
Spring Cloud GCP Reference Documentation

1.0.0.RC1

João André Martins , Jisha Abubaker , Ray Tsang , Mike Eltsufin ,
Artem Bilan , Andreas Berger , Balint Pato , Chengyuan Zhao

Copyright © 2017-2018Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP ii

Table of Contents

1. Introduction ... 1
2. Dependency Management ... 2
3. Getting started .. 3

3.1. Spring Initializr ... 3
3.2. Code Samples ... 3
3.3. Code Challenges ... 3
3.4. Getting Started Guides ... 3

4. Spring Cloud GCP Core .. 4
4.1. Project ID .. 4
4.2. Credentials .. 4

Scopes ... 5
Spring Initializr .. 6

5. Spring Cloud GCP for Pub/Sub ... 7
5.1. Pub/Sub operations abstraction .. 7

Publishing to a topic ... 7
Subscribing to a subscription ... 8
Pulling messages from a subscription .. 8

5.2. Pub/Sub management .. 8
Creating a topic .. 9
Deleting a topic .. 9
Listing topics ... 9
Creating a subscription ... 9
Deleting a subscription .. 10
Listing subscriptions .. 10

5.3. Configuration .. 10
6. Spring Resources ... 14

6.1. Google Cloud Storage .. 14
6.2. Configuration .. 15

7. Spring JDBC ... 16
7.1. Prerequisites .. 16
7.2. Spring Boot Starter for Google Cloud SQL .. 16

DataSource creation flow .. 17
Troubleshooting tips .. 18

Connection issues ... 18
Errors like c.g.cloud.sql.core.SslSocketFactory : Re-throwing
cached exception due to attempt to refresh instance

information too soon after error ... 18
PostgreSQL: java.net.SocketException: already connected issue 18

8. Spring Integration .. 19
8.1. Channel Adapters for Google Cloud Pub/Sub .. 19

Inbound channel adapter ... 19
Outbound channel adapter .. 20
Header mapping ... 21

8.2. Channel Adapters for Google Cloud Storage ... 21
Inbound channel adapter ... 22
Inbound streaming channel adapter ... 22
Outbound channel adapter .. 23

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP iii

9. Spring Cloud Stream ... 24
9.1. Overview .. 24
9.2. Configuration .. 24

10. Spring Cloud Sleuth .. 25
10.1. Tracing ... 25
10.2. Spring Boot Starter for Stackdriver Trace .. 26
10.3. Integration with Logging .. 27

11. Stackdriver Logging Support .. 28
11.1. Web MVC Interceptor ... 28
11.2. Logback Support .. 29

Log via API ... 29
Log via Console .. 29

12. Cloud Foundry .. 32

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 1

1. Introduction

The Spring Cloud GCP project aims at making the Spring Framework a first-class citizen of Google
Cloud Platform (GCP).

Currently, Spring Cloud GCP lets you leverage the power and simplicity of the Spring framework to:

1. Publish and subscribe from Google Cloud Pub/Sub topics

2. Configure Spring JDBC with a few properties to use Google Cloud SQL

3. Write and read from Spring Resources backed up by Google Cloud Storage

4. Exchange messages with Spring Integration using Google Cloud Pub/Sub on the background

5. Trace the execution of your app with Spring Cloud Sleuth and Google Stackdriver Trace

6. Consume and produce Google Cloud Storage data via Spring Integration GCS Channel Adapters

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 2

2. Dependency Management

The Spring Cloud GCP Bill of Materials (BOM) contains the versions of all the dependencies it uses.

If you’re a Maven user, adding the following to your pom.xml file will allow you to not specify any Spring
Cloud GCP dependency versions. Instead, the version of the BOM you’re using determines the versions
of the used dependencies.

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-dependencies</artifactId>

 <version>1.0.0.RC1</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

In the following sections, it will be assumed you are using the Spring Cloud GCP BOM and the
dependency snippets will not contain versions.

Gradle users can achieve the same kind of BOM experience using Spring’s dependency-management-
plugin Gradle plugin. For simplicity, the Gradle dependency snippets in the remainder of this document
will also omit their versions.

https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 3

3. Getting started

There are many available resources to get you up to speed with our libraries as quickly as possible.

3.1 Spring Initializr

There are three entries in Spring Initializr for Spring Cloud GCP:

• GCP Support

• GCP Messaging

• GCP Storage

The GCP Support entry contains auto-configuration support for every Spring Cloud GCP integration.
Most of the autoconfiguration code is only enabled if other dependencies are added to the classpath.

Spring Cloud GCP Starter Required dependencies

Logging org.springframework.cloud:spring-cloud-gcp-
starter-logging

SQL - MySql org.springframework.cloud:spring-cloud-gcp-
starter-sql-mysql

SQL - PostgreSQL org.springframework.cloud:spring-cloud-gcp-
starter-sql-postgres

Trace org.springframework.cloud:spring-cloud-gcp-
starter-trace

The GCP Messaging entry adds the GCP Support entry and all the required dependencies so that the
Google Cloud Pub/Sub integrations work out of the box.

The GCP Storage entry adds the GCP Support entry and all the required dependencies so that the
Google Cloud Storage integrations work out of the box.

3.2 Code Samples

There are code samples available that demonstrate the usage of all our integrations. The Vision API
sample shows how to use spring-cloud-gcp-starter for authentication.

3.3 Code Challenges

In a code challenge, you perform a task step by step, using one integration. There are a number of
challenges available in the Google Developers Codelabs page.

3.4 Getting Started Guides

A Spring Getting Started guide on messaging with Spring Integration Channel Adapters for Google
Cloud Pub/Sub is available from Spring Guides.

http://start.spring.io/
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-vision-api-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-vision-api-sample
https://codelabs.developers.google.com/spring
https://spring.io/guides/gs/messaging-gcp-pubsub/

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 4

4. Spring Cloud GCP Core
At the center of every Spring Cloud GCP module are the concepts of GcpProjectIdProvider and
CredentialsProvider.

Spring Cloud GCP provides a Spring Boot starter to auto-configure the core components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-starter</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter'

}

4.1 Project ID

GcpProjectIdProvider is a functional interface that returns a GCP project ID string.

public interface GcpProjectIdProvider {

 String getProjectId();

}

The Spring Cloud GCP starter auto-configures a GcpProjectIdProvider. If a
spring.cloud.gcp.project-id property is specified, the provided GcpProjectIdProvider
returns that property value.

spring.cloud.gcp.project-id=my-gcp-project-id

Otherwise, the project ID is discovered based on a set of rules:

1. The project ID specified by the GOOGLE_CLOUD_PROJECT environment variable

2. The Google App Engine project ID

3. The project ID specified in the JSON credentials file pointed by the
GOOGLE_APPLICATION_CREDENTIALS environment variable

4. The Google Cloud SDK project ID

5. The Google Compute Engine project ID, from the Google Compute Engine Metadata Server

4.2 Credentials

CredentialsProvider is a functional interface that returns the credentials to authenticate and
authorize calls to Google Cloud Client Libraries.

public interface CredentialsProvider {

 Credentials getCredentials() throws IOException;

}

The Spring Cloud GCP starter auto-configures a CredentialsProvider. It uses the
spring.cloud.gcp.credentials.location property to locate the OAuth2 private key of a

https://googlecloudplatform.github.io/google-cloud-java/latest/apidocs/com/google/cloud/ServiceOptions.html#getDefaultProjectId-

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 5

Google service account. Keep in mind this property is a Spring Resource, so the credentials file can
be obtained from a number of different locations such as the file system, classpath, URL, etc. The next
example specifies the credentials location property in the file system.

spring.cloud.gcp.credentials.location=file:/usr/local/key.json

If that property isn’t specified, the starter tries to discover credentials from a number of places:

1. Credentials file pointed to by the GOOGLE_APPLICATION_CREDENTIALS environment variable

2. Credentials provided by the Google Cloud SDK gcloud auth application-default login
command

3. Google App Engine built-in credentials

4. Google Cloud Shell built-in credentials

5. Google Compute Engine built-in credentials

If your app is running on Google App Engine or Google Compute Engine, in most cases, you should omit
the spring.cloud.gcp.credentials.location property and, instead, let the Spring Cloud GCP
Starter get the correct credentials for those environments. On App Engine Standard, the App Identity
service account credentials are used, on App Engine Flexible, the Flexible service account credential
are used and on Google Compute Engine, the Compute Engine Default Service Account is used.

