud-dataflow-server-kubernetes repository that you can use as a starting point. They have the

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 2

https://kubernetes.io/docs/setup/pick-right-solution/
https://cloud.google.com/kubernetes-engine/
https://kubernetes.io/docs/getting-started-guides/minikube/
http://kubernetes.io/docs/user-guide/prereqs/
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

Spring Cloud Data Flow Server for Kubernetes

required metadata set for service discovery by the different apps and services deployed. To check
out the code enter the following commands:

$ git clone https://github.cont spring-cloud/spring-cloud-datafl ow server-kubernnet es
$ cd spring-cl oud-dat af | ow server - kuber net es
$ git checkout naster

2. Deploy Rabbit MQ.

The Rabbit MQ service will be used for messaging between modules in the stream. You could also
use Kafka, but, in order to simplify, we only show the Rabbit MQ configurations in this guide.

Run the following commands to start the Rabbit MQ service:

$ kubect!| create -f src/kubernetes/rabbitng/

You can use the command kubectl get all -1 app=rabbitng to verify that the
deployment, pod and service resources are running. Use the command kubect| delete all -
| app=rabbi t ng to clean up afterwards.

3. Deploy MySQL.

We are using MySQL for this guide, but you could use Postgres or H2 database instead. We include
JDBC drivers for all three of these databases, you would just have to adjust the database URL and
driver class name settings.

@ Important

You can modify the password in the src/kubernetes/nysqgl/mnmysql-
depl oyrment . yan files if you prefer to be more secure. If you do modify the password
you will also have to provide it base64 encoded in the sr ¢/ kuber net es/ nysql / mysql -
secrets. yanl file.

Run the following commands to start the MySQL service:

$ kubect| create -f src/kubernetes/nysql/

You can use the command kubect| get all -1 app=mysqgl to verify that the deployment, pod
and service resources are running. Use the command kubect| del ete all, pvc, secrets -
| app=nysql to clean up afterwards.

4. Deploy Redis.

The Redis service will be used for the analytics functionality. Run the following commands to start
the Redis service:

‘$ kubect| create -f src/kubernetes/redis/

@ Note

If you don't need the analytics functionality you can turn this feature off by changing
SPRI NG_CLOUD_DATAFLOW FEATURES_ANALYTI CS_ENABLED to false in the src/
kuber net es/ server/server-depl oynent.ym file. If you don't install the Redis
service then you should also remove the Redis configuration settings in sr ¢/ kuber net es/
server/server-confi g-kaf ka. yml mentioned below.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 3

Spring Cloud Data Flow Server for Kubernetes

You can use the command kubect| get all -1 app=redi s to verify that the deployment, pod
and service resources are running. Use the command kubect| delete all -1 app=redis
to clean up afterwards.

5. Deploy the Metrics Collector.

The Metrics Collector will provide message rates for all deployed stream apps. These message rates
will be visible in the Dashboard Ul. Run the following commands to start the Metrics Collector:

$ kubect| create -f src/kubernetes/netrics/nmetrics-depl oynent-rabbit.yan
$ kubect| create -f src/kubernetes/netrics/netrics-svc.yani

You can use the command kubect| get all -1 app=netri cs to verify that the deployment, pod
and service resources are running. Use the command kubect| delete all -1 app=netrics
to clean up afterwards.

6. Deploy Skipper

This is an optional step. Deploy Skipper if you want the added features of upgrading and rolling
back Streams since Data Flow delegates to Skipper for those features. For more details, review the
reference guide for a complete overview and the feature capabilities. See the section Section 1.3
“Deploy Skipper” for details.

7. Deploy the Data Flow Server.

@ Important

You should specify the version of the Spring Cloud Data Flow server that you want to deploy.

The deployment is defined in the sr ¢/ kuber net es/ server/ server - depl oynent . yani file. To
control what version of the Spring Cloud Data Flow server that gets deployed you should modify the
tag used for the Docker image in the container spec:

spec:
cont ai ners:
- nane: scdf-server

i mage: springcl oud/ spring-cl oud-datafl ow server-kubernetes: | atest O
i magePul | Pol i cy: Al ways

O changel at est tothe version you would like. This document is based on the 1. 3. 0. MB version
so the recommended image tag to use for thisis | at est .

The Data Flow Server uses the Fabric8 Java client library to connect to the Kubernetes cluster.
We are using environment variables to set the values needed when deploying the Data Flow server
to Kubernetes. We are also using the Fabric8 Spring Cloud integration with Kubernetes library to
access Kubernetes ConfigMap and Secrets settings. The ConfigMap settings are specified in the
src/ kuber net es/ server/server-config-rabbit.yam file and the secrets are in the src/
kuber net es/ mysql / mnysql - secrets. yam file. If you modified the password for MySQL you
should have changed it in the sr c/ kuber net es/ nysql / mysql - secret s. yan file. Any secrets
have to be provided base64 encoded.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 4

http://cloud.spring.io/spring-cloud-skipper/
https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.M2/reference/htmlsingle/#overview
https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/spring-cloud-kubernetes
http://kubernetes.io/docs/user-guide/configmap/
http://kubernetes.io/docs/user-guide/secrets/

Spring Cloud Data Flow Server for Kubernetes

@ Note

We are now configuring the Data Flow server with file based security and the default user
is ‘'user' with a password of ‘password'. Feel free to change this in the sr c/ kuber net es/
server/server-config-rabbit.yan file.

@ Note

The default memory for the pods is set to 1024Mi. Update the value in the src/
kuber net es/ server/ server-depl oynent . yam file if you expect most of your apps
to require more memory.

8. Deploy the Spring Cloud Data Flow Server for Kubernetes using the Docker image and the
configuration settings.

$ kubect| create -f src/kubernetes/server/server-config-rabbit.yan
$ kubect| create -f src/kubernetes/server/server-svc.yan
$ kubect| create -f src/kubernetes/server/server-depl oyment.yamn

You can use the command kubect! get all -1 app=scdf-server to verify that the
deployment, pod and service resources are running. Use the command kubect| delete all,cm
-1 app=scdf - server to clean up afterwards.

Use the kubect| get svc scdf-server command to locate the EXTERNAL_IP address
assigned to scdf - ser ver, we will use that later to connect from the shell.

$ kubect!| get svc
NAME CLUSTER- | P EXTERNAL- | P PORT(S) AGE
scdf -server 10.103. 246. 82 130. 211. 203. 246 80/ TCP 4m

So the URL you need to use is in this case 130.211.203.246

If you are using Minikube then you don’t have an external load balancer and the EXTERNAL-IP will
show as <pendi ng>. You need to use the NodePort assigned for the scdf - ser ver service. Use
this command to look up the URL to use:

$ mini kube service --url scdf-server
http://192.168. 99. 100: 31991

1.3 Deploy Skipper

This is an optional step. Deploy Skipper if you want the added features of upgrading and rolling back
Streams since Data Flow delegates to Skipper for those features.

The Deployment resource for Skipper is shown below:

api Versi on: extensions/vlbetal
ki nd: Depl oynent
net adat a
nane: ski pper
| abel s:
app: ski pper
spec
replicas: 1
tenpl ate:
net adat a
| abel s:
app: ski pper
spec

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 5

http://130.211.203.246
http://cloud.spring.io/spring-cloud-skipper/

Spring Cloud Data Flow Server for Kubernetes

cont ai ners:

- nane: skipper
i mage: springcl oud/ spring-cl oud-ski pper-server:1.0.0. BU LD SNAPSHOT
i magePul | Pol i cy: Al ways

ports:
- containerPort: 80
resources:
limts:
cpu: 1.0
nenory: 1024M
requests:
cpu: 0.5
nenory: 640M
env:
- name: SPRI NG_APPLI CATI ON_JSON
val ue: "{\"spring.cloud. ski pper.server.enable.local.platform" : false,

\"spring. cl oud. ski pper . server. pl at f orm kuber net es. account s. m ni kube. envi ronnent Vari abl es\ " :

\ " SPRI NG_RABBI TMQ_HOST=${ RABBI TMQ_SERVI CE_HOST}, SPRI NG_RABBI TMQ_PORT=${ RABBI TMQ_SERVI CE_PORT}\ ",
\"spring. cl oud. ski pper. server. pl at f or m kuber net es. account s. m ni kube. menory\" : \"1024M\",
\"spring. cl oud. ski pper. server. pl at f or m kuber net es. account s. m ni kube. cr eat eDepl oyment\" : true}"

@ Note

Skipper includes the concept of platforms, so it is important to define the "accounts" based on
the project preferences. In the above YAML file, the accounts map to mi ni kube as the platform.
This can be modified, and of course, you can have any number of platform definitions. More
details are in Spring Cloud Skipper reference guide.

@ Note

If you'd like to change the version of Skipper server, you can do so by updating the image from
springcl oud/ spri ng-cl oud- ski pper-server: 1. 0. 0. BUI LD- SNAPSHOT to a desired
docker tag.

@ Note

If you'd like to orchestrate stream processing pipelines with Apache Kafka as the messaging
middleware, you must change the value for

"{\"spring.cloud. ski pper. server. pl atform kubernet es. accounts. m ni kube. envi ronment Vari abl es\" :
\ " SPRI NG_CLOUD_STREAM KAFKA_BI NDER_BROKERS=${ KAFKA_SERVI CE_HOST} : ${ KAFKA_SERVI CE_PORT},
SPRI NG_CLOUD_STREAM KAFKA BI NDER_ZK_NODES=${ KAFKA_ZK_SERVI CE_HOST} : ${ KAFKA ZK_SERVI CE_PORT}\ "} "

The resource for the Skipper service is shown below:

api Version: vl
ki nd: Service
net adat a:
nane: ski pper
| abel s:
app: ski pper
spec:
If you are running k8s on a |ocal dev box or using minikube, you can use type NodePort instead
type: LoadBal ancer
ports:
- port: 80
targetPort: 7577 # port used by 'skpr' (i.e., 7577)
sel ector:
app: ski pper

Run the following commands to start Skipper as the companion server for Spring Cloud Data Flow:

$ kubect| create -f src/kubernetes/skipper/skipper-depl oynent. yani
$ kubect| create -f src/kubernetes/skipper/skipper-svc. yani

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 6

https://docs.spring.io/spring-cloud-skipper/docs/current/reference/htmlsingle/#platforms

Spring Cloud Data Flow Server for Kubernetes

You can use the command kubect| get all -1 app=ski pper to verify that the deployment, pod
and service resources are running. Use the command kubect| delete all -1 app=skipper
to clean up afterwards.

Use the kubect| get svc scdf - server command to locate the EXTERNAL _IP address assigned
to scdf - ser ver, we will use that later to connect from the shell.

$ kubect!| get svc
NAME CLUSTER- | P EXTERNAL- | P PORT(S) AGE
ski pper 10. 103. 246. 83 130. 211. 203. 247 80/ TCP 4m

So the URL you need to use is in this case is: 130.211.203.247

If you are using Minikube then you don’t have an external load balancer and the EXTERNAL-IP will show
as <pendi ng>. You need to use the NodePort assigned for the ski pper service. Use this command
to look up the URL to use:

$ mini kube service --url skipper
http://192.168.99. 100: 32060

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 7

http://130.211.203.247

Spring Cloud Data Flow Server for Kubernetes

2. Helm Installation

Spring Cloud DataFlow offers a Helm Chart for deploying the Spring Cloud Data Flow server and its
required services to a Kubernetes Cluster.

@ Note
The helm chart is currenlty only available for the 1.2 GA version of Data Flow for Kubernetes.

The following instructions cover how to initialize Hel m and install Spring Cloud Data Flow on a
Kubernetes cluster.

1. Installing Helm

Hel mis comprised of 2 components: one is the client (Helm) the other is the server (Tiller). The Hel m
client is run on your local machine and can be installed using the following instructions found here. If
Tiller has not been installed on your cluster, execute the following Hel mclient command:

‘$ hel minit

@ Note

To verify that the Ti | | er pod is running execute the following command: kubect| get
pod --namespace kube-systemand you should seethe Ti | | er pod running.

2. Installing the Spring Cloud Data Flow Server and required services.

Before we can run the Spring Cloud Data Flow Chart, we need to access the incubator repository
where it currently resides. To add this repository to our Hel minstall, execute the following commands:

hel m repo add incubator https://kubernetes-charts-incubator. storage. googl eapi s.com
hel m repo update

To install Spring Cloud Data Flow and its required services execute the following:

hel minstall --name ny-rel ease incubator/spring-cloud-data-flow

@ Note

If you are running on a cluster without a load balancer, such as Minikube,
then you should override the service type to use NodePort. Add the --set
server. service.type=NodePort override:

hel minstall --nane ny-rel ease --set server.service.type=NodePort \
i ncubat or/ spring-cl oud- dat a- f | ow

If you wish specify a different version of Spring Cloud Data Flow besides the current release, you
can set the server. ver si on as shown below:

helminstall --nane ny-rel ease incubator/spring-cloud-data-flow --set server.versi on=<versi on-you-
want >

@ Note

To see all of the settings that can be configured on the Spring Cloud Data Flow chart, check
out the README.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 8

https://helm.sh/
https://github.com/kubernetes/helm/blob/master/README.md#install
https://github.com/kubernetes/charts/tree/master/incubator/spring-cloud-data-flow/README.md

Spring Cloud Data Flow Server for Kubernetes

You should see the following output:

NAME: nmy-rel ease

LAST DEPLOYED: Tue Cct 3 10:33:50 2017
NAMVESPACE: def aul t

STATUS: DEPLOYED

RESOURCES:

==> v1/ Confi gMap

NAME DATA ACE
ny-rel ease-dat a-fl owserver 1 2s

==> v1/ Per si st ent Vol uneCl ai m

NAME STATUS VOLUME CAPACI TY ACCESSMODES STORAGECLASS AGE
nmy-rel ease- nysql Pendi ng standard 2s
nmy-rel ease-rabbitng Pending standard 2s
ny-rel ease-redi s Pending standard 2s

==> v1/ Servi ce

NAVE CLUSTER-| P EXTERNAL- | P PORT(S) AGE
nmy-rel ease- nysql 10. 59. 247. 118 <none> 3306/ TCP 2s
nmy-rel ease-rabbi tng 10. 59. 249. 211 <none> 4369/ TCP, 5672/ TCP, 25672/ TCP, 15672/ TCP 2s
ny-rel ease-redi s 10. 59. 242. 108 <none> 6379/ TCP 2s
ny-rel ease-data-flow nmetrics 10.59.247.121 <none> 80/ TCP 2s
ny-rel ease- dat a- f | ow server 10. 59. 249. 224 <pendi ng> 80: 30859/ TCP 2s

==> vibet al/ Depl oynent

NAME DESI RED CURRENT UP-TO- DATE AVAI LABLE AGE
ny-rel ease- nysql 1 1 1 0 2s
ny-rel ease-rabbi tnqg 1 1 1 0 2s
ny-rel ease-redis 1 1 1 0 2s
nmy-rel ease-data-flownetrics 1 1 1 0 2s
nmy-rel ease-dat a- f | ow server 1 1 1 0 1s

==> v1/ Secr et

NAME TYPE DATA AGE
ny-rel ease- nysql Opaque 2 2s
nmy-rel ease-rabbi tng Qpaque 2 2s
nmy-rel ease-redi s Opaque 1 2s
nmy-rel ease-data-fl ow Opaque 2 2s

NOTES:
1. Get the application URL by running these commands:
NOTE: It may take a few mnutes for the LoadBal ancer |IP to be avail able.
You can watch the status of the server by running 'kubectl get svc -w ny-rel ease-data-

flow server'

export SERVI CE_| P=$(kubect| get svc --nanespace default ny-rel ease-data-flow server -o
jsonpat h="{. status. | oadBal ancer.ingress[0].ip}")

echo http://$SERVI CE_I P: 80

You have just created a new release in the default namespace of your Kubernetes cluster. The notes
section gives instructions for connecting to the newly installed server. It takes a couple of minutes
for the application and its required services to start up. You can check on the status by issuing a
kubect| get pod -wcommand. Wait for the READY column to show "1/1" for all pods. Once
that is done, you can connect to the Data Flow server using the external ip listed via a kubect |
get svc ny-rel ease-dat a-fl ow server command. The default username is user, and the
password is passwor d.

@ Note

If you are running on Minikube then you can use the following command to get the URL for
the server:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 9

Spring Cloud Data Flow Server for Kubernetes

m ni kube service --url ny-rel ease-data-fl ow server

To see what Hel mreleases you have running, you can use the hel m | i st command. When it is
time to delete the release, run hel m del et e ny- r el ease. This removes any resources created for
the release but keeps release information so you can rollback any changes using a hel mr ol | back
ny-rel ease 1 command. To completely delete the release and purge any release metadata, use
hel m del ete ny-rel ease --purge.

@ Important

There is an issue with generated secrets used for the required services getting rotated on
chart upgrades. To avoid this set the password for these services when installing the chart.
You can use:

helminstall --nane ny-rel ease \
--set rabbitng.rabbitngPasswor d=rabbitpwd \
--set nysql . nmysqgl Root Passwor d=nysql pwd \
--set redis.redi sPassword=redi spwd i ncubat or/spring-cl oud-dat a-fl ow

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 10

https://github.com/kubernetes/charts/issues/980

Spring Cloud Data Flow Server for Kubernetes

3. Deploying Streams

3.1 Create Streams without Skipper

1. Download and run the Spring Cloud Data Flow shell.

wget http://repo.spring.io/ mlestone/org/springframework/cloud/spring-cloud-dataflowshell/1.3.0. M3/
spring-cl oud- dat af | owshel | -1. 3. 0. M3. j ar

$ java -jar spring-cloud-dataflowshell-1.3.0.M.jar

That should give you the following startup message from the shell:

A e O I A e
\ L I R R A O e U
SN G A
| L [1 | VO 1 VO O
— I - I — -
N W I N IR B (N U U U U U
T 1 A [O (A W S A U A A U U U S U
[o e G e A R e e e N L
[F N NN N NN 111111
1.3.0.MB

Wl cone to the Spring Coud Data Flow shell. For assistance hit TAB or type "hel p".
server - unknown: >

Configure the Data Flow server URI with the following command (use the URL determined above in
the previous step) using the default user and password settings:

server - unknown: >dat af | ow confi g server --usernane user --password password --uri
http://130.211. 203. 246/

Successfully targeted http://130.211. 203. 246/
dat af | ow: >

2. Register the Docker with Rabbit binder versions of the t i me and | og apps using the shell.

dat af | ow: >app regi ster --type source --nanme tinme --uri docker://springcl oudstreanti me-source-
rabbit:1.3.0. RELEASE --netadata-uri maven://org. springfranmework. cl oud. stream app: ti me-sour ce-
rabbit:jar: metadata: 1. 3. 0. RELEASE

dat af | ow. >app register --type sink --nanme log --uri docker://springcl oudstreani| og-sink-
rabbit: 1. 3. 0. RELEASE --netadata-uri maven://org. springfranmework. cl oud. stream app: | 0g- si nk-
rabbit:jar: metadata: 1. 3. 0. RELEASE

3. Alternatively, if you would like to register all out-of-the-box stream applications built with the Rabbit

binder in bulk, you can with the following command. For more details, review how to register
applications.

‘dataflow>app inport --uri http://bit.ly/Celsius-GA-stream applications-rabbit-docker

4. Deploy a simple stream in the shell

‘dataflow>streamcreate --name ticktock --definition "tine | |og" --deploy

You can use the command kubect| get pods to check on the state of the pods corresponding to

this stream. We can run this from the shell by running it as an OS command by adding a "!I" before
the command.

dat af | ow: >! kubect| get pods -1 rol e=spring-app

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 11

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/html/spring-cloud-dataflow-register-apps.html
http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/html/spring-cloud-dataflow-register-apps.html

Spring Cloud Data Flow Server for Kubernetes

conmand i s: kubect| get pods -1 rol e=spring-app

NAVE READY STATUS RESTARTS AGE
ticktock-10g-0-qnk72 1/1 Runni ng 0 2m
ticktock-tine-ré5cn 1/1 Runni ng 0 2m

Look at the logs for the pod deployed for the log sink.

dat af | ow. >! kubect!| |ogs ticktock-Iog-0-qgnk72

command i s: kubect!l 1ogs ticktock-Iog-0-qnk72

2017-07-20 04:34:37.369 INFO1 --- [tinme.ticktock-1] |og-sink
07/20/ 17 04:34:37

2017-07-20 04:34:38.371 INFO 1 --- [tine.ticktock-1] |og-sink
07/ 20/ 17 04:34:38

2017-07-20 04:34:39.373 INFO 1 --- [tine.ticktock-1] |o0g-sink
07/20/ 17 04: 34: 39

2017-07-20 04:34:40.380 INFO1 --- [tinme.ticktock-1] |og-sink
07/20/ 17 04:34: 40

2017-07-20 04:34:41.381 INFO 1 --- [tine.ticktock-1] |og-sink
07/ 20/ 17 04:34: 41

5. Destroy the stream

dat af | ow. >stream destroy --nane ticktock

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, add the options - - pr evi ous to view last terminated container log. You can also get more detailed
information about the pods by using the kubct| descri be like:

kubect| describe pods/ticktock-1o0g-qgnk72

@ Note

If you need to specify any of the app specific configuration properties then you might use
"long-form" of them including the app specific prefix like - - j dbc. t abl eNanme=TEST_DATA.
This formis required if you didn’t register the - - met adat a- ur i for the Docker based starter
apps. In this case you will also not see the configuration properties listed when using the app
i nf o command or in the Dashboard GUI.

3.2 Create Streams with Skipper

Refer to the section Part VII, “Streams deployed using Skipper” for more information.

3.3 Accessing app from outside the cluster

If you need to be able to connect to from outside of the Kubernetes cluster to an app that you
deploy, like the htt p-source, then you need to use either an external load balancer for the
incoming connections or you need to use a NodePort configuration that will expose a proxy port on
each Kubetnetes Node. If your cluster doesn’t support external load balancers, like the Minikube,
then you must use the NodePort approach. You can use deployment properties for configuring the
access. Use depl oyer . htt p. kuber net es. cr eat eLoadBal ancer =t r ue for the app to specify
that you want to have a LoadBalancer with an external IP address created for your app’s service. For
the NodePort configuration use depl oyer. htt p. kuber net es. cr eat eNodePor t =<por t > where
<por t > should be a number between 30000 and 32767.

