Spring Cloud Task Reference Guide

2.1.0.M1

Copyright © 2015-2017Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Task Reference Guide

Table of Contents

I o 1= = Lo = PP 1
1. About the dOCUMENTALIONccueiiii e et e e e et e e e e en s 2
22 €1~ 111 To T 1Yo 3
T =Y B (=7 SRR 4
| eT= 1] o To] r= T (=T PP TTR PP 5
4. Introducing SPring Cloud TasKcoouiiiiiii e 6
5. System REQUITEIMENTSttt et et e et e e e e e et e e ea e eanns 7
5.1. Database REQUITEMENTSco.uuiiiiiiiiee it e s 7
6. Developing Your First Spring Cloud Task Applicationcccoiiviiiiiiiii e, 8
6.1. Creating the Spring Task Project using Spring Initializrccoooiiiiiiiiinn, 8
6.2. WIItiNg The COE ... e 8
Task AUt CoNfIQUIALIONccuuiiiiiei e e e e e e eaens 9
The main Method ... e 9
The CommandLINERUNNET ... e e 9
6.3. RUNNING the EXAMPIE ..o e e e e e e e e anaees 10
LI T L (0 PP PTP 12
7. The lifecycle of a Spring Cloud Taskocoiiiiiii e 13
7.1. The TASKEXECULIONcceetiiieiiiiie et et e e et e eeeean s 13
7.2. Mapping EXIt COUESceuniiiiiiiii et et a e 14
8. CONTIGUIALION ..ottt ettt ettt e et et e e e e e e enaas 15
8.1, DABSOUITEitieiit ettt et ettt et et et e e aa s 15
8.2, TADIE PrefiX .ouuii i e 15
8.3. Enable/Disable table initializationcooviiiiiiii 15
8.4. Externally Generated TasK IDccouviiiiiiiiiiiici e e 15
8.5. EXternal TasK 10 ..o 16
8.6. Parent TasK Iiiiiiiii e 16
ST = 1<) (O] T [T~ N 16
8.8. TASK NAME ... e e 16
8.9. Task EXECULION LISLENETuuiiiiiiiii it e e e e e eenaes 17
Exceptions Thrown by Task Execution LiStENErcc.covvviiviiiiiiiiieii e, 17
EXIT IMESSAUES ... ietniiiiiieiit ettt ettt et e et ettt e e e e aans 18
8.10. Restricting Spring Cloud Task INStANCEScc.uuiiiiiiiiiiiiiiiie e 18
8.11. Disabling Spring Cloud Task Auto Configurationccoovvvviieviineviin e 19
YR 7 1 o] LU TP UPTRUPTP 20
9. Associating a Job Execution to the Task in which It Was Executedcccocoevevinnenannn. 21
9.1. Overriding the TaskBatChEXeCUtiONLIStENErcccvvuiiiiieii e e 21
10. RemMOte PArtitiONING ... coeuuiiiiieiiieei ettt et e et e et e et e et e e et e e et aean e 22
10.1. Notes on Developing a Batch-partitioned application for the Kubernetes
L = {0 5 o S PR 23
10.2. Notes on Developing a Batch-partitioned Application for the Cloud Foundry
[= 0 o o PR 23
11. Batch Informational MESSAQEScuuuiviiiiiiiiii et e e e e e e 25
12. BatCh JOD EXIt COURSoeniiiiiiiii et ettt e e e e e eenns 26
V. Spring Cloud Stream INEGrationoviiiiuiieiiii et e et eeeaaa e eens 27
13. Launching a Task from a Spring Cloud Streamccoevviiiiiiiiiiie e 28
13.1. Spring Cloud Data FIOWccuuiiiiiiiiee e 28
14. Spring Cloud Task EVENLScooiiiiiiiii e e 30

2.1.0M1 Spring Cloud Task iii

Spring Cloud Task Reference Guide

14.1. Disabling Specific Task EVENLSccouuiiiiiiiiii e 30

15. SPring BatCh EVENLSc..uiiiiiiiiieieii e et e et e e 31
15.1. Sending Batch Events to Different Channelsccocoiiiiiiiin i 31

15.2. Disabling BatCh EVENLSiiiiiiiiiiiiii et 32

15.3. Emit Order for BatCh EVENTScoouiiiiiiii e e e 32

RV T Y o] o 1= Lo [T = PP 33
16. Task REPOSItOrY SCREMEA ... cciiuiieiiii e e 34

17. Building This DOCUMENTALIONcccuvunieiiiiieieiir et e e et e et eeeae s 35

18. Running a Task App on Cloud FOUNAIYoooiiiiiii e e 36

2.1.0M1 Spring Cloud Task iv

Part |. Preface

This section provides a brief overview of the Spring Cloud Task reference documentation. Think of it as
a map for the rest of the document. You can read this reference guide in a linear fashion or you can
skip sections if something does not interest you.

Spring Cloud Task Reference Guide

1. About the documentation

The Spring Cloud Task reference guide is available in html, pdf and epub formats. The latest copy is
available at docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

2.1.0M1 Spring Cloud Task

http://docs.spring.io/spring-cloud-task/docs/{version}/reference/html
http://docs.spring.io/spring-cloud-task/docs/{version}/reference/pdf/spring-cloud-task-reference.pdf
http://docs.spring.io/spring-cloud-task/docs/{version}/reference/epub/spring-cloud-task-reference.epub
http://docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/

Spring Cloud Task Reference Guide

2. Getting help

Having trouble with Spring Cloud Task? We would like to help!

» Ask a question. We monitor stackoverflow.com for questions tagged with spri ng- cl oud-t ask.

» Report bugs with Spring Cloud Task at github.com/spring-cloud/spring-cloud-task/issues.

Note

All of Spring Cloud Task is open source, including the documentation. If you find a problem with
the docs or if you just want to improve them, please get involved.

2.1.0M1 Spring Cloud Task

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-task
https://github.com/spring-cloud/spring-cloud-task/issues
http://github.com/spring-cloud/spring-cloud-task/tree/v2.1.0.M1

Spring Cloud Task Reference Guide

3. First Steps

If you are just getting started with Spring Cloud Task or with 'Spring' in general, we suggesting reading
the Part Il, “Getting started” chapter.

To get started from scratch, read the following sections: * “Chapter 4, Introducing Spring Cloud Task” *
“Chapter 5, System Requirements” To follow the tutorial, read “Chapter 6, Developing Your First Spring
Cloud Task Application” To run your example, read “Section 6.3, “Running the Example™

2.1.0M1 Spring Cloud Task 4

Part Il. Getting started

If you are just getting started with Spring Cloud Task, you should read this section. Here, we answer the
basic “what?”, “how?”, and “why?” questions. We start with a gentle introduction to Spring Cloud Task.
We then build a Spring Cloud Task application, discussing some core principles as we go.

