
Spring Cloud Task Reference Guide

1.1.0.RC1

Copyright © 2015-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task iii

Table of Contents

I. Preface .. 1
1. About the documentation .. 2
2. Getting help .. 3
3. First Steps .. 4

II. Getting started .. 5
4. Introducing Spring Cloud Task .. 6
5. System Requirements ... 7

5.1. Database Requirements ... 7
6. Developing your first Spring Cloud Task application .. 8

6.1. Creating the POM .. 8
6.2. Adding classpath dependencies .. 9
6.3. Writing the code ... 9

The @EnableTask annotation .. 10
The main method .. 10
The CommandLineRunner ... 10

6.4. Running the example ... 11
III. Features .. 13

7. The lifecycle of a Spring Cloud Task ... 14
7.1. The TaskExecution ... 14
7.2. Mapping Exit Codes ... 15

8. Configuration .. 16
8.1. DataSource .. 16
8.2. Externally Generated Task Id .. 16
8.3. External Task Id ... 16
8.4. TaskConfigurer ... 16
8.5. Task Name .. 17
8.6. Task Execution Listener ... 17

IV. Batch .. 19
9. Associating A Job Execution To The Task In Which It Was Executed 20

9.1. Overriding the TaskBatchExecutionListener ... 20
10. Remote Partitioning ... 21

10.1. Notes on developing a batch partitioned app for the Yarn platform 22
10.2. Notes on developing a batch partitioned app for the Kubernetes platform 22
10.3. Notes on developing a batch partitioned app for the Mesos platform 23
10.4. Notes on developing a batch partitioned app for the Cloud Foundry platform 23

11. Batch Informational Messages ... 25
12. Batch Job Exit Codes .. 26

V. Spring Cloud Stream Integration ... 27
13. Launching a task from a Spring Cloud Stream .. 28

13.1. Spring Cloud Data Flow .. 28
14. Spring Cloud Task Events ... 30

14.1. Disabling Specific Task Events ... 31
15. Spring Batch Events .. 32

15.1. Sending Batch Events to different channels ... 32
15.2. Disabling Batch Events ... 33

VI. Appendices .. 34
16. Task repository schema .. 35

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task iv

17. Building this documentation ... 36

Part I. Preface
This section provides a brief overview of the Spring Cloud Task reference documentation. Think of it as
a map for the rest of the document. You can read this reference guide in a linear fashion, or you can
skip sections if something doesn’t interest you.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 2

1. About the documentation

The Spring Cloud Task reference guide is available as html, pdf and epub documents. The latest copy
is available at docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

http://docs.spring.io/spring-cloud-task/docs/{version}/reference/html
http://docs.spring.io/spring-cloud-task/docs/{version}/reference/pdf/spring-cloud-task-reference.pdf
http://docs.spring.io/spring-cloud-task/docs/{version}/reference/epub/spring-cloud-task-reference.epub
http://docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 3

2. Getting help

Having trouble with Spring Cloud Task, We’d like to help!

• Ask a question - we monitor stackoverflow.com for questions tagged with spring-cloud-task.

• Report bugs with Spring Cloud Task at github.com/spring-cloud/spring-cloud-task/issues.

Note

All of Spring Cloud Task is open source, including the documentation! If you find problems with
the docs; or if you just want to improve them, please get involved.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-task
https://github.com/spring-cloud/spring-cloud-task/issues
http://github.com/spring-cloud/spring-cloud-task/tree/

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 4

3. First Steps

If you’re just getting started with Spring Cloud Task, or 'Spring' in general, this is the place to start!

• From scratch: Overview | Requirements

• Tutorial: First application

• Running your example: Running your application

Part II. Getting started
If you’re just getting started with Spring Cloud Task, this is the section for you! Here we answer the basic
“what?”, “how?” and “why?” questions. You’ll find a gentle introduction to Spring Cloud Task. We’ll then
build our first Spring Cloud Task application, discussing some core principles as we go.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 6

4. Introducing Spring Cloud Task

Spring Cloud Task makes it easy to create short lived microservices. We provide capabilities that allow
short lived JVM processes to be executed on demand in a production environment.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 7

5. System Requirements

You need Java installed (Java 7 or better, we recommend Java 8) and to build you need to have Maven
installed as well.

5.1 Database Requirements

Spring Cloud Task uses a relational database to store the results of an executed task. While you
can begin developing a task without a database (the status of the task is logged as part of the task
repository’s updates), for production environments, you’ll want to utilize a supported database. Below
is a list of the ones currently supported:

• DB2

• H2

• HSQLDB

• MySql

• Oracle

• Postgres

• SqlServer

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 8

6. Developing your first Spring Cloud Task
application

A good place to start is with a simple "Hello World!" application so we’ll create the Spring Cloud Task
equivalent to highlight the features of the framework. We’ll use Apache Maven as a build tool for this
project since most IDEs have good support for it.

