Spring Cloud Data Flow Server for Mesos

1.0.0.RC1

Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Mesos

Table of Contents

IR [a1 ol [V L1 1 o] o H P PP UPPTRPPTUPTTRN 1
1. Introducing Spring Cloud Data Flow for Mesos and Marathoncccccooeviiiiiiiiineecinnnnnn. 2

2. Spring Cloud Data FIOWccouuiiiiiiii e e e e e e e e e ean s 3

3. SPriNG ClOUA STFEAIM ...ttt e et e et ettt e et e et e e et e e e e eenaaes 4

4. SPriNG CloUd TASK ..ceeeiiiiiii e ettt 5

LI =Y 1] T S = g (=T 6
5. Deploying Streams on Mesos and Marathonooouviiiiiiiiiii e 7

LI 1 == o S PPN 10
LT [a1 oo [1ox 1T o ISP 11

T, SIEAIM DS .o e ettt et e et 12

8. REQISIEI 8 STrEAIM AP iiitiiiiiiiti ettt e et e et e e et eea s 13

8.1. Whitelisting application Properti€scc.uiiviiiiiiiiieii e eees 14

9. CreatiNng @ SIIBAM ...ouu ittt e e et e et e e et e e at e e et e e et e e et e eanaeeees 15

10. DESIIOYING @ SIMEAM ..uuiiiiiii ettt ettt e ettt e e ettt e et ettreeeeabaeeeentnaeaees 16

11. Deploying and UNndeploying StrEamMSccouuiiiiiiiiiiieii e e e e e e e e e e e e e anaeeees 17

12. Other Source and Sink APPlICAtION TYPESeeuniiiiiieeie e 18

13. SIMPle SreamM PrOCESSING .. cevtuuieiiitiiee ettt ettt e e e e eab e e eaanns 19

14, Stateful Stream PrOCESSING ...ivueieiii e e e e e e e e e e e eanees 20

T o = TS (T 11 o PP UPPPI 21

16. UsSiNg Labels in @ SIrEAMciiiii e e 22

17. Explicit Broker Destinations in @ SreaMoiviiiiiiiiiii e e e e 23

18. Directed Graphs iN @ SIrEAIMuiiiui i e e e e e 24
18.1. Common application ProPErtieScoeuuiiiiiiiie e 24

Y =T o1 o To = T o PP 25
S [o] 1o To (U Tt 1 o] o PP PTRPPT 26

20, A it ettt 27

P2 I W11 110 1T 28

S 1 (=T 01 S PP UPTPPPRIN 29

A T O £ =T (=] 1= T= 1 o [PPSR 30

24, TASKS ittt et e et e it aeanan 31

P T Y o] o PP P TP PPRUPTPN 31

Create a Task Definition from a selected Task APpPoovvvveiieiiiiiiiiiiieee e, 31

View Task APP DELaAIlSoiviiiiii e e e 32

24.2. DETINILIONS ..o ettt e et e e e e 32
LAUNCNING TASKS ...eeiiiiiiiii ettt ettt e e et e e e et e e eni e eees 32

24,3, EXECULIONS ...uiiiiiii ettt ettt e e et e et e e 32

P2 TN (o] o1 TP PTUPT PPN 33
25.1. LiSt JOD @XECULIONS . .evtiiiiiiiii ettt e et e e e 33

JOb eXECUION AELAIIScevuieiiii e e 34

Step eXeCution detallSooouuiiiiiii e 34

Step EXECULION PrOGIESS ...iiiiiiiiiiii ettt ettt e et e e e e eneans 34

2 T AN g = Y (o3P 36

A R N o] o 1T o To [ol =2 PP UPPT PPN 37
N = A 1 (= 38

A.1l. Create Vagrant file with 64-bit UbUntuccoooiiiiiii e 38

A.2. Install Mesos, Marathon and DOCKEr ..o 38

B. BUIIJING et 40

1.0.0.RC1 Spring Cloud Data Flow iii

Spring Cloud Data Flow Server for Mesos

0 I B To Tor 0 41T 1 7= 4o o I PP 40

B.2. Working With the COOEuiiiii e 40
Importing into eclipse With M2eClPSEccoviiiiii i 40

Importing into eclipse without M2eclipSecoiiiiiiiiiii e 41

O Ofe] o1 1] o 111110 o PP 42
C.1. Sign the Contributor LiCENSE AQrEEMENTiiuuiiiii e e e 42

C.2. Code Conventions and HOUSEKEEPINGcvvvuuiiiiiiiiieiiii e 42

iv

1.0.0.RC1

Spring Cloud Data Flow

Part I. Introduction

Spring Cloud Data Flow Server for Mesos

1. Introducing Spring Cloud Data Flow for Mesos
and Marathon

This project provides support for orchestrating long-running (streaming) and short-lived (task/batch)
data microservices to Marathon on Mesos.

1.0.0.RC1 Spring Cloud Data Flow

Spring Cloud Data Flow Server for Mesos

2. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native orchestration service for composable data microservices on
modern runtimes. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines
for common use cases such as data ingest, real-time analytics, and data import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams
are defined using a DSL or visually through the browser based designer Ul. Streams are based on the
Spring Cloud Stream programming model while Tasks are based on the Spring Cloud Task programming
model. The sections below describe more information about creating your own custom Streams and
Tasks

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow’s core reference guide. There're several samples available for reference.