Spring Cloud Task Reference Guide

4. Introducing Spring Cloud Task

Spring Cloud Task makes it easy to create short-lived microservices. It provides capabilities that let
short lived JVM processes be executed on demand in a production environment.

2.1.0M1 Spring Cloud Task 6

Spring Cloud Task Reference Guide

5. System Requirements

You need to have Java installed (Java 8 or better). To build, you need to have Maven installed as well.

5.1 Database Requirements

Spring Cloud Task uses a relational database to store the results of an executed task. While you
can begin developing a task without a database (the status of the task is logged as part of the task
repository’s updates), for production environments, you want to use a supported database. Spring Cloud
Task currently supports the following databases:

 DB2

e H2

« HSQLDB
* MySql

» Oracle

» Postgres

» SqlServer

2.1.0M1 Spring Cloud Task 7

Spring Cloud Task Reference Guide

6. Developing Your First Spring Cloud Task
Application

A good place to start is with a simple “Hello, World!” application, so we create the Spring Cloud Task
equivalent to highlight the features of the framework. Most IDEs have good support for Apache Maven,
so we use it as the build tool for this project.

Note

The spring.io web site contains many “CGetti ng St art ed” guides that use Spring Boot. If you
need to solve a specific problem, check there first. You can shortcut the following steps by going
to the Spring Initializr and creating a new project. Doing so automatically generates a new project
structure so that you can start coding right away. We recommend experimenting with the Spring
Initializr to become familiar with it.

6.1 Creating the Spring Task Project using Spring Initializr
Now we can create and test an application that prints Hel | o, Wér | d! to the console.
To do so:

1. Visit the Spring Initialzr site.

a. Create a new Maven project with a Group name of i 0. spri ng. deno and an Artifact name of
hel | owor | d.

b. In the Dependencies text box, type t ask and then select the Cl oud Task dependency.
c. In the Dependencies text box, type j dbc and then select the JDBC dependency.

d. In the Dependencies text box, type h2 and then select the H2. (or your favorite database)
e. Click the Generate Project button

2. Unzip the timestamp.zip file and import the project into your favorite IDE.

6.2 Writing the Code

To finish our application, we need to update the generated Hel | owor | dAppl i cati on with the
following contents so that it launches a Task.

package i 0. spring. denp. hel | owor | d;

i nport org.springfranmework. boot. ConmandLi neRunner ;

i mport org.springframework. boot. SpringApplication;

i nport org.springfranework. boot . aut oconfi gure. Spri ngBoot Appl i cati on;
i nport org.springframework. cont ext. annot ati on. Bean;

@pr i ngBoot Appl i cati on
public class Helloworl dApplication {
public class Sanpl eTask {

@ean
publ i ¢ CommandLi neRunner conmmandLi neRunner () {
return new Hel | oWr | dCommandLi neRunner () ;

}

2.1.0M1 Spring Cloud Task 8

https://spring.io/guides
http://start.spring.io/
https://start.spring.io/

Spring Cloud Task Reference Guide

public static void main(String[] args) {
SpringApplication. run(Hel | oworl dApplication.class, args);
}

public static class Hell oWr| dCommandLi neRunner i npl enments ConmandLi neRunner {

@verride
public void run(String... strings) throws Exception {
Systemout.println("Hello, Wrld'");
}
}
}

While it may seem small, quite a bit is going on. For more about Spring Boot specifics, see the Spring
Boot reference documentation.

Now we can open the application. properties file in src/ mai n/ resources. We need to
configure two properties in appl i cati on. properti es:

» appl i cation. name: To set the application name (which is translated to the task name)

* | oggi ng. | evel : To set the logging for Spring Cloud Task to DEBUG in order to get a view of what
is going on.

The following example shows how to do both:

| oggi ng. | evel . org. spri ngf ramewor k. cl oud. t ask=DEBUG
spring. appl i cati on. nanme=hel | oVor| d

Task Auto Configuration

When including Spring Cloud Task Starter dependency, Task auto configures all beans to bootstrap it's
functionality. Part of this configuration registers the TaskReposi t or y and the infrastructure for its use.

In our demo, the TaskReposi t ory uses an embedded H2 database to record the results of a task.
This H2 embedded database is not a practical solution for a production environment, since the H2 DB
goes away once the task ends. However, for a quick getting-started experience, we can use this in
our example as well as echoing to the logs what is being updated in that repository. In the Chapter 8
Configuration section (later in this documentation), we cover how to customize the configuration of the
pieces provided by Spring Cloud Task.

When our sample application runs, Spring Boot launches our Hel | oWbr | dComrandLi neRunner and
outputs our “Hello, World!” message to standard out. The TaskLi f ecycl eLi st ener records the start
of the task and the end of the task in the repository.

The main method

The main method serves as the entry point to any java application. Our main method delegates to Spring
Boot's SpringApplication class.

The CommandLineRunner

Spring includes many ways to bootstrap an application’s logic. Spring Boot provides a convenient
method of doing so in an organized manner through its * Runner interfaces (CommandLi neRunner or
Appl i cati onRunner). Awell behaved task can bootstrap any logic by using one of these two runners.

The lifecycle of a task is considered from before the * Runner #r un methods are executed to once
they are all complete. Spring Boot lets an application use multiple * Runner implementations, as does
Spring Cloud Task.

2.1.0M1 Spring Cloud Task 9

http://docs.spring.io/spring-boot/docs/current/reference/html/
http://docs.spring.io/spring-boot/docs/current/reference/html/
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html

Spring Cloud Task Reference Guide

Note

Any processing bootstrapped from mechanisms other than a CommandLi neRunner or
Appl i cationRunner (byusingl nitiali zi ngBean#after Properti esSet for example) is
not recorded by Spring Cloud Task.