Note

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you’re
looking to solve a specific problem; check there first. You can shortcut the steps below by going to
start.spring.io and creating a new project. This will automatically generate a new project structure
so that you can start coding right the way. Check the documentation for more details.

Before we begin, open a terminal to check that you have valid versions of Java and Maven installed.

$ java -version

java version "1.8.0_31"

Java(TM) SE Runtime Environment (build 1.8.0_31-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b07, mixed mode)

$ mvn -v

Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4; 2014-08-11T15:58:10-05:00)

Maven home: /usr/local/Cellar/maven/3.2.3/libexec

Java version: 1.8.0_31, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume you have
created a suitable folder and that it is your "current directory".

6.1 Creating the POM

We need to start by creating a Maven pom.xml file. The pom.xml is the recipe that will be used to build
your project. Open your favorite text editor and add the following:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>

 <artifactId>myproject</artifactId>

 <packaging>jar</packaging>

 <version>0.0.1-SNAPSHOT</version>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>1.3.3.RELEASE</version>

 </parent>

 <properties>

 <start-class>com.example.SampleTask</start-class>

 </properties>

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 9

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter</artifactId>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

This should give you a working build. You can test it out by running mvn package (you can ignore the
"jar will be empty - no content was marked for inclusion!" warning for now).

Note

At this point you could import the project into an IDE (most modern Java IDE’s include built-in
support for Maven). For simplicity we will continue to use a plain text editor for this example.

6.2 Adding classpath dependencies

A Spring Cloud Task is made up of a Spring Boot application that is expected to end. In our POM above,
we created the shell of a Spring Boot application from a dependency perspective by setting our parent
to use the spring-boot-starter-parent.

Spring Boot provides a number of additional "Starter POMs". Some of which are appropriate for use
within tasks (spring-boot-starter-batch, spring-boot-starter-jdbc, etc) and some may
not be ('spring-boot-starter-web` is probably not going to be used in a task). The indicator of if a starter
makes sense or not comes down to if the resulting application will end (batch based applications typically
end, the spring-boot-starter-web dependency bootstraps a servlet container which probably
wont').

For this example, we’ll only need to add a single additional dependency, the one for Spring Cloud Task
itself:

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-task-core</artifactId>

 <version>1.0.0.RELEASE</version>

 </dependency>

6.3 Writing the code

To finish our application, we need to create a single Java file. Maven will compile the sources from src/
main/java by default so you need to create that folder structure. Then add a file named src/main/
java/com/example/SampleTask.java:

package com.example;

import org.springframework.boot.*;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.cloud.task.configuration.EnableTask;

import org.springframework.context.annotation.Bean;

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 10

@SpringBootApplication

@EnableTask

public class SampleTask {

 @Bean

 public CommandLineRunner commandLineRunner() {

 return new HelloWorldCommandLineRunner();

 }

 public static void main(String[] args) {

 SpringApplication.run(SampleTask.class, args);

 }

 public static class HelloWorldCommandLineRunner implements CommandLineRunner {

 @Override

 public void run(String... strings) throws Exception {

 System.out.println("Hello World!");

 }

 }

}

While it may not look like much, quite a bit is going on. To read more about the Spring Boot specifics, take
a look at their reference documentation here: http://docs.spring.io/spring-boot/docs/current/reference/
html/

We’ll also need to create an application.properties in src/main/resources. We’ll configure
two properties in it: the application name (which is translated to the task name) and we’ll set the logging
for spring cloud task to DEBUG so that we can see what’s going on:

logging.level.org.springframework.cloud.task=DEBUG

spring.application.name=helloWorld

The @EnableTask annotation

The first non boot annotation in our example is the @EnableTask annotation. This class level
annotation tells Spring Cloud Task to bootstrap it’s functionality. This occurs by importing an additional
configuration class, SimpleTaskConfiguration by default. This additional configuration registers
the TaskRepository and the infrastructure for its use.

Out of the box, the TaskRepository will use an in memory Map to record the results of a task.
Obviously this isn’t a practical solution for a production environment since the Map goes away once the
task ends. However, for a quick getting started experience we use this as a default as well as echoing
to the logs what is being updated in that repository. Later in this documentation we’ll cover how to
customize the configuration of the pieces provided by Spring Cloud Task.

When our sample application is run, Spring Boot will launch our HelloWorldCommandLineRunner
outputting our "Hello World!" message to standard out. The TaskLifecyceListener will record the
start of the task and the end of the task in the repository.

The main method

The main method serves as the entry point to any java application. Our main method delegates to Spring
Boot’s SpringApplication class. You can read more about it in the Spring Boot documentation.

The CommandLineRunner

In Spring, there are many ways to bootstrap an application’s logic. Spring Boot provides a convenient
method of doing so in an organized manner via their *Runner interfaces (CommandLineRunner or
ApplicationRunner). A well behaved task will bootstrap any logic via one of these two runners.

http://docs.spring.io/spring-boot/docs/current/reference/html/
http://docs.spring.io/spring-boot/docs/current/reference/html/

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 11

The lifecycle of a task is considered from before the *Runner#run methods are executed to once they
are all complete. Spring Boot allows an application to use multiple *Runner implementation and Spring
Cloud Task doesn’t attempt to impede on this convention.