1. Register the ht t p- sour ce, you can use the following command:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 12

Spring Cloud Data Flow Server for Kubernetes

dat af | ow: >app regi ster --type source --nanme http --uri docker: springcl oudstreani http-source-
rabbit:1.3.0. RELEASE --netadata-uri maven://org. springfranmework. cl oud. st ream app: htt p-sour ce-
rabbit:jar: metadata: 1. 3. 0. RELEASE

2. Createthe http | | og stream without deploying it using the following command:

‘dataflow>streamcreate --name test --definition "http | |og

3. If your cluster supports an External LoadBalancer for the htt p- sour ce, then you can use the
following command to deploy the stream:

‘ dat af | ow. >stream depl oy test --properties "depl oyer. http. kubernetes. creat eLoadBal ancer =true"

Wait for the pods to be started showing 1/1 in the READY column by using this command:

dat af | ow: >! kubect| get pods -1 rol e=spring-app
command i s: kubectl get pods -1 rol e=spring-app

NAME READY STATUS RESTARTS AGE
test-http-2bgx7 1/1 Runni ng 0 3m
test-log-0-tglmt 1/1 Runni ng 0 3m

Now, look up the external IP address for the htt p app (it can sometimes take a minute or two for
the external IP to get assigned):

dat af | ow. >! kubect| get service test-http

conmand is: kubect| get service test-http

NAVE CLUSTER- | P EXTERNAL- | P PORT(S) ACE
test-http 10.103. 251. 157 130. 211.200.96 8080/ TCP 58s

4. If you are using Minikube, or any cluster that doesn’t support an External LoadBalancer, then you
should deploy the stream with a NodePort in the range of 30000-32767. Use the following command
to deploy it:

dat af | ow. >stream depl oy test --properties "deployer. http. kuber net es. cr eat eNodePort =32123"

Wait for the pods to be started showing 1/1 in the READY column by using this command:

dat af | ow: >! kubect!l get pods -1 rol e=spring-app
command i s: kubectl get pods -1 rol e=spring-app

NAVE READY STATUS RESTARTS ACGE
test-http-9obkqg 1/1 Runni ng 0 3m
test-log-0-ysiz3 1/1 Runni ng 0 3m

Now look up the URL to use with the following command:

dat af | ow: >!' mi ni kube service --url test-http
conmand is: mni kube service --url test-http
http://192.168.99. 100: 32123

5. Post some data to the t est - ht t p app either using the EXTERNAL-IP address from above with port
8080 or the URL provided by the minikube command:

dat af | ow. >http post --target http://130.211.200.96: 8080 --data "Hell 0"

6. Finally, look at the logs for the t est - | og pod:

dat af | ow: >! kubect| get pods-l| rol e=spring-app

command i s: kubectl get pods-1 rol e=spring-app

NAME READY STATUS RESTARTS AGE
test - http-9obkqg 1/1 Runni ng 0 2m

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 13

Spring Cloud Data Flow Server for Kubernetes

test-log-0-ysiz3 1/1 Runni ng 0
dat af | ow: >! kubect!| |ogs test-Io0g-0-ysiz3
command i s: kubectl |ogs test-1o0g-0-ysiz3

2016- 04- 27 16:54:29.789 INFO 1 --- [main] o.s
started inbound.test. http.test

Starting beans in phase 0

Starting beans in phase 2147482647

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.

2016-04-27 16:54:29.799 INFO 1 --- [nmain] o.s.

2016-04-27 16:54:29.895 INFO 1 --- [main] s.b.
Tontat started on port(s): 8080 (http)

2016- 04-27 16:54:29.896 INFO 1 --- [kafka-binder-] |og.
Hel |l o

2m

. c.s.b. k. Kaf kaMessageChannel Bi nder $3

c. support. Def aul tLi fecycl eProcessor
c. support. Def aul tLi fecycl eProcessor
c. e.t. Tontat EnbeddedSer vl et Cont ai ner

si nk

7. Destroy the stream

dat af | ow: >stream destroy --name test

Spring Cloud Data Flow

1.3.0.M3 Server Kubernetes

14

Spring Cloud Data Flow Server for Kubernetes

4. Deploying Tasks

1. Create a task and launch it

Let's register the t i nest anp task app and create a simple task definition and launch it.

dat af | ow. >app register --type task --name tinmestanp --uri docker: springcl oudtask/timestanp-
task: 1. 3. 0. RELEASE --netadata-uri maven://org. springframework. cl oud. t ask. app: ti mest anp-
task:jar: netadata: 1. 3. 0. RELEASE

dat af | ow. >t ask create taskl --definition "tinmestanp"

dat af | ow: >t ask | aunch taskl

We can now list the tasks and executions using these commands:

dat af | ow. >t ask |i st

#Task Nane#Task Definition#Task Status#

#t askl #t i mest anp #runni ng #

dat af | ow. >t ask execution |ist

#Task Name#| D# Start Tine # End Tine #Exit Code#

#t askl #1 #Fri May 05 18:12:05 EDT 2017#Fri May 05 18:12: 05 EDT 2017#0 #

2. Destroy the task

dat af | ow. >t ask destroy --nane taskl

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes

15

Spring Cloud Data Flow Server for Kubernetes

5. Application Configuration

This section covers how you can customize the deployment of your applications. You can use a number
of deployer properties to influence settings for the applications that are deployed.

See KubernetesDeployerProperties for more of the supported options.

If you would like to override the default values for all apps that you deploy then you should modify the
Spring Cloud Deployer for Kubernetes Properties for the server.

5.1 Memory and CPU Settings

The apps are deployed by default with the following "Limits" and "Requests" settings:

Limts:
cpu: 500m
menory: 512M
Request s:
cpu: 500m
menory: 512M

You might find that the 512Mi memory limit is too low and to increase it you can provide a common
spring. cl oud. depl oyer . nenory deployer property like this (replace <app> with the name of the
app you would like to set this for):

depl oyer . <app>. nenor y=640m

This property affects bot the Requests and Limits memory value set for the container.

If you would like to set the Requests and Limits values separately you would have to use the deployer
properties that are specific to the Kubernetes deployer. To set the Limits to 2000m for cpu, 1024Mi for
memory and Requests to 800m for cpu, 640Mi for memory you can use the following properties:

depl oyer. <app>. kubernetes.|imts.cpu=1000m
depl oyer. <app>. kubernetes.limts. menory=1024M
depl oyer. <app>. kuber net es. r equest s. cpu=800m
depl oyer. <app>. kuber net es. r equest s. menor y=640M

That should result in the following container settings being used:

Limts:
cpu: 1
menory: 1G
Request s:
cpu: 800m
nmenory: 640M

@ Note

When using the common memory property you should use and msuffix for the value while when
using the Kubernetes specific properties you should use the Kubernetes M style suffix.

The settings we have used so far only affect the settings for the container, they do not affect the memory
setting for the JVM process in the container. If you would like to set JVM memory settings you can
provide an environment variable for this, see the next section for details.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 16

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesDeployerProperties.java

Spring Cloud Data Flow Server for Kubernetes

5.2 Environment Variables

To influence the environment settings for a given app, you can take advantage of
the spring. cl oud. depl oyer. kuber net es. envi ronnent Vari abl es deployer property. For
example, a common requirement in production settings is to influence the JVM memory arguments. This
can be achieved by using the JAVA TOOL_OPTI ONS environment variable:

depl oyer. <app>. kuber net es. envi ronnment Vari abl es=JAVA_TOOL_OPTI ONS=- Xnx1024m

This overrides the JVM memory setting for the desired <app> (just replace <app> with the name of
your app).

5.3 Liveness and Readiness Probes

The liveness and readiness probes are using the paths \ heal t h and \ i nf o respectively. They use a
delay of 10 for both and a period of 60 and 10 respectively. You can chage these defaults when you
deploy by using deployer properties.

Here is an example changing the liveness probe (just replace <app> with the name of your app):

depl oyer . <app>. kuber net es. | i venessPr obePat h=/i nf o
depl oyer. <app>. kuber net es. | i venessPr obeDel ay=120
depl oyer. <app>. kuber net es. | i venessPr obePeri 0d=20

Similarly, swap liveness for readiness to override the default readiness settings.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 17

Part Il. Applications

A selection of pre-built stream and task/batch starter apps for various data integration and processing
scenarios facilitate learning and experimentation. For more details, review how to register applications

http://cloud.spring.io/spring-cloud-stream-app-starters/
http://cloud.spring.io/spring-cloud-task-app-starters/

Part Ill. Architecture

Spring Cloud Data Flow Server for Kubernetes

6. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

* Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

» Short lived Task applications that process a finite set of data and then terminate.
Depending on the runtime, applications can be packaged in two ways

» Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

* Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are
e Cloud Foundry

» Apache YARN

Kubernetes
» Apache Mesos
* Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for:

* Interpreting and executing a stream DSL that describes the logical flow of data through multiple long
lived applications.

» Launching a long lived task application

* Interpreting and executing a composed task DSL that describes the logical flow of data through
multiple short lived applications.

» Applyhing a deployment manifest that describes the mapping of applications onto the runtime. For
example, to set the initial number of instances, memory requirements, and data partitioning.

» Providing the runtime status of deployed applications

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 20

Spring Cloud Data Flow Server for Kubernetes

As an example, the stream DSL to describe the flow of data from an http source to an Apache Cassandra
sink would be written as “http | cassandra”. These names in the DSL are registered with the Data
Flow Server and map onto application artifacts that can be hosted in Maven or Docker repositories.
Many source, processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router)
are provided by the Spring Cloud Data Flow team. The pipe symbol represents the communication
between the two applications via messaging middleware. The two messaging middleware brokers that
are supported are

» Apache Kafka
* RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

| Stream DSL | Data Flow
| http | cassandra I——)

Server

l

Target Runtime

Spring Boot

cassandra

Applications \ /

Figure 6.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 21

Spring Cloud Data Flow Server for Kubernetes

7. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar'’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the Ul to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

7.1 Comparison to other Platform architectures

Spring Cloud Data Flow's architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’'s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 22

Spring Cloud Data Flow Server for Kubernetes

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 23

Spring Cloud Data Flow Server for Kubernetes

8. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

8.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@nabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngSi nk {

@t r eanli st ener (Si nk. | NPUT)
public void log(String nessage) {
System out. printl n(nessage);

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @nabl eBi ndi ng annotation is what is used to tie together the input channel to the external
middleware.

8.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’'s KStream APl in
the programming model.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 24

Spring Cloud Data Flow Server for Kubernetes

9. Streams

9.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandr a, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

9.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the {spring-cloud-
stream-docs}#_consumer_properties[Consumer properties] documentation for more information.

9.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

HTTP —_——
e : N Average
Partition 1 *‘ Processor ‘
N S 4 (.
HTTP
J - = (Average |
HTTP \ ’

Topic
Figure 9.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a parti ti onKeyExpr essi on producer property when deploying
the stream. The parti ti onKeyExpr essi on identifies what part of the message will be used as the
key to partition data in the underlying middleware. An i ngest stream can be defined as http |

aver ageprocessor | cassandr a (Note that the Cassandra sink isn’t shown in the diagram above).

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 25

Spring Cloud Data Flow Server for Kubernetes

Suppose the payload being sent to the http source was in JSON format and had a field called sensor | d.
Deploying the stream with the shell command stream deploy ingest --propertiesFile
i ngest Stream properti es where the contents of the file i ngest Stream properti es are

depl oyer. http. count =3
depl oyer . aver agepr ocessor . count =2
app. htt p. producer. partiti onKeyExpr essi on=payl oad. sensor | d

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payl oad. sensorld %
partitionCount where the partitionCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties” for additional strategies to
partition streams during deployment and how they map onto the underlying {spring-cloud-stream-
docs}#_partitioning[Spring Cloud Stream Partitioning properties].

Also note, that you can’t currently scale partitioned streams. Read the section Section 13.3, “Scaling
at runtime” for more information.

9.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middleware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing {spring-cloud-
stream-docs}#_persistent_publish_subscribe_support[persistent publish-subscribe semantics].

The {spring-cloud-stream-docs}#_binders[Binder abstraction] in Spring Cloud Stream is what connects
the application to the middleware. There are several configuration properties of the binder that are
portable across all binder implementations and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message handling.
The retry policy is configured using the {spring-cloud-stream-docs}# consumer_properties[common
consumer properties] maxAttenpts, backOflnitiallnterval, backOf f Maxl nterval , and
backOf f Mul ti pl i er. The default values of these properties will retry the callback method invocation
3 times and wait one second for the first retry. A backoff multiplier of 2 is used for the second and third
attempts.

When the number of retry attempts has exceeded the naxAt t enpt s value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The
dead letter queue is a destination and its nature depends on the messaging middleware (e.g in the
case of Kafka it is a dedicated topic). To enable this for RabbitMQ set the {spring-cloud-stream-
docs}# rabbitmq_consumer_properties[consumer properties] r epubl i sht oDl g and aut oBi ndDl g
and the {spring-cloud-stream-docs}#_rabbit_producer_properties[producer property] aut oBi ndDl g to
true when deploying the stream. To always apply these producer and consumer properties when
deploying streams, configure them as common application properties when starting the Data Flow
server.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 26

Spring Cloud Data Flow Server for Kubernetes

Additional messaging delivery guarantees are those provided by the underlying messaging
middleware that is chosen for the application for both producing and consuming
applications. Refer to the Kafka {spring-cloud-stream-docs}# kafka_consumer_properties[Consumer]
and {spring-cloud-stream-docs}# kafka_ producer_properties[Producer] and Rabbit {spring-
cloud-stream-docs}# rabbitmq_consumer_properties[Consumer] and {spring-cloud-stream-
docs}# rabbit_producer_properties[Producer] documentation for more details. You will find extensive
declarative support for all the native QOS options.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 27

Spring Cloud Data Flow Server for Kubernetes

10. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

» Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

 Field Value Counter - Counts occurrences of unique values for a named field in a message payload

» Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 28

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud-stream-app-starters/field-value-counter/tree/master/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud-stream-app-starters/aggregate-counter/tree/master/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Kubernetes

11. Task Applications

The Spring Cloud Task programming model provides:

» Persistence of the Task’s lifecycle events and exit code status.

« Lifecycle hooks to execute code before or after a task execution.

» Emit task events to a stream (as a source) during the task lifecycle.

« Integration with Spring Batch Jobs.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes

29

Spring Cloud Data Flow Server for Kubernetes

12. Data Flow Server

12.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Dataflow REST-API
Server Deployer SPI

Admin / Flo Ul

AN Nos

CURL nof@EV
Cloud @undry @ X

Figure 12.1. The Spring Cloud Data Flow Server

12.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let's you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 30

https://github.com/spring-projects/spring-hateoas

Spring Cloud Data Flow Server for Kubernetes

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

12.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 31

Spring Cloud Data Flow Server for Kubernetes

13. Runtime

13.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

13.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

13.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, Uls, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

13.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 32

Part IV. Server Configuration

In this section you will learn how to configure Spring Cloud Data Flow server’s features such as the
relational database to use and security.

Spring Cloud Data Flow Server for Kubernetes

14. Feature Toggles

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UlI) for:

1. Streams
2. Tasks
3. Analytics

You can enable or disable these features by setting the following boolean environment variables when
launching the Data Flow server:

* SPRI NG_CLOUD_DATAFLOW FEATURES_STREAMS_ENABLED

* SPRI NG _CLOUD DATAFLOW FEATURES_TASKS_ENABLED

* SPRI NG _CLOUD_DATAFLOW FEATURES_ANALYTI CS_ENABLED
By default, all the features are enabled.

@ Note

Since analytics feature is enabled by default, the Data Flow server is expected to have a valid
Redis store available as analytic repository as we provide a default implementation of analytics
based on Redis. This also means that the Data Flow server's heal t h depends on the redis
store availability as well. If you do not want to enable HTTP endpoints to read analytics data
written to Redis, then disable the analytics feature using the property mentioned above.

The REST endpoint / f eat ur es provides information on the features enabled/disabled.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 34

Spring Cloud Data Flow Server for Kubernetes

15. General Configuration

The Spring Cloud Data Flow server for Kubernetes uses the Fabric8 spri ng- cl oud- kuber net es
module to process both ConfigMap and Secrets settings. You just need to enable the ConfigMap
support by passing in an environment variable of SPRI NG _CLOUD KUBERNETES CONFI G_NAME and
setting that to the name of the ConfigMap. Same is true for the Secrets where the environment
variable is SPRI NG_CLOUD_KUBERNETES SECRETS NAME. To use the Secrets you also need to set
SPRI NG_CLOUD_KUBERNETES_ SECRETS ENABLE_API to true.

Here is an example of a snippet from a deployment that sets these environment variables.

env:
- name: SPRING CLOUD KUBERNETES SECRETS ENABLE_API
val ue: 'true'
- nane: SPRI NG CLOUD KUBERNETES SECRETS NAVE
val ue: nysql
- name: SPRI NG _CLOUD_KUBERNETES_CONFI G_NAME
val ue: scdf-server

15.1 Using ConfigMap and Secrets

Configuration properties can be passed to the Data Flow Server using Kubernetes ConfigMap and
Secrets.

An example configuration could look like the following where we configure Rabbit MQ, MySQL and
Redis as well as basic security settings for the server:

api Version: vl
ki nd: Confi gMap
net adat a:
name: scdf -server
| abel s:
app: scdf -server
dat a:
application.yam: |-
security:
basi c:
enabl ed: true
realm Spring Coud Data Fl ow
spring:
cl oud:
dat af | ow
security:
aut henti cati on:
file:
enabl ed: true
users:
adm n: adm n, ROLE_ MANAGE, ROLE VI EW
user: password, ROLE_VI EW ROLE_CREATE
depl oyer:
kuber net es:
envi ronment Vari abl es: ' SPRI NG_RABBI TMQ_HOST=${ RABBI TMQ_SERVI CE_HOST}, SPRI NG_RABBI TMQ_PORT=
${ RABBI TMQ_SERVI CE_PORT}, SPRI NG_REDI S_HOST=${ REDI S_SERVI CE_HOST}, SPRI NG_REDI S_PORT=
${ REDI S_SERVI CE_PCRT}'
dat asour ce:
url: jdbc:nysql://${MYSQL_SERVI CE_HOST}: ${ MYSQL_SERVI CE_PORT}/ nysq|l
user name: root
password: ${nysql -root - passwor d}
driverC assNane: org. mariadb.jdbc. Driver
test OnBorrow: true
val i dati onQuery: "SELECT 1"
redis:
host: ${REDI S_SERVI CE_HOST}
port: ${REDI S_SERVI CE_PORT}

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 35

https://github.com/fabric8io/spring-cloud-kubernetes
https://kubernetes.io/docs/tasks/configure-pod-container/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

Spring Cloud Data Flow Server for Kubernetes

We assume here that Rabbit MQ is deployed using r abbi t ng as the service name. For MySQL we
assume the service name is nysql and for Redis we assume itis r edi s. Kubernetes will publish these
services' host and port values as environment variables that we can use when configuring the apps
we deploy.

We prefer to provide the MySQL connection password in a Secrets file:

api Version: vl
ki nd: Secret
net adat a:

name: nysql

| abel s:

app: nysql

dat a:

nysql - r oot - password: eWd1lcnBhc3N3b3Jk

The password is provided as a base64 encoded value.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 36

Spring Cloud Data Flow Server for Kubernetes

16. Database Configuration

Spring Cloud Data Flow provides schemas for H2, HSQLDB, MySQL, Oracle, PostgreSQL, DB2 and
SQL Server that will be automatically created when the server starts.

The JDBC drivers for MySQL (via MariaDB driver), HSQLDB, PostgreSQL along with embedded H2
are available out of the box. If you are using any other database, then the corresponding JDBC driver
jar needs to be on the classpath of the server.

For instance, If you are using MySQL in addition to password in the Secrets file provide the following
properties in the ConfigMap:

dat a:
application.yam: |-
spring:
dat asour ce:

url: jdbc:nysql://${MYSQL_SERVI CE_HOST}: ${ MYSQL_SERVI CE_PORT}/ nysq|l
user nane: root
password: ${nysql -root - passwor d}
driverCl assNane: org. mariadb.jdbc. Driver
url: jdbc:nmysqgl://${MYSQ._SERVI CE_HOST}: ${ MYSQL_SERVI CE_PORT}/ t est
driverCl assNane: org. nmariadb.jdbc. Driver

For PostgreSQL.:

dat a:
application.yanm: |-
spring:
dat asour ce:
url: jdbc: postgresql://${PGSQ._SERVI CE_HOST}: ${ PGSQ._SERVI CE_PORT}/ dat abase
username: root
passwor d: ${post gres- passwor d}
driverCl assNane: org.postgresql.Driver
For HSQLDB:
dat a:
application.yam: |-
spring:

dat asour ce:
url: jdbc: hsql db: hsqgl : //${ HSQLDB_SERVI CE_HOST} : ${ HSQLDB_SERVI CE_PORT}/ dat abase
usernane: sa
driver Cl assNane: org. hsqgl db.j dbc. JDBCDri ver

@ Note

There is a schema update to the Spring Cloud Data Flow datastore when upgrading from version
1.0.xto 1. 1. x and from 1. 1. x to 1. 2. x. Migration scripts for specific database types can
be found in the spring-cloud-task repo.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 37

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

Spring Cloud Data Flow Server for Kubernetes

17. Security

We are now securing the server application in the sample configurations file used in the Getting Started
section.

This section covers the basic configuration settings we provide in the provided sample configuration,
please refer to the core security documentation for more detailed coverage of the security configuration
options for the Spring Cloud Data Flow server and shell.