6.3 Running the Example

At this point, our application should work. Since this application is Spring Boot-based, we can run it from
the command line by using $ mvn spri ng- boot : r un from the root of our application, as shown (with

its output) in the following example:

$ nvn cl ean spring-boot:run

....... . . . (Maven | og output here)

S G D W U W
CON— TNy vy
W Dot o))))
SR (S [I [GO A A A
|l | /=l_1_1_1
Spring Boot :: (v2.0. 3. RELEASE)
2018-07-23 17:44:34.426 |NFO 1978 --- [main] i.s.d.helloworld. HelloworldApplication

hel | owor| d/target/classes started by glennrenfro in /Users/glennrenfro/project/helloworld)

2018-07-23 17:44:34.430 |INFO 1978 --- | main] i.s.d. helloworld.HelloworldApplication : No
active profile set, falling back to default profiles: default
2018-07-23 17:44:34.472 |INFO 1978 --- [mai n] s.c.a.AnnotationConfigApplicati onContext

date [Mon Jul 23 17:44:34 EDT 2018]; root of context hierarchy

2018-07-23 17:44:35.280 |NFO 1978 --- [mai n] com zaxxer . hi kari . H kari Dat aSour ce
H kari Pool -1 - Starting...
2018-07-23 17:44:35.410 |NFO 1978 --- [mai n] com zaxxer. hi kari . Hi kari Dat aSour ce
Hi kari Pool -1 - Start conpl eted.
2018- 07-23 17: 44:35. 419 DEBUG 1978 --- [main] o.s.c.t.c.SinpleTaskConfiguration
Usi ng org. springfranmework. cl oud. t ask. confi guration. Def aul t TaskConf i gur er TaskConfi gurer
2018-07-23 17:44:35. 420 DEBUG 1978 --- [main] o.s.c.t.c.Default TaskConfi gurer : No
EntityManager was found, using DataSourceTransacti onManager
2018-07-23 17: 44: 35.522 DEBUG 1978 --- [main] o.s.c.t.r.s.TaskRepositorylnitializer
Initializing task schena for h2 database
2018-07-23 17:44:35.525 |NFO 1978 --- [mai n] o.s.jdbc.datasource.init.ScriptUils
Executing SQ script fromclass path resource [org/springfranework/cloud/task/schema-h2.sql]
2018-07-23 17:44:35.558 | NFO 1978 --- [mai n] o.s.jdbc.datasource.init.ScriptUils
Executed SQ script fromclass path resource [org/springframework/cloud/task/schema-h2.sql] in 33 ns.
2018-07-23 17:44:35.728 |NFO 1978 --- [main] o0.s.j.e.a.Annotati onMBeanExporter :

Regi stering beans for JMX exposure on startup

wi th name ' dataSource' has been autodetected for JMX exposure

2018-07-23 17:44:35.733 |INFO 1978 --- [main] o.s.j.e.a.Annot ati onMBeanExporter
Locat ed MBean 'dataSource': registering with JMWX server as MBean

[com zaxxer. hi kari : name=dat aSour ce, t ype=Hi kar i Dat aSour ce]

2018-07-23 17:44:35.738 |NFO 1978 --- [mai n] o.s.c.support.DefaultLifecycl eProcessor
Starting beans in phase 0

2018-07-23 17:44:35. 762 DEBUG 1978 --- [main] o.s.c.t.r.support.Sinpl eTaskRepository
Creating: TaskExecution{executionld=0, parentExecutionld=null, exitCode=null, taskName='"application',
start Ti me=Mon Jul 23 17:44:35 EDT 2018, endTi me=nul |, exitMessage='null', external Executionld="null",
error Message="'nul |l ', argurments=[]}

2018-07-23 17:44:35.772 |NFO 1978 --- [main] i.s.d.helloworld. HelloworldApplication
Started Hel | owor| dApplication in 1.625 seconds (JVMrunning for 4.764)

Hel l o, Wérl d!

2018-07-23 17:44:35. 782 DEBUG 1978 --- [main] o.s.c.t.r.support.Sinpl eTaskRepository

EDT 2018, exitMessage="null"', errorMessage="null"'}

Starting Hel | owor| dApplication on G enns-MBP-2.attlocal.net with PID 1978 (/Users/ gl ennrenfro/ project/

Ref reshi ng org. springframewor k. cont ext. annot ati on. Annot ati onConfi gAppl i cati onCont ext @ d24f 32d: startup

Updati ng: TaskExecution with executionld=1 with the follow ng {exitCode=0, endTi me=Mon Jul 23 17:44:35

2018-07-23 17:44:35.730 |NFO 1978 --- [main] o0.s.j.e.a.Annot ati onMBeanExporter : Bean

2.1.0M1 Spring Cloud Task

10

Spring Cloud Task Reference Guide

The preceding output has three lines that of interest to us here:
» Si npl eTaskReposi t ory logged the creation of the entry in the TaskReposi tory.
» The execution of our ConmandLi neRunner , demonstrated by the “Hello, World!” output.

* Si npl eTaskReposi t ory logs the completion of the task in the TaskReposi t ory.

Note

A simple task application can be found in the samples module of the Spring Cloud Task Project
here.

2.1.0M1 Spring Cloud Task

11

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/timestamp

Part |ll. Features

This section goes into more detail about Spring Cloud Task, including how to use it, how to configure
it, and the appropriate extension points.

Spring Cloud Task Reference Guide

7. The lifecycle of a Spring Cloud Task

In most cases, the modern cloud environment is designed around the execution of processes that are
not expected to end. If they do end, they are typically restarted. While most platforms do have some way
to run a process that is not restarted when it ends, the results of that run are typically not maintained in a
consumable way. Spring Cloud Task offers the ability to execute short-lived processes in an environment
and record the results. Doing so allows for a microservices architecture around short-lived processes
as well as longer running services through the integration of tasks by messages.

While this functionality is useful in a cloud environment, the same issues can arise in a traditional
deployment model as well. When running Spring Boot applications with a scheduler such as cron, it can
be useful to be able to monitor the results of the application after its completion.

Spring Cloud Task takes the approach that a Spring Boot application can have a start and an end and
still be successful. Batch applications are one example of how processes that are expected to end (and
that are often short-lived) can be helpful.

Spring Cloud Task records the lifecycle events of a given task. Most long-running processes, typified by
most web applications, do not save their lifecycle events. The tasks at the heart of Spring Cloud Task do.

The lifecycle consists of a single task execution. This is a physical execution of a Spring Boot application
configured to be a task (that is, it has the Sprint Cloud Task dependencies).

At the beginning of a task, before any CommandLi neRunner or ApplicationRunner
implementations have been run, an entry in the TaskReposi t ory that records the start event is
created. This event is triggered through Smart Li f ecycl e#start being triggered by the Spring
Framework. This indicates to the system that all beans are ready for use and comes before running any
of the CommandLi neRunner or Appl i cati onRunner implementations provided by Spring Boot.

Note

The recording of a task only occurs upon the successful bootstrapping of an
Appl i cati onCont ext . If the context fails to bootstrap at all, the task’s run is not recorded.

Upon completion of all of the *Runner#run calls from Spring Boot or the failure of an
Appl i cati onCont ext (indicated by an Appl i cati onFai | edEvent), the task execution is updated
in the repository with the results.

Note

If the application requires the Appl i cati onCont ext to be closed at the completion of a task
(all * Runner #r un methods have been called and the task repository has been updated), set the
property spri ng. cl oud. t ask. cl osecont ext _enabl e to true.

