
Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes iii

Table of Contents

I. Getting Started .. 1
1. Installation .. 2

1.1. Create a Kubernetes cluster ... 2
1.2. Deploying using kubectl .. 2
1.3. Deploy Skipper .. 5

2. Helm Installation ... 8
3. Deploying Streams .. 11

3.1. Create Streams without Skipper .. 11
3.2. Create Streams with Skipper .. 12
3.3. Accessing app from outside the cluster ... 12

4. Deploying Tasks ... 15
5. Application Configuration ... 16

5.1. Memory and CPU Settings ... 16
5.2. Environment Variables .. 17
5.3. Liveness and Readiness Probes ... 17

II. Applications .. 18
III. Architecture .. 19

6. Introduction ... 20
7. Microservice Architectural Style ... 22

7.1. Comparison to other Platform architectures ... 22
8. Streaming Applications .. 24

8.1. Imperative Programming Model ... 24
8.2. Functional Programming Model ... 24

9. Streams .. 25
9.1. Topologies ... 25
9.2. Concurrency ... 25
9.3. Partitioning ... 25
9.4. Message Delivery Guarantees .. 26

10. Analytics ... 28
11. Task Applications .. 29
12. Data Flow Server .. 30

12.1. Endpoints ... 30
12.2. Customization ... 30
12.3. Security .. 31

13. Runtime .. 32
13.1. Fault Tolerance .. 32
13.2. Resource Management ... 32
13.3. Scaling at runtime .. 32
13.4. Application Versioning .. 32

IV. Server Configuration .. 33
14. Feature Toggles .. 34
15. General Configuration .. 35

15.1. Using ConfigMap and Secrets ... 35
16. Database Configuration ... 37
17. Security .. 38
18. Spring Cloud Deployer for Kubernetes Properties ... 39

18.1. Using Deployments .. 39

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes iv

18.2. CPU and Memory Limits ... 39
18.3. Liveness and Rediness Probes Configurations ... 39
18.4. Using SPRING_APPLICATION_JSON ... 39

19. Monitoring and Management ... 40
19.1. Inspecting Server Logs ... 40
19.2. Streams ... 40
19.3. Tasks ... 41

V. Shell .. 42
20. Shell Options .. 43
21. Listing available commands ... 44
22. Tab Completion ... 45
23. White space and quote rules ... 46

23.1. Quotes and Escaping ... 46
Shell rules .. 46
DSL parsing rules ... 47
SpEL syntax and SpEL literals .. 47
Putting it all together ... 48

VI. Streams ... 49
24. Introduction ... 50

24.1. Stream Pipeline DSL .. 50
24.2. Application properties ... 51

25. Stream Lifecycle ... 52
25.1. Register a Stream App ... 52
25.2. Register Supported Applications and Tasks ... 52

Whitelisting application properties .. 54
Creating and using a dedicated metadata artifact ... 54
Using the companion artifact ... 55

25.3. Creating custom applications .. 56
25.4. Creating a Stream .. 56

Application properties .. 57
Common application properties .. 58

25.5. Deploying a Stream .. 58
Deployment properties .. 59

Passing instance count ... 60
Inline vs file based properties .. 60
Passing application properties ... 61
Passing Spring Cloud Stream properties .. 61
Passing per-binding producer consumer properties 62
Passing stream partition properties .. 62
Passing application content type properties .. 63
Overriding application properties during stream deployment 64

25.6. Destroying a Stream ... 64
25.7. Undeploying Streams .. 64

26. Stream Lifecycle with Skipper .. 65
26.1. Creating and Deploying a Stream ... 65
26.2. Updating a Stream ... 65
26.3. Stream versions ... 66
26.4. Stream Manifests ... 66
26.5. Rollback a Stream .. 67
26.6. Application Count ... 67

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes v

26.7. Skipper’s Upgrade Strategy .. 67
27. Stream DSL .. 68

27.1. Tap a Stream ... 68
27.2. Using Labels in a Stream ... 68
27.3. Named Destinations ... 68
27.4. Fan-in and Fan-out ... 69

28. Stream Java DSL .. 70
28.1. Overview .. 70
28.2. Java DSL styles ... 71

29. Stream applications with multiple binder configurations ... 74
30. Examples .. 75

30.1. Simple Stream Processing .. 75
30.2. Stateful Stream Processing ... 75
30.3. Other Source and Sink Application Types .. 76

VII. Streams deployed using Skipper ... 77
VIII. Tasks .. 82

31. Introduction ... 83
32. The Lifecycle of a Task ... 84

32.1. Creating a Task Application .. 84
Task Database Configuration ... 84

32.2. Registering a Task Application .. 85
32.3. Creating a Task Definition ... 86
32.4. Launching a Task ... 86

Common application properties .. 86
32.5. Reviewing Task Executions .. 87
32.6. Destroying a Task Definition ... 87

33. Subscribing to Task/Batch Events .. 89
34. Composed Tasks .. 90

34.1. Configuring the Composed Task Runner ... 90
Registering the Composed Task Runner .. 90
Configuring the Composed Task Runner .. 90

34.2. The Lifecycle of a Composed Task ... 90
Creating a Composed Task ... 90

Task Application Parameters ... 91
Launching a Composed Task .. 91

Exit Statuses ... 91
Destroying a Composed Task .. 92
Stopping a Composed Task .. 92
Restarting a Composed Task .. 92

35. Composed Tasks DSL .. 93
35.1. Conditional Execution ... 93
35.2. Transitional Execution ... 95

Basic Transition .. 95
Transition With a Wildcard ... 96
Transition With a Following Conditional Execution .. 96

35.3. Split Execution ... 97
Split Containing Conditional Execution ... 98

36. Launching Tasks from a Stream .. 100
36.1. TriggerTask .. 100
36.2. TaskLaunchRequest-transform .. 101

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes vi

36.3. Launching a Composed Task From a Stream .. 101
IX. Dashboard ... 103

37. Introduction ... 104
38. Apps ... 106

38.1. Bulk Import of Applications .. 106
39. Runtime .. 108
40. Streams .. 109
41. Create Stream ... 111
42. Tasks .. 112

42.1. Apps .. 112
Create a Task Definition from a selected Task App ... 113
View Task App Details .. 113

42.2. Definitions .. 113
Creating Task Definitions using the bulk define interface 113
Creating Composed Task Definitions .. 115
Launching Tasks ... 116

42.3. Executions ... 116
43. Jobs ... 117

43.1. List job executions .. 117
Job execution details ... 118
Step execution details ... 118
Step Execution Progress ... 119

44. Analytics ... 120
X. REST API Guide .. 121
XI. Appendices .. 122

A. ‘How-to’ guides ... 123
A.1. Logging ... 123

Deployment Logs .. 123
Application Logs .. 123

B. Data Flow Template .. 124
B.1. Using the Data Flow Template .. 124

C. Spring XD to SCDF .. 126
C.1. Terminology Changes .. 126
C.2. Modules to Applications ... 126

Custom Applications .. 126
Application Registration ... 126
Application Properties .. 127

C.3. Message Bus to Binders .. 127
Message Bus .. 127
Binders ... 127
Named Channels .. 128
Directed Graphs .. 128

C.4. Batch to Tasks .. 128
C.5. Shell/DSL Commands .. 129
C.6. REST-API .. 129
C.7. UI / Flo .. 129
C.8. Architecture Components ... 130

ZooKeeper .. 130
RDBMS .. 130
Redis .. 130

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes vii

Cluster Topology ... 130
C.9. Central Configuration ... 130
C.10. Distribution ... 130
C.11. Hadoop Distribution Compatibility .. 131
C.12. YARN Deployment ... 131
C.13. Use Case Comparison ... 131

Use Case #1 .. 131
Use Case #2 .. 132
Use Case #3 .. 132

D. Building .. 134
D.1. Documentation ... 134
D.2. Working with the code ... 134

Importing into eclipse with m2eclipse ... 134
Importing into eclipse without m2eclipse ... 135

E. Contributing .. 136
E.1. Sign the Contributor License Agreement ... 136
E.2. Code Conventions and Housekeeping ... 136

Part I. Getting Started
Spring Cloud Data Flow is a toolkit for building data integration and real-time data processing pipelines.

Pipelines consist of Spring Boot apps, built using the Spring Cloud Stream or Spring Cloud Task
microservice frameworks. This makes Spring Cloud Data Flow suitable for a range of data processing
use cases, from import/export to event streaming and predictive analytics.

This project provides support for using Spring Cloud Data Flow with Kubernetes as the runtime for these
pipelines with apps packaged as Docker images.

http://cloud.spring.io/spring-cloud-dataflow/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 2

1. Installation
In this section we will install the Spring Cloud Data Flow Server on a Kubernetes cluster. Spring Cloud
Data Flow depends on a few services and their availability. For example, we need an RDBMS service
for the app registry, stream/task repositories and task management. For streaming pipelines, we also
need a transport option such as Apache Kafka or Rabbit MQ. In addition to this, we need a Redis service
if the analytics features are in use.

Important

This guide describes setting up an environment for testing Spring Cloud Data Flow on Google
Kubernetes Engine and is not meant to be a definitive guide for setting up a production
environment. Feel free to adjust the suggestions to fit your test set-up. Please remember that
a production environment requires much more consideration for persistent storage of message
queues, high availability, security etc.

Note

Currently, only apps registered with a --uri property pointing to a Docker resource are
supported by the Data Flow Server for Kubernetes.

Note that we do support Maven resources for the --metadata-uri property.

E.g. the below app registration is valid:

dataflow:>app register --type source --name time --uri docker://springcloudstream/time-source-

rabbit:1.3.0.RELEASE --metadata-uri maven://org.springframework.cloud.stream.app:time-source-

rabbit:jar:metadata:1.3.0.RELEASE

but any app registered with a Maven, HTTP or File resource for the executable jar (using a --
uri property prefixed with maven://, http:// or file://) is not supported.

1.1 Create a Kubernetes cluster

The Kubernetes Picking the Right Solution guide lets you choose among many options so you can pick
one that you are most comfortable using.

All our testing is done using the Google Kubernetes Engine that is part of the Google Cloud Platform.
That is a also the target platform for this section. We have also successfully deployed using Minikube
and we will note where you need to adjust for deploying on Minikube.

Note

When starting Minikube you should allocate some extra resources since we will be deploying
several services. We have used minikube start --cpus=4 --memory=4096 to start.

The rest of this getting started guide assumes that you have a working Kubernetes cluster and a
kubectl command line utility. See the docs for installation instructions: Installing and Setting up kubectl.

1.2 Deploying using kubectl

1. Get the Kubernetes configuration files.

There are sample deployment and service YAML files in the https://github.com/spring-cloud/spring-
cloud-dataflow-server-kubernetes repository that you can use as a starting point. They have the

https://kubernetes.io/docs/setup/pick-right-solution/
https://cloud.google.com/kubernetes-engine/
https://kubernetes.io/docs/getting-started-guides/minikube/
http://kubernetes.io/docs/user-guide/prereqs/
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 3

required metadata set for service discovery by the different apps and services deployed. To check
out the code enter the following commands:

$ git clone https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

$ cd spring-cloud-dataflow-server-kubernetes

$ git checkout master

2. Deploy Rabbit MQ.

The Rabbit MQ service will be used for messaging between modules in the stream. You could also
use Kafka, but, in order to simplify, we only show the Rabbit MQ configurations in this guide.

Run the following commands to start the Rabbit MQ service:

$ kubectl create -f src/kubernetes/rabbitmq/

You can use the command kubectl get all -l app=rabbitmq to verify that the
deployment, pod and service resources are running. Use the command kubectl delete all -
l app=rabbitmq to clean up afterwards.

3. Deploy MySQL.

We are using MySQL for this guide, but you could use Postgres or H2 database instead. We include
JDBC drivers for all three of these databases, you would just have to adjust the database URL and
driver class name settings.

Important

You can modify the password in the src/kubernetes/mysql/mysql-

deployment.yaml files if you prefer to be more secure. If you do modify the password
you will also have to provide it base64 encoded in the src/kubernetes/mysql/mysql-
secrets.yaml file.

Run the following commands to start the MySQL service:

$ kubectl create -f src/kubernetes/mysql/

You can use the command kubectl get all -l app=mysql to verify that the deployment, pod
and service resources are running. Use the command kubectl delete all,pvc,secrets -
l app=mysql to clean up afterwards.

4. Deploy Redis.

The Redis service will be used for the analytics functionality. Run the following commands to start
the Redis service:

$ kubectl create -f src/kubernetes/redis/

Note

If you don’t need the analytics functionality you can turn this feature off by changing
SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED to false in the src/
kubernetes/server/server-deployment.yml file. If you don’t install the Redis
service then you should also remove the Redis configuration settings in src/kubernetes/
server/server-config-kafka.yml mentioned below.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 4

You can use the command kubectl get all -l app=redis to verify that the deployment, pod
and service resources are running. Use the command kubectl delete all -l app=redis
to clean up afterwards.

5. Deploy the Metrics Collector.

The Metrics Collector will provide message rates for all deployed stream apps. These message rates
will be visible in the Dashboard UI. Run the following commands to start the Metrics Collector:

$ kubectl create -f src/kubernetes/metrics/metrics-deployment-rabbit.yaml

$ kubectl create -f src/kubernetes/metrics/metrics-svc.yaml

You can use the command kubectl get all -l app=metrics to verify that the deployment, pod
and service resources are running. Use the command kubectl delete all -l app=metrics
to clean up afterwards.

6. Deploy Skipper

This is an optional step. Deploy Skipper if you want the added features of upgrading and rolling
back Streams since Data Flow delegates to Skipper for those features. For more details, review the
reference guide for a complete overview and the feature capabilities. See the section Section 1.3,
“Deploy Skipper” for details.

7. Deploy the Data Flow Server.

Important

You should specify the version of the Spring Cloud Data Flow server that you want to deploy.

The deployment is defined in the src/kubernetes/server/server-deployment.yaml file. To
control what version of the Spring Cloud Data Flow server that gets deployed you should modify the
tag used for the Docker image in the container spec:

 spec:

 containers:

 - name: scdf-server

 image: springcloud/spring-cloud-dataflow-server-kubernetes:latest ❶

 imagePullPolicy: Always

❶ change latest to the version you would like. This document is based on the 1.3.0.M3 version
so the recommended image tag to use for this is latest.

The Data Flow Server uses the Fabric8 Java client library to connect to the Kubernetes cluster.
We are using environment variables to set the values needed when deploying the Data Flow server
to Kubernetes. We are also using the Fabric8 Spring Cloud integration with Kubernetes library to
access Kubernetes ConfigMap and Secrets settings. The ConfigMap settings are specified in the
src/kubernetes/server/server-config-rabbit.yaml file and the secrets are in the src/
kubernetes/mysql/mysql-secrets.yaml file. If you modified the password for MySQL you
should have changed it in the src/kubernetes/mysql/mysql-secrets.yaml file. Any secrets
have to be provided base64 encoded.

http://cloud.spring.io/spring-cloud-skipper/
https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.M2/reference/htmlsingle/#overview
https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/spring-cloud-kubernetes
http://kubernetes.io/docs/user-guide/configmap/
http://kubernetes.io/docs/user-guide/secrets/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 5

Note

We are now configuring the Data Flow server with file based security and the default user
is 'user' with a password of 'password'. Feel free to change this in the src/kubernetes/
server/server-config-rabbit.yaml file.

Note

The default memory for the pods is set to 1024Mi. Update the value in the src/
kubernetes/server/server-deployment.yaml file if you expect most of your apps
to require more memory.

8. Deploy the Spring Cloud Data Flow Server for Kubernetes using the Docker image and the
configuration settings.

$ kubectl create -f src/kubernetes/server/server-config-rabbit.yaml

$ kubectl create -f src/kubernetes/server/server-svc.yaml

$ kubectl create -f src/kubernetes/server/server-deployment.yaml

You can use the command kubectl get all -l app=scdf-server to verify that the
deployment, pod and service resources are running. Use the command kubectl delete all,cm
-l app=scdf-server to clean up afterwards.

Use the kubectl get svc scdf-server command to locate the EXTERNAL_IP address
assigned to scdf-server, we will use that later to connect from the shell.

$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

scdf-server 10.103.246.82 130.211.203.246 80/TCP 4m

So the URL you need to use is in this case 130.211.203.246

If you are using Minikube then you don’t have an external load balancer and the EXTERNAL-IP will
show as <pending>. You need to use the NodePort assigned for the scdf-server service. Use
this command to look up the URL to use:

$ minikube service --url scdf-server

http://192.168.99.100:31991

1.3 Deploy Skipper

This is an optional step. Deploy Skipper if you want the added features of upgrading and rolling back
Streams since Data Flow delegates to Skipper for those features.

The Deployment resource for Skipper is shown below:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: skipper

 labels:

 app: skipper

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: skipper

 spec:

http://130.211.203.246
http://cloud.spring.io/spring-cloud-skipper/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 6

 containers:

 - name: skipper

 image: springcloud/spring-cloud-skipper-server:1.0.0.BUILD-SNAPSHOT

 imagePullPolicy: Always

 ports:

 - containerPort: 80

 resources:

 limits:

 cpu: 1.0

 memory: 1024Mi

 requests:

 cpu: 0.5

 memory: 640Mi

 env:

 - name: SPRING_APPLICATION_JSON

 value: "{\"spring.cloud.skipper.server.enable.local.platform\" : false,

 \"spring.cloud.skipper.server.platform.kubernetes.accounts.minikube.environmentVariables\" :

 \"SPRING_RABBITMQ_HOST=${RABBITMQ_SERVICE_HOST},SPRING_RABBITMQ_PORT=${RABBITMQ_SERVICE_PORT}\",

\"spring.cloud.skipper.server.platform.kubernetes.accounts.minikube.memory\" : \"1024Mi\",

\"spring.cloud.skipper.server.platform.kubernetes.accounts.minikube.createDeployment\" : true}"

Note

Skipper includes the concept of platforms, so it is important to define the "accounts" based on
the project preferences. In the above YAML file, the accounts map to minikube as the platform.
This can be modified, and of course, you can have any number of platform definitions. More
details are in Spring Cloud Skipper reference guide.

Note

If you’d like to change the version of Skipper server, you can do so by updating the image from
springcloud/spring-cloud-skipper-server:1.0.0.BUILD-SNAPSHOT to a desired
docker tag.

Note

If you’d like to orchestrate stream processing pipelines with Apache Kafka as the messaging
middleware, you must change the value for

"{\"spring.cloud.skipper.server.platform.kubernetes.accounts.minikube.environmentVariables\" :

\"SPRING_CLOUD_STREAM_KAFKA_BINDER_BROKERS=${KAFKA_SERVICE_HOST}:${KAFKA_SERVICE_PORT},

SPRING_CLOUD_STREAM_KAFKA_BINDER_ZK_NODES=${KAFKA_ZK_SERVICE_HOST}:${KAFKA_ZK_SERVICE_PORT}\"}"

The resource for the Skipper service is shown below:

apiVersion: v1

kind: Service

metadata:

 name: skipper

 labels:

 app: skipper

spec:

 # If you are running k8s on a local dev box or using minikube, you can use type NodePort instead

 type: LoadBalancer

 ports:

 - port: 80

 targetPort: 7577 # port used by 'skpr' (i.e., 7577)

 selector:

 app: skipper

Run the following commands to start Skipper as the companion server for Spring Cloud Data Flow:

$ kubectl create -f src/kubernetes/skipper/skipper-deployment.yaml

$ kubectl create -f src/kubernetes/skipper/skipper-svc.yaml

https://docs.spring.io/spring-cloud-skipper/docs/current/reference/htmlsingle/#platforms

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 7

You can use the command kubectl get all -l app=skipper to verify that the deployment, pod
and service resources are running. Use the command kubectl delete all -l app=skipper
to clean up afterwards.