1.0.0.RC1 Spring Cloud Data Flow 3

http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-task-overview
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/html/_dsl_syntax.html
http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Mesos

3. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream'’s reference guide.

There's a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

1.0.0.RC1 Spring Cloud Data Flow 4

http://docs.spring.io/spring-cloud-stream/docs/1.0.2.RELEASE/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Data Flow Server for Mesos

4. Spring Cloud Task

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow
short-lived JVM processes to be executed on demand in a production environment.

For more details about the core framework components and the supported features, please review
Spring Cloud Task’s reference guide.

There's a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated
application-starters are available for use from Maven Repo. There are several samples available for
reference.

1.0.0.RC1 Spring Cloud Data Flow 5

http://docs.spring.io/spring-cloud-task/1.0.0.RC1/reference/htmlsingle/
http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/task/app/
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Part Il. Getting Started

Spring Cloud Data Flow Server for Mesos

5. Deploying Streams on Mesos and Marathon

In this getting started guide, the Data Flow Server is run as a standalone application outside the Mesos
cluster. A future version will provide support for the Data Flow Server itself to run on Mesos.

1. Deploy a Mesos and Marathon cluster.

The Mesosphere getting started guide provides a number of options for you to deploy a cluster.
Many of the options listed there need some additional work to get going. For example, many Vagrant
provisioned VMs are using deprecated versions of the Docker client. We have included some brief
instructions for setting up a single-node cluster with Vagrant in Appendix A, Test Cluster. In addition
to this we have also used the Playa Mesos Vagrant setup. For those that want to setup a distributed
cluster quickly, there is also an option to spin up a cluster on AWS using Mesosphere’s Datacenter
Operation System on Amazon Web Services.

The rest of this getting started guide assumes that you have a working Mesos and Marathon cluster
and know the Marathon endpoint URL.

2. Create a Rabbit MQ service on the Mesos cluster.

The r abbi t ng service will be used for messaging between applications in the stream. There is
a sample application JSON file for Rabbit MQ in the spri ng- cl oud- dat af | ow ser ver - nesos
repository that you can use as a starting point. The service discovery mechanism is currently disabled
S0 you need to look up the host and port to use for the connection. Depending on how large your
cluster is, you way want to tweek the CPU and/or memory values.

Using the above JSON file and an Mesos and Marathon cluster installed you can deploy a Rabbit
MQ application instance by issuing the following command

curl -X POST http://192.168. 33. 10: 8080/ v2/ apps -d @abbitng.json -H "Content-type: application/json"

Note the @ symbol to reference a file and that we are using the Marathon endpoint URL of
192. 168. 33. 10: 8080. Your endpoint might be different based on the configuration used for your
installation of Mesos and Marathon. Using the Marathon and Mesos Uls you can verify thatr abbi t ng
service is running on the cluster.

3. Download the Spring Cloud Data Flow Server for Mesos and Marathon.

$ wget http://repo.spring.io/mlestone/org/springframework/cloud/spring-cloud-datafl ow server-
mesos/ 1. 0. 0. RC1/ spri ng- cl oud- dat af | ow server-nesos-1.0.0. RC1. j ar

4. Using the Marathon GUI, look up the host and port for the r abbi t ng application. In our case it was
192. 168. 33. 10: 31916. For the deployed apps to be able to connect to Rabbit MQ we need to
provide the following property when we start the server:

spring. cl oud. depl oyer. nesos. mar at hon. envi ronnent Vari abl es=' SPRI NG_RABBI TMQ _HOST=192. 168. 33. 10, SPRI NG_RABBI TMQ PORT=31916

5. Now, run the Spring Cloud Data Flow Server for Mesos and Marathon passing in this host/port
configuration.

$ java -jar spring-cloud-dataflowserver-nesos-1.0.0.RCl.jar --

spring. cl oud. depl oyer. nesos. nmar at hon. api Endpoi nt =http://192. 168. 33. 10: 8080 - -

spring. cl oud. depl oyer. nesos. mar at hon. menor y=768 - -

spring. cl oud. depl oyer. mesos. mar at hon. envi ronnment Vari abl es=' SPRI NG_RABBI TMQ _HOST=192. 168. 33. 10, SPRI NG_RABBI TMQ PORT=31916

1.0.0.RC1 Spring Cloud Data Flow 7

https://open.mesosphere.com/getting-started/tools/
https://github.com/mesosphere/playa-mesos
https://mesosphere.com/amazon/
https://mesosphere.com/amazon/
https://github.com/spring-cloud/spring-cloud-dataflow-server-mesos/blob/master/src/etc/marathon/rabbitmq.json
http://192.168.33.10:8080

Spring Cloud Data Flow Server for Mesos

You can pass in properties to set default values for memory and cpu resource request. For example
--spring. cl oud. depl oyer. mesos. mar at hon. nenor y=768 will by default allocate additional
memory for the application vs. the default value of 512. You can see all the available options in the
MarathonAppDeployerProperties.java file.