7.1 The TaskExecution

The information stored in the TaskReposi t or y is modeled in the TaskExecut i on class and consists
of the following information:

Field Description

executionid The unique ID for the task’s run.

2.1.0M1 Spring Cloud Task 13

Spring Cloud Task Reference Guide

Field Description

exi t Code The exit code generated from an
Exi t CodeExcept i onMapper implementation.
If there is no exit code generated but an
Appl i cati onFai | edEvent is thrown, 1 is set.
Otherwise, it is assumed to be 0.

t askNane The name for the task, as determined by the
configured TaskNaneResol ver.

startTi me The time the task was started, as indicated by
the Snart Li f ecycl e#start call

endTi me The time the task was completed, as indicated
by the Appl i cati onReadyEvent .

exi t Message Any information available at the time of
exit. This can programmatically be set by a
TaskExecuti onLi st ener.

error Message If an exception is the cause of the
end of the task (as indicated by an
Appl i cati onFai | edEvent), the stack trace
for that exception is stored here.

argunents A Li st of the string command line arguments
as they were passed into the executable boot
application.

7.2 Mapping Exit Codes

When a task completes, it tries to return an exit code to the OS. If we take a look at our original example,
we can see that we are not controlling that aspect of our application. So, if an exception is thrown, the
JVM returns a code that may or may not be of any use to you in debugging.

Consequently, Spring Boot provides an interface, Exi t CodeExcept i onMapper, that lets you map
uncaught exceptions to exit codes. Doing so lets you indicate, at the level of exit codes, what went
wrong. Also, by mapping exit codes in this manner, Spring Cloud Task records the returned exit code.

If the task terminates with a SIG-INT or a SIG-TERM, the exit code is zero unless otherwise specified
within the code.

Note

While the task is running, the exit code is stored as a null in the repository. Once the task
completes, the appropriate exit code is stored based on the guidelines described earlier in this
section.

2.1.0M1 Spring Cloud Task 14

Spring Cloud Task Reference Guide

8. Configuration

Spring Cloud Task provides a ready-to-use configuration, as defined in the Def aul t TaskConf i gur er
and Si npl eTaskConfi gurati on classes. This section walks through the defaults and how to
customize Spring Cloud Task for your needs.

8.1 DataSource

Spring Cloud Task uses a datasource for storing the results of task executions. By default, we provide
an in-memory instance of H2 to provide a simple method of bootstrapping development. However, in a
production environment, you probably want to configure your own Dat aSour ce.

If your application uses only a single Dat aSour ce and that serves as both your business schema and
the task repository, all you need to do is provide any Dat aSour ce (the easiest way to do so is through
Spring Boot's configuration conventions). This Dat aSour ce is automatically used by Spring Cloud Task
for the repository.

If your application uses more than one Dat aSour ce, you need to configure the task repository
with the appropriate Dat aSour ce. This customization can be done through an implementation of
TaskConfi gurer.

8.2 Table Prefix

One modifiable property of TaskReposi t ory is the table prefix for the task tables. By default, they
are all prefaced with TASK . TASK_EXECUTI ON and TASK_EXECUTI ON_PARAMS are two examples.
However, there are potential reasons to modify this prefix. If the schema name needs to be prepended
to the table names or if more than one set of task tables is needed within the same schema, you must
change the table prefix. You can do so by setting the spri ng. cl oud. t ask. t abl ePrefi x to the
prefix you need, as follows:

spring. cl oud. t ask. t abl ePrefi x=your Prefix

8.3 Enable/Disable table initialization

In cases where you are creating the task tables and do not wish for Spring Cloud Task to create them
at task startup, set the spri ng. cl oud. task.initialize.enabl e property to f al se, as follows:

spring.cloud. task.initialize.enabl e=fal se

It defaults to t r ue.

8.4 Externally Generated Task ID

In some cases, you may want to allow for the time difference between when a task is requested and
when the infrastructure actually launches it. Spring Cloud Task lets you create a TaskExecut i on when
the task is requested. Then pass the execution ID of the generated TaskExecut i on to the task so that
it can update the TaskExecut i on through the task’s lifecycle.

A TaskExecution can be created by calling the createTaskExecution method on an
implementation of the TaskReposi t or y that references the datastore that holds the TaskExecut i on
objects.

In order to configure your Task to use a generated TaskExecut i onl d, add the following property:

2.1.0M1 Spring Cloud Task 15

Spring Cloud Task Reference Guide

spring. cl oud. t ask. executi oni d=yourt askl d

8.5 External Task Id

Spring Cloud Task lets you store an external task ID for each TaskExecut i on. An example of this
would be a task ID provided by Cloud Foundry when a task is launched on the platform. In order to
configure your Task to use a generated TaskExecut i onl d, add the following property:

spring. cl oud. t ask. ext er nal - execut i on-i d=<ext er nal Taskl d>

8.6 Parent Task Id

Spring Cloud Task lets you store a parent task ID for each TaskExecut i on. An example of this would
be a task that executes another task or tasks and you want to record which task launched each of
the child tasks. In order to configure your Task to set a parent TaskExecut i onl d add the following
property on the child task:

spring. cl oud. t ask. par ent - execut i on-i d=<par ent Execut i onTaskl d>

8.7 TaskConfigurer

The TaskConf i gur er is a strategy interface that lets you customize the way components of Spring
Cloud Task are configured. By default, we provide the Def aul t TaskConf i gur er that provides logical
defaults: Map-based in-memory components (useful for development if no Dat aSour ce is provided)
and JDBC based components (useful if there is a Dat aSour ce available).

The TaskConf i gur er lets you configure three main components:

Component Description Default (provided by
Def aul t TaskConfi gurer)

TaskRepository The implementation of the Si npl eTaskRepository
TaskReposi t ory to be used.

TaskExpl orer The implementation of the Si mpl eTaskExpl or er
TaskExpl or er (a component

for read-only access to the task

repository) to be used.

Pl at f or Mr ansact i onManageA transaction manager to be Dat aSour ceTr ansact i onManager
used when running updates for if a Dat aSour ce is used.
tasks. Resour cel essTransact i onManager
if it is not.

You can customize any of the components described in the preceding table by creating
a custom implementation of the TaskConfigurer interface. Typically, extending the
Def aul t TaskConf i gur er (which is provided if a TaskConf i gur er is not found) and overriding the
required getter is sufficient. However, implementing your own from scratch may be required.

8.8 Task Name

In most cases, the name of the task is the application name as configured in Spring Boot. However,
there are some cases where you may want to map the run of a task to a different name. Spring Cloud
Data Flow is an example of this (because you probably want the task to be run with the name of the

2.1.0M1 Spring Cloud Task 16

Spring Cloud Task Reference Guide

task definition). Because of this, we offer the ability to customize how the task is named, through the
TaskNanmeResol ver interface.