Use the kubectl get svc scdf-server command to locate the EXTERNAL_IP address assigned
to scdf-server, we will use that later to connect from the shell.

$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

skipper 10.103.246.83 130.211.203.247 80/TCP 4m

So the URL you need to use is in this case is: 130.211.203.247

If you are using Minikube then you don’t have an external load balancer and the EXTERNAL-IP will show
as <pending>. You need to use the NodePort assigned for the skipper service. Use this command
to look up the URL to use:

$ minikube service --url skipper

http://192.168.99.100:32060

http://130.211.203.247

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 8

2. Helm Installation

Spring Cloud DataFlow offers a Helm Chart for deploying the Spring Cloud Data Flow server and its
required services to a Kubernetes Cluster.

Note

The helm chart is currenlty only available for the 1.2 GA version of Data Flow for Kubernetes.

The following instructions cover how to initialize Helm and install Spring Cloud Data Flow on a
Kubernetes cluster.

1. Installing Helm

Helm is comprised of 2 components: one is the client (Helm) the other is the server (Tiller). The Helm
client is run on your local machine and can be installed using the following instructions found here. If
Tiller has not been installed on your cluster, execute the following Helm client command:

$ helm init

Note

To verify that the Tiller pod is running execute the following command: kubectl get
pod --namespace kube-system and you should see the Tiller pod running.

2. Installing the Spring Cloud Data Flow Server and required services.

Before we can run the Spring Cloud Data Flow Chart, we need to access the incubator repository
where it currently resides. To add this repository to our Helm install, execute the following commands:

helm repo add incubator https://kubernetes-charts-incubator.storage.googleapis.com

helm repo update

To install Spring Cloud Data Flow and its required services execute the following:

helm install --name my-release incubator/spring-cloud-data-flow

Note

If you are running on a cluster without a load balancer, such as Minikube,
then you should override the service type to use NodePort. Add the --set

server.service.type=NodePort override:

helm install --name my-release --set server.service.type=NodePort \

 incubator/spring-cloud-data-flow

If you wish specify a different version of Spring Cloud Data Flow besides the current release, you
can set the server.version as shown below:

helm install --name my-release incubator/spring-cloud-data-flow --set server.version=<version-you-

want>

Note

To see all of the settings that can be configured on the Spring Cloud Data Flow chart, check
out the README.

https://helm.sh/
https://github.com/kubernetes/helm/blob/master/README.md#install
https://github.com/kubernetes/charts/tree/master/incubator/spring-cloud-data-flow/README.md

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 9

You should see the following output:

NAME: my-release

LAST DEPLOYED: Tue Oct 3 10:33:50 2017

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/ConfigMap

NAME DATA AGE

my-release-data-flow-server 1 2s

==> v1/PersistentVolumeClaim

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE

my-release-mysql Pending standard 2s

my-release-rabbitmq Pending standard 2s

my-release-redis Pending standard 2s

==> v1/Service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

my-release-mysql 10.59.247.118 <none> 3306/TCP 2s

my-release-rabbitmq 10.59.249.211 <none> 4369/TCP,5672/TCP,25672/TCP,15672/TCP 2s

my-release-redis 10.59.242.108 <none> 6379/TCP 2s

my-release-data-flow-metrics 10.59.247.121 <none> 80/TCP 2s

my-release-data-flow-server 10.59.249.224 <pending> 80:30859/TCP 2s

==> v1beta1/Deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

my-release-mysql 1 1 1 0 2s

my-release-rabbitmq 1 1 1 0 2s

my-release-redis 1 1 1 0 2s

my-release-data-flow-metrics 1 1 1 0 2s

my-release-data-flow-server 1 1 1 0 1s

==> v1/Secret

NAME TYPE DATA AGE

my-release-mysql Opaque 2 2s

my-release-rabbitmq Opaque 2 2s

my-release-redis Opaque 1 2s

my-release-data-flow Opaque 2 2s

NOTES:

1. Get the application URL by running these commands:

 NOTE: It may take a few minutes for the LoadBalancer IP to be available.

 You can watch the status of the server by running 'kubectl get svc -w my-release-data-

flow-server'

 export SERVICE_IP=$(kubectl get svc --namespace default my-release-data-flow-server -o

 jsonpath='{.status.loadBalancer.ingress[0].ip}')

 echo http://$SERVICE_IP:80

You have just created a new release in the default namespace of your Kubernetes cluster. The notes
section gives instructions for connecting to the newly installed server. It takes a couple of minutes
for the application and its required services to start up. You can check on the status by issuing a
kubectl get pod -w command. Wait for the READY column to show "1/1" for all pods. Once
that is done, you can connect to the Data Flow server using the external ip listed via a kubectl
get svc my-release-data-flow-server command. The default username is user, and the
password is password.

Note

If you are running on Minikube then you can use the following command to get the URL for
the server:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 10

minikube service --url my-release-data-flow-server

To see what Helm releases you have running, you can use the helm list command. When it is
time to delete the release, run helm delete my-release. This removes any resources created for
the release but keeps release information so you can rollback any changes using a helm rollback
my-release 1 command. To completely delete the release and purge any release metadata, use
helm delete my-release --purge.

Important

There is an issue with generated secrets used for the required services getting rotated on
chart upgrades. To avoid this set the password for these services when installing the chart.
You can use:

helm install --name my-release \

 --set rabbitmq.rabbitmqPassword=rabbitpwd \

 --set mysql.mysqlRootPassword=mysqlpwd \

 --set redis.redisPassword=redispwd incubator/spring-cloud-data-flow

https://github.com/kubernetes/charts/issues/980

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 11

3. Deploying Streams

3.1 Create Streams without Skipper

1. Download and run the Spring Cloud Data Flow shell.

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.3.0.M3/

spring-cloud-dataflow-shell-1.3.0.M3.jar

$ java -jar spring-cloud-dataflow-shell-1.3.0.M3.jar

That should give you the following startup message from the shell:

 ____ ____ _ __

 / ___| _ __ _ __(_)_ __ __ _ / ___| | ___ _ _ __| |

 ___ \| '_ \| '__| | '_ \ / _` | | | | |/ _ \| | | |/ _` |

 ___) | |_) | | | | | | | (_| | | |___| | (_) | |_| | (_| |

 |____/| .__/|_| |_|_| |_|__, | ____|_|___/ __,_|__,_|

 ____ |_| _ __|___/ __________

 | _ \ __ _| |_ __ _ | ___| | _____ __ \ \ \ \ \ \

 | | | |/ _` | __/ _` | | |_ | |/ _ \ \ /\ / / \ \ \ \ \ \

 | |_| | (_| | || (_| | | _| | | (_) \ V V / / / / / / /

 |____/ __,_|____,_| |_| |_|___/ _/_/ /_/_/_/_/_/

1.3.0.M3

Welcome to the Spring Cloud Data Flow shell. For assistance hit TAB or type "help".

server-unknown:>

Configure the Data Flow server URI with the following command (use the URL determined above in
the previous step) using the default user and password settings:

server-unknown:>dataflow config server --username user --password password --uri

 http://130.211.203.246/

Successfully targeted http://130.211.203.246/

dataflow:>

2. Register the Docker with Rabbit binder versions of the time and log apps using the shell.

dataflow:>app register --type source --name time --uri docker://springcloudstream/time-source-

rabbit:1.3.0.RELEASE --metadata-uri maven://org.springframework.cloud.stream.app:time-source-

rabbit:jar:metadata:1.3.0.RELEASE

dataflow:>app register --type sink --name log --uri docker://springcloudstream/log-sink-

rabbit:1.3.0.RELEASE --metadata-uri maven://org.springframework.cloud.stream.app:log-sink-

rabbit:jar:metadata:1.3.0.RELEASE

3. Alternatively, if you would like to register all out-of-the-box stream applications built with the Rabbit
binder in bulk, you can with the following command. For more details, review how to register
applications.

dataflow:>app import --uri http://bit.ly/Celsius-GA-stream-applications-rabbit-docker

4. Deploy a simple stream in the shell

dataflow:>stream create --name ticktock --definition "time | log" --deploy

You can use the command kubectl get pods to check on the state of the pods corresponding to
this stream. We can run this from the shell by running it as an OS command by adding a "!" before
the command.

dataflow:>! kubectl get pods -l role=spring-app

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/html/spring-cloud-dataflow-register-apps.html
http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/html/spring-cloud-dataflow-register-apps.html

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 12

command is:kubectl get pods -l role=spring-app

NAME READY STATUS RESTARTS AGE

ticktock-log-0-qnk72 1/1 Running 0 2m

ticktock-time-r65cn 1/1 Running 0 2m

Look at the logs for the pod deployed for the log sink.

dataflow:>! kubectl logs ticktock-log-0-qnk72

command is:kubectl logs ticktock-log-0-qnk72

...

2017-07-20 04:34:37.369 INFO 1 --- [time.ticktock-1] log-sink :

 07/20/17 04:34:37

2017-07-20 04:34:38.371 INFO 1 --- [time.ticktock-1] log-sink :

 07/20/17 04:34:38

2017-07-20 04:34:39.373 INFO 1 --- [time.ticktock-1] log-sink :

 07/20/17 04:34:39

2017-07-20 04:34:40.380 INFO 1 --- [time.ticktock-1] log-sink :

 07/20/17 04:34:40

2017-07-20 04:34:41.381 INFO 1 --- [time.ticktock-1] log-sink :

 07/20/17 04:34:41

5. Destroy the stream

dataflow:>stream destroy --name ticktock

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, add the options --previous to view last terminated container log. You can also get more detailed
information about the pods by using the kubctl describe like:

kubectl describe pods/ticktock-log-qnk72

Note

If you need to specify any of the app specific configuration properties then you might use
"long-form" of them including the app specific prefix like --jdbc.tableName=TEST_DATA.
This form is required if you didn’t register the --metadata-uri for the Docker based starter
apps. In this case you will also not see the configuration properties listed when using the app
info command or in the Dashboard GUI.

3.2 Create Streams with Skipper

Refer to the section Part VII, “Streams deployed using Skipper” for more information.

3.3 Accessing app from outside the cluster

If you need to be able to connect to from outside of the Kubernetes cluster to an app that you
deploy, like the http-source, then you need to use either an external load balancer for the
incoming connections or you need to use a NodePort configuration that will expose a proxy port on
each Kubetnetes Node. If your cluster doesn’t support external load balancers, like the Minikube,
then you must use the NodePort approach. You can use deployment properties for configuring the
access. Use deployer.http.kubernetes.createLoadBalancer=true for the app to specify
that you want to have a LoadBalancer with an external IP address created for your app’s service. For
the NodePort configuration use deployer.http.kubernetes.createNodePort=<port> where
<port> should be a number between 30000 and 32767.

1. Register the http-source, you can use the following command:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 13

dataflow:>app register --type source --name http --uri docker:springcloudstream/http-source-

rabbit:1.3.0.RELEASE --metadata-uri maven://org.springframework.cloud.stream.app:http-source-

rabbit:jar:metadata:1.3.0.RELEASE

2. Create the http | log stream without deploying it using the following command:

dataflow:>stream create --name test --definition "http | log"

3. If your cluster supports an External LoadBalancer for the http-source, then you can use the
following command to deploy the stream:

dataflow:>stream deploy test --properties "deployer.http.kubernetes.createLoadBalancer=true"

Wait for the pods to be started showing 1/1 in the READY column by using this command:

dataflow:>! kubectl get pods -l role=spring-app

command is:kubectl get pods -l role=spring-app

NAME READY STATUS RESTARTS AGE

test-http-2bqx7 1/1 Running 0 3m

test-log-0-tg1m4 1/1 Running 0 3m

Now, look up the external IP address for the http app (it can sometimes take a minute or two for
the external IP to get assigned):

dataflow:>! kubectl get service test-http

command is:kubectl get service test-http

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

test-http 10.103.251.157 130.211.200.96 8080/TCP 58s

4. If you are using Minikube, or any cluster that doesn’t support an External LoadBalancer, then you
should deploy the stream with a NodePort in the range of 30000-32767. Use the following command
to deploy it:

dataflow:>stream deploy test --properties "deployer.http.kubernetes.createNodePort=32123"

Wait for the pods to be started showing 1/1 in the READY column by using this command:

dataflow:>! kubectl get pods -l role=spring-app

command is:kubectl get pods -l role=spring-app

NAME READY STATUS RESTARTS AGE

test-http-9obkq 1/1 Running 0 3m

test-log-0-ysiz3 1/1 Running 0 3m

Now look up the URL to use with the following command:

dataflow:>! minikube service --url test-http

command is:minikube service --url test-http

http://192.168.99.100:32123

5. Post some data to the test-http app either using the EXTERNAL-IP address from above with port
8080 or the URL provided by the minikube command:

dataflow:>http post --target http://130.211.200.96:8080 --data "Hello"

6. Finally, look at the logs for the test-log pod:

dataflow:>! kubectl get pods-l role=spring-app

command is:kubectl get pods-l role=spring-app

NAME READY STATUS RESTARTS AGE

test-http-9obkq 1/1 Running 0 2m

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 14

test-log-0-ysiz3 1/1 Running 0 2m

dataflow:>! kubectl logs test-log-0-ysiz3

command is:kubectl logs test-log-0-ysiz3

...

2016-04-27 16:54:29.789 INFO 1 --- [main] o.s.c.s.b.k.KafkaMessageChannelBinder$3 :

 started inbound.test.http.test

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 0

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 2147482647

2016-04-27 16:54:29.895 INFO 1 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :

 Tomcat started on port(s): 8080 (http)

2016-04-27 16:54:29.896 INFO 1 --- [kafka-binder-] log.sink :

 Hello

7. Destroy the stream

dataflow:>stream destroy --name test

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 15

4. Deploying Tasks

1. Create a task and launch it

Let’s register the timestamp task app and create a simple task definition and launch it.

dataflow:>app register --type task --name timestamp --uri docker:springcloudtask/timestamp-

task:1.3.0.RELEASE --metadata-uri maven://org.springframework.cloud.task.app:timestamp-

task:jar:metadata:1.3.0.RELEASE

dataflow:>task create task1 --definition "timestamp"

dataflow:>task launch task1

We can now list the tasks and executions using these commands:

dataflow:>task list

#######################################

#Task Name#Task Definition#Task Status#

#######################################

#task1 #timestamp #running #

#######################################

dataflow:>task execution list

##

#Task Name#ID# Start Time # End Time #Exit Code#

##

#task1 #1 #Fri May 05 18:12:05 EDT 2017#Fri May 05 18:12:05 EDT 2017#0 #

##

2. Destroy the task

dataflow:>task destroy --name task1

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 16

5. Application Configuration

This section covers how you can customize the deployment of your applications. You can use a number
of deployer properties to influence settings for the applications that are deployed.

See KubernetesDeployerProperties for more of the supported options.

If you would like to override the default values for all apps that you deploy then you should modify the
Spring Cloud Deployer for Kubernetes Properties for the server.

5.1 Memory and CPU Settings

The apps are deployed by default with the following "Limits" and "Requests" settings:

 Limits:

 cpu: 500m

 memory: 512Mi

 Requests:

 cpu: 500m

 memory: 512Mi

You might find that the 512Mi memory limit is too low and to increase it you can provide a common
spring.cloud.deployer.memory deployer property like this (replace <app> with the name of the
app you would like to set this for):

deployer.<app>.memory=640m

This property affects bot the Requests and Limits memory value set for the container.

If you would like to set the Requests and Limits values separately you would have to use the deployer
properties that are specific to the Kubernetes deployer. To set the Limits to 1000m for cpu, 1024Mi for
memory and Requests to 800m for cpu, 640Mi for memory you can use the following properties:

deployer.<app>.kubernetes.limits.cpu=1000m

deployer.<app>.kubernetes.limits.memory=1024Mi

deployer.<app>.kubernetes.requests.cpu=800m

deployer.<app>.kubernetes.requests.memory=640Mi

That should result in the following container settings being used:

 Limits:

 cpu: 1

 memory: 1Gi

 Requests:

 cpu: 800m

 memory: 640Mi

Note

When using the common memory property you should use and m suffix for the value while when
using the Kubernetes specific properties you should use the Kubernetes Mi style suffix.

The settings we have used so far only affect the settings for the container, they do not affect the memory
setting for the JVM process in the container. If you would like to set JVM memory settings you can
provide an environment variable for this, see the next section for details.

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesDeployerProperties.java

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 17

5.2 Environment Variables

To influence the environment settings for a given app, you can take advantage of
the spring.cloud.deployer.kubernetes.environmentVariables deployer property. For
example, a common requirement in production settings is to influence the JVM memory arguments. This
can be achieved by using the JAVA_TOOL_OPTIONS environment variable:

deployer.<app>.kubernetes.environmentVariables=JAVA_TOOL_OPTIONS=-Xmx1024m

This overrides the JVM memory setting for the desired <app> (just replace <app> with the name of
your app).

5.3 Liveness and Readiness Probes

The liveness and readiness probes are using the paths \health and \info respectively. They use a
delay of 10 for both and a period of 60 and 10 respectively. You can chage these defaults when you
deploy by using deployer properties.

Here is an example changing the liveness probe (just replace <app> with the name of your app):

deployer.<app>.kubernetes.livenessProbePath=/info

deployer.<app>.kubernetes.livenessProbeDelay=120

deployer.<app>.kubernetes.livenessProbePeriod=20

Similarly, swap liveness for readiness to override the default readiness settings.

Part II. Applications
A selection of pre-built stream and task/batch starter apps for various data integration and processing
scenarios facilitate learning and experimentation. For more details, review how to register applications

http://cloud.spring.io/spring-cloud-stream-app-starters/
http://cloud.spring.io/spring-cloud-task-app-starters/

Part III. Architecture

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 20

6. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

• Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

• Short lived Task applications that process a finite set of data and then terminate.

Depending on the runtime, applications can be packaged in two ways

• Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

• Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

• Cloud Foundry

• Apache YARN

• Kubernetes

• Apache Mesos

• Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for:

• Interpreting and executing a stream DSL that describes the logical flow of data through multiple long
lived applications.

• Launching a long lived task application

• Interpreting and executing a composed task DSL that describes the logical flow of data through
multiple short lived applications.

• Applyhing a deployment manifest that describes the mapping of applications onto the runtime. For
example, to set the initial number of instances, memory requirements, and data partitioning.

• Providing the runtime status of deployed applications

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 21

As an example, the stream DSL to describe the flow of data from an http source to an Apache Cassandra
sink would be written as “http | cassandra”. These names in the DSL are registered with the Data
Flow Server and map onto application artifacts that can be hosted in Maven or Docker repositories.
Many source, processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router)
are provided by the Spring Cloud Data Flow team. The pipe symbol represents the communication
between the two applications via messaging middleware. The two messaging middleware brokers that
are supported are

• Apache Kafka

• RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

Figure 6.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 22

7. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the UI to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

7.1 Comparison to other Platform architectures

Spring Cloud Data Flow’s architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 23

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 24

8. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

8.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@EnableBinding(Sink.class)

public class LoggingSink {

 @StreamListener(Sink.INPUT)

 public void log(String message) {

 System.out.println(message);

 }

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @EnableBinding annotation is what is used to tie together the input channel to the external
middleware.

8.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’s KStream API in
the programming model.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 25

9. Streams

9.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandra, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

9.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the {spring-cloud-
stream-docs}#_consumer_properties[Consumer properties] documentation for more information.