Note

Any processing bootstrapped from mechanisms other than a CommandLineRunner or
ApplicationRunner (using InitializingBean#afterPropertiesSet for example) will
not be recorded by Spring Cloud Task.

6.4 Running the example

At this point, your application should work. Since this application is Spring Boot based, we can run it
from the command line via the command $ mvn spring-boot:run from the root of our applicaiton:

$ mvn clean spring-boot:run

....... . . .

....... . . . (Maven log output here)

....... . . .

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v1.3.3.RELEASE)

2016-01-25 11:08:10.183 INFO 12943 --- [main] com.example.SampleTask

 : Starting SampleTask on Michaels-MacBook-Pro-2.local with PID 12943 (/Users/mminella/Documents/

IntelliJWorkspace/spring-cloud-task-example/target/classes started by mminella in /Users/mminella/

Documents/IntelliJWorkspace/spring-cloud-task-example)

2016-01-25 11:08:10.185 INFO 12943 --- [main] com.example.SampleTask : No

 active profile set, falling back to default profiles: default

2016-01-25 11:08:10.226 INFO 12943 --- [main] s.c.a.AnnotationConfigApplicationContext :

 Refreshing org.springframework.context.annotation.AnnotationConfigApplicationContext@2a2c3676: startup

 date [Mon Jan 25 11:08:10 CST 2016]; root of context hierarchy

2016-01-25 11:08:11.051 INFO 12943 --- [main] o.s.j.e.a.AnnotationMBeanExporter :

 Registering beans for JMX exposure on startup

2016-01-25 11:08:11.065 INFO 12943 --- [main] o.s.c.t.r.support.SimpleTaskRepository :

 Creating: TaskExecution{executionId=0, externalExecutionID='null', exitCode=0, taskName='application',

 startTime=Mon Jan 25 11:08:11 CST 2016, endTime=null, statusCode='null', exitMessage='null',

 arguments=[]}

Hello World!

2016-01-25 11:08:11.071 INFO 12943 --- [main] com.example.SampleTask :

 Started SampleTask in 1.095 seconds (JVM running for 3.826)

2016-01-25 11:08:11.220 INFO 12943 --- [Thread-1] s.c.a.AnnotationConfigApplicationContext :

 Closing org.springframework.context.annotation.AnnotationConfigApplicationContext@2a2c3676: startup

 date [Mon Jan 25 11:08:10 CST 2016]; root of context hierarchy

2016-01-25 11:08:11.222 INFO 12943 --- [Thread-1] o.s.c.t.r.support.SimpleTaskRepository :

 Updating: TaskExecution{executionId=0, externalExecutionID='null', exitCode=0, taskName='application',

 startTime=Mon Jan 25 11:08:11 CST 2016, endTime=Mon Jan 25 11:08:11 CST 2016, statusCode='null',

 exitMessage='null', arguments=[]}

2016-01-25 11:08:11.222 INFO 12943 --- [Thread-1] o.s.j.e.a.AnnotationMBeanExporter :

 Unregistering JMX-exposed beans on shutdown

If you notice, there are three lines of interest in the above output:

• SimpleTaskRepository logged out the creation of the entry in the TaskRepository.

• The execution of our CommandLineRunner, demonstrated by the "Hello World!" output.

• SimpleTaskRepository logging the completion of the task in the TaskRepository.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 12

Note

A simple task application can be found in the samples module of the Spring Cloud Task Project
here.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/timestamp

Part III. Features
This section goes into more detail about Spring Cloud Task. How to use it, how to configure it, as well
as the appropriate extension points are all covered in this section.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 14

7. The lifecycle of a Spring Cloud Task

In most cases, the modern cloud environment is designed around the execution of processes that are
not expected to end. If they do, they are typically restarted. While most platforms do have some method
to execute a process that isn’t restarted when it ends, the results of that execution are typically not
maintained in a consumable way. Spring Cloud Task brings the ability to execute short lived processes
in an environment and record the results. This allows for a microservices architecture around short lived
processes as well as longer running services via the integration of tasks by messages.

While this functionality is useful in a cloud environment, the same issues can arise in a traditional
deployment model as well. When executing Spring Boot applications via a scheduler like cron, it can be
useful to be able to monitor the results of the application after it’s completion.

A Spring Cloud Task takes the approach that a Spring Boot application can have a start and an end
and still be successful. Batch applications are just one example of where short lived processes can be
helpful. Spring Cloud Task records lifecycle events of a given task.

The lifecycle consists of a single task execution. This is a physical execution of a Spring Boot application
configured to be a task (annotated with the @EnableTask annotation).