By default, Spring Cloud Task provides the Si npl eTaskNaneResol ver, which uses the following
options (in order of precedence):

1. A Spring Boot property (configured in any of the ways Spring Boot allows) called
spring. cl oud. t ask. name.

2. The application name as resolved wusing Spring Boot's rules (obtained through
Appl i cati onCont ext #get | d).

8.9 Task Execution Listener

TaskExecut i onLi st ener lets you register listeners for specific events that occur during the task
lifecycle. To do so, create a class that implements the TaskExecut i onLi st ener interface. The class
that implements the TaskExecut i onLi st ener interface is notified of the following events:

e onTaskSt ar t up: Prior to storing the TaskExecut i on into the TaskRepository.

» onTaskEnd: Prior to updating the TaskExecut i on entry in the TaskReposi t or y and marking the
final state of the task.

» onTaskFai | ed: Prior to the onTaskEnd method being invoked when an unhandled exception is
thrown by the task.

Spring Cloud Task also lets you add TaskExecut i on Listeners to methods within a bean by using the
following method annotations:

» @ef or eTask: Prior to the storing the TaskExecut i on into the TaskReposi t ory

* @Aft er Task: Prior to the updating of the TaskExecut i on entry in the TaskReposi t or y marking
the final state of the task.

e @ail edTask: Prior to the @\ft er Task method being invoked when an unhandled exception is
thrown by the task.

The following example shows the three annotations in use:

public class MyBean {

@Bef or eTask
public void nmet hodA(TaskExecution taskExecution) {

}

@\f t er Task
public void methodB(TaskExecution taskExecution) {

}

@ai | edTask
public void methodC(TaskExecution taskExecution, Throwabl e throwable) {

}

}

Exceptions Thrown by Task Execution Listener

If an exception is thrown by a TaskExecuti onLi st ener event handler, all listener processing
for that event handler stops. For example, if three onTaskSt art up listeners have started and
the first onTaskSt art up event handler throws an exception, the other two onTaskSt art up

2.1.0M1 Spring Cloud Task 17

Spring Cloud Task Reference Guide

methods are not called. However, the other event handlers (onTaskEnd and onTaskFai | ed) for the
TaskExecut i onLi st ener s are called.

The exit code returned when a exception is thrown by a TaskExecut i onLi st ener event handler is
the exit code that was reported by the ExitCodeEvent. If no Exi t CodeEvent is emitted, the Exception
thrown is evaluated to see if it is of type ExitCodeGenerator. If so, it returns the exit code from the
Exi t CodeGener at or . Otherwise, 1 is returned.

Exit Messages

You can set the exit message for a task programmatically by using a TaskExecut i onLi st ener.
This is done by setting the TaskExecuti on’ s exit Message, which then gets passed into the
TaskExecut i onLi st ener. The following example shows a method that is annotated with the
@\f t er Task Execut i onLi st ener :

@Af t er Task

public void afterMe(TaskExecution taskExecution) {
taskExecuti on. set Exi t Message(" AFTER EXI T MESSAGE")

}

An Exi t Message can be set at any of the listener events (onTaskSt art up, onTaskFai | ed, and
onTaskEnd). The order of precedence for the three listeners follows:

1. onTaskEnd
2. onTaskFai | ed
3. onTaskStartup

For example, if you set an exi t Message for the onTaskSt art up and onTaskFai | ed listeners and
the task ends without failing, the exi t Message from the onTaskSt ar t up is stored in the repository.
Otherwise, if a failure occurs, the exi t Message from the onTaskFai | ed is stored. Also if you set the
exi t Message with an onTaskEnd listener, the exi t Message from the onTaskEnd supersedes the
exit messages from both the onTaskSt art up and onTaskFai | ed.

8.10 Restricting Spring Cloud Task Instances

Spring Cloud Task lets you establish that only one task with a given task name can be run at a time.
To do so, you need to establish the task name and set spri ng. cl oud. t ask. si ngl e-i nst ance-
enabl ed=t r ue for each task execution. While the first task execution is running, any other time you
try to run a task with the same task name andspring.cloud.task.single-instance-enabled=true’, the task
fails with the following error message: Task wi th nane "application” is al ready running.
The default value for spri ng. cl oud. t ask. si ngl e-i nst ance- enabl ed is f al se. The following
example shows how to set spri ng. cl oud. t ask. si ngl e-i nst ance- enabl edtotrue:

spring. cl oud. t ask. si ngl e-i nst ance- enabl ed=true or false

To use this feature, you must add the following Spring Integration dependencies to your application:

<dependency>
<groupl d>or g. spri ngf ramewor k. i nt egrati on</ gr oupl d>
<artifactld>spring-integration-core</artifactld>
</ dependency>
<dependency>
<groupl d>org. spri ngfranmework. i nt egration</ groupl d>
<artifactld>spring-integration-jdbc</artifactld>
</ dependency>

2.1.0M1 Spring Cloud Task 18

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ExitCodeEvent.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-application-exit

Spring Cloud Task Reference Guide

8.11 Disabling Spring Cloud Task Auto Configuration

In cases where Spring Cloud Task should not be auto configured for an implementation, you can disable
Task’s auto configuration. This can be done either by adding the following annotation to your Task
application:

@Enabl eAut oConf i gur at i on(excl ude={ Si npl eTaskAut oConfi gur ati on. cl ass})

You may also disable Task auto configuration by setting the
spring. cl oud. t ask. aut oconfi gurati on. enabl ed property to f al se.

2.1.0M1 Spring Cloud Task 19

Part IV. Batch

This section goes into more detail about Spring Cloud Task’s integration with Spring Batch. Tracking the
association between a job execution and the task in which it was executed as well as remote partitioning
through Spring Cloud Deployer are covered in this section.

Spring Cloud Task Reference Guide

9. Associating a Job Execution to the Task in which
It Was Executed

Spring Boot provides facilities for the execution of batch jobs within an tber-jar. Spring Boot’s support of
this functionality lets a developer execute multiple batch jobs within that execution. Spring Cloud Task
provides the ability to associate the execution of a job (a job execution) with a task’s execution so that
one can be traced back to the other.

Spring Cloud Task achieves this functionality by using the TaskBat chExecuti onLi st ener. By
default, this listener is auto configured in any context that has both a Spring Batch Job configured (by
having a bean of type Job defined in the context) and the spri ng- cl oud-t ask- bat ch jar on the
classpath. The listener is injected into all jobs that meet those conditions.

9.1 Overriding the TaskBatchExecutionListener

To prevent the listener from being injected into any batch jobs within the current context, you can disable
the autoconfiguration by using standard Spring Boot mechanisms.