Scopes

By default, the credentials provided by the Spring Cloud GCP Starter contain scopes for every service
supported by Spring Cloud GCP.

Service Scope

Pub/Sub https://www.googleapis.com/auth/pubsub

Storage (Read Only) https://www.googleapis.com/auth/
devstorage.read_only

Storage (Write/Write) https://www.googleapis.com/auth/
devstorage.read_write

Runtime Config https://www.googleapis.com/auth/
cloudruntimeconfig

Trace (Append) https://www.googleapis.com/auth/trace.append

Cloud Platform https://www.googleapis.com/auth/cloud-platform

The Spring Cloud GCP starter allows you to configure a custom scope list for the provided
credentials. To do that, specify a comma-delimited list of Google OAuth2 scopes in the
spring.cloud.gcp.credentials.scopes property.

spring.cloud.gcp.credentials.scopes is a comma-delimited list of Google OAuth2 scopes for
Google Cloud Platform services that the credentials returned by the provided CredentialsProvider
support.

spring.cloud.gcp.credentials.scopes=https://www.googleapis.com/auth/pubsub,https://www.googleapis.com/

auth/sqlservice.admin

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-implementations
https://github.com/GoogleCloudPlatform/google-cloud-java#authentication
https://cloud.google.com/appengine/docs/standard/java/appidentity/
https://cloud.google.com/appengine/docs/standard/java/appidentity/
https://cloud.google.com/appengine/docs/flexible/java/service-account
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances#using_the_compute_engine_default_service_account
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/cloudruntimeconfig
https://www.googleapis.com/auth/cloudruntimeconfig
https://www.googleapis.com/auth/trace.append
https://www.googleapis.com/auth/cloud-platform
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 6

You can also use DEFAULT_SCOPES placeholder as a scope to represent the starters default scopes,
and append the additional scopes you need to add.

spring.cloud.gcp.credentials.scopes=DEFAULT_SCOPES,https://www.googleapis.com/auth/cloud-vision

Spring Initializr

This starter is available from Spring Initializr through the GCP Support entry.

http://start.spring.io/

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 7

5. Spring Cloud GCP for Pub/Sub
Spring Cloud GCP provides an abstraction layer to publish to and subscribe from Google Cloud Pub/
Sub topics and to create, list or delete Google Cloud Pub/Sub topics and subscriptions.

A Spring Boot starter is provided to auto-configure the various required Pub/Sub components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-starter-pubsub</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-pubsub'

}

This starter is also available from Spring Initializr through the GCP Messaging entry.

A sample application is available.

5.1 Pub/Sub operations abstraction

PubSubOperations is an abstraction that allows Spring users to use Google Cloud Pub/Sub without
depending on any Google Cloud Pub/Sub API semantics. It provides the common set of operations
needed to interact with Google Cloud Pub/Sub. PubSubTemplate is the default implementation of
PubSubOperations and it uses the Google Cloud Java Client for Pub/Sub to interact with Google
Cloud Pub/Sub.

PubSubTemplate depends on a PublisherFactory and a SubscriberFactory. The
PublisherFactory provides a Google Cloud Java Client for Pub/Sub Publisher. The
SubscriberFactory provides the Subscriber for asynchronous message pulling, as well
as a SubscriberStub for synchronous pulling and an Acknowledger, for the cases where
messages are automatically acknowledged. The Spring Boot starter for GCP Pub/Sub auto-
configures a PublisherFactory and SubscriberFactory with default settings and uses the
GcpProjectIdProvider and CredentialsProvider auto-configured by the Spring Boot GCP
starter.

The PublisherFactory implementation provided by Spring Cloud GCP Pub/Sub,
DefaultPublisherFactory, caches Publisher instances by topic name, in order to optimize
resource utilization.

Publishing to a topic

PubSubTemplate provides asynchronous methods to publish messages to a Google Cloud Pub/Sub
topic. The publish() method takes in a topic name to post the message to, a payload of a generic
type and, optionally, a map with the message headers.

Here is an example of how to publish a message to a Google Cloud Pub/Sub topic:

public void publishMessage() {

 this.pubSubTemplate.publish("topic", "your message payload", ImmutableMap.of("key1", "val1"));

}

https://start.spring.io
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-sample
https://github.com/GoogleCloudPlatform/google-cloud-java/tree/master/google-cloud-pubsub

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 8

By default, the SimplePubSubMessageConverter is used to convert payloads of type byte[],
ByteString, ByteBuffer, and String to Pub/Sub messages.

For serialization and deserialization of POJOs using Jackson JSON, configure the PubSubTemplate
to use the JacksonPubSubMessageConverter by calling the setMessageConverter() method.
Alternatively, if you’re using the starter and have an instance of the Jackson ObjectMapper in the
application context, the JacksonPubSubMessageConverter will be automatically configured for you.

Subscribing to a subscription

Google Cloud Pub/Sub allows many subscriptions to be associated to the same topic.
PubSubTemplate allows you to subscribe to subscriptions via the subscribe() method. It relies on
a SubscriberFactory object, whose only task is to generate Google Cloud Pub/Sub Subscriber
objects. When subscribing to a subscription, messages will be pulled from Google Cloud Pub/Sub
asynchronously, on a certain interval.

The Spring Boot starter for Google Cloud Pub/Sub auto-configures a SubscriberFactory.

Pulling messages from a subscription

Google Cloud Pub/Sub supports synchronous pulling of messages from a subscription. This is different
from subscribing to a subscription, in the sense that subscribing is an asynchronous task which polls
the subscription on a set interval.

The pullNext() method allows for a single message to be pulled and automatically acknowledged
from a subscription. The pull() method pulls a number of messages from a subscription, allowing
for the retry settings to be configured. Any messages received by pull() are not automatically
acknowledged. Instead, since they are of the kind AcknowledgeablePubsubMessage, you can
acknowledge them by calling the ack() method, or negatively acknowledge them by calling the
nack() method. The pullAndAck() method does the same as the pull() method and, additionally,
acknowledges all received messages.

In order to acknowledge or negatively acknowledge the messages received from pull(), you can use
the acknowledger provided by PubSubTemplate.getAcknowledger(). The provided acknowledger
allows for acknowledging or negatively acknowledging a set of acknowledge IDs, pertaining to a
subscription. The subscription name passed to the acknowledger must have the following format:
project/[GCP_PROJECT_ID]/subscriptions/[SUBSCRIPTION_NAME].