9.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

Figure 9.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a partitionKeyExpression producer property when deploying
the stream. The partitionKeyExpression identifies what part of the message will be used as the
key to partition data in the underlying middleware. An ingest stream can be defined as http |
averageprocessor | cassandra (Note that the Cassandra sink isn’t shown in the diagram above).

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 26

Suppose the payload being sent to the http source was in JSON format and had a field called sensorId.
Deploying the stream with the shell command stream deploy ingest --propertiesFile

ingestStream.properties where the contents of the file ingestStream.properties are

deployer.http.count=3

deployer.averageprocessor.count=2

app.http.producer.partitionKeyExpression=payload.sensorId

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payload.sensorId %
partitionCount where the partitionCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties” for additional strategies to
partition streams during deployment and how they map onto the underlying {spring-cloud-stream-
docs}#_partitioning[Spring Cloud Stream Partitioning properties].

Also note, that you can’t currently scale partitioned streams. Read the section Section 13.3, “Scaling
at runtime” for more information.

9.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middleware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing {spring-cloud-
stream-docs}#_persistent_publish_subscribe_support[persistent publish-subscribe semantics].

The {spring-cloud-stream-docs}#_binders[Binder abstraction] in Spring Cloud Stream is what connects
the application to the middleware. There are several configuration properties of the binder that are
portable across all binder implementations and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message handling.
The retry policy is configured using the {spring-cloud-stream-docs}#_consumer_properties[common
consumer properties] maxAttempts, backOffInitialInterval, backOffMaxInterval, and
backOffMultiplier. The default values of these properties will retry the callback method invocation
3 times and wait one second for the first retry. A backoff multiplier of 2 is used for the second and third
attempts.

When the number of retry attempts has exceeded the maxAttempts value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The
dead letter queue is a destination and its nature depends on the messaging middleware (e.g in the
case of Kafka it is a dedicated topic). To enable this for RabbitMQ set the {spring-cloud-stream-
docs}#_rabbitmq_consumer_properties[consumer properties] republishtoDlq and autoBindDlq
and the {spring-cloud-stream-docs}#_rabbit_producer_properties[producer property] autoBindDlq to
true when deploying the stream. To always apply these producer and consumer properties when
deploying streams, configure them as common application properties when starting the Data Flow
server.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 27

Additional messaging delivery guarantees are those provided by the underlying messaging
middleware that is chosen for the application for both producing and consuming
applications. Refer to the Kafka {spring-cloud-stream-docs}#_kafka_consumer_properties[Consumer]
and {spring-cloud-stream-docs}#_kafka_producer_properties[Producer] and Rabbit {spring-
cloud-stream-docs}#_rabbitmq_consumer_properties[Consumer] and {spring-cloud-stream-
docs}#_rabbit_producer_properties[Producer] documentation for more details. You will find extensive
declarative support for all the native QOS options.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 28

10. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

• Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

• Field Value Counter - Counts occurrences of unique values for a named field in a message payload

• Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud-stream-app-starters/field-value-counter/tree/master/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud-stream-app-starters/aggregate-counter/tree/master/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 29

11. Task Applications

The Spring Cloud Task programming model provides:

• Persistence of the Task’s lifecycle events and exit code status.

• Lifecycle hooks to execute code before or after a task execution.

• Emit task events to a stream (as a source) during the task lifecycle.

• Integration with Spring Batch Jobs.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 30

12. Data Flow Server

12.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Figure 12.1. The Spring Cloud Data Flow Server

12.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let’s you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

https://github.com/spring-projects/spring-hateoas

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 31

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

12.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 32

13. Runtime

13.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

13.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

13.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, UIs, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

13.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Part IV. Server Configuration
In this section you will learn how to configure Spring Cloud Data Flow server’s features such as the
relational database to use and security.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 34

14. Feature Toggles

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UI) for:

1. Streams

2. Tasks

3. Analytics

You can enable or disable these features by setting the following boolean environment variables when
launching the Data Flow server:

• SPRING_CLOUD_DATAFLOW_FEATURES_STREAMS_ENABLED

• SPRING_CLOUD_DATAFLOW_FEATURES_TASKS_ENABLED

• SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED

By default, all the features are enabled.

Note

Since analytics feature is enabled by default, the Data Flow server is expected to have a valid
Redis store available as analytic repository as we provide a default implementation of analytics
based on Redis. This also means that the Data Flow server’s health depends on the redis
store availability as well. If you do not want to enable HTTP endpoints to read analytics data
written to Redis, then disable the analytics feature using the property mentioned above.

The REST endpoint /features provides information on the features enabled/disabled.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 35

15. General Configuration
The Spring Cloud Data Flow server for Kubernetes uses the Fabric8 spring-cloud-kubernetes
module to process both ConfigMap and Secrets settings. You just need to enable the ConfigMap
support by passing in an environment variable of SPRING_CLOUD_KUBERNETES_CONFIG_NAME and
setting that to the name of the ConfigMap. Same is true for the Secrets where the environment
variable is SPRING_CLOUD_KUBERNETES_SECRETS_NAME. To use the Secrets you also need to set
SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API to true.

Here is an example of a snippet from a deployment that sets these environment variables.

 env:

 - name: SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API

 value: 'true'

 - name: SPRING_CLOUD_KUBERNETES_SECRETS_NAME

 value: mysql

 - name: SPRING_CLOUD_KUBERNETES_CONFIG_NAME

 value: scdf-server

15.1 Using ConfigMap and Secrets

Configuration properties can be passed to the Data Flow Server using Kubernetes ConfigMap and
Secrets.

An example configuration could look like the following where we configure Rabbit MQ, MySQL and
Redis as well as basic security settings for the server:

apiVersion: v1

kind: ConfigMap

metadata:

 name: scdf-server

 labels:

 app: scdf-server

data:

 application.yaml: |-

 security:

 basic:

 enabled: true

 realm: Spring Cloud Data Flow

 spring:

 cloud:

 dataflow:

 security:

 authentication:

 file:

 enabled: true

 users:

 admin: admin, ROLE_MANAGE, ROLE_VIEW

 user: password, ROLE_VIEW, ROLE_CREATE

 deployer:

 kubernetes:

 environmentVariables: 'SPRING_RABBITMQ_HOST=${RABBITMQ_SERVICE_HOST},SPRING_RABBITMQ_PORT=

${RABBITMQ_SERVICE_PORT},SPRING_REDIS_HOST=${REDIS_SERVICE_HOST},SPRING_REDIS_PORT=

${REDIS_SERVICE_PORT}'

 datasource:

 url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/mysql

 username: root

 password: ${mysql-root-password}

 driverClassName: org.mariadb.jdbc.Driver

 testOnBorrow: true

 validationQuery: "SELECT 1"

 redis:

 host: ${REDIS_SERVICE_HOST}

 port: ${REDIS_SERVICE_PORT}

https://github.com/fabric8io/spring-cloud-kubernetes
https://kubernetes.io/docs/tasks/configure-pod-container/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 36

We assume here that Rabbit MQ is deployed using rabbitmq as the service name. For MySQL we
assume the service name is mysql and for Redis we assume it is redis. Kubernetes will publish these
services' host and port values as environment variables that we can use when configuring the apps
we deploy.

We prefer to provide the MySQL connection password in a Secrets file:

apiVersion: v1

kind: Secret

metadata:

 name: mysql

 labels:

 app: mysql

data:

 mysql-root-password: eW91cnBhc3N3b3Jk

The password is provided as a base64 encoded value.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 37

16. Database Configuration

Spring Cloud Data Flow provides schemas for H2, HSQLDB, MySQL, Oracle, PostgreSQL, DB2 and
SQL Server that will be automatically created when the server starts.

The JDBC drivers for MySQL (via MariaDB driver), HSQLDB, PostgreSQL along with embedded H2
are available out of the box. If you are using any other database, then the corresponding JDBC driver
jar needs to be on the classpath of the server.

For instance, If you are using MySQL in addition to password in the Secrets file provide the following
properties in the ConfigMap:

data:

 application.yaml: |-

 spring:

 datasource:

 url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/mysql

 username: root

 password: ${mysql-root-password}

 driverClassName: org.mariadb.jdbc.Driver

 url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/test

 driverClassName: org.mariadb.jdbc.Driver

For PostgreSQL:

data:

 application.yaml: |-

 spring:

 datasource:

 url: jdbc:postgresql://${PGSQL_SERVICE_HOST}:${PGSQL_SERVICE_PORT}/database

 username: root

 password: ${postgres-password}

 driverClassName: org.postgresql.Driver

For HSQLDB:

data:

 application.yaml: |-

 spring:

 datasource:

 url: jdbc:hsqldb:hsql://${HSQLDB_SERVICE_HOST}:${HSQLDB_SERVICE_PORT}/database

 username: sa

 driverClassName: org.hsqldb.jdbc.JDBCDriver

Note

There is a schema update to the Spring Cloud Data Flow datastore when upgrading from version
1.0.x to 1.1.x and from 1.1.x to 1.2.x. Migration scripts for specific database types can
be found in the spring-cloud-task repo.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 38

17. Security

We are now securing the server application in the sample configurations file used in the Getting Started
section.

This section covers the basic configuration settings we provide in the provided sample configuration,
please refer to the core security documentation for more detailed coverage of the security configuration
options for the Spring Cloud Data Flow server and shell.

The security settings in the src/kubernetes/server/server-config-rabbit.yaml file are:

 security:

 basic:

 enabled: true ❶

 realm: Spring Cloud Data Flow ❷

 spring:

 cloud:

 dataflow:

 security:

 authentication:

 file:

 enabled: true

 users:

 admin: admin, ROLE_MANAGE, ROLE_VIEW ❸

 user: password, ROLE_VIEW, ROLE_CREATE ❹

❶ Enable security

❷ Optionally set the realm, defaults to "Spring"

❸ Create an 'admin' user with password set to 'admin' that can view apps, streams and tasks and
that can also view management endpoints

❹ Create a 'user' user with password set to 'password' than can register apps and create streams
and tasks and also view them

Feel free to change user names and passwords to suite, and also maybe move the definition of user
passwords to a Kubernetes Secret.

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/htmlsingle/#configuration-security

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 39

18. Spring Cloud Deployer for Kubernetes
Properties

The Spring Cloud Deployer for Kubernetes has several properties you can use to configure
the apps that it deploys. The configuration is controlled by configuration properties under the
spring.cloud.deployer.kubernetes prefix.

18.1 Using Deployments

The deployer uses Replication Controllers by default. To use Deployments instead you can set the
following option as part of the container env section in a deployment YAML file. This is now the preferred
setting and will be the default in future releases of the deployer.

 env:

 - name: SPRING_CLOUD_DEPLOYER_KUBERNETES_CREATE_DEPLOYMENT

 value: 'true'

18.2 CPU and Memory Limits

You can control the default values to set the cpu and memory requirements for the pods that are created
as part of app deployments. You can declare the following as part of the container env section in a
deployment YAML file:

 env:

 - name: SPRING_CLOUD_DEPLOYER_KUBERNETES_CPU

 value: 500m

 - name: SPRING_CLOUD_DEPLOYER_KUBERNETES_MEMORY

 value: 640Mi

18.3 Liveness and Rediness Probes Configurations

You can modify the settings used for the liveness and readiness probes. This might be necessary if
your cluster is slower and the apps need more time to start up. Here is an example of setting the delay
and period for the liveness probe:

 env:

 - name: SPRING_CLOUD_DEPLOYER_KUBERNETES_LIVENESS_PROBE_DELAY

 value: '120'

 - name: SPRING_CLOUD_DEPLOYER_KUBERNETES_LIVENESS_PROBE_PERIOD

 value: '45'

See KubernetesDeployerProperties for more of the supported options.

18.4 Using SPRING_APPLICATION_JSON

Data Flow Server properties that are common across all of the Data Flow Server implementations
including the configuration of maven repository settings can be set in a similar manner although the
latter might be easier to set using a SPRING_APPLICATION_JSON environment variable like:

 env:

 - name: SPRING_APPLICATION_JSON

 value: "{ \"maven\": { \"local-repository\": null, \"remote-repositories\": { \"repo1\":

 { \"url\": \"https://repo.spring.io/libs-snapshot\"} } } }"

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesDeployerProperties.java

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 40

19. Monitoring and Management

We recommend using the kubectl command for troubleshooting streams and tasks.

You can list all artifacts and resources used by using the following command:

kubectl get all,cm,secrets,pvc

You can list all resources used by a specific app or service by using a label to select resources. The
following command list all resources used by the mysql service:

kubectl get all -l app=mysql

You can get the logs for a specific pod by issuing:

kubectl logs pod <pod-name>

If the pod is continuously getting restarted you can add -p as an option to see the previous log like:

kubectl logs -p <pod-name>

You can also tail or follow a log by adding an -f option:

kubectl logs -f <pod-name>

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, is to use the describe command like:

kubectl describe pod ticktock-log-0-qnk72

19.1 Inspecting Server Logs

You can access the server logs by using the following command (just supply the name of pod for the
server):

kubectl get pod -l app=scdf=server

kubectl logs <scdf-server-pod-name>

19.2 Streams

The stream apps are deployed with the stream name followed by the name of the app and for processors
and sinks there is also an instance index appended.

To see all the pods that are deployed by the Spring Cloud Data Flow server you can specify the label
role=spring-app:

kubectl get pod -l role=spring-app

To see details for a specific app deployment you can use (just supply the name of pod for the app):

kubectl describe pod <app-pod-name>

For the application logs use:

kubectl logs <app-pod-name>

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 41

If you would like to tail a log you can use:

kubectl logs -f <app-pod-name>

19.3 Tasks

Tasks are launched as bare pods without a replication controller. The pods remain after the tasks
complete and this gives you an opportunity to review the logs.

To see all pods for a specific task use this command while providing the task name:

kubectl get pod -l task-name=<task-name>

To review the task logs use:

kubectl logs <task-pod-name>

You have two options to delete completed pods. You can delete them manually once they are no longer
needed.

To delete the task pod use:

kubectl delete pod <task-pod-name>

You can also use the Data Flow shell command task execution cleanup command to remove
the completed pod for a task execution.

First we need to determine the ID for the task execution:

dataflow:>task execution list

##

#Task Name#ID# Start Time # End Time #Exit Code#

##

#task1 #1 #Fri May 05 18:12:05 EDT 2017#Fri May 05 18:12:05 EDT 2017#0 #

##

Next we issue the command to cleanup the execution artifacts (the completed pod):

dataflow:>task execution cleanup --id 1

Request to clean up resources for task execution 1 has been submitted

Part V. Shell
In this section you will learn about the options for starting the Shell and more advanced functionality
relating to how it handles white spaces, quotes, and interpretation of SpEL expressions. The introductory
chapters to the Stream DSL and Composed Task DSL is a good place to start for the most common
usage of shell commands.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 43

20. Shell Options

The Shell is built upon the Spring Shell project. There are command line options generic to Spring Shell
and some specific to Data Flow. The shell takes the following command line options

unix:>java -jar spring-cloud-dataflow-shell-1.2.1.RELEASE.jar --help

Data Flow Options:

 --dataflow.uri=<uri> Address of the Data Flow Server [default: http://

localhost:9393].

 --dataflow.username=<USER> Username of the Data Flow Server [no default].

 --dataflow.password=<PASSWORD> Password of the Data Flow Server [no default].

 --dataflow.credentials-provider-command=<COMMAND> Executes an external command which must return an

 OAuth Access Token [no default].

 --dataflow.skip-ssl-validation=<true|false> Accept any SSL certificate (even self-signed)

 [default: no].

 --spring.shell.historySize=<SIZE> Default size of the shell log file [default: 3000].

 --spring.shell.commandFile=<FILE> Data Flow Shell executes commands read from the

 file(s) and then exits.

 --help This message.

The spring.shell.commandFile option is of note, as it can be used to point to an existing file which
contains all the shell commands to deploy one or many related streams and tasks. This is useful when
creating some scripts to help automate the deployment.

There is also a shell command

dataflow:>script --file <YOUR_AWESOME_SCRIPT>

This is useful to help modularize a complex script into multiple indepenent files.

https://projects.spring.io/spring-shell/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 44

21. Listing available commands

Typing help at the command prompt will give a listing of all available commands. Most of the commands
are for Data Flow functionality, but a few are general purpose.

! - Allows execution of operating system (OS) commands

clear - Clears the console

cls - Clears the console

date - Displays the local date and time

exit - Exits the shell

http get - Make GET request to http endpoint

http post - POST data to http endpoint

quit - Exits the shell

system properties - Shows the shell's properties

version - Displays shell version

Adding the name of the command to help will display additional information on how to invoke the
command.

dataflow:>help stream create

Keyword: stream create

Description: Create a new stream definition

 Keyword: ** default **

 Keyword: name

 Help: the name to give to the stream

 Mandatory: true

 Default if specified: '__NULL__'

 Default if unspecified: '__NULL__'

 Keyword: definition

 Help: a stream definition, using the DSL (e.g. "http --port=9000 | hdfs")

 Mandatory: true

 Default if specified: '__NULL__'

 Default if unspecified: '__NULL__'

 Keyword: deploy

 Help: whether to deploy the stream immediately

 Mandatory: false

 Default if specified: 'true'

 Default if unspecified: 'false'

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 45

22. Tab Completion

The shell command options can be completed in the shell by hitting the TAB key after the leading --.
For example, hitting TAB after stream create -- results in

dataflow:>stream create --

stream create --definition stream create --name

If you type --de and then hit tab, --definition will be expanded.

Tab completion is also available inside the stream or composed task DSL expression for application
or task properties. You can also use TAB to get hints in a stream DSL expression for what available
sources, processors, or sinks can be used.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 46

23. White space and quote rules

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor is being passed a SpEL expression that will be applied to any data it encounters:

transform --expression='new StringBuilder(payload).reverse()'

If the parameter value needs to embed a single quote, use two single quotes:

// Query is: Select * from /Customers where name='Smith'

scan --query='Select * from /Customers where name=''Smith'''

23.1 Quotes and Escaping

There is a Spring Shell based client that talks to the Data Flow Server that is responsible for parsing
the DSL. In turn, applications may have applications properties that rely on embedded languages, such
as the Spring Expression Language.

The shell, Data Flow DSL parser, and SpEL have rules about how they handle quotes and how syntax
escaping works. When combined together, confusion may arise. This section explains the rules that
apply and provides examples of the most complicated situations you will encounter when all three
components are involved.

It’s not always that complicated

If you don’t use the Data Flow shell, for example you’re using the REST API directly, or if
applications properties are not SpEL expressions, then escaping rules are simpler.

Shell rules

Arguably, the most complex component when it comes to quotes is the shell. The rules can be laid out
quite simply, though:

• a shell command is made of keys (--foo) and corresponding values. There is a special, key-less
mapping though, see below

• a value can not normally contain spaces, as space is the default delimiter for commands

• spaces can be added though, by surrounding the value with quotes (either single ['] or double ["]
quotes)

• if surrounded with quotes, a value can embed a literal quote of the same kind by prefixing it with a
backslash (\)

• Other escapes are available, such as \t, \n, \r, \f and unicode escapes of the form \uxxxx

• Lastly, the key-less mapping is handled in a special way in the sense that if does not need quoting
to contain spaces

For example, the shell supports the ! command to execute native shell commands. The ! accepts a
single, key-less argument. This is why the following works:

dataflow:>! rm foo

The argument here is the whole rm foo string, which is passed as is to the underlying shell.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 47

As another example, the following commands are strictly equivalent, and the argument value is foo
(without the quotes):

dataflow:>stream destroy foo

dataflow:>stream destroy --name foo

dataflow:>stream destroy "foo"

dataflow:>stream destroy --name "foo"

DSL parsing rules

At the parser level (that is, inside the body of a stream or task definition) the rules are the following:

• option values are normally parsed until the first space character

• they can be made of literal strings though, surrounded by single or double quotes

• To embed such a quote, use two consecutive quotes of the desired kind

As such, the values of the --expression option to the filter application are semantically equivalent
in the following examples:

filter --expression=payload>5

filter --expression="payload>5"

filter --expression='payload>5'

filter --expression='payload > 5'

Arguably, the last one is more readable. It is made possible thanks to the surrounding quotes. The actual
expression is payload > 5 (without quotes).