To only have the listener injected into particular jobs within the context, override the
bat chTaskExecuti onLi st ener BeanPost Pr ocessor and provide a list of job bean IDs, as shown
in the following example:

publ i ¢ TaskBat chExecuti onLi st ener BeanPost Processor bat chTaskExecuti onLi st ener BeanPost Processor () {
TaskBat chExecut i onLi st ener BeanPost Processor post Processor =
new TaskBat chExecuti onLi st ener BeanPost Pr ocessor () ;

post Processor. set JobNanes(Arrays. asLi st (new String[] {"jobl", "job2"}));

return postProcessor;

}

Note

You can find a sample batch application in the samples module of the Spring Cloud Task Project,
here.

2.1.0M1 Spring Cloud Task 21

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-job

Spring Cloud Task Reference Guide

10. Remote Partitioning

Spring Cloud Deployer provides facilities for launching Spring Boot-based applications on most
cloud infrastructures. The Depl oyer Parti ti onHandl er and Depl oyer St epExecut i onHand! er
delegate the launching of worker step executions to Spring Cloud Deployer.

To configure the Depl oyer St epExecut i onHandl er, you must provide a Resour ce representing
the Spring Boot Uber-jar to be executed, a TaskLauncher, and a JobExpl or er. You can configure
any environment properties as well as the max number of workers to be executing at once, the interval
to poll for the results (defaults to 10 seconds), and a timeout (defaults to -1 or no timeout). The following
example shows how configuring this Par ti t i onHandl er might look:

@Bean
public PartitionHandl er partitionHandl er (TaskLauncher taskLauncher,
JobExpl orer jobExplorer) throws Exception {

MavenProperties mavenProperti es = new MavenProperties();
mavenProperti es. set Renbt eReposi t ori es(new HashMap<>(Col | ecti ons. si ngl et onMap("spri ngRepo",
new MavenProperti es. Renpt eRepository(repository))));

Resource resource =

MavenResour ce. parse(String. format ("%: %: %",
"io0.spring.cloud",
"partitioned-batch-job",
"1.1.0. RELEASE"), mavenProperties);

Depl oyer PartitionHandl er partitionHandl er =
new Depl oyer PartitionHandl er (taskLauncher, jobExplorer, resource, "workerStep");

Li st<String> commandLi neArgs = new ArrayList<>(3);

commandLi neArgs. add("--spring. profiles.active=worker");

comrandLi neArgs. add("--spring. cloud.task.initialize.enabl e=fal se");
comrandLi neArgs. add("--spring. batch.initializer.enabl ed=fal se");

partitionHandl er. set CommandLi neAr gsProvi der (
new PassThr oughCommandLi neAr gsProvi der (comnmandLi neAr gs)) ;
partitionHandl er. set Envi ronnment Vari abl esProvi der (new NoOpEnvi r onment Vari abl esProvi der ());
partitionHandl er. set Max\Wor ker s(2) ;
partitionHandl er. set Appl i cati onName("Partiti onedBatchJobTask");

return partitionHandl er;

}

Note

When passing environment variables to partitions, each partition may be on a different machine
with different environment settings. Consequently, you should pass only those environment
variables that are required.

The Resource to be executed is expected to be a Spring Boot uUber-jar with a
Depl oyer St epExecut i onHandl er configured as a ConmmandLi neRunner in the current context.
The repository enumerated in the preceding example should be the remote repository in which the tber-
jar is located. Both the master and slave are expected to have visibility into the same data store being
used as the job repository and task repository. Once the underlying infrastructure has bootstrapped
the Spring Boot jar and Spring Boot has launched the Depl oyer St epExecut i onHandl er, the
step handler executes the requested Step. The following example shows how to configure the
Def aul t St epExecut i onHandl er:

@Bean
publ i c Depl oyer St epExecut i onHandl er st epExecut i onHandl er (JobExpl orer jobExplorer) {

2.1.0M1 Spring Cloud Task 22

Spring Cloud Task Reference Guide

Depl oyer St epExecut i onHandl er handl er =
new Depl oyer St epExecut i onHandl er (t hi s. context, jobExplorer, this.jobRepository);

return handl er;

}

Note

You can find a sample remote partition application in the samples module of the Spring Cloud
Task project, here.

10.1 Notes on Developing a Batch-partitioned application for
the Kubernetes Platform

* When deploying partitioned apps on the Kubernetes platform, you must use the following dependency
for the Spring Cloud Kubernetes Deployer:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-depl oyer-kubernetes</artifactld>
</ dependency>

» The application name for the task application and its partitions need to follow the following regex
pattern: [a- z0- 9] ([- a- z0- 9] *[a- z0- 9]) . Otherwise, an exception is thrown.

10.2 Notes on Developing a Batch-partitioned Application for
the Cloud Foundry Platform

* When deploying partitioned apps on the Cloud Foundry platform, you must use the following
dependencies for the Spring Cloud Foundry Deployer:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifact!|d>spring-cl oud-depl oyer-cl oudf oundry</artifactld>
</ dependency>
<dependency>
<groupl d>i o. proj ectreactor </ groupl d>
<artifactld>reactor-core</artifactld>
<ver si on>3. 1. 5. RELEASE</ ver si on>
</ dependency>
<dependency>
<groupl d>i o. proj ectreactor.ipc</groupld>
<artifactld>reactor-netty</artifactld>
<ver si on>0. 7. 5. RELEASE</ ver si on>
</ dependency>

» When configuring the partition handler, Cloud Foundry Deployment environment variables need to be
established so that the partition handler can start the partitions. The following list shows the required
environment variables:

e spring_cl oud_depl oyer cl oudf oundry_url
e spring_cloud_depl oyer cl oudfoundry _org
e spring_cl oud_depl oyer _cl oudf oundry_space

e spring_cl oud_depl oyer _cl oudf oundry_donai n

2.1.0M1 Spring Cloud Task 23

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/partitioned-batch-job

Spring Cloud Task Reference Guide

e spring_cl oud_depl oyer _cl oudf oundry_user nane
e spring_cl oud_depl oyer _cl oudf oundry_password
e spring_cl oud_depl oyer _cl oudf oundry_servi ces
e spring_cl oud_depl oyer _cl oudf oundry_t askTi neout

An example set of deployment environment variables for a partitioned task that uses a nysql database
service might resemble the following:

spring_cl oud_depl oyer _cl oudf oundry_url =https://api.local.pcfdev.io
spring_cl oud_depl oyer _cl oudf oundry_or g=pcf dev-org

spring_cl oud_depl oyer _cl oudf oundry_space=pcf dev- space

spring_cl oud_depl oyer _cl oudf oundry_domai n=Il ocal . pcfdev.io
spring_cl oud_depl oyer _cl oudf oundry_user nane=adm n

spring_cl oud_depl oyer _cl oudf oundry_passwor d=admi n

spring_cl oud_depl oyer _cl oudf oundry_servi ces=nysq

spring_cl oud_depl oyer _cl oudf oundry_t askTi meout =300

Note

When using PCF-Dev, the following environment variable is also required:
spring_cl oud_depl oyer _cl oudf oundry_ski pSsl Val i dati on=true

2.1.0M1 Spring Cloud Task 24

Spring Cloud Task Reference Guide

11. Batch Informational Messages

Spring Cloud Task provides the ability for batch jobs to emit informational messages. The “Chapter 15
Spring Batch Events” section covers this feature in detail.