6. Download and run the Spring Cloud Data Flow shell.

$ wget http://repo.spring.io/mlestone/org/springfranmework/cloud/spring-cl oud-datafl ow
shel 1 /1. 0. 0. RC1/ spring-cl oud- dat af | owshel | -1. 0. 0. RCl. j ar

$ java -jar spring-cloud-dataflowshell-1.0.0.RCL.jar
7. By default, the application registry will be empty. If you would like to register all out-of-the-box stream

applications built with the RabbitMQ binder in bulk, you can with the following command. For more
details, review how to register applications.

‘dataflow>app inmport --uri http://bit.ly/stream applications-rabbit-docker

8. Deploy a simple stream in the shell

@ Note

If you need to specify any of the app specific configuration properties then you must use
"long-form" of them including the app specific prefix like - - j dbc. t abl eName=TEST_DATA.
This is due to the server not being able to access the metadata for the Docker based starter
apps. You will also not see the configuration properties listed when using the app info
command or in the Dashboard GUI.

dat af | ow. >stream create --nanme ticktock --definition "time | |10og" --deploy

In the Mesos Ul you can then look at the logs for the log sink.

2016-04-26 18:13:03.001 INFO 1 --- [mai n] s.b.c.e.t. Tontat EnbeddedSer vl et Cont ai ner :
Tontat started on port(s): 8080 (http)

2016-04-26 18:13:03.004 INFO1 --- [main] o.s.c.s.a.l.s.r.LogSi nkRabbitApplication :
Started LogSi nkRabbit Application in 7.766 seconds (JVM running for 8.24)

2016- 04-26 18:13:54.443 INFO 1 --- [nio-8080-exec-1] o.a.c.c.C.[Toncat].[local host].[/]
Initializing Spring FrameworkServlet 'dispatcherServlet'

2016- 04-26 18:13:54.445 |INFO 1 --- [nio-8080-exec-1] o.s.web.servlet.D spatcherServl et
Framewor kServl et ' dispatcherServliet': initialization started

2016- 04-26 18:13:54.459 INFO 1 --- [nio-8080-exec-1] o.s.web.servlet.D spatcherServl et
Framewor kServl et 'dispatcherServliet': initialization conpleted in 14 s

2016- 04-26 18:14:09.088 INFO 1 --- [tinme.ticktock-1] |o0g.sink
04/26/ 16 18:14:09

2016-04-26 18:14:10.077 INFO 1 --- [tinme.ticktock-1] |og.sink
04/ 26/ 16 18:14:10

2016-04-26 18:14:11.080 INFO 1 --- [tinme.ticktock-1] |o0g.sink
04/26/ 16 18:14:11

2016- 04-26 18:14:12.083 INFO 1 --- [tinme.ticktock-1] |o0g.sink
04/ 26/ 16 18:14:12

2016-04-26 18:14:13.090 INFO 1 --- [tinme.ticktock-1] |og.sink
04/ 26/ 16 18:14:13

2016-04-26 18:14:14.091 INFO 1 --- [tinme.ticktock-1] |o0g.sink
04/26/ 16 18:14:14

2016- 04-26 18:14:15.093 INFO 1 --- [tinme.ticktock-1] |o0g.sink
04/ 26/ 16 18:14:15

2016-04-26 18:14:16.095 INFO 1 --- [tinme.ticktock-1] |og.sink
04/ 26/ 16 18:14:16

9. Destroy the stream

1.0.0.RC1 Spring Cloud Data Flow 8

https://raw.githubusercontent.com/spring-cloud/spring-cloud-deployer-mesos/master/src/main/java/org/springframework/cloud/deployer/spi/mesos/marathon/MarathonAppDeployerProperties.java

Spring Cloud Data Flow Server for Mesos

dat af | ow: >stream destroy --nanme ticktock

1.0.0.RC1 Spring Cloud Data Flow

Part Ill. Streams

In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Mesos

6. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to
a sink that passes through any number of processors. Streams are composed of spring-cloud-stream
applications and the deployment of stream definitions is done via the Data Flow Server (REST API).
The Getting Started section shows you how to start these servers and how to start and use the Spring
Cloud Data Flow shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

‘http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using - - options, such as

‘http --server.port=8091 | file --directory=/tnp/httpdata/

To create these stream definitions you use the shell or make an HTTP POST request to the Spring
Cloud Data Flow Server. More details can be found in the sections below.

1.0.0.RC1 Spring Cloud Data Flow 11

Spring Cloud Data Flow Server for Mesos

/. Stream DSL

In the examples above, we connected a source to a sink using the pipe symbol | . You can also pass
properties to the source and sink configurations. The property names will depend on the individual app
implementations, but as an example, the htt p source app exposes a server. port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

datafl ow. > stream create --definition "http --server.port=8000 | |0g" --nanme nyhttpstream

The shell provides tab completion for application properties and also the shell command app i nfo
provides some additional documentation.

1.0.0.RC1 Spring Cloud Data Flow 12

Spring Cloud Data Flow Server for Mesos

8. Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name, application type, and a URI that can be resolved to the

app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dat af | ow: >app regi ster --nanme nysource --type source --uri maven://com exanpl e: nysource: 0. 0. 1- SNAPSHOT

dat af | ow. >app regi ster --name nyprocessor --type processor --uri file:///Users/exanple/
nmyprocessor-1.2.3.jar

dat af | ow. >app regi ster --nanme nysink --type sink --uri http://exanple.conm nysink-2.0.1.jar
When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactl d>[: <extensi on>[: <cl assifier>]]: <versi on>

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could do the following:

dat af | ow: >app regi ster --nane http --type source --uri maven://

org. springfranmewor k. cl oud. stream app: htt p- source-rabbi t: 1. 0. 0. BUl LD- SNAPSHOT

dat af | ow. >app register --nane log --type sink --uri maven://org.springfranmework. cl oud. stream app: http-
| og-rabbit:1.0.0. BU LD- SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <t ype>. <nanme> and the values are the URIs.

