Spring Cloud Task Reference Guide

1.1.0.RC1

Copyright © 2015-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Task Reference Guide

Table of Contents

I o 1= = Lo = PP 1
1. About the dOCUMENTALIONccueiiii e et e e e et e e e e en s 2

22 €1~ 111 To T 1Yo 3

T =Y B (=7 SRR 4

| eT= 1] o To] r= T (=T PP TTR PP 5
4. Introducing SPring Cloud TasKcoouiiiiiii e 6

5. System REQUITEIMENTSttt et et e et e e e e e et e e ea e eanns 7

5.1. Database REQUITEMENTSco.uuiiiiiiiiee it e s 7

6. Developing your first Spring Cloud Task applicationccooeviiiiiiiiiiii e, 8

6.1. Creating the POM ...ttt e aaa e 8

6.2. Adding classpath dependenCiescoouuuiiiiiiiiieiiii e 9

LIRS VLY 41 1] o ¢ =T o7 o = 9

The @EnableTask annotationco.ouiuiiiiiiii e e 10

The Main Method ... e 10

The CommandLINERUNNETiiiiii et e e eaaens 10

6.4. RUNNING the @XamMPIE ... e e 11

L T ([PP 13
7. The lifecycle of a Spring Cloud Taskc..iiiiiiii e 14

7.1, The TASKEXECULION ...ttt et e e e e et e et e e e e e e aeaaaas 14

7.2. MappiNg EXIt COUESccouuiiiiiiiiiiiii et et e e 15

ST 0] a1 T U= 1 o IS 16

S T B = 12 NS0 U of PP TP 16

8.2. Externally Generated Task 10oooiiiiiiiiiii e 16

8.3. EXternal TasK 10 ...couuniiiiiiiee e 16

8.4, TASKCONTIGUIET ...ttt e e e e e et e e e aees 16

8.5, TASK NAME ..o et e 17

8.6. Task EXECULION LISTENETiiiiiiiiiiiii et e e e eaees 17

YR 7 1 o] LU TP UPTRUPTP 19
9. Associating A Job Execution To The Task In Which It Was Executedccoovvvvneeennnn. 20

9.1. Overriding the TaskBatChEXeCUtiONLIStENErcccvvuiiiiieiii e 20

10. RemMOte PArtitiONING ... cceuuiiiieiiie ettt et e e et et e et e et e e et e e e e eaa s 21
10.1. Notes on developing a batch partitioned app for the Yarn platform 22

10.2. Notes on developing a batch partitioned app for the Kubernetes platform 22

10.3. Notes on developing a batch partitioned app for the Mesos platform 23

10.4. Notes on developing a batch partitioned app for the Cloud Foundry platform 23

11. Batch Informational MESSAQESccuuuiireiiiiiieiii et e e e e e 25

12. BatCh JOD EXIt COURSieniiiiiiii ettt e e e e e aeanns 26

V. Spring Cloud Stream INEGrationiveieuiiiiiiiii et e et eeeaia e eens 27
13. Launching a task from a Spring Cloud Streamcocouiiiiiiiieiieeie e 28
13.1. Spring Cloud Data FIOWccuuiiiiniiiiee e 28

14. Spring Cloud Task EVENLScooiiiiiiiii e e 30
14.1. Disabling Specific Task EVENTSc..oiiiiiiiiiiiiie e e 31

15. Spring BatCh BVENISoueii e e e 32
15.1. Sending Batch Events to different channels ..., 32

15.2. Disabling BatCh EVENLSccuuiiiii i e e e e e e e e e e e e e e e eaneaees 33

RV Y o] o 11 o To [ol =2 TSP UPRPPPI 34
16. Task repoSitory SCHEIMAuuiiiiii e 35

1.1.0.RC1 Spring Cloud Task iii

Spring Cloud Task Reference Guide

17. Building this documentation

1.1.0.RC1

Spring Cloud Task

Part |. Preface

This section provides a brief overview of the Spring Cloud Task reference documentation. Think of it as
a map for the rest of the document. You can read this reference guide in a linear fashion, or you can
skip sections if something doesn't interest you.

Spring Cloud Task Reference Guide

1. About the documentation

The Spring Cloud Task reference guide is available as html, pdf and epub documents. The latest copy
is available at docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided that

you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

1.1.0.RC1 Spring Cloud Task 2

http://docs.spring.io/spring-cloud-task/docs/{version}/reference/html
http://docs.spring.io/spring-cloud-task/docs/{version}/reference/pdf/spring-cloud-task-reference.pdf
http://docs.spring.io/spring-cloud-task/docs/{version}/reference/epub/spring-cloud-task-reference.epub
http://docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/

Spring Cloud Task Reference Guide

2. Getting help

Having trouble with Spring Cloud Task, We'd like to help!

» Ask a question - we monitor stackoverflow.com for questions tagged with spri ng- cl oud- t ask.

» Report bugs with Spring Cloud Task at github.com/spring-cloud/spring-cloud-task/issues.

Note

All of Spring Cloud Task is open source, including the documentation! If you find problems with
the docs; or if you just want to improve them, please get involved.

1.1.0.RC1 Spring Cloud Task

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-task
https://github.com/spring-cloud/spring-cloud-task/issues
http://github.com/spring-cloud/spring-cloud-task/tree/

Spring Cloud Task Reference Guide

3. First Steps

If you're just getting started with Spring Cloud Task, or 'Spring' in general, this is the place to start!

» From scratch: Overview | Requirements

e Tutorial: First application

e Running your example: Running your application

1.1.0.RC1 Spring Cloud Task

Part Il. Getting started

If you're just getting started with Spring Cloud Task, this is the section for you! Here we answer the basic
“what?”, “how?” and “why?” questions. You'll find a gentle introduction to Spring Cloud Task. We'll then
build our first Spring Cloud Task application, discussing some core principles as we go.