PubSubTemplate uses a special subscriber generated by its SubscriberFactory to synchronously
pull messages.

If the message payload contains a serialized POJO, it can be retrieved as a Class compatible with
that serialized payload:

this.pubSubTemplate.getMessageConverter().fromMessage(message, MyPojo.class);

5.2 Pub/Sub management

PubSubAdmin is the abstraction provided by Spring Cloud GCP to manage Google Cloud Pub/Sub
resources. It allows for the creation, deletion and listing of topics and subscriptions.

PubSubAdmin depends on GcpProjectIdProvider and either a CredentialsProvider or a
TopicAdminClient and a SubscriptionAdminClient. If given a CredentialsProvider, it
creates a TopicAdminClient and a SubscriptionAdminClient with the Google Cloud Java

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 9

Library for Pub/Sub default settings. The Spring Boot starter for GCP Pub/Sub auto-configures a
PubSubAdmin object using the GcpProjectIdProvider and the CredentialsProvider auto-
configured by the Spring Boot GCP Core starter.

Creating a topic

PubSubAdmin implements a method to create topics:

public Topic createTopic(String topicName)

Here is an example of how to create a Google Cloud Pub/Sub topic:

public void newTopic() {

 pubSubAdmin.createTopic("topicName");

}

Deleting a topic

PubSubAdmin implements a method to delete topics:

public void deleteTopic(String topicName)

Here is an example of how to delete a Google Cloud Pub/Sub topic:

public void deleteTopic() {

 pubSubAdmin.deleteTopic("topicName");

}

Listing topics

PubSubAdmin implements a method to list topics:

public List<Topic> listTopics

Here is an example of how to list every Google Cloud Pub/Sub topic name in a project:

public List<String> listTopics() {

 return pubSubAdmin

 .listTopics()

 .stream()

 .map(Topic::getNameAsTopicName)

 .map(TopicName::getTopic)

 .collect(Collectors.toList());

}

Creating a subscription

PubSubAdmin implements a method to create subscriptions to existing topics:

public Subscription createSubscription(String subscriptionName, String topicName, Integer ackDeadline,

 String pushEndpoint)

Here is an example of how to create a Google Cloud Pub/Sub subscription:

public void newSubscription() {

 pubSubAdmin.createSubscription("subscriptionName", "topicName", 10, “http://my.endpoint/push”);

}

Alternative methods with default settings are provided for ease of use. The default value for
ackDeadline is 10 seconds. If pushEndpoint isn’t specified, the subscription uses message pulling,
instead.

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 10

public Subscription createSubscription(String subscriptionName, String topicName)

public Subscription createSubscription(String subscriptionName, String topicName, Integer ackDeadline)

public Subscription createSubscription(String subscriptionName, String topicName, String pushEndpoint)

Deleting a subscription

PubSubAdmin implements a method to delete subscriptions:

public void deleteSubscription(String subscriptionName)

Here is an example of how to delete a Google Cloud Pub/Sub subscription:

public void deleteSubscription() {

 pubSubAdmin.deleteSubscription("subscriptionName");

}

Listing subscriptions

PubSubAdmin implements a method to list subscriptions:

public List<Subscription> listSubscriptions()

Here is an example of how to list every subscription name in a project:

public List<String> listSubscriptions() {

 return pubSubAdmin

 .listSubscriptions()

 .stream()

 .map(Subscription::getNameAsSubscriptionName)

 .map(SubscriptionName::getSubscription)

 .collect(Collectors.toList());

}

5.3 Configuration

The Spring Boot starter for Google Cloud Pub/Sub provides the following configuration options:

Name Description Required Default value

spring.cloud.gcp.pubsub.enabledEnables or disables
Pub/Sub auto-
configuration

No true

spring.cloud.gcp.pubsub.subscriber.executor-

threads

Number of threads
used by Subscriber
instances created by
SubscriberFactory

No 4

spring.cloud.gcp.pubsub.publisher.executor-

threads

Number of threads
used by Publisher
instances created by
PublisherFactory

No 4

spring.cloud.gcp.pubsub.project-

id

GCP project ID where
the Google Cloud Pub/
Sub API is hosted, if

No

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 11

different from the one
in the Spring Cloud
GCP Core Module

spring.cloud.gcp.pubsub.credentials.locationOAuth2 credentials
for authenticating with
the Google Cloud Pub/
Sub API, if different
from the ones in the
Spring Cloud GCP
Core Module

No

spring.cloud.gcp.pubsub.credentials.scopesOAuth2 scope for
Spring Cloud GCP
Pub/Sub credentials

No https://
www.googleapis.com/
auth/pubsub

spring.cloud.gcp.pubsub.subscriber.parallel-

pull-count

The number of pull
workers

No The available number
of processors

spring.cloud.gcp.pubsub.subscriber.max-

ack-extension-

period

The maximum period a
message ack deadline
will be extended, in
seconds

No 0

spring.cloud.gcp.pubsub.subscriber.pull-

endpoint

The endpoint for
synchronous pulling
messages

No pubsub.googleapis.com:443

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.total-

timeout-seconds

TotalTimeout has
ultimate control over
how long the logic
should keep trying the
remote call until it gives
up completely. The
higher the total timeout,
the more retries can be
attempted.

No 0

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.initial-

retry-delay-

second

InitialRetryDelay
controls the delay
before the first retry.
Subsequent retries will
use this value adjusted
according to the
RetryDelayMultiplier.

No 0

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.retry-

delay-multiplier

RetryDelayMultiplier
controls the change in
retry delay. The retry
delay of the previous
call is multiplied by the
RetryDelayMultiplier

No 1

https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/pubsub

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 12

to calculate the retry
delay for the next call.

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.max-

retry-delay-

seconds

MaxRetryDelay puts a
limit on the value of the
retry delay, so that the
RetryDelayMultiplier
can’t increase the retry
delay higher than this
amount.

No 0

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.max-

attempts

MaxAttempts defines
the maximum number
of attempts to perform.
If this value is greater
than 0, and the number
of attempts reaches
this limit, the logic
will give up retrying
even if the total retry
time is still lower than
TotalTimeout.

No 0

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.jittered

Jitter determines if the
delay time should be
randomized.

No true

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.initial-

rpc-timeout-

seconds

InitialRpcTimeout
controls the timeout
for the initial RPC.
Subsequent calls will
use this value adjusted
according to the
RpcTimeoutMultiplier.

No 0

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.rpc-

timeout-

multiplier

RpcTimeoutMultiplier
controls the change
in RPC timeout. The
timeout of the previous
call is multiplied by the
RpcTimeoutMultiplier
to calculate the timeout
for the next call.

No 1

spring.cloud.gcp.pubsub.

[subscriber,publisher].retry.max-

rpc-timeout-

seconds

MaxRpcTimeout
puts a limit on the
value of the RPC
timeout, so that the
RpcTimeoutMultiplier
can’t increase the RPC
timeout higher than this
amount.

No 0

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 13

spring.cloud.gcp.pubsub.

[subscriber,publisher.batching].flow-

control.max-

outstanding-

element-count

Maximum number of
outstanding elements
to keep in memory
before enforcing flow
control.

No unlimited

spring.cloud.gcp.pubsub.

