
Spring Data Redis Reference Documentation

1.4.0.RC1

Costin Leau SpringSource , Jennifer Hickey SpringSource , Christoph
Strobl Pivotal Software, Inc. , Thomas Darimont Pivotal Software, Inc.

Copyright © 2011-2014 The original authors.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation ii

Table of Contents

Preface ... iii
I. Introduction ... 1

1. Why Spring Data Redis? .. 2
2. Requirements ... 3
3. Getting Started ... 4

3.1. First Steps .. 4
Knowing Spring .. 4
Knowing NoSQL and Key Value stores ... 4
Trying Out The Samples .. 4

3.2. Need Help? ... 4
Community Support .. 4
Professional Support .. 5

3.3. Following Development .. 5
II. Reference Documentation .. 6

4. Redis support .. 7
4.1. Redis Requirements .. 7
4.2. Redis Support High Level View .. 7
4.3. Connecting to Redis .. 7

RedisConnection and RedisConnectionFactory .. 7
Configuring Jedis connector .. 8
Configuring JRedis connector ... 9
Configuring SRP connector ... 9
Configuring Lettuce connector ... 10

4.4. Redis Sentinel Support .. 10
4.5. Working with Objects through RedisTemplate .. 11
4.6. String-focused convenience classes ... 12
4.7. Serializers ... 13
4.8. Redis Messaging/PubSub .. 14

Sending/Publishing messages ... 14
Receiving/Subscribing for messages ... 14

Message Listener Containers .. 15
The MessageListenerAdapter ... 15

4.9. Redis Transactions .. 17
@Transactional Support ... 18

4.10. Pipelining .. 19
4.11. Redis Scripting .. 20
4.12. Support Classes .. 21

Support for Spring Cache Abstraction .. 22
4.13. Roadmap ahead .. 22

III. Appendixes ... 23
A. Spring Data Redis Schema(s) .. 24
B. Spring Data Redis Supported Commands ... 26

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation iii

Preface
The Spring Data Redis project applies core Spring concepts to the development of solutions using a
key-value style data store. We provide a "template" as a high-level abstraction for sending and receiving
messages. You will notice similarities to the JDBC support in the Spring Framework.

Part I. Introduction
This document is the reference guide for Spring Data Redis (SDR) Support. It explains Key Value module
concepts and semantics and the syntax for various stores namespaces.

For an introduction to key value stores or Spring, or Spring Data examples, please refer to Chapter 3,
Getting Started - this documentation refers only to Spring Data Redis Support and assumes the user is
familiar with the key value storages and Spring concepts.

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 2

1. Why Spring Data Redis?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP,
and portable service abstractions.

NoSQL storages provide an alternative to classical RDBMS for horizontal scalability and speed. In terms
of implementation, Key Value stores represent one of the largest (and oldest) members in the NoSQL
space.

The Spring Data Redis (or SDR) framework makes it easy to write Spring applications that use the Redis
key value store by eliminating the redundant tasks and boiler plate code required for interacting with the
store through Spring's excellent infrastructure support.

http://en.wikipedia.org/wiki/NoSQL

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 3

2. Requirements

Spring Data Redis 1.2.x binaries requires JDK level 6.0 and above, and Spring Framework 3.2.8 and
above.

In terms of key value stores, Redis 2.6.x or higher is required. Spring Data Redis is currently tested
against the latest 2.6 and 2.8 releases.

http://projects.spring.io/spring-framework/
http://redis.io

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 4

3. Getting Started

Learning a new framework is not always straight forward. In this section, we (the Spring Data team)
tried to provide, what we think is, an easy to follow guide for starting with the Spring Data Redis module.
Of course, feel free to create your own learning 'path' as you see fit and, if possible, please report back
any improvements to the documentation that can help others.

3.1 First Steps

As explained in Chapter 1, Why Spring Data Redis?, Spring Data Redis (SDR) provides integration
between Spring framework and the Redis key value store. Thus, it is important to become acquainted
with both of these frameworks (storages or environments depending on how you want to name them).
Throughout the SDR documentation, each section provides links to resources relevant however, it is
best to become familiar with these topics beforehand.

Knowing Spring

Spring Data uses heavily Spring framework's core functionality, such as the IoC container, resource
abstract or AOP infrastructure. While it is not important to know the Spring APIs, understanding the
concepts behind them is. At a minimum, the idea behind IoC should be familiar. That being said, the
more knowledge one has about the Spring, the faster she will pick up Spring Data Redis. Besides
the very comprehensive (and sometimes disarming) documentation that explains in detail the Spring
Framework, there are a lot of articles, blog entries and books on the matter - take a look at the Spring
Guides home page for more information. In general, this should be the starting point for developers
wanting to try Spring DR.

Knowing NoSQL and Key Value stores

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions,
terms and patterns (to make things worse even the term itself has multiple meanings). While some of
the principles are common, it is crucial that the user is familiar to some degree with the stores supported
by SDR. The best way to get acquainted with these solutions is to read their documentation and follow
their examples - it usually doesn't take more then 5-10 minutes to go through them and if you are coming
from an RDMBS-only background many times these exercises can be an eye opener.

