
Spring for Apache Hadoop
- Reference Documentation

2.2.0.RC1

Costin Leau Elasticsearch , Thomas Risberg Pivotal , Janne Valkealahti Pivotal

Copyright © 2011-2015 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop iii

Table of Contents

Preface ... vii
I. Introduction ... 1

1. Requirements ... 2
2. Additional Resources .. 3

II. Spring and Hadoop .. 4
3. Hadoop Configuration ... 5

3.1. Using the Spring for Apache Hadoop Namespace ... 5
3.2. Using the Spring for Apache Hadoop JavaConfig .. 6
3.3. Configuring Hadoop ... 7
3.4. Boot Support ... 10

spring.hadoop configuration properties .. 11
spring.hadoop.fsshell configuration properties .. 13

4. MapReduce and Distributed Cache ... 14
4.1. Creating a Hadoop Job .. 14

Creating a Hadoop Streaming Job .. 14
4.2. Running a Hadoop Job .. 15

Using the Hadoop Job tasklet ... 16
4.3. Running a Hadoop Tool ... 16

Replacing Hadoop shell invocations with tool-runner ... 17
Using the Hadoop Tool tasklet .. 18

4.4. Running a Hadoop Jar ... 18
Using the Hadoop Jar tasklet .. 19

4.5. Configuring the Hadoop DistributedCache ... 19
4.6. Map Reduce Generic Options .. 20

5. Working with the Hadoop File System ... 21
5.1. Configuring the file-system ... 21
5.2. Using HDFS Resource Loader ... 22
5.3. Scripting the Hadoop API ... 24

Using scripts .. 26
5.4. Scripting implicit variables .. 26

Running scripts .. 27
Using the Scripting tasklet .. 27

5.5. File System Shell (FsShell) .. 28
DistCp API ... 29

6. Writing and reading data using the Hadoop File System ... 30
6.1. Store Abstraction ... 30

Writing Data ... 30
File Naming ... 30
File Rollover ... 31
Partitioning ... 31
Creating a Custom Partition Strategy ... 34
Writer Implementations ... 35
Append and Sync Data .. 35

Reading Data ... 36
Input Splits ... 36
Reader Implementations ... 37

Using Codecs .. 37

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop iv

6.2. Persisting POJO datasets using Kite SDK ... 37
Data Formats ... 37

Using Avro ... 38
Using Parquet .. 38

Configuring the dataset support .. 39
Writing datasets ... 39
Reading datasets ... 41
Partitioning datasets ... 42

6.3. Using the Spring for Apache JavaConfig ... 43
7. Working with HBase ... 46

7.1. Data Access Object (DAO) Support .. 46
8. Hive integration .. 48

8.1. Starting a Hive Server ... 48
8.2. Using the Hive Thrift Client .. 48
8.3. Using the Hive JDBC Client ... 49
8.4. Running a Hive script or query ... 49

Using the Hive tasklet .. 50
8.5. Interacting with the Hive API .. 50

9. Pig support .. 51
9.1. Running a Pig script .. 51

Using the Pig tasklet .. 52
9.2. Interacting with the Pig API .. 52

10. Using the runner classes .. 53
11. Security Support ... 55

11.1. HDFS permissions ... 55
11.2. User impersonation (Kerberos) ... 55
11.3. Boot Support ... 56

spring.hadoop.security configuration properties .. 56
12. Yarn Support .. 58

12.1. Using the Spring for Apache Yarn Namespace .. 58
12.2. Using the Spring for Apache Yarn JavaConfig ... 60
12.3. Configuring Yarn .. 61
12.4. Local Resources .. 64
12.5. Container Environment ... 66
12.6. Application Client ... 67
12.7. Application Master ... 70
12.8. Application Container ... 72
12.9. Application Master Services .. 72

Basic Concepts .. 73
Using JSON ... 73
Converters ... 74

12.10. Application Master Service ... 74
12.11. Application Master Service Client .. 75
12.12. Using Spring Batch .. 77

Batch Jobs ... 77
Partitioning ... 78

Configuring Master ... 79
Configuring Container ... 79

12.13. Using Spring Boot Application Model ... 81
Auto Configuration .. 83

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop v

Application Files ... 83
Application Classpath ... 83

Simple Executable Jar .. 83
Simple Zip Archive ... 84

Container Runners ... 84
Custom Runner .. 84

Resource Localizing ... 85
Container as POJO .. 86
Configuration Properties ... 89

spring.yarn configuration properties .. 89
spring.yarn.appmaster configuration properties 91
spring.yarn.appmaster.launchcontext configuration properties 92
spring.yarn.appmaster.localizer configuration properties 95
spring.yarn.appmaster.resource configuration properties 96
spring.yarn.appmaster.containercluster configuration
properties ... 97
spring.yarn.appmaster.containercluster.clusters.<name>

configuration properties ... 97
spring.yarn.appmaster.containercluster.clusters.<name>.projection

configuration properties ... 98
spring.yarn.endpoints.containercluster configuration
properties ... 99
spring.yarn.endpoints.containerregister configuration
properties ... 99
spring.yarn.client configuration properties 100
spring.yarn.client.launchcontext configuration properties 101
spring.yarn.client.localizer configuration properties 104
spring.yarn.client.resource configuration properties 105
spring.yarn.container configuration properties 105
spring.yarn.batch configuration properties .. 106
spring.yarn.batch.jobs configuration properties 107

Container Groups ... 109
Grid Projection ... 109
Group Configuration .. 110
Container Restart ... 111
REST API .. 111

Controlling Applications ... 116
Generic Usage ... 117
Using Configuration Properties .. 117
Using YarnPushApplication ... 117
Using YarnSubmitApplication ... 118
Using YarnInfoApplication ... 118
Using YarnKillApplication .. 118
Using YarnShutdownApplication .. 119
Using YarnContainerClusterApplication .. 119

Cli Integration ... 119
Build-in Commands .. 120
Implementing Command ... 123
Using Shell .. 124

13. Testing Support .. 126

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop vi

13.1. Testing MapReduce ... 126
Mini Clusters for MapReduce .. 126
Configuration .. 127
Simplified Testing ... 127
Wordcount Example ... 128

13.2. Testing Yarn .. 129
Mini Clusters for Yarn ... 129
Configuration .. 130
Simplified Testing ... 130
Multi Context Example .. 132

13.3. Testing Boot Based Applications ... 134
III. Developing Spring for Apache Hadoop Applications ... 136

14. Guidance and Examples ... 137
14.1. Scheduling ... 137
14.2. Batch Job Listeners ... 137

15. Other Samples ... 139
IV. Other Resources ... 140

16. Useful Links ... 141

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop vii

Preface
Spring for Apache Hadoop provides extensions to Spring, Spring Batch, and Spring Integration to build
manageable and robust pipeline solutions around Hadoop.

Spring for Apache Hadoop supports reading from and writing to HDFS, running various types of Hadoop
jobs (Java MapReduce, Streaming), scripting and HBase, Hive and Pig interactions. An important goal
is to provide excellent support for non-Java based developers to be productive using Spring for Apache
Hadoop and not have to write any Java code to use the core feature set.

Spring for Apache Hadoop also applies the familiar Spring programming model to Java MapReduce
jobs by providing support for dependency injection of simple jobs as well as a POJO based MapReduce
programming model that decouples your MapReduce classes from Hadoop specific details such as
base classes and data types.

This document assumes the reader already has a basic familiarity with the Spring Framework and
Hadoop concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are
no errors, nevertheless some topics might require more explanation and some typos might have crept
in. If you do spot any mistakes or even more serious errors and you can spare a few cycles during
lunch, please do bring the error to the attention of the Spring for Apache Hadoop team by raising an
issue. Thank you.

Part I. Introduction
Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to work
with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop namespace to your
Spring based project and get going quickly using Hadoop. As the complexity of your Hadoop application
increases, you may want to use Spring Batch and Spring Integration to regain on the complexity of
developing a large Hadoop application.

This document is the reference guide for Spring for Apache Hadoop project (SHDP). It explains the
relationship between the Spring framework and Hadoop as well as related projects such as Spring Batch
and Spring Integration. The first part describes the integration with the Spring framework to define the
base concepts and semantics of the integration and how they can be used effectively. The second part
describes how you can build upon these base concepts and create workflow based solutions provided
by the integration with Spring Batch.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 2

1. Requirements

Spring for Apache Hadoop 2.1 is built and tested with JDK 7 (generated jars are usable in JDK 6 and
above), Spring Framework 4.1 and is by default built against Apache Hadoop 2.6.0.

Spring for Apache Hadoop 2.1 supports the following versions and distributions:

• Apache Hadoop 2.4.1

• Apache Hadoop 2.5.2

• Apache Hadoop 2.6.0

• Pivotal HD 2.1

• Pivotal HD 3.0

• Cloudera CDH5

• Hortonworks Data Platform 2.2

Any distribution compatible with Apache Hadoop 2.2.x or later should be usable.

Spring for Apache Hadoop 2.1 is tested daily against a number of Hadoop distributions. See the test
plan page for current status.

Instructions for setting up project builds using various supported distributions are provided on the Spring
for Apache Hadoop wiki - https://github.com/spring-projects/spring-hadoop/wiki

Regarding Hadoop-related projects, SDHP supports HBase 0.94.11, Hive 0.11.0 and Pig 0.11.0 and
above. As a rule of thumb, when using Hadoop-related projects, such as Hive or Pig, use the required
Hadoop version as a basis for discovering the supported versions.

To take full advantage of Spring for Apache Hadoop you need a running Hadoop cluster. If you don’t
already have one in your environment, a good first step is to create a single-node cluster. To install the
most recent stable verision of Hadoop, the Getting Started page from the official Apache project is a
good general guide. There should be a link for "Single Node Setup".

It is also convenient to download a Virtual Machine where Hadoop is setup and ready to go. Cloudera,
Hortonworks and Pivotal all provide virtual machines and provide VM downloads on their product pages.

http://projects.spring.io/spring-framework/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.pivotal.io/
http://www.pivotal.io/
http://www.cloudera.com/
http://www.hortonworks.com/
https://build.spring.io/browse/SPRINGDATAHADOOP
https://build.spring.io/browse/SPRINGDATAHADOOP
https://github.com/spring-projects/spring-hadoop/wiki
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/common/docs/stable/#Getting+Started

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 3

2. Additional Resources

While this documentation acts as a reference for Spring for Hadoop project, there are number of
resources that, while optional, complement this document by providing additional background and code
samples for the reader to try and experiment with:

• Spring for Apache Hadoop samples.
Official repository full of SHDP samples demonstrating the various project features.

• Spring Data Book.
Guide to Spring Data projects, written by the committers behind them. Covers Spring Data Hadoop
stand-alone but in tandem with its siblings projects. All author royalties from book sales are donated
to Creative Commons organization.

• Spring Data Book examples.
Complete running samples for the Spring Data book. Note that some of them are available inside
Spring for Apache Hadoop samples as well.

https://github.com/spring-projects/spring-hadoop-samples/
http://shop.oreilly.com/product/0636920024767.do
http://creativecommons.org/about
https://github.com/spring-projects/spring-data-book/tree/master/hadoop

Part II. Spring and Hadoop
This part of the reference documentation explains the core functionality that Spring for Apache Hadoop
(SHDP) provides to any Spring based application.

Chapter 3, Hadoop Configuration describes the Spring support for generic Hadoop configuration.

Chapter 4, MapReduce and Distributed Cache describes the Spring support for bootstrapping, initializing
and working with core Hadoop.

Chapter 5, Working with the Hadoop File System describes the Spring support for interacting with the
Hadoop file system.

Chapter 6, Writing and reading data using the Hadoop File System describes the store abstraction
support.

Chapter 7, Working with HBase describes the Spring support for HBase.

Chapter 8, Hive integration describes the Hive integration in SHDP.

Chapter 9, Pig support describes the Pig support in Spring for Apache Hadoop.

Chapter 10, Using the runner classes describes the runner support.

Chapter 11, Security Support describes how to configure and interact with Hadoop in a secure
environment.

Chapter 12, Yarn Support describes the Hadoop YARN support.

Chapter 13, Testing Support describes the Spring testing integration.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 5

3. Hadoop Configuration

One of the common tasks when using Hadoop is interacting with its runtime - whether it is a local setup or
a remote cluster, one needs to properly configure and bootstrap Hadoop in order to submit the required
jobs. This chapter will focus on how Spring for Apache Hadoop (SHDP) leverages Spring’s lightweight
IoC container to simplify the interaction with Hadoop and make deployment, testing and provisioning
easier and more manageable.

3.1 Using the Spring for Apache Hadoop Namespace

To simplify configuration, SHDP provides a dedicated namespace for most of its components. However,
one can opt to configure the beans directly through the usual <bean> definition. For more information
about XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"❶❷

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-

beans.xsd

 http://www.springframework.org/schema/hadoop

 http://www.springframework.org/schema/hadoop/spring-hadoop.xsd">❸

 <bean/>

 <hdp:configuration/>❹

</beans>

❶ Spring for Apache Hadoop namespace prefix. Any name can do but throughout the reference
documentation, hdp will be used.

❷ The namespace URI.

❸ The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring for
Apache Hadoop library.

❹ Declaration example for the Hadoop namespace. Notice the prefix usage.

Once imported, the namespace elements can be declared simply by using the aforementioned prefix.
Note that is possible to change the default namespace, for example from <beans> to <hdp>. This is
useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix. To
achieve this, simply swap the namespace prefix declarations above:

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/xsd-config.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 6

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans

xmlns="http://www.springframework.org/schema/hadoop"❶

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"❷

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-

beans.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/spring-

hadoop.xsd">

 <beans:bean id ... >❸

 <configuration ...>❹

</beans:beans>

❶ The default namespace declaration for this XML file points to the Spring for Apache Hadoop
namespace.

❷ The beans namespace prefix declaration.

❸ Bean declaration using the <beans> namespace. Notice the prefix.

❹ Bean declaration using the <hdp> namespace. Notice the lack of prefix (as hdp is the default
namespace).

For the remainder of this doc, to improve readability, the XML examples may simply refer to the <hdp>
namespace without the namespace declaration, where possible.

3.2 Using the Spring for Apache Hadoop JavaConfig

Annotation based configuration is designed to work via a SpringHadoopConfigurerAdapter which
is loosely trying to use same type of dsl language familiar from xml. Within the adapter you need
to override configure method which is exposing HadoopConfigConfigurer containing familiar
attributes to work with a Hadoop configuration.

import org.springframework.context.annotation.Configuration;

import org.springframework.data.hadoop.config.annotation.EnableHadoop

import org.springframework.data.hadoop.config.annotation.SpringHadoopConfigurerAdapter

import org.springframework.data.hadoop.config.annotation.builders.HadoopConfigConfigurer;

@Configuration

@EnableHadoop

static class Config extends SpringHadoopConfigurerAdapter {

 @Override

 public void configure(HadoopConfigConfigurer config) throws Exception {

 config

 .fileSystemUri("hdfs://localhost:8021");

 }

}

Note

@EnableHadoop annotation is required to mark Spring @Configuration class to be a
candidate for Spring Hadoop configuration.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 7

3.3 Configuring Hadoop

In order to use Hadoop, one needs to first configure it namely by creating a Configuration object.
The configuration holds information about the job tracker, the input, output format and the various other
parameters of the map reduce job.

In its simplest form, the configuration definition is a one liner:

<hdp:configuration />

The declaration above defines a Configuration bean (to be precise a factory bean of type
ConfigurationFactoryBean) named, by default, hadoopConfiguration. The default name is used, by
conventions, by the other elements that require a configuration - this leads to simple and very concise
configurations as the main components can automatically wire themselves up without requiring any
specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in additional configuration files:

<hdp:configuration resources="classpath:/custom-site.xml, classpath:/hq-site.xml">

In this example, two additional Hadoop configuration resources are added to the configuration.

Note

Note that the configuration makes use of Spring’s Resource abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified (if any) by the value - in this example the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Properties. This can be quite handy when just a few options need to be changed:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/

spring-hadoop.xsd">

 <hdp:configuration>

 fs.defaultFS=hdfs://localhost:8020

 hadoop.tmp.dir=/tmp/hadoop

 electric=sea

 </hdp:configuration>

</beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

Note

Usual configuration parameters for fs.defaultFS, mapred.job.tracker and
yarn.resourcemanager.address can be configured using tag attributes file-system-uri, job-
tracker-uri and rm-manager-uri respectively.

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/resources.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 8

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/

spring-context.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/

spring-hadoop.xsd">

 <hdp:configuration>

 fs.defaultFS=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

 hangar=${number:18}

 </hdp:configuration>

 <context:property-placeholder location="classpath:hadoop.properties" />

</beans>

Through Spring’s property placeholder support, SpEL and the environment abstraction. one can
externalize environment specific properties from the main code base easing the deployment across
multiple machines. In the example above, the default file system is replaced based on the properties
available in hadoop.properties while the temp dir is determined dynamically through SpEL. Both
approaches offer a lot of flexbility in adapting to the running environment - in fact we use this approach
extensivly in the Spring for Apache Hadoop test suite to cope with the differences between the different
development boxes and the CI server.

Additionally, external Properties files can be loaded, Properties beans (typically declared
through Spring’s util namespace). Along with the nested properties declaration, this allows customized
configurations to be easily declared:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/

spring-context.xsd

 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-

util.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/

spring-hadoop.xsd">

 <!-- merge the local properties, the props bean and the two properties files -->

 <hdp:configuration properties-ref="props" properties-location="cfg-1.properties, cfg-2.properties">

 star=chasing

 captain=eo

 </hdp:configuration>

 <util:properties id="props" location="props.properties"/>

</beans>

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the props bean followed by the external properties file
based on their defined order. While it’s not typical for a configuration to refer to so many properties, the
example showcases the various options available.

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/expressions.html
http://spring.io/blog/2011/06/09/spring-framework-3-1-m2-released/
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 9

Note

For more properties utilities, including using the System as a source or fallback, or control over the
merging order, consider using Spring’s PropertiesFactoryBean (which is what Spring for Apache
Hadoop and util:properties use underneath).

It is possible to create configurations based on existing ones - this allows one to create dedicated
configurations, slightly different from the main ones, usable for certain jobs (such as streaming - more
on that #hadoop:job:streaming[below]). Simply use the configuration-ref attribute to refer to the
parent configuration - all its properties will be inherited and overridden as specified by the child:

<!-- default name is 'hadoopConfiguration' -->

<hdp:configuration>

 fs.defaultFS=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

</hdp:configuration>

<hdp:configuration id="custom" configuration-ref="hadoopConfiguration">

 fs.defaultFS=${custom.hd.fs}

</hdp:configuration>

...

Make sure though that you specify a different name since otherwise, because both definitions will have
the same name, the Spring container will interpret this as being the same definition (and will usually
consider the last one found).

Another option worth mentioning is register-url-handler which, as the name implies,
automatically registers an URL handler in the running VM. This allows urls referrencing hdfs resource
(by using the hdfs prefix) to be properly resolved - if the handler is not registered, such an URL will
throw an exception since the VM does not know what hdfs means.

Note

Since only one URL handler can be registered per VM, at most once, this option is turned off by
default. Due to the reasons mentioned before, once enabled if it fails, it will log the error but will
not throw an exception. If your hdfs URLs stop working, make sure to investigate this aspect.

Last but not least a reminder that one can mix and match all these options to her preference. In
general, consider externalizing Hadoop configuration since it allows easier updates without interfering
with the application configuration. When dealing with multiple, similar configurations use configuration
composition as it tends to keep the definitions concise, in sync and easy to update.

Table 3.1. hdp:configuration attributes

Name Values Description

configuration-

ref

Bean
Reference

Reference to existing Configuration bean

properties-

ref

Bean
Reference

Reference to existing Properties bean

properties-

location

Comma
delimited list

List or Spring Resource paths

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 10

Name Values Description

resources Comma
delimited list

List or Spring Resource paths

register-

url-handler

Boolean Registers an HDFS url handler in the running VM. Note that this
operation can be executed at most once in a given JVM hence
the default is false. Defaults to false.

file-system-

uri

String The HDFS filesystem address. Equivalent to fs.defaultFS
propertys.

job-tracker-

uri

String Job tracker address for HadoopV1. Equivalent to
mapred.job.tracker property.

rm-manager-

uri

String The Yarn Resource manager address for HadoopV2. Equivalent
to yarn.resourcemanager.address property.

user-keytab String Security keytab.

user-

principal

String User security principal.

namenode-

principal

String Namenode security principal.

rm-manager-

principal

String Resource manager security principal.

security-

method

String The security method for hadoop.

Note

Configuring security and kerberos refer to chapter Chapter 11, Security Support.

3.4 Boot Support

Spring Boot support is enabled automatically if spring-data-hadoop-boot-2.2.0.RC1.jar is found from
a classpath. Currently Boot auto-configuration is a little limited and only supports configuring of
hadoopConfiguration and fsShell beans.

Configuration properties can be defined using various methods. See a Spring Boot dodumentation for
details.

@Grab('org.springframework.data:spring-data-hadoop-boot:2.2.0.RC1')

import org.springframework.data.hadoop.fs.FsShell

public class App implements CommandLineRunner {

 @Autowired FsShell shell

 void run(String... args) {

 shell.lsr("/tmp").each() {println "> ${it.path}"}

 }

}

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 11

Above example which can be run using Spring Boot CLI shows how auto-configuration ease use of
Spring Hadoop. In this example Hadoop configuration and FsShell are configured automatically.

spring.hadoop configuration properties

Namespace spring.hadoop supports following properties; fsUri, resourceManagerAddress,
resourceManagerSchedulerAddress, resourceManagerHost, resourceManagerPort,
resourceManagerSchedulerPort, resources and config.

spring.hadoop.fsUri

Description
A hdfs file system uri for a namenode.

Required
Yes

Type
String

Default Value
null

spring.hadoop.resourceManagerAddress

Description
Address of a YARN resource manager.

Required
No

Type
String

Default Value
null

spring.hadoop.resourceManagerSchedulerAddress

Description
Address of a YARN resource manager scheduler.

Required
No

Type
String

Default Value
null

spring.hadoop.resourceManagerHost

Description
Hostname of a YARN resource manager.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 12

Required
No

Type
String

Default Value
null

spring.hadoop.resourceManagerPort

Description
Port of a YARN resource manager.

Required
No

Type
Integer

Default Value
8032

spring.hadoop.resourceManagerSchedulerPort

Description
Port of a YARN resource manager scheduler. This property is only needed for an application
master.

Required
No

Type
Integer

Default Value
8030

spring.hadoop.resources

Description
List of Spring resource locations to be initialized in Hadoop configuration. These resources
should be in Hadoop’s own site xml format and location format can be anything Spring supports.
For example, classpath:/myentry.xml from a classpath or file:/myentry.xml from a file system.

Required
No

Type
List

Default Value
null

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 13

spring.hadoop.config

Description
Map of generic hadoop configuration properties.

This yml example shows howto set filesystem uri using config property instead of fsUri.

application.yml.

spring:

 hadoop:

 config:

 fs.defaultFS: hdfs://localhost:8020

Or:

application.yml.

spring:

 hadoop:

 config:

 fs:

 defaultFS: hdfs://localhost:8020

This example shows howto set same using properties format:

application.properties.

spring.hadoop.config.fs.defaultFS=hdfs://localhost:8020

Required
No

Type
Map

Default Value
null

spring.hadoop.fsshell configuration properties

Namespace spring.hadoop.fsshell supports following properties; enabled

spring.hadoop.fsshell.enabled

Description
Defines if FsShell should be created automatically.

Required
No

Type
Boolean

Default Value
true

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 14

4. MapReduce and Distributed Cache

4.1 Creating a Hadoop Job

Once the Hadoop configuration is taken care of, one needs to actually submit some work to it. SHDP
makes it easy to configure and run Hadoop jobs whether they are vanilla map-reduce type or streaming.
Let us start with an example:

<hdp:job id="mr-job"

 input-path="/input/" output-path="/ouput/"

 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"

 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

The declaration above creates a typical Hadoop Job: specifies its input and output, the mapper and the
reducer classes. Notice that there is no reference to the Hadoop configuration above - that’s because,
if not specified, the default naming convention (hadoopConfiguration) will be used instead. Neither
is there to the key or value types - these two are automatically determined through a best-effort attempt
by analyzing the class information of the mapper and the reducer. Of course, these settings can be
overridden: the former through the configuration-ref element, the latter through key and value
attributes. There are plenty of options available not shown in the example (for simplicity) such as the
jar (specified directly or by class), sort or group comparator, the combiner, the partitioner, the codecs
to use or the input/output format just to name a few - they are supported, just take a look at the SHDP
schema (?) or simply trigger auto-completion (usually CTRL+SPACE) in your IDE; if it supports XML
namespaces and is properly configured it will display the available elements. Additionally one can extend
the default Hadoop configuration object and add any special properties not available in the namespace
or its backing bean (JobFactoryBean).

It is worth pointing out that per-job specific configurations are supported by specifying the
custom properties directly or referring to them (more information on the pattern is available
#hadoop:config:properties[here]):

<hdp:job id="mr-job"

 input-path="/input/" output-path="/ouput/"

 mapper="mapper class" reducer="reducer class"

 jar-by-class="class used for jar detection"

 properties-location="classpath:special-job.properties">

 electric=sea

</hdp:job>

<hdp:job> provides additional properties, such as the #hadoop:generic-options[generic options],
however one that is worth mentioning is jar which allows a job (and its dependencies) to be loaded
entirely from a specified jar. This is useful for isolating jobs and avoiding classpath and versioning
collisions. Note that provisioning of the jar into the cluster still depends on the target environment - see
the aforementioned #hadoop:generic-options[section] for more info (such as libs).

Creating a Hadoop Streaming Job

Hadoop Streaming job (or in short streaming), is a popular feature of Hadoop as it allows the creation
of Map/Reduce jobs with any executable or script (the equivalent of using the previous counting words
example is to use cat and wc commands). While it is rather easy to start up streaming from the
command line, doing so programatically, such as from a Java environment, can be challenging due to
the various number of parameters (and their ordering) that need to be parsed. SHDP simplifies such
a task - it’s as easy and straightforward as declaring a job from the previous section; in fact most of
the attributes will be the same:

http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/HadoopStreaming.html
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Wc_%28Unix%29

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 15

<hdp:streaming id="streaming"

 input-path="/input/" output-path="/ouput/"

 mapper="${path.cat}" reducer="${path.wc}"/>

Existing users might be wondering how they can pass the command line arguments (such as -D or
-cmdenv). While the former customize the Hadoop configuration (which has been convered in the
previous #hadoop:config[section]), the latter are supported through the cmd-env element:

<hdp:streaming id="streaming-env"

 input-path="/input/" output-path="/ouput/"

 mapper="${path.cat}" reducer="${path.wc}">

 <hdp:cmd-env>

 EXAMPLE_DIR=/home/example/dictionaries/

 ...

 </hdp:cmd-env>

</hdp:streaming>

Just like job, streaming supports the #hadoop:generic-options[generic options]; follow the link for
more information.

4.2 Running a Hadoop Job

The jobs, after being created and configured, need to be submitted for execution to a Hadoop cluster.
For non-trivial cases, a coordinating, workflow solution such as Spring Batch is recommended . However
for basic job submission SHDP provides the job-runner element (backed by JobRunner class) which
submits several jobs sequentially (and waits by default for their completion):

<hdp:job-runner id="myjob-runner" pre-action="cleanup-script" post-action="export-results" job-

ref="myjob" run-at-startup="true"/>

<hdp:job id="myjob" input-path="/input/" output-path="/output/"

 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"

 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer" />

Multiple jobs can be specified and even nested if they are not used outside the runner:

<hdp:job-runner id="myjobs-runner" pre-action="cleanup-script" job-ref="myjob1, myjob2" run-at-

startup="true"/>

<hdp:job id="myjob1" ... />

<hdp:streaming id="myjob2" ... />

One or multiple Map-Reduce jobs can be specified through the job attribute in the order of the execution.
The runner will trigger the execution during the application start-up (notice the run-at-startup flag
which is by default false). Do note that the runner will not run unless triggered manually or if run-
at-startup is set to true. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pre and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Callable can be passed in. For
more information on runners, see the dedicated chapter.

Note

As the Hadoop job submission and execution (when wait-for-completion is true) is blocking,
JobRunner uses a JDK Executor to start (or stop) a job. The default implementation,
SyncTaskExecutor uses the calling thread to execute the job, mimicking the hadoop command
line behaviour. However, as the hadoop jobs are time-consuming, in some cases this can lead
to application freeze, preventing normal operations or even application shutdown from occuring

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 16

properly. Before going into production, it is recommended to double-check whether this strategy
is suitable or whether a throttled or pooled implementation is better. One can customize the
behaviour through the executor-ref parameter.