[subscriber,publisher.batching].flow-

control.max-

outstanding-

request-bytes

Maximum number of
outstanding bytes to
keep in memory before
enforcing flow control.

No unlimited

spring.cloud.gcp.pubsub.

[subscriber,publisher.batching].flow-

control.limit-

exceeded-behavior

The behavior when
the specified limits are
exceeded.

No Block

spring.cloud.gcp.pubsub.publisher.batching.element-

count-threshold

The element count
threshold to use for
batching.

No unset (threshold does
not apply)

spring.cloud.gcp.pubsub.publisher.batching.request-

byte-threshold

The request byte
threshold to use for
batching.

No unset (threshold does
not apply)

spring.cloud.gcp.pubsub.publisher.batching.delay-

threshold-seconds

The delay threshold to
use for batching. After
this amount of time
has elapsed (counting
from the first element
added), the elements
will be wrapped up in a
batch and sent.

No unset (threshold does
not apply)

spring.cloud.gcp.pubsub.publisher.batching.enabledEnables batching. No false

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 14

6. Spring Resources
Spring Resources are an abstraction for a number of low-level resources, such as file system files,
classpath files, servlet context-relative files, etc. Spring Cloud GCP adds a new resource type: a Google
Cloud Storage (GCS) object.

A Spring Boot starter is provided to auto-configure the various Storage components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-starter-storage</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-storage'

}

This starter is also available from Spring Initializr through the GCP Storage entry.

A sample application is available.

6.1 Google Cloud Storage

The Spring Resource Abstraction for Google Cloud Storage allows GCS objects to be accessed by their
GCS URL using the @Value annotation

@Value("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]")

private Resource gcsResource;

or the Spring application context

SpringApplication.run(...).getResource("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]");

This creates a Resource object that can be used to read the object, among other possible operations.

It is also possible to write to a Resource, although a WriteableResource is required.

@Value("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]")

private Resource gcsResource;

...

try (OutputStream os = ((WritableResource) gcsResource).getOutputStream()) {

 os.write("foo".getBytes());

}

If the resource path refers to an object on Google Cloud Storage (as opposed to a bucket), then the
resource can be cast as a GoogleStorageResourceObject and the getGoogleStorageObject
method can be called to obtain a Blob. This type represents a GCS file, which has associated metadata,
such as content-type, that can be set. The createSignedUrl method can also be used to obtain
signed URLs for GCS objects. However, creating signed URLs requires that the resource was created
using service account credentials.

The Spring Boot Starter for Google Cloud Storage auto-configures the Storage bean required by
the spring-cloud-gcp-storage module, based on the CredentialsProvider provided by the
Spring Boot GCP starter.

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html
https://start.spring.io/
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-storage-resource-sample
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-resource
https://github.com/GoogleCloudPlatform/google-cloud-java/blob/master/google-cloud-storage/src/main/java/com/google/cloud/storage/Blob.java
https://cloud.google.com/storage/docs/gsutil/addlhelp/WorkingWithObjectMetadata
https://cloud.google.com/storage/docs/access-control/signed-urls

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 15

6.2 Configuration

The Spring Boot Starter for Google Cloud Storage provides the following configuration options:

Name Description Required Default value

spring.cloud.gcp.storage.auto-

create-files

Creates files and
buckets on Google
Cloud Storage when
writes are made to
non-existent files

No true

spring.cloud.gcp.storage.credentials.locationOAuth2 credentials
for authenticating with
the Google Cloud
Storage API, if different
from the ones in the
Spring Cloud GCP
Core Module

No

spring.cloud.gcp.storage.credentials.scopesOAuth2 scope for
Spring Cloud GCP
Storage credentials

No https://
www.googleapis.com/
auth/
devstorage.read_write

https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 16

7. Spring JDBC
Spring Cloud GCP adds integrations with Spring JDBC so you can run your MySQL or PostgreSQL
databases in Google Cloud SQL using Spring JDBC, or other libraries that depend on it like Spring
Data JPA.

The Cloud SQL support is provided by Spring Cloud GCP in the form of two Spring Boot starters, one for
MySQL and another one for PostgreSQL. The role of the starters is to read configuration from properties
and assume default settings so that user experience connecting to MySQL and PostgreSQL is as simple
as possible.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-starter-sql-mysql</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-starter-sql-postgresql</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-sql-mysql'

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-sql-postgresql'

}

7.1 Prerequisites

In order to use the Spring Boot Starters for Google Cloud SQL, the Google Cloud SQL API must be
enabled in your GCP project.

To do that, go to the API library page of the Google Cloud Console, search for "Cloud SQL API", click
the first result and enable the API.

Note

There are several similar "Cloud SQL" results. You must access the "Google Cloud SQL API" one
and enable the API from there.

Available sample applications:

• Spring Cloud GCP SQL

• Spring Data JPA with Spring Cloud GCP SQL

7.2 Spring Boot Starter for Google Cloud SQL

The Spring Boot Starters for Google Cloud SQL provide an auto-configured DataSource object.
Coupled with Spring JDBC, it provides a JdbcTemplate object bean that allows for operations such
as querying and modifying a database.

public List<Map<String, Object>> listUsers() {

 return jdbcTemplate.queryForList("SELECT * FROM user;");

}

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html
https://console.cloud.google.com/apis/library
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-sql-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-jpa-sample
https://docs.oracle.com/javase/7/docs/api/javax/sql/DataSource.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-JdbcTemplate

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 17

You can rely on Spring Boot data source auto-configuration to configure a DataSource bean. In
other words, properties like the SQL username, spring.datasource.username, and password,
spring.datasource.password can be used. There is also some configuration specific to Google
Cloud SQL:

Property name Description Default value Unused if specified
property(ies)

spring.cloud.gcp.sql.enabledEnables or disables
Cloud SQL auto
configuration

true

spring.cloud.gcp.sql.database-

name

Name of the database
to connect to.

 spring.datasource.url

spring.cloud.gcp.sql.instance-

connection-name

A string containing a
Google Cloud SQL
instance’s project ID,
region and name,
each separated by a
colon. For example,
my-project-

id:my-region:my-

instance-name.

 spring.datasource.url

spring.cloud.gcp.sql.credentials.locationFile system path to
the Google OAuth2
credentials private
key file. Used to
authenticate and
authorize new
connections to a
Google Cloud SQL
instance.

Default credentials
provided by the Spring
GCP Boot starter

DataSource creation flow

Based on the previous properties, the Spring Boot starter for Google Cloud SQL creates a
CloudSqlJdbcInfoProvider object which is used to obtain an instance’s JDBC URL and driver
class name. If you provide your own CloudSqlJdbcInfoProvider bean, it is used instead and the
properties related to building the JDBC URL or driver class are ignored.

The DataSourceProperties object provided by Spring Boot Autoconfigure is mutated in order to
use the JDBC URL and driver class names provided by CloudSqlJdbcInfoProvider, unless those
values were provided in the properties. It is in the DataSourceProperties mutation step that the
credentials factory is registered in a system property to be SqlCredentialFactory.

DataSource creation is delegated to Spring Boot. You can select the type of connection pool (e.g.,
Tomcat, HikariCP, etc.) by adding their dependency to the classpath.