Now, let’s imagine we want to test against string messages. If we’d like to compare the payload to the
SpEL literal string, "foo", this is how we could do:

filter --expression=payload=='foo' ❶

filter --expression='payload == ''foo''' ❷

filter --expression='payload == "foo"' ❸

❶ This works because there are no spaces. Not very legible though

❷ This uses single quotes to protect the whole argument, hence actual single quotes need to be
doubled

❸ But SpEL recognizes String literals with either single or double quotes, so this last method is
arguably the best

Please note that the examples above are to be considered outside of the shell, for example if when
calling the REST API directly. When entered inside the shell, chances are that the whole stream
definition will itself be inside double quotes, which would need escaping. The whole example then
becomes:

dataflow:>stream create foo --definition "http | filter --expression=payload='foo' | log"

dataflow:>stream create foo --definition "http | filter --expression='payload == ''foo''' | log"

dataflow:>stream create foo --definition "http | filter --expression='payload == \"foo\"' | log"

SpEL syntax and SpEL literals

The last piece of the puzzle is about SpEL expressions. Many applications accept options that are to
be interpreted as SpEL expressions, and as seen above, String literals are handled in a special way
there too. The rules are:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 48

• literals can be enclosed in either single or double quotes

• quotes need to be doubled to embed a literal quote. Single quotes inside double quotes need no
special treatment, and vice versa

As a last example, assume you want to use the transform processor. This processor accepts an
expression option which is a SpEL expression. It is to be evaluated against the incoming message,
with a default of payload (which forwards the message payload untouched).

It is important to understand that the following are equivalent:

transform --expression=payload

transform --expression='payload'

but very different from the following:

transform --expression="'payload'"

transform --expression='''payload'''

and other variations.

The first series will simply evaluate to the message payload, while the latter examples will evaluate to
the actual literal string payload (again, without quotes).

Putting it all together

As a last, complete example, let’s review how one could force the transformation of all messages to the
string literal hello world, by creating a stream in the context of the Data Flow shell:

dataflow:>stream create foo --definition "http | transform --expression='''hello world''' | log" ❶

dataflow:>stream create foo --definition "http | transform --expression='\"hello world\"' | log" ❷

dataflow:>stream create foo --definition "http | transform --expression=\"'hello world'\" | log" ❸

❶ This uses single quotes around the string (at the Data Flow parser level), but they need to be
doubled because we’re inside a string literal (very first single quote after the equals sign)

❷❸ use single and double quotes respectively to encompass the whole string at the Data Flow parser
level. Hence, the other kind of quote can be used inside the string. The whole thing is inside the
--definition argument to the shell though, which uses double quotes. So double quotes are
escaped (at the shell level)

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-processors.html#spring-clound-stream-modules-transform-processor

Part VI. Streams
This section goes into more detail about how you can create Streams which are a collection of Spring
Cloud Stream. It covers topics such as creating and deploying Streams.

If you’re just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 50

24. Introduction

Streams are a collection of long lived Spring Cloud Stream applications that communicate with each
other over messaging middleware. A text based DSL defines the configuration and data flow between
the applications. While many applications are provided for you to implement common use-cases, you
will typically create a custom Spring Cloud Stream application to implement custom business logic.

The general lifecycle of a Stream is:

1. Register applications

2. Create a Stream Definition

3. Deploy the Stream

4. Undeploy or Destroy the Stream.

There are two options for deploying streams:

1. Use a Data Flow Server implementation that deploys to a single platform.

2. Configure the Data Flow Server to delegate the deployment to new server in the Spring Cloud
ecosystem named Skipper.

When using the first option, you can use the Data Flow Server for Cloud Foundry to deploy streams
to a single org and space on Cloud Foundry. Alternatively, you can use Data Flow for Kuberenetes to
deploy stream to a single namespace on a Kubernetes cluster. See here for a list of implementations.

When using the second option, you can configure Skipper to deploy applications to one or more Cloud
Foundry org/spaces, one or more namespaces on a Kubernetes cluster, as well as deploy to the local
machine. When deploying a stream in Data Flow using Skipper, you can specify which platfrom to use.
Skipper also provides Data Flow with the ability to perform updates to deployed streams. There are
many ways the applications in a stream can be updated, but one of the most common examples is to
upgrade a processor application with new custom business logic while leaving the existing source and
sink applications alone.

24.1 Stream Pipeline DSL

A stream is defined using a unix-inspired Pipeline syntax. The syntax uses vertical bars, also known as
"pipes" to connect multiple commands. The command ls -l | grep key | less in Unix takes
the output of the ls -l process and pipes it to the input of the grep key process. The output of
grep in turn is sent to the input of the less process. Each | symbol will connect the standard ouput
of the program on the left to the standard input of the command on the right. Data flows through the
pipeline from left to right.

In Data Flow, the Unix command is replaced by a Spring Cloud Stream application and each pipe
symbol represents connecting the input and output of applications via messaging middleware, such as
RabbitMQ or Apache Kafka.

Each Spring Cloud Stream application is registered under a simple name. The registration process
specifies where the application can be obtained, for example in a Maven Repository or a Docker registry.
You can find out more information on how to register Spring Cloud Stream applications in this section.
In Data Flow, we classify the Spring Cloud Stream applications as either Sources, Processors, or Sinks.

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-skipper/
http://cloud.spring.io/spring-cloud-dataflow/#platform-implementations
https://en.wikipedia.org/wiki/Pipeline_(Unix)
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 51

As a simple example consider the collection of data from an HTTP Source writing to a File Sink. Using
the DSL the stream description is:

http | file

A stream that involves some processing would be expresed as:

http | filter | transform | file

Stream definitions can be created using the shell’s create stream command. For example:

dataflow:> stream create --name httpIngest --definition "http | file"

The Stream DSL is passed in to the --definition command option.

The deployment of stream definitions is done via the shell’s stream deploy command.

dataflow:> stream deploy --name ticktock

The Getting Started section shows you how to start the server and how to start and use the Spring
Cloud Data Flow shell.

Note that shell is calling the Data Flow Servers' REST API. For more information on making HTTP
request directly to the server, consult the REST API Guide.

24.2 Application properties

Each application takes properties to customize its behavior. As an example the http source module
exposes a port setting which allows the data ingestion port to be changed from the default value.

dataflow:> stream create --definition "http --port=8090 | log" --name myhttpstream

This port property is actually the same as the standard Spring Boot server.port property. Data
Flow adds the ability to use the shorthand form port instead of server.port. One may also specify
the longhand version as well.

dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream

This shorthand behavior is discussed more in the section on the section called “Whitelisting application
properties”. If you have registered application property metadata you can use tab completion in the shell
after typing -- to get a list of candidate property names.

The shell provides tab completion for application properties and also the shell command app info
<appType>:<appName> provides additional documentation for all the supported properties.

Note

Supported Stream `<appType>’s are: source, processor, and sink

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 52

25. Stream Lifecycle

25.1 Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dataflow:>app register --name mysource --type source --uri maven://com.example:mysource:0.0.1-SNAPSHOT

dataflow:>app register --name myprocessor --type processor --uri file:///Users/example/

myprocessor-1.2.3.jar

dataflow:>app register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could do the following:

dataflow:>app register --name http --type source --uri maven://

org.springframework.cloud.stream.app:http-source-rabbit:1.2.1.BUILD-SNAPSHOT

dataflow:>app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:log-

sink-rabbit:1.2.1.BUILD-SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <type>.<name> and the values are the URIs.

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

source.http=maven://org.springframework.cloud.stream.app:http-source-rabbit:1.2.1.BUILD-SNAPSHOT

sink.log=maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.2.1.BUILD-SNAPSHOT

Then to import the apps in bulk, use the app import command and provide the location of the
properties file via --uri:

dataflow:>app import --uri file:///<YOUR_FILE_LOCATION>/stream-apps.properties

25.2 Register Supported Applications and Tasks

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Maven bit.ly/Bacon-RELEASE-stream-
applications-rabbit-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-rabbit-maven

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 53

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Docker bit.ly/Bacon-RELEASE-stream-
applications-rabbit-docker

N/A

Kafka 0.9 + Maven bit.ly/Bacon-RELEASE-stream-
applications-kafka-09-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-kafka-09-maven

Kafka 0.9 + Docker bit.ly/Bacon-RELEASE-stream-
applications-kafka-09-docker

N/A

Kafka 0.10 + Maven bit.ly/Bacon-RELEASE-stream-
applications-kafka-10-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-kafka-10-maven

Kafka 0.10 + Docker bit.ly/Bacon-RELEASE-stream-
applications-kafka-10-docker

N/A

List of available Task Application Starters:

Artifact Type Stable Release SNAPSHOT Release

Maven bit.ly/Belmont-GA-task-
applications-maven

bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
maven

Docker bit.ly/Belmont-GA-task-
applications-docker

N/A

You can find more information about the available task starters in the Task App Starters Project Page
and related reference documentation. For more information about the available stream starters look at
the Stream App Starters Project Page and related reference documentation.

As an example, ff you would like to register all out-of-the-box stream applications built with the Kafka
binder in bulk, you can with the following command.

$ dataflow:>app import --uri http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven

Alternatively you can register all the stream applications with the Rabbit binder

$ dataflow:>app import --uri http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven

You can also pass the --local option (which is true by default) to indicate whether the properties file
location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

Warning

When using either app register or app import, if an app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the
pre-existing app coordinates, then include the --force option.

Note however that once downloaded, applications may be cached locally on the Data Flow
server, based on the resource location. If the resource location doesn’t change (even though the
actual resource bytes may be different), then it won’t be re-downloaded. When using maven://

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://cloud.spring.io/spring-cloud-task-app-starters/
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 54

resources on the other hand, using a constant location still may circumvent caching (if using
-SNAPSHOT versions).

Moreover, if a stream is already deployed and using some version of a registered app, then
(forcibly) re-registering a different app will have no effect until the stream is deployed anew.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

Whitelisting application properties

Stream and Task applications are Spring Boot applications which are aware of many the section called
“Common application properties”, e.g. server.port but also families of properties such as those with
the prefix spring.jmx and logging. When creating your own application it is desirable to whitelist
properties so that the shell and the UI can display them first as primary properties when presenting
options via TAB completion or in drop-down boxes.

To whitelist application properties create a file named spring-configuration-metadata-
whitelist.properties in the META-INF resource directory. There are two property keys that can
be used inside this file. The first key is named configuration-properties.classes. The value
is a comma separated list of fully qualified @ConfigurationProperty class names. The second key
is configuration-properties.names whose value is a comma separated list of property names.
This can contain the full name of property, such as server.port or a partial name to whitelist a
category of property names, e.g. spring.jmx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spring-configuration-metadata-whitelist.properties
file

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

If we also wanted to add server.port to be white listed, then it would look like this:

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

configuration-properties.names=server.port

Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

</dependency>

Creating and using a dedicated metadata artifact

You can go a step further in the process of describing the main properties that your stream or task
app supports by creating a so-called metadata companion artifact. This simple jar file contains only the
Spring boot JSON file about configuration properties metadata, as well as the whitelisting file described
in the previous section.

https://github.com/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 55

Here is the contents of such an artifact, for the canonical log sink:

$ jar tvf log-sink-rabbit-1.2.1.BUILD-SNAPSHOT-metadata.jar

373848 META-INF/spring-configuration-metadata.json

 174 META-INF/spring-configuration-metadata-whitelist.properties

Note that the spring-configuration-metadata.json file is quite large. This is because it
contains the concatenation of all the properties that are available at runtime to the log sink (some
of them come from spring-boot-actuator.jar, some of them come from spring-boot-
autoconfigure.jar, even some more from spring-cloud-starter-stream-sink-log.jar,
etc.) Data Flow always relies on all those properties, even when a companion artifact is not available,
but here all have been merged into a single file.

To help with that (as a matter of fact, you don’t want to try to craft this giant JSON file by hand), you
can use the following plugin in your build:

<plugin>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-app-starter-metadata-maven-plugin</artifactId>

 <executions>

 <execution>

 <id>aggregate-metadata</id>

 <phase>compile</phase>

 <goals>

 <goal>aggregate-metadata</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

Note

This plugin comes in addition to the spring-boot-configuration-processor that
creates the individual JSON files. Be sure to configure the two!

The benefits of a companion artifact are manifold:

1. being way lighter (usually a few kilobytes, as opposed to megabytes for the actual app), they are
quicker to download, allowing quicker feedback when using e.g. app info or the Dashboard UI

2. as a consequence of the above, they can be used in resource constrained environments (such as
PaaS) when metadata is the only piece of information needed

3. finally, for environments that don’t deal with boot uberjars directly (for example, Docker-based
runtimes such as Kubernetes or Mesos), this is the only way to provide metadata about the properties
supported by the app.

Remember though, that this is entirely optional when dealing with uberjars. The uberjar itself also
includes the metadata in it already.

Using the companion artifact

Once you have a companion artifact at hand, you need to make the system aware of it so that it can
be used.

When registering a single app via app register, you can use the optional --metadata-uri option
in the shell, like so:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 56

dataflow:>app register --name log --type sink

 --uri maven://org.springframework.cloud.stream.app:log-sink-kafka-10:1.2.1.BUILD-SNAPSHOT

 --metadata-uri=maven://org.springframework.cloud.stream.app:log-sink-

kafka-10:jar:metadata:1.2.1.BUILD-SNAPSHOT

When registering several files using the app import command, the file should contain a
<type>.<name>.metadata line in addition to each <type>.<name> line. This is optional (i.e. if some
apps have it but some others don’t, that’s fine).

Here is an example for a Dockerized app, where the metadata artifact is being hosted in a Maven
repository (but retrieving it via http:// or file:// would be equally possible).

...

source.http=docker:springcloudstream/http-source-rabbit:latest

source.http.metadata=maven://org.springframework.cloud.stream.app:http-source-

rabbit:jar:metadata:1.2.1.BUILD-SNAPSHOT

...

25.3 Creating custom applications

While there are out of the box source, processor, sink applications available, one can extend these
applications or write a custom Spring Cloud Stream application.

The process of creating Spring Cloud Stream applications via Spring Initializr is detailed in the Spring
Cloud Stream {spring-cloud-stream-docs}#_getting_started[documentation]. It is possible to include
multiple binders to an application. If doing so, refer the instructions in the section called “Passing Spring
Cloud Stream properties” on how to configure them.

For supporting property whitelisting, Spring Cloud Stream applications running in Spring Cloud Data
Flow may include the Spring Boot configuration-processor as an optional dependency, as in the
following example.

<dependencies>

 <!-- other dependencies -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

 </dependency>

</dependencies>

Note

Make sure that the spring-boot-maven-plugin is included in the POM. The plugin is
necesary for creating the executable jar that will be registered with Spring Cloud Data Flow.
Spring Initialzr will include the plugin in the generated POM.

Once a custom application has been created, it can be registered as described in Section 25.1, “Register
a Stream App”.

25.4 Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by with the help of stream definitions. The definitions are built from a simple
DSL. For example, let’s walk through what happens if we execute the following shell command:

https://github.com/spring-cloud/spring-cloud-stream

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 57

dataflow:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

The following stream

dataflow:> stream create --definition "time | log" --name ticktock

can have application properties defined at the time of stream creation.

The shell command app info <appType>:<appName> displays the white-listed application
properties for the application. For more info on the property white listing refer to the section called
“Whitelisting application properties”

Below are the white listed properties for the app time:

dataflow:> app info source:time

###

Option Name # Description # Default #

 Type #

###

#trigger.time-unit #The TimeUnit to apply to delay#<none>

 #java.util.concurrent.TimeUnit #

#values. # #

 #

#trigger.fixed-delay #Fixed delay for periodic #1

 #java.lang.Integer #

#triggers. # #

 #

#trigger.cron #Cron expression value for the #<none>

 #java.lang.String #

#Cron Trigger. # #

 #

#trigger.initial-delay #Initial delay for periodic #0

 #java.lang.Integer #

#triggers. # #

 #

#trigger.max-messages #Maximum messages per poll, -1 #1

 #java.lang.Long #

#means infinity. # #

 #

#trigger.date-format #Format for the date value. #<none>

 #java.lang.String #

###

Below are the white listed properties for the app log:

dataflow:> app info sink:log

###

Option Name # Description # Default #

 Type #

###

#log.name #The name of the logger to use.#<none>

 #java.lang.String #

#log.level #The level at which to log #<none>

 #org.springframework.integratio#

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 58

#messages. #

 #n.handler.LoggingHandler$Level#

#log.expression #A SpEL expression (against the#payload

 #java.lang.String #

#incoming message) to evaluate # #

 #

#as the logged message. # #

 #

###

The application properties for the time and log apps can be specified at the time of stream creation
as follows:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

Note that the properties fixed-delay and level defined above for the apps time and log are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring.cloud.dataflow.applicationProperties.stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the Data Flow server with the following options:

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.brokers=192.168.1.100:9092

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.zkNodes=192.168.1.100:2181

This will cause the properties spring.cloud.stream.kafka.binder.brokers and
spring.cloud.stream.kafka.binder.zkNodes to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app.http.spring.cloud.stream.kafka.binder.brokers will
override the common property).

25.5 Deploying a Stream

This section describes how to deploy a Stream when the Spring Cloud Data Flow server is responsible
for deploying the stream. The following section, ???, covers the new deployment and upgrade features
when the Spring Cloud Data Flow server delegates to Skipper for stream deployment. In both cases,
the description of how deployment properties applies to both approaches of Stream deployment.

Give the ticktock stream definition:

dataflow:> stream create --definition "time | log" --name ticktock

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 59

You can deploy the stream using the following command: Then to deploy the stream execute the
following shell command

dataflow:> stream deploy --name ticktock

The Data Flow Server resolves time and log to maven coordinates and uses those to launch the time
and log applications of the stream.

2016-06-01 09:41:21.728 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481708/ticktock.log

2016-06-01 09:41:21.914 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.time instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481910/ticktock.time

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the stdout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/

ticktock-1464788481708/ticktock.log/stdout_0.log

2016-06-01 09:45:11.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:11

2016-06-01 09:45:12.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:12

2016-06-01 09:45:13.251 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:13

You can also create an deploy the stream in one step by passing the --deploy flag when creating
the stream.

dataflow:> stream create --definition "time | log" --name ticktock --deploy

However, it is not very common in real world use cases to do create and deploy the stream in one step.
The reason is that when you use the stream deploy command, you can pass in properties that define
how to map the applications onto the platform, e.g. what is the memory size of the container to use, the
number of each application to run, or to enable data partitioning features. Properties can also override
application properties which were set when creating the stream. The next sections cover this in detail.

Deployment properties

When deploying a stream, you can specify properties that fall into two groups.

1. Properties that control how the apps are deployed to the target platform. These properties use a
deployer prefix. These are referred to as deployer properties.

2. Properties that set application properties or override application properties set during stream creation.
These are referred to as application properties.