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

sour ce. htt p=maven: // or g. spri ngf ramewor k. cl oud. st ream app: htt p-source-rabbit: 1. 0. 0. BUl LD- SNAPSHOT
si nk. | og=naven:// org. springframework. cl oud. stream app: | 0g-si nk-rabbit: 1. 0. 0. BU LD- SNAPSHOT

Then to import the apps in bulk, use the app i nmport command and provide the location of the
properties file via - - uri :

dat af | ow. >app inport --uri file:///<YOUR_FILE_LOCATI ON>/ stream apps. properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Stream and Task app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

* Maven based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-maven

» Maven based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-maven

» Maven based Task Applications: bit.ly/task-applications-maven

« Docker based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-docker

» Docker based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-docker

» Docker based Task Applications: bit.ly/task-applications-docker

1.0.0.RC1 Spring Cloud Data Flow 13

http://bit.ly/stream-applications-rabbit-maven
http://bit.ly/stream-applications-kafka-maven
http://bit.ly/task-applications-maven
http://bit.ly/stream-applications-rabbit-docker
http://bit.ly/stream-applications-kafka-docker
http://bit.ly/task-applications-docker

Spring Cloud Data Flow Server for Mesos

For example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dat af | ow: >app inport --uri http://bit.ly/stream applications-rabbit-naven

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster or app inport, if a stream app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the pre-existing
stream app, then include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

8.1 Whitelisting application properties

Stream applications are Spring Boot applications which are aware of many common application
properties, e.g. ser ver . port but also families of properties such as those with the prefix spri ng. j nx
and | oggi ng. When creating your own application it is desirable to whitelist properties so that the shell
and the Ul can display them first as primary properties when presenting options via TAB completion
or in drop-down boxes.

To whitelist application properties create a file named spri ng-confi guration-netadat a-
whitelist.properties inthe META- | NF resource directory. There are two property keys that can
be used inside this file. The first key is named confi gur ati on- properti es. cl asses. The value
is a comma separated list of fully qualified @onf i gur at i onPr operty class names. The second key
is confi guration-properties. nanmes whose value is a comma separated list of property names.
This can contain the full name of property, such as server. port or a partial name to whitelist a
category of property names, e.g. spri ng. j nx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is a
simple example of the file source’s spri ng- conf i gur ati on- met adat a-whi teli st. properties
file

configuration. cl asses=org. spri ngframewor k. cl oud. stream app. fil e.sink. Fil eSi nkProperties

If for some reason we also wanted to add fi | e. prefi x to this file, it would look like

configuration. cl asses=org. spri ngframewor k. cl oud. stream app. fil e. si nk. Fi| eSi nkProperties
configuration-properties. names=server. port

1.0.0.RC1 Spring Cloud Data Flow 14

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
https://github.com/spring-cloud/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Mesos

9. Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’'s walk through what happens if we execute the following shell command:

dat afl ow. > stream create --definition "time | |log" --name ticktock

This defines a stream named t i ckt ock based off the DSL expressiontinme | |og. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the - - depl oy
flag when creating the stream so that this step is not needed):

dat af | ow. > stream depl oy --nane ticktock

The Data Flow Server resolves t i me and | og to maven coordinates and uses those to launch thet i ne
and | og applications of the stream.

2016- 06- 01 09: 41:21.728 |NFO 79016 --- [nio0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.log instance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng- cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481708/ ti ckt ock. | og
2016- 06- 01 09: 41:21.914 |INFO 79016 --- [ni0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.time instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ ti ckt ock- 1464788481910/ ti ckt ock. ti ne

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the st dout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxmtbdlvj28c8vj37n900nmD000gn/ T/ spri ng- cl oud- dat af | ow 912434582726479179/
ticktock-1464788481708/ti cktock. | og/stdout_0.I| og

2016- 06-01 09:45:11.250 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:11
2016-06-01 09:45:12.250 |NFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:12
2016- 06- 01 09: 45:13.251 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:13

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

‘ dat af | ow. > stream depl oy --nane ticktock --properties "app.tine.count=3"

@ Important

See Chapter 16, Using Labels in a Stream.