The job runner also allows running jobs to be cancelled (or killed) at shutdown. This applies only to jobs
that the runner waits for (wait-for-completion is true) using a different executor then the default
- that is, using a different thread then the calling one (since otherwise the calling thread has to wait for
the job to finish first before executing the next task). To customize this behaviour, one should set the
kill-job-at-shutdown attribute to false and/or change the executor-ref implementation.

Using the Hadoop Job tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop jobs as a step
in a Spring Batch workflow. An example declaration is shown below:

<hdp:job-tasklet id="hadoop-tasklet" job-ref="mr-job" wait-for-completion="true" />

The tasklet above references a Hadoop job definition named "mr-job". By default, wait-for-
completion is true so that the tasklet will wait for the job to complete when it executes. Setting wait-
for-completion to false will submit the job to the Hadoop cluster but not wait for it to complete.

4.3 Running a Hadoop Tool

It is common for Hadoop utilities and libraries to be started from the command-line (ex: hadoop jar
some.jar). SHDP offers generic support for such cases provided that the packages in question are built
on top of Hadoop standard infrastructure, namely Tool and ToolRunner classes. As opposed to the
command-line usage, Tool instances benefit from Spring’s IoC features; they can be parameterized,
created and destroyed on demand and have their properties (such as the Hadoop configuration) injected.

Consider the typical jar example - invoking a class with some (two in this case) arguments (notice that
the Hadoop configuration properties are passed as well):

bin/hadoop jar -conf hadoop-site.xml -jt darwin:50020 -Dproperty=value someJar.jar

Since SHDP has first-class support for #hadoop:config[configuring] Hadoop, the so called generic
options aren’t needed any more, even more so since typically there is only one Hadoop configuration
per application. Through tool-runner element (and its backing ToolRunner class) one typically just
needs to specify the Tool implementation and its arguments:

<hdp:tool-runner id="someTool" tool-class="org.foo.SomeTool" run-at-startup="true">

 <hdp:arg value="data/in.txt"/>

 <hdp:arg value="data/out.txt"/>

 property=value

</hdp:tool-runner>

Additionally the runner (just like the job runner) allows one or multiple pre and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Callable can be passed in. Do note that the runner will not run unless
triggered manually or if run-at-startup is set to true. For more information on runners, see the
dedicated chapter.

The previous example assumes the Tool dependencies (such as its class) are available in the
classpath. If that is not the case, tool-runner allows a jar to be specified:

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 17

<hdp:tool-runner ... jar="myTool.jar">

 ...

</hdp:tool-runner>

The jar is used to instantiate and start the tool - in fact all its dependencies are loaded from the jar
meaning they no longer need to be part of the classpath. This mechanism provides proper isolation
between tools as each of them might depend on certain libraries with different versions; rather then
adding them all into the same app (which might be impossible due to versioning conflicts), one can
simply point to the different jars and be on her way. Note that when using a jar, if the main class (as
specified by the Main-Class entry) is the target Tool, one can skip specifying the tool as it will picked
up automatically.

Like the rest of the SHDP elements, tool-runner allows the passed Hadoop configuration
(by default hadoopConfiguration but specified in the example for clarity) to be
#hadoop:config:properties[customized] accordingly; the snippet only highlights the property initialization
for simplicity but more options are available. Since usually the Tool implementation has a default
argument, one can use the tool-class attribute. However it is possible to refer to another Tool
instance or declare a nested one:

<hdp:tool-runner id="someTool" run-at-startup="true">

 <hdp:tool>

 <bean class="org.foo.AnotherTool" p:input="data/in.txt" p:output="data/out.txt"/>

 </hdp:tool>

</hdp:tool-runner>

This is quite convenient if the Tool class provides setters or richer constructors. Note that by default
the tool-runner does not execute the Tool until its definition is actually called - this behavior can be
changed through the run-at-startup attribute above.

Replacing Hadoop shell invocations with tool-runner

tool-runner is a nice way for migrating series or shell invocations or scripts into fully wired, managed
Java objects. Consider the following shell script:

hadoop jar job1.jar -files fullpath:props.properties -Dconfig=config.properties ...

hadoop jar job2.jar arg1 arg2...

...

hadoop jar job10.jar ...

Each job is fully contained in the specified jar, including all the dependencies (which might conflict with
the ones from other jobs). Additionally each invocation might provide some generic options or arguments
but for the most part all will share the same configuration (as they will execute against the same cluster).

The script can be fully ported to SHDP, through the tool-runner element:

<hdp:tool-runner id="job1" tool-

class="job1.Tool" jar="job1.jar" files="fullpath:props.properties" properties-

location="config.properties"/>

<hdp:tool-runner id="job2" jar="job2.jar">

 <hdp:arg value="arg1"/>

 <hdp:arg value="arg2"/>

</hdp:tool-runner>

<hdp:tool-runner id="job3" jar="job3.jar"/>

...

All the features have been explained in the previous sections but let us review what happens here. As
mentioned before, each tool gets autowired with the hadoopConfiguration; job1 goes beyond this
and uses its own properties instead. For the first jar, the Tool class is specified, however the rest assume

http://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 18

the jar _Main-Class_es implement the Tool interface; the namespace will discover them automatically
and use them accordingly. When needed (such as with job1), additional files or libs are provisioned in
the cluster. Same thing with the job arguments.

However more things that go beyond scripting, can be applied to this configuration - each job can
have multiple properties loaded or declared inlined - not just from the local file system, but also from
the classpath or any url for that matter. In fact, the whole configuration can be externalized and
parameterized (through Spring’s property placeholder and/or Environment abstraction). Moreover, each
job can be ran by itself (through the JobRunner) or as part of a workflow - either through Spring’s
depends-on or the much more powerful Spring Batch and tool-tasklet.

Using the Hadoop Tool tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop tasks as a step in
a Spring Batch workflow. The tasklet element supports the same configuration options as #hadoop:tool-
runner[tool-runner] except for run-at-startup (which does not apply for a workflow):

<hdp:tool-tasklet id="tool-tasklet" tool-ref="some-tool" />

4.4 Running a Hadoop Jar

SHDP also provides support for executing vanilla Hadoop jars. Thus the famous WordCount example:

bin/hadoop jar hadoop-examples.jar wordcount /wordcount/input /wordcount/output

becomes

<hdp:jar-runner id="wordcount" jar="hadoop-examples.jar" run-at-startup="true">

 <hdp:arg value="wordcount"/>

 <hdp:arg value="/wordcount/input"/>

 <hdp:arg value="/wordcount/output"/>

</hdp:jar-runner>

Note

Just like the hadoop jar command, by default the jar support reads the jar’s Main-Class if none is
specified. This can be customized through the main-class attribute.

Additionally the runner (just like the job runner) allows one or multiple pre and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Callable can be passed in. Do note that the runner will not run unless
triggered manually or if run-at-startup is set to true. For more information on runners, see the
dedicated chapter.

The jar support provides a nice and easy migration path from jar invocations from the command-
line to SHDP (note that Hadoop #hadoop:generic-options[generic options] are also supported).
Especially since SHDP enables Hadoop Configuration objects, created during the jar execution, to
automatically inherit the context Hadoop configuration. In fact, just like other SHDP elements, the jar
element allows #hadoop:config:properties[configurations properties] to be declared locally, just for the
jar run. So for example, if one would use the following declaration:

<hdp:jar-runner id="wordcount" jar="hadoop-examples.jar" run-at-startup="true">

 <hdp:arg value="wordcount"/>

 ...

 speed=fast

</hdp:jar-runner>

http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/beans.html#beans-environment
http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 19

inside the jar code, one could do the following:

assert "fast".equals(new Configuration().get("speed"));

This enabled basic Hadoop jars to use, without changes, the enclosing application Hadoop
configuration.

And while we think it is a useful feature (that is why we added it in the first place), we strongly recommend
using the tool support instead or migrate to it; there are several reasons for this mainly because there
are no contracts to use, leading to very poor embeddability caused by:

• No standard Configuration injection

While SHDP does a best effort to pass the Hadoop configuration to the jar, there is no guarantee the
jar itself does not use a special initialization mechanism, ignoring the passed properties. After all, a
vanilla Configuration is not very useful so applications tend to provide custom code to address
this.

• System.exit() calls

Most jar examples out there (including WordCount) assume they are started from the command line
and among other things, call System.exit, to shut down the JVM, whether the code is succesful
or not. SHDP prevents this from happening (otherwise the entire application context would shutdown
abruptly) but it is a clear sign of poor code collaboration.

SHDP tries to use sensible defaults to provide the best integration experience possible but at the end
of the day, without any contract in place, there are no guarantees. Hence using the Tool interface is
a much better alternative.

Using the Hadoop Jar tasklet

Like for the rest of its tasks, for Spring Batch environments, SHDP provides a dedicated tasklet to
execute Hadoop jars as a step in a Spring Batch workflow. The tasklet element supports the same
configuration options as #hadoop:jar-runner[jar-runner] except for run-at-startup (which does not
apply for a workflow):

<hdp:jar-tasklet id="jar-tasklet" jar="some-jar.jar" />

4.5 Configuring the Hadoop DistributedCache

DistributedCache is a Hadoop facility for distributing application-specific, large, read-only files (text,
archives, jars and so on) efficiently. Applications specify the files to be cached via urls (hdfs://) using
DistributedCache and the framework will copy the necessary files to the slave nodes before any
tasks for the job are executed on that node. Its efficiency stems from the fact that the files are only
copied once per job and the ability to cache archives which are un-archived on the slaves. Note that
DistributedCache assumes that the files to be cached (and specified via hdfs:// urls) are already
present on the Hadoop FileSystem.

SHDP provides first-class configuration for the distributed cache through its cache element (backed by
DistributedCacheFactoryBean class), allowing files and archives to be easily distributed across nodes:

http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/DistributedCacheDeploy.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 20

<hdp:cache create-symlink="true">

 <hdp:classpath value="/cp/some-library.jar#library.jar" />

 <hdp:cache value="/cache/some-archive.tgz#main-archive" />

 <hdp:cache value="/cache/some-resource.res" />

 <hdp:local value="some-file.txt" />

</hdp:cache>

The definition above registers several resources with the cache (adding them to the job cache or
classpath) and creates symlinks for them. As described in the DistributedCache documentation
the declaration format is (absolute-path#link-name). The link name is determined by the URI
fragment (the text following the # such as #library.jar or #main-archive above) - if no name is specified,
the cache bean will infer one based on the resource file name. Note that one does not have to specify
the hdfs://node:port prefix as these are automatically determined based on the configuration wired
into the bean; this prevents environment settings from being hard-coded into the configuration which
becomes portable. Additionally based on the resource extension, the definition differentiates between
archives (.tgz, .tar.gz, .zip and .tar) which will be uncompressed, and regular files that are
copied as-is. As with the rest of the namespace declarations, the definition above relies on defaults -
since it requires a Hadoop Configuration and FileSystem objects and none are specified (through
configuration-ref and file-system-ref) it falls back to the default naming and is wired with
the bean named hadoopConfiguration, creating the FileSystem automatically.

Warning

Clients setting up a classpath in the DistributedCache, running on Windows platforms should set
the System path.separator property to :. Otherwise the classpath will be set incorrectly and
will be ignored; see HADOOP-9123 bug report for more information. There are multiple ways
to change the path.separator System property - a quick one being a simple script in
Javascript (that uses the Rhino package bundled with the JDK) that runs at start-up:

<hdp:script language="javascript" run-at-startup="true">

 // set System 'path.separator' to ':' - see HADOOP-9123

 java.lang.System.setProperty("path.separator", ":")

</hdp:script>

4.6 Map Reduce Generic Options

The job, streaming and tool all support a subset of generic options, specifically archives, files
and libs. libs is probably the most useful as it enriches a job classpath (typically with some jars)
- however the other two allow resources or archives to be copied throughout the cluster for the job to
consume. Whenver faced with provisioning issues, revisit these options as they can help up significantly.
Note that the fs, jt or conf options are not supported - these are designed for command-line usage,
for bootstrapping the application. This is no longer needed, as the SHDP offers first-class support for
defining and customizing Hadoop configurations.

http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/DistributedCacheDeploy.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 21

5. Working with the Hadoop File System

A common task in Hadoop is interacting with its file system, whether for provisioning, adding new files
to be processed, parsing results, or performing cleanup. Hadoop offers several ways to achieve that:
one can use its Java API (namely FileSystem or use the hadoop command line, in particular the file
system shell. However there is no middle ground, one either has to use the (somewhat verbose, full of
checked exceptions) API or fall back to the command line, outside the application. SHDP addresses this
issue by bridging the two worlds, exposing both the FileSystem and the fs shell through an intuitive,
easy-to-use Java API. Add your favorite JVM scripting language right inside your Spring for Apache
Hadoop application and you have a powerful combination.

5.1 Configuring the file-system

The Hadoop file-system, HDFS, can be accessed in various ways - this section will cover the most
popular protocols for interacting with HDFS and their pros and cons. SHDP does not enforce any specific
protocol to be used - in fact, as described in this section any FileSystem implementation can be used,
allowing even other implementations than HDFS to be used.

The table below describes the common HDFS APIs in use:

Table 5.1. HDFS APIs

File System Comm. Method Scheme / Prefix Read / Write Cross Version

HDFS RPC hdfs:// Read / Write Same HDFS
version only

HFTP HTTP hftp:// Read only Version
independent

WebHDFS HTTP (REST) webhdfs:// Read / Write Version
independent

This chapter focuses on the core file-system protocols supported by Hadoop. S3, FTP and the rest
of the other FileSystem implementations are supported as well - Spring for Apache Hadoop has no
dependency on the underlying system rather just on the public Hadoop API.

hdfs:// protocol should be familiar to most readers - most docs (and in fact the previous chapter as
well) mention it. It works out of the box and it’s fairly efficient. However because it is RPC based, it
requires both the client and the Hadoop cluster to share the same version. Upgrading one without the
other causes serialization errors meaning the client cannot interact with the cluster. As an alternative
one can use hftp:// which is HTTP-based or its more secure brother hsftp:// (based on SSL)
which gives you a version independent protocol meaning you can use it to interact with clusters with
an unknown or different version than that of the client. hftp is read only (write operations will fail right
away) and it is typically used with disctp for reading data. webhdfs:// is one of the additions in
Hadoop 1.0 and is a mixture between hdfs and hftp protocol - it provides a version-independent,
read-write, REST-based protocol which means that you can read and write to/from Hadoop clusters
no matter their version. Furthermore, since webhdfs:// is backed by a REST API, clients in other
languages can use it with minimal effort.

http://hadoop.apache.org/docs/r2.6.0/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://en.wikipedia.org/wiki/List_of_JVM_languages

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 22

Note

Not all file systems work out of the box. For example WebHDFS needs to be enabled first in
the cluster (through dfs.webhdfs.enabled property, see this document for more information)
while the secure hftp, hsftp requires the SSL configuration (such as certificates) to be specified.
More about this (and how to use hftp/hsftp for proxying) in this page.

Once the scheme has been decided upon, one can specify it through the standard Hadoop configuration,
either through the Hadoop configuration files or its properties:

<hdp:configuration>

 fs.defaultFS=webhdfs://localhost

 ...

</hdp:configuration>

This instructs Hadoop (and automatically SHDP) what the default, implied file-system is. In SHDP,
one can create additional file-systems (potentially to connect to other clusters) and specify a different
scheme:

<!-- manually creates the default SHDP file-system named 'hadoopFs' -->

<hdp:file-system uri="webhdfs://localhost"/>

<!-- creates a different FileSystem instance -->

<hdp:file-system id="old-cluster" uri="hftp://old-cluster/"/>

As with the rest of the components, the file systems can be injected where needed - such as file shell
or inside scripts (see the next section).

5.2 Using HDFS Resource Loader

In Spring the ResourceLoader interface is meant to be implemented by objects that can return (i.e. load)
Resource instances.

public interface ResourceLoader {

 Resource getResource(String location);

}

All application contexts implement the ResourceLoader interface, and therefore all application contexts
may be used to obtain Resource instances.

When you call getResource() on a specific application context, and the location path specified
doesn’t have a specific prefix, you will get back a Resource type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
ClassPathXmlApplicationContext instance:

Resource template = ctx.getResource("some/resource/path/myTemplate.txt");

What would be returned would be a ClassPathResource; if the same method was executed
against a FileSystemXmlApplicationContext instance, you’d get back a FileSystemResource. For a
WebApplicationContext, you’d get back a ServletContextResource, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force ClassPathResource to be used, regardless of the application
context type, by specifying the special classpath: prefix:

Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt");

http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/Hftp.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 23

Note

More information about the generic usage of resource loading, check the Spring Framework
Documentation.

Spring Hadoop is adding its own functionality into generic concept of resource loading. Resource
abstraction in Spring has always been a way to ease resource access in terms of not having a need
to know where there resource is and how it’s accessed. This abstraction also goes beyond a single
resource by allowing to use patterns to access multiple resources.

Lets first see how HdfsResourceLoader is used manually.

<hdp:file-system />

<hdp:resource-loader id="loader" file-system-ref="hadoopFs" />

<hdp:resource-loader id="loaderWithUser" user="myuser" uri="hdfs://localhost:8020" />

In above configuration we created two beans, one with reference to existing Hadoop FileSystem
bean and one with impersonated user.

// get path '/tmp/file.txt'

Resource resource = loader.getResource("/tmp/file.txt");

// get path '/tmp/file.txt' with user impersonation

Resource resource = loaderWithUser.getResource("/tmp/file.txt");

// get path '/user/<current user>/file.txt'

Resource resource = loader.getResource("file.txt");

// get path '/user/myuser/file.txt'

Resource resource = loaderWithUser.getResource("file.txt");

// get all paths under '/tmp/'

Resource[] resources = loader.getResources("/tmp/*");

// get all paths under '/tmp/' recursively

Resource[] resources = loader.getResources("/tmp/**/*");

// get all paths under '/tmp/' using more complex ant path matching

Resource[] resources = loader.getResources("/tmp/?ile?.txt");

What would be returned in above examples would be instances of HdfsResources.

If there is a need for Spring Application Context to be aware of HdfsResourceLoader it needs to be
registered using hdp:resource-loader-registrar namespace tag.

<hdp:file-system />

<hdp:resource-loader file-system-ref="hadoopFs" handle-noprefix="false" />

<hdp:resource-loader-registrar />

Note

On default the HdfsResourceLoader will handle all resource paths without prefix. Attribute
handle-noprefix can be used to control this behaviour. If this attribute is set to false, non-
prefixed resource uris will be handled by Spring Application Context.

// get 'default.txt' from current user's home directory

Resource[] resources = context.getResources("hdfs:default.txt");

// get all files from hdfs root

Resource[] resources = context.getResources("hdfs:/*");

// let context handle classpath prefix

Resource[] resources = context.getResources("classpath:cfg*properties");

What would be returned in above examples would be instances of HdfsResources and
ClassPathResource for the last one. If requesting resource paths without existing prefix, this example

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 24

would fall back into Spring Application Context. It may be advisable to let HdfsResourceLoader to handle
paths without prefix if your application doesn’t rely on loading resources from underlying context without
prefixes.

Table 5.2. hdp:resource-loader attributes

Name Values Description

file-system-

ref

Bean
Reference

Reference to existing Hadoop FileSystem bean

use-codecs Boolean(defaults
to true)

Indicates whether to use (or not) the codecs found inside the
Hadoop configuration when accessing the resource input stream.

user String The security user (ugi) to use for impersonation at runtime.

uri String The underlying HDFS system URI.

handle-

noprefix

Boolean(defaults
to true)

Indicates if loader should handle resource paths without prefix.

Table 5.3. hdp:resource-loader-registrar attributes

Name Values Description

loader-ref Bean
Reference

Reference to existing Hdfs resource loader bean. Default value is
'hadoopResourceLoader'.

5.3 Scripting the Hadoop API

SHDP scripting supports any JSR-223 (also known as javax.scripting) compliant scripting engine.
Simply add the engine jar to the classpath and the application should be able to find it. Most languages
(such as Groovy or JRuby) provide JSR-233 support out of the box; for those that do not see the scripting
project that provides various adapters.

Since Hadoop is written in Java, accessing its APIs in a native way provides maximum control
and flexibility over the interaction with Hadoop. This holds true for working with its file systems;
in fact all the other tools that one might use are built upon these. The main entry point is the
org.apache.hadoop.fs.FileSystem abstract class which provides the foundation of most (if not all) of the
actual file system implementations out there. Whether one is using a local, remote or distributed store
through the FileSystem API she can query and manipulate the available resources or create new ones.
To do so however, one needs to write Java code, compile the classes and configure them which is
somewhat cumbersome especially when performing simple, straightforward operations (like copy a file
or delete a directory).

JVM scripting languages (such as Groovy, JRuby, Jython or Rhino to name just a few) provide a nice
solution to the Java language; they run on the JVM, can interact with the Java code with no or few
changes or restrictions and have a nicer, simpler, less ceremonial syntax; that is, there is no need to
define a class or a method - simply write the code that you want to execute and you are done. SHDP
combines the two, taking care of the configuration and the infrastructure so one can interact with the
Hadoop environment from her language of choice.

Let us take a look at a JavaScript example using Rhino (which is part of JDK 6 or higher, meaning one
does not need any extra libraries):

http://www.jcp.org/en/jsr/detail?id=223
http://java.net/projects/scripting
http://groovy.codehaus.org/
http://jruby.org/
http://www.jython.org/
http://www.mozilla.org/rhino/

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 25

<beans xmlns="http://www.springframework.org/schema/beans" ...>

 <hdp:configuration .../>

 <hdp:script id="inlined-js" language="javascript" run-at-startup="true">

 try {load("nashorn:mozilla_compat.js");} catch (e) {} // for Java 8

 importPackage(java.util);

 name = UUID.randomUUID().toString()

 scriptName = "src/test/resources/test.properties"

 // - FileSystem instance based on 'hadoopConfiguration' bean

 // call FileSystem#copyFromLocal(Path, Path)

 .copyFromLocalFile(scriptName, name)

 // return the file length

 .getLength(name)

 </hdp:script>

</beans>

The script element, part of the SHDP namespace, builds on top of the scripting support in Spring
permitting script declarations to be evaluated and declared as normal bean definitions. Furthermore it
automatically exposes Hadoop-specific objects, based on the existing configuration, to the script such
as the FileSystem (more on that in the next section). As one can see, the script is fairly obvious: it
generates a random name (using the UUID class from java.util package) and then copies a local
file into HDFS under the random name. The last line returns the length of the copied file which becomes
the value of the declaring bean (in this case inlined-js) - note that this might vary based on the
scripting engine used.

Note

The attentive reader might have noticed that the arguments passed to the FileSystem object are
not of type Path but rather String. To avoid the creation of Path object, SHDP uses a wrapper
class SimplerFileSystem which automatically does the conversion so you don’t have to. For
more information see the implicit variables section.

Note that for inlined scripts, one can use Spring’s property placeholder configurer to automatically
expand variables at runtime. Using one of the examples seen before:

<beans ... >

 <context:property-placeholder location="classpath:hadoop.properties" />

 <hdp:script language="javascript" run-at-startup="true">

 ...

 tracker=

 ...

 </hdp:script>

</beans>

Notice how the script above relies on the property placeholder to expand ${hd.fs} with the values
from hadoop.properties file available in the classpath.

As you might have noticed, the script element defines a runner for JVM scripts. And just like the rest
of the SHDP runners, it allows one or multiple pre and post actions to be specified to be executed
before and after each run. Typically other runners (such as other jobs or scripts) can be specified but
any JDK Callable can be passed in. Do note that the runner will not run unless triggered manually or
if run-at-startup is set to true. For more information on runners, see the dedicated chapter.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 26

Using scripts

Inlined scripting is quite handy for doing simple operations and coupled with the property expansion
is quite a powerful tool that can handle a variety of use cases. However when more logic is required
or the script is affected by XML formatting, encoding or syntax restrictions (such as Jython/Python for
which white-spaces are important) one should consider externalization. That is, rather than declaring
the script directly inside the XML, one can declare it in its own file. And speaking of Python, consider
the variation of the previous example:

<hdp:script location="org/company/basic-script.py" run-at-startup="true"/>

The definition does not bring any surprises but do notice there is no need to specify the language (as
in the case of a inlined declaration) since script extension (py) already provides that information. Just
for completeness, the basic-script.py looks as follows:

from java.util import UUID

from org.apache.hadoop.fs import Path

print "Home dir is " + str(fs.homeDirectory)

print "Work dir is " + str(fs.workingDirectory)

print "/user exists " + str(fs.exists("/user"))

name = UUID.randomUUID().toString()

scriptName = "src/test/resources/test.properties"

fs.copyFromLocalFile(scriptName, name)

print Path(name).makeQualified(fs)

5.4 Scripting implicit variables

To ease the interaction of the script with its enclosing context, SHDP binds by default the so-called
implicit variables. These are:

Table 5.4. Implicit variables

Name Type Description

cfg Configuration Hadoop Configuration (relies on hadoopConfiguration
bean or singleton type match)

cl ClassLoader ClassLoader used for executing the script

ctx ApplicationContext Enclosing application context

ctxRL ResourcePatternResolver Enclosing application context ResourceLoader

distcp DistCp Programmatic access to DistCp

fs FileSystem Hadoop File System (relies on 'hadoop-fs' bean or
singleton type match, falls back to creating one based
on 'cfg')

fsh FsShell File System shell, exposing hadoop 'fs' commands as
an API

hdfsRL HdfsResourceLoader Hdfs resource loader (relies on 'hadoop-resource-
loader' or singleton type match, falls back to creating
one automatically based on 'cfg')

http://hadoop.apache.org/docs/r2.6.0/api/org/apache/hadoop/conf/Configuration.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html
http://docs.spring.io/spring/docs/4.1.6.RELEASE/javadoc-api/org/springframework/context/ApplicationContext.html
http://docs.spring.io/spring/docs/4.1.6.RELEASE/javadoc-api/org/springframework/core/io/support/ResourcePatternResolver.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/fs/DistCp.html
http://hadoop.apache.org/docs/r2.6.0/api/org/apache/hadoop/fs/FileSystem.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/fs/FsShell.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/fs/HdfsResourceLoader.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 27

Note

If no Hadoop Configuration can be detected (either by name hadoopConfiguration or by type),
several log warnings will be made and none of the Hadoop-based variables (namely cfg , distcp ,
fs , fsh , distcp or hdfsRL) will be bound.

As mentioned in the Description column, the variables are first looked (either by name or by type)
in the application context and, in case they are missing, created on the spot based on the existing
configuration. Note that it is possible to override or add new variables to the scripts through the
property sub-element that can set values or references to other beans:

<hdp:script location="org/company/basic-script.js" run-at-startup="true">

 <hdp:property name="foo" value="bar"/>

 <hdp:property name="ref" ref="some-bean"/>

</hdp:script>

Running scripts

The script namespace provides various options to adjust its behaviour depending on the script
content. By default the script is simply declared - that is, no execution occurs. One however can change
that so that the script gets evaluated at startup (as all the examples in this section do) through the
run-at-startup flag (which is by default false) or when invoked manually (through the Callable).
Similarily, by default the script gets evaluated on each run. However for scripts that are expensive and
return the same value every time one has various caching options, so the evaluation occurs only when
needed through the evaluate attribute:

Table 5.5. script attributes

Name Values Description

run-at-

startup

false(default),
true

Wether the script is executed at startup or not

evaluate ALWAYS(default),
IF_MODIFIED,
ONCE

Wether to actually evaluate the script when invoked or
used a previous value. ALWAYS means evaluate every time,
IF_MODIFIED evaluate if the backing resource (such as a file)
has been modified in the meantime and ONCE only once.

Using the Scripting tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute scripts.

<script-tasklet id="script-tasklet">

 <script language="groovy">

 inputPath = "/user/gutenberg/input/word/"

 outputPath = "/user/gutenberg/output/word/"

 if (fsh.test(inputPath)) {

 fsh.rmr(inputPath)

 }

 if (fsh.test(outputPath)) {

 fsh.rmr(outputPath)

 }

 inputFile = "src/main/resources/data/nietzsche-chapter-1.txt"

 fsh.put(inputFile, inputPath)

 </script>

</script-tasklet>

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 28

The tasklet above embedds the script as a nested element. You can also declare a reference to another
script definition, using the script-ref attribute which allows you to externalize the scripting code to an
external resource.

<script-tasklet id="script-tasklet" script-ref="clean-up"/>

 <hdp:script id="clean-up" location="org/company/myapp/clean-up-wordcount.groovy"/>

5.5 File System Shell (FsShell)

A handy utility provided by the Hadoop distribution is the file system shell which allows UNIX-like
commands to be executed against HDFS. One can check for the existence of files, delete, move, copy
directories or files or set up permissions. However the utility is only available from the command-line
which makes it hard to use from/inside a Java application. To address this problem, SHDP provides
a lightweight, fully embeddable shell, called FsShell which mimics most of the commands available
from the command line: rather than dealing with System.in or System.out, one deals with objects.