The syntax for deployer properties is deployer.<app-name>.<short-property-

name>=<value> and the syntax for application properties app.<app-name>.<property-
name>=<value>. This syntax is used when passing deployment properties via the shell. You may also
specify them in a YAML file which is discussed below.

The following table shows the difference in behavior between settings deployer and application
properties when deploying an application.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 60

 Application Properties Deployer Properties

Example Syntax app.filter.expression=foodeployer.filter.count=3

What the application "sees" expression=foo or <some-
prefix>.expression=foo

if expression is one of the
whitelisted properties

Nothing

What the deployer "sees" Nothing spring.cloud.deployer.count=3

The
spring.cloud.deployer

prefix is automatically and
always prepended to the
property name

Typical usage Passing/Overriding application
properties, passing Spring
Cloud Stream binder or
partitionning properties

Setting the number of
instances, memory, disk, etc.

Passing instance count

If you would like to have multiple instances of an application in the stream, you can include a deployer
property with the deploy command:

dataflow:> stream deploy --name ticktock --properties "deployer.time.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app.foo.bar.count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

Important

See ???.

Inline vs file based properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the --properties shell option and list properties as a comma separated list of key=value
pairs, like so:

stream deploy foo

 --properties "deployer.transform.count=2,app.transform.producer.partitionKeyExpression=payload"

Using a file reference
use the --propertiesFile option and point it to a local .properties, .yaml or .yml file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a .properties file,

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 61

normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream deploy foo --propertiesFile myprops.properties

where myprops.properties contains:

deployer.transform.count=2

app.transform.producer.partitionKeyExpression=payload

Both the above properties will be passed as deployment properties for the stream foo above.

In case of using YAML as the format for the deployment properties, use the .yaml or .yml file extention
when deploying the stream,

stream deploy foo --propertiesFile myprops.yaml

where myprops.yaml contains:

deployer:

 transform:

 count: 2

app:

 transform:

 producer:

 partitionKeyExpression: payload

Passing application properties

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names
(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=5,app.log.level=ERROR"

When using the app label,

stream create ticktock --definition "a: time | b: log"

the application properties can be defined as:

stream deploy ticktock --properties "app.a.fixed-delay=4,app.b.level=ERROR"

Passing Spring Cloud Stream properties

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spring.cloud.stream.bindings.<input/
output>.destination is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 62

For example, for the below stream

dataflow:> stream create --definition "http | transform --

expression=payload.getValue('hello').toUpperCase() | log" --name ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.binder=kafka,app.transform.spring.cloud.stream.bindings.input.binder=kafka,app.transform.spring.cloud.stream.bindings.output.binder=rabbit,app.log.spring.cloud.stream.bindings.input.binder=rabbit"

Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per-binding
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partitionKeyExpression, partitionKeyExtractorClass as described in
the section called “Passing stream partition properties”, all the supported Spring Cloud Stream producer/
consumer properties can be set as Spring Cloud Stream properties for the app directly as well.

The consumer properties can be set for the inbound channel name with the prefix app.
[app/label name].spring.cloud.stream.bindings.<channelName>.consumer. and the
producer properties can be set for the outbound channel name with the prefix app.[app/
label name].spring.cloud.stream.bindings.<channelName>.producer.. For example,
the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with producer/consumer properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.producer.requiredGroups=myGroup,app.time.spring.cloud.stream.bindings.output.producer.headerMode=raw,app.log.spring.cloud.stream.bindings.input.consumer.concurrency=3,app.log.spring.cloud.stream.bindings.input.consumer.maxAttempts=5"

The binder specific producer/consumer properties can also be specified in a similar way.

For instance

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.rabbit.bindings.output.producer.autoBindDlq=true,app.log.spring.cloud.stream.rabbit.bindings.input.consumer.transacted=true"

Passing stream partition properties

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default null)

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 63

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractorClass is null. If both are null, the app is not partitioned (default null)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default null)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[nextModule].count. If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default null)

In summary, an app is partitioned if its count is > 1 and the previous app has a
partitionKeyExtractorClass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSelectorClass, if present, or the partitionSelectorExpression %

partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSelectorClass nor a partitionSelectorExpression is present the
result is key.hashCode() % partitionCount.

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the inputType and outputType properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dataflow:>stream create tuple --definition "http | filter --inputType=application/x-spring-tuple

 --expression=payload.hasFieldName('hello') | transform --

expression=payload.getValue('hello').toUpperCase()

 | log" --deploy

The http app is expected to send the data in JSON and the filter app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the inputType property on the filter app
to convert the data into the expected Spring Tuple format. The transform application processes the
Tuple data and sends the processed data to the downstream log application.

When sending some data to the http application:

dataflow:>http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://

localhost:<http-port>

At the log application you see the content as follows:

INFO 18745 --- [transform.tuple-1] log.sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the --outputType in the upstream app or as an --inputType in the downstream app. For
instance, in the above stream, instead of specifying the --inputType on the 'transform' application to
convert, the option --outputType=application/x-spring-tuple can also be specified on the
'http' application.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 64

For the complete list of message conversion and message converters, please refer to Spring Cloud
Stream {spring-cloud-stream-docs}#contenttypemanagement[documentation].

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

To override these application properties, one can specify the new property values during deployment:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=4,app.log.level=ERROR"

25.6 Destroying a Stream

You can delete a stream by issuing the stream destroy command from the shell:

dataflow:> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

25.7 Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name.

dataflow:> stream undeploy --name ticktock

dataflow:> stream deploy --name ticktock

You can issue the deploy command at a later time to restart it.

dataflow:> stream deploy --name ticktock

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 65

26. Stream Lifecycle with Skipper

Skipper is a server that allows you to discover Spring Boot applications and manage their lifecycle on
multiple Cloud Platforms.

Applications in Skipper are bundled as packages which contain templated configuration files. They also
contain an optional values file that contains default values using to fill in template placeholders. You
can find out more about the format of the package .zip file in Skipper’s documentation on Packages.
Skipper’s templated configuration files contain placeholders for application properties, application
version, and deployment properties. Package .zip files are uploaded to Skipper and stored in a package
repository. Skipper’s package repository is analogous to those found in tools such as apt-get or brew.

You can override template values when installing or upgrading a package. Skipper orchestrates the
upgrade/rollback procedure of applications between different versions, taking the minimal set of actions
to bring the system to the desired state. For example, if only one application in a stream has been
updated, only that single application is deployed with a new version and the old version undeployed.
An application is considered different when upgrading if any of it’s application properties, deployment
properties (excluding count), or application version (e.g. 1.0.0.RELEASE) is different from the currently
installed application.

Spring Cloud Data Flow is integrated with Skipper by generating a Skipper package when deploying
a Stream. The generated package name is the same name as the Stream. The generated package is
uploaded to Skipper’s package repository and Data Flow then instructs Skipper to install the package
that corresponds to the Stream. Subsequent commands to upgrade and rollback applications within the
Stream are passed through to Skipper after some validation checks are performed by Data Flow.

26.1 Creating and Deploying a Stream

You create and deploy a stream using skipper in two steps, creating the stream definition and then
deploying the stream.

dataflow:> stream create --name httptest --definition "http --server.port=9000 | log"

dataflow:> stream skipper deploy --name httptest

There is an important optional command argument to the stream skipper deploy command,
which is --platformName. Skipper can be configured to deploy to multiple platforms. Skipper is pre-
configured with a platform named default which will deploys applications to the local machine where
Skipper is running. The default value of the command line argument --platformName is default. If
you are commonly deploying to one platform, when installing Skipper you can override the configuration
of the default platform. Otherwise, specify the platformName to one of the values returned by the
command stream skipper platform-list

Note

In future releases, only the local Data Flow server will be configured with the default platform.

26.2 Updating a Stream

To update the stream, use the command stream skipper update which takes as a command
argument either --properties or --propertiesFile. You can pass in values to these command
arguments in the same format as when deploy the stream with or without Skipper. There is an important
new top level prefix available when using Skipper, which is version. If the Stream http | log was

https://cloud.spring.io/spring-cloud-skipper/
https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.M2/reference/htmlsingle/#packages

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 66

deployed, and the version of log which registered at the time of deployment was 1.1.0.RELEASE, the
following command will update the Stream to use the 1.2.0.RELEASE of the log application.

dataflow:>stream skipper update --name httptest --properties version.log=1.2.0.RELEASE

26.3 Stream versions

Skipper keeps a history of the Streams that were deployed. After updating a Stream, there will be a
second version of the stream. You can query for the history of the versions using the command stream
skipper history --name <name-of-stream>.

dataflow:>stream skipper history --name httptest

###

#Version# Last updated # Status #Package Name#Package Version# Description #

###

#2 #Mon Nov 27 22:41:16 EST 2017#DEPLOYED#httptest #1.0.0 #Upgrade complete#

#1 #Mon Nov 27 22:40:41 EST 2017#DELETED #httptest #1.0.0 #Delete complete #

###

26.4 Stream Manifests

Skipper keeps an "manifest" of the all the applications, their application properties and deployment
properties after all values have been substituted. This represents the final state of what was deployed to
the platform. You can view the manifest for any of the versions of a Stream using the command stream
skipper manifest --name <name-of-stream> --releaseVersion <optional-version>

If the --releaseVersion is not specified, the manifest for the last version is returned.

dataflow:>stream skipper manifest --name httptest

Source: log.yml

apiVersion: skipper.spring.io/v1

kind: SpringCloudDeployerApplication

metadata:

 name: log

spec:

 resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit

 version: 1.2.0.RELEASE

 applicationProperties:

 spring.metrics.export.triggers.application.includes: integration**

 spring.cloud.dataflow.stream.app.label: log

 spring.cloud.stream.metrics.key: httptest.log.${spring.cloud.application.guid}

 spring.cloud.stream.bindings.input.group: httptest

 spring.cloud.stream.metrics.properties:

 spring.application.name,spring.application.index,spring.cloud.application.*,spring.cloud.dataflow.*

 spring.cloud.dataflow.stream.name: httptest

 spring.cloud.dataflow.stream.app.type: sink

 spring.cloud.stream.bindings.input.destination: httptest.http

 deploymentProperties:

 spring.cloud.deployer.indexed: true

 spring.cloud.deployer.group: httptest

 spring.cloud.deployer.count: 1

Source: http.yml

apiVersion: skipper.spring.io/v1

kind: SpringCloudDeployerApplication

metadata:

 name: http

spec:

 resource: maven://org.springframework.cloud.stream.app:http-source-rabbit

 version: 1.2.0.RELEASE

 applicationProperties:

 spring.metrics.export.triggers.application.includes: integration**

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 67

 spring.cloud.dataflow.stream.app.label: http

 spring.cloud.stream.metrics.key: httptest.http.${spring.cloud.application.guid}

 spring.cloud.stream.bindings.output.producer.requiredGroups: httptest

 spring.cloud.stream.metrics.properties:

 spring.application.name,spring.application.index,spring.cloud.application.*,spring.cloud.dataflow.*

 server.port: 9000

 spring.cloud.stream.bindings.output.destination: httptest.http

 spring.cloud.dataflow.stream.name: httptest

 spring.cloud.dataflow.stream.app.type: source

 deploymentProperties:

 spring.cloud.deployer.group: httptest

The majority of the deployment and application properties were set by Data Flow in order to enable the
applications to talk to each other and sending application metrics with identifying labels.

26.5 Rollback a Stream

You can rollback to a previous version of the Stream using the command stream skipper rollback.

dataflow:>stream skipper rollback --name httptest

There is an optional --releaseVersion command argument which is the version of the Stream. If
not specified, the rollback goes to the previous stream version.

26.6 Application Count

The application count is a dynamic property of the system. If due to scaling at runtime, the application
to be upgraded has 5 instances running, then 5 instances of the upgraded application will be deployed.

26.7 Skipper’s Upgrade Strategy

Skipper has a simple 'red/black' upgrade strategy. It deploys the new version of the applications, as
many instances as the currently running version, and checks the /health endpoint of the application.
If the health of the new application is good, then the previous application is undeployed. If the health
of the new application is bad, then all new applications are undeployed and the upgrade is considered
not successful.

The upgrade strategy is not a rolling upgrade, so if 5 applications of the application to upgrade are
runningn, then in a sunny day scenario, 5 of the new applications will also be running before the older
version is undeployed. Future versions of Skipper will support rolling upgrades and other types of
checks, e.g. manual, to continue to upgrade process.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 68

27. Stream DSL

This section covers additional features of the Stream DSL not covered in the Stream DSL introduction.

27.1 Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2:

 transform --expression=payload+'!' | log" --name mainstream --deploy

taps can be created at the output of http, step1 and step2.

To create a stream that acts as a 'tap' on another stream requires to specify the source destination
name for the tap stream. The syntax for source destination name is:

`:<streamName>.<label/appName>`

To create a tap at the output of http in the stream above, the source destination name is
mainstream.http To create a tap at the output of the first transform app in the stream above, the
source destination name is mainstream.step1

The tap stream DSL looks like this:

stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy

stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

27.2 Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() |

 secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy

27.3 Named Destinations

Instead of referencing a source or sink applications, you can use a named destination. A named
destination corresponds to a specific destination name in the middleware broker (Rabbit, Kafka, etc.,).
When using the | symbol, applications are connected to each other using messaging middleware
destination names created by the Data Flow server. In keeping with the unix analogy, one can redirect
standard input and output using the less-than < greater-than > charaters. To specify the name of the
destination, prefix it with a colon :. For example the following stream has the destination name in the
source position:

dataflow:>stream create --definition ":myDestination > log" --name ingest_from_broker --deploy

This stream receives messages from the destination myDestination located at the broker and
connects it to the log app. You can also create additional streams that will consume data from the
same named destination.

The following stream has the destination name in the sink position:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 69

dataflow:>stream create --definition "http > :myDestination" --name ingest_to_broker --deploy

It is also possible to connect two different destinations (source and sink positions) at the broker in
a stream.

dataflow:>stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy

In the above stream, both the destinations (destination1 and destination2) are located in the
broker. The messages flow from the source destination to the sink destination via a bridge app that
connects them.

27.4 Fan-in and Fan-out

Using named destinations, you can support Fan-in and Fan-out use cases. Fan-in use cases are when
multiple sources all send data to the same named destination. For example

s3 > :data

ftp > :data

http > :data

Would direct the data payloads from the Amazon S3, FTP, and HTTP sources to the same named
destination called data. Then an additional stream created with the DSL expression

:data > file

would have all the data from those three sources sent to the file sink.

The Fan-out use case is when you determine the destination of a stream based on some information
that is only known at runtime. In this case, the Router Application can be used to specify how to direct
the incoming message to one of N named destinations.

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-sinks.html#spring-cloud-stream-modules-router-sink

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 70

28. Stream Java DSL

Instead of using the shell to create and deploy streams, you can use the Java based DSL provided by the
spring-cloud-dataflow-rest-client module. The Java DSL is a convenient wrapper around
the DataFlowTemplate class that makes it simple to create and deploy streams programmatically.

To get started, you will need to add the following dependency to your project.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dataflow-rest-client</artifactId>

 <version>1.3.0.M3</version>

</dependency>

You will also need to add a reference to the Spring Milestone Maven repository.

 <repositories>

 <repository>

 <id>spring-milestones</id>

 <name>Spring Milestones</name>

 <url>http://repo.spring.io/libs-milestone-local</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

 </repositories>

Note

A complete sample can be found in the Spring Cloud Data Flow Samples Repository to simplify
getting started.

28.1 Overview

The classes you will encounter using the Java DSL are StreamBuilder, StreamDefinition,
Stream, StreamApplication, and DataFlowTemplate. The entry point is a builder method
on Stream that takes an instance of a DataFlowTemplate. To create an instance of a
DataFlowTemplate you need to provide a URI location of the Data Flow Server.

Note

The DataFlowTemplate does not support a simple way to configure HTTP basic
authentication or OAuth. This will be addressed in a future release.

We will now walk though a quick example, using the definition style.

URI dataFlowUri = URI.create("http://localhost:9393");

DataFlowOperations dataFlowOperations = new DataFlowTemplate(dataFlowUri);

dataFlowOperations.appRegistryOperations().importFromResource(

 "http://bit.ly/Celsius-RC1-stream-applications-rabbit-maven", true);

StreamDefinition streamDefinition = Stream.builder(dataFlowOperations)

 .name("ticktock")

 .definition("time | log")

 .create();

The method create returns an instance of a StreamDefinition representing a Stream that has
been created but not deployed. This is called the definition style since it takes as a single string for
the stream definition, just like in the shell. If applications have not yet been registered in the Data Flow

https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 71

server, you can use the DataFlowOperations class to register them. With the StreamDefinition
instance, you have methods available to deploy or destory the stream.

Stream stream = streamDefinition.deploy();

The Stream instance has the methods getStatus, destroy and undeploy to control and query the
stream. If you are going to immediately deploy the stream, there is no need to create a separate local
variable of the type StreamDefinition. You can just chain the calls together.

Stream stream = Stream.builder(dataFlowOperations)

 .name("ticktock")

 .definition("time | log")

 .create()

 .deploy();

The deploy method is overloaded to take a java.util.Map of deployment properties.

The StreamApplication class is used in the 'fluent' Java DSL style and is discussed
in the next section. The StreamBuilder class is what is returned from the method
Stream.builder(dataFlowOperations). In larger applications, it is common to create a single
instance of the StreamBuilder as a Spring @Bean and share it across the application.

28.2 Java DSL styles

The Java DSL offers two styles to create Streams.

• The definition style keeps the feel of using the pipes and filters textual DSL in the shell.
This style is selected by using the definition method after setting the stream name, e.g.
Stream.builder(dataFlowOperations).name("ticktock").definition(<definition

goes here>).

• The fluent style lets you chain together sources, processors and sinks
by passing in an instance of a StreamApplication. This style is
selected by using the source method after setting the stream name,
e.g. Stream.builder(dataFlowOperations).name("ticktock").source(<stream

application instance goes here>). You then chain together processor() and sink()
methods to create a stream definition.

To demonstrate both styles we will create a simple stream using both approaches. A complete sample
for you to get started can be found in the Spring Cloud Data Flow Samples Repository

public void definitionStyle() throws Exception{

 DataFlowOperations dataFlowOperations = createDataFlowOperations();

 Map<String, String> deploymentProperties = createDeploymentProperties();

 Stream woodchuck = Stream.builder(dataFlowOperations)

 .name("woodchuck")

 .definition("http --server.port=9900 | splitter --expression=payload.split(' ') | log")

 .create()

 .deploy(deploymentProperties);

 waitAndDestroy(woodchuck)

}

public void fluentStyle() throws Exception {

 DataFlowOperations dataFlowOperations = createDataFlowOperations();

https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 72

 StreamApplication source = new StreamApplication("http").addProperty("server.port", 9900);

 StreamApplication processor = new StreamApplication("splitter")

 .addProperty("producer.partitionKeyExpression", "payload");

 StreamApplication sink = new StreamApplication("log")

 .addDeploymentProperty("count", 2);

 Stream woodchuck = Stream.builder(dataFlowOperations).name("woodchuck")

 .source(source)

 .processor(processor)

 .sink(sink)

 .create()

 .deploy(deploymentProperties);

 waitAndDestroy(woodchuck)

}

The waitAndDestroy method uses the getStatus method to poll for the stream’s status.

private void waitAndDestroy(Stream stream) throws InterruptedException {

 while(!stream.getStatus().equals("deployed")){

 System.out.println("Wating for deployment of stream.");

 Thread.sleep(5000);

 }

 System.out.println("Letting the stream run for 2 minutes.");

 // Let the stream run for 2 minutes

 Thread.sleep(120000);

 System.out.println("Destroying stream");

 stream.destroy();

}

When using the definition style, the deployment properties are specified as a java.util.Map in the
same manner as using the shell. The method createDeploymentProperties is defined as:

private Map<String, String> createDeploymentProperties() {

 Map<String, String> deploymentProperties = new HashMap<>();

 deploymentProperties.put("app.splitter.producer.partitionKeyExpression", "payload");

 deploymentProperties.put("deployer.log.count", "2");

 return deploymentProperties;

}

Is this case, application properties are also overridden at deployment time in addition to
setting the deployer property count for the log application. When using the fluent style, the
the deployment properties are added using the method addDeploymentProperty, e.g. new
StreamApplication("log").addDeploymentProperty("count", 2) and you do not need to
prefix the property with deployer.<app_name>.