The security settings in the sr c/ kuber net es/ server/ server-confi g-rabbi t. yanl file are:

security:
basi c:
enabl ed: true O
realm Spring Coud Data Fl ow O
spring:
cl oud:
dat af | ow
security:
aut henti cati on:
file:
enabl ed: true
users:
admi n: admin, ROLE_MANAGE, ROLE VI EW O
user: password, ROLE_VIEW ROLE_CREATE |

O Enable security

Optionally set the realm, defaults to "Spring"

0 Create an 'admin' user with password set to 'admin’ that can view apps, streams and tasks and
that can also view management endpoints

0 Create a 'user' user with password set to 'password' than can register apps and create streams
and tasks and also view them

O

Feel free to change user names and passwords to suite, and also maybe move the definition of user
passwords to a Kubernetes Secret.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 38

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/htmlsingle/#configuration-security

Spring Cloud Data Flow Server for Kubernetes

18. Spring Cloud Deployer for Kubernetes
Properties

The Spring Cloud Deployer for Kubernetes has several properties you can use to configure
the apps that it deploys. The configuration is controlled by configuration properties under the
spring. cl oud. depl oyer. kuber net es prefix.

18.1 Using Deployments

The deployer uses Replication Controllers by default. To use Deployments instead you can set the
following option as part of the container env section in a deployment YAML file. This is now the preferred
setting and will be the default in future releases of the deployer.

env:
- name: SPRI NG CLOUD DEPLOYER_KUBERNETES_CREATE_DEPLOYNMENT
val ue: 'true'

18.2 CPU and Memory Limits

You can control the default values to set the cpu and menor y requirements for the pods that are created
as part of app deployments. You can declare the following as part of the container env section in a
deployment YAML file:

env:

- name: SPRI NG _CLOUD_DEPLOYER_KUBERNETES_CPU
val ue: 500m

- name: SPRI NG_CLOUD_DEPLOYER_KUBERNETES_MEMORY
val ue: 640M

18.3 Liveness and Rediness Probes Configurations

You can modify the settings used for the liveness and readiness probes. This might be necessary if
your cluster is slower and the apps need more time to start up. Here is an example of setting the delay
and period for the liveness probe:

env:

- nane: SPRI NG CLOUD DEPLOYER KUBERNETES LI VENESS PROBE_DELAY
val ue: '120'

- name: SPRI NG CLOUD DEPLOYER_KUBERNETES_ LI VENESS PROBE_PERI OD
val ue: '45'

See KubernetesDeployerProperties for more of the supported options.

18.4 Using SPRING_APPLICATION_JSON

Data Flow Server properties that are common across all of the Data Flow Server implementations
including the configuration of maven repository settings can be set in a similar manner although the
latter might be easier to set using a SPRI NG_APPLI CATI ON_JSON environment variable like:

env:
- nane: SPRI NG APPLI CATI ON_JSON
value: "{ \"maven\": { \"local-repository\": null, \"renote-repositories\": { \"repol\":
{ \"url\": \"https://repo.spring.io/libs-snapshot\"} } } }"

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 39

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesDeployerProperties.java

Spring Cloud Data Flow Server for Kubernetes

19. Monitoring and Management

We recommend using the kubect | command for troubleshooting streams and tasks.

You can list all artifacts and resources used by using the following command:

kubect| get all,cm secrets, pvc

You can list all resources used by a specific app or service by using a label to select resources. The
following command list all resources used by the nysql service:

kubect!| get all -1 app=nysq

You can get the logs for a specific pod by issuing:

kubect| | ogs pod <pod- name>

If the pod is continuously getting restarted you can add - p as an option to see the previous log like:

kubect!| |ogs -p <pod-nanme>

You can also tail or follow a log by adding an - f option:

kubect!l logs -f <pod-name>

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, is to use the describe command like:

kubect| describe pod ticktock-1o0g-0-qgnk72

19.1 Inspecting Server Logs

You can access the server logs by using the following command (just supply the name of pod for the
server):

kubect| get pod -1 app=scdf =server
kubect| |ogs <scdf-server-pod- nane>

19.2 Streams

The stream apps are deployed with the stream name followed by the name of the app and for processors
and sinks there is also an instance index appended.

To see all the pods that are deployed by the Spring Cloud Data Flow server you can specify the label
rol e=spring- app:

kubect| get pod -1 rol e=spring-app

To see details for a specific app deployment you can use (just supply the name of pod for the app):

kubect| describe pod <app-pod- nane>

For the application logs use:

kubect| 1ogs <app- pod- nane>

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 40

Spring Cloud Data Flow Server for Kubernetes

If you would like to tail a log you can use:

‘ kubect!| 1logs -f <app-pod-nanme>

19.3 Tasks

Tasks are launched as bare pods without a replication controller. The pods remain after the tasks
complete and this gives you an opportunity to review the logs.

To see all pods for a specific task use this command while providing the task name:

‘kubectl get pod -I| task-name=<task-nanme>

To review the task logs use:

‘ kubect| |ogs <task-pod-nane>

You have two options to delete completed pods. You can delete them manually once they are no longer
needed.

To delete the task pod use:

kubect| del ete pod <task-pod-nanme>

You can also use the Data Flow shell command t ask executi on cl eanup command to remove
the completed pod for a task execution.

First we need to determine the | D for the task execution:

dat af | ow. >t ask execution |ist

#Task Nane#| D# Start Tinme # End Ti me #EXit Code#

#taskl #1 #Fri May 05 18:12:05 EDT 2017#Fri May 05 18:12:05 EDT 2017#0 #

Next we issue the command to cleanup the execution artifacts (the completed pod):

dat af | ow: >t ask execution cleanup --id 1
Request to clean up resources for task execution 1 has been submitted

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 41

Part V. Shell

In this section you will learn about the options for starting the Shell and more advanced functionality
relating to how it handles white spaces, quotes, and interpretation of SpEL expressions. The introductory
chapters to the Stream DSL and Composed Task DSL is a good place to start for the most common
usage of shell commands.

Spring Cloud Data Flow Server for Kubernetes

20. Shell Options

The Shell is built upon the Spring Shell project. There are command line options generic to Spring Shell
and some specific to Data Flow. The shell takes the following command line options

Data Fl ow Options:
--datafl ow. uri=<uri>
| ocal host: 9393] .
- - dat af | ow. user name=<USER>
- - dat af | ow. passwor d=<PASSWORD>
--dat afl ow. credenti al s- provi der - command=<COMVAND>
QAut h Access Token [no defaul t].
- -dat af | ow. ski p-ssl -val i dati on=<true|fal se>
[defaul t: no].
--spring. shel |l . hi storySi ze=<S| ZE>
--spring.shell.commandFi | e=<FI LE>
file(s) and then exits.
--hel p

uni x: >j ava -jar spring-cloud-datafl owshell-1.2.1. RELEASE. jar --help

Address of the Data Flow Server [default: http://
Usernane of the Data Fl ow Server [no default].
Password of the Data Flow Server [no default].

Execut es an external command whi ch nmust return an
Accept any SSL certificate (even self-signed)

Default size of the shell
Data Fl ow Shel |

log file [default: 3000].
execut es commands read fromthe

Thi s nessage.

The spring. shel | . commandFi | e option is of note, as it can be used to point to an existing file which
contains all the shell commands to deploy one or many related streams and tasks. This is useful when
creating some scripts to help automate the deployment.

There is also a shell command

dat af | ow: >script --file <YOUR AWESOVE_SCRI PT>

This is useful to help modularize a complex script into multiple indepenent files.

Spring Cloud Data Flow

1.3.0.M3

Server Kubernetes

43

https://projects.spring.io/spring-shell/

Spring Cloud Data Flow Server for Kubernetes

21. Listing available commands

Typing hel p atthe command prompt will give a listing of all available commands. Most of the commands
are for Data Flow functionality, but a few are general purpose.

I - Allows execution of operating system (0S) comnmands
clear - Cears the console

cls - Clears the console

date - Displays the local date and tine

exit - Exits the shell

http get - Make GET request to http endpoi nt

http post - POST data to http endpoi nt

quit - Exits the shell

system properties - Shows the shell's properties
version - Displays shell version

Adding the name of the command to hel p will display additional information on how to invoke the
command.

dat af | ow: >hel p stream create
Keywor d: stream create
Descri ption: Create a new streamdefinition
Keywor d: ** default **
Keywor d: nane
Hel p: the nane to give to the stream
Mandat ory: true
Default if specified: ' NuLL_
Default if unspecified: '__ NULL__'
Keywor d: definition
Hel p: a streamdefinition, using the DSL (e.g. "http --port=9000 | hdfs")
Mandat ory: true
Default if specified: ' NuLL_
Default if unspecified: '__ NULL_ '
Keywor d: depl oy
Hel p: whet her to deploy the stream i mmediately
Mandat ory: fal se
Default if specified: "true'
Default if unspecified: 'false'

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 44

Spring Cloud Data Flow Server for Kubernetes

22. Tab Completion

The shell command options can be completed in the shell by hitting the TAB key after the leading - - .
For example, hitting TAB after st r eam creat e -- resultsin

dat af | ow. >stream create --
stream create --definition stream create --nane

If you type - - de and then hit tab, - - def i ni ti on will be expanded.

Tab completion is also available inside the stream or composed task DSL expression for application
or task properties. You can also use TAB to get hints in a stream DSL expression for what available
sources, processors, or sinks can be used.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 45

Spring Cloud Data Flow Server for Kubernetes

23. White space and quote rules

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor is being passed a SpEL expression that will be applied to any data it encounters:

transform --expressi on='new StringBuil der (payl oad).reverse()"'

If the parameter value needs to embed a single quote, use two single quotes:

/'l Query is: Select * from/Custoners where nanme=' Smith'
scan --query='Select * from/Custonmers where nane=''Smth' "'

23.1 Quotes and Escaping

There is a Spring Shell based client that talks to the Data Flow Server that is responsible for parsing
the DSL. In turn, applications may have applications properties that rely on embedded languages, such
as the Spring Expression Language.

The shell, Data Flow DSL parser, and SpEL have rules about how they handle quotes and how syntax
escaping works. When combined together, confusion may arise. This section explains the rules that
apply and provides examples of the most complicated situations you will encounter when all three
components are involved.

@ It's not always that complicated

If you don't use the Data Flow shell, for example you're using the REST API directly, or if
applications properties are not SpEL expressions, then escaping rules are simpler.

Shell rules

Arguably, the most complex component when it comes to quotes is the shell. The rules can be laid out
quite simply, though:

» a shell command is made of keys (- - f 00) and corresponding values. There is a special, key-less
mapping though, see below

» avalue can not normally contain spaces, as space is the default delimiter for commands

» spaces can be added though, by surrounding the value with quotes (either single ['] or double ["]
quotes)

« if surrounded with quotes, a value can embed a literal quote of the same kind by prefixing it with a
backslash (\)

» Other escapes are available, suchas\t,\n,\r,\ f and unicode escapes of the form \ uxxxx

 Lastly, the key-less mapping is handled in a special way in the sense that if does not need quoting
to contain spaces

For example, the shell supports the ! command to execute native shell commands. The ! accepts a
single, key-less argument. This is why the following works:

datafl ow. > rmfoo

The argument here is the whole r m f 0o string, which is passed as is to the underlying shell.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 46

Spring Cloud Data Flow Server for Kubernetes

As another example, the following commands are strictly equivalent, and the argument value is f oo
(without the quotes):

dat af | ow. >stream destroy foo

dat af | ow: >stream destroy --name foo
dat af | ow. >stream destroy "foo"

dat af | ow. >stream destroy --nanme "foo0"

DSL parsing rules

At the parser level (that is, inside the body of a stream or task definition) the rules are the following:
» option values are normally parsed until the first space character

 they can be made of literal strings though, surrounded by single or double quotes

» To embed such a quote, use two consecutive quotes of the desired kind

As such, the values of the - - expr essi on option to the filter application are semantically equivalent
in the following examples:

filter --expression=payl oad>5
filter --expression="payl oad>5"
filter --expression='payl oad>5
filter --expression='payload > 5

Arguably, the last one is more readable. It is made possible thanks to the surrounding quotes. The actual
expression is payl oad > 5 (without quotes).

Now, let's imagine we want to test against string messages. If we'd like to compare the payload to the
SpEL literal string, " f 00", this is how we could do:

filter --expression=payl oad=='f o0’ O
filter --expression='payload == "'foo' "' O
filter --expression='payload == "foo"' O

0 This works because there are no spaces. Not very legible though

0 This uses single quotes to protect the whole argument, hence actual single quotes need to be
doubled

0 But SpEL recognizes String literals with either single or double quotes, so this last method is
arguably the best

Please note that the examples above are to be considered outside of the shell, for example if when
calling the REST API directly. When entered inside the shell, chances are that the whole stream
definition will itself be inside double quotes, which would need escaping. The whole example then
becomes:

dat af | ow. >stream create foo --definition "http | filter --expression=payload='foo' | |o0g"
dat af | ow. >stream create foo --definition "http | filter --expression='payload == "''foo''' | |o0g"
dat af | ow. >stream create foo --definition "http | filter --expression='payload == \"foo\"' | |o0g"

SpEL syntax and SpEL literals

The last piece of the puzzle is about SpEL expressions. Many applications accept options that are to
be interpreted as SpEL expressions, and as seen above, String literals are handled in a special way
there too. The rules are:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 47

Spring Cloud Data Flow Server for Kubernetes

« literals can be enclosed in either single or double quotes

» quotes need to be doubled to embed a literal quote. Single quotes inside double quotes need no
special treatment, and vice versa

As a last example, assume you want to use the transform processor. This processor accepts an
expr essi on option which is a SpEL expression. It is to be evaluated against the incoming message,
with a default of payl oad (which forwards the message payload untouched).

It is important to understand that the following are equivalent:

transform - -expressi on=payl oad
transform --expressi on=' payl oad'

but very different from the following:

transform --expressi on=""'payl oad" "
transform --expression="""'payload "'

and other variations.

The first series will simply evaluate to the message payload, while the latter examples will evaluate to
the actual literal string pay!| oad (again, without quotes).

Putting it all together

As a last, complete example, let’s review how one could force the transformation of all messages to the
string literal hel | o wor | d, by creating a stream in the context of the Data Flow shell:

dat af | ow: >stream create foo --definition "http | transform--expression="""hello world'' | log" O
dat af | ow. >stream create foo --definition "http | transform--expression="\"hello world\"' | log" O
dat af | ow: >stream create foo --definition "http | transform--expression=\""hello world'\" | log" O

0 This uses single quotes around the string (at the Data Flow parser level), but they need to be
doubled because we're inside a string literal (very first single quote after the equals sign)

OO use single and double quotes respectively to encompass the whole string at the Data Flow parser
level. Hence, the other kind of quote can be used inside the string. The whole thing is inside the
--defini ti on argument to the shell though, which uses double quotes. So double quotes are
escaped (at the shell level)

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 48

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-processors.html#spring-clound-stream-modules-transform-processor

Part VI. Streams

This section goes into more detail about how you can create Streams which are a collection of Spring
Cloud Stream. It covers topics such as creating and deploying Streams.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Kubernetes

24. Introduction

Streams are a collection of long lived Spring Cloud Stream applications that communicate with each
other over messaging middleware. A text based DSL defines the configuration and data flow between
the applications. While many applications are provided for you to implement common use-cases, you
will typically create a custom Spring Cloud Stream application to implement custom business logic.

The general lifecycle of a Stream is:

1. Register applications

2. Create a Stream Definition

3. Deploy the Stream

4. Undeploy or Destroy the Stream.

There are two options for deploying streams:

1. Use a Data Flow Server implementation that deploys to a single platform.

2. Configure the Data Flow Server to delegate the deployment to new server in the Spring Cloud
ecosystem named Skipper.

When using the first option, you can use the Data Flow Server for Cloud Foundry to deploy streams
to a single org and space on Cloud Foundry. Alternatively, you can use Data Flow for Kuberenetes to
deploy stream to a single namespace on a Kubernetes cluster. See here for a list of implementations.

When using the second option, you can configure Skipper to deploy applications to one or more Cloud
Foundry org/spaces, one or more namespaces on a Kubernetes cluster, as well as deploy to the local
machine. When deploying a stream in Data Flow using Skipper, you can specify which platfrom to use.
Skipper also provides Data Flow with the ability to perform updates to deployed streams. There are
many ways the applications in a stream can be updated, but one of the most common examples is to
upgrade a processor application with new custom business logic while leaving the existing source and
sink applications alone.

24.1 Stream Pipeline DSL

A stream is defined using a unix-inspired Pipeline syntax. The syntax uses vertical bars, also known as
"pipes" to connect multiple commands. The command s -1 | grep key | |ess in Unix takes
the output of the | s -1 process and pipes it to the input of the grep key process. The output of
grep in turn is sent to the input of the | ess process. Each | symbol will connect the standard ouput
of the program on the left to the standard input of the command on the right. Data flows through the
pipeline from left to right.

In Data Flow, the Unix command is replaced by a Spring Cloud Stream application and each pipe
symbol represents connecting the input and output of applications via messaging middleware, such as
RabbitMQ or Apache Kafka.

Each Spring Cloud Stream application is registered under a simple name. The registration process
specifies where the application can be obtained, for example in a Maven Repository or a Docker registry.
You can find out more information on how to register Spring Cloud Stream applications in this section.
In Data Flow, we classify the Spring Cloud Stream applications as either Sources, Processors, or Sinks.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 50

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-skipper/
http://cloud.spring.io/spring-cloud-dataflow/#platform-implementations
https://en.wikipedia.org/wiki/Pipeline_(Unix)
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Kubernetes

As a simple example consider the collection of data from an HTTP Source writing to a File Sink. Using
the DSL the stream description is:

‘http| file

A stream that involves some processing would be expresed as:

‘http| filter | transform| file

Stream definitions can be created using the shell's cr eat e st r eamcommand. For example:

dat af | ow: > stream create --name httplngest --definition "http | file"

The Stream DSL is passed in to the - - def i ni ti on command option.

The deployment of stream definitions is done via the shell’s st r eam depl oy command.

dat af | ow. > stream depl oy --nane ticktock

The Getting Started section shows you how to start the server and how to start and use the Spring
Cloud Data Flow shell.

Note that shell is calling the Data Flow Servers' REST API. For more information on making HTTP
request directly to the server, consult the REST API Guide.

24.2 Application properties

Each application takes properties to customize its behavior. As an example the ht t p source module
exposes a port setting which allows the data ingestion port to be changed from the default value.

datafl ow. > stream create --definition "http --port=8090 | |o0g" --nane nyhttpstream

This port property is actually the same as the standard Spring Boot ser ver. port property. Data
Flow adds the ability to use the shorthand form port instead of ser ver. port. One may also specify
the longhand version as well.

datafl ow. > stream create --definition "http --server.port=8000 | |0g" --nane nyhttpstream

This shorthand behavior is discussed more in the section on the section called “Whitelisting application
properties”. If you have registered application property metadata you can use tab completion in the shell
after typing - - to get a list of candidate property names.

The shell provides tab completion for application properties and also the shell command app i nfo
<appType>: <appNane> provides additional documentation for all the supported properties.

@ Note

Supported Stream “<appType>'s are: source, processor, and sink

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 51

Spring Cloud Data Flow Server for Kubernetes

25. Stream Lifecycle

25.1 Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dat af | ow. >app regi ster --name nysource --type source --uri maven://com exanpl e: nysource: 0. 0. 1- SNAPSHOT

dat af | ow. >app regi ster --name nyprocessor --type processor --uri file:///Users/exanple/
nyprocessor-1.2.3.jar

dat af | ow: >app regi ster --nane nysink --type sink --uri http://exanple.con nysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactld>[: <extension>[:<classifier>]]:<version>

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could do the following:

dat af | ow: >app regi ster --nane http --type source --uri maven://

org. springfranmework. cl oud. stream app: htt p-source-rabbit: 1. 2. 1. BUl LD- SNAPSHOT

dat af | ow: >app regi ster --nane log --type sink --uri maven://org.springfranmework. cloud. stream app: | og-
sink-rabbit:1.2.1. BU LD- SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <t ype>. <nane> and the values are the URIs.

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

sour ce. htt p=maven: // or g. spri ngf ramewor k. cl oud. st ream app: htt p-source-rabbit: 1. 2. 1. BUl LD- SNAPSHOT
si nk. | og=maven://org. springframework. cl oud. stream app: | 0g-si nk-rabbit:1.2. 1. BUl LD- SNAPSHOT

Then to import the apps in bulk, use the app i nport command and provide the location of the
properties file via - - uri :

dat af | ow. >app inport --uri file:///<YOUR_FILE LOCATI ON>/ stream apps. properties

25.2 Register Supported Applications and Tasks

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release
RabbitMQ + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-rabbit-maven SNAPSHOT-stream-

applications-rabbit-maven

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 52

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven

Spring Cloud Data Flow Server for Kubernetes

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-rabbit-docker

Kafka 0.9 + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-kafka-09-maven SNAPSHOT-stream-
applications-kafka-09-maven

Kafka 0.9 + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-kafka-09-docker

Kafka 0.10 + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-kafka-10-maven SNAPSHOT-stream-
applications-kafka-10-maven

Kafka 0.10 + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-kafka-10-docker

List of available Task Application Starters:

Artifact Type Stable Release SNAPSHOT Release
Maven bit.ly/Belmont-GA-task- bit.ly/Belmont-BUILD-
applications-maven SNAPSHOT-task-applications-
maven
Docker bit.ly/Belmont-GA-task- N/A

applications-docker

You can find more information about the available task starters in the Task App Starters Project Page
and related reference documentation. For more information about the available stream starters look at
the Stream App Starters Project Page and related reference documentation.

As an example, ff you would like to register all out-of-the-box stream applications built with the Kafka
binder in bulk, you can with the following command.

‘ $ datafl ow >app inport --uri http://bit.|y/Bacon- RELEASE- stream appl i cati ons- kaf ka- 10- maven

Alternatively you can register all the stream applications with the Rabbit binder

‘ $ datafl ow >app inport --uri http://bit.|y/Bacon- RELEASE- stream appl i cations-rabbit-mven

You can also pass the - - | ocal option (which ist r ue by default) to indicate whether the properties file
location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

0 Warning

When using either app regi ster orapp inport, if an app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the
pre-existing app coordinates, then include the - - f or ce option.

Note however that once downloaded, applications may be cached locally on the Data Flow
server, based on the resource location. If the resource location doesn’t change (even though the
actual resource bytes may be different), then it won’t be re-downloaded. When using maven: / /

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 53

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://cloud.spring.io/spring-cloud-task-app-starters/
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow Server for Kubernetes

resources on the other hand, using a constant location still may circumvent caching (if using
- SNAPSHOT versions).