2.1.0M1 Spring Cloud Task 25

Spring Cloud Task Reference Guide

12. Batch Job Exit Codes

As discussed earlier, Spring Cloud Task applications support the ability to record the exit code of a task
execution. However, in cases where you run a Spring Batch Job within a task, regardless of how the
Batch Job Execution completes, the result of the task is always zero when using the default Batch/Boot
behavior. Keep in mind that a task is a boot application and that the exit code returned from the task is the
same as a boot application. To override this behavior and allow the task to return an exit code other than
zero when a batch job returns an BatchStatus of FAI LED, set spri ng. cl oud. t ask. batch. fail -
on-j ob-failure totrue. Then the exit code can be 1 (the default) or be based on the specified
Exi t CodeCGener at or)

This functionality uses a new CommandLi neRunner that replaces the one provided by Spring
Boot. By default, it is configured with the same order. However, if you want to customize
the order in which the ConmmandLi neRunner is run, you can set its order by setting the
spring. cl oud. t ask. bat ch. conmandLi neRunner Or der property. To have your task return
the exit code based on the result of the batch job execution, you need to write your own
ComandLi neRunner.

2.1.0M1 Spring Cloud Task 26

https://docs.spring.io/spring-batch/4.0.x/reference/html/step.html#batchStatusVsExitStatus
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html#boot-features-application-exit
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html#boot-features-application-exit

Part V. Spring Cloud
Stream Integration

A task by itself can be useful, but integration of a task into a larger ecosystem lets it be useful for more
complex processing and orchestration. This section covers the integration options for Spring Cloud Task
with Spring Cloud Stream.

Spring Cloud Task Reference Guide

13. Launching a Task from a Spring Cloud Stream

You can launch tasks from a stream. To do so, create a sink that listens for a message that contains a
TaskLaunchRequest as its payload. The TaskLaunchRequest contains:

e uri: To the task artifact that is to be executed.

» appl i cati onNane: The name that is associated with the task. If no applicationName is set, the
TaskLaunchRequest generates a task name comprised of the following: Task- <UUI D>.

» commandLi neAr gunent s: A list containing the command line arguments for the task.
* envi ronment Properti es: A map containing the environment variables to be used by the task.

« depl oynent Properti es: A map containing the properties that are used by the deployer to deploy
the task.

Note

If the payload is of a different type, the sink throws an exception.

For example, a stream can be created that has a processor that takes in data from an HTTP source
and creates a Gener i cMessage that contains the TaskLaunchRequest and sends the message to
its output channel. The task sink would then receive the message from its input channnel and then
launch the task.

To create a taskSink, you need only create a Spring Boot application that includes the
Enabl eTaskLauncher annotation, as shown in the following example:

@pr i ngBoot Appl i cati on
@nabl eTaskLauncher
public class TaskSi nkApplication {
public static void main(String[] args) {
SpringApplication. run(TaskSi nkApplication.class, args);
}
}

The samples module of the Spring Cloud Task project contains a sample Sink and Processor. To install
these samples into your local maven repository, run a maven build from the spri ng- cl oud- t ask-
sanpl es directory with the ski pl nst al | property setto f al se, as shown in the following example:

mvn clean install

Note

The maven. r enot eReposi t ori es. spri ngRepo. url property must be set to the location of
the remote repository in which the tGber-jar is located. If not set, there is no remote repository, so
it relies upon the local repository only.

13.1 Spring Cloud Data Flow

To create a stream in Spring Cloud Data Flow, you must first register the Task Sink Application we
created. In the following example, we are registering the Processor and Sink sample applications by
using the Spring Cloud Data Flow shell:

2.1.0M1 Spring Cloud Task 28

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Spring Cloud Task Reference Guide

app register --nanme taskSink --type sink --uri maven://io.spring.cloud:tasksink: <versi on>
app register --name taskProcessor --type processor --uri maven:io.spring.cloud:taskprocessor: <version>

The following example shows how to create a stream from the Spring Cloud Data Flow shell:

streamcreate foo --definition "http --server.port=9000|taskProcessor|taskSi nk" --deploy

2.1.0M1 Spring Cloud Task

29

Spring Cloud Task Reference Guide

14. Spring Cloud Task Events

Spring Cloud Task provides the ability to emit events through a Spring Cloud Stream channel when
the task is run through a Spring Cloud Stream channel. A task listener is used to publish the
TaskExecuti on on a message channel named t ask- event s. This feature is autowired into any
task that has spri ng- cl oud- stream spri ng- cl oud- st r eam <bi nder >, and a defined task on

its classpath.

Note

To disable the event emitting listener, setthe spri ng. cl oud. t ask. event s. enabl ed property

tof al se.

With the appropriate classpath defined, the following task emits the TaskExecut i on as an event on

the t ask- event s channel (at both the start and the end of the task):

@pr i ngBoot Appl i cati on
public class TaskEvent sApplication {

public static void main(String[] args) {

SpringApplication. run(TaskEvent sApplication. cl ass, args);

}

@Conf i guration
public static class TaskConfiguration {

@Bean
publ i ¢ CommandLi neRunner commandLi neRunner () {
return new ConmandLi neRunner () {
@verride
public void run(String... args) throws Exception {

System out. println("The ComrandLi neRunner was executed");

Note

A binder implementation is also required to be on the classpath.

Note

A sample task event application can be found in the samples module of the Spring Cloud Task

Project, here.

14.1 Disabling Specific Task Events

To disable task events, you can set the spri ng. cl oud. t ask. event s. enabl ed property to f al se.