Let us take a look at using FsShell by building on the previous scripting examples:

<hdp:script location="org/company/basic-script.groovy" run-at-startup="true"/>

name = UUID.randomUUID().toString()

scriptName = "src/test/resources/test.properties"

fs.copyFromLocalFile(scriptName, name)

// use the shell made available under variable

dir = "script-dir"

if (!fsh.test(dir)) {

 fsh.mkdir(dir); fsh.cp(name, dir); fsh.chmodr(700, dir)

 println "File content is " + fsh.cat(dir + name).toString()

}

println fsh.ls(dir).toString()

fsh.rmr(dir)

As mentioned in the previous section, a FsShell instance is automatically created and configured
for scripts, under the name fsh. Notice how the entire block relies on the usual commands: test,
mkdir, cp and so on. Their semantics are exactly the same as in the command-line version however
one has access to a native Java API that returns actual objects (rather than String`s) making
it easy to use them programmatically whether in Java or another language.

Furthermore, the class offers enhanced methods (such as `chmodr which stands
for recursive chmod) and multiple overloaded methods taking advantage of varargs so that multiple
parameters can be specified. Consult the API for more information.

To be as close as possible to the command-line shell, FsShell mimics even the messages being
displayed. Take a look at line 9 which prints the result of fsh.cat(). The method returns a
Collection of Hadoop Path objects (which one can use programatically). However when invoking
toString on the collection, the same printout as from the command-line shell is being displayed:

File content is

The same goes for the rest of the methods, such as ls. The same script in JRuby would look something
like this:

http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/fs/FsShell.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 29

require 'java'

name = java.util.UUID.randomUUID().to_s

scriptName = "src/test/resources/test.properties"

$fs.copyFromLocalFile(scriptName, name)

use the shell

dir = "script-dir/"

...

print $fsh.ls(dir).to_s

which prints out something like this:

drwx------ - user supergroup 0 2012-01-26 14:08 /user/user/script-dir

-rw-r--r-- 3 user supergroup 344 2012-01-26 14:08 /user/user/script-dir/520cf2f6-a0b6-427e-

a232-2d5426c2bc4e

As you can see, not only can you reuse the existing tools and commands with Hadoop inside SHDP, but
you can also code against them in various scripting languages. And as you might have noticed, there is
no special configuration required - this is automatically inferred from the enclosing application context.

Note

The careful reader might have noticed that besides the syntax, there are some minor differences
in how the various languages interact with the java objects. For example the automatic toString
call called in Java for doing automatic String conversion is not necessarily supported (hence the
to_s in Ruby or str in Python). This is to be expected as each language has its own semantics -
for the most part these are easy to pick up but do pay attention to details.

DistCp API

Similar to the FsShell, SHDP provides a lightweight, fully embeddable DistCp version that builds
on top of the distcp from the Hadoop distro. The semantics and configuration options are the same
however, one can use it from within a Java application without having to use the command-line. See
the API for more information:

<hdp:script language="groovy">distcp.copy("${distcp.src}", "${distcp.dst}")</hdp:script>

The bean above triggers a distributed copy relying again on Spring’s property placeholder variable
expansion for its source and destination.

http://hadoop.apache.org/common/docs/stable/distcp.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/fs/DistCp.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 30

6. Writing and reading data using the Hadoop File
System

The Store sub-project of Spring for Apache Hadoop provides abstractions for writing and reading
various types of data residing in HDFS. We currently support different file types either via our own store
accessors or by using the Dataset support in Kite SDK.

Currently, the Store sub-project doesn’t have an XML namespace or javaconfig based configuration
classes as it’s considered to be a foundational library. However, this may change in future releases.

6.1 Store Abstraction

Native store abstractions provide various writer and reader interfaces so that the end user don’t have to
worry about the underlying implementation actually doing the work on files in HDFS. Implementations
are usually strongly typed and provides constructors and setters for additional setup to work with naming,
compression codecs and everything else defining the behaviour. Interfaces are meant to be used from
integration components which don’t need to know the internal workings of writers and readers.

Writing Data

Main interface writing into a store is a DataWriter which have one method write which simply writes an
entity and the backing implementation will handle the rest.

public interface DataWriter<T> {

 void write(T entity) throws IOException;

}

The DataStoreWriter interface adds methods to close and flush a writer. Some of the writers have a
property to close a stream after an idle time or a close time has been reached but generally this interface
is meant for programmatic control of these operations.

public interface DataStoreWriter<T> extends DataWriter<T>, Flushable, Closeable {

}

File Naming

Different file naming strategies are used to automatically determine the name of a file to be used. Writers
without additional naming configuration will usually use a given base path as is. As soon as any type
of a strategy is configured, given base path is considered to be a base directory and the name of the
file is resolved by file naming strategies.

For example, if defined base path is “/tmp/path” and the StaticFileNamingStrategy with “data”
parameter is used then the actual file path resolved would be “/tmp/path/data”.

Path path = new Path("/tmp/path");

Configuration config = new Configuration();

TextFileWriter writer = new TextFileWriter(config, path, null);

StaticFileNamingStrategy fileNamingStrategy = new StaticFileNamingStrategy("data")

writer.setFileNamingStrategy(fileNamingStrategy);

At first look this may feel a little complicated, but it will make sense after more file naming strategies
are added. These will also provide facilities for using writers in parallel, or for a re-launched
writer to be able to create a new file based on already existing files in the directry. For example,

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 31

RollingFileNamingStrategy will add a simple increasing value to a file name and will try to initialize itself
with the correct position.

Built-in strategies currently supported are StaticFileNamingStrategy, RollingFileNamingStrategy,
UuidFileNamingStrategy and CodecFileNamingStrategy. ChainedFileNamingStrategy can be used to
chain multiple strategies together where each individual strategy will provide its own part.

File Rollover

File rolling strategy is used to determine a condition in a writer when a current stream should
be automatically closed and the next file should be opened. This is usually done together with
RollingFileNamingStrategy to rollover when a certain file size limit has been reached.

Currently, only one strategy SizeRolloverStrategy is supported.

Partitioning

Partitioning is a concept of choosing a target file on demand either based on content to be written or any
other information available to a writer at the time of the write operation. While it would be perfectly alright
to use multiple writers manually, the framework already does all the heavy lifting around partitioning. We
work through interfaces and provide a generic default implementation still allowing to plug a customized
version if there’s a need for it.

PartitionStrategy is a strategy interface defining PartitionResolver and PartitionKeyResolver.

public interface PartitionStrategy<T,K> {

 PartitionResolver<K> getPartitionResolver();

 PartitionKeyResolver<T, K> getPartitionKeyResolver();

}

PartitionResolver is an interface used to resolve arbitrary partition keys into a path. We don’t force any
specific partition key type in the interface level itself but usually the implementation needs to be aware
of its type.

public interface PartitionResolver<K> {

 Path resolvePath(K partitionKey);

}

PartitionKeyResolver is an interface which is responsible for creating a partition key from an entity. This
is needed because writer interfaces allow us to write entities without an explicit partition key.

public interface PartitionKeyResolver<T, K> {

 K resolvePartitionKey(T entity);

}

PartitionDataStoreWriter is an extension of DataStoreWriter adding a method to write an entity with a
partition key. In this context the partition key is something what the partition strategy is able to use.

public interface PartitionDataStoreWriter<T,K> extends DataStoreWriter<T> {

 void write(T entity, K partitionKey) throws IOException;

}

DefaultPartitionStrategy

DefaultPartitionStrategy is a generic default implementation meant to be used together
with an expression using Spring’s SpEL expression language. PartitionResolver used in

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 32

DefaultPartitionStrategy expects partition key to be a type of Map<String,Object> and partition key
created by PartitionKeyResolver is a DefaultPartitionKey which itself is a Map<String,Object>.

In order to make it easy to work with SpEL and partitioning, map values can be directly accessed with
keys and additional partitioning methods has been registered.

Partition Path Expression

SpEL expression is evaluated against a partition key passed into a HDFS writer.

Accessing Properties

If partition key is a type of Map any property given to a SpEL expression is automatically resolved from
a map.

Custom Methods

In addition to normal SpEL functionality, a few custom methods have been added to make it easier to
build partition paths. These custom methods can be used to work with normal partition concepts like
date formatting, lists, ranges and hashes.

path

path(String... paths)

You can concatenate paths together with a / delimiter. This method can be used to make the
expression less verbose than using a native SpEL functionality to combine path parts together. To
create a path part1/part2, expression 'part1' + '/' + 'part2' is equivalent to path('part1','part2').

Parameters

paths
Any number of path parts

Return Value
Concatenated value of paths delimited with /.

dateFormat

dateFormat(String pattern)

dateFormat(String pattern, Long epoch)

dateFormat(String pattern, Date date)

dateFormat(String pattern, String datestring)

dateFormat(String pattern, String datestring, String dateformat)

Creates a path using date formatting. Internally this method delegates to SimpleDateFormat and
needs a Date and a pattern.

Method signature with three parameters can be used to create a custom Date object which is then
passed to SimpleDateFormat conversion using a dateformat pattern. This is useful in use cases
where partition should be based on a date or time string found from a payload content itself. Default
dateformat pattern if omitted is yyyy-MM-dd.

Parameters

pattern
Pattern compatible with SimpleDateFormat to produce a final output.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 33

epoch
Timestamp as Long which is converted into a Date.

date
A Date to be formatted.

dateformat
Secondary pattern to convert datestring into a Date.

datestring
Date as a String

Return Value
A path part representation which can be a simple file or directory name or a directory structure.

list

list(Object source, List<List<Object>> lists)

Creates a partition path part by matching a source against a lists denoted by lists.

Lets assume that data is being written and it’s possible to extract an appid from the
content. We can automatically do a list based partition by using a partition method list(appid,
\{\{'1TO3','APP1','APP2','APP3'},\{'4TO6','APP4','APP5','APP6'}}). This method would create three
partitions, 1TO3_list, 4TO6_list and list. The latter is used if no match is found from partition lists
passed to lists.

Parameters

source
An Object to be matched against lists.

lists
A definition of list of lists.

Return Value
A path part prefixed with a matched key i.e. XXX_list or list if no match.

range

range(Object source, List<Object> list)

Creates a partition path part by matching a source against a list denoted by list using a simple
binary search.

The partition method takes source as first argument and a list as the second argument. Behind the
scenes this is using the JVM’s binarySearch which works on an Object level so we can pass in
anything. Remember that meaningful range match only works if passed in Object and types in list are
of same type like Integer. Range is defined by a binarySearch itself so mostly it is to match against an
upper bound except the last range in a list. Having a list of \{1000,3000,5000} means that everything
above 3000 will be matched with 5000. If that is an issue then simply adding Integer.MAX_VALUE
as last range would overflow everything above 5000 into a new partition. Created partitions would
then be 1000_range, 3000_range and 5000_range.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 34

Parameters

source
An Object to be matched against list.

list
A definition of list.

Return Value
A path part prefixed with a matched key i.e. XXX_range.

hash

hash(Object source, int bucketcount)

Creates a partition path part by calculating hashkey using source`s hashCode and bucketcount.
Using a partition method hash(timestamp,2) would then create partitions named 0_hash, 1_hash
and 2_hash. Number suffixed with hash is simply calculated using _Object.hashCode() %
bucketcount.

Parameters

source
An Object which hashCode will be used.

bucketcount
A number of buckets

Return Value
A path part prefixed with a hash key i.e. XXX_hash.

Creating a Custom Partition Strategy

Creating a custom partition strategy is as easy as just implementing needed interfaces. Custom strategy
may be needed in use cases where it is just not feasible to use SpEL expressions. This will then give
total flexibility to implement partitioning as needed.

Below sample demonstrates how a simple customer id could be used as a base for partitioning.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 35

public class CustomerPartitionStrategy implements PartitionStrategy<String, String> {

 CustomerPartitionResolver partitionResolver = new CustomerPartitionResolver();

 CustomerPartitionKeyResolver keyResolver = new CustomerPartitionKeyResolver();

 @Override

 public PartitionResolver<String> getPartitionResolver() {

 return partitionResolver;

 }

 @Override

 public PartitionKeyResolver<String, String> getPartitionKeyResolver() {

 return keyResolver;

 }

}

public class CustomerPartitionResolver implements PartitionResolver<String> {

 @Override

 public Path resolvePath(String partitionKey) {

 return new Path(partitionKey);

 }

}

public class CustomerPartitionKeyResolver implements PartitionKeyResolver<String, String> {

 @Override

 public String resolvePartitionKey(String entity) {

 if (entity.startsWith("customer1")) {

 return "customer1";

 } else if (entity.startsWith("customer2")) {

 return "customer2";

 } else if (entity.startsWith("customer3")) {

 return "customer3";

 }

 return null;

 }

}

Writer Implementations

We provide a number of writer implementations to be used based on the type of file to write.

• TextFileWriter.
an implementation meant to write a simple text data where entities are separated by a delimiter.
Simple example for this is a text file with line terminations.

• DelimitedTextFileWriter.
an extension atop of TextFileWriter where written entity itself is also delimited. Simple example for
this is a csv file.

• TextSequenceFileWriter.
a similar implementation to TextFileWriter except that backing file is a Hadoop’s SequenceFile.

• PartitionTextFileWriter.
wraps multiple TextFileWriters providing automatic partitioning functionality.

Append and Sync Data

HDFS client library which is usually referred as a DFS Client is using a rather complex set of buffers
to make writes fast. Using a compression codec adds yet another internal buffer. One big problem with
these buffers is that if a jvm suddenly dies bufferred data is naturally lost.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 36

With TextFileWriter and TextSequenceFileWriter it is possible to enable either append or syncable mode
which effectively is causing our store libraries to call sync method which will flush buffers from a client
side into a currently active datanodes.

Note

Appending or synching data will be considerably slower than a normal write. It is always a trade-off
between fast write and data integrity. Using append or sync with a compression is also problematic
because it’s up to a codec implementation when it can actually flush its own data to a datanode.

Reading Data

Main interface reading from a store is a DataReader.

public interface DataReader<T> {

 T read() throws IOException;

}

DataStoreReader is an extension of DataReader providing close method for a reader.

public interface DataStoreReader<T> extends DataReader<T>, Closeable {

}

Input Splits

Some of the HDFS storage and file formats can be read using an input splits instead of reading a whole
file at once. This is a fundamental concept in Hadoop’s MapReduce to parallelize data processing.
Instead of reading a lot of small files, which would be a source of a Hadoop’s “small file problem”, one
large file can be used. However one need to remember that not all file formats support input splitting
especially when compression is used.

Support for reading input split is denoted via a Split interface which simply mark starting and ending
positions.

public interface Split {

 long getStart();

 long getLength();

 long getEnd();

}

Interface Splitter defines an contract how Split’s are calculate from a given path.

public interface Splitter {

 List<Split> getSplits(Path path) throws IOException;

}

We provide few generic Splitter implementations to construct Split’s.

StaticLengthSplitter is used to split input file with a given length.

StaticBlockSplitter is used to split input by used HDFS file block size. It’s also possible to split further
down the road within the blocks itself.

SlopBlockSplitter is an extension of StaticBlockSplitter which tries to estimate how much a split can
overflow to a next block to taggle unnecessary overhead if last file block is very small compared to an
actual split size.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 37

Reader Implementations

We provide a number of reader implementations to be used based on the type of file to read.

• TextFileReader.
used to read data written by a TextFileWriter.

• DelimitedTextFileReader.
used to read data writte by a DelimitedTextFileWriter.

• TextSequenceFileReader.
used to read data written by a TextSequenceFileWriter.

Using Codecs

Supported compression codecs are denoted via an interface CodecInfo which simply defines if codec
supports splitting, what is it’s fully qualified java class and what is its default file suffix.

public interface CodecInfo {

 boolean isSplittable();

 String getCodecClass();

 String getDefaultSuffix();

}

Codecs provides an enum for easy access to supported codecs.

• GZIP - org.apache.hadoop.io.compress.GzipCodec

• SNAPPY - org.apache.hadoop.io.compress.SnappyCodec

• BZIP2 - org.apache.hadoop.io.compress.BZip2Codec

• LZO - com.hadoop.compression.lzo.LzoCodec

• LZOP - com.hadoop.compression.lzo.LzopCodec

Note

Lzo based compression codecs doesn’t exist in maven dependencies due to licensing restrictions
and need for native libraries. Order to use it add codec classes to classpath and its native libs
using java.library.path.

6.2 Persisting POJO datasets using Kite SDK

One common requirement is to persist a large number of POJOs in serialized form using HDFS. The
Kite SDK project provides a Kite Data Module that provides an API for working with datasets stored in
HDFS. We are using this functionality and provide a some simple helper classes to aid in configuration
and use in a Spring environment.

Data Formats

The Kite SDK project provides support for writing data using both the Avro and Parquet data formats.
The data format you choose to use influences the data types you can use in your POJO classes. We’ll
discuss the basics of the Java type mapping for the two data formats but we recommend that you consult
each project’s documentation for additional details.

http://kitesdk.org/
http://avro.apache.org/
http://parquet.io/

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 38

Note

Currently, you can’t provide your own schema. This is something that we are considering changing
in upcomming releases. We are also planning to provide better mapping support in line with the
support we currently provide for NoSQL stores like MongoDB.

Using Avro

When using Avro as the data format the schema generation is based on reflection of thet POJO class
used. Primitive data types and their corresponding wrapper classes are mapped to the corresponding
Avro data type. More complex types, as well as the POJO itself, are mapped to a record type consisting
of one or more fields.

The table below shows the mapping from some common types:

Table 6.1. Some common Java to Avro data types mapping

Java type Avro type Comment

String string [multiblock cell omitted]

int / Integer int 32-bit signed integer

long / Long long 64-bit signed integer

float / Float float 32-bit floating point

double / Double double 64-bit floating point

boolean / Boolean boolean [multiblock cell omitted]

byte[] bytes byte array

java.util.Date record [multiblock cell omitted]

Using Parquet

When using Parquet as the data format the schema generation is based on reflection of thet POJO class
used. The POJO class must be a proper JavaBean and not have any nested types. We only support
primitive data types and their corresponding wrapper classes plus byte arrays. We do rely on the Avro-
to-Parquet mapping support that the Kite SDK uses, so the schema will be generated by Avro.

Note

The Parquet support we currently povide is considered experimental. We are planning to relax a
lot of the restrictions on the POJO class in upcoming releases.

The table below shows the mapping from some common types:

Table 6.2. Some common Java to Parquet data types mapping

Java type Parquet type Comment

String BINARY/UTF8 [multiblock cell omitted]

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 39

Java type Parquet type Comment

int / Integer INT32 32-bit signed integer

long / Long INT64 64-bit signed integer

float / Float FLOAT 32-bit floating point

double / Double DOUBLE 64-bit floating point

boolean / Boolean BOOLEAN [multiblock cell omitted]

byte[] BINARY/BYTE_ARRAY byte array

Configuring the dataset support

In order to use the dataset support you need to configure the following classes:

• DatasetRepositoryFactory that needs a org.apache.hadoop.conf.Configuration so we know how to
connect to HDFS and a base path where the data will be written.

• DatasetDefinition that defines the dataset you are writing. Configuration options include the POJO
class that is being stored, the type of format to use (Avro or Parquet). You can also specify whether to
allow null values for all fields (default is false) and an optional partition strategy to use for the dataset
(see below for partitioning).

The following example shows a simple configuration class:

@Configuration

@ImportResource("hadoop-context.xml")

public class DatasetConfig {

 private @Autowired org.apache.hadoop.conf.Configuration hadoopConfiguration;

 @Bean

 public DatasetRepositoryFactory datasetRepositoryFactory() {

 DatasetRepositoryFactory datasetRepositoryFactory = new DatasetRepositoryFactory();

 datasetRepositoryFactory.setConf(hadoopConfiguration);

 datasetRepositoryFactory.setBasePath("/user/spring");

 return datasetRepositoryFactory;

 }

 @Bean

 public DatasetDefinition fileInfoDatasetDefinition() {

 DatasetDefinition definition = new DatasetDefinition();

 definition.setFormat(Formats.AVRO.getName());

 definition.setTargetClass(FileInfo.class);

 definition.setAllowNullValues(false);

 return definition;

 }

}

Writing datasets

To write datasets to Hadoop you should use either the AvroPojoDatasetStoreWriter or the
ParquetDatasetStoreWriter depending on the data format you want to use.

Tip

To mark your fields as nullable use the @Nullable annotation (org.apache.avro.reflect.Nullable).
This will result in the schema defining your field as a union of null and your datatype.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 40

We are using a FileInfo POJO that we have defined to hold some information based on the files we read
from our local file system. The dataset will be stored in a directory that is the name of the class using
lowercase, so in this case it would be fileinfo. This directory is placed inside the basePath specified in
the configuration of the DatasetRepositoryFactory.:

package org.springframework.samples.hadoop.dataset;

import org.apache.avro.reflect.Nullable;

public class FileInfo {

 private String name;

 private @Nullable String path;

 private long size;

 private long modified;

 public FileInfo(String name, String path, long size, long modified) {

 this.name = name;

 this.path = path;

 this.size = size;

 this.modified = modified;

 }

 public FileInfo() {

 }

 public String getName() {

 return name;

 }

 public String getPath() {

 return path;

 }

 public long getSize() {

 return size;

 }

 public long getModified() {

 return modified;

 }

}

To create a writer add the following bean definition to your configuration class:

 @Bean

 public DataStoreWriter<FileInfo> dataStoreWriter() {

 return new AvroPojoDatasetStoreWriter<FileInfo>(FileInfo.class,

 datasetRepositoryFactory(), fileInfoDatasetDefinition());

 }

Next, have your class use the writer bean:

 private DataStoreWriter<FileInfo> writer;

 @Autowired

 public void setDataStoreWriter(DataStoreWriter dataStoreWriter) {

 this.writer = dataStoreWriter;

 }

Now we can use the writer, it will be opened automatically once we start writing to it:

 FileInfo fileInfo = new FileInfo(file.getName(),

 file.getParent(), (int)file.length(), file.lastModified());

 writer.write(fileInfo);

Once we are done writing we should close the writer:

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 41

 try {

 writer.close();

 } catch (IOException e) {

 throw new StoreException("Error closing FileInfo", e);

 }

We should now have dataset containing all the FileInfo entries in a /user/spring/demo/fileinfo
directory:

$ hdfs dfs -ls /user/spring/*

Found 2 items

drwxr-xr-x - spring supergroup 0 2014-06-09 17:09 /user/spring/fileinfo/.metadata

-rw-r--r-- 3 spring supergroup 13824695 2014-06-09 17:10 /user/spring/fileinfo/6876f250-010a-404a-

b8c8-0ce1ee759206.avro

The .metadata directory contains dataset information including the Avro schema:

$ hdfs dfs -cat /user/spring/fileinfo/.metadata/schema.avsc

{

 "type" : "record",

 "name" : "FileInfo",

 "namespace" : "org.springframework.samples.hadoop.dataset",

 "fields" : [{

 "name" : "name",

 "type" : "string"

 }, {

 "name" : "path",

 "type" : ["null", "string"],

 "default" : null

 }, {

 "name" : "size",

 "type" : "long"

 }, {

 "name" : "modified",

 "type" : "long"

 }]

}

Reading datasets

To read datasets to Hadoop we use the DatasetTemplate class.

To create a DatasetTemplate add the following bean definition to your configuration class:

 @Bean

 public DatasetOperations datasetOperations() {

 DatasetTemplate datasetOperations = new DatasetTemplate();

 datasetOperations.setDatasetRepositoryFactory(datasetRepositoryFactory());

 return datasetOperations;

 }

Next, have your class use the DatasetTemplate:

 private DatasetOperations datasetOperations;

 @Autowired

 public void setDatasetOperations(DatasetOperations datasetOperations) {

 this.datasetOperations = datasetOperations;

 }

Now we can read and count the entries using a RecordCallback callback interface that gets called once
per retrieved record:

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 42

 final AtomicLong count = new AtomicLong();

 datasetOperations.read(FileInfo.class, new RecordCallback<FileInfo>() {

 @Override

 public void doInRecord(FileInfo record) {

 count.getAndIncrement();

 }

 });

 System.out.println("File count: " + count.get());

Partitioning datasets

To create datasets that are partitioned on one or more data fields we use the PartitionStrategy.Builder
class that the Kite SDK project provides.

DatasetDefinition definition = new DatasetDefinition();

definition.setPartitionStrategy(new PartitionStrategy.Builder().year("modified").build());

This option lets you specify one or more paths that will be used to partition the files that the data is
written to based on the content of the data. You can use any of the FieldPartitioners that are available
for the Kite SDK project. We simply use what is specified to create the corresponding partition strategy.
The following partitioning functions are available:

• year, month, day, hour, minute creates partitions based on the value of a timestamp and creates
directories named like "YEAR=2014" (works well with fields of datatype long)

• specify function plus field name like:

year("timestamp")

• optionally, specify a partition name to replace the default one:

year("timestamp", "YY")

• dateformat creates partitions based on a timestamp and a dateformat expression provided - creates
directories based on the name provided (works well with fields of datatype long)

• specify function plus field name, a name for the partition and the date format like:

dateFormat("timestamp", "Y-M", "yyyyMM")

• range creates partitions based on a field value and the upper bounds for each bucket that is specified
(works well with fields of datatype int and string)

• specify function plus field name and the upper bounds for each partition bucket like:

range("age", 20, 50, 80, Integer.MAX_VALUE)

• identity creates partitions based on the exact value of a field (works well with fields of datatype string,
long and int)

• specify function plus field name, a name for the partition, the type of the field (String or Integer) and
the number of values/buckets for the partition like:

identity("region", "R", String.class, 10)

• hash creates partitions based on the hash calculated from the value of a field divided into a number
of buckets that is specified (works well with all data types)

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 43

• specify function plus field name and number of buckets like:

hash("lastname", 10)

Multiple expressions can be specified by simply chaining them like:

identity("region", "R", String.class, 10).year("timestamp").month("timestamp")

6.3 Using the Spring for Apache JavaConfig

Spring Hadoop doesn’t have support for configuring store components using xml but have a support
using JavaConfig for writer configuration.

JavaConfig is using same concepts found from other parts of a Spring Hadoop where whole
configuration logic works around use of an adapter.

@Configuration

@EnableDataStoreTextWriter

static class Config

 extends SpringDataStoreTextWriterConfigurerAdapter {

 @Override

 public void configure(DataStoreTextWriterConfigurer config)

 throws Exception {

 config

 .basePath("/tmp/foo");

 }

}

What happened in above example:

• We created a normal Spring @Configuration class extending
SpringDataStoreTextWriterConfigurerAdapter.

• Class needs to be annotated with EnableDataStoreTextWriter order to enable some needed
functionality.

• Override configure method having DataStoreTextWriterConfigurer as its argument.

• Set writer base path to /tmp/foo.

• Bean of type DataStoreWriter is created automatically.

We can also do configuration for other usual properties like, idleTimeout, closeTimeout,
partitioning strategy, naming strategy and rollover strategy.

http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/store/config/annotation/SpringDataStoreTextWriterConfigurerAdapter.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/store/config/annotation/EnableDataStoreTextWriter.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/store/config/annotation/builders/DataStoreTextWriterConfigurer.html
http://docs.spring.io/spring-hadoop/docs/2.2.0.RC1/api/org/springframework/data/hadoop/store/DataStoreWriter.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 44

@Configuration

@EnableDataStoreTextWriter

static class Config

 extends SpringDataStoreTextWriterConfigurerAdapter {

 @Override

 public void configure(DataStoreTextWriterConfigurer config)

 throws Exception {

 config

 .basePath("/tmp/store")

 .idleTimeout(60000)

 .closeTimeout(120000)

 .inWritingSuffix(".tmp")

 .withPartitionStrategy()

 .map("dateFormat('yyyy/MM/dd/HH/mm', timestamp)")

 .and()

 .withNamingStrategy()

 .name("data")

 .uuid()

 .rolling()

 .name("txt", ".")

 .and()

 .withRolloverStrategy()

 .size("1M");

 }

}

What happened in above example:

• We set idle timeout meaning file will be closed automatically if no writes are done in 60 seconds.

• We set close timeout meaning file will be closed automatically when 120 seconds has been elapsed.

• We set the in-writing suffix to .tmp which will indicate that file is currently open for writing. Writer will
automatically remove this suffix when file is closed.

• We defined a partitioning strategy using date format yyyy/MM/dd/HH/mm. This will partition data
based on timestamp when write operation happens.