Moreover, if a stream is already deployed and using some version of a registered app, then
(forcibly) re-registering a different app will have no effect until the stream is deployed anew.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

Whitelisting application properties

Stream and Task applications are Spring Boot applications which are aware of many the section called
“Common application properties”, e.g. server . port but also families of properties such as those with
the prefix spri ng. j mx and | oggi ng. When creating your own application it is desirable to whitelist
properties so that the shell and the Ul can display them first as primary properties when presenting
options via TAB completion or in drop-down boxes.

To whitelist application properties create a file named spri ng-confi guration-netadat a-
whitelist.properties inthe META- | NF resource directory. There are two property keys that can
be used inside this file. The first key is named confi gur ati on- properti es. cl asses. The value
is a comma separated list of fully qualified @Conf i gur at i onPr operty class names. The second key
is confi guration-properties. nanmes whose value is a comma separated list of property names.
This can contain the full name of property, such as server. port or a partial name to whitelist a
category of property names, e.g. spri ng. j nx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spri ng- confi gur ati on- net adat a-whitelist. properties
file

configuration-properties.classes=org. springframework. cl oud. stream app.file.sink.FileSinkProperties

If we also wanted to add ser ver. port to be white listed, then it would look like this:

configuration-properties.classes=org. springframework. cl oud. stream app. file.sink.FileSinkProperties
configuration-properties. nanes=server. port

@ Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >

</ dependency>

Creating and using a dedicated metadata artifact

You can go a step further in the process of describing the main properties that your stream or task
app supports by creating a so-called metadata companion artifact. This simple jar file contains only the
Spring boot JSON file about configuration properties metadata, as well as the whitelisting file described
in the previous section.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 54

https://github.com/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Kubernetes

Here is the contents of such an artifact, for the canonical | og sink:

$ jar tvf |og-sink-rabbit-1.2. 1. BU LD- SNAPSHOT- net adat a. j ar
373848 META-| NF/ spring-configuration-netadata.json
174 META-| NF/ spring-configuration-nmetadata-whitelist.properties

Note that the spring-confi guration-netadata.json file is quite large. This is because it
contains the concatenation of all the properties that are available at runtime to the | og sink (some
of them come from spri ng-boot-actuator.jar, some of them come from spri ng-boot -
aut oconfi gure. jar, even some more from spri ng- cl oud-starter-streamsink-1o0g.j ar,
etc.) Data Flow always relies on all those properties, even when a companion artifact is not available,
but here all have been merged into a single file.

To help with that (as a matter of fact, you don’t want to try to craft this giant JSON file by hand), you
can use the following plugin in your build:

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-app-starter-netadata-mven-plugin</artifactld>
<execut i ons>
<execution>
<i d>aggr egat e- net adat a</ i d>
<phase>conpi | e</ phase>
<goal s>
<goal >aggr egat e- et adat a</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

@ Note

This plugin comes in addition to the spri ng-boot-confi gurati on-processor that
creates the individual JSON files. Be sure to configure the two!

The benefits of a companion artifact are manifold:

1. being way lighter (usually a few kilobytes, as opposed to megabytes for the actual app), they are
quicker to download, allowing quicker feedback when using e.g. app i nf o or the Dashboard Ul

2. as a consequence of the above, they can be used in resource constrained environments (such as
PaaS) when metadata is the only piece of information needed

3. finally, for environments that don’t deal with boot uberjars directly (for example, Docker-based
runtimes such as Kubernetes or Mesos), this is the only way to provide metadata about the properties
supported by the app.

Remember though, that this is entirely optional when dealing with uberjars. The uberjar itself also
includes the metadata in it already.

Using the companion artifact

Once you have a companion artifact at hand, you need to make the system aware of it so that it can
be used.

When registering a single app via app r egi st er, you can use the optional - - met adat a- uri option
in the shell, like so:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 55

Spring Cloud Data Flow Server for Kubernetes

dat af | ow: >app regi ster --nane |log --type sink
--uri maven://org.springframework. cl oud. stream app: | og- si nk- kaf ka- 10: 1. 2. 1. BUI LD- SNAPSHOT
--net adat a- uri =maven:// org. spri ngf ramewor k. cl oud. st ream app: | 0g- si nk-

kaf ka- 10: j ar: met adat a: 1. 2. 1. BUl LD- SNAPSHOT

When registering several files using the app inport command, the file should contain a
<t ype>. <nane>. net adat a line in addition to each <t ype>. <nane> line. This is optional (i.e. if some
apps have it but some others don't, that's fine).

Here is an example for a Dockerized app, where the metadata artifact is being hosted in a Maven
repository (but retrieving it viahttp: // orfil e:// would be equally possible).

sour ce. ht t p=docker: spri ngcl oudstreani htt p-source-rabbit:| atest
sour ce. htt p. met adat a=maven: // or g. spri ngf ramewor k. cl oud. st ream app: htt p- sour ce-
rabbit:jar: metadata: 1. 2. 1. BUl LD- SNAPSHOT

25.3 Creating custom applications

While there are out of the box source, processor, sink applications available, one can extend these
applications or write a custom Spring Cloud Stream application.

The process of creating Spring Cloud Stream applications via Spring Initializr is detailed in the Spring
Cloud Stream {spring-cloud-stream-docs}# getting_started[documentation]. It is possible to include
multiple binders to an application. If doing so, refer the instructions in the section called “Passing Spring
Cloud Stream properties” on how to configure them.

For supporting property whitelisting, Spring Cloud Stream applications running in Spring Cloud Data
Flow may include the Spring Boot conf i gur at i on- pr ocessor as an optional dependency, as in the
following example.

<dependenci es>
<I-- other dependencies -->
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >
</ dependency>
</ dependenci es>

@ Note

Make sure that the spri ng- boot - maven- pl ugi n is included in the POM. The plugin is
necesary for creating the executable jar that will be registered with Spring Cloud Data Flow.
Spring Initialzr will include the plugin in the generated POM.

Once a custom application has been created, it can be registered as described in Section 25.1, “Register
a Stream App”.

25.4 Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by with the help of stream definitions. The definitions are built from a simple
DSL. For example, let's walk through what happens if we execute the following shell command:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 56

https://github.com/spring-cloud/spring-cloud-stream

Spring Cloud Data Flow Server for Kubernetes

datafl ow. > stream create --definition "time | |og" --nane ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | og. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

The following stream
datafl ow. > stream create --definition "tinme | log" --nanme ticktock
can have application properties defined at the time of stream creation.

The shell command app info <appType>: <appNane> displays the white-listed application
properties for the application. For more info on the property white listing refer to the section called
“Whitelisting application properties”

Below are the white listed properties for the app t i ne:

dat af | ow. > app info source:tine
Opti on Nane # Description # Def aul t
Type #
HHHHHHHHHH T H R T R H R H R H T H R H R T
#trigger.tine-unit #The TineUnit to apply to del ay#<none>
#j ava. util.concurrent. TineUnit #
#val ues. #
#
#trigger.fixed-del ay #Fi xed del ay for periodic #1
#] ava. | ang. | nt eger #
#triggers. #
#
#trigger.cron #Cron expression value for the #<none>
#j ava.lang. String #
#Cron Tri gger. #
#
#trigger.initial-delay #lnitial delay for periodic #0
#j ava. | ang. | nt eger #
#triggers. #
#
#trigger. nax- nessages #Maxi mum nessages per poll, -1 #1
#j ava. | ang. Long #
#means infinity. #
#
#trigger. date-fornmat #Format for the date val ue. #<none>
#j ava.lang. String #

Below are the white listed properties for the app | og:

dat afl ow. > app info sink:log
Opti on Nane # Description # Def aul t
Type #
#l og. name #The name of the | ogger to use. #<none>
#j ava.lang. String #
#l og. | evel #The | evel at which to |og #<none>
#or g. spri ngfranework. i ntegrati o#

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 57

Spring Cloud Data Flow Server for Kubernetes

#messages.
#n. handl er. Loggi ngHandl er $Level #
#l og. expr essi on #A SpEL expression (against the#payl oad
#j ava.l ang. String #
#i ncom ng nessage) to eval uate #
#
#as the | ogged nessage. #
#

The application properties for the t i me and | og apps can be specified at the time of st r eamcreation
as follows:

datafl ow. > streamcreate --definition "tinme --fixed-delay=5 | log --level =WARN' --nane ticktock

Note that the properties f i xed- del ay and | evel defined above for the appsti ne and | og are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spri ng. cl oud. dat af | ow. appl i cati onProperti es. stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the Data Flow server with the following options:

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. br oker s=192. 168. 1. 100: 9092

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. zkNodes=192. 168. 1. 100: 2181

This will cause the properties spring.cloud. stream kaf ka. bi nder. brokers and
spring. cl oud. st ream kaf ka. bi nder . zkNodes to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app. http. spring. cl oud. st r eam kaf ka. bi nder. br oker s will
override the common property).

25.5 Deploying a Stream

This section describes how to deploy a Stream when the Spring Cloud Data Flow server is responsible
for deploying the stream. The following section, ???, covers the new deployment and upgrade features
when the Spring Cloud Data Flow server delegates to Skipper for stream deployment. In both cases,
the description of how deployment properties applies to both approaches of Stream deployment.

Give the t i ckt ock stream definition:

datafl ow. > stream create --definition "time | log" --nane ticktock

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 58

Spring Cloud Data Flow Server for Kubernetes

You can deploy the stream using the following command: Then to deploy the stream execute the
following shell command

dat af | ow. > stream depl oy --nane ticktock

The Data Flow Server resolves t i me and | og to maven coordinates and uses those to launch theti ne
and | og applications of the stream.

2016- 06- 01 09: 41:21.728 |NFO 79016 --- [nio0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.log instance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng- cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481708/ ti ckt ock. | og
2016-06- 01 09: 41:21.914 |INFO 79016 --- [nio0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.time instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481910/ ti cktock. tine

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the st dout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxmtbdlvj28c8vj37n900nmD000gn/ T/ spri ng- cl oud- dat af | ow 912434582726479179/
ticktock-1464788481708/ti cktock. | og/ stdout_O. | og

2016-06-01 09: 45:11.250 |NFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:11
2016-06-01 09:45:12.250 |NFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:12
2016-06-01 09:45:13.251 |[|NFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:13

You can also create an deploy the stream in one step by passing the - - depl oy flag when creating
the stream.

datafl ow. > streamcreate --definition "time | log" --name ticktock --depl oy

However, it is not very common in real world use cases to do create and deploy the stream in one step.
The reason is that when you use the st r eam depl oy command, you can pass in properties that define
how to map the applications onto the platform, e.g. what is the memory size of the container to use, the
number of each application to run, or to enable data partitioning features. Properties can also override
application properties which were set when creating the stream. The next sections cover this in detail.

Deployment properties
When deploying a stream, you can specify properties that fall into two groups.

1. Properties that control how the apps are deployed to the target platform. These properties use a
depl oyer prefix. These are referred to as depl oyer properties.

2. Properties that set application properties or override application properties set during stream creation.
These are referred to as appl i cat i on properties.

The syntax for deployer properties is depl oyer. <app-nane>. <short-property-
nane>=<val ue> and the syntax for applicati on properties app. <app- nane>. <property-
nane>=<val ue>. This syntax is used when passing deployment properties via the shell. You may also
specify them in a YAML file which is discussed below.

The following table shows the difference in behavior between settings depl oyer and appl i cati on
properties when deploying an application.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 59

Spring Cloud Data Flow Server for Kubernetes

Application Properties Deployer Properties
Example Syntax app.filter. expression=foodepl oyer.filter.count=3
What the application "sees" expr essi on=f 0o or <sorme- Nothing

prefi x>. expressi on=f oo
if expr essi on is one of the
whitelisted properties

What the deployer "sees" Nothing spring. cl oud. depl oyer. count =3
The

spring. cl oud. depl oyer

prefix is automatically and

always prepended to the

property name

Typical usage Passing/Overriding application Setting the number of
properties, passing Spring instances, memory, disk, etc.
Cloud Stream binder or

partitionning properties

Passing instance count

If you would like to have multiple instances of an application in the stream, you can include a deployer
property with the deploy command:

dat af | ow. > stream depl oy --nanme ticktock --properties "deployer.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f 0o. bar. count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See ?27?7.
Inline vs file based properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "depl oyer.transform count=2, app.transform producer. partitionKeyExpressi on=payl oad"

Using afile reference
use the - - properti esFi | e option and pointitto a local . properti es,.yam or.ynl file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a . properti es file,

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 60

Spring Cloud Data Flow Server for Kubernetes

normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream depl oy foo --propertiesFile nyprops. properties

where nypr ops. properti es contains:

depl oyer. transform count =2
app. transform producer. partiti onKeyExpressi on=payl oad

Both the above properties will be passed as deployment properties for the stream f oo above.

In case of using YAML as the format for the deployment properties, use the . yam or. ynl file extention
when deploying the stream,

stream depl oy foo --propertiesFile nyprops.yan

where nypr ops. yam contains:

depl oyer:
transform
count: 2
app:
transform
producer:
partitionKeyExpression: payl oad

Passing application properties

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names
(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

datafl ow. > stream create --definition "tinme | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dat af | ow: >stream depl oy ticktock --properties "app.tine.fixed-del ay=5, app.| og.|evel =ERROR"

When using the app label,

streamcreate ticktock --definition "a: time | b: |og"

the application properties can be defined as:

stream depl oy ticktock --properties "app.a.fixed-del ay=4, app. b. | evel =ERROR"

Passing Spring Cloud Stream properties

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spri ng. cl oud. st r eam bi ndi ngs. <i nput/
out put >. dest i nat i on is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 61

Spring Cloud Data Flow Server for Kubernetes

For example, for the below stream

datafl ow. > stream create --definition "http | transform --
expr essi on=payl oad. get Val ue(' hell o'). toUpperCase() | |og" --name ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream bi ndi ngs. out put. bi nder =kaf ka, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nd

@ Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per - bi ndi ng
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partiti onKeyExpression, partitionKeyExtractorCl ass as described in
the section called “Passing stream partition properties”, all the supported Spring Cloud Stream producer/
consumer properties can be set as Spring Cloud Stream properties for the app directly as well.

The consumer properties can be set for the i nbound channel name with the prefix app.
[app/ | abel nane]. spring. cl oud. stream bi ndi ngs. <channel Name>. consuner. and the
producer properties can be set for the out bound channel name with the prefix app. [app/
I abel nane]. spring.cloud. stream bi ndi ngs. <channel Name>. producer . . For example,
the stream

‘dataflow> stream create --definition "tinme | |og" --nane ticktock

can be deployed with producer/consumer properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream bi ndi ngs. out put. producer. requi redG oups=nyG oup, app. ti me. spri ng. cl oud. st ream bi ndi

The bi nder specific producer/consumer properties can also be specified in a similar way.

For instance

dat af | ow. >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream rabbit.bi ndi ngs. out put. producer. aut oBi ndDl g=t r ue, app. | 0g. spri ng. cl oud. stream r abbi

Passing stream partition properties

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default nul 1)

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 62

Spring Cloud Data Flow Server for Kubernetes

app.[app/label nhame].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partiti onKeyExtractorC ass is null. If both are null, the app is not partitioned (default nul |)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default nul |)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[next Modul e] . count . If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default nul |)

In summary, an app is partitioned if its count is > 1 and the previous app has a
partiti onKeyExtractorC ass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSel ectorC ass, if present, or the partitionSel ectorExpression %
partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSel ectorC ass nor a partitionSel ector Expressi on is present the
result is key. hashCode() % partiti onCount.

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the i nput Type and out put Type properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dat af | ow. >stream create tuple --definition "http | filter --inputType=application/x-spring-tuple
- - expressi on=payl oad. hasFi el dName(' hello') | transform --

expr essi on=payl oad. get Val ue("' hel | o').t oUpper Case()
| log" --deploy

The ht t p app is expected to send the data in JSON and the fi | t er app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the i nput Type property on the filter app
to convert the data into the expected Spring Tuple format. The t r ansf or mapplication processes the
Tuple data and sends the processed data to the downstream | og application.

When sending some data to the ht t p application:

dat af | ow. >http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://
I ocal host : <htt p-port>

At the log application you see the content as follows:

‘INFO 18745 --- [transformtuple-1] |og.sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the - - out put Type in the upstream app or as an - -i nput Type in the downstream app. For
instance, in the above stream, instead of specifying the - - i nput Type on the 'transform' application to
convert, the option - - out put Type=appl i cati on/ x-spri ng-tupl e can also be specified on the
‘http' application.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 63

Spring Cloud Data Flow Server for Kubernetes

For the complete list of message conversion and message converters, please refer to Spring Cloud
Stream {spring-cloud-stream-docs}#contenttypemanagement[documentation].

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

datafl ow. > streamcreate --definition "time --fixed-delay=5 | log --level =WARN' --name ticktock

To override these application properties, one can specify the new property values during deployment:

dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=4, app.| og.| evel =ERROR"

25.6 Destroying a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

dat af | ow. > stream destroy --nane ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

25.7 Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by name.

dat af | ow. > stream undepl oy --nane ticktock
dat af | ow: > stream depl oy --name ticktock

You can issue the depl oy command at a later time to restart it.

‘dataflow> stream depl oy --name ticktock

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 64

Spring Cloud Data Flow Server for Kubernetes

26. Stream Lifecycle with Skipper

Skipper is a server that allows you to discover Spring Boot applications and manage their lifecycle on
multiple Cloud Platforms.

Applications in Skipper are bundled as packages which contain templated configuration files. They also
contain an optional val ues file that contains default values using to fill in template placeholders. You
can find out more about the format of the package .zip file in Skipper’'s documentation on Packages.
Skipper’s templated configuration files contain placeholders for application properties, application
version, and deployment properties. Package .zip files are uploaded to Skipper and stored in a package
repository. Skipper’s package repository is analogous to those found in tools such as apt - get or br ew.

You can override template values when installing or upgrading a package. Skipper orchestrates the
upgrade/rollback procedure of applications between different versions, taking the minimal set of actions
to bring the system to the desired state. For example, if only one application in a stream has been
updated, only that single application is deployed with a new version and the old version undeployed.
An application is considered different when upgrading if any of it's application properties, deployment
properties (excluding count), or application version (e.g. 1.0.0.RELEASE) is different from the currently
installed application.

Spring Cloud Data Flow is integrated with Skipper by generating a Skipper package when deploying
a Stream. The generated package name is the same name as the Stream. The generated package is
uploaded to Skipper’'s package repository and Data Flow then instructs Skipper to install the package
that corresponds to the Stream. Subsequent commands to upgrade and rollback applications within the
Stream are passed through to Skipper after some validation checks are performed by Data Flow.

26.1 Creating and Deploying a Stream

You create and deploy a stream using skipper in two steps, creating the stream definition and then
deploying the stream.

dataf | ow. > stream create --name httptest --definition "http --server.port=9000 | |og"
dat af | ow. > stream ski pper depl oy --nanme httptest

There is an important optional command argument to the st ream ski pper depl oy command,
which is - - pl at f or mNare. Skipper can be configured to deploy to multiple platforms. Skipper is pre-
configured with a platform named def aul t which will deploys applications to the local machine where
Skipper is running. The default value of the command line argument - - pl at f or nNane is def aul t . If
you are commonly deploying to one platform, when installing Skipper you can override the configuration
of the def aul t platform. Otherwise, specify the platformName to one of the values returned by the
command st ream ski pper platformli st

@ Note

In future releases, only the local Data Flow server will be configured with the def aul t platform.

26.2 Updating a Stream

To update the stream, use the command stream ski pper updat e which takes as a command
argument either - - properties or--properti esFil e. You can pass in values to these command
arguments in the same format as when deploy the stream with or without Skipper. There is an important
new top level prefix available when using Skipper, which is ver si on. If the Stream http | | og was

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 65

https://cloud.spring.io/spring-cloud-skipper/
https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.M2/reference/htmlsingle/#packages

Spring Cloud Data Flow Server for Kubernetes

deployed, and the version of | og which registered at the time of deploymentwas 1. 1. 0. RELEASE, the
following command will update the Stream to use the 1. 2. 0. RELEASE of the log application.

‘ dat af | ow: >stream ski pper update --name httptest --properties version.|log=1.2.0. RELEASE

26.3 Stream versions

Skipper keeps a history of the Streams that were deployed. After updating a Stream, there will be a
second version of the stream. You can query for the history of the versions using the command st r eam
ski pper history --name <nane-of - streanp.

dat af | ow: >stream ski pper history --nane httptest

#Ver si on# Last updat ed # Status #Package Nane#Package Version# Description #

#2 #Mon Nov 27 22:41:16 EST 2017#DEPLOYED#ht t pt est #1.0.0 #Upgr ade conpl et e#
#1 #Mon Nov 27 22:40:41 EST 2017#DELETED #htt pt est #1.0.0 #Del ete conplete #

26.4 Stream Manifests

Skipper keeps an "manifest" of the all the applications, their application properties and deployment
properties after all values have been substituted. This represents the final state of what was deployed to
the platform. You can view the manifest for any of the versions of a Stream using the command st r eam
ski pper mani fest --name <nane-of -streant --rel easeVersi on <optional -versi on>
If the - - r el easeVer si on is not specified, the manifest for the last version is returned.

dat af | ow. >st ream ski pper mani fest --nanme httptest

Source: |og.ym
api Ver si on: ski pper.spring.io/vl
ki nd: SpringC oudDepl oyer Appl i cati on
nmet adat a:
nanme: | og
spec:
resource: maven://org.springfranmework. cl oud. stream app: | og- si nk-rabbi t
version: 1.2.0. RELEASE
appl i cationProperties:
spring. metrics.export.triggers.application.includes: integration**
spring. cl oud. dat af | ow. stream app. | abel : | og
spring.cloud. stream netrics. key: httptest.|og. ${spring.cloud. application.guid}
spring. cl oud. stream bi ndi ngs. i nput.group: httptest
spring. cloud. stream metrics. properties:
spring. appl i cation. name, spri ng. appl i cation.index, spring.cl oud. application.*, spring.cloud. dat af | ow. *
spring. cl oud. dat af | ow. st ream nanme: htt pt est
spring. cl oud. dat af | ow. stream app. type: sink
spring. cl oud. stream bi ndi ngs. i nput . destination: httptest.http
depl oynent Properti es:
spring. cl oud. depl oyer . i ndexed: true
spring. cl oud. depl oyer. group: httptest
spring. cl oud. depl oyer. count: 1

Source: http.ynl
api Ver si on: ski pper.spring.io/vl
ki nd: SpringC oudDepl oyer Appl i cati on
nmet adat a:
name: http
spec:
resource: maven://org.springfranmework. cl oud. stream app: htt p-source-rabbi t
version: 1.2.0. RELEASE
appl i cationProperties:
spring. metrics.export.triggers.application.includes: integration**

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 66

Spring Cloud Data Flow Server for Kubernetes

spring. cl oud. dat af | ow. stream app. | abel : http
spring.cloud. streamnetrics. key: httptest.http.${spring.cloud. application. guid}
spring. cl oud. stream bi ndi ngs. out put. producer. requi redG oups: htt ptest
spring. cloud. stream netrics. properties:

spring. appl i cation. name, spring. application.index, spring.cloud. application.*, spring.cloud. datafl ow. *
server.port: 9000
spring. cl oud. stream bi ndi ngs. out put . destination: httptest.http
spring. cl oud. dat af | ow. st ream nane: httptest
spring. cl oud. dat af | ow. st ream app. type: source

depl oynent Properties:

spring. cl oud. depl oyer. group: httptest

The majority of the deployment and application properties were set by Data Flow in order to enable the
applications to talk to each other and sending application metrics with identifying labels.