2.1.0M1

Spring Cloud Task

30

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/task-events

Spring Cloud Task Reference Guide

15. Spring Batch Events

When executing a Spring Batch job through a task, Spring Cloud Task can be configured to emit
informational messages based on the Spring Batch listeners available in Spring Batch. Specifically,
the following Spring Batch listeners are autoconfigured into each batch job and emit messages on the
associated Spring Cloud Stream channels when run through Spring Cloud Task:

» JobExecuti onLi st ener listens for j ob- executi on-events

» St epExecuti onLi st ener listens for st ep- executi on-event s
* ChunkLi st ener listens for chunk- event s

* | tenReadLi st ener listens foritem read-events

* ItenProcesslLi st ener listens forit em process-events

ltemWNitelistener listensforitemwite-events

Ski pLi st ener listens for ski p- event s

These listeners are autoconfigured into any Abst r act Job when the appropriate beans (a Job and a
TaskLi f ecycl eLi st ener) exist in the context. Configuration to listen to these events is handled the
same way binding to any other Spring Cloud Stream channel is done. Our task (the one running the
batch job) serves as a Sour ce, with the listening applications serving as either a Pr ocessor ora Si nk.

An example could be to have an application listening to the j ob- execut i on- event s channel for the
start and stop of a job. To configure the listening application, you would configure the input to be j ob-
executi on-events as follows:

spring. cl oud. st ream bi ndi ngs. i nput . desti nati on=j ob- executi on-events

Note

A binder implementation is also required to be on the classpath.

Note

A sample batch event application can be found in the samples module of the Spring Cloud Task
Project, here.

15.1 Sending Batch Events to Different Channels

One of the options that Spring Cloud Task offers for batch events is the ability to alter the channel
to which a specific listener can emit its messages. To do so, use the following configuration:
spring. cl oud. st ream bi ndi ngs. <t he channel >. desti nati on=<new desti nati on>. For
example, if St epExecuti onLi st ener needs to emit its messages to another channel called mny-
st ep- executi on-event s instead of the default st ep- executi on-events, you can add the
following configuration:

spring. cl oud. st ream bi ndi ngs. st ep- executi on-events. desti nati on=ny- st ep-
execution-events

2.1.0M1 Spring Cloud Task 31

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-events

Spring Cloud Task Reference Guide

15.2 Disabling Batch Events

To disable the listener functionality for all batch events, use the following configuration:
spring. cl oud. t ask. bat ch. event s. enabl ed=f al se

To disable a specific batch event, use the following configuration:

spring. cl oud. t ask. bat ch. event s. <bat ch event |i stener>. enabl ed=f al se:

The following listing shows individual listeners that you can disable:

spring. cl oud. t ask. bat ch. event s. j ob- executi on. enabl ed=f al se
spring. cl oud. t ask. bat ch. event s. st ep- execut i on. enabl ed=f al se
spring. cl oud. t ask. bat ch. event s. chunk. enabl ed=f al se

spring. cl oud. t ask. bat ch. events.itemread. enabl ed=f al se
spring. cl oud. t ask. bat ch. events. i tem process. enabl ed=f al se
spring. cl oud. task. batch. events.itemwite. enabl ed=fal se
spring. cl oud. t ask. bat ch. event s. ski p. enabl ed=f al se

15.3 Emit Order for Batch Events

By default, batch events have Or der ed. LOANEST _PRECEDENCE. To change this value (for example, to
5), use the following configuration;

spring. cl oud. t ask. bat ch. events. j ob- executi on- or der =5
spring. cl oud. t ask. bat ch. event s. st ep- execut i on- or der =5
spring. cl oud. t ask. bat ch. event s. chunk- or der =5

spring. cl oud. t ask. bat ch. events. i temread- order=5
spring. cl oud. t ask. bat ch. events.item process-order=5
spring. cl oud. t ask. bat ch. events.itemwite-order=5
spring. cl oud. t ask. bat ch. event s. ski p- or der =5

2.1.0M1 Spring Cloud Task 32

Part VI. Appendices

Spring Cloud Task Reference Guide

16. Task Repository Schema

This appendix provides an ERD for the database schema used in the task repository.

2.1.0M1 Spring Cloud Task

34

Spring Cloud Task Reference Guide

17. Building This Documentation

This project uses Maven to generate this documentation. To generate it for yourself, run the following
command: $./ nmvnw cl ean package -P full.

2.1.0M1 Spring Cloud Task 35

Spring Cloud Task Reference Guide

18. Running a Task App on Cloud Foundry

The simplest way to launch a Spring Cloud Task application as a task on Cloud Foundry is to use Spring
Cloud Data Flow. Via Spring Cloud Data Flow you can register your task application, create a definition
for it and then launch it. You then can track the task execution(s) via a RESTful API, the Spring Cloud
Data Flow Shell, or the Ul. To learn out to get started installing Data Flow follow the instructions in the
Getting Started section of the reference documentation. For info on how to register and launch tasks,
see the Lifecycle of a Task documentation.

2.1.0M1 Spring Cloud Task 36

https://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmlsingle/#getting-started
https://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmlsingle/#_the_lifecycle_of_a_task

	Spring Cloud Task Reference Guide
	Table of Contents
	Part I. Preface
	1. About the documentation
	2. Getting help
	3. First Steps

	Part II. Getting started
	4. Introducing Spring Cloud Task
	5. System Requirements
	5.1 Database Requirements

	6. Developing Your First Spring Cloud Task Application
	6.1 Creating the Spring Task Project using Spring Initializr
	6.2 Writing the Code
	Task Auto Configuration
	The main method
	The CommandLineRunner

	6.3 Running the Example

	Part III. Features
	7. The lifecycle of a Spring Cloud Task
	7.1 The TaskExecution
	7.2 Mapping Exit Codes

	8. Configuration
	8.1 DataSource
	8.2 Table Prefix
	8.3 Enable/Disable table initialization
	8.4 Externally Generated Task ID
	8.5 External Task Id
	8.6 Parent Task Id
	8.7 TaskConfigurer
	8.8 Task Name
	8.9 Task Execution Listener
	Exceptions Thrown by Task Execution Listener
	Exit Messages

	8.10 Restricting Spring Cloud Task Instances
	8.11 Disabling Spring Cloud Task Auto Configuration

	Part IV. Batch
	9. Associating a Job Execution to the Task in which It Was Executed
	9.1 Overriding the TaskBatchExecutionListener

	10. Remote Partitioning
	10.1 Notes on Developing a Batch-partitioned application for the Kubernetes Platform
	10.2 Notes on Developing a Batch-partitioned Application for the Cloud Foundry Platform

	11. Batch Informational Messages
	12. Batch Job Exit Codes

	Part V. Spring Cloud Stream Integration
	13. Launching a Task from a Spring Cloud Stream
	13.1 Spring Cloud Data Flow

	14. Spring Cloud Task Events
	14.1 Disabling Specific Task Events

	15. Spring Batch Events
	15.1 Sending Batch Events to Different Channels
	15.2 Disabling Batch Events
	15.3 Emit Order for Batch Events

	Part VI. Appendices
	16. Task Repository Schema
	17. Building This Documentation
	18. Running a Task App on Cloud Foundry