• We defined naming strategy so that file would have name data-38400000-8cf0-11bd-
b23e-10b96e4ef00d-1.txt.

• We set file to rollover after 1M data is written.

Writer can be auto-wired using DataStoreWriter.

Important

Autowiring by type PartitionDataStoreWriter only works if adapter is used with annotation
@EnableDataStorePartitionTextWriter which will introduce a correct bean type.

static class MyBean {

 @Autowired

 DataStoreWriter<String> writer;

 @Autowired

 PartitionDataStoreWriter<String, Map<String, Object>> writer;

}

In some cases it is more convenient to name the bean instead letting Spring to create that name
automatically. @EnableDataStoreTextWriter and @EnableDataStorePartitionTextWriter

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 45

both have a name field which works in a same way than normal Spring @Bean annotation. You’d use
this custom naming in cases where multiple writers are created and auto-wiring by type would no longer
work.

@Configuration

@EnableDataStoreTextWriter(name={"mywriter", "myalias"})

static class Config

 extends SpringDataStoreTextWriterConfigurerAdapter {

}

In above example bean was created with a name mywriter having an alias named myalias.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 46

7. Working with HBase

SHDP provides basic configuration for HBase through the hbase-configuration namespace
element (or its backing HbaseConfigurationFactoryBean).

<!-- default bean id is 'hbaseConfiguration' that uses the existing 'hadoopCconfiguration' object -->

<hdp:hbase-configuration configuration-ref="hadoopCconfiguration" />

The above declaration does more than easily create an HBase configuration object; it will also
manage the backing HBase connections: when the application context shuts down, so will any
HBase connections opened - this behavior can be adjusted through the stop-proxy and delete-
connection attributes:

<!-- delete associated connections but do not stop the proxies -->

<hdp:hbase-configuration stop-proxy="false" delete-connection="true">

 foo=bar

 property=value

</hdp:hbase-configuration>

Additionally, one can specify the ZooKeeper port used by the HBase server - this is especially useful
when connecting to a remote instance (note one can fully configure HBase including the ZooKeeper
host and port through properties; the attributes here act as shortcuts for easier declaration):

<!-- specify ZooKeeper host/port -->

<hdp:hbase-configuration zk-quorum="${hbase.host}" zk-port="${hbase.port}">

Notice that like with the other elements, one can specify additional properties specific to this
configuration. In fact hbase-configuration provides the same properties configuration knobs as
hadoop configuration:

<hdp:hbase-configuration properties-ref="some-props-bean" properties-location="classpath:/conf/testing/

hbase.properties"/>

7.1 Data Access Object (DAO) Support

One of the most popular and powerful feature in Spring Framework is the Data Access Object (or
DAO) support. It makes dealing with data access technologies easy and consistent allowing easy switch
or interconnection of the aforementioned persistent stores with minimal friction (no worrying about
catching exceptions, writing boiler-plate code or handling resource acquisition and disposal). Rather
than reiterating here the value proposal of the DAO support, we recommend the JDBC section in the
Spring Framework reference documentation

SHDP provides the same functionality for Apache HBase through its
org.springframework.data.hadoop.hbase package: an HbaseTemplate along with several
callbacks such as TableCallback, RowMapper and ResultsExtractor that remove the low-level,
tedious details for finding the HBase table, run the query, prepare the scanner, analyze the results then
clean everything up, letting the developer focus on her actual job (users familiar with Spring should find
the class/method names quite familiar).

At the core of the DAO support lies HbaseTemplate - a high-level abstraction for interacting with
HBase. The template requires an HBase configuration, once it’s set, the template is thread-safe and
can be reused across multiple instances at the same time:

http://hbase.apache.org
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/dao.html
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/jdbc.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 47

// default HBase configuration

<hdp:hbase-configuration/>

// wire hbase configuration (using default name 'hbaseConfiguration') into the template

<bean id="htemplate" class="org.springframework.data.hadoop.hbase.HbaseTemplate" p:configuration-

ref="hbaseConfiguration"/>

The template provides generic callbacks, for executing logic against the tables or doing result or row
extraction, but also utility methods (the so-called _one-liner_s) for common operations. Below are some
examples of how the template usage looks like:

// writing to 'MyTable'

template.execute("MyTable", new TableCallback<Object>() {

 @Override

 public Object doInTable(HTable table) throws Throwable {

 Put p = new Put(Bytes.toBytes("SomeRow"));

 p.add(Bytes.toBytes("SomeColumn"), Bytes.toBytes("SomeQualifier"), Bytes.toBytes("AValue"));

 table.put(p);

 return null;

 }

});

// read each row from 'MyTable'

List<String> rows = template.find("MyTable", "SomeColumn", new RowMapper<String>() {

 @Override

 public String mapRow(Result result, int rowNum) throws Exception {

 return result.toString();

 }

}));

The first snippet showcases the generic TableCallback - the most generic of the callbacks, it does
the table lookup and resource cleanup so that the user code does not have to. Notice the callback
signature - any exception thrown by the HBase API is automatically caught, converted to Spring’s DAO
exceptions and resource clean-up applied transparently. The second example, displays the dedicated
lookup methods - in this case find which, as the name implies, finds all the rows matching the given
criteria and allows user code to be executed against each of them (typically for doing some sort of type
conversion or mapping). If the entire result is required, then one can use ResultsExtractor instead
of RowMapper.

Besides the template, the package offers support for automatically binding HBase table to the current
thread through HbaseInterceptor and HbaseSynchronizationManager. That is, each class that
performs DAO operations on HBase can be wrapped by HbaseInterceptor so that each table in
use, once found, is bound to the thread so any subsequent call to it avoids the lookup. Once the call
ends, the table is automatically closed so there is no leakage between requests. Please refer to the
Javadocs for more information.

http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/aop.html#aop-schema-advisors

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 48

8. Hive integration
When working with http://hive.apache.org from a Java environment, one can choose between the Thrift
client or using the Hive JDBC-like driver. Both have their pros and cons but no matter the choice, Spring
and SHDP support both of them.

8.1 Starting a Hive Server

SHDP provides a dedicated namespace element for starting a Hive server as a Thrift service (only when
using Hive 0.8 or higher). Simply specify the host, the port (the defaults are localhost and 10000
respectively) and you’re good to go:

<!-- by default, the definition name is 'hive-server' -->

<hdp:hive-server host="some-other-host" port="10001" />

If needed the Hadoop configuration can be passed in or additional properties specified. In fact hiver-
server provides the same properties configuration knobs as hadoop configuration:

<hdp:hive-server host="some-other-host" port="10001" properties-location="classpath:hive-

dev.properties" configuration-ref="hadoopConfiguration">

 someproperty=somevalue

 hive.exec.scratchdir=/tmp/mydir

</hdp:hive-server>

The Hive server is bound to the enclosing application context life-cycle, that is it will automatically startup
and shutdown along-side the application context.

8.2 Using the Hive Thrift Client

Similar to the server, SHDP provides a dedicated namespace element for configuring a Hive client (that
is Hive accessing a server node through the Thrift). Likewise, simply specify the host, the port (the
defaults are localhost and 10000 respectively) and you’re done:

<!-- by default, the definition name is 'hiveClientFactory' -->

<hdp:hive-client-factory host="some-other-host" port="10001" />

Note that since Thrift clients are not thread-safe, hive-client-factory returns a factory (named
org.springframework.data.hadoop.hive.HiveClientFactory) for creating HiveClient
new instances for each invocation. Furthermore, the client definition also allows Hive scripts (either
declared inlined or externally) to be executed during initialization, once the client connects; this is quite
useful for doing Hive specific initialization:

<hive-client-factory host="some-host" port="some-port" xmlns="http://www.springframework.org/schema/

hadoop">

 <hdp:script>

 DROP TABLE IF EXITS testHiveBatchTable;

 CREATE TABLE testHiveBatchTable (key int, value string);

 </hdp:script>

 <hdp:script location="classpath:org/company/hive/script.q">

 <arguments>ignore-case=true</arguments>

 </hdp:script>

</hive-client-factory>

In the example above, two scripts are executed each time a new Hive client is created (if the scripts
need to be executed only once consider using a tasklet) by the factory. The first script is defined inline
while the second is read from the classpath and passed one parameter. For more information on using
parameters (or variables) in Hive scripts, see Hive manual.

http://hive.apache.org
http://thrift.apache.org/

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 49

8.3 Using the Hive JDBC Client

Another attractive option for accessing Hive is through its JDBC driver. This exposes Hive through the
JDBC API meaning one can use the standard API or its derived utilities to interact with Hive, such as
the rich JDBC support in Spring Framework.

Warning

Note that the JDBC driver is a work-in-progress and not all the JDBC features are available (and
probably never will since Hive cannot support all of them as it is not the typical relational database).
Do read the official documentation and examples.

SHDP does not offer any dedicated support for the JDBC integration - Spring Framework itself provides
the needed tools; simply configure Hive as you would with any other JDBC Driver:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:c="http://www.springframework.org/schema/c"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/

spring-context.xsd">

 <!-- basic Hive driver bean -->

 <bean id="hive-driver" class="org.apache.hadoop.hive.jdbc.HiveDriver"/>

 <!-- wrapping a basic datasource around the driver -->

 <!-- notice the 'c:' namespace for inlining constructor arguments,

 in this case the url (default is 'jdbc:hive://localhost:10000/default') -->

 <bean id="hive-ds" class="org.springframework.jdbc.datasource.SimpleDriverDataSource"

 c:driver-ref="hive-driver" c:url="${hive.url}"/>

 <!-- standard JdbcTemplate declaration -->

 <bean id="template" class="org.springframework.jdbc.core.JdbcTemplate" c:data-source-ref="hive-ds"/>

 <context:property-placeholder location="hive.properties"/>

</beans>

And that is it! Following the example above, one can use the hive-ds DataSource bean to manually
get a hold of Connections or better yet, use Spring’s JdbcTemplate as in the example above.

8.4 Running a Hive script or query

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Hive
scripts, either inlined or from various locations through hive-runner element:

<hdp:hive-runner id="hiveRunner" run-at-startup="true">

 <hdp:script>

 DROP TABLE IF EXITS testHiveBatchTable;

 CREATE TABLE testHiveBatchTable (key int, value string);

 </hdp:script>

 <hdp:script location="hive-scripts/script.q"/>

</hdp:hive-runner>

The runner will trigger the execution during the application start-up (notice the run-at-startup flag
which is by default false). Do note that the runner will not run unless triggered manually or if run-
at-startup is set to true. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pre and post actions to be specified to be executed before and after each run. Typically other

http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/jdbc.html
http://docs.spring.io/spring/docs/4.1.6.RELEASE/spring-framework-reference/html/jdbc.html#jdbc-JdbcTemplate

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 50

runners (such as other jobs or scripts) can be specified but any JDK Callable can be passed in. For
more information on runners, see the dedicated chapter.

Using the Hive tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hive queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp:hive-tasklet id="hive-script">

 <hdp:script>

 DROP TABLE IF EXITS testHiveBatchTable;

 CREATE TABLE testHiveBatchTable (key int, value string);

 </hdp:script>

 <hdp:script location="classpath:org/company/hive/script.q" />

</hdp:hive-tasklet>

The tasklet above executes two scripts - one declared as part of the bean definition followed by another
located on the classpath.

8.5 Interacting with the Hive API

For those that need to programmatically interact with the Hive API, Spring for Apache Hadoop
provides a dedicated template, similar to the aforementioned JdbcTemplate. The template handles
the redundant, boiler-plate code, required for interacting with Hive such as creating a new HiveClient,
executing the queries, catching any exceptions and performing clean-up. One can programmatically
execute queries (and get the raw results or convert them to longs or ints) or scripts but also interact with
the Hive API through the HiveClientCallback. For example:

<hdp:hive-client-factory ... />

<!-- Hive template wires automatically to 'hiveClientFactory'-->

<hdp:hive-template />

<!-- wire hive template into a bean -->

<bean id="someBean" class="org.SomeClass" p:hive-template-ref="hiveTemplate"/>

public class SomeClass {

 private HiveTemplate template;

 public void setHiveTemplate(HiveTemplate template) { this.template = template; }

 public List<String> getDbs() {

 return hiveTemplate.execute(new HiveClientCallback<List<String>>() {

 @Override

 public List<String> doInHive(HiveClient hiveClient) throws Exception {

 return hiveClient.get_all_databases();

 }

 }));

 }

}

The example above shows a basic container configuration wiring a HiveTemplate into a user class
which uses it to interact with the HiveClient Thrift API. Notice that the user does not have to handle
the lifecycle of the HiveClient instance or catch any exception (out of the many thrown by Hive itself
and the Thrift fabric) - these are handled automatically by the template which converts them, like the
rest of the Spring templates, into `DataAccessException`s. Thus the application only has to track only
one exception hierarchy across all data technologies instead of one per technology.

http://en.wikipedia.org/wiki/Template_method_pattern

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 51

9. Pig support

For Pig users, SHDP provides easy creation and configuration of PigServer instances for registering
and executing scripts either locally or remotely. In its simplest form, the declaration looks as follows:

<hdp:pig />

This will create a org.springframework.data.hadoop.pig.PigServerFactory instance, named
pigFactory, a factory that creates PigServer instances on demand configured with a default
PigContext, executing scripts in MapReduce mode. The factory is needed since PigServer is not
thread-safe and thus cannot be used by multiple objects at the same time. In typical scenarios however,
one might want to connect to a remote Hadoop tracker and register some scripts automatically so let
us take a look of how the configuration might look like:

<pig-factory exec-type="LOCAL" job-name="pig-script" configuration-ref="hadoopConfiguration" properties-

location="pig-dev.properties"

 xmlns="http://www.springframework.org/schema/hadoop">

 source=${pig.script.src}

 <script location="org/company/pig/script.pig">

 <arguments>electric=sea</arguments>

 </script>

 <script>

 A = LOAD 'src/test/resources/logs/apache_access.log' USING PigStorage() AS (name:chararray,

 age:int);

 B = FOREACH A GENERATE name;

 DUMP B;

 </script>

</pig-factory> />

The example exposes quite a few options so let us review them one by one. First the top-level pig
definition configures the pig instance: the execution type, the Hadoop configuration used and the job
name. Notice that additional properties can be specified (either by declaring them inlined or/and loading
them from an external file) - in fact, <hdp:pig-factory/> just like the rest of the libraries configuration
elements, supports common properties attributes as described in the hadoop configuration section.

The definition contains also two scripts: script.pig (read from the classpath) to which one pair of
arguments, relevant to the script, is passed (notice the use of property placeholder) but also an inlined
script, declared as part of the definition, without any arguments.

As you can tell, the pig-factory namespace offers several options pertaining to Pig configuration.

9.1 Running a Pig script

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Pig
scripts, either inlined or from various locations through pig-runner element:

<hdp:pig-runner id="pigRunner" run-at-startup="true">

 <hdp:script>

 A = LOAD 'src/test/resources/logs/apache_access.log' USING PigStorage() AS (name:chararray,

 age:int);

 ...

 </hdp:script>

 <hdp:script location="pig-scripts/script.pig"/>

</hdp:pig-runner>

The runner will trigger the execution during the application start-up (notice the run-at-startup flag
which is by default false). Do note that the runner will not run unless triggered manually or if run-
at-startup is set to true. Additionally the runner (as in fact do all runners in SHDP) allows one or

http://pig.apache.org

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 52

multiple pre and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Callable can be passed in. For
more information on runners, see the dedicated chapter.

Using the Pig tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Pig queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp:pig-tasklet id="pig-script">

 <hdp:script location="org/company/pig/handsome.pig" />

</hdp:pig-tasklet>

The syntax of the scripts declaration is similar to that of the pig namespace.

9.2 Interacting with the Pig API

For those that need to programmatically interact directly with Pig , Spring for Apache Hadoop provides
a dedicated template, similar to the aforementioned HiveTemplate. The template handles the
redundant, boiler-plate code, required for interacting with Pig such as creating a new PigServer,
executing the scripts, catching any exceptions and performing clean-up. One can programmatically
execute scripts but also interact with the Hive API through the PigServerCallback. For example:

<hdp:pig-factory ... />

<!-- Pig template wires automatically to 'pigFactory'-->

<hdp:pig-template />

<!-- use component scanning-->

<context:component-scan base-package="some.pkg" />

public class SomeClass {

 @Inject

 private PigTemplate template;

 public Set<String> getDbs() {

 return pigTemplate.execute(new PigCallback<Set<String>() {

 @Override

 public Set<String> doInPig(PigServer pig) throws ExecException, IOException {

 return pig.getAliasKeySet();

 }

 });

 }

}

The example above shows a basic container configuration wiring a PigTemplate into a user class
which uses it to interact with the PigServer API. Notice that the user does not have to handle the
lifecycle of the PigServer instance or catch any exception - these are handled automatically by the
template which converts them, like the rest of the Spring templates, into `DataAccessException`s. Thus
the application only has to track only one exception hierarchy across all data technologies instead of
one per technology.

http://en.wikipedia.org/wiki/Template_method_pattern

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 53

10. Using the runner classes

Spring for Apache Hadoop provides for each Hadoop interaction type, whether it is vanilla Map/Reduce,
Hive or Pig, a runner, a dedicated class used for declarative (or programmatic) interaction. The list below
illustrates the existing runner classes for each type, their name and namespace element.

Table 10.1. Available _Runner_s

Type Name Namespace
element

Description

Map/Reduce
Job

JobRunner job-runner Runner for Map/Reduce jobs, whether vanilla M/
R or streaming

Hadoop Tool ToolRunner tool-

runner

Runner for Hadoop `Tool`s (whether stand-alone
or as jars).

Hadoop `jar`s JarRunner jar-runner Runner for Hadoop jars.

Hive queries
and scripts

HiveRunner hive-

runner

Runner for executing Hive queries or scripts.

Pig queries and
scripts

PigRunner pig-runner Runner for executing Pig scripts.

JSR-223/JVM
scripts

HdfsScriptRunnerscript Runner for executing JVM 'scripting' languages
(implementing the JSR-223 API).

While most of the configuration depends on the underlying type, the runners share common attributes
and behaviour so one can use them in a predictive, consistent way. Below is a list of common features:

• declaration does not imply execution

The runner allows a script, a job to run but the execution can be triggered either programmatically
or by the container at start-up.

• run-at-startup

Each runner can execute its action at start-up. By default, this flag is set to false. For multiple or on
demand execution (such as scheduling) use the Callable contract (see below).

• JDK Callable interface

Each runner implements the JDK Callable interface. Thus one can inject the runner into other beans
or its own classes to trigger the execution (as many or as little times as she wants).

• pre and post actions

Each runner allows one or multiple, pre or/and post actions to be specified (to chain them together
such as executing a job after another or perfoming clean up). Typically other runners can be used
but any Callable can be specified. The actions will be executed before and after the main action,
in the declaration order. The runner uses a fail-safe behaviour meaning, any exception will interrupt
the run and will propagated immediately to the caller.

• consider Spring Batch

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 54

The runners are meant as a way to execute basic tasks. When multiple executions need to be
coordinated and the flow becomes non-trivial, we strongly recommend using Spring Batch which
provides all the features of the runners and more (a complete, mature framework for batch execution).

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 55

11. Security Support

Spring for Apache Hadoop is aware of the security constraints of the running Hadoop environment and
allows its components to be configured as such. For clarity, this document breaks down security into
HDFS permissions and user impersonation (also known as secure Hadoop). The rest of this document
discusses each component and the impact (and usage) it has on the various SHDP features.

11.1 HDFS permissions

HDFS layer provides file permissions designed to be similar to those present in *nix OS. The official
guide explains the major components but in short, the access for each file (whether it’s for reading,
writing or in case of directories accessing) can be restricted to certain users or groups. Depending on
the user identity (which is typically based on the host operating system), code executing against the
Hadoop cluster can see or/and interact with the file-system based on these permissions. Do note that
each HDFS or FileSystem implementation can have slightly different semantics or implementation.

SHDP obeys the HDFS permissions, using the identity of the current user (by default) for interacting
with the file system. In particular, the HdfsResourceLoader considers when doing pattern matching,
only the files that it’s supposed to see and does not perform any privileged action. It is possible however
to specify a different user, meaning the ResourceLoader interacts with HDFS using that user’s rights
- however this obeys the #security:kerberos[user impersonation] rules. When using different users, it
is recommended to create separate ResourceLoader instances (one per user) instead of assigning
additional permissions or groups to one user - this makes it easier to manage and wire the different
HDFS views without having to modify the ACLs. Note however that when using impersonation, the
ResourceLoader might (and will typically) return restricted files that might not be consumed or seen
by the callee.

11.2 User impersonation (Kerberos)

Securing a Hadoop cluster can be a difficult task - each machine can have a different set of users and
groups, each with different passwords. Hadoop relies on Kerberos, a ticket-based protocol for allowing
nodes to communicate over a non-secure network to prove their identity to one another in a secure
manner. Unfortunately there is not a lot of documentation on this topic out there. However there are
some resources to get you started.

SHDP does not require any extra configuration - it simply obeys the security system in place. By default,
when running inside a secure Hadoop, SHDP uses the current user (as expected). It also supports user
impersonation, that is, interacting with the Hadoop cluster with a different identity (this allows a superuser
to submit job or access hdfs on behalf of another user in a secure way, without leaking permissions).
The major MapReduce components, such as job, streaming and tool as well as pig support user
impersonation through the user attribute. By default, this property is empty, meaning the current user
is used - however one can specify the different identity (also known as ugi) to be used by the target
component:

<hdp:job id="jobFromJoe" user="joe" .../>

Note that the user running the application (or the current user) must have the proper kerberos credentials
to be able to impersonate the target user (in this case joe).

http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/SecureMode.html
http://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://hortonworks.com/blog/fine-tune-your-apache-hadoop-security-settings/
https://ccp.cloudera.com/display/CDHDOC/Configuring+Hadoop+Security+in+CDH3

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 56

11.3 Boot Support

spring.hadoop.security configuration properties

Namespace spring.hadoop.security supports following properties; authMethod, userPrincipal,
userKeytab, namenodePrincipal and rmManagerPrincipal.

spring.hadoop.security.authMethod

Description
Defines a used Hadoop security authentication method. Currently if set only value KERBEROS
is supported.

Required
No

Type
String

Default Value
null

spring.hadoop.security.userPrincipal

Description
Defines a used Hadoop kerberos user principal.

Required
No

Type
String

Default Value
null

spring.hadoop.security.userKeytab

Description
Defines a used Spring Hadoop user facing kerberos keytab file path. This needs to be a fully
qualified path to a file existing on a local file system. Due to restrictions in jvm’s kerberos
implementation, relative paths or resolving from a classpath are not supported.

Required
No

Type
String

Default Value
null

spring.hadoop.security.namenodePrincipal

Description
Defines a used Hadoop kerberos namenode principal.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 57

Required
No

Type
String

Default Value
null

spring.hadoop.security.rmManagerPrincipal

Description
Defines a used Hadoop kerberos resource manager principal.

Required
No

Type
String

Default Value
null

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 58

12. Yarn Support

You’ve propbably seen a lot of topics around Yarn and next version of Hadoop’s Map Reduce called
MapReduce Version 2. Originally Yarn was a component of MapReduce itself created to overcome some
performance issues in Hadoop’s original design. The fundamental idea of MapReduce v2 is to split up the
two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into
separate daemons. The idea is to have a global Resource Manager (RM) and per-application Application
Master (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a group
of jobs.

Let’s take a step back and see how original MapReduce Version 1 works. Job Tracker is a global
singleton entity responsible for managing resources like per node Task Trackers and job life-cycle. Task
Tracker is responsible for executing tasks from a Job Tracker and periodically reporting back the status
of the tasks. Naturally there is a much more going on behind the scenes but the main point of this is
that the Job Tracker has always been a bottleneck in terms of scalability. This is where Yarn steps
in by splitting the load away from a global resource management and job tracking into per application
masters. Global resource manager can then concentrate in its main task of handling the management
of resources.

Note

Yarn is usually referred as a synonym for MapReduce Version 2. This is not exactly true and it’s
easier to understand the relationship between those two by saying that MapReduce Version 2 is
an application running on top of Yarn.

As we just mentioned MapReduce Version 2 is an application running of top of Yarn. It is possible to
make similar custom Yarn based application which have nothing to do with MapReduce. Yarn itself
doesn’t know that it is running MapReduce Version 2. While there’s nothing wrong to do everything from
scratch one will soon realise that steps to learn how to work with Yarn are rather deep. This is where
Spring Hadoop support for Yarn steps in by trying to make things easier so that user could concentrate
on his own code and not having to worry about framework internals.

12.1 Using the Spring for Apache Yarn Namespace

To simplify configuration, SHDP provides a dedicated namespace for Yarn components. However, one
can opt to configure the beans directly through the usual <bean> definition. For more information about
XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/xsd-config.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 59

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:yarn="http://www.springframework.org/schema/yarn"❶❷

 xmlns:yarn-int="http://www.springframework.org/schema/yarn/integration"❸❹

 xmlns:yarn-batch="http://www.springframework.org/schema/yarn/batch"❺❻

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/yarn

 http://www.springframework.org/schema/yarn/spring-yarn.xsd❼

 http://www.springframework.org/schema/yarn/integration

 http://www.springframework.org/schema/yarn/integration/spring-yarn-integration.xsd❽

 http://www.springframework.org/schema/yarn/batch

 http://www.springframework.org/schema/yarn/batch/spring-yarn-batch.xsd">❾

 <bean id ... >

 <yarn:configuration ...>❿

</beans>

❶ Spring for Apache Hadoop Yarn namespace prefix for core package. Any name can do but through
out the reference documentation, the yarn will be used.

❷ The namespace URI.

❸ Spring for Apache Hadoop Yarn namespace prefix for integration package. Any name can do but
through out the reference documentation, the yarn-int will be used.

❹ The namespace URI.

❺ Spring for Apache Hadoop Yarn namespace prefix for batch package. Any name can do but through
out the reference documentation, the yarn-batch will be used.

❻ The namespace URI.

❼ The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring for
Apache Hadoop Yarn library.

❽ The namespace URI location.

❾ The namespace URI location.

❿ Declaration example for the Yarn namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned
prefix. Note that is possible to change the default namespace, for example from <beans> to <yarn>.
This is useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix.
To achieve this, simply swap the namespace prefix declaration above:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans

xmlns="http://www.springframework.org/schema/yarn"❶

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"❷

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/yarn

 http://www.springframework.org/schema/yarn/spring-yarn.xsd">

 <beans:bean id ... >❸

 <configuration ...>❹

</beans:beans>

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 60

❶ The default namespace declaration for this XML file points to the Spring for Apache Yarn
namespace.

❷ The beans namespace prefix declaration.

❸ Bean declaration using the <beans> namespace. Notice the prefix.

❹ Bean declaration using the <yarn> namespace. Notice the lack of prefix (as yarn is the default
namespace).

12.2 Using the Spring for Apache Yarn JavaConfig

It is also possible to work without XML configuration and rely on Annotation based configuration model.
XML and JavaConfig for Spring YARN are not full replacement for each others but we try to mimic the
behaviour as much as we can.

We basically rely on two concepts when working with JavaConfig. Firstly an annotation @EnableYarn is
used to activate different parts of a Spring Configuration depending on enable attribute. We can enable
configuration for CONTAINER, APPMASTER or CLIENT. Secondly when configuration is enabled one
can use SpringYarnConfigurerAdapter whose callback methods can be used to do further configuration
for components familiar from XML.

@Configuration

@EnableYarn(enable=Enable.CONTAINER)

public class ContainerConfiguration extends SpringYarnConfigurerAdapter {

 @Override

 public void configure(YarnContainerConfigurer container) throws Exception {

 container

 .containerClass(MultiContextContainer.class);

 }

}

In above example we enabled configuration for CONTAINER and used SpringYarnConfigurerAdapter
and its configure callback method for YarnContainerConfigurer. In this method we instructed
container class to be a MultiContextContainer.

@Configuration

@EnableYarn(enable=Enable.APPMASTER)

public class AppmasterConfiguration extends SpringYarnConfigurerAdapter {

 @Override

 public void configure(YarnAppmasterConfigurer master) throws Exception {

 master

 .withContainerRunner();

 }

}

In above example we enabled configuration for APPMASTER and because of this a callback method
for YarnAppmasterConfigurer is called automatically.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 61

@Configuration

@EnableYarn(enable=Enable.CLIENT)

@PropertySource("classpath:hadoop.properties")

public class ClientConfiguration extends SpringYarnConfigurerAdapter {

 @Autowired

 private Environment env;

 @Override

 public void configure(YarnConfigConfigurer config) throws Exception {

 config

 .fileSystemUri(env.getProperty("hd.fs"))

 .resourceManagerAddress(env.getProperty("hd.rm"));

 }

 @Override

 public void configure(YarnClientConfigurer client) throws Exception {

 Properties arguments = new Properties();

 arguments.put("container-count", "4");

 client

 .appName("multi-context-jc")

 .withMasterRunner()

 .contextClass(AppmasterConfiguration.class)

 .arguments(arguments);

}

In above example we enabled configuration for CLIENT. Here one will get yet another callback for
YarnClientConfigurer. Additionally this shows how a Hadoop configuration can be customized using a
callback for YarnConfigConfigurer.