Spring Cloud Task Reference Guide

4. Introducing Spring Cloud Task

Spring Cloud Task makes it easy to create short lived microservices. We provide capabilities that allow
short lived JVM processes to be executed on demand in a production environment.

1.1.0.RC1 Spring Cloud Task 6

Spring Cloud Task Reference Guide

5. System Requirements

You need Java installed (Java 7 or better, we recommend Java 8) and to build you need to have Maven
installed as well.

5.1 Database Requirements

Spring Cloud Task uses a relational database to store the results of an executed task. While you
can begin developing a task without a database (the status of the task is logged as part of the task
repository’s updates), for production environments, you'll want to utilize a supported database. Below

is a list of the ones currently supported:

DB2

H2
HSQLDB
MySql
Oracle
Postgres

SqlServer

1.1.0.RC1

Spring Cloud Task

Spring Cloud Task Reference Guide

6. Developing your first Spring Cloud Task
application

A good place to start is with a simple "Hello World!" application so we’ll create the Spring Cloud Task
equivalent to highlight the features of the framework. We’ll use Apache Maven as a build tool for this
project since most IDEs have good support for it.

Note

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you're
looking to solve a specific problem; check there first. You can shortcut the steps below by going to
start.spring.io and creating a new project. This will automatically generate a new project structure
so that you can start coding right the way. Check the documentation for more details.

Before we begin, open a terminal to check that you have valid versions of Java and Maven installed.

$ java -version

java version "1.8.0_31"

Java(TM SE Runtine Environnment (build 1.8.0_31-b13)

Java Hot Spot (TM 64-Bit Server VM (build 25.31-b07, m xed node)

$ mn -v

Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8f df 4; 2014- 08- 11T15: 58: 10- 05: 00)
Maven home: /usr/local/Cellar/maven/3.2.3/1ibexec

Java version: 1.8.0_31, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume you have
created a suitable folder and that it is your "current directory".

6.1 Creating the POM

We need to start by creating a Maven pom xmi file. The pom xmi is the recipe that will be used to build
your project. Open your favorite text editor and add the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nmyproject</artifactld>
<packagi ng>j ar </ packagi ng>

<versi on>0. 0. 1- SNAPSHOT</ ver si on>

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<versi on>1. 3. 3. RELEASE</ ver si on>

</ par ent >

<properties>
<start-class>com exanpl e. Sanpl eTask</start-cl ass>
</ properties>

1.1.0.RC1 Spring Cloud Task 8

Spring Cloud Task Reference Guide

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ranewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter</artifactld>
</ dependency>

</ dependenci es>

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. spri ngf r amewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

This should give you a working build. You can test it out by running nvn package (you can ignore the
"jar will be empty - no content was marked for inclusion!" warning for now).

Note

At this point you could import the project into an IDE (most modern Java IDE’s include built-in
support for Maven). For simplicity we will continue to use a plain text editor for this example.

6.2 Adding classpath dependencies

A Spring Cloud Task is made up of a Spring Boot application that is expected to end. In our POM above,
we created the shell of a Spring Boot application from a dependency perspective by setting our parent
to use the spri ng- boot - starter-parent.

Spring Boot provides a number of additional "Starter POMs". Some of which are appropriate for use
within tasks (spri ng- boot - starter-batch, spring-boot-starter-jdbc, etc) and some may
not be (‘spring-boot-starter-web" is probably not going to be used in a task). The indicator of if a starter
makes sense or not comes down to if the resulting application will end (batch based applications typically
end, the spri ng-boot - st art er - web dependency bootstraps a servlet container which probably
wont").

For this example, we’'ll only need to add a single additional dependency, the one for Spring Cloud Task
itself:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-task-core</artifactld>
<ver si on>1. 0. 0. RELEASE</ ver si on>

</ dependency>

6.3 Writing the code

To finish our application, we need to create a single Java file. Maven will compile the sources from sr ¢/
mai n/ j ava by default so you need to create that folder structure. Then add a file named sr ¢/ mai n/
j aval com exanpl e/ Sanpl eTask. j ava:

package com exanpl e

i nport org.springfranework. boot . *

i mport org.springframework. boot . aut oconfi gure. Spri ngBoot Appl i cation
i nport org.springframework. cl oud. t ask. confi guration. Enabl eTask

i nport org.springframework. cont ext. annot ati on. Bean

1.1.0.RC1 Spring Cloud Task 9

Spring Cloud Task Reference Guide

@pr i ngBoot Appl i cati on
@nabl eTask
public class Sanpl eTask {

@Bean
publ i ¢ CommandLi neRunner conmandLi neRunner () {
return new Hel | oWor I dCommandLi neRunner () ;

}

public static void main(String[] args) {
SpringAppl i cati on. run(Sanpl eTask. cl ass, args);
}

public static class Hell owrl dCommandLi neRunner i npl ements ConmandLi neRunner {

@verride
public void run(String... strings) throws Exception {
Systemout.printin("Hello World!");
}
}
}

While it may not look like much, quite a bit is going on. To read more about the Spring Boot specifics, take
a look at their reference documentation here: http://docs.spring.io/spring-boot/docs/current/reference/
html/

We'll also need to create an appl i cati on. propertiesinsrc/ main/ resources. We'll configure
two properties in it: the application name (which is translated to the task name) and we’ll set the logging
for spring cloud task to DEBUG so that we can see what’s going on:

| oggi ng. | evel . org. spri ngf ramewor k. cl oud. t ask=DEBUG
spring. application. nane=hel | oWor | d

The @EnableTask annotation

The first non boot annotation in our example is the @nabl eTask annotation. This class level
annotation tells Spring Cloud Task to bootstrap it's functionality. This occurs by importing an additional
configuration class, Si npl eTaskConfi gur ati on by default. This additional configuration registers
the TaskReposi t ory and the infrastructure for its use.