At the beginning of a task (before any CommandLineRunner or ApplicationRunner

implementations have been executed, an entry in the TaskRepository is created recording the start
event. This event is triggered via SmartLifecycle#start being triggered by Spring Framework.
This indicates to the system that all beans are ready for use and is before the execution of any of the
CommandLineRunner or ApplicationRunner implementations provided by Spring Boot.

Note

The recording of a task will only occur upon the successful bootstrapping of an
ApplicationContext. If the context fails to bootstrap at all, the task’s execution will not be
recorded.

Upon completion of all of the *Runner#run calls from Spring Boot or the failure of an
ApplicationContext (indicated via a ApplicationFailedEvent), the task execution is updated
in the repository with the results.

Note

At the completion of a task (all *Runner#run methods are called and the task repository has been
updated) the ApplicationContext will be closed by default. This behavior can be overriden
by setting the property spring.cloud.task.closecontext_enable to false.

7.1 The TaskExecution

The information stored in the TaskRepository is modeled in the TaskExecution class and consists
of the following information:

Field Description

executionid The unique id for the task’s execution.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 15

Field Description

exitCode The exit code generated from an
ExitCodeExceptionMapper implementation.
If there is no exit code generated, but an
ApplicationFailedEvent is thrown, 1 is set.
Otherwise, it’s assumed to be 0.

taskName The name for the task as determined by the
configured TaskNameResolver.

startTime The time the task was started as indicated by the
SmartLifecycle#start call.

endTime The time the task was completed as indicated by
the ApplicationReadyEvent.

exitMessage Any information available at the time of
exit. This can programatically be set via a
TaskExecutionListener.

errorMessage If an exception is the cause of the
end of the task (as indicated via an
ApplicationFailedEvent), the stack trace
for that exception will be stored here.

arguments A List of the string command line arguments
as they were passed into the executable boot
application.

7.2 Mapping Exit Codes

When a task completes, it will want to return an exit code to the OS. If we take a look at our original
example, we can see that we are not controlling that aspect of our application. So if an exception is
thrown, the JVM will return a code that may or may not be of any use to you in the debugging of that.

As such, Spring Boot provides an interface, ExitCodeExceptionMapper that allows you to map
uncaught exceptions to exit codes. This allows you to be able to indicate at that level what went wrong.
Also, by mapping exit codes in this manner, Spring Cloud Task will record the exit code returned.

If the task is terminated with a SIG-INT or a SIG-TERM, the exit code will be zero unless otherwise
specified within the code.

Note

While the task is running the exit code will be stored as a null in the repository. Once complete
the appropriate exit code will be stored based on the guidelines enumerated above.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 16

8. Configuration

Spring Cloud Task provides an out of the box configuration as defined in the
DefaultTaskConfigurer and SimpleTaskConfiguration. This section will walk through the
defaults as well as how to customize Spring Cloud Task for your needs

8.1 DataSource

Spring Cloud Task utilizes a datasource for storing the results of task executions. By default, we provide
an in memory instance of H2 to provide a simple method of bootstrapping development. However, in a
production environment, you’ll want to configure your own DataSource.

If your application utilizes only a single DataSource and that will serve as both your business schema
as well as the task repository, all you need to do is provide any DataSource (via Spring Boot’s
configuration conventions is the easiest way). This will be automatically used by Spring Cloud Task for
the repository.

If your application utilizes more than one DataSource, you’ll need to configure the task repository
with the appropriate DataSource. This customization can be done via an implementation of the
TaskConfigurer.

8.2 Externally Generated Task Id

In some cases a user wants to allow for the time difference between when a task is requested and when
the infrastructure actually launches it. Spring Cloud Task allows a user to create a TaskExecution at the
time the task is requested. Then pass the execution ID of the generated TaskExecution to the task so
that it can update the TaskExecution through the task’s lifecycle.

The TaskExecution can be created by calling the createTaskExecution method on an
implementation of the TaskRepository that references the datastore storing the TaskExecutions.

In order to configure your Task to use a generated TaskExecutionId add the following property:

 spring.cloud.task.executionid=<yourtaskId>

8.3 External Task Id

Spring Cloud Task allows a user to store an external task Id for each TaskExecution. An example of
this would be a task id that is provided by Cloud Foundry when a task is launched on the platform. In
order to configure your Task to use a generated TaskExecutionId add the following property:

spring.cloud.task.external-execution-id=<externalTaskId>

8.4 TaskConfigurer

The TaskConfigurer is a strategy interface allowing for users to customize the way components
of Spring Cloud Task are configured. By default, we provide the DefaultTaskConfigurer that
provides logical defaults (Map based in memory components useful for development if no DataSource
is provided and JDBC based components if there is a DataSource available.

The TaskConfigurer allows the configuration of three main components:

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 17

Component Description Default (provided by
DefaultTaskConfigurer)

TaskRepository The implementation of the
TaskRepository to be used.

SimpleTaskRepository

TaskExplorer The implementation of the
TaskExplorer (a component
for read only access to the task
repository) to be used.

SimpleTaskExplorer

PlatformTransactionManagerA transaction manager to be
used when executing updates
for tasks.