1.0.0.RC1 Spring Cloud Data Flow 15

Spring Cloud Data Flow Server for Mesos

10. Destroying a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

dat af | ow. > stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

1.0.0.RC1 Spring Cloud Data Flow

16

Spring Cloud Data Flow Server for Mesos

11. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by hame and issue the depl oy command at a later time to restart it.

dat af | ow: > stream undepl oy --nane ticktock
dat af | ow. > stream depl oy --nane ticktock

1.0.0.RC1 Spring Cloud Data Flow 17

Spring Cloud Data Flow Server for Mesos

12. Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the t i e source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an htt p source, but still using the same | og sink, we would change the
original command above to

datafl ow. > streamcreate --definition "http | 10g" --nanme nyhttpstream --depl oy

which will produce the following output from the server

2016- 06- 01 09: 47:58.920 |NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstream | og instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788878747/ nyhtt pstream | og
2016- 06-01 09:48:06.396 | NFO 79016 --- [io0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstreamhttp i nstance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788886383/ nyhtt pstream http

Note that we don't see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

‘dataflow> runti me apps

You should see that the corresponding http source has a ur| property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

datafl ow. > http post --target http://local host: 1234 --data "hello"
datafl ow. > http post --target http://local host: 1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016- 06-01 09: 50: 22. 121 |INFO 79654 --- [kafka-binder-] |og.sink : hello
2016-06-01 09:50: 26. 810 | NFO 79654 --- [kafka-binder-] |og.sink . goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (fi |), to
hadoop (hdf s) or to any of the other sink apps which are available. You can also define your own apps.

1.0.0.RC1 Spring Cloud Data Flow 18

Spring Cloud Data Flow Server for Mesos

13. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘ http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

datafl ow. > stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |0g" --nane
nmyst ream - - depl oy

Posting some data (using a shell command)

‘dataflow> http post --target http://local host: 1234 --data "hell 0"

Will result in an uppercased 'HELLO' in the log

‘ 2016- 06- 01 09: 54: 37. 749 | NFO 80083 --- [kafka-binder-] |og.sink : HELLO

1.0.0.RC1 Spring Cloud Data Flow 19

Spring Cloud Data Flow Server for Mesos

14. Stateful Stream Processing

To demonstrate the data partitioning functionality, let's deploy the following stream with Kafka as the
binder.

dat af | ow. >stream create --name words --definition "http --server.port=9900 | splitter --
expressi on=payl oad.split(' ') | |og"
Created new stream ' words

dat af | ow: >stream depl oy words --properties
"app. splitter.producer. partitionKeyExpressi on=payl oad, app. | og. count =2"
Depl oyed stream ' words

dat af | ow. >http post --target http://local host: 9900 --data "How nuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood"

> POST (text/plain;Charset=UTF-8) http://|ocal host: 9900 How much wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood

> 202 ACCEPTED

You'll see the following in the server logs.

2016- 06- 05 18: 33:24.982 | NFO 58039 --- [nio0-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 0

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow- 694182453710731989/ wor ds- 1465176804970/ wor ds. | og
2016- 06- 05 18:33:24.988 | NFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 1

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og

Review the wor ds. | og i nstance O logs:

2016- 06- 05 18: 35:47.047 |NFO 58638 --- [kafka-binder-] |og.sink : How
2016- 06- 05 18: 35:47.066 |NFO 58638 --- [kafka-binder-] |og.sink

chuck

2016- 06- 05 18:35:47.066 | NFO 58638 --- [kafka-binder-] |og.sink

chuck

Review the wor ds. | og i nstance 1 logs:

2016- 06- 05 18:35:47.047 |NFO 58639 --- [kafka-binder-] |og.sink

much

2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink

wood

2016- 06-05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink

woul d

2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink if
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink

coul d

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink

wood

This shows that payload splits that contain the same word are routed to the same application instance.

1.0.0.RC1 Spring Cloud Data Flow 20

Spring Cloud Data Flow Server for Mesos

15. Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

streamcreate --definition "http | stepl: transform --expressi on=payl oad.toUpper Case() | step2:
transform --expressi on=payl oad+'!" | |og" --nane mainstream --depl oy

taps can be created at the output of ht t p, st epl and st ep2.

To create a stream that acts as a 'tap' on another stream requires to specify the sour ce desti nati on
nane for the tap stream. The syntax for source destination name is:

* i <stream nane>. <l abel / app- name>"

To create a tap at the output of http in the stream above, the source destination name is
mai nst ream htt p To create a tap at the output of the first transform app in the stream above, the
source destination name is nai nst r eam st epl

The tap stream DSL looks like this:

streamcreate --definition ":mainstreamhttp > counter” --name tap_at_http --depl oy

streamcreate --definition ":mainstreamstepl > jdbc" --nanme tap_at_stepl_transfornmer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

1.0.0.RC1 Spring Cloud Data Flow 21

Spring Cloud Data Flow Server for Mesos

16. Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

streamcreate --definition "http | firstLabel: transform --expressi on=payl oad.toUpper Case() |
secondLabel : transform --expressi on=payl oad+'!"' | log" --name nyStreamWthLabel s --depl oy

1.0.0.RC1 Spring Cloud Data Flow 22

Spring Cloud Data Flow Server for Mesos

17. Explicit Broker Destinations in a Stream

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
sour ce or at the si nk position.

The following stream has the destination name at the sour ce position:

streamcreate --definition ":nyDestination > 10g" --nanme ingest_frombroker --deploy

This stream receives messages from the destination nyDesti nati on located at the broker and
connects it to the | og app.

The following stream has the destination name at the si nk position:

streamcreate --definition "http > :nyDestination" --nane ingest_to_broker --deploy

This stream sends the messages from the htt p app to the destination myDest i nat i on located at
the broker.