12.3 Configuring Yarn

In order to use Hadoop and Yarn, one needs to first configure it namely by creating a
YarnConfiguration object. The configuration holds information about the various parameters of the
Yarn system.

Note

Configuration for <yarn:configuration> looks very similar than <hdp:configuration>.
Reason for this is a simple separation for Hadoop’s YarnConfiguration and JobConf classes.

In its simplest form, the configuration definition is a one liner:

<yarn:configuration />

The declaration above defines a YarnConfiguration bean (to be precise a factory bean of type
ConfigurationFactoryBean) named, by default, yarnConfiguration. The default name is used, by
conventions, by the other elements that require a configuration - this leads to simple and very concise
configurations as the main components can automatically wire themselves up without requiring any
specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in additional configuration files:

<yarn:configuration resources="classpath:/custom-site.xml, classpath:/hq-site.xml">

In this example, two additional Hadoop configuration resources are added to the configuration.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 62

Note

Note that the configuration makes use of Spring’s Resource abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified(if any) by the value - in this example the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Properties. This can be quite handy when just a few options need to be changed:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:yarn="http://www.springframework.org/schema/yarn"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd

 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/spring-

yarn.xsd">

 <yarn:configuration>

 fs.defaultFS=hdfs://localhost:9000

 hadoop.tmp.dir=/tmp/hadoop

 electric=sea

 </yarn:configuration>

</beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:yarn="http://www.springframework.org/schema/yarn"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-

context.xsd

 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/spring-

yarn.xsd">

 <yarn:configuration>

 fs.defaultFS=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

 hangar=${number:18}

 </yarn:configuration>

 <context:property-placeholder location="classpath:hadoop.properties" />

</beans>

Through Spring’s property placeholder support, SpEL and the environment abstraction. one can
externalize environment specific properties from the main code base easing the deployment across
multiple machines. In the example above, the default file system is replaced based on the properties
available in hadoop.properties while the temp dir is determined dynamically through SpEL. Both
approaches offer a lot of flexbility in adapting to the running environment - in fact we use this approach
extensivly in the Spring for Apache Hadoop test suite to cope with the differences between the different
development boxes and the CI server.

Additionally, external Properties files can be loaded, Properties beans (typically declared
through Spring’s ` ` namespace). Along with the nested properties declaration, this allows customized
configurations to be easily declared:

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/resources.html
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/expressions.html
http://spring.io/blog/2011/06/09/spring-framework-3-1-m2-released/

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 63

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:yarn="http://www.springframework.org/schema/yarn"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-

context.xsd

 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-

util.xsd

 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/spring-

yarn.xsd">

 <!-- merge the local properties, the props bean and the two properties files -->

 <yarn:configuration properties-ref="props" properties-location="cfg-1.properties, cfg-2.properties">

 star=chasing

 captain=eo

 </yarn:configuration>

 <util:properties id="props" location="props.properties"/>

</beans>

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the props bean followed by the external properties file
based on their defined order. While it’s not typical for a configuration to refer to use so many properties,
the example showcases the various options available.

Note

For more properties utilities, including using the System as a source or fallback, or control over the
merging order, consider using Spring’s PropertiesFactoryBean (which is what Spring for Apache
Hadoop Yarn and util:properties use underneath).

It is possible to create configuration based on existing ones - this allows one to create dedicated
configurations, slightly different from the main ones, usable for certain jobs (such as streaming - more on
that #yarn:job:streaming[below]). Simply use the configuration-ref attribute to refer to the parent
configuration - all its properties will be inherited and overridden as specified by the child:

<!-- default name is 'yarnConfiguration' -->

<yarn:configuration>

 fs.defaultFS=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

</yarn:configuration>

<yarn:configuration id="custom" configuration-ref="yarnConfiguration">

 fs.defaultFS=${custom.hd.fs}

</yarn:configuration>

...

Make sure though you specify a different name since otherwise, since both definitions will have the
same name, the Spring container will interpret this as being the same definition (and will usually consider
the last one found).

Last but not least a reminder that one can mix and match all these options to her preference. In general,
consider externalizing configuration since it allows easier updates without interfering with the application
configuration. When dealing with multiple, similar configuration use configuration composition as it tends
to keep the definitions concise, in sync and easy to update.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 64

Table 12.1. yarn:configuration attributes

Name Values Description

configuration-

ref

Bean
Reference

Reference to existing Configuration bean

properties-

ref

Bean
Reference

Reference to existing Properties bean

properties-

location

Comma
delimited list

List or Spring Resource paths

resources Comma
delimited list

List or Spring Resource paths

fs-uri String The HDFS filesystem address. Equivalent to fs.defaultFS
property.

rm-address String The Yarn Resource manager address. Equivalent to
yarn.resourcemanager.address property.

scheduler-

address

String The Yarn Resource manager scheduler address. Equivalent to
yarn.resourcemanager.scheduler.address property.

12.4 Local Resources

When Application Master or any other Container is run in a hadoop cluster, there are usually
dependencies to various application and configuration files. These files needs to be localized into a
running Container by making a physical copy. Localization is a process where dependent files are copied
into node’s directory structure and thus can be used within the Container itself. Yarn itself tries to provide
isolation in a way that multiple containers and applications would not clash.

In order to use local resources, one needs to create an implementation of ResourceLocalizer interface.
In its simplest form, resource localizer can be defined as:

<yarn:localresources>

 <yarn:hdfs path="/path/in/hdfs/my.jar"/>

</yarn:localresources>

The declaration above defines a ResourceLocalizer bean (to be precise a factory bean of type
LocalResourcesFactoryBean) named, by default, yarnLocalresources. The default name is used, by
conventions, by the other elements that require a reference to a resource localizer. It’s explained later
how this reference is used when container launch context is defined.

It is also possible to define path as pattern. This makes it easier to pick up all or subset of files from
a directory.

<yarn:localresources>

 <yarn:hdfs path="/path/in/hdfs/*.jar"/>

</yarn:localresources>

Behind the scenes it’s not enough to simple have a reference to file in a hdfs file system. Yarn itself
when localizing resources into container needs to do a consistency check for copied files. This is done
by checking file size and timestamp. This information needs to passed to yarn together with a file path.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 65

Order to do this the one who defines these beans needs to ask this information from hdfs prior to sending
out resouce localizer request. This kind of behaviour exists to make sure that once localization is defined,
Container will fail fast if dependant files were replaced during the process.

On default the hdfs base address is coming from a Yarn configuration and ResourceLocalizer bean will
use configuration named yarnLocalresources. If there is a need to use something else than the default
bean, configuration parameter can be used to make a reference to other defined configurations.

<yarn:localresources configuration="yarnConfiguration">

 <yarn:hdfs path="/path/in/hdfs/my.jar"/>

</yarn:localresources>

For example, client defining a launch context for Application Master needs to access dependent hdfs
entries. Effectively hdfs entry given to resource localizer needs to be accessed from a Node Manager.

Yarn resource localizer is using additional parameters to define entry type and visibility. Usage is
described below:

<yarn:localresources>

 <yarn:hdfs path="/path/in/hdfs/my.jar" type="FILE" visibility="APPLICATION"/>

</yarn:localresources>

For convenience it is possible to copy files into hdfs during the localization process using a yarn:copy
tag. Currently base staging directory is /syarn/staging/xx where xx is a unique identifier per application
instance.

<yarn:localresources>

 <yarn:copy src="file:/local/path/to/files/*jar" staging="true"/>

 <yarn:hdfs path="/*" staging="true"/>

</yarn:localresources>

Table 12.2. yarn:localresources attributes

Name Values Description

configuration Bean
Reference

A reference to configuration bean name, default is
yarnConfiguration

type ARCHIVE,
FILE,
PATTERN

Global default if not defined in entry level

visibility PUBLIC,
PRIVATE,
APPLICATION

Global default if not defined in entry level

Table 12.3. yarn:hdfs attributes

Name Values Description

path HDFS Path Path in hdfs

type ARCHIVE,
FILE(default),
PATTERN

ARCHIVE - automatically unarchived by the Node Manager, FILE
- regular file, PATTERN - hybrid between archive and file.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 66

Name Values Description

visibility PUBLIC,
PRIVATE,
APPLICATION(default)

PUBLIC - Shared by all users on the node, PRIVATE -
Shared among all applications of the same user on the node,
APPLICATION - Shared only among containers of the same
application on the node

staging true,
false(default)

Internal temporary stagind directory.

Table 12.4. yarn:copy attributes

Name Values Description

src Copy sources Comma delimited list of resource patterns

staging true,
false(default)

Internal temporary stagind directory.

12.5 Container Environment

One central concept in Yarn is to use environment variables which then can be read from a container.
While it’s possible to read those variable at any time it is considered bad design if one chooce to do so.
Spring Yarn will pass variable into application before any business methods are executed, which makes
things more clearly and testing becomes much more easier.

<yarn:environment/>

The declaration above defines a Map bean (to be precise a factory bean of type
EnvironmentFactoryBean) named, by default, yarnEnvironment. The default name is used, by
conventions, by the other elements that require a reference to a environment variables.

For conveniance it is possible to define a classpath entry directly into an environment. Most likely one
is about to run some java code with libraries so classpath needs to be defined anyway.

<yarn:environment include-local-system-env="false">

 <yarn:classpath use-yarn-app-classpath="true" delimiter=":">

 ./*

 </yarn:classpath>

</yarn:environment>

If use-yarn-app-classpath parameter is set to true(default value) a default yarn entries will be added
to classpath automatically. These entries are on default resolved from a normal Hadoop Yarn

Configuration using its yarn.application.classpath property or if site-yarn-app-classpath has a any
content entries are resolved from there.

Note

Be carefull if passing environment variables between different systems. For example if running
a client on Windows and passing variables to Application Master running on Linux, execution
wrapper in Yarn may silently fail.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 67

Table 12.5. yarn:environment attributes

Name Values Description

include-

local-

system-env

true,
false(default)

Defines whether system environment variables are actually
added to this bean.

Table 12.6. classpath attributes

Name Values Description

use-

yarn-app-

classpath

false(default),
true

Defines whether default yarn entries are added to classpath.

use-

mapreduce-

app-

classpath

false(default),
true

Defines whether default mr entries are added to classpath.

site-

yarn-app-

classpath

Classpath
entries

Defines a comma delimited list of default yarn application
classpath entries.

site-

mapreduce-

app-

classpath

Classpath
entries

Defines a comma delimited list of default mr application
classpath entries.

delimiter Delimiter
string, default
is ":"

Defines delimiter used in a classpath string

12.6 Application Client

Client is always your entry point when interacting with a Yarn system whether one is about to submit a
new application instance or just querying Resource Manager for running application(s) status. Currently
support for client is very limited and a simple command to start Application Master can be defined. If
there is just a need to query Resource Manager, command definition is not needed.

<yarn:client app-name="customAppName">

 <yarn:master-command>

 <![CDATA[

 /usr/local/java/bin/java

 org.springframework.yarn.am.CommandLineAppmasterRunner

 appmaster-context.xml

 yarnAppmaster

 container-count=2

 1><LOG_DIR>/AppMaster.stdout

 2><LOG_DIR>/AppMaster.stderr

]]>

 </yarn:master-command>

</yarn:client>

The declaration above defines a YarnClient bean (to be precise a factory bean of type
YarnClientFactoryBean) named, by default, yarnClient. It also defines a command launching an

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 68

Application Master using <master-command> entry which is also a way to define the raw commands.
If this yarnClient instance is used to submit an application, its name would come from a app-name
attribute.

<yarn:client app-name="customAppName">

 <yarn:master-runner/>

</yarn:client>

For a convinience entry <master-runner> can be used to define same command entries.

<yarn:client app-name="customAppName">

 <util:properties id="customArguments">

 container-count=2

 </util:properties>

 <yarn:master-runner

 command="java"

 context-file="appmaster-context.xml"

 bean-name="yarnAppmaster"

 arguments="customArguments"

 stdout="<LOG_DIR>/AppMaster.stdout"

 stderr="<LOG_DIR>/AppMaster.stderr" />

</yarn:client>

All previous three examples are effectively identical from Spring Yarn point of view.

Note

The <LOG_DIR> refers to Hadoop’s dedicated log directory for the running container.

<yarn:client app-name="customAppName"

 configuration="customConfiguration"

 resource-localizer="customResources"

 environment="customEnv"

 priority="1"

 virtualcores="2"

 memory="11"

 queue="customqueue">

 <yarn:master-runner/>

</yarn:client>

If there is a need to change some of the parameters for the Application Master submission, memory and
virtualcores defines the container settings. For submission, queue and priority defines how
submission is actually done.

Table 12.7. yarn:client attributes

Name Values Description

app-name Name as
string, default
is empty

Yarn submitted application name

configuration Bean
Reference

A reference to configuration bean name, default is
yarnConfiguration

resource-

localizer

Bean
Reference

A reference to resource localizer bean name, default is
yarnLocalresources

environment Bean
Reference

A reference to environment bean name, default is
yarnEnvironment

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 69

Name Values Description

template Bean
Reference

A reference to a bean implementing ClientRmOperations

memory Memory
as integer,
default is "64"

Amount of memory for appmaster resource

virtualcores Cores as
integer,
default is "1"

Number of appmaster resource virtual cores

priority Priority as
integer,
default is "0"

Submission priority

queue Queue string,
default is
"default"

Submission queue

Table 12.8. yarn:master-command

Name Values Description

Entry content List of
commands

Commands defined in this entry are aggregated into a single
command line

Table 12.9. yarn:master-runner attributes

Name Values Description

command Main
command as
string, default
is "java"

Command line first entry

context-file Name of
the Spring
context file,
default is
"appmaster-
context.xml"

Command line second entry

bean-name Name of the
Spring bean,
default is
"yarnAppmaster"

Command line third entry

arguments Reference
to Java’s
Properties

Added to command line parameters as key/value pairs separated
by '='

stdout Stdout,
default is

Appended with 1>

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 70

Name Values Description

"<LOG_DIR>/
AppMaster.stdout"

stderr Stderr,
default is
"<LOG_DIR>/
AppMaster.stderr"

Appended with 2>

12.7 Application Master

Application master is responsible for container allocation, launching and monitoring.

<yarn:master>

 <yarn:container-allocator virtualcores="1" memory="64" priority="0"/>

 <yarn:container-launcher username="whoami"/>

 <yarn:container-command>

 <![CDATA[

 /usr/local/java/bin/java

 org.springframework.yarn.container.CommandLineContainerRunner

 container-context.xml

 1><LOG_DIR>/Container.stdout

 2><LOG_DIR>/Container.stderr

]]>

 </yarn:container-command>

</yarn:master>

The declaration above defines a YarnAppmaster bean (to be precise a bean of type StaticAppmaster)
named, by default, yarnAppmaster. It also defines a command launching a Container(s) using
<container-command> entry, parameters for allocation using <container-allocator> entry and
finally a launcher parameter using <container-launcher> entry.

Currently there is a simple implementation of StaticAppmaster which is able to allocate and launch a
number of containers. These containers are monitored by querying resource manager for container
execution completion.

<yarn:master>

 <yarn:container-runner/>

</yarn:master>

For a convinience entry <container-runner> can be used to define same command entries.

<yarn:master>

 <util:properties id="customArguments">

 some-argument=myvalue

 </util:properties>

 <yarn:container-runner

 command="java"

 context-file="container-context.xml"

 bean-name="yarnContainer"

 arguments="customArguments"

 stdout="<LOG_DIR>/Container.stdout"

 stderr="<LOG_DIR>/Container.stderr" />

</yarn:master>

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 71

Table 12.10. yarn:master attributes

Name Values Description

configuration Bean
Reference

A reference to configuration bean name, default is
yarnConfiguration

resource-

localizer

Bean
Reference

A reference to resource localizer bean name, default is
yarnLocalresources

environment Bean
Reference

A reference to environment bean name, default is
yarnEnvironment

Table 12.11. yarn:container-allocator attributes

Name Values Description

virtualcores Integer number of virtual cpu cores of the resource.

memory Integer, as of
MBs.

memory of the resource.

priority Integer Assigned priority of a request.

locality Boolean If set to true indicates that resources are not relaxed. Default is
FALSE.

Table 12.12. yarn:container-launcher attributes

Name Values Description

username String Set the user to whom the container has been allocated.

Table 12.13. yarn:container-runner attributes

Name Values Description

command Main
command as
string, default
is "java"

Command line first entry

context-file Name of
the Spring
context file,
default is
"container-
context.xml"

Command line second entry

bean-name Name of the
Spring bean,
default is
"yarnContainer"

Command line third entry

arguments Reference
to Java’s
Properties

Added to command line parameters as key/value pairs separated
by '='

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 72

Name Values Description

stdout Stdout,
default is
"<LOG_DIR>/
Container.stdout"

Appended with 1>

stderr Stderr,
default is
"<LOG_DIR>/
Container.stderr"

Appended with 2>

12.8 Application Container

There is very little what Spring Yarn needs to know about the
Container in terms of its configuration. There is a simple contract between
org.springframework.yarn.container.CommandLineContainerRunner and a bean it’s trying to run on
default. Default bean name is yarnContainer.

There is a simple interface org.springframework.yarn.container.YarnContainer which container needs
to implement.

public interface YarnContainer {

 void run();

 void setEnvironment(Map<String, String> environment);

 void setParameters(Properties parameters);

}

There are few different ways how Container can be defined in Spring xml configuration. Natively without
using namespaces bean can be defined with a correct name:

<bean id="yarnContainer" class="org.springframework.yarn.container.TestContainer">

Spring Yarn namespace will make it even more simpler. Below example just defines class which
implements needed interface.

<yarn:container container-class="org.springframework.yarn.container.TestContainer"/>

It’s possible to make a reference to existing bean. This is usefull if bean cannot be instantiated with
default constructor.

<bean id="testContainer" class="org.springframework.yarn.container.TestContainer"/>

<yarn:container container-ref="testContainer"/>

It’s also possible to inline the bean definition.

<yarn:container>

 <bean class="org.springframework.yarn.container.TestContainer"/>

</yarn:container>

12.9 Application Master Services

It is fairly easy to create an application which launches a few containers and then leave those to do
their tasks. This is pretty much what Distributed Shell example application in Yarn is doing. In that
example a container is configured to run a simple shell command and Application Master only tracks

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 73

when containers have finished. If only need from a framework is to be able to fire and forget then
that’s all you need, but most likely a real-world Yarn application will need some sort of collaboration
with Application Master. This communication is initiated either from Application Client or Application
Container.

Yarn framework itself doesn’t define any kind of general communication API for Application Master.
There are APIs for communicating with Container Manager and Resource Manager which are used on
within a layer not necessarily exposed to a user. Spring Yarn defines a general framework to talk to
Application Master through an abstraction and currently a JSON based rpc system exists.

This chapter concentrates on developer concepts to create a custom services for Application
Master, configuration options for built-in services can be found from sections below -
#yarn:masterservice[Appmaster Service] and #yarn:masterserviceclient[Appmaster Service Client].

Basic Concepts

Having a communication framework between Application Master and Container/Client involves few
moving parts. Firstly there has to be some sort of service running on an Application Master. Secondly
user of this service needs to know where it is and how to connect to it. Thirtly, if not creating these
services from scratch, it’d be nice if some sort of abstraction already exist.

Contract for appmaster service is very simple, Application Master Service needs to implement
AppmasterService interface be registered with Spring application context. Actual appmaster instance
will then pick it up from a bean factory.

public interface AppmasterService {

 int getPort();

 boolean hasPort();

 String getHost();

}

Application Master Service framework currently provides integration for services acting as service for a
Client or a Container. Only difference between these two roles is how the Service Client gets notified
about the address of the service. For the Client this information is stored within the Hadoop Yarn
resource manager. For the Container this information is passed via environment within the launch
context.

<bean id="yarnAmservice" class="AppmasterServiceImpl" />

<bean id="yarnClientAmservice" class="AppmasterClientServiceImpl" />

Example above shows a default bean names, yarnAmservice and yarnClientAmservice respectively
recognised by Spring Yarn.

Interface AppmasterServiceClient is currently an empty interface just marking class to be a appmaster
service client.

public interface AppmasterServiceClient {

}

Using JSON

Default implementations can be used to exchange messages using a simple domain classes and actual
messages are converted into json and send over the transport.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 74

<yarn-int:amservice

 service-impl="org.springframework.yarn.integration.ip.mind.TestService"

 default-port="1234"/>

<yarn-int:amservice-client

 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 host="localhost"

 port="1234"/>

@Autowired

AppmasterServiceClient appmasterServiceClient;

@Test

public void testServiceInterfaces() throws Exception {

 SimpleTestRequest request = new SimpleTestRequest();

 SimpleTestResponse response =

 (SimpleTestResponse) ((MindAppmasterServiceClient)appmasterServiceClient).

 doMindRequest(request);

 assertThat(response.stringField, is("echo:stringFieldValue"));

}

Converters

When default implementations for Application master services are exchanging messages, converters
are net registered automatically. There is a namespace tag converters to ease this configuration.

<bean id="mapper"

 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>

 </bean>

</yarn-int:converter>

12.10 Application Master Service

This section of this document is about configuration, more about general concepts for see a ?.

Currently Spring Yarn have support for services using Spring Integration tcp channels as a transport.

<bean id="mapper"

 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.integration.ip.mind"/>

 </bean>

</yarn-int:converter>

<yarn-int:amservice

 service-impl="org.springframework.yarn.integration.ip.mind.TestService"/>

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 75

If there is a need to manually configure the server side dispatch channel, a little bit more configuration
is needed.

<bean id="serializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<bean id="deserializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<bean id="socketSupport"

 class="org.springframework.yarn.integration.support.DefaultPortExposingTcpSocketSupport" />

<ip:tcp-connection-factory id="serverConnectionFactory"

 type="server"

 port="0"

 socket-support="socketSupport"

 serializer="serializer"

 deserializer="deserializer"/>

<ip:tcp-inbound-gateway id="inboundGateway"

 connection-factory="serverConnectionFactory"

 request-channel="serverChannel" />

<int:channel id="serverChannel" />

<yarn-int:amservice

 service-impl="org.springframework.yarn.integration.ip.mind.TestService"

 channel="serverChannel"

 socket-support="socketSupport"/>

Table 12.14. yarn-int:amservice attributes

Name Values Description

service-impl Class Name Full name of the class implementing a service

service-ref Bean
Reference

Reference to a bean name implementing a service

channel Spring Int
channel

Custom message dispatching channel

socket-

support

Socket
support
reference

Custom socket support class

12.11 Application Master Service Client

This section of this document is about configuration, more about general concepts for see a ?.

Currently Spring Yarn have support for services using Spring Integration tcp channels as a transport.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 76

<bean id="mapper"

 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.integration.ip.mind"/>

 </bean>

</yarn-int:converter>

<yarn-int:amservice-client

 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 host="${SHDP_AMSERVICE_HOST}"

 port="${SHDP_AMSERVICE_PORT}"/>

If there is a need to manually configure the server side dispatch channel, a little bit more configuration
is needed.

<bean id="serializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<bean id="deserializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<ip:tcp-connection-factory id="clientConnectionFactory"

 type="client"

 host="localhost"

 port="${SHDP_AMSERVICE_PORT}"

 serializer="serializer"

 deserializer="deserializer"/>

<ip:tcp-outbound-gateway id="outboundGateway"

 connection-factory="clientConnectionFactory"

 request-channel="clientRequestChannel"

 reply-channel="clientResponseChannel" />

<int:channel id="clientRequestChannel" />

<int:channel id="clientResponseChannel" >

 <int:queue />

</int:channel>

<yarn-int:amservice-client

 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 request-channel="clientRequestChannel"

 response-channel="clientResponseChannel"/>

Table 12.15. yarn-int:amservice-client attributes

Name Values Description

service-impl Class Name Full name of the class implementing a service client

host Hostname Host of the running appmaster service

port Port Port of the running appmaster service

request-

channel

Reference
to Spring
Int request
channel

Custom channel

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 77

Name Values Description

response-

channel

Reference
to Spring Int
response
channel

Custom channel

12.12 Using Spring Batch

In this chapter we assume you are fairly familiar with concepts using Spring Batch. Many batch
processing problems can be solved with single threaded, single process jobs, so it is always a good idea
to properly check if that meets your needs before thinking about more complex implementations. When
you are ready to start implementing a job with some parallel processing, Spring Batch offers a range
of options. At a high level there are two modes of parallel processing: single process, multi-threaded;
and multi-process.

Spring Hadoop contains a support for running Spring Batch jobs on a Hadoop cluster. For better parallel
processing Spring Batch partitioned steps can be executed on a Hadoop cluster as remote steps.

Batch Jobs

Starting point running a Spring Batch Job is always the Application Master whether a job is just simple
job with or without partitioning. In case partitioning is not used the whole job would be run within the
Application Master and no Containers would be launched. This may seem a bit odd to run something
on Hadoop without using Containers but one should remember that Application Master is also just a
resource allocated from a Hadoop cluster.

Order to run Spring Batch jobs on a Hadoop cluster, few constraints exists:

• Job Context - Application Master is the main entry point of running the job.

• Job Repository - Application Master needs to have access to a repository which is located either in-
memory or in a database. These are the two type natively supported by Spring Batch.

• Remote Steps - Due to nature how Spring Batch partitioning works, remote step needs an access
to a job repository.

Configuration for Spring Batch Jobs is very similar what is needed for normal batch configuration
because effectively that’s what we are doing. Only difference is a way a job is launched which in this
case is automatically handled by Application Master. Implementation of a job launching logic is very
similar compared to CommandLineJobRunner found from a Spring Batch.

<bean id="transactionManager" class="org.springframework.batch.support.transaction.ResourcelessTransactionManager"/

>

<bean id="jobRepository" class="org.springframework.batch.core.repository.support.MapJobRepositoryFactoryBean">

 <property name="transactionManager" ref="transactionManager"/>

</bean>

<bean id="jobLauncher" class="org.springframework.batch.core.launch.support.SimpleJobLauncher">

 <property name="jobRepository" ref="jobRepository"/>

</bean>

The declaration above define beans for JobRepository and JobLauncher. For simplisity we used in-
memory repository while it would be possible to switch into repository working with a database if

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 78

persistence is needed. A bean named jobLauncher is later used within the Application Master to
launch jobs.

<bean id="yarnEventPublisher" class="org.springframework.yarn.event.DefaultYarnEventPublisher"/>

<yarn-batch:master/>

The declaration above defines BatchAppmaster bean named, by default, yarnAppmaster and
YarnEventPublisher bean named yarnEventPublisher which is not created automatically.

Final step to finalize our very simple batch configuration is to define the actual batch job.

<bean id="hello" class="org.springframework.yarn.examples.PrintTasklet">

 <property name="message" value="Hello"/>

</bean>

<batch:job id="job">

 <batch:step id="master">

 <batch:tasklet transaction-manager="transactionManager" ref="hello"/>

 </batch:step>

</batch:job>

The declaration above defines a simple job and tasklet. Job is named as job which is the default
job name searched by Application Master. It is possible to use different name by changing the launch
configuration.

Table 12.16. yarn-batch:master attributes

Name Values Description

configuration Bean
Reference

A reference to configuration bean name, default is
yarnConfiguration

resource-

localizer

Bean
Reference

A reference to resource localizer bean name, default is
yarnLocalresources

environment Bean
Reference

A reference to environment bean name, default is
yarnEnvironment

job-name Bean Name
Reference

A name reference to Spring Batch job, default is job

job-launcher Bean
Reference

A reference to job launcher bean name, default is jobLauncher.
Target is a normal Spring Batch bean implementing
JobLauncher.

Partitioning

Let’s take a quick look how Spring Batch partitioning is handled. Concept of running a partitioned
job involves three things, Remote steps, Partition Handler and a Partitioner. If we do a little bit of
oversimplification a remote step is like any other step from a user point of view. Spring Batch itself does
not contain implementations for any proprietary grid or remoting fabrics. Spring Batch does however
provide a useful implementation of PartitionHandler that executes Steps locally in separate threads of
execution, using the TaskExecutor strategy from Spring. Spring Hadoop provides implementation to
execute Steps remotely on a Hadoop cluster.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 79

Note

For more background information about the Spring Batch Partitioning, read the Spring Batch
reference documentation.