Using the created DataSource in conjunction with Spring JDBC provides you with a fully configured
and operational JdbcTemplate object that you can use to interact with your SQL database. You can
connect to your database with as little as a database and instance names.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 18

Troubleshooting tips

Connection issues

If you’re not able to connect to a database and see an endless loop of Connecting to Cloud SQL
instance […] on IP […], it’s likely that exceptions are being thrown and logged at a level lower
than your logger’s level. This may be the case with HikariCP, if your logger is set to INFO or higher level.

To see what’s going on in the background, you should add a logback.xml file to your application
resources folder, that looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <include resource="org/springframework/boot/logging/logback/base.xml"/>

 <logger name="com.zaxxer.hikari.pool" level="DEBUG"/>

</configuration>

Errors like c.g.cloud.sql.core.SslSocketFactory : Re-throwing cached exception
due to attempt to refresh instance information too soon after error

If you see a lot of errors like this in a loop and can’t connect to your database, this is usually a symptom
that something isn’t right with the permissions of your credentials or the Google Cloud SQL API is not
enabled. Verify that the Google Cloud SQL API is enabled in the Cloud Console and that your service
account has the necessary IAM roles.

To find out what’s causing the issue, you can enable DEBUG logging level as mentioned above.

PostgreSQL: java.net.SocketException: already connected issue

We found this exception to be common if your Maven project’s parent is spring-boot version 1.5.x,
or in any other circumstance that would cause the version of the org.postgresql:postgresql
dependency to be an older one (e.g., 9.4.1212.jre7).

To fix this, re-declare the dependency in its correct version. For example, in Maven:

<dependency>

 <groupId>org.postgresql</groupId>

 <artifactId>postgresql</artifactId>

 <version>42.1.1</version>

</dependency>

https://cloud.google.com/sql/docs/mysql/project-access-control#roles

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 19

8. Spring Integration

Spring Cloud GCP provides Spring Integration adapters that allow your applications to use Enterprise
Integration Patterns backed up by Google Cloud Platform services.

8.1 Channel Adapters for Google Cloud Pub/Sub

The channel adapters for Google Cloud Pub/Sub connect your Spring MessageChannels to Google
Cloud Pub/Sub topics and subscriptions. This enables messaging between different processes,
applications or micro-services backed up by Google Cloud Pub/Sub.

The Spring Integration Channel Adapters for Google Cloud Pub/Sub are included in the spring-
cloud-gcp-pubsub module.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-pubsub</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.integration</groupId>

 <artifactId>spring-integration-core</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-pubsub'

 compile group: 'org.springframework.integration', name: 'spring-integration-core'

}

A sample application is available.

Inbound channel adapter

PubSubInboundChannelAdapter is the inbound channel adapter for GCP Pub/Sub that listens to a
GCP Pub/Sub subscription for new messages. It converts new messages to an internal Spring Message
and then sends it to the bound output channel.

Google Pub/Sub treats message payloads as byte arrays. So, by default, the inbound channel adapter
will construct the Spring Message with byte[] as the payload. However, you can change the
desired payload type by setting the payloadType property of the PubSubInboundChannelAdapter.
The PubSubInboundChannelAdapter delegates to conversion to the desired payload type to the
PubSubMessageConverter configured in the PubSubTemplate.

To use the inbound channel adapter, a PubSubInboundChannelAdapter must be provided and
configured on the user application side.

@Bean

public MessageChannel pubsubInputChannel() {

 return new PublishSubscribeChannel();

}

@Bean

public PubSubInboundChannelAdapter messageChannelAdapter(

 @Qualifier("pubsubInputChannel") MessageChannel inputChannel,

 SubscriberFactory subscriberFactory) {

 PubSubInboundChannelAdapter adapter =

https://docs.spring.io/spring-integration/reference/html/messaging-channels-section.html#channel
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-pubsub-sample
https://docs.spring.io/spring-integration/reference/html/messaging-construction-chapter.html#message

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 20

 new PubSubInboundChannelAdapter(subscriberFactory, "subscriptionName");

 adapter.setOutputChannel(inputChannel);

 adapter.setAckMode(AckMode.MANUAL);

 return adapter;

}

In the example, we first specify the MessageChannel where the adapter is going to write incoming
messages to. The MessageChannel implementation isn’t important here. Depending on your use case,
you might want to use a MessageChannel other than PublishSubscribeChannel.

Then, we declare a PubSubInboundChannelAdapter bean. It requires the channel we just created
and a SubscriberFactory, which creates Subscriber objects from the Google Cloud Java Client
for Pub/Sub. The Spring Boot starter for GCP Pub/Sub provides a configured SubscriberFactory.

It is also possible to set the message acknowledgement mode on the adapter, which is automatic by
default. On automatic acking, a message is acked with GCP Pub/Sub if the adapter sent it to the channel
and no exceptions were thrown. If a RuntimeException is thrown while the message is processed,
then the message is nacked. On manual acking, the adapter attaches an AckReplyConsumer object
to the Message headers, which users can extract using the GcpPubSubHeaders.ACKNOWLEDGEMENT
key and use to (n)ack a message.

@Bean

@ServiceActivator(inputChannel = "pubsubInputChannel")

public MessageHandler messageReceiver() {

 return message -> {

 LOGGER.info("Message arrived! Payload: " + new String((byte[]) message.getPayload()));

 AckReplyConsumer consumer =

 message.getHeaders().get(GcpPubSubHeaders.ACKNOWLEDGEMENT, AckReplyConsumer.class);

 consumer.ack();

 };

}

Outbound channel adapter

PubSubMessageHandler is the outbound channel adapter for GCP Pub/Sub that listens for new
messages on a Spring MessageChannel. It uses PubSubTemplate to post them to a GCP Pub/Sub
topic.

To construct a Pub/Sub representation of the message, the outbound channel adapter needs
to convert the Spring Message payload to a byte array representation expected by Pub/Sub. It
delegates this conversion to the PubSubTemplate. To customize the conversion, you can specify a
PubSubMessageConverter in the PubSubTemplate that should convert the Object payload and
headers of the Spring Message to a PubsubMessage.

To use the outbound channel adapter, a PubSubMessageHandler bean must be provided and
configured on the user application side.

@Bean

@ServiceActivator(inputChannel = "pubsubOutputChannel")

public MessageHandler messageSender(PubSubTemplate pubsubTemplate) {

 return new PubSubMessageHandler(pubsubTemplate, "topicName");

}

The provided PubSubTemplate contains all the necessary configuration to publish messages to a GCP
Pub/Sub topic.

PubSubMessageHandler publishes messages asynchronously by default. A publish timeout can be
configured for synchronous publishing. If none is provided, the adapter waits indefinitely for a response.

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 21

It is possible to set user-defined callbacks for the publish() call in PubSubMessageHandler through
the setPublishFutureCallback() method. These are useful to process the message ID, in case
of success, or the error if any was thrown.

To override the default destination you can use the GcpPubSubHeaders.DESTINATION header.

@Autowired

private MessageChannel pubsubOutputChannel;

public void handleMessage(Message<?> msg) throws MessagingException {

 final Message<?> message = MessageBuilder

 .withPayload(msg.getPayload())

 .setHeader(GcpPubSubHeaders.TOPIC, "customTopic").build();

 pubsubOutputChannel.send(message);

}

It is also possible to set an SpEL expression for the topic with the setTopicExpression() or
setTopicExpressionString() methods.