Out of the box, the TaskReposi t ory will use an in memory Map to record the results of a task.
Obviously this isn’t a practical solution for a production environment since the Map goes away once the
task ends. However, for a quick getting started experience we use this as a default as well as echoing
to the logs what is being updated in that repository. Later in this documentation we’ll cover how to
customize the configuration of the pieces provided by Spring Cloud Task.

When our sample application is run, Spring Boot will launch our Hel | oWor | dConmmandLi neRunner
outputting our "Hello World!" message to standard out. The TaskLi f ecyceLi st ener will record the
start of the task and the end of the task in the repository.

The main method

The main method serves as the entry point to any java application. Our main method delegates to Spring
Boot's Spri ngAppl i cati on class. You can read more about it in the Spring Boot documentation.

The CommandLineRunner

In Spring, there are many ways to bootstrap an application’s logic. Spring Boot provides a convenient
method of doing so in an organized manner via their * Runner interfaces (CommandLi neRunner or
Appl i cati onRunner). A well behaved task will bootstrap any logic via one of these two runners.

1.1.0.RC1 Spring Cloud Task 10

http://docs.spring.io/spring-boot/docs/current/reference/html/
http://docs.spring.io/spring-boot/docs/current/reference/html/

Spring Cloud Task Reference Guide

The lifecycle of a task is considered from before the * Runner #r un methods are executed to once they
are all complete. Spring Boot allows an application to use multiple * Runner implementation and Spring
Cloud Task doesn’t attempt to impede on this convention.

Note

Any processing bootstrapped from mechanisms other than a ConmmandLi neRunner or
Appl i cati onRunner (using I nitializi ngBean#afterProperti esSet for example) will
not be recorded by Spring Cloud Task.

6.4 Running the example

At this point, your application should work. Since this application is Spring Boot based, we can run it
from the command line via the command $ nvn spri ng- boot : r un from the root of our applicaiton:

$ nmvn cl ean spring-boot:run

....... . . . (Maven | og output here)

NN (JD)_ v vy
CON___ 1 "_ 1 [A VA T U U
LY\ W B A B G D B B
S U Iy W B A By
| | | __1=_1_1_1
Spring Boot :: (v1. 3. 3. RELEASE)
2016- 01-25 11: 08:10.183 |NFO 12943 --- [mai n] com exanpl e. Sanpl eTask

Starting Sanpl eTask on M chael s- MacBook-Pro-2.1ocal with PID 12943 (/Users/ mm nel | a/ Docunent s/
I ntelliJWrkspace/ spring-cl oud-task-exanpl e/target/classes started by mmnella in /Users/ minellal
Docunent s/ I ntel | i JWor kspace/ spri ng- cl oud-t ask- exanpl e)

2016-01-25 11: 08:10.185 |NFO 12943 --- [mai n] com exanpl e. Sanpl eTask : No
active profile set, falling back to default profiles: default
2016- 01-25 11: 08:10.226 |NFO 12943 --- [mai n] s.c.a.Annotati onConfi gApplicati onCont ext

Ref reshi ng org. springframewor k. cont ext. annot ati on. Annot ati onConfi gAppl i cati onCont ext @a2c3676: startup
date [Mon Jan 25 11:08:10 CST 2016]; root of context hierarchy

2016- 01-25 11:08:11.051 | NFO 12943 --- | mai n] o.s.j.e.a.Annotati onMBeanExporter
Regi stering beans for JMX exposure on startup

2016-01-25 11: 08:11. 065 |NFO 12943 --- [main] o.s.c.t.r.support.Sinpl eTaskRepository
Creating: TaskExecution{executionld=0, external ExecutionlD="null', exitCode=0, taskName='application',
start Ti me=Mon Jan 25 11:08: 11 CST 2016, endTi me=null, statusCode='null', exitMessage="null",
argunents=[]}

Hell o Worl d!

2016-01-25 11: 08:11.071 |NFO 12943 --- [mai n] com exanpl e. Sanpl eTask
Started Sanpl eTask in 1.095 seconds (JVMrunning for 3.826)

2016- 01-25 11: 08:11.220 |NFO 12943 --- [Thread- 1] s.c.a.Annotati onConfi gAppl i cati onCont ext

Cl osi ng org. springframewor k. cont ext.annot ati on. Annot ati onConfi gAppl i cati onCont ext @a2c3676: startup
date [Mon Jan 25 11:08:10 CST 2016]; root of context hierarchy

2016- 01-25 11:08:11.222 | NFO 12943 --- | Thread-1] o.s.c.t.r.support. Sinpl eTaskRepository
Updati ng: TaskExecuti on{executionl d=0, external ExecutionlD="null', exitCode=0, taskNanme='application',
start Ti nre=Mon Jan 25 11:08:11 CST 2016, endTi ne=Mon Jan 25 11:08:11 CST 2016, statusCode='null"',
exi t Message='nul | ', argunents=[]}

2016- 01-25 11:08:11.222 |NFO 12943 --- [Thread-1] o.s.j.e.a.Annotati onMBeanExporter
Unregi stering JMX-exposed beans on shut down

If you naotice, there are three lines of interest in the above output:
* Si npl eTaskReposi t ory logged out the creation of the entry in the TaskReposi t ory.
» The execution of our CommandLi neRunner , demonstrated by the "Hello World!" output.

» Si npl eTaskReposi t ory logging the completion of the task in the TaskReposi t ory.

1.1.0.RC1 Spring Cloud Task 11

Spring Cloud Task Reference Guide

Note

A simple task application can be found in the samples module of the Spring Cloud Task Project
here.

1.1.0.RC1 Spring Cloud Task

12

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/timestamp

Part |ll. Features

This section goes into more detail about Spring Cloud Task. How to use it, how to configure it, as well
as the appropriate extension points are all covered in this section.