26.5 Rollback a Stream

You can rollback to a previous version of the Stream using the command st r eam ski pper rol | back.

dat af | ow: >stream ski pper rollback --nane httptest

There is an optional - - r el easeVer si on command argument which is the version of the Stream. If
not specified, the rollback goes to the previous stream version.

26.6 Application Count

The application count is a dynamic property of the system. If due to scaling at runtime, the application
to be upgraded has 5 instances running, then 5 instances of the upgraded application will be deployed.

26.7 Skipper’'s Upgrade Strategy

Skipper has a simple 'red/black' upgrade strategy. It deploys the new version of the applications, as
many instances as the currently running version, and checks the / heal t h endpoint of the application.
If the health of the new application is good, then the previous application is undeployed. If the health
of the new application is bad, then all new applications are undeployed and the upgrade is considered
not successful.

The upgrade strategy is not a rolling upgrade, so if 5 applications of the application to upgrade are
runningn, then in a sunny day scenario, 5 of the new applications will also be running before the older
version is undeployed. Future versions of Skipper will support rolling upgrades and other types of
checks, e.g. manual, to continue to upgrade process.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 67

Spring Cloud Data Flow Server for Kubernetes

27. Stream DSL

This section covers additional features of the Stream DSL not covered in the Stream DSL introduction.

27.1 Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

streamcreate --definition "http | stepl: transform --expressi on=payl oad.t oUpper Case() | step2:
transform - -expressi on=payl oad+'!" | |o0g" --nane mainstream --depl oy

taps can be created at the output of ht t p, st epl and st ep2.

To create a stream that acts as a 'tap' on another stream requires to specify the sour ce desti nati on
nane for the tap stream. The syntax for source destination name is:

1 <streaniNanme>. <| abel / appNane>"

To create a tap at the output of http in the stream above, the source destination name is
mai nst ream htt p To create a tap at the output of the first transform app in the stream above, the
source destination name is mai nst r eam st epl

The tap stream DSL looks like this:

streamcreate --definition ":mainstreamhttp > counter" --name tap_at_http --depl oy

streamcreate --definition ":mainstreamstepl > jdbc" --nanme tap_at_stepl_transfornmer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

27.2 Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

streamcreate --definition "http | firstLabel: transform --expressi on=payl oad.toUpper Case() |
secondLabel : transform --expressi on=payl oad+'!" | log" --nanme nyStreamWthLabels --depl oy

27.3 Named Destinations

Instead of referencing a source or sink applications, you can use a named destination. A named
destination corresponds to a specific destination name in the middleware broker (Rabbit, Kafka, etc.,).
When using the | symbol, applications are connected to each other using messaging middleware
destination names created by the Data Flow server. In keeping with the unix analogy, one can redirect
standard input and output using the less-than < greater-than > charaters. To specify the name of the
destination, prefix it with a colon : . For example the following stream has the destination name in the
sour ce position:

dat af | ow. >stream create --definition ":nyDestination > 10g" --nanme ingest_frombroker --deploy

This stream receives messages from the destination nyDesti nati on located at the broker and
connects it to the | og app. You can also create additional streams that will consume data from the
same named destination.

The following stream has the destination name in the si nk position:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 68

Spring Cloud Data Flow Server for Kubernetes

dat af | ow. >stream create --definition "http > :nyDestination" --nanme ingest_to_broker --deploy

It is also possible to connect two different destinations (sour ce and si nk positions) at the broker in
a stream.

dat af | ow: >stream create --definition ":destinationl > :destination2" --nanme bridge_destinations --depl oy

In the above stream, both the destinations (desti nati onl and desti nati on2) are located in the
broker. The messages flow from the source destination to the sink destination via a bri dge app that
connects them.

27.4 Fan-in and Fan-out

Using named destinations, you can support Fan-in and Fan-out use cases. Fan-in use cases are when
multiple sources all send data to the same named destination. For example

s3 > :data

ftp > :data
http > :data

Would direct the data payloads from the Amazon S3, FTP, and HTTP sources to the same named
destination called dat a. Then an additional stream created with the DSL expression

:data > file
would have all the data from those three sources sent to the file sink.

The Fan-out use case is when you determine the destination of a stream based on some information
that is only known at runtime. In this case, the Router Application can be used to specify how to direct
the incoming message to one of N named destinations.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 69

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-sinks.html#spring-cloud-stream-modules-router-sink

Spring Cloud Data Flow Server for Kubernetes

28. Stream Java DSL

Instead of using the shell to create and deploy streams, you can use the Java based DSL provided by the
spring-cl oud- dat af | owrest-client module. The Java DSL is a convenient wrapper around
the Dat aFl owTenpl at e class that makes it simple to create and deploy streams programmatically.

To get started, you will need to add the following dependency to your project.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-dataflowrest-client</artifactld>
<ver si on>1. 3. 0. M3</ ver si on>

</ dependency>

You will also need to add a reference to the Spring Milestone Maven repository.

<repositories>
<repository>
<i d>spring-mlestones</id>
<nanme>Spring M| estones</nane>
<url >http://repo.spring.io/libs-mlestone-local </url>
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
</repositories>

@ Note

A complete sample can be found in the Spring Cloud Data Flow Samples Repository to simplify
getting started.

28.1 Overview

The classes you will encounter using the Java DSL are StreanBuil der, StreanDefinition,
Stream StreamAppl i cation, and Dat aFl owTenpl at e. The entry point is a bui | der method
on Stream that takes an instance of a Dat aFl owTenpl ate. To create an instance of a
Dat aFl owTenpl at e you need to provide a URI location of the Data Flow Server.

@ Note

The Dat aFl owTenpl ate does not support a simple way to configure HTTP basic
authentication or OAuth. This will be addressed in a future release.

We will now walk though a quick example, using the def i ni ti on style.

URI dataFlowri = URI.create("http://local host:9393");
Dat aFl owOper at i ons dat aFl owOper ati ons = new Dat aFl owTenpl at e(dat aFl owUri) ;
dat aFl owQper ati ons. appRegi stryQperati ons(). i nmportFronmResour ce(
“http://bit.lylCelsius-RCl-stream applications-rabbit-maven", true);
StreanDefinition streanDefinition = Stream buil der (dat aFl owOper ati ons)
.name("ticktock")
.definition("tine | 1og")
.create();

The method cr eat e returns an instance of a St r eanDef i ni ti on representing a Stream that has
been created but not deployed. This is called the def i ni ti on style since it takes as a single string for
the stream definition, just like in the shell. If applications have not yet been registered in the Data Flow

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 70

https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Kubernetes

server, you can use the Dat aFl owOper at i ons class to register them. With the St r eanDef i ni ti on
instance, you have methods available to depl oy or dest or y the stream.

Stream stream = streanDefinition.deploy();

The St r eaminstance has the methods get St at us, dest r oy and undepl oy to control and query the
stream. If you are going to immediately deploy the stream, there is no need to create a separate local
variable of the type St r eanDef i ni ti on. You can just chain the calls together.

Stream stream = Stream bui | der (dat aFl owOper ati ons)
.nanme("ticktock")
.definition("tine | |og")
.create()
-deploy();

The depl oy method is overloaded to take aj ava. uti | . Map of deployment properties.

The StreamApplication class is used in the ‘fluent'’ Java DSL style and is discussed
in the next section. The StreanBuilder class is what is returned from the method
St ream bui | der (dat aFl owOper at i ons) . In larger applications, it is common to create a single
instance of the St r eanBui | der as a Spring @ean and share it across the application.

28.2 Java DSL styles

The Java DSL offers two styles to create Streams.

e The definition style keeps the feel of using the pipes and filters textual DSL in the shell.
This style is selected by using the defi niti on method after setting the stream name, e.g.
St ream bui | der (dat aFl owOper ati ons) . name("ti cktock"). definition(<definition
goes here>).

» The fluent style lets you chain together sources, processors and sinks
by passing in an instance of a StreamApplication. This style is
selected by using the source method after setting the stream name,
e.g. St ream bui | der (dat aFl owQper ati ons). name("ti cktock").source(<stream
application instance goes here>). You then chain together processor () and si nk()
methods to create a stream definition.

To demonstrate both styles we will create a simple stream using both approaches. A complete sample
for you to get started can be found in the Spring Cloud Data Flow Samples Repository

public void definitionStyle() throws Exception{

Dat aFl owOper ati ons dat aFl owOper ati ons = creat eDat aFl owOper ati ons();
Map<String, String> depl oynent Properties = createDepl oynent Properties();

St ream woodchuck = Stream bui | der (dat aFl owOper at i ons)
. nanme(" woodchuck")
.definition("http --server.port=9900 | splitter --expression=payload.split(' ') | log")
.create()
. depl oy(depl oynment Properties);

wai t AndDest r oy(woodchuck)
}

public void fluentStyle() throws Exception {

Dat aFl owOper at i ons dat aFl owOper ati ons = cr eat eDat aFl owOper ati ons() ;

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 71

https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Kubernetes

StreamAppl i cation source = new StreamApplication("http").addProperty("server.port"”, 9900);

StreamAppl i cati on processor = new StreamApplication("splitter")
. addProperty("producer. partitionKeyExpression", "payload");

StreamAppl i cation sink = new StreamPpplication("log")
. addDepl oynment Property("count", 2);

St ream woodchuck = Stream bui | der (dat aFl owOper ati ons) . name(" woodchuck™)
. sour ce(source)
. processor (processor)
. si nk(si nk)
.create()
. depl oy(depl oynment Properties);

wai t AndDest r oy(woodchuck)

The wai t AndDest r oy method uses the get St at us method to poll for the stream’s status.

private void waitAndDestroy(Stream strean) throws |nterruptedException {

whi | e(!stream get Status().equal s("depl oyed")){
Systemout. println("Wating for deploynent of stream");
Thr ead. sl eep(5000) ;

}

Systemout.println("Letting the streamrun for 2 mnutes.");
/1 Let the streamrun for 2 mnutes
Thr ead. sl eep(120000) ;

System out. println("Destroying streant);
stream destroy();

When using the definition style, the deployment properties are specified as a j ava. util . Map in the
same manner as using the shell. The method cr eat eDepl oynent Properti es is defined as:

private Map<String, String> createDepl oyment Properties() {
Map<String, String> depl oynent Properties = new HashMap<>();
depl oynment Properties. put ("app.splitter.producer.partitionKeyExpression", "payload");
depl oynment Properti es. put ("depl oyer.| og. count”, "2");
return depl oynment Properti es;

}

Is this case, application properties are also overridden at deployment time in addition to
setting the deployer property count for the log application. When using the fluent style, the
the deployment properties are added using the method addDepl oynent Property, e.g. new
StreamAppl i cation("l og").addDepl oynment Property("count”, 2) andyou do not need to
prefix the property with depl oyer . <app_nanme>.

@ Note

In order to create/deploy your streams, you need to make sure that the corresponding apps
have been registered in the DataFlow server first. Attempting to create or deploy a stream
that contains an unknown app will throw an exception. You can register application using the
Dat aFl owTenpl at e, e.g.

dat aFl owQper at i ons. appRegi stryQperati ons(). i nmportFronmResour ce(
"http://bit.lyl/Cel sius-RCl-stream applications-rabbit-mven", true);

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 72

Spring Cloud Data Flow Server for Kubernetes

The Stream applications can also be beans within your application that are injected in other classes to
create Streams. There are many ways to structure Spring applications, but one way to structure it is to
have an @Conf i gur at i on class define the St r eanBui | der and St r eamAppl i cat i ons.

@onfiguration
public StreanConfiguration {

@Bean
public StreanBuil der builder() {
return Stream buil der (new Dat aFl owTenpl ate(URI . create("http://| ocal host:9393")));

}

@Bean
public StreamApplication httpSource(){
return new StreamApplication("http");

}

@Bean
public StreamApplication | ogSink(){
return new StreamApplication("log");
}
}

Then in another class you can @\ut owi r e these classes and deploy a stream.

@onponent
public MyStreamApps {

@\ut owi r ed
private StreanBuilder streanBuil der;

@\ut owi r ed
private StreamApplication httpSource;

@\ut owi r ed
private StreamApplication | ogSink;

public void depl oySi npl eStrean() {
Stream si npl eStream = streanBui | der. nane("si npl eStreant')
. source(httpSource);
. si nk(1 ogSi nk)
.create()
- deploy();

This style allows you to easily share St r eamAppl i cat i ons across multiple Streams.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 73

Spring Cloud Data Flow Server for Kubernetes

29. Stream applications with multiple binder
configurations

In some cases, a stream can have its applications bound to multiple spring cloud stream binders when
they are required to connect to different messaging middleware configurations. In those cases, it is
important to make sure the applications are configured appropriately with their binder configurations.
For example, let’s consider the following stream:

http | transform --expressi on=payl oad. t oUpper Case() | |og

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1l)

Transform processor receives events from Rabbit MQ (rabbitl) and sends the processed events into Kafka
(kaf kal)

Log sink receives events from Kaf ka (kaf kal)

Here, rabbit1l and kaf kal are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder
Transform - Both Kafka and Rabbit binders
Log - Kafka binder

The spring-cloud-stream bi nder configuration properties can be set within the applications themselves.
If not, they can be passed via depl oynent properties when the stream is deployed.

For example,

dat af | ow. >stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |og" --nane
nystream

dat af | ow. >stream depl oy nmystream --properties
"app. http. spring.cl oud. stream bi ndi ngs. out put . bi nder =rabbi t 1, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =r abbi
app. transform spring. cl oud. stream bi ndi ngs. out put . bi nder =kaf kal, app. | og. spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =kaf kal"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 74

Spring Cloud Data Flow Server for Kubernetes

30. Examples

30.1 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘ http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

datafl ow. > stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | l|og" --name
nyst ream - - depl oy

Posting some data (using a shell command)

‘dataflow.> http post --target http://local host: 1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

‘ 2016- 06- 01 09: 54:37.749 |NFO 80083 --- [kafka-binder-] |og.sink : HELLO

30.2 Stateful Stream Processing

To demonstrate the data partitioning functionality, let's deploy the following stream with Kafka as the
binder.

dat af | ow. >stream create --name words --definition "http --server.port=9900 | splitter --
expressi on=payl oad. split('" ') | log"
Created new stream ' words'

dat af | ow: >stream depl oy words --properties
"app.splitter.producer. partitionKeyExpressi on=payl oad, depl oyer.| og. count =2"
Depl oyed stream ' words'

dat af | ow. >http post --target http://local host: 9900 --data "How nmuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood"

> POST (text/plain;Charset=UTF-8) http://local host: 9900 How nmuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood

> 202 ACCEPTED

You'll see the following in the server logs.

2016- 06- 05 18:33:24.982 | NFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og i nstance 0
Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og
2016- 06- 05 18: 33:24.988 | NFO 58039 --- [nio0-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words.log instance 1
Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzgqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og

Review the wor ds. | og i nstance O logs:

2016- 06- 05 18: 35:47.047 |NFO 58638 --- [kafka-binder-] |og.sink : How
2016- 06- 05 18: 35:47.066 |NFO 58638 --- [kafka-binder-] |og.sink

chuck

2016- 06- 05 18:35:47.066 | NFO 58638 --- [kafka-binder-] |og.sink

chuck

Review the wor ds. | og i nstance 1 logs:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 75

Spring Cloud Data Flow Server for Kubernetes

2016- 06- 05 18:35:47.047 | NFO 58639 --- [kafka-binder-] |og.sink
much
2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink
wood
2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink
woul d
2016- 06-05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink :
woodchuck
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink if
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink :
woodchuck
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink
could
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink
wood

This shows that payload splits that contain the same word are routed to the same application instance.

30.3 Other Source and Sink Application Types

Let's try something a bit more complicated and swap out the t i me source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an ht t p source, but still using the same | og sink, we would change the
original command above to

dat afl ow. > stream create --definition "http | 10g" --name nyhttpstream --depl oy

which will produce the following output from the server

2016- 06- 01 09: 47:58.920 |NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstream|og instance 0
Logs will be in /var/folders/wn/ 8 xmtbdlvj28c8vj37n900nD000gn/ T/ spri ng- cl oud-
dat af | ow- 912434582726479179/ nyht t pst ream 1464788878747/ nyhtt pstream | og
2016- 06-01 09:48:06.396 | NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstreamhttp i nstance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788886383/ nyhtt pstream http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dat af | ow. > runtinme apps

You should see that the corresponding http source has a ur| property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

datafl ow > http post --target http://|ocal host: 1234 --data "hel |l 0"
datafl ow. > http post --target http://local host: 1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016- 06-01 09: 50: 22. 121 | NFO 79654 --- [kafka-binder-] |og.sink : hello
2016- 06- 01 09: 50: 26. 810 | NFO 79654 --- [kafka-binder-] |og.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to afile (fi | e), to
hadoop (hdf s) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 76

Part VIl. Streams
deployed using Skipper

We will proceed with the assumption that Spring Cloud Data Flow, Spring Cloud Skipper, RDBMS, and
desired messaging middleware is up and running in minikube.

$ kubect!| get all

NAME READY STATUS RESTARTS AGE
po/ nysql - 777890292- z0Odsw 1/1 Runni ng 0 38m
po/ r abbi t ng- 317767540- 2qzrr 1/1 Runni ng 0 38m
po/ redi s- 4054078334- 37nDI 1/1 Runni ng 0 38m
po/ scdf - server -2734071167- bj d3g 1/1 Runni ng 0 48s
po/ ski pper - 2408247821- 50231 1/1 Runni ng 0 3m

Verify the registered platforms in Skipper.

dat af | ow: >stream ski pper platformli st

Nanme # Type # Descri ption
#
#m ni kube#kuber net es#nmaster url = [https://kubernetes. default.svc/], nanespace = [default], api version

= [v1] #

Let's start with deploying a stream with the t i ne- sour ce pointing to 1.2.0.RELEASE and | og- si nk
pointing to 1.1.0.RELEASE. The goal is to rolling upgrade the | og- si nk application to 1.2.0.RELEASE.

dat af | ow. >app register --nanme tinme --type source --uri docker:springcl oudstreantime-source-
rabbit:1.2.0. RELEASE --force
Successfully registered application 'source:tine'

dat af | ow. >app register --nanme log --type sink --uri docker:springcl oudstreani | og-sink-
rabbit:1.1.0. RELEASE --force
Successfully registered application 'sink:log

dat af | ow. >app info source:tinme
I nf ormati on about source application 'time':
Resource URI: docker: springcl oudstreaniti me-source-rabbit:1.2. 0. RELEASE

dat af | ow. >app i nfo sink:log
I nformati on about sink application 'log":
Resource URI: docker: springcl oudstreani| og-sink-rabbit: 1. 1. 0. RELEASE

1. Create stream.

dat af | ow: >stream create foo --definition "time | |o0g"
Created new stream' f oo’

2. Deploy stream.

dat af | ow: >st ream ski pper depl oy foo --platfornNanme nini kube
Depl oynent request has been sent for stream'foo'

@ Note

While deploying the stream, we are supplying - - pl at f or nNanme and that indicates the
platform repository (i.e., m ni kube) to use when deploying the stream applications via
Skipper.