DataSourceTransactionManager

if a DataSource is used,
ResourcelessTransactionManager

if it is not.

8.5 Task Name

In most cases, the name of the task will be the application name as configured via Spring Boot. However,
there are some cases, where you may want to map the run of a task to a different name. Spring Data
Flow is an example of this (where you want the task to be run with the name of the task definition).
Because of this, we offer the ability to customize how the task is named via the TaskNameResolver
interface.

By default, Spring Cloud Task provides the SimpleTaskNameResolver which will use the following
options (in order of precedence):

1. A Spring Boot property (configured any of the ways Spring Boot allows)
spring.cloud.task.name.

2. The application name as resolved using Spring Boot’s rules (obtained via
ApplicationContext#getId).

8.6 Task Execution Listener

Allows a user to register listeners for specific events that occur during the task lifecycle. This is done
by creating a class that implements the TaskExecutionListener interface. The class that implements the
TaskExecutionListener interface will be notified for the following events:

1. onTaskStartup - prior to the storing the TaskExecution into the TaskRepository

2. onTaskEnd - prior to the updating of the TaskExecution entry in the TaskRepository marking
the final state of the task.

3. onTaskFailed - prior to the onTaskEnd method being invoked when an unhandled exception is
thrown by the task.

Spring Cloud Task also allows a user add TaskExecution Listeners to methods within a bean by using
the following method annotations:

1. @BeforeTask - prior to the storing the TaskExecution into the TaskRepository

2. @AfterTask - prior to the updating of the TaskExecution entry in the TaskRepository marking
the final state of the task.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 18

3. @FailedTask - prior to the @AfterTask method being invoked when an unhandled exception is
thrown by the task.

 public class MyBean {

 @BeforeTask

 public void methodA(TaskExecution taskExecution) {

 }

 @AfterTask

 public void methodB(TaskExecution taskExecution) {

 }

 @FailedTask

 public void methodC(TaskExecution taskExecution, Throwable throwable) {

 }

}

Part IV. Batch
This section goes into more detail about Spring Cloud Task’s integrations with Spring Batch. Tracking the
association between a job execution and the task it was executed within as well as remote partitioning
via Spring Cloud Deployer are all covered within this section.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 20

9. Associating A Job Execution To The Task In
Which It Was Executed

Spring Boot provides facilities for the execution of batch jobs easily within an über-jar. Spring Boot’s
support of this functionality allows for a developer to execute multiple batch jobs within that execution.
Spring Cloud Task provides the ability to associate the execution of a job (a job execution) with a task’s
execution so that one can be traced back to the other.

This functionality is accomplished by using the TaskBatchExecutionListener. By default, this
listener is auto configured in any context that has both a Spring Batch Job configured (via having a bean
of type Job defined in the context) and the spring-cloud-task-batch jar is available within the classpath.
The listener will be injected into all jobs.

9.1 Overriding the TaskBatchExecutionListener

To prevent the listener from being injected into any batch jobs within the current context, the
autoconfiguration can be disabled via standard Spring Boot mechanisms.

To only have the listener injected into particular jobs within the context, the
batchTaskExecutionListenerBeanPostProcessor may be overridden and a list of job bean ids
can be provided:

public TaskBatchExecutionListenerBeanPostProcessor batchTaskExecutionListenerBeanPostProcessor() {

 TaskBatchExecutionListenerBeanPostProcessor postProcessor =

 new TaskBatchExecutionListenerBeanPostProcessor();

 postProcessor.setJobNames(Arrays.asList(new String[] {"job1", "job2"}));

 return postProcessor;

}

Note

A sample batch application can be found in the samples module of the Spring Cloud Task Project
here.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-job

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 21

10. Remote Partitioning

Spring Cloud Deployer provides facilities for launching Spring Boot based applications on most
cloud infrastructures. The DeployerPartitionHandler and DeployerStepExecutionHandler
delegate the launching of worker step executions to Spring Cloud Deployer.

To configure the DeployerStepExecutionHandler, a Resource representing the Spring Boot
über-jar to be executed, a TaskLauncher, and a JobExplorer are all required. You can configure
any environment properties as well as the max number of workers to be executing at once, the interval
to poll for the results (defaults to 10 seconds), and a timeout (defaults to -1 or no timeout). An example
of configuring this PartitionHandler would look like the following:

@Bean

public PartitionHandler partitionHandler(TaskLauncher taskLauncher,

 JobExplorer jobExplorer) throws Exception {

 MavenProperties mavenProperties = new MavenProperties();

 mavenProperties.setRemoteRepositories(new HashMap<>(Collections.singletonMap("springRepo",

 new MavenProperties.RemoteRepository(repository))));

 Resource resource =

 MavenResource.parse(String.format("%s:%s:%s",

 "io.spring.cloud",

 "partitioned-batch-job",

 "1.1.0.RC1"), mavenProperties);

