
Spring Cloud Data Flow Server for Mesos

1.0.0.M2

Copyright © 2013-2015Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow ii

Table of Contents

I. Introduction .. 1
1. Introducing Spring Cloud Data Flow for Mesos and Marathon .. 2

II. Spring Cloud Data Flow Overview ... 3
2. Introducing Spring Cloud Data Flow ... 4

2.1. Features .. 4
3. Spring Cloud Data Flow Architecture ... 5

3.1. Components .. 5
III. Getting Started .. 6

4. Deploying Streams on Mesos and Marathon .. 7
IV. Appendices ... 9

A. Test Cluster .. 10
A.1. Create Vagrant file with 64-bit Ubuntu ... 10
A.2. Install Mesos, Marathon and Docker ... 10

B. Building .. 12
B.1. Documentation ... 12
B.2. Working with the code ... 12

Importing into eclipse with m2eclipse ... 12
Importing into eclipse without m2eclipse ... 13

C. Contributing .. 14
C.1. Sign the Contributor License Agreement ... 14
C.2. Code Conventions and Housekeeping .. 14

Part I. Introduction

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 2

1. Introducing Spring Cloud Data Flow for Mesos
and Marathon

This project provides support for deploying Spring Cloud Dataflow Stream definitions to Marathon on
Mesos.

Part II. Spring Cloud
Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think
of it as map for the rest of the document. You can read this reference guide in a linear fashion, or you
can skip sections if something doesn’t interest you.

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 4

2. Introducing Spring Cloud Data Flow

A cloud native programming and operating model for composable data microservices on a structured
platform. With Spring Cloud Data Flow, developers can create, orchestrate and refactor data pipelines
through single programming model for common use cases such as data ingest, real-time analytics, and
data import/export.

Spring Cloud Data Flow is the cloud native redesign of Spring XD – a project that aimed to simplify
development of Big Data applications. The integration and batch modules from Spring XD are refactored
into Spring Boot data microservices applications that are now autonomous deployment units – thus
enabling them to take full advantage of platform capabilities "natively", and they can independently
evolve in isolation.

Spring Cloud Data Flow defines best practices for distributed stream and batch microservice design
patterns.

2.1 Features

• Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry,
Apache YARN, Apache Mesos, and Kubernetes

• Separate runtime dependencies backed by ‘spring profiles’

• Consume stream and batch data-microservices as maven dependency

• Develop using: DSL, Shell, REST-APIs, Admin-UI, and Flo

• Take advantage of metrics, health checks and remote management of data-microservices

• Scale stream and batch pipelines without interrupting data flows

http://projects.spring.io/spring-xd/
http://cloud.spring.io/spring-cloud-stream-modules/

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 5

3. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.

3.1 Components

The Core domain model includes the concept of a stream that is a composition of spring-cloud-stream
apps in a linear pipeline from a source to a sink, optionally including processor apps in between. The
domain also includes the concept of a task, which may be any process that does not run indefinitely,
including Spring Batch jobs.

The App Registry maintains the set of available apps, and their mappings to a URI. For
example, if relying on Maven coordinates, the URI would be of the format: maven://

<groupId>:<artifactId>:<version>

The Data Flow Server Core provides the REST API and UI to be used in combination with an
implementation of the Deployer SPI when creating a Data Flow Server for a given deployment
environment.

The Shell connects to the Data Flow Server’s REST API and supports a DSL that simplifies the process
of defining a stream and managing its lifecycle.

Several Data Flow Server implementations exist, covering a range of runtime environments:

• Local (intended for development only)

• Cloud Foundry

• Apache Yarn

• Apache Mesos

• Kubernetes

As mentioned above, the Spring Cloud Data Flow Server implementations all rely upon corresponding
implementations of the Spring Cloud Deployer SPI, which provides the abstraction layer for deploying
the apps of a given stream or task. The following are links to the deployer SPI projects that correspond
to the Data Flow Servers listed above:

• Local

• Cloud Foundry

• Apache Yarn

• Apache Mesos

• Kubernetes

https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-core
https://github.com/spring-projects/spring-batch
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-core
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-shell
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-local
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry
https://github.com/spring-cloud/spring-cloud-dataflow-server-yarn
https://github.com/spring-cloud/spring-cloud-dataflow-server-mesos
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud/spring-cloud-deployer/tree/master/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/spring-cloud/spring-cloud-deployer-yarn
https://github.com/spring-cloud/spring-cloud-deployer-mesos
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes

Part III. Getting Started

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 7

4. Deploying Streams on Mesos and Marathon
In this getting started guide, the Data Flow Server is run as a standalone application outside the Mesos
cluster. This also requires running a local instance of Redis to store available modules. A future version
will provide support for the Data Flow Server itself to run on Mesos.