Note

In order to create/deploy your streams, you need to make sure that the corresponding apps
have been registered in the DataFlow server first. Attempting to create or deploy a stream
that contains an unknown app will throw an exception. You can register application using the
DataFlowTemplate, e.g.

dataFlowOperations.appRegistryOperations().importFromResource(

 "http://bit.ly/Celsius-RC1-stream-applications-rabbit-maven", true);

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 73

The Stream applications can also be beans within your application that are injected in other classes to
create Streams. There are many ways to structure Spring applications, but one way to structure it is to
have an @Configuration class define the StreamBuilder and StreamApplications.

@Configuration

public StreamConfiguration {

 @Bean

 public StreamBuilder builder() {

 return Stream.builder(new DataFlowTemplate(URI.create("http://localhost:9393")));

 }

 @Bean

 public StreamApplication httpSource(){

 return new StreamApplication("http");

 }

 @Bean

 public StreamApplication logSink(){

 return new StreamApplication("log");

 }

}

Then in another class you can @Autowire these classes and deploy a stream.

@Component

public MyStreamApps {

 @Autowired

 private StreamBuilder streamBuilder;

 @Autowired

 private StreamApplication httpSource;

 @Autowired

 private StreamApplication logSink;

 public void deploySimpleStream() {

 Stream simpleStream = streamBuilder.name("simpleStream")

 .source(httpSource);

 .sink(logSink)

 .create()

 .deploy();

 }

}

This style allows you to easily share StreamApplications across multiple Streams.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 74

29. Stream applications with multiple binder
configurations

In some cases, a stream can have its applications bound to multiple spring cloud stream binders when
they are required to connect to different messaging middleware configurations. In those cases, it is
important to make sure the applications are configured appropriately with their binder configurations.
For example, let’s consider the following stream:

http | transform --expression=payload.toUpperCase() | log

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1)

Transform processor receives events from RabbitMQ (rabbit1) and sends the processed events into Kafka

 (kafka1)

Log sink receives events from Kafka (kafka1)

Here, rabbit1 and kafka1 are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder

Transform - Both Kafka and Rabbit binders

Log - Kafka binder

The spring-cloud-stream binder configuration properties can be set within the applications themselves.
If not, they can be passed via deployment properties when the stream is deployed.

For example,

dataflow:>stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream

dataflow:>stream deploy mystream --properties

 "app.http.spring.cloud.stream.bindings.output.binder=rabbit1,app.transform.spring.cloud.stream.bindings.input.binder=rabbit1,

app.transform.spring.cloud.stream.bindings.output.binder=kafka1,app.log.spring.cloud.stream.bindings.input.binder=kafka1"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 75

30. Examples

30.1 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream --deploy

Posting some data (using a shell command)

dataflow:> http post --target http://localhost:1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

2016-06-01 09:54:37.749 INFO 80083 --- [kafka-binder-] log.sink : HELLO

30.2 Stateful Stream Processing

To demonstrate the data partitioning functionality, let’s deploy the following stream with Kafka as the
binder.

dataflow:>stream create --name words --definition "http --server.port=9900 | splitter --

expression=payload.split(' ') | log"

Created new stream 'words'

dataflow:>stream deploy words --properties

 "app.splitter.producer.partitionKeyExpression=payload,deployer.log.count=2"

Deployed stream 'words'

dataflow:>http post --target http://localhost:9900 --data "How much wood would a woodchuck chuck if a

 woodchuck could chuck wood"

> POST (text/plain;Charset=UTF-8) http://localhost:9900 How much wood would a woodchuck chuck if a

 woodchuck could chuck wood

> 202 ACCEPTED

You’ll see the following in the server logs.

2016-06-05 18:33:24.982 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 0

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

2016-06-05 18:33:24.988 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 1

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

Review the words.log instance 0 logs:

2016-06-05 18:35:47.047 INFO 58638 --- [kafka-binder-] log.sink : How

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

Review the words.log instance 1 logs:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 76

2016-06-05 18:35:47.047 INFO 58639 --- [kafka-binder-] log.sink :

 much

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 wood

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 would

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : if

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 could

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 wood

This shows that payload splits that contain the same word are routed to the same application instance.

30.3 Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

dataflow:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

2016-06-01 09:47:58.920 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788878747/myhttpstream.log

2016-06-01 09:48:06.396 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.http instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788886383/myhttpstream.http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dataflow:> runtime apps

You should see that the corresponding http source has a url property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

dataflow:> http post --target http://localhost:1234 --data "hello"

dataflow:> http post --target http://localhost:1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016-06-01 09:50:22.121 INFO 79654 --- [kafka-binder-] log.sink : hello

2016-06-01 09:50:26.810 INFO 79654 --- [kafka-binder-] log.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file), to
hadoop (hdfs) or to any of the other sink apps which are available. You can also define your own apps.

Part VII. Streams
deployed using Skipper

We will proceed with the assumption that Spring Cloud Data Flow, Spring Cloud Skipper, RDBMS, and
desired messaging middleware is up and running in minikube.

$ kubectl get all

NAME READY STATUS RESTARTS AGE

po/mysql-777890292-z0dsw 1/1 Running 0 38m

po/rabbitmq-317767540-2qzrr 1/1 Running 0 38m

po/redis-4054078334-37m0l 1/1 Running 0 38m

po/scdf-server-2734071167-bjd3g 1/1 Running 0 48s

po/skipper-2408247821-50z31 1/1 Running 0 3m

...

...

Verify the registered platforms in Skipper.

dataflow:>stream skipper platform-list

##

Name # Type # Description

 #

##

#minikube#kubernetes#master url = [https://kubernetes.default.svc/], namespace = [default], api version

 = [v1] #

##

Let’s start with deploying a stream with the time-source pointing to 1.2.0.RELEASE and log-sink
pointing to 1.1.0.RELEASE. The goal is to rolling upgrade the log-sink application to 1.2.0.RELEASE.

dataflow:>app register --name time --type source --uri docker:springcloudstream/time-source-

rabbit:1.2.0.RELEASE --force

Successfully registered application 'source:time'

dataflow:>app register --name log --type sink --uri docker:springcloudstream/log-sink-

rabbit:1.1.0.RELEASE --force

Successfully registered application 'sink:log'

dataflow:>app info source:time

Information about source application 'time':

Resource URI: docker:springcloudstream/time-source-rabbit:1.2.0.RELEASE

dataflow:>app info sink:log

Information about sink application 'log':

Resource URI: docker:springcloudstream/log-sink-rabbit:1.1.0.RELEASE

1. Create stream.

dataflow:>stream create foo --definition "time | log"

Created new stream 'foo'

2. Deploy stream.

dataflow:>stream skipper deploy foo --platformName minikube

Deployment request has been sent for stream 'foo'

Note

While deploying the stream, we are supplying --platformName and that indicates the
platform repository (i.e., minikube) to use when deploying the stream applications via
Skipper.

3. List pods.

$ kubectl get all

NAME READY STATUS RESTARTS AGE

po/foo-log-v1-0-2k4r8 1/1 Running 0 2m

po/foo-time-v1-qhdqq 1/1 Running 0 2m

po/mysql-777890292-z0dsw 1/1 Running 0 49m

po/rabbitmq-317767540-2qzrr 1/1 Running 0 49m

po/redis-4054078334-37m0l 1/1 Running 0 49m

po/scdf-server-2734071167-bjd3g 1/1 Running 0 12m

po/skipper-2408247821-50z31 1/1 Running 0 15m

...

...

4. Verify logs.

$ kubectl -f po/foo-log-v1-0-2k4r8

...

...

2017-10-30 22:59:04.966 INFO 1 --- [foo.time.foo-1] log-sink :

 10/30/17 22:59:04

2017-10-30 22:59:05.968 INFO 1 --- [foo.time.foo-1] log-sink :

 10/30/17 22:59:05

2017-10-30 22:59:07.000 INFO 1 --- [foo.time.foo-1] log-sink :

 10/30/17 22:59:06

5. Verify the stream history.

dataflow:>stream skipper history --name foo

###

#Version# Last updated # Status #Package Name#Package Version# Description #

###

#1 #Mon Oct 30 16:18:28 PDT 2017#DEPLOYED#foo #1.0.0 #Install complete#

###

6. Verify the package manifest. The log-sink should be at 1.1.0.RELEASE.

dataflow:>stream skipper manifest --name foo

Source: log.yml

apiVersion: skipper.spring.io/v1

kind: SpringCloudDeployerApplication

metadata:

 name: log

spec:

 resource: docker:springcloudstream/log-sink-rabbit

 version: 1.1.0.RELEASE

 applicationProperties:

 spring.metrics.export.triggers.application.includes: integration**

 spring.cloud.dataflow.stream.app.label: log

 spring.cloud.stream.metrics.key: foo.log.${spring.cloud.application.guid}

 spring.cloud.stream.bindings.input.group: foo

 spring.cloud.stream.metrics.properties:

 spring.application.name,spring.application.index,spring.cloud.application.*,spring.cloud.dataflow.*

 spring.cloud.stream.bindings.applicationMetrics.destination: metrics

 spring.cloud.dataflow.stream.name: foo

 spring.cloud.dataflow.stream.app.type: sink

 spring.cloud.stream.bindings.input.destination: foo.time

 deploymentProperties:

 spring.cloud.deployer.indexed: true

 spring.cloud.deployer.group: foo

Source: time.yml

apiVersion: skipper.spring.io/v1

kind: SpringCloudDeployerApplication

metadata:

 name: time

spec:

 resource: docker:springcloudstream/time-source-rabbit

 version: 1.2.0.RELEASE

 applicationProperties:

 spring.metrics.export.triggers.application.includes: integration**

 spring.cloud.dataflow.stream.app.label: time

 spring.cloud.stream.metrics.key: foo.time.${spring.cloud.application.guid}

 spring.cloud.stream.bindings.output.producer.requiredGroups: foo

 spring.cloud.stream.metrics.properties:

 spring.application.name,spring.application.index,spring.cloud.application.*,spring.cloud.dataflow.*

 spring.cloud.stream.bindings.applicationMetrics.destination: metrics

 spring.cloud.stream.bindings.output.destination: foo.time

 spring.cloud.dataflow.stream.name: foo

 spring.cloud.dataflow.stream.app.type: source

 deploymentProperties:

 spring.cloud.deployer.group: foo

7. Let’s update log-sink from 1.1.0.RELEASE to 1.2.0.RELEASE

dataflow:>stream skipper update --name foo --properties version.log=1.2.0.RELEASE

Update request has been sent for stream 'foo'

8. List pods.

$ kubectl get all

NAME READY STATUS RESTARTS AGE

po/foo-log-v1-0-2k4r8 1/1 Terminating 0 3m

po/foo-log-v2-0-fjnlt 0/1 Running 0 9s

po/foo-time-v1-qhdqq 1/1 Running 0 3m

po/mysql-777890292-z0dsw 1/1 Running 0 51m

po/rabbitmq-317767540-2qzrr 1/1 Running 0 51m

po/redis-4054078334-37m0l 1/1 Running 0 51m

po/scdf-server-2734071167-bjd3g 1/1 Running 0 14m

po/skipper-2408247821-50z31 1/1 Running 0 16m

...

...

Note

Notice that there are two versions of the log-sink applications. The po/foo-log-
v1-0-2k4r8 pod is going down and the newly spawned po/foo-log-v2-0-fjnlt pod is
bootstrapping. The version number is incremented and the version-number (v2) is included
in the new application name.

9. Once the new pod is up and running, let’s verify the logs.

$ kubectl -f po/foo-log-v2-0-fjnlt

...

...

2017-10-30 23:24:30.016 INFO 1 --- [foo.time.foo-1] log-sink :

 10/30/17 23:24:30

2017-10-30 23:24:31.017 INFO 1 --- [foo.time.foo-1] log-sink :

 10/30/17 23:24:31

2017-10-30 23:24:32.018 INFO 1 --- [foo.time.foo-1] log-sink :

 10/30/17 23:24:32

10.Let’s look at the updated package manifest persisted in Skipper. We should now be seeing log-
sink at 1.2.0.RELEASE.

dataflow:>stream skipper manifest --name foo

Source: log.yml

apiVersion: skipper.spring.io/v1

kind: SpringCloudDeployerApplication

metadata:

 name: log

spec:

 resource: docker:springcloudstream/log-sink-rabbit

 version: 1.2.0.RELEASE

 applicationProperties:

 spring.metrics.export.triggers.application.includes: integration**

 spring.cloud.dataflow.stream.app.label: log

 spring.cloud.stream.metrics.key: foo.log.${spring.cloud.application.guid}

 spring.cloud.stream.bindings.input.group: foo

 spring.cloud.stream.metrics.properties:

 spring.application.name,spring.application.index,spring.cloud.application.*,spring.cloud.dataflow.*

 spring.cloud.stream.bindings.applicationMetrics.destination: metrics

 spring.cloud.dataflow.stream.name: foo

 spring.cloud.dataflow.stream.app.type: sink

 spring.cloud.stream.bindings.input.destination: foo.time

 deploymentProperties:

 spring.cloud.deployer.indexed: true

 spring.cloud.deployer.group: foo

 spring.cloud.deployer.count: 1

Source: time.yml

apiVersion: skipper.spring.io/v1

kind: SpringCloudDeployerApplication

metadata:

 name: time

spec:

 resource: docker:springcloudstream/time-source-rabbit

 version: 1.2.0.RELEASE

 applicationProperties:

 spring.metrics.export.triggers.application.includes: integration**

 spring.cloud.dataflow.stream.app.label: time

 spring.cloud.stream.metrics.key: foo.time.${spring.cloud.application.guid}

 spring.cloud.stream.bindings.output.producer.requiredGroups: foo

 spring.cloud.stream.metrics.properties:

 spring.application.name,spring.application.index,spring.cloud.application.*,spring.cloud.dataflow.*

 spring.cloud.stream.bindings.applicationMetrics.destination: metrics

 spring.cloud.stream.bindings.output.destination: foo.time

 spring.cloud.dataflow.stream.name: foo

 spring.cloud.dataflow.stream.app.type: source

 deploymentProperties:

 spring.cloud.deployer.group: foo

11.Verify stream history for the latest updates.

dataflow:>stream skipper history --name foo

###

#Version# Last updated # Status #Package Name#Package Version# Description #

###

#2 #Mon Oct 30 16:21:55 PDT 2017#DEPLOYED#foo #1.0.0 #Upgrade complete#

#1 #Mon Oct 30 16:18:28 PDT 2017#DELETED #foo #1.0.0 #Delete complete #

###

12.Rolling-back to the previous version is just a command away.

dataflow:>stream skipper rollback --name foo

Rollback request has been sent for the stream 'foo'

...

...

dataflow:>stream skipper history --name foo

###

#Version# Last updated # Status #Package Name#Package Version# Description #

###

#3 #Mon Oct 30 16:22:51 PDT 2017#DEPLOYED#foo #1.0.0 #Upgrade complete#

#2 #Mon Oct 30 16:21:55 PDT 2017#DELETED #foo #1.0.0 #Delete complete #

#1 #Mon Oct 30 16:18:28 PDT 2017#DELETED #foo #1.0.0 #Delete complete #

###

Part VIII. Tasks
This section goes into more detail about how you can work with Spring Cloud Task. It covers topics
such as creating and running task applications.

If you’re just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 83

31. Introduction

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @EnableTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 84

32. The Lifecycle of a Task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Creating a Task Application

2. Registering a Task Application

3. Creating a Task Definition

4. Launching a Task

5. Reviewing Task Executions

6. Destroying a Task Definition

32.1 Creating a Task Application

While Spring Cloud Task does provide a number of out of the box applications (via the spring-cloud-
task-app-starters), most task applications will be custom developed. In order to create a custom task
application:

1. Create a new project via Spring Initializer via either the website or your IDE making sure to select
the following starters:

a. Cloud Task - This dependency is the spring-cloud-starter-task.

b. JDBC - This is the dependency for the spring-jdbc starter.

2. Within your new project, create a new class that will serve as your main class:

@EnableTask

@SpringBootApplication

public class MyTask {

 public static void main(String[] args) {

 SpringApplication.run(MyTask.class, args);

 }

}

3. With this, you’ll need one or more CommandLineRunner or ApplicationRunner within your
application. You can either implement your own or use the ones provided by Spring Boot (there is
one for running batch jobs for example).

4. Packaging your application up via Spring Boot into an über jar is done via the standard Boot
conventions.

5. The packaged application can be registered and deployed as noted below.

Task Database Configuration

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Data Flow is
set to use Postgresql, be sure that the task application also has Postgresql as a dependency.

https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
http://start.spring.io

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 85

Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its UI, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

32.2 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dataflow:>app register --name task1 --type task --uri maven://com.example:mytask:1.0.2

dataflow:>app register --name task2 --type task --uri file:///Users/example/mytask-1.0.2.jar

dataflow:>app register --name task3 --type task --uri http://example.com/mytask-1.0.2.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <type>.<name> and the values are the URIs. For example, this would be
a valid properties file:

task.foo=file:///tmp/foo.jar

task.bar=file:///tmp/bar.jar

Then use the app import command and provide the location of the properties file via --uri:

app import --uri file:///tmp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

Artifact Type Stable Release SNAPSHOT Release

Maven http://bit.ly/Belmont-GA-task-
applications-maven

http://bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
maven

Docker http://bit.ly/Belmont-GA-task-
applications-docker

http://bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

dataflow:>app import --uri http://bit.ly/Belmont-GA-task-applications-maven

http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 86

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either app register or app import, if a task app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

32.3 Creating a Task Definition

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the task create command to create the task definition.
For example:

dataflow:>task create mytask --definition "timestamp --format=\"yyyy\""

 Created new task 'mytask'

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the task list command.

32.4 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the task launch command. For example:

dataflow:>task launch mytask

 Launched task 'mytask'

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dataflow:>task launch mytask --arguments "--server.port=8080,--foo=bar"

Additional properties meant for a TaskLauncher itself can be passed in using a --properties option.
Format of this option is a comma delimited string of properties prefixed with app.<task definition
name>.<property>. Properties are passed to TaskLauncher as application properties and it is up
to an implementation to choose how those are passed into an actual task application. If the property is
prefixed with deployer instead of app it is passed to TaskLauncher as a deployment property and
its meaning may be TaskLauncher implementation specific.

dataflow:>task launch mytask --properties "deployer.timestamp.foo1=bar1,app.timestamp.foo2=bar2"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting
common properties to all the task applications that are launched by it. This can be done by

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 87

adding properties prefixed with spring.cloud.dataflow.applicationProperties.task when
starting the server. When doing so, the server will pass all the properties, without the prefix, to the
instances it launches.

For example, all the launched applications can be configured to use the properties foo and fizz by
launching the Data Flow server with the following options:

--spring.cloud.dataflow.applicationProperties.task.foo=bar

--spring.cloud.dataflow.applicationProperties.task.fizz=bar2

This will cause the properties foo=bar and fizz=bar2 to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than task deployment
properties. They will be overridden if a property with the same key is specified at task launch
time (e.g. app.trigger.fizz will override the common property).