3. List pods.

$ kubect!| get all

NAVE READY STATUS RESTARTS AGE
po/ f oo- 1 0g- v1- 0- 2k4r 8 1/1 Runni ng 0 2m
po/ f oo-ti nme-v1-qghdqgq 1/1 Runni ng 0 2m
po/ nysql - 777890292- zOdsw 1/1 Runni ng 0 49m
po/ rabbi t ng- 317767540- 2qzr r 1/1 Runni ng 0 49m
po/ redi s- 4054078334- 37nDI 1/1 Runni ng 0 49m
po/ scdf - server-2734071167- bj d3g 1/1 Runni ng 0 12m
po/ ski pper - 2408247821-50z31 1/1 Runni ng 0 15m

4. Verify logs.

$ kubect! -f po/foo-Iog-vil-0-2k4r8

2017-10-30 22:59:04.966 INFO 1 --- [foo.tine.foo-1] |o0g-sink

10/ 30/ 17 22:59: 04

2017-10-30 22:59:05.968 INFO 1 --- [foo.tine.foo-1] |og-sink
10/ 30/ 17 22:59: 05

2017-10-30 22:59:07.000 INFO 1 --- [foo.tine.foo-1] |o0g-sink

10/ 30/ 17 22:59: 06

5. Verify the stream history.

dat af | ow. >stream ski pper history --nanme foo

#Ver si on# Last updat ed # Status #Package Name#Package Version# Description #

#1 #Mon Cct 30 16:18:28 PDT 2017#DEPLOYED#f 0o #1.0.0 #l nstall conpl et e#

6. Verify the package manifest. The | og- si nk should be at 1.1.0.RELEASE.

dat af | ow: >st ream ski pper mani fest --nane foo

Source: |og.ynl
api Versi on: skipper.spring.io/vl
ki nd: SpringCl oudDepl oyer Appl i cati on
net adat a:
nanme: | og
spec:
resour ce: docker: springcl oudstreani| og-si nk-rabbit
version: 1.1.0. RELEASE
appl i cati onProperties:
spring. netrics.export.triggers.application.includes: integration**
spring. cl oud. dat af | ow. st ream app. | abel : | og
spring. cloud. stream metrics. key: foo.log.${spring.cloud. application. gui d}
spring. cl oud. stream bi ndi ngs. i nput. group: foo
spring.cloud. stream netrics. properties:
spring. application. nane, spring. application.index, spring.cloud. application.*,spring.cloud.datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: netrics
spring. cl oud. dat af | ow. st ream nane: foo
spring. cl oud. dat af | ow. stream app. type: sink
spring. cl oud. stream bi ndi ngs. i nput. destination: foo.tine

depl oynment Properti es:
spring. cl oud. depl oyer . i ndexed: true
spring. cl oud. depl oyer. group: foo

Source: tine.yn
api Versi on: ski pper.spring.io/vl
ki nd: SpringCl oudDepl oyer Appl i cati on
net adat a:
nane: tine
spec:
resour ce: docker:springcloudstreanitime-source-rabbit
version: 1.2.0. RELEASE
appl i cati onProperties:
spring.metrics.export.triggers.application.includes: integration**
spring. cl oud. dat af | ow. stream app. | abel : tine
spring. cloud. stream nmetrics. key: foo.tine.${spring.cloud. application.guid}
spring. cl oud. st ream bi ndi ngs. out put . producer. requiredG oups: foo
spring.cloud. stream netrics. properties:
spring. application. nange, spring. application.index, spring.cloud. application.*,spring.cloud.datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: nmetrics
spring. cl oud. stream bi ndi ngs. out put. destination: foo.tine
spring. cl oud. dat af | ow. stream nane: foo
spring. cl oud. dat af | ow. st ream app. t ype: source
depl oynment Properti es:
spring. cl oud. depl oyer. group: foo

7. Let's update | og- si nk from 1.1.0.RELEASE to 1.2.0.RELEASE

dat af | ow. >stream ski pper update --nanme foo --properties version.log=1.2.0. RELEASE
Updat e request has been sent for stream'foo'

8. List pods.

$ kubect!| get all

NAME READY STATUS RESTARTS AGE
po/ f 0o-1 og- v1- 0- 2k4r 8 1/1 Term nati ng 0 3m
po/ f oo-10g-v2-0-fjnlt 0/1 Runni ng 0 9s
po/ f oo-ti me-vi1- ghdqq 1/1 Runni ng 0 3m
po/ nysql - 777890292- z0Odsw 1/1 Runni ng 0 51m
po/ rabbi t ng- 317767540- 2qgzrr 1/1 Runni ng 0 51m
po/ redi s- 4054078334- 37n0I 1/1 Runni ng 0 51m
po/ scdf - server-2734071167- bj d3g 1/1 Runni ng 0 14m
po/ ski pper - 2408247821- 50231 1/1 Runni ng 0 16m

@ Note

Notice that there are two versions of the | og- si nk applications. The po/ f oo-1 og-
v1- 0- 2k4r 8 pod is going down and the newly spawned po/ f 0o-1 0g-v2-0-fj nlt podis
bootstrapping. The version number is incremented and the version-number (v2) is included
in the new application name.

9. Once the new pod is up and running, let’s verify the logs.

$ kubect! -f po/foo-1o0g-v2-0-fjnlt

2017-10-30 23:24:30.016 INFO1 --- [foo.tine.foo-1] |o0g-sink

10/ 30/ 17 23:24: 30

2017-10-30 23:24:31.017 INFO1 --- [foo.tinme.foo-1] |o0g-sink
10/ 30/ 17 23:24:31

2017-10-30 23:24:32.018 INFO1 --- [foo.tine.foo-1] |og-sink

10/ 30/ 17 23:24:32

10Let’s look at the updated package manifest persisted in Skipper. We should now be seeing | og-
si nk at 1.2.0.RELEASE.

dat af | ow: >st ream ski pper mani fest --nane foo

Source: |og.ynl
api Ver si on: skipper.spring.io/vl
ki nd: SpringC oudDepl oyer Appl i cati on
net adat a:
nanme: | og
spec:
resour ce: docker: springcl oudstreani| og-si nk-rabbit
version: 1.2.0. RELEASE
appl i cati onProperties:
spring. netrics.export.triggers.application.includes: integration**
spring. cl oud. dat af | ow. st ream app. | abel : | og
spring.cloud. stream metrics. key: foo.log.${spring.cloud. application. gui d}
spring. cl oud. stream bi ndi ngs. i nput. group: foo
spring.cloud. stream netrics. properties:
spring. application. nane, spring. application.index, spring.cloud. application.*,spring.cloud.datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: netrics
spring. cl oud. dat af | ow. st ream nane: foo
spring. cl oud. dat af | ow. stream app. type: sink
spring. cl oud. stream bi ndi ngs. i nput. destination: foo.tinme
depl oynment Properti es:
spring. cl oud. depl oyer. i ndexed: true
spring. cl oud. depl oyer. group: foo
spring. cl oud. depl oyer. count: 1

Source: tine.yn
api Versi on: ski pper.spring.io/vl
ki nd: SpringCl oudDepl oyer Appl i cati on
net adat a:
nane: tine
spec:
resour ce: docker:springcloudstreanitime-source-rabbit
version: 1.2.0. RELEASE
appl i cati onProperties:
spring.metrics.export.triggers.application.includes: integration**
spring. cl oud. dat af | ow. stream app. | abel : tinme
spring.cloud. stream nmetrics. key: foo.tine.${spring.cloud. application.guid}
spring. cl oud. stream bi ndi ngs. out put . producer. requi redG oups: foo
spring.cloud. stream netrics. properties:
spring. application. nange, spring. application.index, spring.cloud. application.*,spring.cloud. datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: netrics
spring. cl oud. stream bi ndi ngs. out put. desti nation: foo.tine
spring. cl oud. dat af | ow. st ream nane: foo
spring. cl oud. dat af | ow. st ream app. type: source
depl oynment Properti es:
spring. cl oud. depl oyer. group: foo

11Verify stream history for the latest updates.

dat af | ow: >stream ski pper history --nane foo

#Ver si on# Last updat ed # Status #Package Nane#Package Version# Description #
BRI R R R IR B R R IR R R
#2 #MWon Cct 30 16:21:55 PDT 2017#DEPLOYED#f oo #1.0.0 #Upgr ade conpl et e#
#1 #Mon COct 30 16:18:28 PDT 2017#DELETED #f oo #1.0.0 #Del ete conplete #

12Rolling-back to the previous version is just a command away.

dat af | ow: >st ream ski pper rol | back --nane foo
Rol | back request has been sent for the stream'foo'

dat af | ow: >st ream ski pper history --nane foo

#Ver si on# Last updated # Status #Package Nane#Package Version# Description #

#3 #Mon Cct 30 16:22:51 PDT 2017#DEPLOYED#f oo #1.0.0 #Upgr ade conpl et e#
#2 #MWon COct 30 16:21:55 PDT 2017#DELETED #f oo

#Del ete conplete #
#1 #MWon Cct 30 16:18:28 PDT 2017#DELETED #f oo

#Del ete conplete #

Part VIII. Tasks

This section goes into more detail about how you can work with Spring Cloud Task. It covers topics
such as creating and running task applications.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Kubernetes

31. Introduction

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @nabl eTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 83

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Kubernetes

32. The Lifecycle of a Task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Creating a Task Application

2. Registering a Task Application

3. Creating a Task Definition

4. Launching a Task

5. Reviewing Task Executions

6. Destroying a Task Definition

32.1 Creating a Task Application

While Spring Cloud Task does provide a number of out of the box applications (via the spring-cloud-

task-app-starters), most task applications will be custom developed. In order to create a custom task
application:

1. Create a new project via Spring Initializer via either the website or your IDE making sure to select
the following starters:

a. G oud Task - This dependency is the spri ng- cl oud- starter-task.
b. JDBC - This is the dependency for the spri ng-j dbc starter.

2. Within your new project, create a new class that will serve as your main class:

@nabl eTask
@Bpr i ngBoot Appl i cati on
public class MyTask {

public static void main(String[] args) {
Spri ngApplication. run(MTask. cl ass, args);

}
}

3. With this, you'll need one or more CormandLi neRunner or Appl i cati onRunner within your
application. You can either implement your own or use the ones provided by Spring Boot (there is
one for running batch jobs for example).

4. Packaging your application up via Spring Boot into an Uber jar is done via the standard Boot
conventions.

5. The packaged application can be registered and deployed as noted below.
Task Database Configuration

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Data Flow is
set to use Postgresql, be sure that the task application also has Postgresql as a dependency.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 84

https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
http://start.spring.io

Spring Cloud Data Flow Server for Kubernetes

@ Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its Ul, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

32.2 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dat af | ow: >app regi ster --nane taskl --type task --uri maven://com exanpl e: nytask: 1. 0. 2

dat af | ow. >app register --nanme task2 --type task --uri file:///Users/exanpl e/ nmytask-1.0.2.jar

dat af | ow. >app regi ster --name task3 --type task --uri http://exanple.conl nytask-1.0.2.jar
When providing a URI with the nmaven scheme, the format should conform to the following:

maven: // <groupl d>: <artifact|d>[: <extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <t ype>. <nane> and the values are the URIs. For example, this would be
a valid properties file:

task. foo=file:///tnp/foo.jar
task. bar=file:///tnp/bar.jar

Then use the app i mport command and provide the location of the properties file via - - uri :

app inport --uri file:///tnp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

Artifact Type Stable Release SNAPSHOT Release
Maven http://bit.ly/Belmont-GA-task- http://bit.ly/Belmont-BUILD-
applications-maven SNAPSHOT-task-applications-
maven
Docker http://bit.ly/Belmont-GA-task- http://bit.ly/Belmont-BUILD-
applications-docker SNAPSHOT-task-applications-
docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

dat af | ow: >app inport --uri http://bit.|y/Bel nont-GA-task-applications-maven

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 85

http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Server for Kubernetes

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster orapp i nport, ifatask app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

32.3 Creating a Task Definition

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the t ask cr eat e command to create the task definition.
For example:

dat af | ow. >t ask create nytask --definition "timestanp --format=\"yyyy\""
Created new task 'nytask’

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the t ask | i st command.

32.4 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the t ask | aunch command. For example:

dat af | ow: >t ask | aunch mytask
Launched task ' nytask’

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dat af | ow: >t ask | aunch mytask --argunments "--server. port=8080, --foo=bar"

Additional properties meant fora TaskLauncher itself can be passedinusinga- - pr operti es option.
Format of this option is a comma delimited string of properties prefixed with app. <t ask definition
nane>. <pr opert y>. Properties are passed to TaskLauncher as application properties and it is up
to an implementation to choose how those are passed into an actual task application. If the property is
prefixed with depl oyer instead of app it is passed to TaskLauncher as a deployment property and
its meaning may be TaskLauncher implementation specific.

dat af | ow. >t ask | aunch nmytask --properties "depl oyer.tinestanp.fool=bar1l, app.tinestanp.foo2=bar2"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting
common properties to all the task applications that are launched by it. This can be done by

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 86

Spring Cloud Data Flow Server for Kubernetes

adding properties prefixed with spri ng. cl oud. dat af | ow. appl i cati onProperties.task when
starting the server. When doing so, the server will pass all the properties, without the prefix, to the
instances it launches.

For example, all the launched applications can be configured to use the properties f oo and fi zz by
launching the Data Flow server with the following options:

--spring.cloud. dat af | ow. appl i cati onProperties.task.foo=bar
--spring.cloud. dat af | ow. appl i cati onProperties.task.fizz=bar2

This will cause the properties f oo=bar and fi zz=bar 2 to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than task deployment
properties. They will be overridden if a property with the same key is specified at task launch
time (e.g. app. tri gger. fi zz will override the common property).

32.5 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:
» Task Name

» Start Time

* End Time

+ Exit Code

» Exit Message

» Last Updated Time

» Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the t ask executi on |i st command.

To get a list of task executions for just one task definition, add - - nanme and the task definition name, for
example t ask execution list --nane foo. To retrieve full details for a task execution use the
t ask di spl ay command with the id of the task execution, for example t ask di splay --id 549.

32.6 Destroying a Task Definition

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the t ask destr oy command.
For example:

dat af | ow. >t ask destroy mnytask
Destroyed task 'nmytask’

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 87

Spring Cloud Data Flow Server for Kubernetes

@ Note

This will not stop any currently executing tasks for this definition, instead it just removes the
task definition from the database.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 88

Spring Cloud Data Flow Server for Kubernetes

33. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spri ng- cl oud-t ask- stream
and spri ng- cl oud- st ream bi nder - kaf ka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: t ask- events, j ob-

executi on-events etc.,).

dat af | ow: >t ask create myTask --definition “nyBatchJob”
dat af | ow: >t ask | aunch nyTask
dat af | ow. >stream create task-event-subscriberl --definition ":task-events > |og" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dat af | ow: >t ask | aunch nmyTask --properties "spring.cloud. stream bi ndi ngs. t ask-
event s. desti nati on=nyTaskEvent s"
dat af | ow. >stream create task-event-subscriber2 --definition ":nmyTaskEvents > | 0g" --depl oy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 33.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events j ob- executi on-events
Step Execution events st ep- executi on-events
Item Read events itemread-events

Item Process events item process-events
Item Write events itemwite-events

Skip events ski p-events

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 89

Spring Cloud Data Flow Server for Kubernetes

34. Composed Tasks
Spring Cloud Data Flow allows a user to create a directed graph where each node of the graph is a task
application. This is done by using the DSL for composed tasks. A composed task can be created via

the RESTful API, the Spring Cloud Data Flow Shell, or the Spring Cloud Data Flow Ul.

34.1 Configuring the Composed Task Runner

Composed tasks are executed via a task application called the Composed Task Runner.

Registering the Composed Task Runner

Out of the box the Composed Task Runner application is not registered with Spring Cloud Data Flow.
So, to launch composed tasks we must first register the Composed Task Runner as an application with
Spring Cloud Data Flow as follows:

app register --name conposed-task-runner --type task --uri maven://
or g. spri ngf ramewor k. cl oud. t ask. app: conposedt askr unner - t ask: <DESI RED_VERS| O\>

You can also configure Spring Cloud Data Flow to use a different task
definiton name for the composed task runner. This can be done by setting the
spring. cl oud. dat af | ow. t ask. conposedTaskRunner Nare property to the name of your choice.
You can then register the composed task runner application with the name you set using that property.

Configuring the Composed Task Runner

The Composed Task Runner application has a dat af | ow. server. uri property that is used for
validation and for launching child tasks. This defaults to | ocal host : 9393. If you run a distributed
Spring Cloud Data Flow server, like you would do if you deploy the server on Cloud Foundry, YARN
or Kubernetes, then you need to provide the URI that can be used to access the server. You can
either provide this dat af | ow. ser ver . uri property for the Composed Task Runner application when
launching a composed task, or you can provide a spri ng. cl oud. dat af | ow. server. uri property
for the Spring Cloud Data Flow server when it is started. For the latter case the dat af | ow. server. uri
Composed Task Runner application property will be automatically set when a composed task is
launched.

In some cases you may wish to execute an instance of the Composed Task Runner via the
Task Launcher sink. In this case you must configure the Composed Task Runner to use the
same datasource that the Spring Cloud Data Flow instance is using. The datasource properties
are set via the TaskLaunchRequest through the use of the commandl i neArgunents or
the environment Properties. This is because, the Composed Task Runner monitors the
task_executions table to check the status of the tasks that it is executing. Using this information from
the table, it determines how it should navigate the graph.

34.2 The Lifecycle of a Composed Task

Creating a Composed Task

The DSL for the composed tasks is used when creating a task definition via the task create command.
For example:

dat af | ow. > app register --nanme tinmestanp --type task --uri maven://
or g. spri ngframewor k. cl oud. t ask. app: ti mest anp-t ask: <DESI RED_VERSI O\>

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 90

https://github.com/spring-cloud-task-app-starters/composed-task-runner
http://localhost:9393

Spring Cloud Data Flow Server for Kubernetes

dat af | ow. > app register --name nytaskapp --type task --uri file:///hone/tasks/ nytask.jar
dat af | ow: > task create ny-conposed-task --definition "nytaskapp & ti nestanp”
dat af | ow. > task | aunch ny-conposed-t ask

In the example above we assume that the applications to be used by our composed task have not been
registered yet. So the first two steps we register two task applications. We then create our composed
task definition by using the task create command. The composed task DSL in the example above will,
when launched, execute mytaskapp and then execute the timestamp application.

But before we launch the my-composed-task definition, we can view what Spring Cloud Data Flow
generated for us. This can be done by executing the task list command.

dat af | ow. >t ask |i st

Task Name # Task Definition #Task Status#
#ny- conposed- t ask #nyt askapp && ti nest anp#unknown #
#ny- conposed- t ask- nyt askapp#nyt askapp #unknown #

#ny- conposed- t ask-t i nest anp#t i nest anp #unknown #

Spring Cloud Data Flow created three task definitions, one for each of the applications that comprises our
composed task (ny- conposed-t ask- nmyt askapp and ny- conposed-t ask-ti mest anp) as well
as the composed task (nmy- conposed- t ask) definition. We also see that each of the generated names
for the child tasks is comprised of the name of the composed task and the name of the application
separated by a dash - . i.e. my-composed-task - mytaskapp.

Task Application Parameters

The task applications that comprise the composed task definition can also contain parameters. For
example:

dat af | ow. > task create ny-conposed-task --definition "nytaskapp --di spl ayMessage=hell o && tinestanp --
f or mat =YYYY"

Launching a Composed Task

Launching a composed task is done the same way as launching a stand-alone task. i.e.

task launch ny-conposed-task

Once the task is launched and assuming all the tasks complete successfully you will see three task
executions when executing at ask execution |i st.For example:

dat af | ow: >t ask execution |ist

Task Name #1 D # Start Tine # End Tinme #Exit Code#
HHHHHBHHHH T H R R H A T H R H R H R R H T R
#ny- conposed-t ask-ti nmest anp#713#Wed Apr 12 16:43: 07 EDT 2017#Wed Apr 12 16:43: 07 EDT 2017#0 #
#nmy- conposed- t ask- myt askapp#712#Wed Apr 12 16:42:57 EDT 2017#Wed Apr 12 16:42:57 EDT 2017#0 #
#my- conposed- t ask #711#Wed Apr 12 16:42:55 EDT 2017#Wed Apr 12 16:43:15 EDT 2017#0 #

In the example above we see that my-compose-task launched and it also launched the other tasks in
sequential order and all of them executed successfully with "Exit Code" as 0.

Exit Statuses

The following list shows how the Exit Status will be set for each step (task) contained in the composed
task following each step execution.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 91

Spring Cloud Data Flow Server for Kubernetes

» If the TaskExecut i on has an Exi t Message that will be used as the Exi t St at us

» If no Exi t Message is present and the Exi t Code is set to zero then the Exi t St at us for the step
will be COVPLETED.

e If no Exit Message is present and the Exit Code is set to any non zero number then the
Exi t St at us for the step will be FAI LED.

Destroying a Composed Task

The same command used to destroy a stand-alone task is the same as destroying a composed task.
The only difference is that destroying a composed task will also destroy the child tasks associated with
it. For example

dat af | ow. >t ask |i st

Task Name # Task Definition #Task Status#
#ny- conposed- t ask #nyt askapp && ti nest anp#COVPLETED #
#ny- conposed- t ask- nyt askapp#nyt askapp #COWPLETED #
#ny- conposed-t ask-t i nest anp#t i nest anp #COWPLETED #

dat af | ow. >t ask destroy ny-conposed-task
dat af | ow. >t ask |i st

#Task Nane#Task Definition#Task Status#

Stopping a Composed Task
In cases where a composed task execution needs to be stopped. This can be done via the:
e RESTful API

» Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the stop button by
the job execution that needs to be stopped.

The composed task run will be stopped when the currently running child task completes. The step
associated with the child task that was running at the time that the composed task was stopped will be
marked as STOPPED as well as the composed task job execution.

Restarting a Composed Task

In cases where a composed task fails during execution and the status of the composed task is FAI LED
then the task can be restarted. This can be done via the:

« RESTful API
 Shell by launching the task using the same parameters

» Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the restart button by
the job execution that needs to be restarted.

@ Note

Restarting a Composed Task job that has been stopped (via the Spring Cloud Data Flow
Dashboard or RESTful API), will relaunch the STOPPED child task, and then launch the
remaining (unlaunched) child tasks in the specified order.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 92

Spring Cloud Data Flow Server for Kubernetes

35. Composed Tasks DSL

35.1 Conditional Execution

Conditional execution is expressed using a double ampersand symbol &&. This allows each task in the
sequence to be launched only if the previous task successfully completed. For example:

task create ny-conposed-task --definition "foo & bar"

When the composed task my-composed-task is launched, it will launch the task f oo and if it completes
successfully, then the task bar will be launched. If the f 0o task fails, then the task bar will not launch.

You can also use the Spring Cloud Data Flow Dashboard to create your conditional execution. By using
the designer to drag and drop applications that are required, and connecting them together to create
your directed graph. For example:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 93

Spring Cloud Data Flow Server for Kubernetes

START

. () '
foo

L Pt .

, () \
bar

: Y .

Figure 35.1. Conditional Execution

The diagram above is a screen capture of the directed graph as it being created using the Spring
Cloud Data Flow Dashboard. We see that are 4 components in the diagram that comprise a conditional
execution:

Start icon - All directed graphs start from this symbol. There will only be one.
» Task icon - Represents each task in the directed graph.

» End icon - Represents the termination of a directed graph.

Solid line arrow - Represents the flow conditional execution flow between:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 94

Spring Cloud Data Flow Server for Kubernetes

* Two applications
¢ The start control node and an application
* An application and the end control node

@ Note

You can view a diagram of your directed graph by clicking the detail button next to the composed
task definition on the definitions tab.