1. Deploy a Mesos and Marathon cluster.

The Mesosphere getting started guide provides a number of options for you to deploy a cluster.
Many of the options listed there need some additional work to get going. For example, many Vagrant
provisioned VMs are using deprecated versions of the Docker client. We have included some brief
instructions for setting up a single-node cluster with Vagrant in Appendix A, Test Cluster. In addition
to this we have also used the Playa Mesos Vagrant setup. For those that want to setup a distributed
cluster quickly, there is also an option to spin up a cluster on AWS using Mesosphere’s Datacenter
Operation System on Amazon Web Services.

The rest of this getting started guide assumes that you have a working Mesos and Marathon cluster
and know the Marathon endpoint URL.

2. Create a Rabbit MQ service on the Mesos cluster.

The rabbitmq service will be used for messaging between modules in the stream. There is a sample
application JSON file for Rabbit MQ in the spring-cloud-dataflow-server-mesos repository
that you can use as a starting point. The service discovery mechanism is currently disabled so you
need to look up the host and port to use for the connection. Depending on how large your cluster is,
you way want to tweek the CPU and/or memory values.

Using the above JSON file and an Mesos and Marathon cluster installed you can deploy a Rabbit
MQ application instance by issuing the following command

curl -X POST http://192.168.33.10:8080/v2/apps -d @rabbitmq.json -H "Content-type: application/json"

Note the @ symbol to reference a file and that we are using the Marathon endpoint URL of
192.168.33.10:8080. Your endpoint might be different based on the configuration used for your
installation of Mesos and Marathon. Using the Marathon and Mesos UIs you can verify that rabbitmq
service is running on the cluster.

3. Run a local redis-server.

$ redis-sever

This is used by the locally running Data Flow Server to store the state of available module versions
for stream definitions.

4. Download the Spring Cloud Data Flow Server for Mesos and Marathon.

$ wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-server-

mesos/1.0.0.M2/spring-cloud-dataflow-server-mesos-1.0.0.M2.jar

5. Using the Marathon GUI, look up the host and port for the rabbitmq application. In our case it was
192.168.33.10:31916. For the deployed apps to be able to connect to Rabbit MQ we need to
provide the following property when we start the server:

--

spring.cloud.deployer.mesos.marathon.environmentVariables='SPRING_RABBITMQ_HOST=192.168.33.10,SPRING_RABBITMQ_PORT=31916'

https://open.mesosphere.com/getting-started/tools/
https://github.com/mesosphere/playa-mesos
https://mesosphere.com/amazon/
https://mesosphere.com/amazon/
https://github.com/spring-cloud/spring-cloud-dataflow-server-mesos/blob/master/src/etc/marathon/rabbitmq.json
http://192.168.33.10:8080

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 8

6. Now, run the Spring Cloud Data Flow Server for Mesos and Marathon passing in this host/port
configuration.

$ java -jar spring-cloud-dataflow-server-mesos-1.0.0.M2.jar --

spring.cloud.deployer.mesos.marathon.apiEndpoint=http://192.168.33.10:8080 --

spring.cloud.deployer.mesos.marathon.memory=768 --

spring.cloud.deployer.mesos.marathon.environmentVariables='SPRING_RABBITMQ_HOST=192.168.33.10,SPRING_RABBITMQ_PORT=31916'

You can pass in properties to set default values for memory and cpu resource request. For example
--spring.cloud.deployer.mesos.marathon.memory=768 will by default allocate additional
memory for the application vs. the default value of 512. You can see all the available options in the
MarathonAppDeployerProperties.java file.

7. Download and run the Spring Cloud Data Flow shell.

$ wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-

shell/1.0.0.M3/spring-cloud-dataflow-shell-1.0.0.M3.jar

$ java -jar spring-cloud-dataflow-shell-1.0.0.M3.jar

8. Register the Rabbit MQ version of the time and log app modules using the shell

dataflow:>module register --type source --name time --uri docker:springcloudstream/time-source-rabbit

dataflow:>module register --type sink --name log --uri docker:springcloudstream/log-sink-rabbit

9. Deploy a simple stream in the shell

dataflow:>stream create --name ticktock --definition "time | log" --deploy

In the Mesos UI you can then look at the logs for the log sink.