Spring Cloud Task Reference Guide

7. The lifecycle of a Spring Cloud Task

In most cases, the modern cloud environment is designed around the execution of processes that are
not expected to end. If they do, they are typically restarted. While most platforms do have some method
to execute a process that isn't restarted when it ends, the results of that execution are typically not
maintained in a consumable way. Spring Cloud Task brings the ability to execute short lived processes
in an environment and record the results. This allows for a microservices architecture around short lived
processes as well as longer running services via the integration of tasks by messages.

While this functionality is useful in a cloud environment, the same issues can arise in a traditional
deployment model as well. When executing Spring Boot applications via a scheduler like cron, it can be
useful to be able to monitor the results of the application after it's completion.

A Spring Cloud Task takes the approach that a Spring Boot application can have a start and an end
and still be successful. Batch applications are just one example of where short lived processes can be
helpful. Spring Cloud Task records lifecycle events of a given task.

The lifecycle consists of a single task execution. This is a physical execution of a Spring Boot application
configured to be a task (annotated with the @nabl eTask annotation).

At the beginning of a task (before any CommandLi neRunner or ApplicationRunner
implementations have been executed, an entry in the TaskReposi t ory is created recording the start
event. This event is triggered via Smart Li f ecycl e#st art being triggered by Spring Framework.
This indicates to the system that all beans are ready for use and is before the execution of any of the
CommandLi neRunner or Appl i cati onRunner implementations provided by Spring Boot.

Note

The recording of a task will only occur upon the successful bootstrapping of an
Appl i cati onCont ext . If the context fails to bootstrap at all, the task’s execution will not be
recorded.

Upon completion of all of the *Runner#run calls from Spring Boot or the failure of an
Appl i cati onCont ext (indicated via a Appl i cat i onFai | edEvent), the task execution is updated
in the repository with the results.

Note

Atthe completion of a task (all * Runner #r un methods are called and the task repository has been
updated) the Appl i cati onCont ext will be closed by default. This behavior can be overriden
by setting the property spri ng. cl oud. t ask. cl osecont ext _enabl e to false.

7.1 The TaskExecution

The information stored in the TaskReposi t or y is modeled in the TaskExecut i on class and consists
of the following information:

Field Description

executionid The unique id for the task’s execution.

1.1.0.RC1 Spring Cloud Task 14

Spring Cloud Task Reference Guide

Field Description

exi t Code The exit code generated from an
Exi t CodeExcept i onMapper implementation.
If there is no exit code generated, but an
Appl i cati onFai | edEvent is thrown, 1 is set.
Otherwise, it's assumed to be 0.

t askNane The name for the task as determined by the
configured TaskNaneResol ver.

startTi me The time the task was started as indicated by the
Smart Li fecycl e##start call.

endTi me The time the task was completed as indicated by
the Appl i cati onReadyEvent.

exi t Message Any information available at the time of
exit. This can programatically be set via a
TaskExecuti onLi st ener.

error Message If an exception is the cause of the
end of the task (as indicated via an
Appl i cati onFai | edEvent), the stack trace
for that exception will be stored here.

argunents A Li st of the string command line arguments
as they were passed into the executable boot
application.

7.2 Mapping Exit Codes

When a task completes, it will want to return an exit code to the OS. If we take a look at our original
example, we can see that we are not controlling that aspect of our application. So if an exception is
thrown, the JVM will return a code that may or may not be of any use to you in the debugging of that.

As such, Spring Boot provides an interface, Exi t CodeExcept i onMapper that allows you to map
uncaught exceptions to exit codes. This allows you to be able to indicate at that level what went wrong.
Also, by mapping exit codes in this manner, Spring Cloud Task will record the exit code returned.

If the task is terminated with a SIG-INT or a SIG-TERM, the exit code will be zero unless otherwise
specified within the code.

Note

While the task is running the exit code will be stored as a null in the repository. Once complete
the appropriate exit code will be stored based on the guidelines enumerated above.

1.1.0.RC1 Spring Cloud Task 15

Spring Cloud Task Reference Guide

8. Configuration

Spring Cloud Task provides an out of the box configuration as defined in the
Def aul t TaskConfi gurer and Si npl eTaskConfi gurati on. This section will walk through the
defaults as well as how to customize Spring Cloud Task for your needs

8.1 DataSource

Spring Cloud Task utilizes a datasource for storing the results of task executions. By default, we provide
an in memory instance of H2 to provide a simple method of bootstrapping development. However, in a
production environment, you'll want to configure your own Dat aSour ce.

If your application utilizes only a single Dat aSour ce and that will serve as both your business schema
as well as the task repository, all you need to do is provide any Dat aSour ce (via Spring Boot's
configuration conventions is the easiest way). This will be automatically used by Spring Cloud Task for
the repository.

If your application utilizes more than one Dat aSour ce, you'll need to configure the task repository
with the appropriate Dat aSour ce. This customization can be done via an implementation of the
TaskConfi gurer.

8.2 Externally Generated Task Id

In some cases a user wants to allow for the time difference between when a task is requested and when
the infrastructure actually launches it. Spring Cloud Task allows a user to create a TaskExecution at the
time the task is requested. Then pass the execution ID of the generated TaskExecution to the task so
that it can update the TaskExecution through the task’s lifecycle.

The TaskExecution can be created by calling the createTaskExecution method on an
implementation of the TaskRepository that references the datastore storing the TaskExecutions.

In order to configure your Task to use a generated TaskExecutionld add the following property:

spring. cl oud. t ask. executi oni d=<yourt askl d>

8.3 External Task Id

Spring Cloud Task allows a user to store an external task Id for each TaskExecution. An example of
this would be a task id that is provided by Cloud Foundry when a task is launched on the platform. In
order to configure your Task to use a generated TaskExecutionld add the following property:

spring. cl oud. t ask. ext er nal - executi on-i d=<ext er nal Taskl d>

8.4 TaskConfigurer

The TaskConfi gurer is a strategy interface allowing for users to customize the way components
of Spring Cloud Task are configured. By default, we provide the Def aul t TaskConfi gurer that
provides logical defaults (Map based in memory components useful for development if no Dat aSour ce
is provided and JDBC based components if there is a Dat aSour ce available.