Header mapping

These channel adapters contain header mappers that allow you to map, or filter out, headers from
Spring to Google Cloud Pub/Sub messages, and vice-versa. By default, the inbound channel adapter
maps every header on the Google Cloud Pub/Sub messages to the Spring messages produced by
the adapter. The outbound channel adapter maps every header from Spring messages into Google
Cloud Pub/Sub ones, except the ones added by Spring, like headers with key "id", "timestamp" and
"gcp_pubsub_acknowledgement". In the process, the outbound mapper also converts the value of
the headers into string.

Each adapter declares a setHeaderMapper() method to let you further customize which headers you
want to map from Spring to Google Cloud Pub/Sub, and vice-versa.

For example, to filter out headers "foo", "bar" and all headers starting with the prefix "prefix_", you
can use setHeaderMapper() along with the PubSubHeaderMapper implementation provided by this
module.

PubSubMessageHandler adapter = ...

...

PubSubHeaderMapper headerMapper = new PubSubHeaderMapper();

headerMapper.setOutboundHeaderPatterns("!foo", "!bar", "!prefix_*", "*");

adapter.setHeaderMapper(headerMapper);

Note

The order in which the patterns are declared in
PubSubHeaderMapper.setOutboundHeaderPatterns() and
PubSubHeaderMapper.setInboundHeaderPatterns() matters. The first patterns have
precedence over the following ones.

In the previous example, the "*" pattern means every header is mapped. However, because it comes
last in the list, the previous patterns take precedence.

8.2 Channel Adapters for Google Cloud Storage

The channel adapters for Google Cloud Storage allow you to read and write files to Google Cloud
Storage through MessageChannels.

https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html#smartMatch-java.lang.String-java.lang.String??-

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 22

Spring Cloud GCP provides two inbound adapters,
GcsInboundFileSynchronizingMessageSource and GcsStreamingMessageSource, and one
outbound adapter, GcsMessageHandler.

The Spring Integration Channel Adapters for Google Cloud Storage are included in the spring-cloud-
gcp-storage module.

To use the Storage portion of Spring Integration for Spring Cloud GCP, you must also provide the
spring-integration-file dependency, since they aren’t pulled transitively.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-storage</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.integration</groupId>

 <artifactId>spring-integration-file</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-storage'

 compile group: 'org.springframework.integration', name: 'spring-integration-file'

}

A sample application is available.

Inbound channel adapter

The Google Cloud Storage inbound channel adapter polls a Google Cloud Storage bucket for new
files and sends each of them in a Message payload to the MessageChannel specified in the
@InboundChannelAdapter annotation. The files are temporarily stored in a folder in the local file
system.

Here is an example of how to configure a Google Cloud Storage inbound channel adapter.

@Bean

@InboundChannelAdapter(channel = "new-file-channel", poller = @Poller(fixedDelay = "5000"))

public MessageSource<File> synchronizerAdapter(Storage gcs) {

 GcsInboundFileSynchronizer synchronizer = new GcsInboundFileSynchronizer(gcs);

 synchronizer.setRemoteDirectory("your-gcs-bucket");

 GcsInboundFileSynchronizingMessageSource synchAdapter =

 new GcsInboundFileSynchronizingMessageSource(synchronizer);

 synchAdapter.setLocalDirectory(new File("local-directory"));

 return synchAdapter;

}

Inbound streaming channel adapter

The inbound streaming channel adapter is similar to the normal inbound channel adapter, except it does
not require files to be stored in the file system.

Here is an example of how to configure a Google Cloud Storage inbound streaming channel adapter.

@Bean

@InboundChannelAdapter(channel = "streaming-channel", poller = @Poller(fixedDelay = "5000"))

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-storage-sample

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 23

public MessageSource<InputStream> streamingAdapter(Storage gcs) {

 GcsStreamingMessageSource adapter =

 new GcsStreamingMessageSource(new GcsRemoteFileTemplate(new GcsSessionFactory(gcs)));

 adapter.setRemoteDirectory("your-gcs-bucket");

 return adapter;

}

Outbound channel adapter

The outbound channel adapter allows files to be written to Google Cloud Storage. When it receives
a Message containing a payload of type File, it writes that file to the Google Cloud Storage bucket
specified in the adapter.

Here is an example of how to configure a Google Cloud Storage outbound channel adapter.

@Bean

@ServiceActivator(inputChannel = "writeFiles")

public MessageHandler outboundChannelAdapter(Storage gcs) {

 GcsMessageHandler outboundChannelAdapter = new GcsMessageHandler(new GcsSessionFactory(gcs));

 outboundChannelAdapter.setRemoteDirectoryExpression(new ValueExpression<>("your-gcs-bucket"));

 return outboundChannelAdapter;

}

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 24

9. Spring Cloud Stream

Spring Cloud GCP provides a Spring Cloud Stream binder to Google Cloud Pub/Sub.

The provided binder relies on the Spring Integration Channel Adapters for Google Cloud Pub/Sub.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-pubsub-stream-binder</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-pubsub-stream-binder'

}

A sample application is available.

9.1 Overview

This binder binds producers to Google Cloud Pub/Sub topics and consumers to subscriptions.

Note

Partitioning and consumer groups are not currently supported by this binder.

9.2 Configuration

You can configure the Spring Cloud Stream Binder for Google Cloud Pub/Sub to automatically
generate the underlying resources, like the Google Cloud Pub/Sub subscriptions for the
consumers. For that, you can use the spring.cloud.stream.gcp.pubsub.bindings.

[CHANNEL-NAME].consumer.auto-create-resources property, which is turned ON by default.

If automatic resource creation is turned ON and the subscription and the topic do not exist for a
consumer, a subscription and a topic will be created with the same name. For example, for the following
configuration, a topic and a subscription called myConsumer would be created.

application.properties.

spring.cloud.stream.bindings.output.destination=myConsumer

spring.cloud.stream.gcp.pubsub.bindings.output.consumer.auto-create-resources=true

If you are using Pub/Sub auto-configuration from the Spring Cloud GCP Pub/Sub Starter, you should
refer to the configuration section for other Pub/Sub parameters.

Note

To use this binder with a running emulator, configure its host and port via
spring.cloud.gcp.pubsub.emulator-host.

https://cloud.spring.io/spring-cloud-stream/
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-pubsub/src/main/java/org/springframework/cloud/gcp/pubsub/integration
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-binder-sample
https://cloud.google.com/pubsub/docs/emulator

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 25

10. Spring Cloud Sleuth

Spring Cloud Sleuth is an instrumentation framework for Spring Boot applications. It captures trace
informations and can forward traces to services like Zipkin for storage and analysis.

Google Cloud Platform provides its own managed distributed tracing service called Stackdriver Trace.
Instead of running and maintaining your own Zipkin instance and storage, you can use Stackdriver Trace
to store traces, view trace details, generate latency distributions graphs, and generate performance
regression reports.

This Spring Cloud GCP starter can forward Spring Cloud Sleuth traces to Stackdriver Trace without an
intermediary Zipkin server.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-starter-trace</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-trace'

}

You must enable Stackdriver Trace API from the Google Cloud Console in order to capture traces.
Navigate to the Stackdriver Trace API for your project and make sure it’s enabled.

A sample application is available.

Note

If you are already using a Zipkin server capturing trace information from multiple platform/
frameworks, you also use a Stackdriver Zipkin proxy to forward those traces to Stackdriver Trace
without modifying existing applications.