32.5 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:

• Task Name

• Start Time

• End Time

• Exit Code

• Exit Message

• Last Updated Time

• Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the task execution list command.

To get a list of task executions for just one task definition, add --name and the task definition name, for
example task execution list --name foo. To retrieve full details for a task execution use the
task display command with the id of the task execution, for example task display --id 549.

32.6 Destroying a Task Definition

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the task destroy command.
For example:

dataflow:>task destroy mytask

 Destroyed task 'mytask'

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 88

Note

This will not stop any currently executing tasks for this definition, instead it just removes the
task definition from the database.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 89

33. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spring-cloud-task-stream
and spring-cloud-stream-binder-kafka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: task-events, job-
execution-events etc.,).

dataflow:>task create myTask --definition “myBatchJob"

dataflow:>task launch myTask

dataflow:>stream create task-event-subscriber1 --definition ":task-events > log" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dataflow:>task launch myTask --properties "spring.cloud.stream.bindings.task-

events.destination=myTaskEvents"

dataflow:>stream create task-event-subscriber2 --definition ":myTaskEvents > log" --deploy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 33.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events job-execution-events

Step Execution events step-execution-events

Item Read events item-read-events

Item Process events item-process-events

Item Write events item-write-events

Skip events skip-events

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 90

34. Composed Tasks
Spring Cloud Data Flow allows a user to create a directed graph where each node of the graph is a task
application. This is done by using the DSL for composed tasks. A composed task can be created via
the RESTful API, the Spring Cloud Data Flow Shell, or the Spring Cloud Data Flow UI.

34.1 Configuring the Composed Task Runner

Composed tasks are executed via a task application called the Composed Task Runner.

Registering the Composed Task Runner

Out of the box the Composed Task Runner application is not registered with Spring Cloud Data Flow.
So, to launch composed tasks we must first register the Composed Task Runner as an application with
Spring Cloud Data Flow as follows:

app register --name composed-task-runner --type task --uri maven://

org.springframework.cloud.task.app:composedtaskrunner-task:<DESIRED_VERSION>

You can also configure Spring Cloud Data Flow to use a different task
definition name for the composed task runner. This can be done by setting the
spring.cloud.dataflow.task.composedTaskRunnerName property to the name of your choice.
You can then register the composed task runner application with the name you set using that property.

Configuring the Composed Task Runner

The Composed Task Runner application has a dataflow.server.uri property that is used for
validation and for launching child tasks. This defaults to localhost:9393. If you run a distributed
Spring Cloud Data Flow server, like you would do if you deploy the server on Cloud Foundry, YARN
or Kubernetes, then you need to provide the URI that can be used to access the server. You can
either provide this dataflow.server.uri property for the Composed Task Runner application when
launching a composed task, or you can provide a spring.cloud.dataflow.server.uri property
for the Spring Cloud Data Flow server when it is started. For the latter case the dataflow.server.uri
Composed Task Runner application property will be automatically set when a composed task is
launched.

In some cases you may wish to execute an instance of the Composed Task Runner via the
Task Launcher sink. In this case you must configure the Composed Task Runner to use the
same datasource that the Spring Cloud Data Flow instance is using. The datasource properties
are set via the TaskLaunchRequest through the use of the commandlineArguments or
the environmentProperties. This is because, the Composed Task Runner monitors the
task_executions table to check the status of the tasks that it is executing. Using this information from
the table, it determines how it should navigate the graph.

34.2 The Lifecycle of a Composed Task

Creating a Composed Task

The DSL for the composed tasks is used when creating a task definition via the task create command.
For example:

dataflow:> app register --name timestamp --type task --uri maven://

org.springframework.cloud.task.app:timestamp-task:<DESIRED_VERSION>

https://github.com/spring-cloud-task-app-starters/composed-task-runner
http://localhost:9393

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 91

dataflow:> app register --name mytaskapp --type task --uri file:///home/tasks/mytask.jar

dataflow:> task create my-composed-task --definition "mytaskapp && timestamp"

dataflow:> task launch my-composed-task

In the example above we assume that the applications to be used by our composed task have not been
registered yet. So the first two steps we register two task applications. We then create our composed
task definition by using the task create command. The composed task DSL in the example above will,
when launched, execute mytaskapp and then execute the timestamp application.

But before we launch the my-composed-task definition, we can view what Spring Cloud Data Flow
generated for us. This can be done by executing the task list command.

dataflow:>task list

###

Task Name # Task Definition #Task Status#

###

#my-composed-task #mytaskapp && timestamp#unknown #

#my-composed-task-mytaskapp#mytaskapp #unknown #

#my-composed-task-timestamp#timestamp #unknown #

###

Spring Cloud Data Flow created three task definitions, one for each of the applications that comprises our
composed task (my-composed-task-mytaskapp and my-composed-task-timestamp) as well
as the composed task (my-composed-task) definition. We also see that each of the generated names
for the child tasks is comprised of the name of the composed task and the name of the application
separated by a dash -. i.e. my-composed-task - mytaskapp.

Task Application Parameters

The task applications that comprise the composed task definition can also contain parameters. For
example:

dataflow:> task create my-composed-task --definition "mytaskapp --displayMessage=hello && timestamp --

format=YYYY"

Launching a Composed Task

Launching a composed task is done the same way as launching a stand-alone task. i.e.

task launch my-composed-task

Once the task is launched and assuming all the tasks complete successfully you will see three task
executions when executing a task execution list. For example:

dataflow:>task execution list

##

Task Name #ID # Start Time # End Time #Exit Code#

##

#my-composed-task-timestamp#713#Wed Apr 12 16:43:07 EDT 2017#Wed Apr 12 16:43:07 EDT 2017#0 #

#my-composed-task-mytaskapp#712#Wed Apr 12 16:42:57 EDT 2017#Wed Apr 12 16:42:57 EDT 2017#0 #

#my-composed-task #711#Wed Apr 12 16:42:55 EDT 2017#Wed Apr 12 16:43:15 EDT 2017#0 #

##

In the example above we see that my-compose-task launched and it also launched the other tasks in
sequential order and all of them executed successfully with "Exit Code" as 0.

Exit Statuses

The following list shows how the Exit Status will be set for each step (task) contained in the composed
task following each step execution.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 92

• If the TaskExecution has an ExitMessage that will be used as the ExitStatus

• If no ExitMessage is present and the ExitCode is set to zero then the ExitStatus for the step
will be COMPLETED.

• If no ExitMessage is present and the ExitCode is set to any non zero number then the
ExitStatus for the step will be FAILED.

Destroying a Composed Task

The same command used to destroy a stand-alone task is the same as destroying a composed task.
The only difference is that destroying a composed task will also destroy the child tasks associated with
it. For example

dataflow:>task list

###

Task Name # Task Definition #Task Status#

###

#my-composed-task #mytaskapp && timestamp#COMPLETED #

#my-composed-task-mytaskapp#mytaskapp #COMPLETED #

#my-composed-task-timestamp#timestamp #COMPLETED #

###

...

dataflow:>task destroy my-composed-task

dataflow:>task list

#######################################

#Task Name#Task Definition#Task Status#

#######################################

Stopping a Composed Task

In cases where a composed task execution needs to be stopped. This can be done via the:

• RESTful API

• Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the stop button by
the job execution that needs to be stopped.

The composed task run will be stopped when the currently running child task completes. The step
associated with the child task that was running at the time that the composed task was stopped will be
marked as STOPPED as well as the composed task job execution.

Restarting a Composed Task

In cases where a composed task fails during execution and the status of the composed task is FAILED
then the task can be restarted. This can be done via the:

• RESTful API

• Shell by launching the task using the same parameters

• Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the restart button by
the job execution that needs to be restarted.

Note

Restarting a Composed Task job that has been stopped (via the Spring Cloud Data Flow
Dashboard or RESTful API), will relaunch the STOPPED child task, and then launch the
remaining (unlaunched) child tasks in the specified order.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 93

35. Composed Tasks DSL

35.1 Conditional Execution

Conditional execution is expressed using a double ampersand symbol &&. This allows each task in the
sequence to be launched only if the previous task successfully completed. For example:

task create my-composed-task --definition "foo && bar"

When the composed task my-composed-task is launched, it will launch the task foo and if it completes
successfully, then the task bar will be launched. If the foo task fails, then the task bar will not launch.

You can also use the Spring Cloud Data Flow Dashboard to create your conditional execution. By using
the designer to drag and drop applications that are required, and connecting them together to create
your directed graph. For example:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 94

Figure 35.1. Conditional Execution

The diagram above is a screen capture of the directed graph as it being created using the Spring
Cloud Data Flow Dashboard. We see that are 4 components in the diagram that comprise a conditional
execution:

• Start icon - All directed graphs start from this symbol. There will only be one.

• Task icon - Represents each task in the directed graph.

• End icon - Represents the termination of a directed graph.

• Solid line arrow - Represents the flow conditional execution flow between:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 95

• Two applications

• The start control node and an application

• An application and the end control node

Note

You can view a diagram of your directed graph by clicking the detail button next to the composed
task definition on the definitions tab.

35.2 Transitional Execution

The DSL supports fine grained control over the transitions taken during the execution of the directed
graph. Transitions are specified by providing a condition for equality based on the exit status of the
previous task. A task transition is represented by the following symbol ->.

Basic Transition

A basic transition would look like the following:

task create my-transition-composed-task --definition "foo 'FAILED' -> bar 'COMPLETED' -> baz"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. If the exit status of foo was COMPLETED then baz would launch. All other statuses returned by
foo will have no effect and task would terminate normally.

Using the Spring Cloud Data Flow Dashboard to create the same "basic transition" would look like:

Figure 35.2. Basic Transition

The diagram above is a screen capture of the directed graph as it being created using the Spring Cloud
Data Flow Dashboard. Notice that there are 2 different types of connectors:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 96

• Dashed line - Is the line used to represent transitions from the application to one of the possible
destination applications.

• Solid line - Used to connect applications in a conditional execution or a connection between the
application and a control node (end, start).

When creating a transition, link the application to each of possible destination using the connector. Once
complete go to each connection and select it by clicking it. A bolt icon should appear, click that icon and
enter the exit status required for that connector. The solid line for that connector will turn to a dashed line.

Transition With a Wildcard

Wildcards are supported for transitions by the DSL for example:

task create my-transition-composed-task --definition "foo 'FAILED' -> bar '*' -> baz"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. Any exit status of foo other than FAILED then baz would launch.

Using the Spring Cloud Data Flow Dashboard to create the same "transition with wildcard" would look
like:

Figure 35.3. Basic Transition With Wildcard

Transition With a Following Conditional Execution

A transition can be followed by a conditional execution so long as the wildcard is not used. For example:

task create my-transition-conditional-execution-task --definition "foo 'FAILED' -> bar 'UNKNOWN' -> baz

 && qux && quux"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. If foo had an exit status of UNKNOWN then baz would launch. Any exit status of foo other than
FAILED or UNKNOWN then qux would launch and upon successful completion quux would launch.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 97

Using the Spring Cloud Data Flow Dashboard to create the same "transition with conditional execution"
would look like:

Figure 35.4. Transition With Conditional Execution

Note

In this diagram we see the dashed line (transition) connecting the foo application to the target
applications, but a solid line connecting the conditional executions between foo, qux, and
quux.

35.3 Split Execution

Splits allow for multiple tasks within a composed task to be run in parallel. It is denoted by using angle
brackets <> to group tasks and flows that are to be run in parallel. These tasks and flows are separated
by the double pipe || . For example:

task create my-split-task --definition "<foo || bar || baz>"

The example above will launch tasks foo, bar and baz in parallel.

Using the Spring Cloud Data Flow Dashboard to create the same "split execution" would look like:

Figure 35.5. Split

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 98

With the task DSL a user may also execute multiple split groups in succession. For example:

task create my-split-task --definition "<foo || bar || baz> && <qux || quux>"

In the example above tasks foo, bar and baz will be launched in parallel, once they all complete then
tasks qux, quux will be launched in parallel. Once they complete the composed task will end. However
if foo, bar, or baz fails then, the split containing qux and quux will not launch.

Using the Spring Cloud Data Flow Dashboard to create the same "split with multiple groups" would
look like:

Figure 35.6. Split as a part of a conditional execution

Notice that there is a SYNC control node that is by the designer when connecting two consecutive splits.

Split Containing Conditional Execution

A split can also have a conditional execution within the angle brackets. For example:

task create my-split-task --definition "<foo && bar || baz>"

In the example above we see that foo and baz will be launched in parallel, however bar will not launch
until foo completes successfully.

Using the Spring Cloud Data Flow Dashboard to create the same "split containing conditional execution"
would look like:

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 99

Figure 35.7. Split with conditional execution

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 100

36. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available task-launcher sinks. Currently
the platforms supported via the task-launcher sinks are local, Cloud Foundry, and Yarn.

Note

task-launcher-local is meant for development purposes only.

A task-launcher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the task-launcher will obtain the URI of the artifact to be
launched as well as the environment properties, command line arguments, deployment properties and
application name to be used by the task.

The task-launcher-local can be added to the available sinks by executing the app register command as
follows (for the Rabbit Binder):

app register --name task-launcher-local --type sink --uri maven://

org.springframework.cloud.stream.app:task-launcher-local-sink-rabbit:jar:1.2.0.RELEASE

In the case of a maven based task that is to be launched, the task-launcher

application is responsible for downloading the artifact. You must configure the task-

launcher with the appropriate configuration of Maven Properties such as --maven.remote-
repositories.repo1.url=http://repo.spring.io/libs-milestone" to resolve artifacts,
in this case against a milestone repo. Note that this repo can be different than the one used to register
the task-launcher application itself.

36.1 TriggerTask

One way to launch a task using the task-launcher is to use the triggertask source. The
triggertask source will emit a message with a TaskLaunchRequest object containing the required
launch information. The triggertask can be added to the available sources by executing the app
register command as follows (for the Rabbit Binder):

app register --type source --name triggertask --uri maven://

org.springframework.cloud.stream.app:triggertask-source-rabbit:1.2.0.RELEASE

An example of this would be to launch the timestamp task once every 60 seconds, the stream to
implement this would look like:

stream create foo --definition "triggertask --triggertask.uri=maven://

org.springframework.cloud.task.app:timestamp-task:jar:1.2.0.RELEASE --trigger.fixed-

delay=60 --triggertask.environment-properties=spring.datasource.url=jdbc:h2:tcp://

localhost:19092/mem:dataflow,spring.datasource.username=sa | task-launcher-local --maven.remote-

repositories.repo1.url=http://repo.spring.io/libs-release" --deploy

If you execute runtime apps you can find the log file for the task launcher sink. Tailing that file you
can find the log file for the launched tasks. The setting of triggertask.environment-properties
is so that all the task executions can be collected in the same H2 database used in the local version
of the Data Flow Server. You can then see the list of task executions using the shell command task
execution list

dataflow:>task execution list

###

Task Name #ID# Start Time # End Time #Exit Code#

###

https://github.com/spring-cloud-stream-app-starters/tasklauncher-local
https://github.com/spring-cloud-stream-app-starters/tasklauncher-cloudfoundry
https://github.com/spring-cloud-stream-app-starters/tasklauncher-yarn
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-stream/src/main/java/org/springframework/cloud/task/launcher/TaskLaunchRequest.java
https://github.com/spring-cloud-stream-app-starters/tasklauncher-local/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-sink-task-launcher-local/README.adoc
https://github.com/spring-cloud/spring-cloud-deployer/blob/master/spring-cloud-deployer-resource-maven/src/main/java/org/springframework/cloud/deployer/resource/maven/MavenProperties.java
https://github.com/spring-cloud-stream-app-starters/triggertask/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-source-triggertask/README.adoc

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 101

#timestamp-task_26176#4 #Tue May 02 12:13:49 EDT 2017#Tue May 02 12:13:49 EDT 2017#0 #

#timestamp-task_32996#3 #Tue May 02 12:12:49 EDT 2017#Tue May 02 12:12:49 EDT 2017#0 #

#timestamp-task_58971#2 #Tue May 02 12:11:50 EDT 2017#Tue May 02 12:11:50 EDT 2017#0 #

#timestamp-task_13467#1 #Tue May 02 12:10:50 EDT 2017#Tue May 02 12:10:50 EDT 2017#0 #

###

36.2 TaskLaunchRequest-transform

Another option to start a task using the task-launcher would be to create a stream using the
Tasklaunchrequest-transform processor to translate a message payload to a TaskLaunchRequest.

The tasklaunchrequest-transform can be added to the available processors by executing the
app register command as follows (for the Rabbit Binder):

app register --type processor --name tasklaunchrequest-transform --uri maven://

org.springframework.cloud.stream.app:tasklaunchrequest-transform-processor-rabbit:1.2.0.RELEASE

For example:

stream create task-stream --definition "http --port=9000 | tasklaunchrequest-transform --uri=maven://

org.springframework.cloud.task.app:timestamp-task:jar:1.2.0.RELEASE | task-launcher-local --

maven.remote-repositories.repo1.url=http://repo.spring.io/libs-release"

36.3 Launching a Composed Task From a Stream

A composed task can be launched using one of the task-launcher sinks as discussed here. Since
we will be using the ComposedTaskRunner directly we will need to setup the task definitions it will use
prior to the creation of the composed task launching stream. So let’s say that we wanted to create the
following composed task definition AAA && BBB. The first step would be to create the task definitions.
For example:

task create AAA --definition "timestamp"

task create BBB --definition "timestamp"

Now that the task definitions we need for composed task definition are ready, we need to create a stream
that will launch ComposedTaskRunner. So in this case we will create a stream that has a trigger that will
emit a message once every 30 seconds, a transformer that will create a TaskLaunchRequest for each
message received, and a task-launcher-local sink that will launch a the ComposedTaskRunner
on our local machine. The stream should look something like this:

stream create ctr-stream --definition "time --fixed-delay=30 | tasklaunchrequest-transform --

uri=maven://org.springframework.cloud.task.app:composedtaskrunner-task:<current release> --command-

line-arguments='--graph=AAA&&BBB --increment-instance-enabled=true --spring.datasource.url=...' | task-

launcher-local"

In the example above we see that the tasklaunchrequest-transform is establishing 2 primary
components:

• uri - the URI of the ComposedTaskRunner that will be used.

• command-line-arguments - that configure the ComposedTaskRunner.

For now let’s focus on the configuration that is required to launch the ComposedTaskRunner:

• graph - this is the graph that is to be executed by the ComposedTaskRunner. In this case it is
AAA&&BBB

https://github.com/spring-cloud-stream-app-starters/tasklaunchrequest-transform

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 102

• increment-instance-enabled - this allows each execution of ComposedTaskRunner to be unique.
ComposedTaskRunner is built using Spring Batch, and thus each we will want a new Job Instance
for each launch of the ComposedTaskRunner. To do this we set the increment-instance-enabled
to be true.

• spring.datasource.* - the datasource that is used by Spring Cloud Data Flow which allows the user to
track the tasks launched by the ComposedTaskRunner and the state of the job execution. Also this
is so that the ComposedTaskRunner can track the state of the tasks it launched and update its state.

Note

Releases of ComposedTaskRunner can be found here

http://projects.spring.io/spring-batch/
https://github.com/spring-cloud-task-app-starters/composed-task-runner/releases

Part IX. Dashboard
This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 104

37. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

• Apps Lists all available applications and provides the control to register/unregister them

• Runtime Provides the Data Flow cluster view with the list of all running applications

• Streams List, create, deploy, and destroy Stream Definitions

• Tasks List, create, launch and destroy Task Definitions

• Jobs Perform Batch Job related functions

• Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

http://<host>:<port>/dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at https://localhost:9393/dashboard. If you
have enabled security, a login form is available at http://localhost:9393/dashboard/#/login.