Configuring Master

As we previously mentioned a step executed on a remote host also need to access a job repository.
If job repository would be based on a database instance, configuration could be similar on a container
compared to application master. In our configuration example the job repository is in-memory based
and remote steps needs access for it. Spring Yarn Batch contains implementation of a job repository
which is able to proxy request via json requests. Order to use that we need to enable application client
service which is exposing this service.

<bean id="jobRepositoryRemoteService" class="org.springframework.yarn.batch.repository.JobRepositoryRemoteService"

 >

 <property name="mapJobRepositoryFactoryBean" ref="&jobRepository"/>

</bean>

<bean id="batchService" class="org.springframework.yarn.batch.repository.BatchAppmasterService" >

 <property name="jobRepositoryRemoteService" ref="jobRepositoryRemoteService"/>

</bean>

<yarn-int:amservice service-ref="batchService"/>

he declaration above defines JobRepositoryRemoteService bean named
jobRepositoryRemoteService which is then connected into Application Master Service exposing
job repository via Spring Integration Tcp channels.

As job repository communication messages are exchanged via custom json messages, converters
needs to be defined.

<bean id="mapper" class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" /

>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>

 </bean>

</yarn-int:converter>

Configuring Container

Previously we made a choice to use in-memore job repository running inside the application master.
Now we need to talk to this repository via client service. We start by adding same converters as in
application master.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 80

<bean id="mapper" class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" /

>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>

 </bean>

</yarn-int:converter>

We use general client implementation able to communicate with a service running on Application Master.

<yarn-int:amservice-client

 service-impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 host="${SHDP_AMSERVICE_HOST}"

 port="${SHDP_AMSERVICE_PORT}" />

Remote step is just like any other step.

<bean id="hello" class="org.springframework.yarn.examples.PrintTasklet">

 <property name="message" value="Hello"/>

</bean>

<batch:step id="remoteStep">

 <batch:tasklet transaction-manager="transactionManager" start-limit="100" ref="hello"/>

</batch:step>

We need to have a way to locate the step from an application context. For this we can define a step
locator which is later configured into running container.

<bean id="stepLocator" class="org.springframework.yarn.batch.partition.BeanFactoryStepLocator"/>

Spring Hadoop contains a custom job repository implementation which is able to talk back to a remote
instance via custom json protocol.

<bean id="transactionManager" class="org.springframework.batch.support.transaction.ResourcelessTransactionManager"/

>

<bean id="jobRepository" class="org.springframework.yarn.batch.repository.RemoteJobRepositoryFactoryBean">

 <property name="transactionManager" ref="transactionManager"/>

 <property name="appmasterScOperations" ref="yarnAmserviceClient"/>

</bean>

<bean id="jobExplorer" class="org.springframework.yarn.batch.repository.RemoteJobExplorerFactoryBean">

 <property name="repositoryFactory" ref="&jobRepository" />

</bean>

Finally we define a Container understanding how to work with a remote steps.

<bean id="yarnContainer" class="org.springframework.yarn.batch.container.DefaultBatchYarnContainer">

 <property name="stepLocator" ref="stepLocator"/>

 <property name="jobExplorer" ref="jobExplorer"/>

 <property name="integrationServiceClient" ref="yarnAmserviceClient"/>

</bean>

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 81

12.13 Using Spring Boot Application Model

We have additional support for leveraging Spring Boot when creating applications using Spring YARN.
All dependencies for this exists in a sub-module named spring-yarn-boot which itself depends on
Spring Boot.

Spring Boot extensions in Spring YARN are used to ease following issues:

• Create a clear model how application is built, packaged and run on Hadoop YARN.

• Automatically configure components depending whether we are on Client, Appmaster or Container.

• Create an easy to use externalized configuration model based on Boot’s ConfigurationProperties.

Before we get into details let’s go through how simple it is to create and deploy a custom application to
a Hadoop cluster. Notice that there are no need to use XML.

@Configuration

@EnableAutoConfiguration

public class ContainerApplication {

 public static void main(String[] args) {

 SpringApplication.run(ContainerApplication.class, args);

 }

 @Bean

 public HelloPojo helloPojo() {

 return new HelloPojo();

 }

}

In above ContainerApplication, notice how we added @Configuration in a class level itself and @Bean
for a helloPojo() method.

@YarnComponent

public class HelloPojo {

 private static final Log log = LogFactory.getLog(HelloPojo.class);

 @Autowired

 private Configuration configuration;

 @OnContainerStart

 public void publicVoidNoArgsMethod() {

 log.info("Hello from HelloPojo");

 log.info("About to list from hdfs root content");

 FsShell shell = new FsShell(configuration);

 for (FileStatus s : shell.ls(false, "/")) {

 log.info(s);

 }

 }

}

HelloPojo class is a simple POJO in a sense that it doesn’t extend any Spring YARN base classes.
What we did in this class:

• We’ve added a class level@YarnComponent annotation.

• We’ve added a method level @OnContainerStart annotation.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 82

• We’ve @Autowired a Hadoop’s Configuration class.

To demonstrate that we actually have some real functionality in this class, we simply use Spring
Hadoop’s FsShell to list entries from a root of a HDFS file system. For this we need to have access to
Hadoop’s Configuration which is prepared for you so that you can just autowire it.

@EnableAutoConfiguration

public class ClientApplication {

 public static void main(String[] args) {

 SpringApplication.run(ClientApplication.class, args)

 .getBean(YarnClient.class)

 .submitApplication();

 }

}

• @EnableAutoConfiguration tells Spring Boot to start adding beans based on classpath setting, other
beans, and various property settings.

• Specific auto-configuration for Spring YARN components takes place since Spring YARN is on the
classpath.

The main() method uses Spring Boot’s SpringApplication.run() method to launch
an application. From there we simply request a bean of type YarnClient and execute its
submitApplication() method. What happens next depends on application configuration, which we
go through later in this document.

@EnableAutoConfiguration

public class AppmasterApplication {

 public static void main(String[] args) {

 SpringApplication.run(AppmasterApplication.class, args);

 }

}

Application class for YarnAppmaster looks even simpler than what we just did for ClientApplication.
Again the main() method uses Spring Boot’s SpringApplication.run() method to launch an
application.

In real life, you most likely need to start adding more custom functionality to your application component
and you’d do that by start adding more beans. To do that you need to define a Spring @Configuration
or @ComponentScan. AppmasterApplication would then act as your main starting point to define more
custom functionality.

spring:

 hadoop:

 fsUri: hdfs://localhost:8020

 resourceManagerHost: localhost

 yarn:

 appName: yarn-boot-simple

 applicationDir: /app/yarn-boot-simple/

 client:

 files:

 - "file:build/libs/yarn-boot-simple-container-0.1.0.jar"

 - "file:build/libs/yarn-boot-simple-appmaster-0.1.0.jar"

 launchcontext:

 archiveFile: yarn-boot-simple-appmaster-0.1.0.jar

 appmaster:

 containerCount: 1

 launchcontext:

 archiveFile: yarn-boot-simple-container-0.1.0.jar

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 83

Final part for your application is its runtime configuration which glues all the components together
which then can be called as a Spring YARN application. This configuration act as source for Spring
Boot’s @ConfigurationProperties and contains relevant configuration properties which cannot be auto-
discovered or otherwise needs to have an option to be overwritten by an end user.

You can then write your own defaults for your own environment. Because these
@ConfigurationProperties are resolved at runtime by Spring Boot, you even have an easy option to
overwrite these properties either by using command-line options or provide additional configuration
property files.

Auto Configuration

Spring Boot is heavily influenced by auto-configuration trying to predict what user wants to do. These
decisions are based on configuration properties, what’s currently available from a classpath and
generally everything what auto-configurers are able to see.

Auto-configuration is able to see if it’s currently running on a YARN cluster and can also differentiate
between YarnContainer and YarnAppmaster. Parts of the auto-configuration which cannot be
automatically detected are guarded by a flags in configuration properties which then allows end-user to
either enable or disable these functionalities.

Application Files

As we already mentioned Spring Boot creates a clear model how you would work with your application
files. Most likely what you need in your application is jar or zip file(s) having needed application code
and optional configuration properties to customize the application logic. Customization via an external
properties files makes it easier to change application functionality and reduce a need to hard-code
application logic.

Running an application on YARN needs an instance of YarnAppmaster and instances of
_YarnContainer_s. Both of these containers will need a set of files and instructions how to execute a
container. Based on auto-configuration and configuration properties we will make few assumptions how
a container is executed.

We are fundamentally supporting three different type of combinations:

• If a container main archive file is a jar file we expect it to be packaged with Boot and be self container
executable jar archive.

• If a container main archive is a zip file we expect it to be packages with Boot. In this case we use a
special runner which knows how to run this exploded archive.

• User defines a main class to be run and everything this class will need is already setup.

More detailed functionality can be found from a below sections; the section called “Application
Classpath”, the section called “Container Runners” and the section called “Configuration Properties”.

Application Classpath

Let’s go through as an examples how a classpath is configured on different use cases.

Simple Executable Jar

Running a container using an executable jar archive is the most simple scenario due to classpath
limitation imposed by a JVM. Everything needed for the classpath needs to be inside the archive itself.
Boot plugins for maven and gradle will greatly help to package all library dependencies into this archive.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 84

spring:

 yarn:

 client:

 launchcontext:

 archiveFile: yarn-boot-appmaster-0.1.0.jar

 appmaster:

 launchcontext:

 archiveFile: yarn-boot-container-0.1.0.jar

Simple Zip Archive

Using a zip archive is basically needed in two use cases. In first case you want to re-use existing libraries
in YARN cluster for your classpath. In second case you want to add custom classpath entries from an
exploded zip archive.

spring:

 yarn:

 siteYarnAppClasspath: "/path/to/hadoop/libs/*"

 appmaster:

 launchcontext:

 useYarnAppClasspath: true

 archiveFile: yarn-boot-container-0.1.0.zip

In above example you can have a zip archive which doesn’t bundle all dependant Hadoop YARN
libraries. Default classpath entries are then resolved from siteYarnAppClasspath property.

spring:

 yarn:

 appmaster:

 launchcontext:

 archiveFile: yarn-boot-container-0.1.0.zip

 containerAppClasspath:

 - "./yarn-boot-container-0.1.0.zip/config"

 - "./yarn-boot-container-0.1.0.zip/lib"

In above example you needed to use custom classpath entries from an exploded zip archive.

Container Runners

Using a propertys spring.yarn.client.launchcontext.archiveFile and
spring.yarn.appmaster.launchcontext.archiveFile respectively, will indicate that
container is run based on an archive file and Boot runners are used. These runner classes are either
used manually when constructing an actual raw command for container or internally within an executable
jar archive.

However there are times when you may need to work on much lower level. Maybe you are having
trouble using an executable jar archive or Boot runner is not enough what you want to do. For this
use case you would use propertys spring.yarn.client.launchcontext.runnerClass and
spring.yarn.appmaster.launchcontext.runnerClass.

Custom Runner

spring:

 yarn:

 appmaster:

 launchcontext:

 runnerClass: com.example.MyMainClazz

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 85

Resource Localizing

Order for containers to use application files, a YARN resource localization process needs to do its tasks.
We have a few configuration properties which are used to determine which files are actually localized
into container’s working directory.

spring:

 yarn:

 client:

 localizer:

 patterns:

 - "*appmaster*jar"

 - "*appmaster*zip"

 zipPattern: "*zip"

 propertiesNames: [application]

 propertiesSuffixes: [properties, yml]

 appmaster:

 localizer:

 patterns:

 - "*container*jar"

 - "*container*zip"

 zipPattern: "*zip"

 propertiesNames: [application]

 propertiesSuffixes: [properties, yml]

Above is an example which equals a default functionality when localized resources are chosen. For
example for a container we automatically choose all files matching a simple patterns *container*jar
and *container*zip. Additionally we choose configuration properties files matching names
application.properties and application.yml. Property zipPattern is used as an pattern to
instruct YARN resource localizer to triet file as an archive to be automatically exploded.

If for some reason the default functionality and how it can be configured via configuration properties is not
suiteable, one can define a custom bean to change how things work. Interface LocalResourcesSelector
is used to find localized resources.

public interface LocalResourcesSelector {

 List<Entry> select(String dir);

}

Below you see a logic how a default BootLocalResourcesSelector is created during the auto-
configuration. You would then create a custom implementation and create it as a bean in your
Configuration class. You would not need to use any Conditionals but not how in auto-configuration we
use @ConditionalOnMissingBean to check if user have already created his own implementation.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 86

@Configuration

@EnableConfigurationProperties({ SpringYarnAppmasterLocalizerProperties.class })

public static class LocalResourcesSelectorConfig {

 @Autowired

 private SpringYarnAppmasterLocalizerProperties syalp;

 @Bean

 @ConditionalOnMissingBean(LocalResourcesSelector.class)

 public LocalResourcesSelector localResourcesSelector() {

 BootLocalResourcesSelector selector = new BootLocalResourcesSelector(Mode.CONTAINER);

 if (StringUtils.hasText(syalp.getZipPattern())) {

 selector.setZipArchivePattern(syalp.getZipPattern());

 }

 if (syalp.getPropertiesNames() != null) {

 selector.setPropertiesNames(syalp.getPropertiesNames());

 }

 if (syalp.getPropertiesSuffixes() != null) {

 selector.setPropertiesSuffixes(syalp.getPropertiesSuffixes());

 }

 selector.addPatterns(syalp.getPatterns());

 return selector;

 }

}

Your configuration could then look like:

@EnableAutoConfiguration

public class AppmasterApplication {

 @Bean

 public LocalResourcesSelector localResourcesSelector() {

 return MyLocalResourcesSelector();

 }

 public static void main(String[] args) {

 SpringApplication.run(AppmasterApplication.class, args);

 }

}

Container as POJO

In Boot application model if YarnContainer is not explicitly defined it defaults to DefaultYarnContainer
which expects to find a POJO created as a bean having a specific annotations instructing the actual
functionality.

@YarnComponent is a stereotype annotation itself having a Spring’s @Component defined in it. This is
automatically marking a class to be a candidate having a @YarnComponent functionality.

Within a POJO class we can use @OnContainerStart annotation to mark a public method to act as
an activator for a method endpoint.

Note

Return values from a @OnContainerStart will participate to a container exit value. If you omit
these methods from a @YarnComponent, no return values are present thus making container
not to exist automatically. This is useful in cases where you just want to have a mvc endpoints
interacting with other containers. Otherwise you need to use dummy thread sleep or return a
Future value.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 87

@OnContainerStart

public void publicVoidNoArgsMethod() {

}

Returning type of int participates in a YarnContainer exit value.

@OnContainerStart

public int publicIntNoArgsMethod() {

 return 0;

}

Returning type of boolean participates in a YarnContainer exit value where true would mean complete
and false failed container.

@OnContainerStart

public boolean publicBooleanNoArgsMethod() {

 return true;

}

Returning type of String participates in a YarnContainer exit value by matching ExitStatus and getting
exit value from ExitCodeMapper.

@OnContainerStart

public String publicStringNoArgsMethod() {

 return "COMPLETE";

}

If method throws any Exception YarnContainer is marked as failed.

@OnContainerStart

public void publicThrowsException() {

 throw new RuntimeExection("My Error");

}

Method parameter can be bound with @YarnEnvironments to get access to current YarnContainer
environment variables.

@OnContainerStart

public void publicVoidEnvironmentsArgsMethod(@YarnEnvironments Map<String,String> env) {

}

Method parameter can be bound with @YarnEnvironment to get access to specific YarnContainer
environment variable.

@OnContainerStart

public void publicVoidEnvironmentArgsMethod(@YarnEnvironment("key") String value) {

}

Method parameter can be bound with @YarnParameters to get access to current YarnContainer
arguments.

@OnContainerStart

public void publicVoidParametersArgsMethod(@YarnParameters Properties properties) {

}

Method parameter can be bound with @YarnParameter to get access to a specific YarnContainer
arguments.

@OnContainerStart

public void publicVoidParameterArgsMethod(@YarnParameter("key") String value) {

}

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 88

It is possible to use multiple @YarnComponent classes and @OnContainerStart methods but a
care must be taken in a way execution happens. In default these methods are executed synchronously
and ordering is pretty much random. Few tricks can be used to overcome synchronous execution and
ordering.

We support `@Order' annotation both on class and method levels. If `@Order' is defined on both the
one from method takes a presense.

@YarnComponent

@Order(1)

static class Bean {

 @OnContainerStart

 @Order(10)

 public void method1() {

 }

 @OnContainerStart

 @Order(11)

 public void method2() {

 }

}

@OnContainerStart also supports return values of Future or ListenableFuture. This is a
convenient way to do something asynchronously because future is returned immediately and execution
goes to a next method and later waits future values to be set.

@YarnComponent

static class Bean {

 @OnContainerStart

 Future<Integer> void method1() {

 return new AsyncResult<Integer>(1);

 }

 @OnContainerStart

 Future<Integer> void method1() {

 return new AsyncResult<Integer>(2);

 }

}

Below is an example to use more sophisticated functionality with a ListenableFuture and scheduling
work within a @OnContainerStart method. In this case YarnContainerSupport class simply
provides an easy access to a TaskScheduler.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 89

@YarnComponent

static class Bean extends YarnContainerSupport {

 @OnContainerStart

 public ListenableFuture<?> method() throws Exception {

 final MyFuture future = new MyFuture();

 getTaskScheduler().schedule(new FutureTask<Void>(new Runnable() {

 @Override

 public void run() {

 try {

 while (!future.interrupted) {

 // do something

 }

 } catch (Exception e) {

 // bail out from error

 future.set(false);

 }

 }

 }, null), new Date());

 return future;

 }

 static class MyFuture extends SettableListenableFuture<Boolean> {

 boolean interrupted = false;

 @Override

 protected void interruptTask() {

 interrupted = true;

 }

 }

}

Configuration Properties

Configuration properties can be defined using various methods. See a Spring Boot dodumentation
for details. More about configuration properties for spring.hadoop namespace can be found from
Section 3.4, “Boot Support”.

spring.yarn configuration properties

Namespace spring.yarn supports following properties;· applicationDir, applicationBaseDir,
applicationVersion, stagingDir, appName, appType, siteYarnAppClasspath and
siteMapreduceAppClasspath.

spring.yarn.applicationDir

Description
An application home directory in hdfs. If client copies files into a hdfs during an application
submission, files will end up in this directory. If this property is omitted, a staging directory will
be used instead.

Required
No

Type
String

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 90

Default Value
null

spring.yarn.applicationBaseDir

Description
An applications base directory where build-in application deployment functionality would create
a new application instance. For a normal application submit operation, this is not needed.

Required
No

Type
String

Default Value
null

spring.yarn.applicationVersion

Description
An application version identifier used together with applicationBaseDir in deployment
scenarios where applicationDir cannot be hard coded.

Required
No

Type
String

Default Value
null

spring.yarn.stagingDir

Description
A global staging base directory in hdfs.

Required
No

Type
String

Default Value
/spring/staging

spring.yarn.appName

Description
Defines a registered application name visible from a YARN resource manager.

Required
No

Type
String

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 91

Default Value
null

spring.yarn.appType

Description
Defines a registered application type used in YARN resource manager.

Required
No

Type
String

Default Value
YARN

spring.yarn.siteYarnAppClasspath

Description
Defines a default base YARN application classpath entries.

Required
No

Type
String

Default Value
null

spring.yarn.siteMapreduceAppClasspath

Description
Defines a default base MR application classpath entries.

Required
No

Type
String

Default Value
null

spring.yarn.appmaster configuration properties

Namespace spring.yarn.appmaster supports following properties;· appmasterClass,
containerCount and keepContextAlive.

spring.yarn.appmaster.appmasterClass

Description
Fully qualified classname which auto-configuration can automatically instantiate as a custom
application master.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 92

Required
No

Type
Class

Default Value
null

spring.yarn.appmaster.containerCount

Description
Property which is automatically kept in configuration as a hint which an application master can
choose to use when determing how many containers should be launched.

Required
No

Type
Integer

Default Value
1

spring.yarn.appmaster.keepContextAlive

Description
Setting for an application master runner to stop main thread to wait a latch before continuing.
This is needed in cases where main thread needs to wait event from other threads to be able
to exit.

Required
No

Type
Boolean

Default Value
true

spring.yarn.appmaster.launchcontext configuration properties

Namespace spring.yarn.appmaster.launchcontext supports following properties;· archiveFile,
runnerClass, options, arguments, containerAppClasspath, pathSeparator, includeBaseDirectory,
useYarnAppClasspath, useMapreduceAppClasspath, includeSystemEnv and locality.

spring.yarn.appmaster.launchcontext.archiveFile

Description
Indicates that a container main file is treated as executable jar or exploded zip.

Required
No

Type
String

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 93

Default Value
null

spring.yarn.appmaster.launchcontext.runnerClass

Description
Indicates a fully qualified class name for a container runner.

Required
No

Type
Class

Default Value
null

spring.yarn.appmaster.launchcontext.options

Description
JVM system options.

Required
No

Type
List

Default Value
null

spring.yarn.appmaster.launchcontext.arguments

Description
JVM system options.

Required
No

Type
Map

Default Value
null

spring.yarn.appmaster.launchcontext.containerAppClasspath

Description
Additional classpath entries.

Required
No

Type
List

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 94

Default Value
null

spring.yarn.appmaster.launchcontext.pathSeparator

Description
Separator in a classpath.

Required
No

Type
String

Default Value
null

spring.yarn.appmaster.launchcontext.includeBaseDirectory

Description
If base directory should be added in a classpath.

Required
No

Type
Boolean

Default Value
true

spring.yarn.appmaster.launchcontext.useYarnAppClasspath

Description
If default yarn application classpath should be added.

Required
No

Type
Boolean

Default Value
true

spring.yarn.appmaster.launchcontext.useMapreduceAppClasspath

Description
If default mr application classpath should be added.

Required
No

Type
Boolean

Default Value
true

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 95

spring.yarn.appmaster.launchcontext.includeSystemEnv

Description
If system environment variables are added to a container environment.

Required
No

Type
Boolean

Default Value
true

spring.yarn.appmaster.launchcontext.locality

Description
If set to true indicates that resources are not relaxed.

Required
No

Type
Boolean

Default Value
false

spring.yarn.appmaster.localizer configuration properties

Namespace spring.yarn.appmaster.localizer supports following properties;· patterns,
zipPattern, propertiesNames and propertiesSuffixes.

spring.yarn.appmaster.localizer.patterns

Description
A simple patterns to choose localized files.

Required
No

Type
List

Default Value
null

spring.yarn.appmaster.localizer.zipPattern

Description
A simple pattern to mark a file as archive to be exploded.

Required
No

Type
String

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 96

Default Value
null

spring.yarn.appmaster.localizer.propertiesNames

Description
Base name of a configuration files.

Required
No

Type
List

Default Value
null

spring.yarn.appmaster.localizer.propertiesSuffixes

Description
Suffixes for a configuration files.

Required
No

Type
List

Default Value
null

spring.yarn.appmaster.resource configuration properties

Namespace spring.yarn.appmaster.resource supports following properties;· priority, memory
and virtualCores.

spring.yarn.appmaster.resource.priority

Description
Container priority.

Required
No

Type
String

Default Value
null

spring.yarn.appmaster.resource.memory

Description
Container memory allocation.

Required
No

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 97

Type
String

Default Value
null

spring.yarn.appmaster.resource.virtualCores

Description
Container cpu allocation.

Required
No

Type
String

Default Value
null

spring.yarn.appmaster.containercluster configuration properties

Namespace spring.yarn.appmaster.containercluster supports following properties;·
clusters.

spring.yarn.appmaster.containercluster.clusters

Description
Definitions of container clusters.

Required
No

Type
Map

Default Value
null

spring.yarn.appmaster.containercluster.clusters.<name> configuration properties

Namespace spring.yarn.appmaster.containercluster.clusters.<name> supports
following properties;· resource, launchcontext, localizer and projection.

spring.yarn.appmaster.containercluster.clusters.<name>.resource

Description
Same as spring.yarn.appmaster.resource config property.

Required
No

Type
Config

Default Value
null

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 98

spring.yarn.appmaster.containercluster.clusters.<name>.launchcontext

Description
Same as spring.yarn.appmaster.launchcontext config property.

Required
No

Type
Config

Default Value
null

spring.yarn.appmaster.containercluster.clusters.<name>.localizer

Description
Same as spring.yarn.appmaster.localizer config property.

Required
No

Type
Config

Default Value
null

spring.yarn.appmaster.containercluster.clusters.<name>.projection

Description
Config collection for a projection settings.

Required
No

Type
Config

Default Value
null

spring.yarn.appmaster.containercluster.clusters.<name>.projection

configuration properties

Namespace spring.yarn.appmaster.containercluster.clusters.<name>.projection
supports following properties;· type and data.

spring.yarn.appmaster.containercluster.clusters.<name>.projection.type

Description
Type of a projection to use. default is supported on default or any other projection added
via a custom factory.

Required
No

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 99

Type
String

Default Value
null

spring.yarn.appmaster.containercluster.clusters.<name>.projection.data

Description
Map of config keys and values. any takes an integer, hosts as name to integer map, racks
as name to integer map, properties as a generic map values.

Required
No

Type
Map

Default Value
null

spring.yarn.endpoints.containercluster configuration properties

Namespace spring.yarn.endpoints.containercluster supports following properties;·
enabled.

spring.yarn.endpoints.containercluster.enabled

Description
Enabling endpoint MVC REST API controlling container clusters.

Required
No

Type
Boolean

Default Value
false

spring.yarn.endpoints.containerregister configuration properties

Namespace spring.yarn.endpoints.containerregister supports following properties;·
enabled.

spring.yarn.endpoints.containerregister.enabled

Description
Enabling container registering endpoint. This is needed if graceful application shutdown is
needed.

Required
No

Type
Boolean

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 100

Default Value
false

spring.yarn.client configuration properties

Namespace spring.yarn.client supports following properties;· files, priority, queue, clientClass
and startup.action.

spring.yarn.client.files

Description
Files to copy into hdfs during application submission.

Required
No

Type
List

Default Value
null

spring.yarn.client.priority

Description
Application priority.

Required
No

Type
Integer

Default Value
null

spring.yarn.client.queue

Description
Application submission queue.

Required
No

Type
String

Default Value
null

spring.yarn.client.clientClass

Description
Fully qualified classname which auto-configuration can automatically instantiate as a custom
client.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 101

Required
No

Type
Class

Default Value
null

spring.yarn.client.startup.action

Description
Default action to perform on YarnClient. Currently only one action named submit is supported.
This action is simply calling submitApplication method on YarnClient.

Required
No

Type
String

Default Value
null

spring.yarn.client.launchcontext configuration properties

Namespace spring.yarn.client.launchcontext supports following properties;· archiveFile,
runnerClass, options, arguments, containerAppClasspath, pathSeparator, includeBaseDirectory,
useYarnAppClasspath, useMapreduceAppClasspath and includeSystemEnv.

spring.yarn.client.launchcontext.archiveFile

Description
Indicates that a container main file is treated as executable jar or exploded zip.

Required
No

Type
String

Default Value
null

spring.yarn.client.launchcontext.runnerClass

Description
Indicates a fully qualified class name for a container runner.

Required
No

Type
Class

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 102

Default Value
null

spring.yarn.client.launchcontext.options

Description
JVM system options.

Required
No

Type
List

Default Value
null

spring.yarn.client.launchcontext.arguments

Description
JVM system options.

Required
No

Type
Map

Default Value
null

spring.yarn.client.launchcontext.containerAppClasspath

Description
Additional classpath entries.

Required
No

Type
List

Default Value
null

spring.yarn.client.launchcontext.pathSeparator

Description
Separator in a classpath.

Required
No

Type
String

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 103

Default Value
null

spring.yarn.client.launchcontext.includeBaseDirectory

Description
If base directory should be added in a classpath.

Required
No

Type
Boolean

Default Value
true

spring.yarn.client.launchcontext.useYarnAppClasspath

Description
If default yarn application classpath should be added.

Required
No

Type
Boolean

Default Value
true

spring.yarn.client.launchcontext.useMapreduceAppClasspath

Description
If default mr application classpath should be added.

Required
No

Type
Boolean

Default Value
true

spring.yarn.client.launchcontext.includeSystemEnv

Description
If system environment variables are added to a container environment.

Required
No

Type
Boolean

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 104

Default Value
true

spring.yarn.client.localizer configuration properties

Namespace spring.yarn.appmaster.localizer supports following properties;· patterns,
zipPattern, propertiesNames and propertiesSuffixes.

spring.yarn.client.localizer.patterns

Description
A simple patterns to choose localized files.

Required
No

Type
List

Default Value
null

spring.yarn.client.localizer.zipPattern

Description
A simple pattern to mark a file as archive to be exploded.

Required
No

Type
String

Default Value
null

spring.yarn.client.localizer.propertiesNames

Description
Base name of a configuration files.