 DeployerPartitionHandler partitionHandler =

 new DeployerPartitionHandler(taskLauncher, jobExplorer, resource, "workerStep");

 List<String> commandLineArgs = new ArrayList<>(3);

 commandLineArgs.add("--spring.profiles.active=worker");

 commandLineArgs.add("--spring.cloud.task.initialize.enable=false");

 commandLineArgs.add("--spring.batch.initializer.enabled=false");

 partitionHandler.setCommandLineArgsProvider(new PassThroughCommandLineArgsProvider(commandLineArgs));

 partitionHandler.setEnvironmentVariablesProvider(new NoOpEnvironmentVariablesProvider());

 partitionHandler.setMaxWorkers(2);

 partitionHandler.setApplicationName("PartitionedBatchJobTask");

 return partitionHandler;

}

Note

When passing environment variables to partitions, each partition may be on a different machine
with a different environment settings. So only pass those that are required.

The Resource to be executed is expected to be a Spring Boot über-jar with a
DeployerStepExecutionHandler configured as a CommandLineRunner in the current context.
The repository enumerated in the example above should be the location of the remote repository
from which the über-jar is located. Both the master and slave are expected to have visibility
into the same data store being used as the job repository and task repository. Once the
underlying infrastructure has bootstrapped the Spring Boot jar and Spring Boot has launched the
DeployerStepExecutionHandler, the step handler will execute the Step requested. An example
of configuring the DefaultStepExecutionHandler is show below:

@Bean

public DeployerStepExecutionHandler stepExecutionHandler(JobExplorer jobExplorer) {

 DeployerStepExecutionHandler handler =

 new DeployerStepExecutionHandler(this.context, jobExplorer, this.jobRepository);

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 22

 return handler;

}

Note

A sample remote partition application can be found in the samples module of the Spring Cloud
Task Project here.

10.1 Notes on developing a batch partitioned app for the Yarn
platform

• When deploying partitioned apps on the Yarn platform be sure to use the following dependency for
the Spring Cloud Yarn Deployer (with a version 1.0.2 or higher):

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-deployer-yarn</artifactId>

</dependency>

• Add the following dependency to the dependency management for a transient dependency required
by Yarn:

<dependencyManagement>

 <dependencies>

...

 <dependency>

 <groupId>com.google.guava</groupId>

 <artifactId>guava</artifactId>

 <version>18.0</version>

 </dependency>

 </dependencies>

...

</dependencyManagement>

• Also add the following property to your application.properties:
spring.yarn.container.keepContextAlive=false.

• When setting up environment variables for the partitions in the PartitionHandler it is recommended
that you do not copy the current working environment properties.

10.2 Notes on developing a batch partitioned app for the
Kubernetes platform

• When deploying partitioned apps on the Kubernetes platform be sure to use the following dependency
for the Spring Cloud Kubernetes Deployer:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-deployer-kubernetes</artifactId>

</dependency>

• Application name for the task application and its partitions need to follow the following regex pattern
[a-z0-9]([-a-z0-9]*[a-z0-9]). Else an exception will be thrown.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/partitioned-batch-job

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 23

10.3 Notes on developing a batch partitioned app for the
Mesos platform

• When deploying partitioned apps on the Mesos platform be sure to use the following dependency for
the Spring Cloud Mesos Deployer:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-deployer-mesos</artifactId>

</dependency>

• When configuring the partition handler, do not add any command line arguments to the
CommandLineArgsProvider. This is due to Chronos adding the command line args to the Mesos
ID. Thus when launching the partition on Mesos this can cause the partition to fail to start if command
line arg contains characters such as / or :.

10.4 Notes on developing a batch partitioned app for the Cloud
Foundry platform

• When deploying partitioned apps on the Cloud Foundry platform be sure to use the following
dependencies for the Spring Cloud Cloud Foundry Deployer:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-deployer-cloudfoundry</artifactId>

</dependency>

<dependency>

 <groupId>io.projectreactor</groupId>

 <artifactId>reactor-core</artifactId>

 <version>3.0.2.RELEASE</version>

</dependency>

<dependency>

 <groupId>io.projectreactor.ipc</groupId>

 <artifactId>reactor-netty</artifactId>

 <version>0.5.1.RELEASE</version>

</dependency>

• When configuring the partition handler, Cloud Foundry Deployment environment variables need to be
established so that the partition handler can start the partitions. The following list shows the required
environment variables:

• spring_cloud_deployer_cloudfoundry_url

• spring_cloud_deployer_cloudfoundry_org

• spring_cloud_deployer_cloudfoundry_space

• spring_cloud_deployer_cloudfoundry_domain

• spring_cloud_deployer_cloudfoundry_username

• spring_cloud_deployer_cloudfoundry_password

• spring_cloud_deployer_cloudfoundry_services

• spring_cloud_deployer_cloudfoundry_taskTimeout

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 24

An example set of deployment environment variables for a partitioned task that uses a mysql database
service would look something like this:

spring_cloud_deployer_cloudfoundry_url=https://api.local.pcfdev.io

spring_cloud_deployer_cloudfoundry_org=pcfdev-org

spring_cloud_deployer_cloudfoundry_space=pcfdev-space

spring_cloud_deployer_cloudfoundry_domain=local.pcfdev.io

spring_cloud_deployer_cloudfoundry_username=admin

spring_cloud_deployer_cloudfoundry_password=admin

spring_cloud_deployer_cloudfoundry_services=mysql

spring_cloud_deployer_cloudfoundry_taskTimeout=300

Note

When using PCF-Dev the following environment variable is also required:
spring_cloud_deployer_cloudfoundry_skipSslValidation=true