From the above streams, notice that the htt p and | og apps are interacting with each other via the
broker (through the destination myDest i nat i on) rather than having a pipe directly between ht t p and
| og within a single stream.

It is also possible to connect two different destinations (sour ce and si nk positions) at the broker in
a stream.

streamcreate --definition ":destinationl > :destination2" --nane bridge_destinations --depl oy

In the above stream, both the destinations (desti nati onl and desti nati on2) are located in the
broker. The messages flow from the source destination to the sink destination via a br i dge app that
connects them.

1.0.0.RC1 Spring Cloud Data Flow 23

Spring Cloud Data Flow Server for Mesos

18. Directed Graphs in a Stream

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant.

First, named destinations may be used as a way to combine the output from multiple streams or for
multiple consumers to share the output from a single stream. This can be done using the DSL syntax
http > :nydestinationor:nydestination > |og.

Second, you may need to determine the output channel of a stream based on some information that is
only known at runtime. In that case, a router may be used in the sink position of a stream definition. For
more information, refer to the Router Sink starter's README.

18.1 Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring. cl oud. dat af | ow. appl i cati onProperti es. stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the configuration server with the following options:

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. br oker s=192. 168. 1. 100: 9092

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. zkNodes=192. 168. 1. 100: 2181

This will cause the properties stream spring. cl oud. st ream kaf ka. bi nder. br okers and
spring. cl oud. st ream kaf ka. bi nder . zkNodes to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app. http. spring. cl oud. st r eam kaf ka. bi nder. br oker s will
override the common property).

1.0.0.RC1 Spring Cloud Data Flow 24

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/router/spring-cloud-starter-stream-sink-router

Part I\VV. Dashboard

This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Mesos

19. Introduction

Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:

» Apps Lists all available applications and provides the control to register/unregister them
* Runtime Provides the Data Flow cluster view with the list of all running applications

» Streams Deploy/undeploy Stream Definitions

e Tasks List, create, launch and destroy Task Definitions

» Jobs Perform Batch Job related functions

» Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

htt p: // <host >: <port >/ dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at htt ps:// | ocal host : 9393/ dashboar d. If you
have enabled security, a login form is available atht t p: / / | ocal host : 9393/ dashboar d/ #/ | ogi n.

Note: The default Dashboard server port is 9393

‘ :’,I spr'ng RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

About

Spring Cloud Data Flow is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data expert. The
project’s goal is to simplify the development of big data applications.

Dataflow Server Implementation

Name spring-cloud-dataflow-server-local
Version 1.0.0.BUILD-SNAPSHOT (7188a68)
Description Local Data Flow Server

Need Help or Found an Issue?

Project Page http:/fcloud.spring.io/spring-cloud-datafiow/

Sources https://github.com/spring-cloud/spring-cloud-dataflow

Documentation http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmi/
APl Docs http://docs spring.io/spring-cloud-dataflow/docs/current/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-cloud

Issue Tracker https://github.com/spring-cloud/spring-cloud-dataflow/issues

Figure 19.1. The Spring Cloud Data Flow Dashboard

1.0.0.RC1 Spring Cloud Data Flow 26

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Mesos

20. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). By clicking on the magnifying glass, you will get a listing of available

definition properties.

Apps

APPS RUNTIME STREAMS TASKS JOBS ANALYTICS

This section lists all the available applications and provides the control to register/unregister them (if applicable).

All Applications

+ Register Application(s)

@ Name Type

(0] nregister Application(s)

URI

ABOUT

file source maven:/forg.springframework.cloud.stream.app:file-source-kafka:1.0.0.BUILD-SNAPSHOT n
ftp source maven:/forg.springframework.cloud stream.app:ftp-source-kafka:1.0.0.BUILD-SNAPSHOT n
http source maven:/{org.springframework.cloud.stream.app:http-source-kafka: 1.0.0.BUILD-SNAPSHOT n ﬂ
jdbe source maven:/forg.springframework.cloud.stream.app:jdbc-source-kafka:1.0.0.BUILD-SNAPSHOT n n
jms source maven:/forg.springframework.cloud.stream.app:jms-source-kafka:1.0.0.BUILD-SNAPSHOT B n
load-generator source maven:/forg.springframework.cloud stream.app:load-generator-source-kafka:1.0.0.BUILD-SNAPSHOT n
rabbit source maven://org.springframework.cloud.stream.app:rabbit-source-kafka:1.0.0.BUILD-SNAPSHOT n
sfip source maven:/forg.springframework.cloud stream.app:sftp-source-kafka:1.0.0.BUILD-SNAPSHOT .

Figure 20.1. List of Available Applications

1.0.0.RC1

Spring Cloud Data Flow

27

Spring Cloud Data Flow Server for Mesos

21. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

A -
‘ ;J Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Cluster view

This section shows the Spring Cloud Data Flow cluster view with the list of all running apps.

Runtime Apps

foo.log deployed 1

foo.time deployed 1

Figure 21.1. List of Running Applications

1.0.0.RC1 Spring Cloud Data Flow 28

Spring Cloud Data Flow Server for Mesos

22. Streams
The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream

definitions. There you have the option to deploy or undeploy those stream definitions. Additionally you
can remove the definition by clicking on destroy.