Required
No

Type
List

Default Value
null

spring.yarn.client.localizer.propertiesSuffixes

Description
Suffixes for a configuration files.

Required
No

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 105

Type
List

Default Value
null

spring.yarn.client.resource configuration properties

Namespace spring.yarn.client.resource supports following properties;· memory and
virtualCores.

spring.yarn.client.resource.memory

Description
Container memory allocation.

Required
No

Type
String

Default Value
null

spring.yarn.client.resource.virtualCores

Description
Container cpu allocation.

Required
No

Type
String

Default Value
null

spring.yarn.container configuration properties

Namespace spring.yarn.container supports following properties;· keepContextAlive and
containerClass.

spring.yarn.container.keepContextAlive

Description
Setting for an application container runner to stop main thread to wait a latch before continuing.
This is needed in cases where main thread needs to wait event from other threads to be able
to exit.

Required
No

Type
Boolean

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 106

Default Value
true

spring.yarn.container.containerClass

Description
Fully qualified classname which auto-configuration can automatically instantiate as a custom
container.

Required
No

Type
Class

Default Value
null

spring.yarn.batch configuration properties

Namespace spring.yarn.batch supports following properties;· name, enabled and jobs.

spring.yarn.batch.name

Description
Comma-delimited list of search patterns to find jobs to run defined either locally in application
context or in job registry.

Required
No

Type
String

Default Value
null

spring.yarn.batch.enabled

Description
Indicates if batch processing on yarn is enabled.

Required
No

Type
Boolean

Default Value
false

spring.yarn.batch.jobs

Description
Configures a list of individual configuration properties for jobs.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 107

Required
No

Type
List

Default Value
null

spring.yarn.batch.jobs configuration properties

Namespace spring.yarn.batch.jobs supports following properties;· name, enabled, next,
failNext, restart, failRestart and parameters.

spring.yarn.batch.jobs.name

Description
Name of a job to configure.

Required
No

Type
String

Default Value
null

spring.yarn.batch.jobs.enabled

Description
Indicates if job is enabled.

Required
No

Type
Boolean

Default Value
false

spring.yarn.batch.jobs.next

Description
Indicates if job parameters incrementer is used to prepare a job for next run.

Required
No

Type
Boolean

Default Value
false

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 108

spring.yarn.batch.jobs.failNext

Description
Indicates if job execution should fail if job cannot be prepared for next execution.

Required
No

Type
Boolean

Default Value
false

spring.yarn.batch.jobs.restart

Description
Indicates of job should be restarted.

Required
No

Type
Boolean

Default Value
false

spring.yarn.batch.jobs.failRestart

Description
Indicates if job execution should fail if job cannot be restarted.

Required
No

Type
Boolean

Default Value
false

spring.yarn.batch.jobs.parameters

Description
Defines a Map of additional job parameters. Keys and values are in normal format supported
by Batch.

Required
No

Type
Map

Default Value
null

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 109

Container Groups

Hadoop YARN is a simple resource scheduler and thus doesn’t provide any higher level functionality for
controlling containers for failures or grouping. Currently these type of features need to be implemented
atop of YARN using a third party components such as Spring YARN. Containers controlled by YARN
are handled as one big pool of resources and any functionality for grouping containers needs to be
implemented within a custom application master. Spring YARN provides components which can be used
to control containers as groups.

Container Group is a logical representation of containers managed by a single YARN application. In
a typical YARN application a container which is allocated and launched shares a same configuration
for Resource(memory, cpu), Localized Files(application files) and Launch Context(process command).
Grouping brings a separate configuration for each group which allows to run different logical applications
within a one application master. Logical application simply mean that different containers are meant to
do totally different things. A simple use case for such things is an application which needs to run two
different types of containers, admin and worker nodes respectively.

YARN itself is not meant to be a task scheduler meaning you can’t request a container for specific task
which would then run on a Hadoop cluster. In layman’s terms this simply mean that you can’t associate
a container allocation request for response received from a resource manager. This decision was made
to keep a resource manager relatively light and spawn all the task activities into an application master.
All the allocated containers are requested and received from YARN asynchronously thus making a one
big pool of resources. All the task activities needs to be build using this pool. This brings a new concept
of doing a container projection from a single allocated pool of containers.

Application Master which is meant to be used with container groups need to implement
interface ContainerClusterAppmaster shown below. Currently one built-in implementation
org.springframework.yarn.am.cluster.ManagedContainerClusterAppmaster exists.

public interface ContainerClusterAppmaster extends YarnAppmaster {

 Map<String, ContainerCluster> getContainerClusters();

 ContainerCluster createContainerCluster(String clusterId, ProjectionData projection);

 ContainerCluster createContainerCluster(String clusterId,

 String clusterDef, ProjectionData projection, Map<String, Object> extraProperties);

 void startContainerCluster(String id);

 void stopContainerCluster(String id);

 void destroyContainerCluster(String id);

 void modifyContainerCluster(String id, ProjectionData data);

}

Order to use default implementation ManagedContainerClusterAppmaster, configure
it using a spring.yarn.appmaster.appmasterClass configuration key. If you
plan to control this container groups externally via internal rest api, set
spring.yarn.endpoints.containercluster.enabled to true.

spring:

 yarn:

 appmaster:

 appmasterClass: org.springframework.yarn.am.cluster.ManagedContainerClusterAppmaster

 endpoints:

 containercluster:

 enabled: true

Grid Projection

Container cluster is always associated with a grid projection. This allows de-coupling of cluster
configuration and its grid projection. Cluster or group is not directly aware of how containers are chosen.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 110

public interface GridProjection {

 boolean acceptMember(GridMember member);

 GridMember removeMember(GridMember member);

 Collection<GridMember> getMembers();

 SatisfyStateData getSatisfyState();

 void setProjectionData(ProjectionData data);

 ProjectionData getProjectionData();

}

GridProjection has its projection configuration in ProjectionData. SatisfyStateData defines a data object
to satisfy a grid projection state.

Projections are created via GridProjectionFactory beans. Default factory named as
gridProjectionFactory currently handles one different type of projection named
DefaultGridProjection which is registered with name default. You can replace this factory by defining
a bean with a same name or introduce more factories just by defining your own factory implementations.

public interface GridProjectionFactory {

 GridProjection getGridProjection(ProjectionData projectionData);

 Set<String> getRegisteredProjectionTypes();

}

Registered types needs to be mapped into projections itself created by a factory. For example default
implementation does mapping of type default.

Group Configuration

Typical configuration is shown below:

spring:

 hadoop:

 fsUri: hdfs://node1:8020

 resourceManagerHost: node1

 yarn:

 appType: BOOT

 appName: gs-yarn-uimodel

 applicationBaseDir: /app/

 applicationDir: /app/gs-yarn-uimodel/

 appmaster:

 appmasterClass: org.springframework.yarn.am.cluster.ManagedContainerClusterAppmaster

 keepContextAlive: true

 containercluster:

 clusters:

 cluster1:

 projection:

 type: default

 data:

 any: 1

 hosts:

 node3: 1

 node4: 1

 racks:

 rack1: 1

 rack2: 1

 resource:

 priority: 1

 memory: 64

 virtualCores: 1

 launchcontext:

 locality: true

 archiveFile: gs-yarn-uimodel-cont1-0.1.0.jar

 localizer:

 patterns:

 - "*cont1*jar"

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 111

These container cluster configurations will also work as a blueprint when creating groups manually on
demand. If projectionType is defined in a configuration it indicates that a group should be created
automatically.

Container Restart

Currently a simple support for automatically re-starting a failed container is implemented by a fact that
if container goes away group projection is no longer satisfied and Spring YARN will try to allocate and
start new containers as long as projection is satisfied again.

REST API

While grouping configuration can be static and solely be what’s defined in a yml file, it would be a
nice feature if you could control the runtime behaviour of these groups externally. REST API provides
methods to create groups with a specific projects, start group, stop group and modify group projection.

Boot based REST API endpoint need to be explicitly enabled by using a configuration shown below:

spring:

 yarn:

 endpoints:

 containercluster:

 enabled: true

GET /yarn_containercluster
Returns info about existing clusters

Response Class

ContainerClusters {

 clusters (array[string])

}

Response Schema

{

 "clusters":[

 "<clusterId>"

]

}

POST /yarn_containercluster
Create a new container cluster

Parameters

Parameter Description Parameter
Type

Data Type

body Cluster to be
created

body Request Class.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 112

Parameter Description Parameter
Type

Data Type

Cluster {

 clusterId (string),

 clusterDef (string),

 projection (string),

 projectionData (ProjectionData),

 extraProperties (map<string,object>)

}

ProjectionData {

 type (string),

 priority (integer),

 any (integer, optional),

 hosts (map, optional),

 racks (map, optional)

}

Request Schema.

{

 "clusterId":"",

 "clusterDef":"",

 "projection":"",

 "projectionData":{

 "any":0,

 "hosts":{

 "<hostname>":0

 },

 "racks":{

 "<rackname>":0

 },

 "extraProperties":{

 }

 }

}

Response Messages

HTTP Status
Code

Reason Response Model

405 Invalid input

GET /yarn_containercluster/{clusterId}
Returns info about a container cluster.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 113

Response Class

ContainerCluster {

 id (string): unique identifier for a cluster,

 gridProjection (GridProjection),

 containerClusterState (ContainerClusterState)

}

GridProjection {

 members (array[Member]),

 projectionData (ProjectionData),

 satisfyState (SatisfyState)

}

Member {

 id (string): unique identifier for a member,

}

ProjectionData {

 type (string),

 priority (integer),

 any (integer, optional),

 hosts (map, optional),

 racks (map, optional)

}

SatisfyState {

 removeData (array(string)),

 allocateData (AllocateData)

}

AllocateData {

 any (integer, optional),

 hosts (map, optional),

 racks (map, optional)

}

ContainerClusterState {

 clusterState (string)

}

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 114

Response Schema

{

 "id":"",

 "gridProjection":{

 "members":[

 {

 "id":""

 }

],

 "projectionData":{

 "type":"",

 "priority":0,

 "any":0,

 "hosts":{

 },

 "racks":{

 }

 },

 "satisfyState":{

 "removeData":[

],

 "allocateData":{

 "any":0,

 "hosts":{

 },

 "racks":{

 }

 }

 }

 },

 "containerClusterState":{

 "clusterState":""

 }

}

Parameters

Parameter Description Parameter
Type

Data Type

clusterId ID of a
cluster needs
to be fetched

path string

Response Messages

HTTP Status
Code

Reason Response Model

404 No such cluster

PUT /yarn_containercluster/{clusterId}
Modify a container cluster state.

Parameters

Parameter Description Parameter
Type

Data Type

clusterId ID of a
cluster needs
to be fetched

path string

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 115

Parameter Description Parameter
Type

Data Type

body Cluster
state to be
modified

body Request Class.

ContainerClusterModifyRequest {

 action (string)

}

Request Schema.

{

 "action":""

}

Response Messages

HTTP Status
Code

Reason Response Model

404 No such cluster

404 No such action

PATCH /yarn_containercluster/{clusterId}
Modify a container cluster projection.

Parameters

Parameter Description Parameter
Type

Data Type

clusterId ID of a
cluster needs
to be fetched

path string

body Cluster to be
created

body Request Class.

Cluster {

 clusterId (string),

 clusterDef (string),

 projection (string),

 projectionData (ProjectionData),

 extraProperties (map<string,object>)

}

ProjectionData {

 type (string),

 priority (integer),

 any (integer, optional),

 hosts (map, optional),

 racks (map, optional)

}

Request Schema.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 116

Parameter Description Parameter
Type

Data Type

{

 "clusterId":"",

 "projection":"",

 "projectionData":{

 "any":0,

 "hosts":{

 "<hostname>":0

 },

 "racks":{

 "<rackname>":0

 }

 }

}

Response Messages

HTTP Status
Code

Reason Response Model

404 No such cluster

DELETE /yarn_containercluster/{clusterId}
Destroy a container cluster.

Parameters

Parameter Description Parameter
Type

Data Type

clusterId ID of a
cluster needs
to be fetched

path string

Response Messages

HTTP Status
Code

Reason Response Model

404 No such cluster

Controlling Applications

We’ve already talked about how resources are localized into a running container. These resources are
always localized from a HDFS file system which effectively means that the whole process of getting
application files into a newly launched YARN application is a two phase process; firstly files are copied
into HDFS and secondly files are localized from a HDFS.

When application instance is submitted into YARN, there are two ways how these application files can
be handled. First which is the most obvious is to just copy all the necessary files into a known location in
HDFS and then instruct YARN to localize files from there. Second method is to split this into two different
stages, first install application files into HDFS and then submit application from there. At first there seem
to be no difference with these two ways to handle application deployment. However if files are always
copied into HDFS when application is submitted, you need a physical access to those files. This may not

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 117

always be possible so it’s easier if you have a change to prepare these files by first installing application
into HDFS and then just send a submit command to a YARN resource manager.

To ease a process of handling a full application life cycle, few utility classes exist which are meant to
be used with Spring Boot. These classes are considered to be a foundational Boot application classes,
not a ready packaged Boot executable jars. Instead you would use these from your own application
whether that application is a Boot or other Spring based application.

Generic Usage

Internally these applications are executed using a SpringApplicationBuilder and a dedicated Spring
Application Context. This allows to isolate Boot application instance from your current context if you
have one. One fundamental idea in these applications is to make it possible to work with Spring profiles
and Boot configuration properties. If your existing application is already using profiles and configuration
properties, simply launching a new Boot would most likely derive those settings automatically which is
something what you may not want.

AbstractClientApplication which all these built-in applications are based on contains methods to work
with Spring profiles and additional configuration properties.

Let’s go through all this using an example:

Using Configuration Properties

Below sample is pretty much a similar from all other examples except of two settings,
applicationBaseDir and clientClass. Property applicationBaseDir defines where in HDFS
a new app will be installed. DefaultApplicationYarnClient defined using clientClass adds better
functionality to guard against starting app which doesn’t exist or not overwriting existing apps in HDFS.

spring:

 hadoop:

 fsUri: hdfs://localhost:8020

 resourceManagerHost: localhost

 yarn:

 appType: GS

 appName: gs-yarn-appmodel

 applicationBaseDir: /app/

 applicationDir: /app/gs-yarn-appmodel/

 client:

 clientClass: org.springframework.yarn.client.DefaultApplicationYarnClient

 files:

 - "file:build/libs/gs-yarn-appmodel-container-0.1.0.jar"

 - "file:build/libs/gs-yarn-appmodel-appmaster-0.1.0.jar"

 launchcontext:

 archiveFile: gs-yarn-appmodel-appmaster-0.1.0.jar

 appmaster:

 containerCount: 1

 launchcontext:

 archiveFile: gs-yarn-appmodel-container-0.1.0.jar

Using YarnPushApplication

YarnPushApplication is used to push your application into HDFS.

public void doInstall() {

 YarnPushApplication app = new YarnPushApplication();

 app.applicationVersion("version1");

 Properties instanceProperties = new Properties();

 instanceProperties.setProperty("spring.yarn.applicationVersion", "version1");

 app.configFile("application.properties", instanceProperties);

 app.run();

}

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 118

In above example we simply created a YarnPushApplication, set its applicationVersion and
executed a run method. We also instructed YarnPushApplication to write used applicationVersion
into a configuration file named application.properties so that it’d be available to an application itself.

Using YarnSubmitApplication

YarnSubmitApplication is used to submit your application from HDFS into YARN.

public void doSubmit() {

 YarnSubmitApplication app = new YarnSubmitApplication();

 app.applicationVersion("version1");

 ApplicationId applicationId = app.run();

}

In above example we simply created a YarnSubmitApplication, set its applicationVersion and
executed a run method.

Using YarnInfoApplication

YarnInfoApplication is used to query application info from a YARN Resource Manager and HDFS.

public void doListPushed() {

 YarnInfoApplication app = new YarnInfoApplication();

 Properties appProperties = new Properties();

 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.operation", "PUSHED");

 app.appProperties(appProperties);

 String info = app.run();

 System.out.println(info);

}

public void doListSubmitted() {

 YarnInfoApplication app = new YarnInfoApplication();

 Properties appProperties = new Properties();

 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.operation", "SUBMITTED");

 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.verbose", "true");

 appProperties.setProperty("spring.yarn.internal.YarnInfoApplication.type", "GS");

 app.appProperties(appProperties);

 String info = app.run();

 System.out.println(info);

}

In above example we simply created a YarnInfoApplication, and used it to list installed and running
applications. By adding appProperties will make Boot to pick these properties after every other
source of configuration properties but still allows to pass command-line options to override everything
which is a normal way in Boot.

Using YarnKillApplication

YarnKillApplication is used to kill running application instances.

public void doKill() {

 YarnKillApplication app = new YarnKillApplication();

 Properties appProperties = new Properties();

 appProperties.setProperty("spring.yarn.internal.YarnKillApplication.applicationId", "application_1395058039949_0052");

 app.appProperties(appProperties);

 String info = app.run();

 System.out.println(info);

}

In above example we simply created a YarnKillApplication, and used it to send a application kill request
into a YARN resource manager.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 119

Using YarnShutdownApplication

YarnShutdownApplication is used to gracefully shutdown running application instances.

public void doShutdown() {

 YarnShutdownApplication app = new YarnShutdownApplication();

 Properties appProperties = new Properties();

 appProperties.setProperty("spring.yarn.internal.YarnShutdownApplication.applicationId", "application_1395058039949_0052");

 app.appProperties(appProperties);

 String info = app.run();

 System.out.println(info);

}

Shutdown functionality is based on Boot shutdown endpoint which can be used to instruct shutdown of
the running application context and thus shutdown of a whole running application instance. This endpoint
is considered to be a sensitive and thus is disabled by default.

To enable this functionality shutdown endpoint needs to be enabled on both appmaster and containers.
Addition to that a special containerregister needs to be enabled on appmaster for containers to
be able to register itself to appmaster. Below config examples shows howto do this.

for appmaster config.

endpoints:

 shutdown:

 enabled: true

spring:

 yarn:

 endpoints:

 containerregister:

 enabled: true

for container config.

endpoints:

 shutdown:

 enabled: true

Using YarnContainerClusterApplication

YarnContainerClusterApplication is a simple Boot application which knows how to talk with Container
Cluster MVC Endpoint. More information about this see javadocs for commands introduced in below
chapter.

Cli Integration

Due to nature of being a foundational library, Spring YARN doesn’t provide a generic purpose client out
of a box for communicating with your application. Reason for this is that Spring YARN is not a product,
but an application build on top of Spring YARN would be a product which could have its own client.
There is no good way of doing a generic purpose ‘client’ which would suit every needs and anyway user
may want to customize how client works and how his own code is packaged.

We’ve made it as simple as possible to create your own client which can be used to control applications
on YARN and if container clustering is enabled a similar utility classes can be used to control it. Only
thing what is left for the end user to implement is defining which commands should be enabled.

Client facing component spring-yarn-boot-cli contains implementation based on spring-boot-cli which
can be used to build application cli’s. It also container built-in commands which are easy to re-use or
extend.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 120

Example above shows a typical main method to use all built-in commands.

public class ClientApplication extends AbstractCli {

 public static void main(String... args) {

 List<Command> commands = new ArrayList<Command>();

 commands.add(new YarnPushCommand());

 commands.add(new YarnPushedCommand());

 commands.add(new YarnSubmitCommand());

 commands.add(new YarnSubmittedCommand());

 commands.add(new YarnKillCommand());

 commands.add(new YarnShutdownCommand());

 commands.add(new YarnClustersInfoCommand());

 commands.add(new YarnClusterInfoCommand());

 commands.add(new YarnClusterCreateCommand());

 commands.add(new YarnClusterStartCommand());

 commands.add(new YarnClusterStopCommand());

 commands.add(new YarnClusterModifyCommand());

 commands.add(new YarnClusterDestroyCommand());

 ClientApplication app = new ClientApplication();

 app.registerCommands(commands);

 app.registerCommand(new ShellCommand(commands));

 app.doMain(args);

 }

}

Build-in Commands

Built-in commands can be used to either control YARN applications or container clusters. All commands
are under a package org.springframework.yarn.boot.cli.

Push Application

java -jar <jar> push - Push new application version

usage: java -jar <jar> push [options]

Option Description

------ -----------

-v, --application-version Application version (default: app)

YarnPushCommand can be used to push an application into hdfs.

List Pushed Applications

java -jar <jar> pushed - List pushed applications

usage: java -jar <jar> pushed [options]

No options specified

YarnPushedCommand can be used to list information about an pushed applications.

Submit Application

java -jar <jar> submit - Submit application

usage: java -jar <jar> submit [options]

Option Description

------ -----------

-n, --application-name Application name

-v, --application-version Application version (default: app)

YarnSubmitCommand can be used to submit a new application instance.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 121

List Submitted Applications

java -jar <jar> submitted - List submitted applications

usage: java -jar <jar> submitted [options]

Option Description

------ -----------

-t, --application-type Application type (default: BOOT)

-v, --verbose [Boolean] Verbose output (default: true)

YarnSubmittedCommand can be used to list info about an submitted applications.

Kill Application

java -jar <jar> kill - Kill application

usage: java -jar <jar> kill [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

YarnKillCommand can be used to kill a running application instance.

Shutdown Application

java -jar <jar> shutdown - Shutdown application

usage: java -jar <jar> shutdown [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

YarnShutdownCommand can be used to gracefully shutdown a running application instance.

Important

See configuration requirements from the section called “Using YarnShutdownApplication”.

List Clusters Info

java -jar <jar> clustersinfo - List clusters

usage: java -jar <jar> clustersinfo [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

YarnClustersInfoCommand can be used to list info about existing clusters.

List Cluster Info

java -jar <jar> clusterinfo - List cluster info

usage: java -jar <jar> clusterinfo [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

-v, --verbose [Boolean] Verbose output (default: true)

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 122

YarnClusterInfoCommand can be used to list info about a cluster.

Create Container Cluster

java -jar <jar> clustercreate - Create cluster

usage: java -jar <jar> clustercreate [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

-h, --projection-hosts Projection hosts counts

-i, --cluster-def Specify cluster def id

-p, --projection-type Projection type

-r, --projection-racks Projection racks counts

-w, --projection-any Projection any count

-y, --projection-data Raw projection data

YarnClusterCreateCommand can be used to create a new cluster.

Start Container Cluster

java -jar <jar> clusterstart - Start cluster

usage: java -jar <jar> clusterstart [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

YarnClusterStartCommand can be used to start an existing cluster.

Stop Container Cluster

java -jar <jar> clusterstop - Stop cluster

usage: java -jar <jar> clusterstop [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

YarnClusterStopCommand can be used to stop an existing cluster.

Modify Container Cluster

java -jar <jar> clustermodify - Modify cluster

usage: java -jar <jar> clustermodify [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

-h, --projection-hosts Projection hosts counts

-r, --projection-racks Projection racks counts

-w, --projection-any Projection any count

YarnClusterModifyCommand can be used to modify an existing cluster.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 123

Destroy Container Cluster

java -jar <jar> clusterdestroy - Destroy cluster

usage: java -jar <jar> clusterdestroy [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

YarnClusterDestroyCommand can be used to destroy an existing cluster.

Implementing Command

There are few different ways to implement a custom command. At
a lowest level org.springframework.boot.cli.command.Command need to
be implemented by all commands to be used. Spring boot provides
helper classes named org.springframework.boot.cli.command.AbstractCommand

and org.springframework.boot.cli.command.OptionParsingCommand to easy with command
implementation. All Spring YARN Boot Cli commands are based on
org.springframework.yarn.boot.cli.AbstractApplicationCommand which makes it
easier to execute a boot based application context.

public class MyCommand extends AbstractCommand {

 public MyCommand() {

 super("command name", "command desc");

 }

 public ExitStatus run(String... args) throws InterruptedException {

 // do something

 return ExitStatus.OK;

 }

}

Above you can see the mostly simplistic command example.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 124

public class MyCommand extends AbstractCommand {

 public MyCommand() {

 super("command name", "command desc", new MyOptionHandler());

 }

 public static class MyOptionHandler

 extends ApplicationOptionHandler<String> {

 @Override

 protected void runApplication(OptionSet options)

 throws Exception {

 handleApplicationRun(new MyApplication());

 }

 }

 public static class MyApplication

 extends AbstractClientApplication<String, MyApplication> {

 @Override

 public String run(String... args) {

 SpringApplicationBuilder builder = new SpringApplicationBuilder();

 builder.web(false);

 builder.sources(MyApplication.class);

 SpringApplicationTemplate template = new SpringApplicationTemplate(builder);

 return template.execute(new SpringApplicationCallback<String>() {

 @Override

 public String runWithSpringApplication(ApplicationContext context)

 throws Exception {

 // do something

 return "Hello from my command";

 }

 }, args);

 }

 @Override

 protected MyApplication getThis() {

 return this;

 }

 }

}

Above example is more sophisticated command example where the actual function of a command is
done within a runWithSpringApplication template callback which allows command to interact with
Spring ApplicationContext.

Using Shell

While all commands can be used as is using an executable jar, there is a little overhead for bootstrapping
jvm and Boot application context. To overcome this problem all commands can be used within a shell
instance. Shell also brings you a command history and all commands are executed faster because a
whole jvm and its libraries are already loaded.

Special command org.springframework.yarn.boot.cli.shell.ShellCommand can be used to register an
internal shell instance which is reusing all other registered commands.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 125

Spring YARN Cli (v2.1.0.BUILD-SNAPSHOT)

Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to quit.

$

clear clustercreate clusterdestroy clusterinfo

clustermodify clustersinfo clusterstart clusterstop

exit help kill prompt

push pushed submit submitted

$ help submitted

submitted - List submitted applications

usage: submitted [options]

Option Description

------ -----------

-t, --application-type Application type (default: BOOT)

-v, --verbose [Boolean] Verbose output (default: true)

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 126

13. Testing Support

Hadoop testing has always been a cumbersome process especially if you try to do testing phase during
the normal project build process. Traditionally developers have had few options like running Hadoop
cluster either as a local or pseudo-distributed mode and then utilise that to run MapReduce jobs. Hadoop
project itself is using a lot of mini clusters during the tests which provides better tools to run your code
in an isolated environment.

Spring Hadoop and especially its Yarn module faced similar testing problems. Spring Hadoop provides
testing facilities order to make testing on Hadoop much easier especially if code relies on Spring Hadoop
itself. These testing facilities are also used internally to test Spring Hadoop, although some test cases
still rely on a running Hadoop instance on a host where project build is executed.

Two central concepts of testing using Spring Hadoop is, firstly fire up the mini cluster and secondly use
the configuration prepared by the mini cluster to talk to the Hadoop components. Now let’s go through
the general testing facilities offered by Spring Hadoop.

Testing for MapReduce and Yarn in Spring Hadoop is separated into different packages mostly because
these two components doesn’t have hard dependencies with each others. You will see a lot of similarities
when creating tests for MapReduce and Yarn.

13.1 Testing MapReduce

Mini Clusters for MapReduce

Mini clusters usually contain testing components from a Hadoop project itself. These are clusters for
MapReduce Job handling and HDFS which are all run within a same process. In Spring Hadoop
mini clusters are implementing interface HadoopCluster which provides methods for lifecycle and
configuration. Spring Hadoop provides transitive maven dependencies against different Hadoop
distributions and thus mini clusters are started using different implementations. This is mostly because
we want to support HadoopV1 and HadoopV2 at a same time. All this is handled automatically at runtime
so everything should be transparent to the end user.

public interface HadoopCluster {

 Configuration getConfiguration();

 void start() throws Exception;

 void stop();

 FileSystem getFileSystem() throws IOException;

}

Currently one implementation named StandaloneHadoopCluster exists which supports simple cluster
type where a number of nodes can be defined and then all the nodes will contain utilities for MapReduce
Job handling and HDFS.

There are few ways how this cluster can be started depending on a use case. It is possible to
use StandaloneHadoopCluster directly or configure and start it through HadoopClusterFactoryBean.
Existing HadoopClusterManager is used in unit tests to cache running clusters.

Note

It’s advisable not to use HadoopClusterManager outside of tests because literally it is using static
fields to cache cluster references. This is a same concept used in Spring Test order to cache
application contexts between the unit tests within a jvm.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 127

<bean id="hadoopCluster" class="org.springframework.data.hadoop.test.support.HadoopClusterFactoryBean">

 <property name="clusterId" value="HadoopClusterTests"/>

 <property name="autoStart" value="true"/>

 <property name="nodes" value="1"/>

</bean>

Example above defines a bean named hadoopCluster using a factory bean HadoopClusterFactoryBean.
It defines a simple one node cluster which is started automatically.