10.1 Tracing

Spring Cloud Sleuth uses the Brave tracer to generate traces. This integration enables Brave to use the
StackdriverTracePropagation propagation.

A propagation is responsible for extracting trace context from an entity (e.g., an HTTP servlet request)
and for injecting trace context into an entity. A canonical example of the propagation usage is a web
server that receives an HTTP request, which triggers other HTTP requests from the server before
returning an HTTP response to the original caller. In the case of StackdriverTracePropagation,
first it looks for trace context in the x-cloud-trace-context key (e.g., an HTTP request header).
The value of the x-cloud-trace-context key can be formatted in three different ways:

• x-cloud-trace-context: TRACE_ID

• x-cloud-trace-context: TRACE_ID/SPAN_ID

• x-cloud-trace-context: TRACE_ID/SPAN_ID;o=TRACE_TRUE

https://cloud.spring.io/spring-cloud-sleuth/
https://cloud.google.com/trace/
https://console.cloud.google.com/apis/api/cloudtrace.googleapis.com/overview
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-trace-sample
https://cloud.google.com/trace/docs/zipkin
https://github.com/openzipkin/brave
https://github.com/openzipkin/zipkin-gcp/tree/master/propagation-stackdriver

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 26

TRACE_ID is a 32-character hexadecimal value that encodes a 128-bit number.

SPAN_ID is an unsigned long. Since Stackdriver Trace doesn’t support span joins, a new span ID is
always generated, regardless of the one specified in x-cloud-trace-context.

TRACE_TRUE can either be 0 if the entity should be untraced, or 1 if it should be traced. However, at
the moment, if TRACE_TRUE is set to 1, the entity isn’t necessarily traced. Currently, to make sure a
request is traced, the Sleuth property spring.sleuth.sampler.probability=1 should be used,
to trace every entity.

If a x-cloud-trace-context key isn’t found, StackdriverTracePropagation falls back to
tracing with the X-B3 headers.

10.2 Spring Boot Starter for Stackdriver Trace

Spring Boot Starter for Stackdriver Trace uses Spring Cloud Sleuth and auto-configures a
StackdriverSender that sends the Sleuth’s trace information to Stackdriver Trace.

All configurations are optional:

Name Description Required Default value

spring.cloud.gcp.trace.enabledAuto-configure Spring
Cloud Sleuth to send
traces to Stackdriver
Trace.

No true

spring.cloud.gcp.trace.project-

id

Overrides the project
ID from the Spring
Cloud GCP Module

No

spring.cloud.gcp.trace.credentials.locationOverrides the
credentials location
from the Spring Cloud
GCP Module

No

spring.cloud.gcp.trace.credentials.scopesOverrides the
credentials scopes
from the Spring Cloud
GCP Module

No

spring.cloud.gcp.trace.num-

executor-threads

Number of threads
used by the Trace
executor

No 4

spring.cloud.gcp.trace.authorityHTTP/2 authority the
channel claims to be
connecting to.

No

spring.cloud.gcp.trace.compressionName of the
compression to use in
Trace calls

No

spring.cloud.gcp.trace.deadline-

ms

Call deadline in
milliseconds

No

https://github.com/openzipkin/b3-propagation
https://github.com/openzipkin/zipkin-gcp/blob/master/sender-stackdriver/src/main/java/zipkin2/reporter/stackdriver/StackdriverSender.java

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 27

spring.cloud.gcp.trace.max-

inbound-size

Maximum size for
inbound messages

No

spring.cloud.gcp.trace.max-

outbound-size

Maximum size for
outbound messages

No

spring.cloud.gcp.trace.wait-

for-ready

Waits for the channel
to be ready in case of a
transient failure

No false

You can use core Spring Cloud Sleuth properties to control Sleuth’s sampling rate, etc. Read Sleuth
documentation for more information on Sleuth configurations.

For example, when you are testing to see the traces are going through, you can set the sampling rate
to 100%.

spring.sleuth.sampler.probability=1 # Send 100% of the request traces to

 Stackdriver.

spring.sleuth.web.skipPattern=(^cleanup.*|.+favicon.*) # Ignore some URL paths.

Spring Cloud GCP Trace does override some Sleuth configurations:

• Always uses 128-bit Trace IDs. This is required by Stackdriver Trace.

• Does not use Span joins. Span joins will share the span ID between the client and server Spans.
Stackdriver requires that every Span ID within a Trace to be unique, so Span joins are not supported.

• Uses StackdriverHttpClientParser and StackdriverHttpServerParser by default to
populate Stackdriver related fields.

10.3 Integration with Logging

Integration with Stackdriver Logging is available through the Stackdriver Logging Support. If the
Trace integration is used together with the Logging one, the request logs will be associated to the
corresponding traces. The trace logs can be viewed by going to the Google Cloud Console Trace List,
selecting a trace and pressing the Logs # View link in the Details section.

https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md
https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md
https://cloud.spring.io/spring-cloud-sleuth/
https://cloud.spring.io/spring-cloud-sleuth/
logging.adoc
https://console.cloud.google.com/traces/traces

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 28

11. Stackdriver Logging Support

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-gcp-starter-logging</artifactId>

</dependency>

Gradle coordinates:

dependencies {

 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-logging'

}

Stackdriver Logging is the managed logging service provided by Google Cloud Platform.

This module provides support for associating a web request trace ID with the corresponding log entries.
It does so by retrieving the X-B3-TraceId value from the Mapped Diagnostic Context (MDC), which
is set by Spring Cloud Sleuth. If Spring Cloud Sleuth isn’t used, the configured TraceIdExtractor
extracts the desired header value and sets it as the log entry’s trace ID. This allows grouping of log
messages by request, for example, in the Google Cloud Console Logs viewer.

Note

Due to the way logging is set up, the GCP project ID and credentials
defined in application.properties are ignored. Instead, you should set the
GOOGLE_CLOUD_PROJECT and GOOGLE_APPLICATION_CREDENTIALS environment variables
to the project ID and credentials private key location, respectively. You can do this easily if you’re
using the Google Cloud SDK, using the gcloud config set project [YOUR_PROJECT_ID]
and gcloud auth application-default login commands, respectively.

A sample application is available.

11.1 Web MVC Interceptor

For use in Web MVC-based applications, TraceIdLoggingWebMvcInterceptor is provided that
extracts the request trace ID from an HTTP request using a TraceIdExtractor and stores it in
a thread-local, which can then be used in a logging appender to add the trace ID metadata to log
messages.

Warning

If Spring Cloud GCP Trace is enabled, the logging module disables itself and delegates log
correlation to Spring Cloud Sleuth.

LoggingWebMvcConfigurer configuration class is also provided to help register the
TraceIdLoggingWebMvcInterceptor in Spring MVC applications.

Applications hosted on the Google Cloud Platform include trace IDs under the x-cloud-trace-
context header, which will be included in log entries. However, if Sleuth is used the trace ID will be
picked up from the MDC.

https://cloud.google.com/logging/
https://logback.qos.ch/manual/mdc.html
https://console.cloud.google.com/logs/viewer
http://cloud.google.com/sdk
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-logging-sample

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 29

11.2 Logback Support

Currently, only Logback is supported and there are 2 possibilities to log to Stackdriver via this library
with Logback: via direct API calls and through JSON-formatted console logs.