The TaskConf i gur er allows the configuration of three main components:

1.1.0.RC1 Spring Cloud Task 16

Spring Cloud Task Reference Guide

Component Description Default (provided by
Def aul t TaskConfi gurer)

TaskRepository The implementation of the Si npl eTaskRepository
TaskReposi t ory to be used.

TaskExpl orer The implementation of the Si mpl eTaskExpl or er
TaskExpl or er (a component

for read only access to the task

repository) to be used.

Pl at f or Mt ansact i onManageA transaction manager to be Dat aSour ceTr ansact i onManager
used when executing updates if a Dat aSour ce is used,
for tasks. Resour cel essTransact i onManager
if it is not.

8.5 Task Name

In most cases, the name of the task will be the application name as configured via Spring Boot. However,
there are some cases, where you may want to map the run of a task to a different name. Spring Data
Flow is an example of this (where you want the task to be run with the name of the task definition).
Because of this, we offer the ability to customize how the task is named via the TaskNanmeResol ver
interface.

By default, Spring Cloud Task provides the Si npl eTaskNanmeResol ver which will use the following
options (in order of precedence):

1. A Spring Boot property (configured any of the ways Spring Boot allows)
spring. cl oud. t ask. name.

2. The application name as resolved wusing Spring Boot's rules (obtained Vvia
Appl i cati onCont ext #get | d).

8.6 Task Execution Listener

Allows a user to register listeners for specific events that occur during the task lifecycle. This is done
by creating a class that implements the TaskExecutionListener interface. The class that implements the
TaskExecut i onLi st ener interface will be naotified for the following events:

1. onTaskSt ar t up - prior to the storing the TaskExecut i on into the TaskReposi t ory

2. onTaskEnd - prior to the updating of the TaskExecut i on entry in the TaskReposi t or y marking
the final state of the task.

3. onTaskFai | ed - prior to the onTaskEnd method being invoked when an unhandled exception is
thrown by the task.

Spring Cloud Task also allows a user add TaskExecut i on Listeners to methods within a bean by using
the following method annotations:

1. @Bef or eTask - prior to the storing the TaskExecut i on into the TaskReposi t ory

2. @\t er Task - prior to the updating of the TaskExecut i on entry in the TaskReposi t or y marking
the final state of the task.

1.1.0.RC1 Spring Cloud Task 17

Spring Cloud Task Reference Guide

. @ai | edTask - prior to the @\f t er Task method being invoked when an unhandled exception is
thrown by the task.

public class MyBean {

@Bef or eTask
public void met hodA(TaskExecution taskExecution) {

}

@\ t er Task
public void net hodB(TaskExecution taskExecution) {

}

@ai | edTask
public void nethodC(TaskExecution taskExecution, Throwable throwable) {

}

1.1.0.RC1 Spring Cloud Task 18

Part IV. Batch

This section goes into more detail about Spring Cloud Task’s integrations with Spring Batch. Tracking the
association between a job execution and the task it was executed within as well as remote partitioning
via Spring Cloud Deployer are all covered within this section.

Spring Cloud Task Reference Guide

9. Associating A Job Execution To The Task In
Which It Was Executed

Spring Boot provides facilities for the execution of batch jobs easily within an tber-jar. Spring Boot's
support of this functionality allows for a developer to execute multiple batch jobs within that execution.
Spring Cloud Task provides the ability to associate the execution of a job (a job execution) with a task’s
execution so that one can be traced back to the other.

This functionality is accomplished by using the TaskBat chExecuti onLi st ener. By default, this
listener is auto configured in any context that has both a Spring Batch Job configured (via having a bean
of type Job defined in the context) and the spring-cloud-task-batch jar is available within the classpath.
The listener will be injected into all jobs.

9.1 Overriding the TaskBatchExecutionListener

To prevent the listener from being injected into any batch jobs within the current context, the
autoconfiguration can be disabled via standard Spring Boot mechanisms.

To only have the Ilistener injected into particular jobs within the context, the
bat chTaskExecuti onLi st ener BeanPost Pr ocessor may be overridden and a list of job bean ids
can be provided:

publ i ¢ TaskBat chExecuti onLi st ener BeanPost Processor bat chTaskExecuti onLi st ener BeanPost Processor () {
TaskBat chExecut i onLi st ener BeanPost Processor post Processor =
new TaskBat chExecuti onLi st ener BeanPost Processor () ;

post Processor. set JobNanes(Arrays. asLi st(new String[] {"jobl", "job2"}));

return postProcessor;

}

Note

A sample batch application can be found in the samples module of the Spring Cloud Task Project
here.

1.1.0.RC1 Spring Cloud Task 20

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-job

Spring Cloud Task Reference Guide

10. Remote Partitioning

Spring Cloud Deployer provides facilities for launching Spring Boot based applications on most
cloud infrastructures. The Depl oyer Parti ti onHandl er and Depl oyer St epExecut i onHand! er
delegate the launching of worker step executions to Spring Cloud Deployer.