A -
‘ :J Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Streams

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams

Definitions Create Stream

Actions

foo time | log deployed M Undeploy » Deploy

Figure 22.1. List of Stream Definitions

1.0.0.RC1 Spring Cloud Data Flow 29

Spring Cloud Data Flow Server for Mesos

23. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:
» Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both
» Write pipelines via DSL with content-assist and auto-complete

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

< ;) Spflng APPS RUNTIME | STREAMS TASKS JOBS ANALYTICS ABOUT

Streams

Create a stream using text based input or the visual editor.

Create Stream

Create Stream Clear Layout Zoom: 161 % e e— W Auto Link W Grid

1 STREAM l=time | scriptable-transform --script="return ""#{payload.tr('"A-Za-z0-9', '')}""" --language=ruby | log
tSTREAM_l.time > scriptable-transform --script="function double(p) ‘n{\n return p + '==' % p;\n}\ndouble(payload);” ==
language=javascript log
:STREAM l.time > scriptable-transform --script="return payload + '::' + payload” --language=groovy | log

v source

- :

= file

‘ B time %:-—'{J}\scriptable-t.“

'%]}\Stzriptable-t... 0

'_[[l)\scriptable—t... =

[= load-gener. £

Figure 23.1. Flo for Spring Cloud Data Flow

1.0.0.RC1 Spring Cloud Data Flow 30

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Mesos

24. Tasks

The Tasks section of the Dashboard currently has three tabs:
* Apps
* Definitions

» Executions

24.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note: You will also use this tab to create Batch Jobs.

‘ ; II' Sprlng APPS RUNTIME STREAMS TASKS JoBS ANALYTICS ABOUT

Tasks

This section lists all available task apps. You have the ability to view app details and to create task definitions.

Apps Definitions Executions

Coordinates

spark-client E n
spark-cluster n n
spark-yarn H n
sqoop-job H n
sqoop-tool E n
timestamp ﬂ n

Figure 24.1. List of Task Apps

On this screen you can perform the following actions:
» View details such as the task app options.

» Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note: Each parameter is only included if the Include checkbox is selected.

1.0.0.RC1 Spring Cloud Data Flow 31

Spring Cloud Data Flow Server for Mesos

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

24.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.

APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Tasks

This section lists all the task definitions and allows you to create, launch and destroy them.

Apps Definitions Executions

demo-timestamp timestamp complete m m

Figure 24.2. List of Task Definitions

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:
* Parameter Key
» Parameter Value

Task parameters are not typed.

24.3 Executions
g Spring APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Tasks

This section lists all the available task executions.

Apps Definitions Executions

Task Name End Time
3 demo-timestamp 2016-06-11 14:28:10,900 2016-06-11 14:28:10,931 o}
. 2 demo-timestamp 2016-06-11 14:28:09,216 2016-06-11 14:28:09,257 o
1 demo-timestamp 2016-06-11 14:27:13,113 2016-06-11 14:27:13,145 o]

Figure 24.3. List of Task Executions

1.0.0.RC1 Spring Cloud Data Flow 32

Spring Cloud Data Flow Server for Mesos

25.Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

‘ :) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Batch Jobs

This section lists all the available batch job executions and provides the control to restart the job execution (if restartable).

Executions

Name Task Id Instance Id Execution|d Job Start Time Step Executions Count Status Actlons

job2 1 2 2 2016-06-13 13:57:58,294 1 COMPLETED n n
job1 1 1 1 2016-06-13 13:57:58,241 1 COMPLETED n n

Figure 25.1. List of Job Executions

25.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

1.0.0.RC1 Spring Cloud Data Flow 33

Spring Cloud Data Flow Server for Mesos

Job execution details

' :) Sprlng APPS RUNTIME STREAMS TASKS JoBs ANALYTICS ABOUT

Job Execution Details - Execution ID: 2

Property Value

a
]

Job Name job2
Job Instance 2
Task Execution Id 1l
Composed Job x
Job Parameters
Start Time 2016-06-13 13:57:58,294
End Time 2016-06-13 13:57:58,317
Duration 23 ms
Status COMPLETED
Exit Code COMPLETED
Exit Message N/A
Step Execution Count 1
Steps
Step ld Step Name Reads Writes Commits Rollbacks Duration Status Details
2 job2stepl 0 0 1 [+] 8ms COMPLETED “

Figure 25.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

@ Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress
On this screen, you can see a progress bar indicator in regards to the execution of the current step.

Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

1.0.0.RC1 Spring Cloud Data Flow 34

Spring Cloud Data Flow Server for Mesos

‘ ;f spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Step Execution Details - Step Execution ID: 2

Step Execution Progress

Percentage Complete n

Step Execution Id 2

Job Execution Id 2

Step Name job2stepl
Step Type io.spring.configuration.JobConfiguration$2
Status COMPLETED
Commits 1

Duration 8ms

Filter Count o]

Process Skips o]

Reads [¢]

Read Skips 0

Rollbacks 0

Skips [¢]

Writes)

Write Skips 0

Exit Description

N/A

Step Execution Context

Key Value
batch.taskletType ie.spring.configuration.JebConfiguration$2
batch.stepType org.springframework.batch.core.step.tasklet.TaskletStep

Figure 25.3. Step Execution History

1.0.0.RC1 Spring Cloud Data Flow 35

Spring Cloud Data Flow Server for Mesos

26. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

e Counters
» Field-Value Counters

For example, if you have created the spri ngt weet s stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metri c Type, select Count er s from the select box
2. Under St r eam select t weet count
3. Under Vi sual i zat i on, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

1.0.0.RC1 Spring Cloud Data Flow 36

Part V. Appendices

Spring Cloud Data Flow Server for Mesos

Appendix A. Test Cluster

Here are brief setup instructions for setting up a local Vagrant single-node cluster. The Mesos endpoint
will be 192.168.33.10:5050 and the Marathon endpoint will be 192.168.33.10:8080.