Log via API

A Stackdriver appender is available using org/springframework/cloud/gcp/autoconfigure/
logging/logback-appender.xml. This appender builds a Stackdriver Logging log entry from a JUL
or Logback log entry, adds a trace ID to it and sends it to Stackdriver Logging.

STACKDRIVER_LOG_NAME and STACKDRIVER_LOG_FLUSH_LEVEL environment variables can be
used to customize the STACKDRIVER appender.

Log via Console

For Logback, a org/springframework/cloud/gcp/autoconfigure/logging/logback-

json-appender.xml file is made available for import to make it easier to configure the JSON Logback
appender.

Your configuration may then look something like this:

<configuration>

 <include resource="org/springframework/cloud/gcp/autoconfigure/logging/logback-json-appender.xml" />

 <root level="INFO">

 <appender-ref ref="CONSOLE_JSON" />

 </root>

</configuration>

If your application is running on Google Container Engine, Google Compute Engine or Google App
Engine Flexible, your console logging is automatically saved to Google Stackdriver Logging. Therefore,
you can just include org/springframework/cloud/gcp/autoconfigure/logging/logback-
json-appender.xml in your logging configuration, which logs JSON entries to the console. The trace
id will be set correctly.

Your Logback configuration may then look something like this:

<configuration>

 <include resource="org/springframework/cloud/gcp/autoconfigure/logging/logback-appender.xml" />

 <root level="INFO">

 <appender-ref ref="CONSOLE_JSON"/>

 </root>

</configuration>

If you want to have more control over the log output, you can also configure the ConsoleAppender
yourself. The following properties are available:

Property Default Value Description

projectId If not set, default value is
determined in the following
order:

1. SPRING_CLOUD_GCP_LOGGING_PROJECT_ID
Environmental Variable.

This is used to generate fully
qualified Stackdriver Trace ID
format: projects/[PROJECT-
ID]/traces/[TRACE-ID].

This format is required to
correlate trace between

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 30

Property Default Value Description

2. Value of
DefaultGcpProjectIdProvider.getProjectId()

Stackdriver Trace and
Stackdriver Logging.

If projectId is not set and
cannot be determined, then it’ll
log traceId without the fully
qualified format.

includeTraceId true Should the traceId be
included

includeSpanId true Should the spanId be included

includeLevel true Should the severity be included

includeThreadName true Should the thread name be
included

includeMDC true Should all MDC properties be
included. The MDC properties
X-B3-TraceId, X-B3-
SpanId and X-Span-Export
provided by Spring Sleuth
will get excluded as they get
handled separately

includeLoggerName true Should the name of the logger
be included

includeFormattedMessage true Should the formatted log
message be included.

includeExceptionInMessagetrue Should the stacktrace
be appended to the
formatted log message. This
setting is only evaluated if
includeFormattedMessage

is true

includeContextName true Should the logging context be
included

includeMessage false Should the log message with
blank placeholders be included

includeException false Should the stacktrace be
included as a own field

This is an example of such an Logback configuration:

<configuration >

 <property name="projectId" value="${projectId:-${GOOGLE_CLOUD_PROJECT}}"/>

 <appender name="CONSOLE_JSON" class="ch.qos.logback.core.ConsoleAppender">

 <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 31

 <layout class="org.springframework.cloud.gcp.logging.StackdriverJsonLayout">

 <projectId>${projectId}</projectId>

 <!--<includeTraceId>true</includeTraceId>-->

 <!--<includeSpanId>true</includeSpanId>-->

 <!--<includeLevel>true</includeLevel>-->

 <!--<includeThreadName>true</includeThreadName>-->

 <!--<includeMDC>true</includeMDC>-->

 <!--<includeLoggerName>true</includeLoggerName>-->

 <!--<includeFormattedMessage>true</includeFormattedMessage>-->

 <!--<includeExceptionInMessage>true</includeExceptionInMessage>-->

 <!--<includeContextName>true</includeContextName>-->

 <!--<includeMessage>false</includeMessage>-->

 <!--<includeException>false</includeException>-->

 </layout>

 </encoder>

 </appender>

</configuration>

Spring Cloud GCP Reference Documentation

1.0.0.RC1 Spring Cloud GCP 32

12. Cloud Foundry

Spring Cloud GCP provides support for Cloud Foundry’s GCP Service Broker. Our Pub/Sub, Storage,
Stackdriver Trace and Cloud SQL MySQL and PostgreSQL starters are Cloud Foundry aware and
retrieve properties like project ID, credentials, etc., that are used in auto configuration from the Cloud
Foundry environment.

In cases like Pub/Sub’s topic and subscription, or Storage’s bucket name, where those
parameters are not used in auto configuration, you can fetch them using the VCAP mapping
provided by Spring Boot. For example, to retrieve the provisioned Pub/Sub topic, you can
use the vcap.services.mypubsub.credentials.topic_name property from the application
environment.

Note

If the same service is bound to the same application more than once, the auto configuration will
not be able to choose among bindings and will not be activated for that service. This includes both
MySQL and PostgreSQL bindings to the same app.

Warning

In order for the Cloud SQL integration to work in Cloud Foundry, auto-
reconfiguration must be disabled. You can do so using the cf set-env <APP>

JBP_CONFIG_SPRING_AUTO_RECONFIGURATION '{enabled: false}' command.
Otherwise, Cloud Foundry will produce a DataSource with an invalid JDBC URL (i.e.,
jdbc:mysql://null/null).

https://docs.pivotal.io/partners/gcp-sb/index.html

	Spring Cloud GCP Reference Documentation
	Table of Contents
	1. Introduction
	2. Dependency Management
	3. Getting started
	3.1 Spring Initializr
	3.2 Code Samples
	3.3 Code Challenges
	3.4 Getting Started Guides

	4. Spring Cloud GCP Core
	4.1 Project ID
	4.2 Credentials
	Scopes
	Spring Initializr

	5. Spring Cloud GCP for Pub/Sub
	5.1 Pub/Sub operations abstraction
	Publishing to a topic
	Subscribing to a subscription
	Pulling messages from a subscription

	5.2 Pub/Sub management
	Creating a topic
	Deleting a topic
	Listing topics
	Creating a subscription
	Deleting a subscription
	Listing subscriptions

	5.3 Configuration

	6. Spring Resources
	6.1 Google Cloud Storage
	6.2 Configuration

	7. Spring JDBC
	7.1 Prerequisites
	7.2 Spring Boot Starter for Google Cloud SQL
	DataSource creation flow
	Troubleshooting tips
	Connection issues
	Errors like c.g.cloud.sql.core.SslSocketFactory : Re-throwing cached exception due to attempt to refresh instance information too soon after error
	PostgreSQL: java.net.SocketException: already connected issue

	8. Spring Integration
	8.1 Channel Adapters for Google Cloud Pub/Sub
	Inbound channel adapter
	Outbound channel adapter
	Header mapping

	8.2 Channel Adapters for Google Cloud Storage
	Inbound channel adapter
	Inbound streaming channel adapter
	Outbound channel adapter

	9. Spring Cloud Stream
	9.1 Overview
	9.2 Configuration

	10. Spring Cloud Sleuth
	10.1 Tracing
	10.2 Spring Boot Starter for Stackdriver Trace
	10.3 Integration with Logging

	11. Stackdriver Logging Support
	11.1 Web MVC Interceptor
	11.2 Logback Support
	Log via API
	Log via Console

	12. Cloud Foundry