To configure the Depl oyer St epExecut i onHandl er, a Resour ce representing the Spring Boot
Uber-jar to be executed, a TaskLauncher, and a JobExpl or er are all required. You can configure
any environment properties as well as the max number of workers to be executing at once, the interval
to poll for the results (defaults to 10 seconds), and a timeout (defaults to -1 or no timeout). An example
of configuring this Par ti t i onHandl er would look like the following:

@Bean
public PartitionHandl er partitionHandl er(TaskLauncher taskLauncher,
JobExpl orer jobExplorer) throws Exception {

MavenProperti es mavenProperti es = new MavenProperties();
mavenPr operti es. set Renpt eReposi t ori es(new HashMap<>(Col | ecti ons. si ngl et onMap("spri ngRepo",
new MavenProperti es. Renpt eRepository(repository))));

Resource resource =

MavenResour ce. parse(String. format ("%: %: %",
"io.spring.cloud",
"partitioned-batch-job",
"1.1.0.RC1"), mavenProperties);

Depl oyer PartitionHandl er partitionHandler =
new Depl oyer PartitionHandl er (t askLauncher, jobExplorer, resource, "workerStep");

Li st<String> conmmandLi neArgs = new Arraylist<>(3);

comrandLi neArgs. add("--spring. profiles.acti ve=worker");

comandLi neAr gs. add("--spring.cloud.task.initialize.enabl e=fal se");
commandLi neArgs. add("--spring. batch.initializer.enabl ed=fal se");

partitionHandl er. set CommandLi neAr gsProvi der (new PassThr oughConmandLi neAr gsPr ovi der (conmandLi neArgs));
partitionHandl er. set Envi ronnent Vari abl esProvi der (new NoOpEnvi r onnment Vari abl esProvi der ());
partitionHandl er. set MaxWor ker s(2);

partitionHandl er. set Appl i cati onName("PartitionedBatchJobTask");

return partitionHandl er;

}

Note

When passing environment variables to partitions, each partition may be on a different machine
with a different environment settings. So only pass those that are required.

The Resource to be executed is expected to be a Spring Boot Uber-jar with a
Depl oyer St epExecut i onHandl er configured as a CommandLi neRunner in the current context.
The repository enumerated in the example above should be the location of the remote repository
from which the Uber-jar is located. Both the master and slave are expected to have visibility
into the same data store being used as the job repository and task repository. Once the
underlying infrastructure has bootstrapped the Spring Boot jar and Spring Boot has launched the
Depl oyer St epExecut i onHandl er, the step handler will execute the Step requested. An example
of configuring the Def aul t St epExecut i onHandl er is show below:

@Bean
publ i c Depl oyer St epExecut i onHandl er st epExecuti onHandl er (JobExpl orer jobExplorer) {
Depl oyer St epExecut i onHandl er handl er =
new Depl oyer St epExecut i onHandl er (thi s. context, jobExplorer, this.jobRepository);

1.1.0.RC1 Spring Cloud Task 21

Spring Cloud Task Reference Guide

return handl er;

}

Note

A sample remote partition application can be found in the samples module of the Spring Cloud
Task Project here.

10.1 Notes on developing a batch partitioned app for the Yarn
platform

» When deploying partitioned apps on the Yarn platform be sure to use the following dependency for
the Spring Cloud Yarn Deployer (with a version 1.0.2 or higher):

<dependency>

<gr oupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-depl oyer-yarn</artifactld>
</ dependency>

« Add the following dependency to the dependency management for a transient dependency required
by Yarn:

<dependencyManagenent >
<dependenci es>

<dependency>
<gr oupl d>com googl e. guava</ gr oupl d>
<artifactld>guava</artifactld>
<versi on>18. 0</ ver si on>
</ dependency>
</ dependenci es>

</ dependencyManagenent >

« Also add the following property to your application.properties:
spring. yarn. cont ai ner. keepCont ext Al i ve=f al se.

* When setting up environment variables for the partitions in the PartitionHandler it is recommended
that you do not copy the current working environment properties.

10.2 Notes on developing a batch partitioned app for the
Kubernetes platform

* When deploying partitioned apps on the Kubernetes platform be sure to use the following dependency
for the Spring Cloud Kubernetes Deployer:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-depl oyer-kubernetes</artifactld>
</ dependency>

» Application name for the task application and its partitions need to follow the following regex pattern
[a-z0-9] ([-a-2z0-9] *[a- z0- 9]) . Else an exception will be thrown.

1.1.0.RC1 Spring Cloud Task 22

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/partitioned-batch-job

Spring Cloud Task Reference Guide

10.3 Notes on developing a batch partitioned app for the
Mesos platform

* When deploying partitioned apps on the Mesos platform be sure to use the following dependency for
the Spring Cloud Mesos Deployer:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-depl oyer-nesos</artifactld>
</ dependency>

* When configuring the partition handler, do not add any command line arguments to the
ConmandLi neAr gsPr ovi der . This is due to Chronos adding the command line args to the Mesos
ID. Thus when launching the partition on Mesos this can cause the partition to fail to start if command
line arg contains characters such as/ or: .

10.4 Notes on developing a batch partitioned app for the Cloud
Foundry platform

* When deploying partitioned apps on the Cloud Foundry platform be sure to use the following
dependencies for the Spring Cloud Cloud Foundry Deployer:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-depl oyer-cl oudf oundry</artifactld>
</ dependency>
<dependency>
<groupl d>i o. proj ect r eact or </ gr oupl d>
<artifactld>reactor-core</artifactld>
<versi on>3. 0. 2. RELEASE</ ver si on>
</ dependency>
<dependency>
<groupl d>i 0. proj ectreact or.i pc</ groupl d>
<artifactld>reactor-netty</artifactld>
<ver si on>0. 5. 1. RELEASE</ ver si on>
</ dependency>

* When configuring the partition handler, Cloud Foundry Deployment environment variables need to be
established so that the partition handler can start the partitions. The following list shows the required
environment variables:

¢ spring_cloud_deployer_cloudfoundry_url

« spring_cloud_deployer_cloudfoundry_org

« spring_cloud_deployer_cloudfoundry_space

« spring_cloud_deployer_cloudfoundry_domain

e spring_cloud_deployer_cloudfoundry_username
» spring_cloud_deployer_cloudfoundry_password
« spring_cloud_deployer_cloudfoundry_services

e spring_cloud_deployer_cloudfoundry_taskTimeout

1.1.0.RC1 Spring Cloud Task 23

Spring Cloud Task Reference Guide

An example set of deployment environment variables for a partitioned task that uses a nysql database

service would look something like this:

spring_cl oud_depl oyer _cl oudf oundry_url =https://api.local.pcfdev.io
spring_cl oud_depl oyer _cl oudf oundry_or g=pcf dev-org

spring_cl oud_depl oyer _cl oudf oundry_space=pcf dev- space

spring_cl oud_depl oyer _cl oudf oundry_domai n=Il ocal . pcfdev.io
spring_cl oud_depl oyer _cl oudf oundry_user nane=adm n

spring_cl oud_depl oyer _cl oudf oundry_passwor d=admi n

spring_cl oud_depl oyer _cl oudf oundry_servi ces=nysq

spring_cl oud_depl oyer _cl oudf oundry_t askTi meout =300

Note

When using PCF-Dev the following environment variable is also
spring_cl oud_depl oyer _cl oudf oundry_ski pSsl Val i dati on=true

required:

1.1.0.RC1 Spring Cloud Task

24

Spring Cloud Task Reference Guide

11. Batch Informational Messages

Spring Cloud Task provides the ability for batch jobs to emit informational messages. This is covered
in detail in the section Spring Batch Events.

1.1.0.RC1 Spring Cloud Task 25

Spring Cloud Task Reference Guide

12. Batch Job Exit Codes

As discussed before Spring Cloud Task applications support the ability to record the exit code of a task
execution. However in cases where a user is running a Spring Batch Job within a task, regardless of
how the Batch Job Execution completes the result of the task will always be zero when using default
Batch/Boot behavior. Keep in mind that a task is a boot application and the exit code returned from the
task is the same as a boot application. So to have your task return the exit code based on the result of
the batch job execution, you will need to write your own CommandLineRunner.

1.1.0.RC1 Spring Cloud Task 26

Part V. Spring Cloud
Stream Integration

A task by itself can be useful, but it's the integration of a task into a larger ecosystem that allows it to
be useful for more complex processing and orchestration. This section covers the integration options
for Spring Cloud Task and Spring Cloud Stream.

Spring Cloud Task Reference Guide

13. Launching a task from a Spring Cloud Stream

Allows a user to launch tasks from a stream. This is done by creating a sink that listens for a message
that contains a TaskLaunchRequest as its payload. The TaskLaunchRequest contains:

 uri - to the task artifact that is to be executed.

» applicationName - the name that will be associated with the task. If no applicationName is set the
TaskLaunchRequest will generate a task name comprised of the following: Task- <UUl D>

» commandLineArguments - a list containing the command line arguments for the task.
e environmentProperties - a map containing the environment variables to be used by the task

» deploymentProperties - a map containing the properties that will be used by the deployer to deploy
the task.

Note

If the payload is of a different type then the sink will throw an exception.

For example a stream can be created that has a processor that takes in data from a http source and
creates a Generi cMessage that contains the TaskLaunchRequest and sends the message to its
output channel. The task sink would then receive the message from its input channnel and then launch
the task.

To create a taskSink a user needs to only create a spring boot app that includes the following annotation
Enabl eTaskLauncher . The code would look something like this:

@ppr i ngBoot Appl i cati on
@Enabl eTaskLauncher
public class TaskSi nkApplication {
public static void main(String[] args) {
SpringAppl i cation. run(TaskSi nkApplication.class, args);
}
}

A sample Sink and Processor have been made available to you in the samples module of the Spring
Cloud Task project. To install these samples into your local maven repository execute a maven build
from the spri ng- cl oud-t ask- sanpl es directory with the property ski pl nstal | set to false. For
example: nvn cl ean install.

Note

The maven.remoteRepositories.springRepo.url property will need to be set to the location of the
remote repository from which the Uber-jar is located. If not set, then there will be no remote
repository, so it will rely upon the local repository only.

13.1 Spring Cloud Data Flow

To create a stream in Spring Cloud Data Flow first we would want to register the Task Sink Application
we created. In the example below we are registering the Processor and Sink sample applications using
the Spring Cloud Data Flow shell:

1.1.0.RC1 Spring Cloud Task 28

Spring Cloud Task Reference Guide

app register --name taskSink --type sink --uri maven://io.spring.cloud:tasksink: <versi on>
app register --name taskProcessor --type processor --uri maven:io.spring.cloud:taskprocessor: <version>

Creating a stream from the Spring Cloud Data Flow shell would look like this:

streamcreate foo --definition "http --server. port=9000|taskProcessor|taskSi nk" --depl oy

1.1.0.RC1 Spring Cloud Task

29

Spring Cloud Task Reference Guide

14. Spring Cloud Task Events

Spring Cloud Task provides the ability to emit events via Spring Cloud Stream channel when the task is
executed via a Spring Cloud Stream channel. A task listener is used to publish the TaskExecut i on on
a message channel named t ask- event s. This feature is autowired into any task that has spri ng-
cl oud- st r eamon its classpath in addition to the spri ng- cl oud- st r eamand a task defined.

Note

To disable the event emitting listener, set the property spri ng. cl oud. t ask. event s. enabl ed
to f al se.

With the appropriate classpath defined, a simple task like this:

@ppr i ngBoot Appl i cati on
@nabl eTask
public class TaskEventsApplication {

public static void main(String[] args) {
Spri ngApplication. run(TaskEvent sApplication.class, args);

}

@onfiguration
public static class TaskConfiguration {

@Bean
publ i ¢ CommandLi neRunner commandLi neRunner () {

return new CommandLi neRunner () {
@verride
public void run(String... args) throws Exception {
System out. println("The CommandLi neRunner was executed");

will emit the TaskExecuti on as an event on the t ask- event s channel (both at the start and end
of the task).

Note

Configuration of the content type may be required via --
spring. cl oud. st ream bi ndi ngs. t ask- event s. cont ent Type=<CONTENT_TYPE> if
the processor or sink downstream does not have the spring-cloud-task-core jar on its classpath.