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 25

11. Batch Informational Messages

Spring Cloud Task provides the ability for batch jobs to emit informational messages. This is covered
in detail in the section Spring Batch Events.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 26

12. Batch Job Exit Codes

As discussed before Spring Cloud Task applications support the ability to record the exit code of a task
execution. However in cases where a user is running a Spring Batch Job within a task, regardless of
how the Batch Job Execution completes the result of the task will always be zero when using default
Batch/Boot behavior. Keep in mind that a task is a boot application and the exit code returned from the
task is the same as a boot application. So to have your task return the exit code based on the result of
the batch job execution, you will need to write your own CommandLineRunner.

Part V. Spring Cloud
Stream Integration

A task by itself can be useful, but it’s the integration of a task into a larger ecosystem that allows it to
be useful for more complex processing and orchestration. This section covers the integration options
for Spring Cloud Task and Spring Cloud Stream.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 28

13. Launching a task from a Spring Cloud Stream

Allows a user to launch tasks from a stream. This is done by creating a sink that listens for a message
that contains a TaskLaunchRequest as its payload. The TaskLaunchRequest contains:

• uri - to the task artifact that is to be executed.

• applicationName - the name that will be associated with the task. If no applicationName is set the
TaskLaunchRequest will generate a task name comprised of the following: Task-<UUID>

• commandLineArguments - a list containing the command line arguments for the task.

• environmentProperties - a map containing the environment variables to be used by the task

• deploymentProperties - a map containing the properties that will be used by the deployer to deploy
the task.

Note

If the payload is of a different type then the sink will throw an exception.

For example a stream can be created that has a processor that takes in data from a http source and
creates a GenericMessage that contains the TaskLaunchRequest and sends the message to its
output channel. The task sink would then receive the message from its input channnel and then launch
the task.

To create a taskSink a user needs to only create a spring boot app that includes the following annotation
EnableTaskLauncher. The code would look something like this:

@SpringBootApplication

@EnableTaskLauncher

public class TaskSinkApplication {

 public static void main(String[] args) {

 SpringApplication.run(TaskSinkApplication.class, args);

 }

}

A sample Sink and Processor have been made available to you in the samples module of the Spring
Cloud Task project. To install these samples into your local maven repository execute a maven build
from the spring-cloud-task-samples directory with the property skipInstall set to false. For
example: mvn clean install.

Note

The maven.remoteRepositories.springRepo.url property will need to be set to the location of the
remote repository from which the über-jar is located. If not set, then there will be no remote
repository, so it will rely upon the local repository only.

13.1 Spring Cloud Data Flow

To create a stream in Spring Cloud Data Flow first we would want to register the Task Sink Application
we created. In the example below we are registering the Processor and Sink sample applications using
the Spring Cloud Data Flow shell:

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 29

app register --name taskSink --type sink --uri maven://io.spring.cloud:tasksink:<version>

app register --name taskProcessor --type processor --uri maven:io.spring.cloud:taskprocessor:<version>

Creating a stream from the Spring Cloud Data Flow shell would look like this:

stream create foo --definition "http --server.port=9000|taskProcessor|taskSink" --deploy

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 30

14. Spring Cloud Task Events

Spring Cloud Task provides the ability to emit events via Spring Cloud Stream channel when the task is
executed via a Spring Cloud Stream channel. A task listener is used to publish the TaskExecution on
a message channel named task-events. This feature is autowired into any task that has spring-
cloud-stream on its classpath in addition to the spring-cloud-stream and a task defined.

Note

To disable the event emitting listener, set the property spring.cloud.task.events.enabled
to false.

With the appropriate classpath defined, a simple task like this:

@SpringBootApplication

@EnableTask

public class TaskEventsApplication {

 public static void main(String[] args) {

 SpringApplication.run(TaskEventsApplication.class, args);

 }

 @Configuration

 public static class TaskConfiguration {

 @Bean

 public CommandLineRunner commandLineRunner() {

 return new CommandLineRunner() {

 @Override

 public void run(String... args) throws Exception {

 System.out.println("The CommandLineRunner was executed");

 }

 };

 }

 }

}

will emit the TaskExecution as an event on the task-events channel (both at the start and end
of the task).

Note

Configuration of the content type may be required via --

spring.cloud.stream.bindings.task-events.contentType=<CONTENT_TYPE> if
the processor or sink downstream does not have the spring-cloud-task-core jar on its classpath.