35.2 Transitional Execution

The DSL supports fine grained control over the transitions taken during the execution of the directed
graph. Transitions are specified by providing a condition for equality based on the exit status of the
previous task. A task transition is represented by the following symbol - >.

Basic Transition
A basic transition would look like the following:

task create ny-transition-conposed-task --definition "foo ' FAILED -> bar 'COWLETED -> baz"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. If the exit status of f oo was COVPLETED then baz would launch. All other statuses returned by
f oo will have no effect and task would terminate normally.

Using the Spring Cloud Data Flow Dashboard to create the same "basic transition" would look like:

START

FAILED | COMPLETED

Figure 35.2. Basic Transition

The diagram above is a screen capture of the directed graph as it being created using the Spring Cloud
Data Flow Dashboard. Notice that there are 2 different types of connectors:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 95

Spring Cloud Data Flow Server for Kubernetes

» Dashed line - Is the line used to represent transitions from the application to one of the possible
destination applications.

» Solid line - Used to connect applications in a conditional execution or a connection between the
application and a control node (end, start).

When creating a transition, link the application to each of possible destination using the connector. Once
complete go to each connection and select it by clicking it. A bolt icon should appear, click that icon and
enter the exit status required for that connector. The solid line for that connector will turn to a dashed line.

Transition With a Wildcard

Wildcards are supported for transitions by the DSL for example:

task create ny-transition-conposed-task --definition "foo ' FAILED -> bar '*' -> baz"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. Any exit status of f oo other than FAI LED then baz would launch.

Using the Spring Cloud Data Flow Dashboard to create the same "transition with wildcard" would look
like:

START

foo

Figure 35.3. Basic Transition With Wildcard
Transition With a Following Conditional Execution

A transition can be followed by a conditional execution so long as the wildcard is not used. For example:

task create my-transition-conditional -execution-task --definition "foo ' FAILED -> bar ' UNKNOWN -> baz
&& qux && quux"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. If f oo had an exit status of UNKNOWN then baz would launch. Any exit status of f 0o other than
FAI LED or UNKNOWN then qux would launch and upon successful completion quux would launch.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 96

Spring Cloud Data Flow Server for Kubernetes

Using the Spring Cloud Data Flow Dashboard to create the same "transition with conditional execution"
would look like:

START

Figure 35.4. Transition With Conditional Execution

@ Note

In this diagram we see the dashed line (transition) connecting the f 0o application to the target
applications, but a solid line connecting the conditional executions between f oo, qux, and
guux.

35.3 Split Execution

Splits allow for multiple tasks within a composed task to be run in parallel. It is denoted by using angle
brackets <> to group tasks and flows that are to be run in parallel. These tasks and flows are separated
by the double pipe | | . For example:

task create nmy-split-task --definition "<foo || bar || baz>"

The example above will launch tasks f oo, bar and baz in parallel.
Using the Spring Cloud Data Flow Dashboard to create the same "split execution" would look like:

START

Figure 35.5. Split

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 97

Spring Cloud Data Flow Server for Kubernetes

With the task DSL a user may also execute multiple split groups in succession. For example:

task create ny-split-task --definition "<foo || bar || baz> && <qux || quux>"

In the example above tasks f 0o, bar and baz will be launched in parallel, once they all complete then
tasks qux, quux will be launched in parallel. Once they complete the composed task will end. However
if f 00, bar, or baz fails then, the split containing qux and quux will not launch.

Using the Spring Cloud Data Flow Dashboard to create the same "split with multiple groups" would
look like:

START

Figure 35.6. Split as a part of a conditional execution
Notice that there is a SYNC control node that is by the designer when connecting two consecutive splits.
Split Containing Conditional Execution

A split can also have a conditional execution within the angle brackets. For example:

task create nmy-split-task --definition "<foo & bar || baz>"

In the example above we see that f oo and baz will be launched in parallel, however bar will not launch
until f oo completes successfully.

Using the Spring Cloud Data Flow Dashboard to create the same "split containing conditional execution"
would look like:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 98

Spring Cloud Data Flow Server for Kubernetes

START
L/
foo
Y
(- L
bar baz
Oy T
LA

Figure 35.7. Split with conditional execution

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes

Spring Cloud Data Flow Server for Kubernetes

36. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available t ask- | auncher sinks. Currently
the platforms supported via the t ask- | auncher sinks are local, Cloud Foundry, and Yarn.

@ Note

t ask- | auncher -1 ocal is meant for development purposes only.

A task-| auncher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the t ask- | auncher will obtain the URI of the artifact to be
launched as well as the environment properties, command line arguments, deployment properties and
application name to be used by the task.

The task-launcher-local can be added to the available sinks by executing the app register command as
follows (for the Rabbit Binder):

app register --name task-launcher-local --type sink --uri maven://
or g. springfranewor k. cl oud. stream app: t ask- | auncher -l ocal -si nk-rabbit:jar: 1. 2. 0. RELEASE

In the case of a maven based task that is to be launched, the task-I|auncher
application is responsible for downloading the artifact. You must configure the task-
I auncher with the appropriate configuration of Maven Properties such as --maven. r enot e-
repositories.repol.url=http://repo.spring.io/libs-mlestone" to resolve artifacts,
in this case against a milestone repo. Note that this repo can be different than the one used to register
the t ask- 1 auncher application itself.

36.1 TriggerTask

One way to launch a task using the task-I|auncher is to use the triggertask source. The
tri ggert ask source will emit a message with a TaskLaunchRequest object containing the required
launch information. The tri ggert ask can be added to the available sources by executing the app
register command as follows (for the Rabbit Binder):

app register --type source --nane triggertask --uri maven://
or g. springfranmewor k. cl oud. stream app: tri ggertask-source-rabbit:1.2. 0. RELEASE

An example of this would be to launch the timestamp task once every 60 seconds, the stream to
implement this would look like:

stream create foo --definition "triggertask --triggertask.uri=maven://

or g. springframewor k. cl oud. t ask. app: ti mestanp-task:jar:1.2.0. RELEASE --trigger.fixed-

del ay=60 --triggertask.environnment-properties=spring.datasource.url=jdbc:h2:tcp://

| ocal host: 19092/ mem dat af | ow, spri ng. dat asour ce. user nanme=sa | task-|auncher-Ilocal --maven.renote-
repositories.repol.url =http://repo.spring.io/libs-rel ease" --deploy

If you execute runt i ne apps you can find the log file for the task launcher sink. Tailing that file you
can find the log file for the launched tasks. The setting of t ri ggert ask. envi ronnent - properties
is so that all the task executions can be collected in the same H2 database used in the local version
of the Data Flow Server. You can then see the list of task executions using the shell command t ask
execution |ist

dat af | ow: >t ask execution |ist

Task Nane #| D# Start Tinme # End Ti ne #Exit Code#
HHHH

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 100

https://github.com/spring-cloud-stream-app-starters/tasklauncher-local
https://github.com/spring-cloud-stream-app-starters/tasklauncher-cloudfoundry
https://github.com/spring-cloud-stream-app-starters/tasklauncher-yarn
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-stream/src/main/java/org/springframework/cloud/task/launcher/TaskLaunchRequest.java
https://github.com/spring-cloud-stream-app-starters/tasklauncher-local/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-sink-task-launcher-local/README.adoc
https://github.com/spring-cloud/spring-cloud-deployer/blob/master/spring-cloud-deployer-resource-maven/src/main/java/org/springframework/cloud/deployer/resource/maven/MavenProperties.java
https://github.com/spring-cloud-stream-app-starters/triggertask/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-source-triggertask/README.adoc

Spring Cloud Data Flow Server for Kubernetes

#ti mest anp-t ask_26176#4 #Tue May 02 12:13:49 EDT 2017#Tue May 02 12:13:49 EDT 2017#0
#ti mest anp- t ask_32996#3 #Tue May 02 12:12:49 EDT 2017#Tue May 02 12:12:49 EDT 2017#0
#ti mest anp-t ask_58971#2 #Tue May 02 12:11:50 EDT 2017#Tue May 02 12:11:50 EDT 2017#0
#ti mest anp-task_13467#1 #Tue May 02 12:10: 50 EDT 2017#Tue May 02 12:10:50 EDT 2017#0

T

36.2 TaskLaunchRequest-transform

Another option to start a task using the t ask-| auncher would be to create a stream using the
Tasklaunchrequest-transform processor to translate a message payload to a TaskLaunchRequest .

The t askl aunchr equest -t r ansf or mcan be added to the available processors by executing the
app register command as follows (for the Rabbit Binder):

app register --type processor --nane tasklaunchrequest-transform--uri maven://
or g. spri ngf ramewor k. cl oud. stream app: t askl aunchr equest -t ransf orm processor-rabbit: 1. 2. 0. RELEASE

For example:

stream create task-stream--definition "http --port=9000 | tasklaunchrequest-transform --uri=maven://
org. springfranmework. cl oud. t ask. app: ti nest anp-task:jar:1.2.0. RELEASE | task-launcher-local --
maven. renot e-repositories.repol.url=http://repo.spring.io/libs-rel ease"

36.3 Launching a Composed Task From a Stream

A composed task can be launched using one of the t ask- | auncher sinks as discussed here. Since
we will be using the ConposedTaskRunner directly we will need to setup the task definitions it will use
prior to the creation of the composed task launching stream. So let's say that we wanted to create the
following composed task definition AAA && BBB. The first step would be to create the task definitions.
For example:

task create AAA --definition "tinestanp”
task create BBB --definition "timestanp"

Now that the task definitions we need for composed task definition are ready, we need to create a stream
that will launch ConposedTaskRunner . So in this case we will create a stream that has a trigger that will
emit a message once every 30 seconds, a transformer that will create a TaskLaunchRequest for each
message received, and at ask- | auncher -1 ocal sink that will launch a the ConposedTaskRunner
on our local machine. The stream should look something like this:

streamcreate ctr-stream--definition "tine --fixed-delay=30 | tasklaunchrequest-transform --

uri =maven:// org. springfranmework. cl oud. t ask. app: conposedt askr unner - t ask: <current rel ease> --comrand-

li ne-argunent s=' - - gr aph=AAA&R&BBB - -i ncrenent -i nst ance- enabl ed=true --spring.datasource.url=..." | task-
I auncher -l ocal "

In the example above we see that the t askl aunchr equest -t ransf or mis establishing 2 primary
components:

* uri - the URI of the ConposedTaskRunner that will be used.
e command-line-arguments - that configure the ConposedTaskRunner .
For now let’s focus on the configuration that is required to launch the ConposedTaskRunner :

e graph - this is the graph that is to be executed by the ConposedTaskRunner. In this case it is
AAA&EBBB

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 101

https://github.com/spring-cloud-stream-app-starters/tasklaunchrequest-transform

Spring Cloud Data Flow Server for Kubernetes

» increment-instance-enabled - this allows each execution of ConposedTaskRunner to be unique.
ConposedTaskRunner is built using Spring Batch, and thus each we will want a new Job Instance
for each launch of the ConposedTaskRunner. To do this we set the increment-instance-enabled
tobetrue.

» spring.datasource.* - the datasource that is used by Spring Cloud Data Flow which allows the user to
track the tasks launched by the ConposedTaskRunner and the state of the job execution. Also this
is so that the ConposedTaskRunner can track the state of the tasks it launched and update its state.

@ Note

Releases of ConposedTaskRunner can be found here

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 102

http://projects.spring.io/spring-batch/
https://github.com/spring-cloud-task-app-starters/composed-task-runner/releases

Part IX. Dashboard

This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Kubernetes

37. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

» Apps Lists all available applications and provides the control to register/unregister them

Runtime Provides the Data Flow cluster view with the list of all running applications

Streams List, create, deploy, and destroy Stream Definitions

Tasks List, create, launch and destroy Task Definitions

Jobs Perform Batch Job related functions

Analytics Create data visualizations for the various analytics applications
Upon starting Spring Cloud Data Flow, the Dashboard is available at:
htt p: // <host >: <port >/ dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at ht t ps: // | ocal host : 9393/ dashboar d. If you
have enabled security, alogin form is available atht t p: / / | ocal host : 9393/ dashboar d/ #/ | ogi n.

@ Note

The default Dashboard server port is 9393

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 104

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

&) spring

About

simplify the development of big data applications.

Data Flow Server Implementation

Name spring-cloud-dataflow-server-local

Version 1.3.0.BUILD-SNAPSHOT

Q SHOW DETAILS

Get the Spring Cloud Data Flow Shell

As an alternative to the Dashboard Ul, you can also download the compatible version of the Shell {1.3.0.BUILD-SNAPSHOT).

Need Help or Found an Issue?

Project Page http://cloud.spring.io/spring-cloud-dataflow/

Sources https://github.com/spring-cloud/spring-cloud-dataflow

Documentation ht docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT reference/htmlsingle/
APl Docs http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-cloud-dataflow

Issue Tracker https://github.com/spring-cloud/spring-cloud-dataflow/issues

PROJECT MENTATION

Spring Cloud Data Flow is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data expert. The project's geal is to

NEED HELP?

For questions + support:

Figure 37.1. The Spring Cloud Data Flow Dashboard

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes

105

Spring Cloud Data Flow Server for Kubernetes

38. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

Apps

This section lists all the available applications and provides the control to register/unregister them (if applicable).

=+ REGISTER APPLICATION(S) 2 BULK IMPORT APPLICATIONS Filter items

Name Type URI Actions

1 file source maven://org.springframework.cloud.stream.app:file-source-rabbit:1.3.0.M1 n
1 ftp source maven://org.springframework.cloud.stream.app:ftp-source-rabbit:1.3.0.M1 n
~1 gemfire source maven://org.springframework.cloud.stream.app:gemfire-source-rabbit:1.3.0.M1 n
~) gemfire-cq source maven://org.springframework.cloud stream.app:gemfire-cq-source-rabbit:1.3.0.M1 n
1 http source maven://org.springframework.cloud.stream.appihttp-source-rabbit:1.3.0.M1 n
~1 jdbe source maven://org.springframework.cloud.stream.app:jdbc-source-rabbit:1.3.0.M1 “
1 jms source maven://org.springframework.cloud.stream.app:;jms-source-rabbit:1.3.0.M1 n

~| load-generator source maven://org.springframework.cloud.stream.app:load-generator-source-rabbit:1.3.0.M1 u

T loggregator source maven://org.springframework.cloud stream.app:loggregator-source-rabbit:1.3.0.M1 n

1 mail source maven://org.springframework.cloud.stream.app:mail-source-rabbit:1.3.0.M1 n

234557Next»

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 38.1. List of Available Applications

38.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>. <name> = <coor di nat es>
For example:

task. ti mest anp=nmaven://org. springfranmework. cl oud. t ask. app: ti nest anp-
task: 1. 2. 0. RELEASE

processor. transformrmaven: // or g. spri ngfranmewor k. cl oud. stream app: transform
processor-rabbit:1.2.0. RELEASE

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 106

Spring Cloud Data Flow Server for Kubernetes

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

Bulk Import Applications
Impoert and register applications in bulk. Simply provide a URI that points to the location of the properties file where the keys are formatted as type.name and the values
are the URIs of the apps. For convenience, a list of out-of-the-box Stream and Task app starters is provided below, as well.

OR

Enter the list of properties into the text area field below. Alternatively, you can also
select a file in your local file system, which is used to populate the text area field.

Apps as Properties

Please provide a valid properties where the keys are formatted as type.name and the values are the URIs of the apps

Choose File = No file chosen
Select Properties File

Please provide a text file containing properties. This will be used to populate the text area above

Force @

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 38.2. Bulk Import Applications

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 107

Spring Cloud Data Flow Server for Kubernetes

39. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Runtime applications

This section shows the list of all running apps.

AppId State # of Instances
foo.log deployed 1
foo.time deployed 1

PROJECT DOCUMENTATION NEED HELP?

For questiens + support:

Figure 39.1. List of Running Applications

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 108

Spring Cloud Data Flow Server for Kubernetes

40. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Streams

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams.
Definitions Create Stream

Filter Stream Definitions

EXPAND ALL COLLAPSE ALL

Name ¥ Definitions ¥ Status @ Actions

(o] cassandraingest http --port=8000 | filter --expression=#jsonPath(payload,'$.lang')=="en" | cassandra undeployed n -n
o] minutes itimer.time > transform --expression=payload.substring(2,4) | log deploying “ n
(o] seconds :timer.time > transform --expression=payload.substring(4) | log deploying n“ n
o] timer time --date-format=hhmmss | log deploying “ n

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 40.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 109

Spring Cloud Data Flow Server for Kubernetes

&) spring

timer

APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

‘ B time

194 = ———

A\ transform

A\ transform

k> log

Figure 40.2. Stream Details Page

1.3.0.M3

Spring Cloud Data Flow
Server Kubernetes

110

Spring Cloud Data Flow Server for Kubernetes

41. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:
» Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both
» Write pipelines via DSL with content-assist and auto-complete

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Streams

Create a stream using text based input or the visual editor.

Definitions Create Stream

IR I (o) o]
STREAM l=time | scriptable-transform --script='''return #{payload.tr('"“A-Za-z0-9', '')}''' --language=ruby |
log
:STREAM 1l.time > scriptable-transform --script='''function double(p) \n{\n return p + '--' +
p;\n}\ndouble(payload);''' --language=javascript | log

4

source

A scriptable-tra... %]—[% = log
‘----[% A scriptable-tra... IJ‘]—E’E = log

1]
> gemfire-cq “
]
L}
1

\
I\ scriptable-tra... B log
D

T
g

E» gemfire p time

Gl

=3
©

T
3

> load-genera...]

i

> logoresator

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 41.1. Flo for Spring Cloud Data Flow

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 111

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Kubernetes

42. Tasks

The Tasks section of the Dashboard currently has three tabs:
* Apps
* Definitions

» Executions

42.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within

the Tasks section allows users to create Task definitions.

@ Note

You will also use this tab to create Batch Jobs.

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Apps

This section lists all available task apps. You have the ability to view app details and to create task definitions.

Name Coordinates

composed-task-runner maven://org.springframework.cloud task.app:composedtaskrunner-task:1.1.0.M1
jdbehdfs-local maven://org.springframework.cloud task.app:jdbchdfs-local-task:1.3.0.M1
spark-client maven://org.springframework.cloud.task.app:spark-client-task:1.3.0.M1
spark-cluster maven://org.springframework.cloud.task.app:spark-cluster-task:1.3.0.M1
spark-yarn maven://org.springframework.cloud.task.app:spark-yarn-task:1.3.0.M1
timestamp maven://org.springframework.cloud.task.app:timestamp-task:1.3.0. M1
timestamp-batch maven://org.springframework.cloud task.app:timestamp-batch-task:1.0.0.M1

PROJECT DOCUMENTATION

Figure 42.1. List of Task Apps
On this screen you can perform the following actions:

» View details such as the task app options.

Actions

NEED HELP?

For questions + support:

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes

112

Spring Cloud Data Flow Server for Kubernetes

» Create a Task Definition from the respective App.
Create a Task Definition from a selected Task App
On this screen you can create a new Task Definition. As a minimum you must provide a name for

the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

@ Note

Each parameter is only included if the Include checkbox is selected.
View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

42 .2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Filter Task Definitions

L L Filter definitions

Mame ¥ Definitions ¥+ Actions

demo timestamp

PROJECT DOCUMENTATION ~ NEED HELP?
For questions +

support:

Figure 42.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 113

Spring Cloud Data Flow Server for Kubernetes

g spring Apps Runtime ~Streams Jobs Analytics

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Bulk Define Tasks

Define tasks in bulk. Type in tasks definitions in the text box or simply browse to a local task definitions file

Task Definitions A

The format of your task definitions are invalid. no definitions detected

. . Choose File No file chosen
Select Definitions File
Please provide a text file containing task definitions. This will be used to populate the text area above.

CANCEL

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 42.3. Bulk Define Tasks

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<t ask-definition-nane> = <task-application> <options>
For example:
deno-ti nestanp = tinmestanp --format=hhnmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the Ul will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 114

Spring Cloud Data Flow Server for Kubernetes

@ Note

Bulk loading of composed task definitions is not currently supported.
Creating Composed Task Definitions

The dashboard includes the Create Composed Task tab that provides the canvas application, offering
a interactive graphical interface for creating composed tasks.

In this tab, you can:
» Create and visualize composed tasks using DSL, a graphical canvas, or both

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of the composed task

g Sprlng APPS RUNTIME STREAMS TASKS

Tasks

This section allows for creation of composed tasks.

Apps Definitions Create Composed Task Executions

Create Clear Layout Zoom: 95 % il @ Grid @ Close DSL View

1 foo && bar

¥ control nodes

Figure 42.4. Composed Task Designer

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 115

Spring Cloud Data Flow Server for Kubernetes

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:
» Parameter Key
» Parameter Value

Task parameters are not typed.

42.3 Executions

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Task Executions

This section lists all the available task executions.

Execution Id Task Name ¥ Start Time ¥ End Time ¥ Exit Code ¥ Actions.

4 demo-timestamp 2017-09-07722:51:16.339Z 2017-09-07T22:51:16.3557Z 0 n
5 demo-timestamp 2017-09-07722:51:15.2817 2017-09-07722:51:15.3092 0 n
2 foozz 2017-09-07722:51:15.0247 2017-09-07T22:51:15.4587 1 n
1 foozz 2017-09-07722:46:27.020Z 2017-09-07722:46:27.3382 0 n

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 42.5. List of Task Executions

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 116

Spring Cloud Data Flow Server for Kubernetes

43. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Batch Job Executions

This section lists all available batch job executions and provides the control to restart a job execution (if restartable).