Note

The default Dashboard server port is 9393

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 105

Figure 37.1. The Spring Cloud Data Flow Dashboard

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 106

38. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

Figure 38.1. List of Available Applications

38.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>.<name> = <coordinates>

For example:

task.timestamp=maven://org.springframework.cloud.task.app:timestamp-

task:1.2.0.RELEASE

processor.transform=maven://org.springframework.cloud.stream.app:transform-

processor-rabbit:1.2.0.RELEASE

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 107

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

Figure 38.2. Bulk Import Applications

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 108

39. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Figure 39.1. List of Running Applications

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 109

40. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Figure 40.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 110

Figure 40.2. Stream Details Page

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 111

41. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

• Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

• Write pipelines via DSL with content-assist and auto-complete

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Figure 41.1. Flo for Spring Cloud Data Flow

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 112

42. Tasks

The Tasks section of the Dashboard currently has three tabs:

• Apps

• Definitions

• Executions

42.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note

You will also use this tab to create Batch Jobs.

Figure 42.1. List of Task Apps

On this screen you can perform the following actions:

• View details such as the task app options.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 113

• Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note

Each parameter is only included if the Include checkbox is selected.

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

42.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

Figure 42.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 114

Figure 42.3. Bulk Define Tasks

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<task-definition-name> = <task-application> <options>

For example:

demo-timestamp = timestamp --format=hhmmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the UI will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 115

Note

Bulk loading of composed task definitions is not currently supported.

Creating Composed Task Definitions

The dashboard includes the Create Composed Task tab that provides the canvas application, offering
a interactive graphical interface for creating composed tasks.

In this tab, you can:

• Create and visualize composed tasks using DSL, a graphical canvas, or both

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of the composed task

Figure 42.4. Composed Task Designer

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 116

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:

• Parameter Key

• Parameter Value

Task parameters are not typed.

42.3 Executions

Figure 42.5. List of Task Executions

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 117

43. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Figure 43.1. List of Job Executions

43.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 118

Job execution details

Figure 43.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 119

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Figure 43.3. Step Execution History

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 120

44. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

• Counters

• Field-Value Counters

• Aggregate Counters

For example, if you create a stream with a Counter application, you can now easily create the
corresponding graph from within the Dashboard tab:

1. Under Metric Type, select Counters from the select box

2. Under Stream, select tweetcount

3. Under Visualization, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter

Part X. REST API Guide
You can find the documentation about the Data Flow REST API in the core documentation.

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.M3/reference/htmlsingle/index.html#api-guide

Part XI. Appendices
Having trouble with Spring Cloud Data Flow, We’d like to help!

• Ask a question - we monitor stackoverflow.com for questions tagged with spring-cloud-
dataflow.

• Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

• Report bugs with Spring Cloud Data Flow for Kubernetes at github.com/spring-cloud/spring-cloud-
dataflow-server-kubernetes/issues.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-dataflow
http://stackoverflow.com/tags/spring-cloud-dataflow
https://github.com/spring-cloud/spring-cloud-dataflow/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes/issues

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 123

Appendix A. ‘How-to’ guides
A.1 Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it’d be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you’d like to enable DEBUG logs for the kubernetes-deployer, you’d be starting the
server with following environment variable set.

LOGGING_LEVEL_ORG_SPRINGFRAMEWORK_CLOUD_DEPLOYER_SPI_KUBERNETES=DEBUG

Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

For instance, if you’d have to troubleshoot the header and payload specifics that are being passed
around source, processor and sink channels, you’d be deploying the stream with the following options.

dataflow:>stream create foo --definition "http --logging.level.org.springframework.integration=DEBUG

 | transform --logging.level.org.springframework.integration=DEBUG | log --

logging.level.org.springframework.integration=DEBUG" --deploy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via deployment properties when deploying the stream.

dataflow:>stream deploy foo --properties "app.*.logging.level.org.springframework.integration=DEBUG"

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/tree/master/spring-cloud-deployer-kubernetes

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 124

Appendix B. Data Flow Template
As described in the previous chapter, Spring Cloud Data Flow’s functionality is completely exposed via
REST endpoints. While you can use those endpoints directly, Spring Cloud Data Flow also provides a
Java-based API, which makes using those REST endpoints even easier.

The central entrypoint is the DataFlowTemplate class in package
org.springframework.cloud.dataflow.rest.client.

This class implements the interface DataFlowOperations and delegates to sub-templates that
provide the specific functionality for each feature-set:

Interface Description

StreamOperations REST client for stream operations

CounterOperations REST client for counter operations

FieldValueCounterOperations REST client for field value counter operations

AggregateCounterOperations REST client for aggregate counter operations

TaskOperations REST client for task operations

JobOperations REST client for job operations

AppRegistryOperations REST client for app registry operations

CompletionOperations REST client for completion operations

RuntimeOperations REST Client for runtime operations

When the DataFlowTemplate is being initialized, the sub-templates will be discovered via the REST
relations, which are provided by HATEOAS.1

Important

If a resource cannot be resolved, the respective sub-template will result in being NULL. A
common cause is that Spring Cloud Data Flow offers for specific sets of features to be enabled/
disabled when launching. For more information see Chapter 14, Feature Toggles.

B.1 Using the Data Flow Template

When using the Data Flow Template the only needed Data Flow dependency is the Spring Cloud Data
Flow Rest Client:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dataflow-rest-client</artifactId>

 <version>1.3.0.M3</version>

</dependency>

With that dependency you will get the DataFlowTemplate class as well as all needed dependencies
to make calls to a Spring Cloud Data Flow server.

1HATEOAS stands for Hypermedia as the Engine of Application State

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 125

When instantiating the DataFlowTemplate, you will also pass in a RestTemplate. Please be aware
that the needed RestTemplate requires some additional configuration to be valid in the context of
the DataFlowTemplate. When declaring a RestTemplate as a bean, the following configuration will
suffice:

 @Bean

 public static RestTemplate restTemplate() {

 RestTemplate restTemplate = new RestTemplate();

 restTemplate.setErrorHandler(new VndErrorResponseErrorHandler(restTemplate.getMessageConverters()));

 for(HttpMessageConverter<?> converter : restTemplate.getMessageConverters()) {

 if (converter instanceof MappingJackson2HttpMessageConverter) {

 final MappingJackson2HttpMessageConverter jacksonConverter =

 (MappingJackson2HttpMessageConverter) converter;

 jacksonConverter.getObjectMapper()

 .registerModule(new Jackson2HalModule())

 .addMixIn(JobExecution.class, JobExecutionJacksonMixIn.class)

 .addMixIn(JobParameters.class, JobParametersJacksonMixIn.class)

 .addMixIn(JobParameter.class, JobParameterJacksonMixIn.class)

 .addMixIn(JobInstance.class, JobInstanceJacksonMixIn.class)

 .addMixIn(ExitStatus.class, ExitStatusJacksonMixIn.class)

 .addMixIn(StepExecution.class, StepExecutionJacksonMixIn.class)

 .addMixIn(ExecutionContext.class, ExecutionContextJacksonMixIn.class)

 .addMixIn(StepExecutionHistory.class, StepExecutionHistoryJacksonMixIn.class);

 }

 }

 return restTemplate;

 }

Now you can instantiate the DataFlowTemplate with:

DataFlowTemplate dataFlowTemplate = new DataFlowTemplate(

 new URI("http://localhost:9393/"), restTemplate); ❶

❶ The URI points to the ROOT of your Spring Cloud Data Flow Server.

Depending on your requirements, you can now make calls to the server. For instance, if you like to get
a list of currently available applications you can execute:

PagedResources<AppRegistrationResource> apps = dataFlowTemplate.appRegistryOperations().list();

System.out.println(String.format("Retrieved %s application(s)",

 apps.getContent().size()));

for (AppRegistrationResource app : apps.getContent()) {

 System.out.println(String.format("App Name: %s, App Type: %s, App URI: %s",

 app.getName(),

 app.getType(),

 app.getUri()));

}

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 126

Appendix C. Spring XD to SCDF
In this section you will learn all about the migration path from Spring XD to Spring Cloud Data Flow
along with the tips and tricks.

C.1 Terminology Changes

Old New

XD-Admin Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A

Modules Applications

Admin UI Dashboard

Message Bus Binders

Batch / Job Task

C.2 Modules to Applications

If you have custom Spring XD modules, you’d have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

• Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

• There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

• If you’d like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

• Alternatively, if you’d like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

• Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts from http, file, or as hdfs
coordinates

• Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you’re expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

https://github.com/spring-cloud-stream-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-task/docs/current/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_creating_your_own_applications
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_patching_pre_built_applications

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 127

• By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

• Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

• counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the counter-
sink, then redis becomes required, and you’re expected to have your own running redis cluster

• field-value-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the field-
value-counter-sink, then redis becomes required, and you’re expected to have your own
running redis cluster

• aggregate-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the
aggregate-counter-sink, then redis becomes required, and you’re expected to have your
own running redis cluster

C.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you’re to
choose Kafka as the binder, you’d register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you’d add the following dependency
in the classpath.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-kafka</artifactId>

 <version>1.0.2.RELEASE</version>

</dependency>

• Spring Cloud Stream supports Apache Kafka, RabbitMQ and experimental Google PubSub and
Solace JMS. All binder implementations are maintained and managed in their individual repositories

• Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-google-pubsub
https://github.com/spring-cloud/spring-cloud-stream-binder-solace

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 128

maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by topics or topic-exchange and there’s no representation
of queues in the new architecture.

• ${xd.module.index} is not supported anymore; instead, you can directly interact with named
destinations

• stream.index changes to :<stream-name>.<label/app-name>

• for instance: ticktock.0 changes to :ticktock.time

• “topic/queue” prefixes are not required to interact with named-channels

• for instance: topic:foo changes to :foo

• for instance: stream create stream1 --definition ":foo > log"

Directed Graphs

If you’re building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'queue:foo':'queue:bar'"

 --deploy

for instance, in Spring Cloud Data Flow:

stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'foo':'bar'" --deploy

C.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

• Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a Spring Cloud
Task applications

• Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_binders
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 129

C.5 Shell/DSL Commands

Old Command New Command

module upload app register / app import

module list app list

module info app info

admin config server dataflow config server

job create task create

job launch task launch

job list task list

job status task status

job display task display

job destroy task destroy

job execution list task execution list

runtime modules runtime apps

C.6 REST-API

Old API New API

/modules /apps

/runtime/modules /runtime/apps

/runtime/modules/{moduleId} /runtime/apps/{appId}

/jobs/definitions /task/definitions

/jobs/deployments /task/deployments

C.7 UI / Flo

The Admin-UI is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

• (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

• Runtime: Container changes to Runtime. The notion of xd-container is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 130

• Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

• (New) Tasks:

• The sub-tab “Modules” is renamed to “Apps”

• The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

• The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

C.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper

ZooKeeper is not used in the new architecture.

RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqlServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the counter-
sink, field-value-counter-sink, or aggregate-counter-sink applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd-admin and xd-container server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

C.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

C.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
streams.xml#spring-cloud-dataflow-global-properties
streams.xml#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 131

apache yarn, kubernetes, or apache mesos). For example, if you’re running Spring Cloud Data Flow
on Cloud Foundry, you’d download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

C.11 Hadoop Distribution Compatibility

The hdfs-sink application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

• Cloudera - cdh5

• Pivotal Hadoop - phd30

• Hortonworks Hadoop - hdp24

• Hortonworks Hadoop - hdp23

• Vanilla Hadoop - hadoop26

• Vanilla Hadoop - 2.7.x (default)

C.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.

• Deploy the server directly in a YARN cluster

• Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

C.13 Use Case Comparison

Let’s review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ticktock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-ambari

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 132

Spring XD Spring Cloud Data Flow

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Create ticktock stream

xd:>stream create ticktock --

definition “time | log” --deploy

Create ticktock stream

dataflow:>stream create ticktock --

definition “time | log” --deploy

Review ticktock results in the xd-
singlenode server console

Review ticktock results by tailing the
ticktock.log/stdout_log application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “processor” module to transform
payload to a desired format

xd:>module upload --name

toupper --type processor --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “processor” application to
transform payload to a desired format

dataflow:>app register --name

toupper --type processor --uri

<MAVEN_URI_COORDINATES>

Create a stream with custom module

xd:>stream create testupper --

definition “http | toupper | log” --

deploy

Create a stream with custom application

dataflow:>stream create testupper --

definition “http | toupper | log” --

deploy

Review results in the xd-singlenode server
console

Review results by tailing the testupper.log/
stdout_log application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 133

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “batch-job” module

xd:>module upload --name

simple-batch --type job --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “batch-job” as task application

dataflow:>app register --name

simple-batch --type task --uri

<MAVEN_URI_COORDINATES>

Create a job with custom batch-job module

xd:>job create batchtest --

definition “simple-batch”

Create a task with custom batch-job application

dataflow:>task create batchtest --

definition “simple-batch”

Deploy job

xd:>job deploy batchtest

NA

Launch job

xd:>job launch batchtest

Launch task

dataflow:>task launch batchtest

Review results in the xd-singlenode server
console as well as Jobs tab in UI (executions
sub-tab should include all step details)

Review results by tailing the batchtest/
stdout_log application logs as well as Task
tab in UI (executions sub-tab should include all
step details)

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 134

Appendix D. Building
To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
to run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

D.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl spring-cloud-dataflow-server-

kubernetes-docs -am

D.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://spring.io/tools
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 135

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Kubernetes

1.3.0.M3
Spring Cloud Data Flow

Server Kubernetes 136

Appendix E. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

E.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

E.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Kubernetes
	Table of Contents
	Part I. Getting Started
	1. Installation
	1.1 Create a Kubernetes cluster
	1.2 Deploying using kubectl
	1.3 Deploy Skipper

	2. Helm Installation
	3. Deploying Streams
	3.1 Create Streams without Skipper
	3.2 Create Streams with Skipper
	3.3 Accessing app from outside the cluster

	4. Deploying Tasks
	5. Application Configuration
	5.1 Memory and CPU Settings
	5.2 Environment Variables
	5.3 Liveness and Readiness Probes

	Part II. Applications
	Part III. Architecture
	6. Introduction
	7. Microservice Architectural Style
	7.1 Comparison to other Platform architectures

	8. Streaming Applications
	8.1 Imperative Programming Model
	8.2 Functional Programming Model

	9. Streams
	9.1 Topologies
	9.2 Concurrency
	9.3 Partitioning
	9.4 Message Delivery Guarantees

	10. Analytics
	11. Task Applications
	12. Data Flow Server
	12.1 Endpoints
	12.2 Customization
	12.3 Security

	13. Runtime
	13.1 Fault Tolerance
	13.2 Resource Management
	13.3 Scaling at runtime
	13.4 Application Versioning

	Part IV. Server Configuration
	14. Feature Toggles
	15. General Configuration
	15.1 Using ConfigMap and Secrets

	16. Database Configuration
	17. Security
	18. Spring Cloud Deployer for Kubernetes Properties
	18.1 Using Deployments
	18.2 CPU and Memory Limits
	18.3 Liveness and Rediness Probes Configurations
	18.4 Using SPRING_APPLICATION_JSON

	19. Monitoring and Management
	19.1 Inspecting Server Logs
	19.2 Streams
	19.3 Tasks

	Part V. Shell
	20. Shell Options
	21. Listing available commands
	22. Tab Completion
	23. White space and quote rules
	23.1 Quotes and Escaping
	Shell rules
	DSL parsing rules
	SpEL syntax and SpEL literals
	Putting it all together

	Part VI. Streams
	24. Introduction
	24.1 Stream Pipeline DSL
	24.2 Application properties

	25. Stream Lifecycle
	25.1 Register a Stream App
	25.2 Register Supported Applications and Tasks
	Whitelisting application properties
	Creating and using a dedicated metadata artifact
	Using the companion artifact

	25.3 Creating custom applications
	25.4 Creating a Stream
	Application properties
	Common application properties

	25.5 Deploying a Stream
	Deployment properties
	Passing instance count
	Inline vs file based properties
	Passing application properties
	Passing Spring Cloud Stream properties
	Passing per-binding producer consumer properties
	Passing stream partition properties
	Passing application content type properties
	Overriding application properties during stream deployment

	25.6 Destroying a Stream
	25.7 Undeploying Streams

	26. Stream Lifecycle with Skipper
	26.1 Creating and Deploying a Stream
	26.2 Updating a Stream
	26.3 Stream versions
	26.4 Stream Manifests
	26.5 Rollback a Stream
	26.6 Application Count
	26.7 Skipper’s Upgrade Strategy

	27. Stream DSL
	27.1 Tap a Stream
	27.2 Using Labels in a Stream
	27.3 Named Destinations
	27.4 Fan-in and Fan-out

	28. Stream Java DSL
	28.1 Overview
	28.2 Java DSL styles

	29. Stream applications with multiple binder configurations
	30. Examples
	30.1 Simple Stream Processing
	30.2 Stateful Stream Processing
	30.3 Other Source and Sink Application Types

	Part VII. Streams deployed using Skipper
	Part VIII. Tasks
	31. Introduction
	32. The Lifecycle of a Task
	32.1 Creating a Task Application
	Task Database Configuration

	32.2 Registering a Task Application
	32.3 Creating a Task Definition
	32.4 Launching a Task
	Common application properties

	32.5 Reviewing Task Executions
	32.6 Destroying a Task Definition

	33. Subscribing to Task/Batch Events
	34. Composed Tasks
	34.1 Configuring the Composed Task Runner
	Registering the Composed Task Runner
	Configuring the Composed Task Runner

	34.2 The Lifecycle of a Composed Task
	Creating a Composed Task
	Task Application Parameters

	Launching a Composed Task
	Exit Statuses

	Destroying a Composed Task
	Stopping a Composed Task
	Restarting a Composed Task

	35. Composed Tasks DSL
	35.1 Conditional Execution
	35.2 Transitional Execution
	Basic Transition
	Transition With a Wildcard
	Transition With a Following Conditional Execution

	35.3 Split Execution
	Split Containing Conditional Execution

	36. Launching Tasks from a Stream
	36.1 TriggerTask
	36.2 TaskLaunchRequest-transform
	36.3 Launching a Composed Task From a Stream

	Part IX. Dashboard
	37. Introduction
	38. Apps
	38.1 Bulk Import of Applications

	39. Runtime
	40. Streams
	41. Create Stream
	42. Tasks
	42.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	42.2 Definitions
	Creating Task Definitions using the bulk define interface
	Creating Composed Task Definitions
	Launching Tasks

	42.3 Executions

	43. Jobs
	43.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	44. Analytics

	Part X. REST API Guide
	Part XI. Appendices
	Appendix A. ‘How-to’ guides
	A.1 Logging
	Deployment Logs
	Application Logs

	Appendix B. Data Flow Template
	B.1 Using the Data Flow Template

	Appendix C. Spring XD to SCDF
	C.1 Terminology Changes
	C.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	C.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	C.4 Batch to Tasks
	C.5 Shell/DSL Commands
	C.6 REST-API
	C.7 UI / Flo
	C.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	C.9 Central Configuration
	C.10 Distribution
	C.11 Hadoop Distribution Compatibility
	C.12 YARN Deployment
	C.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix D. Building
	D.1 Documentation
	D.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix E. Contributing
	E.1 Sign the Contributor License Agreement
	E.2 Code Conventions and Housekeeping