Note

A binder implementation is also required to be on the classpath.

Note

A sample task event application can be found in the samples module of the Spring Cloud Task
Project here.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/task-events

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 31

14.1 Disabling Specific Task Events

To task events, the spring.cloud.task.events.enabled property can be set to false.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 32

15. Spring Batch Events

When executing a Spring Batch job via a task, Spring Cloud Task can be configured to emit informational
messages based on the Spring Batch listeners available in Spring Batch. Specifically the following
Spring Batch listeners are autoconfigured into each batch job and emit messages on the associated
Spring Cloud Stream channels when run via Spring Cloud Task:

• JobExecutionListener - job-execution-events

• StepExecutionListener - step-execution-events

• ChunkListener - chunk-events

• ItemReadListener - item-read-events

• ItemProcessListener - item-process-events

• ItemWriteListener - item-write-events

• SkipListener - skip-events

The above listeners are autoconfigured into any AbstractJob when the appropriate beans exist in the
context (a Job and a TaskLifecycleListener). Configuration to listen to these events is handled
the same way binding to any other Spring Cloud Stream channel is done. Our task (the one running the
batch job) serves as a Source, with the listening applications serving as either a Processor or Sink.

An example could be to have an application listening to the job-execution-events channel for
the start and stop of a job. To configure the listening application, you’d configure the input to be job-
execution-events as follows

spring.cloud.stream.bindings.input.destination=job-execution-events

Note

A binder implementation is also required to be on the classpath.

Note

A sample batch event application can be found in the samples module of the Spring Cloud Task
Project here.

15.1 Sending Batch Events to different channels

One of the options that Spring Cloud Task offers for batch events is the ability to alter the channel
to which a specific listener can emit its messages. To do this use the following configuration:
spring.cloud.stream.bindings.<the channel>.destination=<new destination>. For
example: If StepExecutionListener needs to emit its messages to another channel my-step-
execution-events instead of the default step-execution-events the following configuration can
be added:

spring.cloud.stream.bindings.step-execution-events.destination=my-step-execution-events`

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-events

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 33

15.2 Disabling Batch Events

To disable the all batch event listener functionality, use the following configuration:

spring.cloud.task.batch.events.enabled=false

To disable a specific batch event use the following configuration:
spring.cloud.task.events.<batch event listener>.enabled=false:

spring.cloud.task.batch.events.job-execution.enabled=false

spring.cloud.task.batch.events.step-execution.enabled=false

spring.cloud.task.batch.events.chunk.enabled=false

spring.cloud.task.batch.events.item-read.enabled=false

spring.cloud.task.batch.events.item-process.enabled=false

spring.cloud.task.batch.events.item-write.enabled=false

spring.cloud.task.batch.events.skip.enabled=false

Part VI. Appendices

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 35

16. Task repository schema

This appendix provides an ERD for the database schema used in the task repository.

Spring Cloud Task Reference Guide

1.1.0.RC1 Spring Cloud Task 36

17. Building this documentation

This project uses Maven to generate this documentation. To generate it for yourself, execute the
command: $./mvnw clean package -P full.

	Spring Cloud Task Reference Guide
	Table of Contents
	Part I. Preface
	1. About the documentation
	2. Getting help
	3. First Steps

	Part II. Getting started
	4. Introducing Spring Cloud Task
	5. System Requirements
	5.1 Database Requirements

	6. Developing your first Spring Cloud Task application
	6.1 Creating the POM
	6.2 Adding classpath dependencies
	6.3 Writing the code
	The @EnableTask annotation
	The main method
	The CommandLineRunner

	6.4 Running the example

	Part III. Features
	7. The lifecycle of a Spring Cloud Task
	7.1 The TaskExecution
	7.2 Mapping Exit Codes

	8. Configuration
	8.1 DataSource
	8.2 Externally Generated Task Id
	8.3 External Task Id
	8.4 TaskConfigurer
	8.5 Task Name
	8.6 Task Execution Listener

	Part IV. Batch
	9. Associating A Job Execution To The Task In Which It Was Executed
	9.1 Overriding the TaskBatchExecutionListener

	10. Remote Partitioning
	10.1 Notes on developing a batch partitioned app for the Yarn platform
	10.2 Notes on developing a batch partitioned app for the Kubernetes platform
	10.3 Notes on developing a batch partitioned app for the Mesos platform
	10.4 Notes on developing a batch partitioned app for the Cloud Foundry platform

	11. Batch Informational Messages
	12. Batch Job Exit Codes

	Part V. Spring Cloud Stream Integration
	13. Launching a task from a Spring Cloud Stream
	13.1 Spring Cloud Data Flow

	14. Spring Cloud Task Events
	14.1 Disabling Specific Task Events

	15. Spring Batch Events
	15.1 Sending Batch Events to different channels
	15.2 Disabling Batch Events

	Part VI. Appendices
	16. Task repository schema
	17. Building this documentation