~

Step
Execution

Name Task Id Instance Id Execution Id Job Start Time Count Status Actions
job2 1 2 1 2017-09-07 15:46:27,313-07:00 1 COMPLETED n
jobl 1 1 1 2017-09-07 15:46:27,255 -07:00 1 COMPLETED “

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 43.1. List of Job Executions

43.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 117

Spring Cloud Data Flow Server for Kubernetes

Job execution details

Job Execution Details - Execution ID: 1

Property

Id

Job Name

Job Instance

Task Execution Id

Job Parameters

Value

1

jobl

1

1

--spring.cloud.task.executionid=1 --spring.datasource.username=sa --server.port=23434 —-spring.jmx.default-domain=foozz-0137d 7dc-ef85-4890-

9d9f-5d32b3992357 --spring.datasource.url=jdbc:h2:tcp:/flocalhost: 19092 /mem:dataflow --spring.datasource.driverClassName=org.h2.Driver --
endpoints.shutdown.enabled=true --spring.cloud.task.name=foozz --endpoints.jmx.unique-names=true

Start Time 2017-09-07T15:46:27.2552
End Time 2017-09-07T15:46:27.293Z
Duration 00:00:00.038
Status COMPLETED
Exit Code COMPLETED

Exit Message

Step Execution Count 1
Steps
Step Id Step Name Reads Writes Commits Rollbacks Duration Status Details

1 joblstepl 0 0 1 0 00:00:00.018 COMPLETED n
BACK

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 43.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

@ Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 118

Spring Cloud Data Flow Server for Kubernetes

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

& spring Jobe

Step Execution Details - Step Execution ID: 1

Step Execution Progress

100%
Property Value
Step Execution Id 1
Job Execution Id 1
Step Name joblstepl
Step Type org.springframework.cloud task.app.timestamp.batch. TimestampBatchTaskConfiguration$1
Status COMPLETED
Commits 1
Duration 00:00:00.018
Filter Count 0
Process Skips 0
Reads 0
Read Skips 0
Rollbacks 0
Skips 0
Writes 0
Write Skips 0
Exit Description
N/A
Step Execution Context
Key Value
batch.taskletType org.springframework.cloud.task.app.timestamp.batch. TimestampBatchTaskConfiguration$1
batch.stepType org.springframework.batch.core.step.tasklet. TaskletStep

~
“m

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 43.3. Step Execution History

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 119

Spring Cloud Data Flow Server for Kubernetes

44. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

e Counters
» Field-Value Counters
» Aggregate Counters

For example, if you create a stream with a Counter application, you can now easily create the
corresponding graph from within the Dashboard tab:

1. Under Metri c Type, select Count er s from the select box
2. Under St r eam select t weet count
3. Under Vi sual i zat i on, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 120

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter

Part X. REST API Guide

You can find the documentation about the Data Flow REST API in the core documentation.

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/htmlsingle/index.html#api-guide

Part XI. Appendices

Having trouble with Spring Cloud Data Flow, We’d like to help!

» Ask a question - we monitor stackoverflow.com for questions tagged with spri ng-cl oud-
dat af | ow.

* Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

* Report bugs with Spring Cloud Data Flow for Kubernetes at github.com/spring-cloud/spring-cloud-
dataflow-server-kubernetes/issues.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-dataflow
http://stackoverflow.com/tags/spring-cloud-dataflow
https://github.com/spring-cloud/spring-cloud-dataflow/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes/issues

Spring Cloud Data Flow Server for Kubernetes

Appendix A. ‘How-to’ guides

A.l1 Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it'd be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you'd like to enable DEBUG logs for the kubernetes-deployer, you'd be starting the
server with following environment variable set.

LOGGE NG_LEVEL_ORG_SPRI NGFRAMEWORK _CLOUD_DEPLOYER_SPI _ KUBERNETES=DEBUG

Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

For instance, if you'd have to troubleshoot the header and payl oad specifics that are being passed
around source, processor and sink channels, you'd be deploying the stream with the following options.

dat af | ow: >stream create foo --definition "http --10gging.level.org.springframework.integrati on=DEBUG
| transform --1ogging.|evel.org.springfranework.integrati on=DEBUG | |og --
| oggi ng. | evel . org. spri ngfranmework. integrati on=DEBUG' - -depl oy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via depl oynent properties when deploying the stream.

dat af | ow: >stream depl oy foo --properties "app.*.lo0gging.|evel.org.springfranmework.integrati on=DEBUG'

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 123

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/tree/master/spring-cloud-deployer-kubernetes

Spring Cloud Data Flow Server for Kubernetes

Appendix B. Data Flow Template

As described in the previous chapter, Spring Cloud Data Flow’s functionality is completely exposed via
REST endpoints. While you can use those endpoints directly, Spring Cloud Data Flow also provides a
Java-based API, which makes using those REST endpoints even easier.

The central entrypoint is the Dat aFl owTenpl at e class in package
org. springfranmework. cl oud. datafl ow. rest.client.

This class implements the interface Dat aFl owOper ati ons and delegates to sub-templates that
provide the specific functionality for each feature-set:

Interface Description

StreamOperations REST client for stream operations
CounterOperations REST client for counter operations
FieldValueCounterOperations REST client for field value counter operations
AggregateCounterOperations REST client for aggregate counter operations
TaskOperations REST client for task operations
JobOperations REST client for job operations
AppRegistryOperations REST client for app registry operations
CompletionOperations REST client for completion operations
RuntimeOperations REST Client for runtime operations

When the Dat aFl owTenpl at e is being initialized, the sub-templates will be discovered via the REST
relations, which are provided by HATEOAS.!

@ Important

If a resource cannot be resolved, the respective sub-template will result in being NULL. A
common cause is that Spring Cloud Data Flow offers for specific sets of features to be enabled/
disabled when launching. For more information see Chapter 14, Feature Toggles.

B.1 Using the Data Flow Template

When using the Data Flow Template the only needed Data Flow dependency is the Spring Cloud Data
Flow Rest Client:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-dataflowrest-client</artifactld>
<ver si on>1. 3. 0. M3</ ver si on>

</ dependency>

With that dependency you will get the Dat aFl owTenpl at e class as well as all needed dependencies
to make calls to a Spring Cloud Data Flow server.

'HATEOAS stands for Hypermedia as the Engine of Application State

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 124

Spring Cloud Data Flow Server for Kubernetes

When instantiating the Dat aFlI owTenpl at e, you will also pass in a Rest Tenpl at e. Please be aware
that the needed Rest Tenpl at e requires some additional configuration to be valid in the context of
the Dat aFl owTenpl at e. When declaring a Rest Tenpl at e as a bean, the following configuration will
suffice:

@Bean
public static RestTenpl ate restTenplate() {
Rest Tenpl ate rest Tenpl ate = new Rest Tenpl at e();
rest Tenpl at e. set Error Handl er (new VndEr r or ResponseEr r or Handl er (r est Tenpl at e. get MessageConverters()));
for(H tpMessageConverter<?> converter : restTenpl ate. get MessageConverters()) {
if (converter instanceof Mappi ngJackson2HttpMessageConverter) {
final Mappi ngJackson2Htt pMessageConverter jacksonConverter =
(Mappi ngJackson2Ht t pMessageConverter) converter;
j acksonConvert er. get Obj ect Mapper ()
. regi ster Modul e(new Jackson2Hal Modul e())
.addM xI n(JobExecuti on. cl ass, JobExecutionJacksonM xI n. cl ass)
.addM x| n(JobPar anet ers. cl ass, JobPar anet er sJacksonM xI n. cl ass)
. addM x| n(JobPar anet er . cl ass, JobPar anet er JacksonM xI n. cl ass)
.addM x| n(Jobl nst ance. cl ass, Jobl nst anceJacksonM xI n. cl ass)
.addM xI n(Exi t St atus. cl ass, Exit StatusJacksonM xI n. cl ass)
.addM x| n(St epExecuti on. cl ass, StepExecuti onJacksonM x| n. cl ass)
.addM xI n(Execut i onCont ext . cl ass, Executi onCont ext JacksonM x| n. cl ass)
.addM x| n(St epExecuti onH story. cl ass, StepExecutionHi storyJacksonM xIn. cl ass);

}
}

return restTenpl at e;

}

Now you can instantiate the Dat aFl owTenpl at e with:

Dat aFl owTenpl at e dat aFl owTenpl ate = new Dat aFl owTenpl at e(
new URI ("http://|ocal host:9393/"), restTenpl ate); O

0 The URI points to the ROOT of your Spring Cloud Data Flow Server.

Depending on your requirements, you can nhow make calls to the server. For instance, if you like to get
a list of currently available applications you can execute:

PagedResour ces<AppRegi strati onResour ce> apps = dat aFl owTenpl at e. appRegi stryQperations().list();

Systemout.println(String.format("Retrieved % application(s)",
apps. get Content ().size()));

for (AppRegistrationResource app : apps.getContent()) {
Systemout. println(String.format("App Name: %, App Type: %, App UR: %",
app. get Nare() ,
app. get Type(),
app. get Uri ()));

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 125

Spring Cloud Data Flow Server for Kubernetes

Appendix C. Spring XD to SCDF

In this section you will learn all about the migration path from Spring XD to Spring Cloud Data Flow
along with the tips and tricks.

C.1 Terminology Changes

Oold New

XD-Admin Server (implementations: local, cloud foundry,

apache yarn, kubernetes, and apache mesos)

XD-Container N/A
Modules Applications
Admin Ul Dashboard
Message Bus Binders
Batch / Job Task

C.2 Modules to Applications

If you have custom Spring XD modules, you'd have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

If you'd like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

Alternatively, if you'd like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts fromhtt p,fi |l e, oras hdf s
coordinates

Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you're expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

Spring Cloud Data Flow

1.3.0.M3 Server Kubernetes 126

https://github.com/spring-cloud-stream-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-task/docs/current/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_creating_your_own_applications
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_patching_pre_built_applications

Spring Cloud Data Flow Server for Kubernetes

» By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

» Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

» counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the count er -
si nk, thenr edi s becomes required, and you're expected to have your own running r edi s cluster

« field-value-counter-sink:

* The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the fi el d-
val ue- count er - si nk, then r edi s becomes required, and you're expected to have your own
running r edi s cluster

* aggregate-counter-sink:

e The peripheral redi s is not required in Spring Cloud Data Flow. If you intend to use the
aggr egat e- count er - si nk, then r edi s becomes required, and you're expected to have your
own running r edi s cluster

C.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you're to
choose Kafka as the binder, you'd register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you'd add the following dependency
in the classpath.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cl oud-stream bi nder - kaf ka</artifactld>
<ver si on>1. 0. 2. RELEASE</ ver si on>

</ dependency>

» Spring Cloud Stream supports Apache Kafka, RabbitMQ and experimental Google PubSub and
Solace JMS. All binder implementations are maintained and managed in their individual repositories

» Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 127

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-google-pubsub
https://github.com/spring-cloud/spring-cloud-stream-binder-solace

Spring Cloud Data Flow Server for Kubernetes

maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by t opi ¢s or t opi c- exchange and there’s no representation
of queues in the new architecture.

* ${xd. nodul e. i ndex} is not supported anymore; instead, you can directly interact with named
destinations

» stream i ndex changes to: <stream nane>. <l abel / app- nane>
« forinstance: ti ckt ock. O changesto:ticktock.time

» “topic/queue” prefixes are not required to interact with named-channels
« for instance: t opi c: f oo changesto: f oo

« forinstance: stream create streaml --definition ":foo > | og"

Directed Graphs

If you're building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

streamcreate f --definition "queue:foo > transform --expressi on=payl oad+' -foo' | |og" --deploy

streamcreate b --definition "queue:bar > transform --expressi on=payl oad+' -bar' | |o0g" --deploy

streamcreate r --definition "http | router --expression=payload.contains('a')? queue:foo':"'queue:bar"'"
--depl oy

for instance, in Spring Cloud Data Flow:

streamcreate f --definition ":foo > transform --expressi on=payl oad+' -foo' | |0g" --deploy
streamcreate b --definition ":bar > transform --expressi on=payl oad+' -bar' | |0g" --depl oy
streamcreate r --definition "http | router --expression=payload.contains('a)? foo':"bar'" --deploy

C.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

» Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a Spring Cloud
Task applications

» Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 128

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_binders
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Kubernetes

C.5 Shell/DSL Commands

Old Command

New Command

module upload

app register / app import

module list

app list

module info

app info

admin config server

dataflow config server

job create task create
job launch task launch
job list task list

job status task status
job display task display
job destroy task destroy
job execution list task execution list
runtime modules runtime apps
C.6 REST-API

Old API New API

/modules lapps

/runtime/modules /runtime/apps
/runtime/modules/{moduleld} /runtime/apps/{appld}
/jobs/definitions ltask/definitions
/jobs/deployments /task/deployments
C.7Ul/Flo

The Admin-Ul is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

» (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

« Runtime: Container changes to Runtime. The notion of xd- cont ai ner is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 129

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

» Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

* (New) Tasks:
¢ The sub-tab “Modules” is renamed to “Apps”

e The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

« The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

C.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper
ZooKeeper is not used in the new architecture.
RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqglServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the count er -
si nk, fi el d-val ue-count er - si nk, or aggr egat e- count er - si nk applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd- adnmi n and xd- cont ai ner server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

C.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

C.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 130

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
streams.xml#spring-cloud-dataflow-global-properties
streams.xml#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Kubernetes

apache yarn, kubernetes, or apache mesos). For example, if you're running Spring Cloud Data Flow
on Cloud Foundry, you'd download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

C.11 Hadoop Distribution Compatibility

The hdf s- si nk application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

» Cloudera - cdh5

Pivotal Hadoop - phd30
» Hortonworks Hadoop - hdp24

» Hortonworks Hadoop - hdp23

Vanilla Hadoop - hadoop26

Vanilla Hadoop - 2.7.x (default)

C.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.
* Deploy the server directly in a YARN cluster

» Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

C.13 Use Case Comparison

Let's review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ti ckt ock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd- si ngl enode server from CLI Start a binder of your choice

xd- si ngl enode Start | ocal - server implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1.0. 0. BU LD
SNAPSHOT. j ar

Start xd- shel | server from the CLI Start dat af | ow shel | server from the CLI

xd-shel |

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 131

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-ambari

Spring Cloud Data Flow Server for Kubernetes

Spring XD

Create t i ckt ock stream

xd: >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results in the xd-
si ngl enode server console

Spring Cloud Data Flow

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Create t i ckt ock stream

dat af | ow. >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results by tailing the
ticktock. | og/ stdout | og application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD

Spring Cloud Data Flow

Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Register custom “processor” module to transform
payload to a desired format

xd: >nodul e upl oad --nane
toupper --type processor --file
<CUSTOM JAR FI LE_LOCATI ON>

Create a stream with custom module

xd: >stream create testupper --
definition “http | toupper | |og
depl oy

Review results in the xd- si ngl enode server
console

Start a binder of your choice

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1ocal -1.0.0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Register custom “processor” application to
transform payload to a desired format

dat af | ow. >app regi ster --nane
t oupper --type processor --uri
<MAVEN_URI _ COCORDI NATES>

Create a stream with custom application

dat af | ow. >stream create testupper --
definition “http | toupper | log" --
depl oy

Review results by tailing the t est upper. | og/
st dout _I| og application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow

1.3.0.M3

Server Kubernetes

132

Spring Cloud Data Flow Server for Kubernetes

Spring XD
Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Spring Cloud Data Flow

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1. 0. 0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. | ar

Register custom “batch-job” module

xd: >nodul e upl oad --nane
simpl e-batch --type job --file
<CUSTOM JAR_FI LE_LOCATI ON>

Register custom “batch-job” as task application

dat af | ow. >app regi ster --nane
simpl e-batch --type task --uri
<MAVEN_URI _COORDI NATES>

Create a job with custom batch-job module

xd: >j ob create batchtest --
definition “sinple-batch”

Deploy job
xd: >j ob depl oy bat cht est
Launch job
xd: >j ob | aunch bat cht est

Review results in the xd- si ngl enode server
console as well as Jobs tab in Ul (executions
sub-tab should include all step details)

Create a task with custom batch-job application

dat af | ow. >t ask create batchtest --
definition “sinple-batch”

NA

Launch task

dat af | ow. >t ask | aunch bat cht est

Review results by tailing the bat cht est /

st dout _| og application logs as well as Task
tab in Ul (executions sub-tab should include all
step details)

Spring Cloud Data Flow

1.3.0.M3

Server Kubernetes

133

Spring Cloud Data Flow Server for Kubernetes

Appendix D. Building

To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
to run Redis.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer nSi ze=128m
We try to cover this in the . mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ynl , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

D.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./ m/nw cl ean package - DskipTests -P full -pl spring-cloud-datafl ow server-
kuber net es- docs -am

D.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 134

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://spring.io/tools
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/

Spring Cloud Data Flow Server for Kubernetes

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from . setti ngs. xm into your own ~/ . n/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./nvnw ecli pse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting proj ects from the
fil e menu.

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 135

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Kubernetes

Appendix E. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

E.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor's agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

E.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
« A few unit tests would help a lot as well— someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

Spring Cloud Data Flow
1.3.0.M3 Server Kubernetes 136

https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Kubernetes
	Table of Contents
	Part I. Getting Started
	1. Installation
	1.1 Create a Kubernetes cluster
	1.2 Deploying using kubectl
	1.3 Deploy Skipper

	2. Helm Installation
	3. Deploying Streams
	3.1 Create Streams without Skipper
	3.2 Create Streams with Skipper
	3.3 Accessing app from outside the cluster

	4. Deploying Tasks
	5. Application Configuration
	5.1 Memory and CPU Settings
	5.2 Environment Variables
	5.3 Liveness and Readiness Probes

	Part II. Applications
	Part III. Architecture
	6. Introduction
	7. Microservice Architectural Style
	7.1 Comparison to other Platform architectures

	8. Streaming Applications
	8.1 Imperative Programming Model
	8.2 Functional Programming Model

	9. Streams
	9.1 Topologies
	9.2 Concurrency
	9.3 Partitioning
	9.4 Message Delivery Guarantees

	10. Analytics
	11. Task Applications
	12. Data Flow Server
	12.1 Endpoints
	12.2 Customization
	12.3 Security

	13. Runtime
	13.1 Fault Tolerance
	13.2 Resource Management
	13.3 Scaling at runtime
	13.4 Application Versioning

	Part IV. Server Configuration
	14. Feature Toggles
	15. General Configuration
	15.1 Using ConfigMap and Secrets

	16. Database Configuration
	17. Security
	18. Spring Cloud Deployer for Kubernetes Properties
	18.1 Using Deployments
	18.2 CPU and Memory Limits
	18.3 Liveness and Rediness Probes Configurations
	18.4 Using SPRING_APPLICATION_JSON

	19. Monitoring and Management
	19.1 Inspecting Server Logs
	19.2 Streams
	19.3 Tasks

	Part V. Shell
	20. Shell Options
	21. Listing available commands
	22. Tab Completion
	23. White space and quote rules
	23.1 Quotes and Escaping
	Shell rules
	DSL parsing rules
	SpEL syntax and SpEL literals
	Putting it all together

	Part VI. Streams
	24. Introduction
	24.1 Stream Pipeline DSL
	24.2 Application properties

	25. Stream Lifecycle
	25.1 Register a Stream App
	25.2 Register Supported Applications and Tasks
	Whitelisting application properties
	Creating and using a dedicated metadata artifact
	Using the companion artifact

	25.3 Creating custom applications
	25.4 Creating a Stream
	Application properties
	Common application properties

	25.5 Deploying a Stream
	Deployment properties
	Passing instance count
	Inline vs file based properties
	Passing application properties
	Passing Spring Cloud Stream properties
	Passing per-binding producer consumer properties
	Passing stream partition properties
	Passing application content type properties
	Overriding application properties during stream deployment

	25.6 Destroying a Stream
	25.7 Undeploying Streams

	26. Stream Lifecycle with Skipper
	26.1 Creating and Deploying a Stream
	26.2 Updating a Stream
	26.3 Stream versions
	26.4 Stream Manifests
	26.5 Rollback a Stream
	26.6 Application Count
	26.7 Skipper’s Upgrade Strategy

	27. Stream DSL
	27.1 Tap a Stream
	27.2 Using Labels in a Stream
	27.3 Named Destinations
	27.4 Fan-in and Fan-out

	28. Stream Java DSL
	28.1 Overview
	28.2 Java DSL styles

	29. Stream applications with multiple binder configurations
	30. Examples
	30.1 Simple Stream Processing
	30.2 Stateful Stream Processing
	30.3 Other Source and Sink Application Types

	Part VII. Streams deployed using Skipper
	Part VIII. Tasks
	31. Introduction
	32. The Lifecycle of a Task
	32.1 Creating a Task Application
	Task Database Configuration

	32.2 Registering a Task Application
	32.3 Creating a Task Definition
	32.4 Launching a Task
	Common application properties

	32.5 Reviewing Task Executions
	32.6 Destroying a Task Definition

	33. Subscribing to Task/Batch Events
	34. Composed Tasks
	34.1 Configuring the Composed Task Runner
	Registering the Composed Task Runner
	Configuring the Composed Task Runner

	34.2 The Lifecycle of a Composed Task
	Creating a Composed Task
	Task Application Parameters

	Launching a Composed Task
	Exit Statuses

	Destroying a Composed Task
	Stopping a Composed Task
	Restarting a Composed Task

	35. Composed Tasks DSL
	35.1 Conditional Execution
	35.2 Transitional Execution
	Basic Transition
	Transition With a Wildcard
	Transition With a Following Conditional Execution

	35.3 Split Execution
	Split Containing Conditional Execution

	36. Launching Tasks from a Stream
	36.1 TriggerTask
	36.2 TaskLaunchRequest-transform
	36.3 Launching a Composed Task From a Stream

	Part IX. Dashboard
	37. Introduction
	38. Apps
	38.1 Bulk Import of Applications

	39. Runtime
	40. Streams
	41. Create Stream
	42. Tasks
	42.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	42.2 Definitions
	Creating Task Definitions using the bulk define interface
	Creating Composed Task Definitions
	Launching Tasks

	42.3 Executions

	43. Jobs
	43.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	44. Analytics

	Part X. REST API Guide
	Part XI. Appendices
	Appendix A. ‘How-to’ guides
	A.1 Logging
	Deployment Logs
	Application Logs

	Appendix B. Data Flow Template
	B.1 Using the Data Flow Template

	Appendix C. Spring XD to SCDF
	C.1 Terminology Changes
	C.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	C.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	C.4 Batch to Tasks
	C.5 Shell/DSL Commands
	C.6 REST-API
	C.7 UI / Flo
	C.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	C.9 Central Configuration
	C.10 Distribution
	C.11 Hadoop Distribution Compatibility
	C.12 YARN Deployment
	C.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix D. Building
	D.1 Documentation
	D.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix E. Contributing
	E.1 Sign the Contributor License Agreement
	E.2 Code Conventions and Housekeeping