2016-04-26 18:13:03.001 INFO 1 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :

 Tomcat started on port(s): 8080 (http)

2016-04-26 18:13:03.004 INFO 1 --- [main] o.s.c.s.a.l.s.r.LogSinkRabbitApplication :

 Started LogSinkRabbitApplication in 7.766 seconds (JVM running for 8.24)

2016-04-26 18:13:54.443 INFO 1 --- [nio-8080-exec-1] o.a.c.c.C.[Tomcat].[localhost].[/] :

 Initializing Spring FrameworkServlet 'dispatcherServlet'

2016-04-26 18:13:54.445 INFO 1 --- [nio-8080-exec-1] o.s.web.servlet.DispatcherServlet :

 FrameworkServlet 'dispatcherServlet': initialization started

2016-04-26 18:13:54.459 INFO 1 --- [nio-8080-exec-1] o.s.web.servlet.DispatcherServlet :

 FrameworkServlet 'dispatcherServlet': initialization completed in 14 ms

2016-04-26 18:14:09.088 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:09

2016-04-26 18:14:10.077 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:10

2016-04-26 18:14:11.080 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:11

2016-04-26 18:14:12.083 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:12

2016-04-26 18:14:13.090 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:13

2016-04-26 18:14:14.091 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:14

2016-04-26 18:14:15.093 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:15

2016-04-26 18:14:16.095 INFO 1 --- [time.ticktock-1] log.sink :

 04/26/16 18:14:16

10.Destroy the stream

dataflow:>stream destroy --name ticktock

https://raw.githubusercontent.com/spring-cloud/spring-cloud-deployer-mesos/master/src/main/java/org/springframework/cloud/deployer/spi/mesos/marathon/MarathonAppDeployerProperties.java

Part IV. Appendices

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 10

Appendix A. Test Cluster
Here are brief setup instructions for setting up a local Vagrant single-node cluster. The Mesos endpoint
will be 192.168.33.10:5050 and the Marathon endpoint will be 192.168.33.10:8080.

A.1 Create Vagrant file with 64-bit Ubuntu

First create the Vagrant file with necessary customizations:

$ vi Vagrantfile

Add the following content and save the file:

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrant.configure(2) do |config|

 config.vm.box = "ubuntu/trusty64"

 config.vm.network "private_network", ip: "192.168.33.10"

 config.vm.hostname = "mesos"

 config.vm.provider "virtualbox" do |vb|

 vb.memory = "4096"

 vb.cpus = 4

 end

end

Next, update the box to the latest version and start it:

$ vagrant box update

$ vagrant up

A.2 Install Mesos, Marathon and Docker

We can now ssh to the instance to install the necessary bits:

$ vagrant ssh

The rest of these instructions are run from within this ssh shell.

1. Refresh the apt repo and install Docker:

vagrant@mesos:~$ sudo apt-get -y update

vagrant@mesos:~$ wget -qO- https://get.docker.com/ | sh

vagrant@mesos:~$ sudo usermod -aG docker vagrant

2. Install needed repos:

vagrant@mesos:~$ echo "deb http://repos.mesosphere.io/$(lsb_release -is | tr '[:upper:]' '[:lower:]')

 $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/mesosphere.list

vagrant@mesos:~$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF

vagrant@mesos:~$ sudo add-apt-repository ppa:webupd8team/java -y

vagrant@mesos:~$ sudo apt-get -y update

3. Install Java:

vagrant@mesos:~$ sudo apt-get install oracle-java8-installer

http://192.168.33.10:5050
http://192.168.33.10:8080

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 11

4. Install Mesos and Marathon:

vagrant@mesos:~$ sudo apt-get -y install mesos marathon

5. Add Docker as a containerizer:

vagrant@mesos:~$ echo 'docker,mesos' | sudo tee /etc/mesos-slave/containerizers

6. Set the IP address as the hostname used for the slave:

vagrant@mesos:~$ echo $(/sbin/ifconfig eth1 | grep 'inet addr:' | cut -d: -f2 | awk '{ print $1}') |

 sudo tee /etc/mesos-slave/hostname

7. Reboot the server

vagrant@mesos:~$ sudo reboot

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 12

Appendix B. Building
To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl {project-artifactId} -am

B.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 13

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Mesos

1.0.0.M2 Spring Cloud Data Flow 14

Appendix C. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

C.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

C.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Mesos
	Table of Contents
	Part I. Introduction
	1. Introducing Spring Cloud Data Flow for Mesos and Marathon

	Part II. Spring Cloud Data Flow Overview
	2. Introducing Spring Cloud Data Flow
	2.1 Features

	3. Spring Cloud Data Flow Architecture
	3.1 Components

	Part III. Getting Started
	4. Deploying Streams on Mesos and Marathon

	Part IV. Appendices
	Appendix A. Test Cluster
	A.1 Create Vagrant file with 64-bit Ubuntu
	A.2 Install Mesos, Marathon and Docker

	Appendix B. Building
	B.1 Documentation
	B.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix C. Contributing
	C.1 Sign the Contributor License Agreement
	C.2 Code Conventions and Housekeeping