A.l Create Vagrant file with 64-bit Ubuntu

First create the Vagr ant file with necessary customizations:

‘$ vi Vagrantfile

Add the following content and save the file:

-*- node: ruby -*-
vi: set ft=ruby :

Vagr ant . configure(2) do |config|
config.vmbox = "ubuntu/trusty64"

config.vmnetwork "private_network", ip: "192.168.33.10"
config.vm hostname = "nesos"

config.vm provider "virtual box" do |vb]
vb. nenory = "4096"
vb.cpus = 4

end

end

Next, update the box to the latest version and start it:

$ vagrant box update
$ vagrant up

A.2 Install Mesos, Marathon and Docker

We can now ssh to the instance to install the necessary bits:

‘$ vagrant ssh

The rest of these instructions are run from within this ssh shell.

1. Refresh the apt repo and install Docker:

vagr ant @esos: ~$ sudo apt-get -y update
vagr ant @esos: ~$ wget -qO https://get.docker.com | sh
vagr ant @resos: ~$ sudo usernod -aG docker vagrant

2. Install needed repos:

vagr ant @resos: ~$ echo "deb http://repos. mesosphere.io/ $(lsb_release -is | tr '[:upper:]' "[:lower:]")
$(Isb_rel ease -cs) main" | sudo tee /etc/apt/sources.|ist.d/ nesosphere.|ist

vagr ant @esos: ~$ sudo apt-key adv --keyserver keyserver.ubuntu.com--recv E56151BF

vagr ant @resos: ~$ sudo add- apt-repository ppa: webupd8teanijava -y

vagr ant @resos: ~$ sudo apt-get -y update

3. Install Java:

vagr ant @resos: ~$ sudo apt-get install oracle-java8-installer

1.0.0.RC1 Spring Cloud Data Flow 38

http://192.168.33.10:5050
http://192.168.33.10:8080

Spring Cloud Data Flow Server for Mesos

4. Install Mesos and Marathon:

vagr ant @esos: ~$ sudo apt-get -y install nesos marathon

5. Add Docker as a containerizer:

vagr ant @esos: ~$ echo ' docker, mesos' | sudo tee /etc/nesos-slave/containerizers

6. Set the IP address as the hostname used for the slave:

vagr ant @resos: ~$ echo $(/sbin/ifconfig ethl | grep '"inet addr:' | cut -d: -f2 |
sudo tee /etc/ mesos-sl ave/ host name

7. Reboot the server

awk '{ print $1}')

vagr ant @esos: ~$ sudo reboot

1.0.0.RC1 Spring Cloud Data Flow

39

Spring Cloud Data Flow Server for Mesos

Appendix B. Building

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer nSi ze=128m
We try to cover this in the . mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ynl , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./nmvnw cl ean package -DskipTests -P full -pl {project-artifactld} -am

B.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,

1.0.0.RC1 Spring Cloud Data Flow 40

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Mesos

expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from. set ti ngs. xm into your own ~/ . n2/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting projects from the
fil e menu.

1.0.0.RC1 Spring Cloud Data Flow 41

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Mesos

Appendix C. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

C.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor's agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

C.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
« A few unit tests would help a lot as well— someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

1.0.0.RC1 Spring Cloud Data Flow 42

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Mesos
	Table of Contents
	Part I. Introduction
	1. Introducing Spring Cloud Data Flow for Mesos and Marathon
	2. Spring Cloud Data Flow
	3. Spring Cloud Stream
	4. Spring Cloud Task

	Part II. Getting Started
	5. Deploying Streams on Mesos and Marathon

	Part III. Streams
	6. Introduction
	7. Stream DSL
	8. Register a Stream App
	8.1 Whitelisting application properties

	9. Creating a Stream
	10. Destroying a Stream
	11. Deploying and Undeploying Streams
	12. Other Source and Sink Application Types
	13. Simple Stream Processing
	14. Stateful Stream Processing
	15. Tap a Stream
	16. Using Labels in a Stream
	17. Explicit Broker Destinations in a Stream
	18. Directed Graphs in a Stream
	18.1 Common application properties

	Part IV. Dashboard
	19. Introduction
	20. Apps
	21. Runtime
	22. Streams
	23. Create Stream
	24. Tasks
	24.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	24.2 Definitions
	Launching Tasks

	24.3 Executions

	25. Jobs
	25.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	26. Analytics

	Part V. Appendices
	Appendix A. Test Cluster
	A.1 Create Vagrant file with 64-bit Ubuntu
	A.2 Install Mesos, Marathon and Docker

	Appendix B. Building
	B.1 Documentation
	B.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix C. Contributing
	C.1 Sign the Contributor License Agreement
	C.2 Code Conventions and Housekeeping