Note

A binder implementation is also required to be on the classpath.

Note

A sample task event application can be found in the samples module of the Spring Cloud Task
Project here.

1.1.0.RC1 Spring Cloud Task 30

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/task-events

Spring Cloud Task Reference Guide

14.1 Disabling Specific Task Events

To task events, the spri ng. cl oud. t ask. event s. enabl ed property can be setto f al se.

1.1.0.RC1 Spring Cloud Task

31

Spring Cloud Task Reference Guide

15. Spring Batch Events

When executing a Spring Batch job via a task, Spring Cloud Task can be configured to emit informational
messages based on the Spring Batch listeners available in Spring Batch. Specifically the following
Spring Batch listeners are autoconfigured into each batch job and emit messages on the associated
Spring Cloud Stream channels when run via Spring Cloud Task:

e JobExecuti onLi st ener -j ob-execution-events

e St epExecuti onLi st ener - st ep-execution-events
e ChunkLi st ener - chunk-events

* | tenReadLi stener -itemread-events

e ItenProcessLi stener -item process-events

e [temNitelListener -itemwite-events

Ski pLi st ener -ski p-events

The above listeners are autoconfigured into any Abst r act Job when the appropriate beans exist in the
context (a Job and a TaskLi f ecycl eLi st ener). Configuration to listen to these events is handled
the same way binding to any other Spring Cloud Stream channel is done. Our task (the one running the
batch job) serves as a Sour ce, with the listening applications serving as either a Pr ocessor or Si nk.

An example could be to have an application listening to the j ob- executi on- event s channel for
the start and stop of a job. To configure the listening application, you'd configure the input to be j ob-
execution-events as follows

spring. cl oud. stream bi ndi ngs. i nput. desti nati on=j ob- executi on-events

Note
A binder implementation is also required to be on the classpath.
Note

A sample batch event application can be found in the samples module of the Spring Cloud Task
Project here.

15.1 Sending Batch Events to different channels

One of the options that Spring Cloud Task offers for batch events is the ability to alter the channel
to which a specific listener can emit its messages. To do this use the following configuration:
spring. cl oud. st ream bi ndi ngs. <t he channel >. desti nati on=<new dest i nati on>. For
example: If StepExecutionListener needs to emit its messages to another channel ny- st ep-
executi on- event s instead of the default st ep- execut i on- event s the following configuration can
be added:

spring. cl oud. st ream bi ndi ngs. st ep- execut i on-events. desti nati on=ny- st ep- executi on-events’

1.1.0.RC1 Spring Cloud Task 32

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-events

Spring Cloud Task Reference Guide

15.2 Disabling Batch Events

To disable the all batch event listener functionality, use the following configuration:

spring. cl oud. t ask. bat ch. event s. enabl ed=f al se

To disable a specific batch event use the following
spring. cl oud. t ask. event s. <batch event |i stener>. enabl ed=fal se:

spring. cl oud. t ask. bat ch. events. j ob- executi on. enabl ed=f al se
spring. cl oud. t ask. bat ch. event s. st ep- execut i on. enabl ed=f al se
spring. cl oud. t ask. bat ch. event s. chunk. enabl ed=f al se

spring. cl oud. t ask. bat ch. events. i temread. enabl ed=f al se
spring. cl oud. t ask. bat ch. events. i tem process. enabl ed=f al se
spring. cl oud. t ask. batch. events.itemwite. enabl ed=f al se
spring. cl oud. t ask. bat ch. event s. ski p. enabl ed=f al se

configuration:

1.1.0.RC1 Spring Cloud Task

33

Part VI. Appendices

Spring Cloud Task Reference Guide

16. Task repository schema

This appendix provides an ERD for the database schema used in the task repository.

1.1.0.RC1 Spring Cloud Task

35

Spring Cloud Task Reference Guide

17. Building this documentation

This project uses Maven to generate this documentation. To generate it for yourself, execute the
command: $./ nmvnw cl ean package -P full.

1.1.0.RC1 Spring Cloud Task 36

	Spring Cloud Task Reference Guide
	Table of Contents
	Part I. Preface
	1. About the documentation
	2. Getting help
	3. First Steps

	Part II. Getting started
	4. Introducing Spring Cloud Task
	5. System Requirements
	5.1 Database Requirements

	6. Developing your first Spring Cloud Task application
	6.1 Creating the POM
	6.2 Adding classpath dependencies
	6.3 Writing the code
	The @EnableTask annotation
	The main method
	The CommandLineRunner

	6.4 Running the example

	Part III. Features
	7. The lifecycle of a Spring Cloud Task
	7.1 The TaskExecution
	7.2 Mapping Exit Codes

	8. Configuration
	8.1 DataSource
	8.2 Externally Generated Task Id
	8.3 External Task Id
	8.4 TaskConfigurer
	8.5 Task Name
	8.6 Task Execution Listener

	Part IV. Batch
	9. Associating A Job Execution To The Task In Which It Was Executed
	9.1 Overriding the TaskBatchExecutionListener

	10. Remote Partitioning
	10.1 Notes on developing a batch partitioned app for the Yarn platform
	10.2 Notes on developing a batch partitioned app for the Kubernetes platform
	10.3 Notes on developing a batch partitioned app for the Mesos platform
	10.4 Notes on developing a batch partitioned app for the Cloud Foundry platform

	11. Batch Informational Messages
	12. Batch Job Exit Codes

	Part V. Spring Cloud Stream Integration
	13. Launching a task from a Spring Cloud Stream
	13.1 Spring Cloud Data Flow

	14. Spring Cloud Task Events
	14.1 Disabling Specific Task Events

	15. Spring Batch Events
	15.1 Sending Batch Events to different channels
	15.2 Disabling Batch Events

	Part VI. Appendices
	16. Task repository schema
	17. Building this documentation