Configuration

Spring Hadoop components usually depend on Hadoop configuration which is then wired into these
components during the application context startup phase. This was explained in previous chapters so
we don’t go through it again. However this is now a catch-22 because we need the configuration for the
context but it is not known until mini cluster has done its startup magic and prepared the configuration
with correct values reflecting current runtime status of the cluster itself. Solution for this is to use other
bean named ConfigurationDelegatingFactoryBean which will simply delegate the configuration request
into the running cluster.

<bean id="hadoopConfiguredConfiguration" class="org.springframework.data.hadoop.test.support.ConfigurationDelegatingFactoryBean">

 <property name="cluster" ref="hadoopCluster"/>

</bean>

<hdp:configuration id="hadoopConfiguration" configuration-ref="hadoopConfiguredConfiguration"/>

In the above example we created a bean named hadoopConfiguredConfiguration using
ConfigurationDelegatingFactoryBean which simple delegates to hadoopCluster bean. Returned bean
hadoopConfiguredConfiguration is type of Hadoop’s Configuration object so it could be used as it is.

Latter part of the example show how Spring Hadoop namespace is used to create another Configuration
object which is using hadoopConfiguredConfiguration as a reference. This scenario would make sense
if there is a need to add additional configuration options into running configuration used by other
components. Usually it is suiteable to use cluster prepared configuration as it is.

Simplified Testing

It is perfecly all right to create your tests from scratch and for example create the cluster manually and
then get the runtime configuration from there. This just needs some boilerplate code in your context
configuration and unit test lifecycle.

Spring Hadoop adds additional facilities for the testing to make all this even easier.

@RunWith(SpringJUnit4ClassRunner.class)

public abstract class AbstractHadoopClusterTests implements ApplicationContextAware {

 ...

}

@ContextConfiguration(loader=HadoopDelegatingSmartContextLoader.class)

@MiniHadoopCluster

public class ClusterBaseTestClassTests extends AbstractHadoopClusterTests {

 ...

}

Above example shows the AbstractHadoopClusterTests and how ClusterBaseTestClassTests is
prepared to be aware of a mini cluster. HadoopDelegatingSmartContextLoader offers same base
functionality as the default DelegatingSmartContextLoader in a spring-test package. One additional
thing what HadoopDelegatingSmartContextLoader does is to automatically handle running clusters and
inject Configuration into the application context.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 128

@MiniHadoopCluster(configName="hadoopConfiguration", clusterName="hadoopCluster", nodes=1, id="default")

Generally @MiniHadoopCluster annotation allows you to define injected bean name for mini cluster, its
Configurations and a number of nodes you like to have in a cluster.

Spring Hadoop testing is dependant of general facilities of Spring Test framework meaning that
everything what is cached during the test are reuseable withing other tests. One need to understand that
if Hadoop mini cluster and its Configuration is injected into an Application Context, caching happens on
a mercy of a Spring Testing meaning if a test Application Context is cached also mini cluster instance
is cached. While caching is always prefered, one needs to understant that if tests are expecting vanilla
environment to be present, test context should be dirtied using @DirtiesContext annotation.

Wordcount Example

Let’s study a proper example of existing MapReduce Job which is executed and tested using Spring
Hadoop. This example is the Hadoop’s classic wordcount. We don’t go through all the details of this
example because we want to concentrate on testing specific code and configuration.

<context:property-placeholder location="hadoop.properties" />

<hdp:job id="wordcountJob"

 input-path="${wordcount.input.path}"

 output-path="${wordcount.output.path}"

 libs="file:build/libs/mapreduce-examples-wordcount-*.jar"

 mapper="org.springframework.data.hadoop.examples.TokenizerMapper"

 reducer="org.springframework.data.hadoop.examples.IntSumReducer" />

<hdp:script id="setupScript" location="copy-files.groovy">

 <hdp:property name="localSourceFile" value="data/nietzsche-chapter-1.txt" />

 <hdp:property name="inputDir" value="${wordcount.input.path}" />

 <hdp:property name="outputDir" value="${wordcount.output.path}" />

</hdp:script>

<hdp:job-runner id="runner"

 run-at-startup="false"

 kill-job-at-shutdown="false"

 wait-for-completion="false"

 pre-action="setupScript"

 job-ref="wordcountJob" />

In above configuration example we can see few differences with the actual runtime configuration. Firstly
you can see that we didn’t specify any kind of configuration for hadoop. This is because it’s is injected
automatically by testing framework. Secondly because we want to explicitely wait the job to be run and
finished, kill-job-at-shutdown and wait-for-completion are set to false.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 129

@ContextConfiguration(loader=HadoopDelegatingSmartContextLoader.class)

@MiniHadoopCluster

public class WordcountTests extends AbstractMapReduceTests {

 @Test

 public void testWordcountJob() throws Exception {

 // run blocks and throws exception if job failed

 JobRunner runner = getApplicationContext().getBean("runner", JobRunner.class);

 Job wordcountJob = getApplicationContext().getBean("wordcountJob", Job.class);

 runner.call();

 JobStatus finishedStatus = waitFinishedStatus(wordcountJob, 60, TimeUnit.SECONDS);

 assertThat(finishedStatus, notNullValue());

 // get output files from a job

 Path[] outputFiles = getOutputFilePaths("/user/gutenberg/output/word/");

 assertEquals(1, outputFiles.length);

 assertThat(getFileSystem().getFileStatus(outputFiles[0]).getLen(), greaterThan(0l));

 // read through the file and check that line with

 // "themselves 6" was found

 boolean found = false;

 InputStream in = getFileSystem().open(outputFiles[0]);

 BufferedReader reader = new BufferedReader(new InputStreamReader(in));

 String line = null;

 while ((line = reader.readLine()) != null) {

 if (line.startsWith("themselves")) {

 assertThat(line, is("themselves\t6"));

 found = true;

 }

 }

 reader.close();

 assertThat("Keyword 'themselves' not found", found);

 }

}

In above unit test class we simply run the job defined in xml, explicitely wait it to finish and then check
the output content from HDFS by searching expected strings.

13.2 Testing Yarn

Mini Clusters for Yarn

Mini cluster usually contain testing components from a Hadoop project itself. These are
MiniYARNCluster for Resource Manager and MiniDFSCluster for Datanode and Namenode which are
all run within a same process. In Spring Hadoop mini clusters are implementing interface YarnCluster
which provides methods for lifecycle and configuration.

public interface YarnCluster {

 Configuration getConfiguration();

 void start() throws Exception;

 void stop();

 File getYarnWorkDir();

}

Currently one implementation named StandaloneYarnCluster exists which supports simple cluster type
where a number of nodes can be defined and then all the nodes will have Yarn Node Manager and Hdfs
Datanode, additionally a Yarn Resource Manager and Hdfs Namenode components are started.

There are few ways how this cluster can be started depending on a use case. It is possible to use
StandaloneYarnCluster directly or configure and start it through YarnClusterFactoryBean. Existing
YarnClusterManager is used in unit tests to cache running clusters.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 130

Note

It’s advisable not to use YarnClusterManager outside of tests because literally it is using static
fields to cache cluster references. This is a same concept used in Spring Test order to cache
application contexts between the unit tests within a jvm.

<bean id="yarnCluster" class="org.springframework.yarn.test.support.YarnClusterFactoryBean">

 <property name="clusterId" value="YarnClusterTests"/>

 <property name="autoStart" value="true"/>

 <property name="nodes" value="1"/>

</bean>

Example above defines a bean named yarnCluster using a factory bean YarnClusterFactoryBean. It
defines a simple one node cluster which is started automatically. Cluster working directories would then
exist under below paths:

target/YarnClusterTests/

target/YarnClusterTests-dfs/

Note

We rely on base classes from a Hadoop distribution and target base directory is hardcoded in
Hadoop and is not configurable.

Configuration

Spring Yarn components usually depend on Hadoop configuration which is then wired into these
components during the application context startup phase. This was explained in previous chapters so
we don’t go through it again. However this is now a catch-22 because we need the configuration for the
context but it is not known until mini cluster has done its startup magic and prepared the configuration
with correct values reflecting current runtime status of the cluster itself. Solution for this is to use
other factory bean class named ConfigurationDelegatingFactoryBean which will simple delegate the
configuration request into the running cluster.

<bean id="yarnConfiguredConfiguration" class="org.springframework.yarn.test.support.ConfigurationDelegatingFactoryBean">

 <property name="cluster" ref="yarnCluster"/>

</bean>

<yarn:configuration id="yarnConfiguration" configuration-ref="yarnConfiguredConfiguration"/>

In the above example we created a bean named yarnConfiguredConfiguration using
ConfigurationDelegatingFactoryBean which simple delegates to yarnCluster bean. Returned bean
yarnConfiguredConfiguration is type of Hadoop’s Configuration object so it could be used as it is.

Latter part of the example show how Spring Yarn namespace is used to create another Configuration
object which is using yarnConfiguredConfiguration as a reference. This scenario would make sense
if there is a need to add additional configuration options into running configuration used by other
components. Usually it is suiteable to use cluster prepared configuration as it is.

Simplified Testing

It is perfecly all right to create your tests from scratch and for example create the cluster manually and
then get the runtime configuration from there. This just needs some boilerplate code in your context
configuration and unit test lifecycle.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 131

Spring Hadoop adds additional facilities for the testing to make all this even easier.

@RunWith(SpringJUnit4ClassRunner.class)

public abstract class AbstractYarnClusterTests implements ApplicationContextAware {

 ...

}

@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)

@MiniYarnCluster

public class ClusterBaseTestClassTests extends AbstractYarnClusterTests {

 ...

}

Above example shows the AbstractYarnClusterTests and how ClusterBaseTestClassTests is prepared
to be aware of a mini cluster. YarnDelegatingSmartContextLoader offers same base functionality
as the default DelegatingSmartContextLoader in a spring-test package. One additional thing what
YarnDelegatingSmartContextLoader does is to automatically handle running clusters and inject
Configuration into the application context.

@MiniYarnCluster(configName="yarnConfiguration", clusterName="yarnCluster", nodes=1, id="default")

Generally @MiniYarnCluster annotation allows you to define injected bean names for mini cluster, its
Configurations and a number of nodes you like to have in a cluster.

Spring Hadoop Yarn testing is dependant of general facilities of Spring Test framework meaning that
everything what is cached during the test are reuseable withing other tests. One need to understand that
if Hadoop mini cluster and its Configuration is injected into an Application Context, caching happens on
a mercy of a Spring Testing meaning if a test Application Context is cached also mini cluster instance
is cached. While caching is always prefered, one needs to understant that if tests are expecting vanilla
environment to be present, test context should be dirtied using @DirtiesContext annotation.

Spring Test Context configuration works exactly like you’d work with any other Spring Test based tests.
It defaults on finding xml based config and fall back to Annotation based config. For example if one is
working with JavaConfig a simple static configuration class can be used within the test class.

For test cases where additional context configuration is not needed a simple helper annotation
@MiniYarnClusterTest can be used.

@MiniYarnClusterTest

public class ActivatorTests extends AbstractBootYarnClusterTests {

 @Test

 public void testSomething(){

 ...

 }

}

In above example a simple test case was created using annontation @MiniYarnClusterTest. Behind a
scenes it’s using junit and prepares a YARN minicluster for you and injects needed configuration for you.

Drawback of using a composed annotation like this is that the @Configuration is then applied from an
annotation class itself and user can’t no longer add a static @Configuration class in a test class itself
and expect Spring to pick it up from there which is a normal behaviour in Spring testing support. If
user wants to use a simple composed annotation and use a custom @Configuration, one can simply
duplicate functionality of this @MiniYarnClusterTest annotation.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 132

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)

@MiniYarnCluster

public @interface CustomMiniYarnClusterTest {

 @Configuration

 public static class Config {

 @Bean

 public String myCustomBean() {

 return "myCustomBean";

 }

 }

}

@RunWith(SpringJUnit4ClassRunner.class)

@CustomMiniYarnClusterTest

public class ComposedAnnotationTests {

 @Autowired

 private ApplicationContext ctx;

 @Test

 public void testBean() {

 assertTrue(ctx.containsBean("myCustomBean"));

 }

}

In above example a custom composed annotation @CustomMiniYarnClusterTest was created and then
used within a test class. This a great way to put your configuration is one place and still keep your test
class relatively non-verbose.

Multi Context Example

Let’s study a proper example of existing Spring Yarn application and how this is tested during the
build process. Multi Context Example is a simple Spring Yarn based application which simply launches
Application Master and four Containers and withing those containers a custom code is executed. In this
case simply a log message is written.

In real life there are different ways to test whether Hadoop Yarn application execution has been succesful
or not. The obvious method would be to check the application instance execution status reported by
Hadoop Yarn. Status of the execution doesn’t always tell the whole truth so i.e. if application is about to
write something into HDFS as an output that could be used to check the proper outcome of an execution.

This example doesn’t write anything into HDFS and anyway it would be out of scope of this document
for obvious reason. It is fairly straightforward to check file content from HDFS. One other interesting
method is simply to check to application log files that being the Application Master and Container logs.
Test methods can check exceptions or expected log entries from a log files to determine whether test
is succesful or not.

In this chapter we don’t go through how Multi Context Example is configured and what it actually does,
for that read the documentation about the examples. However we go through what needs to be done
order to test this example application using testing support offered by Spring Hadoop.

In this example we gave instructions to copy library dependencies into Hdfs and then those entries were
used within resouce localizer to tell Yarn to copy those files into Container working directory. During the
unit testing when mini cluster is launched there are no files present in Hdfs because cluster is initialized

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 133

from scratch. Furtunalety Spring Hadoop allows you to copy files into Hdfs during the localization process
from a local file system where Application Context is executed. Only thing we need is the actual library
files which can be assembled during the build process. Spring Hadoop Examples build system rely on
Gradle so collecting dependencies is an easy task.

<yarn:localresources>

 <yarn:hdfs path="/app/multi-context/*.jar"/>

 <yarn:hdfs path="/lib/*.jar"/>

</yarn:localresources>

Above configuration exists in application-context.xml and appmaster-context.xml files. This is a normal
application configuration expecting static files already be present in Hdfs. This is usually done to
minimize latency during the application submission and execution.

<yarn:localresources>

 <yarn:copy src="file:build/dependency-libs/*" dest="/lib/"/>

 <yarn:copy src="file:build/libs/*" dest="/app/multi-context/"/>

 <yarn:hdfs path="/app/multi-context/*.jar"/>

 <yarn:hdfs path="/lib/*.jar"/>

</yarn:localresources>

Above example is from MultiContextTest-context.xml which provides the runtime context configuration
talking with mini cluster during the test phase.

When we do context configuration for YarnClient during the testing phase all we need to do is to add
copy elements which will transfer needed libraries into Hdfs before the actual localization process will
fire up. When those files are copied into Hdfs running in a mini cluster we’re basically in a same point
if using a real Hadoop cluster with existing files.

Note

Running tests which depends on copying files into Hdfs it is mandatory to use build system which
is able to prepare these files for you. You can’t do this within IDE’s which have its own ways to
execute unit tests.

The complete example of running the test, checking the application execution status and finally checking
the expected state of log files:

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 134

@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)

@MiniYarnCluster

public class MultiContextTests extends AbstractYarnClusterTests {

 @Test

 @Timed(millis=70000)

 public void testAppSubmission() throws Exception {

 YarnApplicationState state = submitApplicationAndWait();

 assertNotNull(state);

 assertTrue(state.equals(YarnApplicationState.FINISHED));

 File workDir = getYarnCluster().getYarnWorkDir();

 PathMatchingResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();

 String locationPattern = "file:" + workDir.getAbsolutePath() + "/**/*.std*";

 Resource[] resources = resolver.getResources(locationPattern);

 // appmaster and 4 containers should

 // make it 10 log files

 assertThat(resources, notNullValue());

 assertThat(resources.length, is(10));

 for (Resource res : resources) {

 File file = res.getFile();

 if (file.getName().endsWith("stdout")) {

 // there has to be some content in stdout file

 assertThat(file.length(), greaterThan(0l));

 if (file.getName().equals("Container.stdout")) {

 Scanner scanner = new Scanner(file);

 String content = scanner.useDelimiter("\\A").next();

 scanner.close();

 // this is what container will log in stdout

 assertThat(content, containsString("Hello from MultiContextBeanExample"));

 }

 } else if (file.getName().endsWith("stderr")) {

 // can't have anything in stderr files

 assertThat(file.length(), is(0l));

 }

 }

 }

}

13.3 Testing Boot Based Applications

In previous sections we showed a generic concepts of unit testing in Spring Hadoop and Spring YARN.
We also have a first class support for testing Spring Boot based applications made for YARN.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 135

@MiniYarnClusterTest

public class AppTests extends AbstractBootYarnClusterTests {

 @Test

 public void testApp() throws Exception {

 ApplicationInfo info = submitApplicationAndWait(ClientApplication.class, new String[0]);

 assertThat(info.getYarnApplicationState(), is(YarnApplicationState.FINISHED));

 List<Resource> resources = ContainerLogUtils.queryContainerLogs(

 getYarnCluster(), info.getApplicationId());

 assertThat(resources, notNullValue());

 assertThat(resources.size(), is(4));

 for (Resource res : resources) {

 File file = res.getFile();

 String content = ContainerLogUtils.getFileContent(file);

 if (file.getName().endsWith("stdout")) {

 assertThat(file.length(), greaterThan(0l));

 if (file.getName().equals("Container.stdout")) {

 assertThat(content, containsString("Hello from HelloPojo"));

 }

 } else if (file.getName().endsWith("stderr")) {

 assertThat("stderr with content: " + content, file.length(), is(0l));

 }

 }

 }

}

Let’s go through step by step what’s happening in this JUnit class. As already mentioned earlier we don’t
need any existing or running Hadoop instances, instead testing framework from Spring YARN provides
an easy way to fire up a mini cluster where your tests can be run in an isolated environment.

• @ContextConfiguration together with YarnDelegatingSmartContextLoader tells Spring to prepare a
testing context for a mini cluster. EmptyConfig is a simple helper class to use if there are no additional
configuration for tests.

• @MiniYarnCluster tells Spring to start a Hadoop’s mini cluster having components for HDFS and
YARN. Hadoop’s configuration from this minicluster is automatically injected into your testing context.

• @MiniYarnClusterTest is basically a replacement of @MiniYarnCluster and @ContextConfiguration
having an empty context configuration.

• AbstractBootYarnClusterTests is a class containing a lot of base functionality what you need in your
tests.

Then it’s time to deploy the application into a running minicluster

• submitApplicationAndWait() method simply runs your ClientApplication and expects it to an
application deployment. On default it will wait 60 seconds an application to finish and returns an
current state.

• We make sure that we have a correct application state

We use ContainerLogUtils to find our container logs files from a minicluster.

• We assert count of a log files

• We expect some specified content from log file

• We expect stderr files to be empty

Part III. Developing Spring for
Apache Hadoop Applications

This section provides some guidance on how one can use the Spring for Apache Hadoop project in
conjunction with other Spring projects, starting with the Spring Framework itself, then Spring Batch, and
then Spring Integration.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 137

14. Guidance and Examples

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to
work with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop namespace
to your Spring based project and get going quickly using Hadoop.

As the complexity of your Hadoop application increases, you may want to use Spring Batch to regain
on the complexity of developing a large Hadoop application. Spring Batch provides an extension to the
Spring programming model to support common batch job scenarios characterized by the processing of
large amounts of data from flat files, databases and messaging systems. It also provides a workflow
style processing model, persistent tracking of steps within the workflow, event notification, as well
as administrative functionality to start/stop/restart a workflow. As Spring Batch was designed to be
extended, Spring for Apache Hadoop plugs into those extensibilty points, allowing for Hadoop related
processing to be a first class citizen in the Spring Batch processing model.

Another project of interest to Hadoop developers is Spring Integration. Spring Integration provides an
extension of the Spring programming model to support the well-known Enterprise Integration Patterns. It
enables lightweight messaging within Spring-based applications and supports integration with external
systems via declarative adapters. These adapters are of particular interest to Hadoop developers, as
they directly support common Hadoop use-cases such as polling a directory or FTP folder for the
presence of a file or group of files. Then once the files are present, a message is sent internally to the
application to do additional processing. This additional processing can be calling a Hadoop MapReduce
job directly or starting a more complex Spring Batch based workflow. Similarly, a step in a Spring Batch
workflow can invoke functionality in Spring Integration, for example to send a message though an email
adapter.

No matter if you use the Spring Batch project with the Spring Framework by itself or with additional
extentions such as Spring Batch and Spring Integration that focus on a particular domain, you will benefit
from the core values that Spring projects bring to the table, namely enabling modularity, reuse and
extensive support for unit and integration testing.

14.1 Scheduling

Spring Batch integrates with a variety of job schedulers and is not a scheduling framework. There
are many good enterprise schedulers available in both the commercial and open source spaces such
as Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace
a scheduler. As a lightweight solution, you can use Spring’s built in scheduling support that will give
you cron-like and other basic scheduling trigger functionality. See the Task Execution and Scheduling
documention for more info. A middle ground it to use Spring’s Quartz integration, see Using the
OpenSymphony Quartz Scheduler for more information. The Spring Batch distribution contains an
example, but this documentation will be updated to provide some more directed examples with Hadoop,
check for updates on the main web site of Spring for Apache Hadoop.

14.2 Batch Job Listeners

Spring Batch lets you attach listeners at the job and step levels to perform additional processing. For
example, at the end of a job you can perform some notification or perhaps even start another Spring
Batch job. As a brief example, implement the interface JobExecutionListener and configure it into the
Spring Batch job as shown below.

http://www.eaipatterns.com
http://docs.spring.io/spring-batch/faq.html#schedulers
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://projects.spring.io/spring-hadoop/
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/JobExecutionListener.html

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 138

<batch:job id="job1">

 <batch:step id="import" next="wordcount">

 <batch:tasklet ref="script-tasklet"/>

 </batch:step>

 <batch:step id="wordcount">

 <batch:tasklet ref="wordcount-tasklet" />

 </batch:step>

 <batch:listeners>

 <batch:listener ref="simpleNotificatonListener"/>

 </batch:listeners>

</batch:job>

<bean id="simpleNotificatonListener" class="com.mycompany.myapp.SimpleNotificationListener"/>

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 139

15. Other Samples

The sample applications have been moved into their own repository so they can be developed
independently of the Spring for Apache Hadoop release cycle. They can be found on GitHub https://
github.com/spring-projects/spring-hadoop-samples/.

We also keep a numerous Spring IO getting started guides up to date with a latest GA release at https://
spring.io/guides?filter=yarn.

The wiki page for the Spring for Apache Hadoop project has more documentation for building and
running the examples and there is also some instructions in the README file of each example.

https://github.com/spring-projects/spring-hadoop-samples/
https://github.com/spring-projects/spring-hadoop-samples/
https://spring.io/guides?filter=yarn
https://spring.io/guides?filter=yarn
https://github.com/spring-projects/spring-hadoop/wiki/Sample-Projects

Part IV. Other Resources
In addition to this reference documentation, there are a number of other resources that may help you
learn how to use Hadoop and Spring framework. These additional, third-party resources are enumerated
in this section.

Spring for Apache Hadoop - Reference Documentation

2.2.0.RC1 Spring for Apache Hadoop 141

16. Useful Links

• Spring for Apache Hadoop Home Page

• Spring Data Home Page

• Spring Data Book Home Page

• Spring Blog

• Apache Hadoop Home Page

• Pivotal HD Home Page

http://www.springframework.org/spring-data/hadoop
http://projects.spring.io/spring-data
http://shop.oreilly.com/product/0636920024767.do
http://blog.spring.io/
http://hadoop.apache.org
http://www.pivotal.io/big-data/pivotal-hd

	Spring for Apache Hadoop - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements
	2. Additional Resources

	Part II. Spring and Hadoop
	3. Hadoop Configuration
	3.1 Using the Spring for Apache Hadoop Namespace
	3.2 Using the Spring for Apache Hadoop JavaConfig
	3.3 Configuring Hadoop
	3.4 Boot Support
	spring.hadoop configuration properties
	spring.hadoop.fsshell configuration properties

	4. MapReduce and Distributed Cache
	4.1 Creating a Hadoop Job
	Creating a Hadoop Streaming Job

	4.2 Running a Hadoop Job
	Using the Hadoop Job tasklet

	4.3 Running a Hadoop Tool
	Replacing Hadoop shell invocations with tool-runner
	Using the Hadoop Tool tasklet

	4.4 Running a Hadoop Jar
	Using the Hadoop Jar tasklet

	4.5 Configuring the Hadoop DistributedCache
	4.6 Map Reduce Generic Options

	5. Working with the Hadoop File System
	5.1 Configuring the file-system
	5.2 Using HDFS Resource Loader
	5.3 Scripting the Hadoop API
	Using scripts

	5.4 Scripting implicit variables
	Running scripts
	Using the Scripting tasklet

	5.5 File System Shell (FsShell)
	DistCp API

	6. Writing and reading data using the Hadoop File System
	6.1 Store Abstraction
	Writing Data
	File Naming
	File Rollover
	Partitioning
	DefaultPartitionStrategy
	Partition Path Expression
	Accessing Properties
	Custom Methods

	Creating a Custom Partition Strategy
	Writer Implementations
	Append and Sync Data

	Reading Data
	Input Splits
	Reader Implementations

	Using Codecs

	6.2 Persisting POJO datasets using Kite SDK
	Data Formats
	Using Avro
	Using Parquet

	Configuring the dataset support
	Writing datasets
	Reading datasets
	Partitioning datasets

	6.3 Using the Spring for Apache JavaConfig

	7. Working with HBase
	7.1 Data Access Object (DAO) Support

	8. Hive integration
	8.1 Starting a Hive Server
	8.2 Using the Hive Thrift Client
	8.3 Using the Hive JDBC Client
	8.4 Running a Hive script or query
	Using the Hive tasklet

	8.5 Interacting with the Hive API

	9. Pig support
	9.1 Running a Pig script
	Using the Pig tasklet

	9.2 Interacting with the Pig API

	10. Using the runner classes
	11. Security Support
	11.1 HDFS permissions
	11.2 User impersonation (Kerberos)
	11.3 Boot Support
	spring.hadoop.security configuration properties

	12. Yarn Support
	12.1 Using the Spring for Apache Yarn Namespace
	12.2 Using the Spring for Apache Yarn JavaConfig
	12.3 Configuring Yarn
	12.4 Local Resources
	12.5 Container Environment
	12.6 Application Client
	12.7 Application Master
	12.8 Application Container
	12.9 Application Master Services
	Basic Concepts
	Using JSON
	Converters

	12.10 Application Master Service
	12.11 Application Master Service Client
	12.12 Using Spring Batch
	Batch Jobs
	Partitioning
	Configuring Master
	Configuring Container

	12.13 Using Spring Boot Application Model
	Auto Configuration
	Application Files
	Application Classpath
	Simple Executable Jar
	Simple Zip Archive

	Container Runners
	Custom Runner

	Resource Localizing
	Container as POJO
	Configuration Properties
	spring.yarn configuration properties
	spring.yarn.appmaster configuration properties
	spring.yarn.appmaster.launchcontext configuration properties
	spring.yarn.appmaster.localizer configuration properties
	spring.yarn.appmaster.resource configuration properties
	spring.yarn.appmaster.containercluster configuration properties
	spring.yarn.appmaster.containercluster.clusters.<name> configuration properties
	spring.yarn.appmaster.containercluster.clusters.<name>.projection configuration properties
	spring.yarn.endpoints.containercluster configuration properties
	spring.yarn.endpoints.containerregister configuration properties
	spring.yarn.client configuration properties
	spring.yarn.client.launchcontext configuration properties
	spring.yarn.client.localizer configuration properties
	spring.yarn.client.resource configuration properties
	spring.yarn.container configuration properties
	spring.yarn.batch configuration properties
	spring.yarn.batch.jobs configuration properties

	Container Groups
	Grid Projection
	Group Configuration
	Container Restart
	REST API

	Controlling Applications
	Generic Usage
	Using Configuration Properties
	Using YarnPushApplication
	Using YarnSubmitApplication
	Using YarnInfoApplication
	Using YarnKillApplication
	Using YarnShutdownApplication
	Using YarnContainerClusterApplication

	Cli Integration
	Build-in Commands
	Implementing Command
	Using Shell

	13. Testing Support
	13.1 Testing MapReduce
	Mini Clusters for MapReduce
	Configuration
	Simplified Testing
	Wordcount Example

	13.2 Testing Yarn
	Mini Clusters for Yarn
	Configuration
	Simplified Testing
	Multi Context Example

	13.3 Testing Boot Based Applications

	Part III. Developing Spring for Apache Hadoop Applications
	14. Guidance and Examples
	14.1 Scheduling
	14.2 Batch Job Listeners

	15. Other Samples

	Part IV. Other Resources
	16. Useful Links