Trying Out The Samples

One can find various samples for key value stores in the dedicated example repo, at http://github.com/
spring-projects/spring-data-keyvalue-examples. For Spring Data Redis, of interest is the retwisj
sample, a Twitter-clone built on top of Redis which can be run locally or be deployed into the cloud. See
its documentation, the following blog entry or the live instance for more information.

3.2 Need Help?

If you encounter issues or you are just looking for advice, feel free to use one of the links below:

Community Support

The Spring Data tag on Stackoverflow is a message board for all Spring Data (not just Redis) users to
share information and help each other. Note that registration is needed only for posting.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/spring-core.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/aop.html
http://spring.io/guides
http://www.google.com/search?q=nosoql+acronym
https://github.com/spring-projects/spring-data-keyvalue-examples
https://github.com/spring-projects/spring-data-keyvalue-examples
http://static.springsource.org/spring-data/data-keyvalue/examples/retwisj/current/
http://blog.springsource.com/2011/04/27/getting-started-redis-spring-cloud-foundry/
http://retwisj.cloudfoundry.com/
http://stackoverflow.com/questions/tagged/spring-data

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 5

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Software, Inc., the company behind Spring Data and Spring.

3.3 Following Development

For information on the Spring Data source code repository, nightly builds and snapshot artifacts please
see the Spring Data home page.

You can help make Spring Data best serve the needs of the Spring community by interacting with
developers on Stackoverflow.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data
issue tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the
Spring Community Portal.

Lastly, you can follow the Spring blog or the project team (Thomas and Christoph) on Twitter.

http://www.gopivotal.com/
http://www.gopivotal.com/
http://spring.io/spring-data
http://stackoverflow.com/questions/tagged/spring-data
https://jira.springsource.org/browse/DATAREDIS
http://spring.io/
http://spring.io/blog/
http://twitter.com/thomasdarimont
http://twitter.com/stroblchristoph

Part II. Reference Documentation

Document structure
This part of the reference documentation explains the core functionality offered by Spring Data Redis.

Chapter 4, Redis support introduces the Redis module feature set.

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 7

4. Redis support

One of the key value stores supported by Spring Data is Redis. To quote the project home page: “
Redis is an advanced key-value store. It is similar to memcached but the dataset is not volatile, and
values can be strings, exactly like in memcached, but also lists, sets, and ordered sets. All this data
types can be manipulated with atomic operations to push/pop elements, add/remove elements, perform
server side union, intersection, difference between sets, and so forth. Redis supports different kind of
sorting abilities.”

Spring Data Redis provides easy configuration and access to Redis from Spring applications. It
offers both low-level and high-level abstractions for interacting with the store, freeing the user from
infrastructural concerns.

4.1 Redis Requirements

Spring Redis requires Redis 2.6 or above and Java SE 6.0 or above . In terms of language bindings (or
connectors), Spring Redis integrates with Jedis, JRedis, SRP and Lettuce, four popular open source
Java libraries for Redis. If you are aware of any other connector that we should be integrating with
please send us feedback.

4.2 Redis Support High Level View

The Redis support provides several components (in order of dependencies):

• Low-Level Abstractions - for configuring and handling communication with Redis through the various
connector libraries supported as described in Section 4.3, “Connecting to Redis”.

• High-Level Abstractions - providing generified, user friendly template classes for interacting with
Redis. Section 4.5, “Working with Objects through RedisTemplate” explains the abstraction built on
top of the low-level Connection API to handle the infrastructural concerns and object conversion.

• Support Classes - that offer reusable components (built on the aforementioned abstractions) such
as java.util.Collection or Spring cache implementation backed by Redis as documented in
Section 4.12, “Support Classes”

For most tasks, the high-level abstractions and support services are the best choice. Note that at any
point, one can move between layers - for example, it's very easy to get a hold of the low level connection
(or even the native library) to communicate directly with Redis.

4.3 Connecting to Redis

One of the first tasks when using Redis and Spring is to connect to the store through the IoC container. To
do that, a Java connector (or binding) is required. No matter the library one chooses, there is only one set
of Spring Data Redis API that one needs to use that behaves consistently across all connectors, namely
the org.springframework.data.redis.connection package and its RedisConnection and
RedisConnectionFactory interfaces for working with and retrieving active connections to Redis.

RedisConnection and RedisConnectionFactory

RedisConnection provides the building block for Redis communication as it handles the
communication with the Redis back-end. It also automatically translates the underlying connecting

http://redis.io
http://github.com/xetorthio/jedis
http://github.com/alphazero/jredis
http://github.com/spullara/redis-protocol
http://github.com/wg/lettuce
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 8

library exceptions to Spring's consistent DAO exception hierarchy so one can switch the connectors
without any code changes as the operation semantics remain the same.

Note
For the corner cases where the native library API is required, RedisConnection provides a
dedicated method getNativeConnection which returns the raw, underlying object used for
communication.

Active RedisConnections are created through RedisConnectionFactory. In addition, the
factories act as PersistenceExceptionTranslators, meaning once declared, they allow one
to do transparent exception translation. For example, exception translation through the use of the
@Repository annotation and AOP. For more information see the dedicated section in Spring
Framework documentation.

Note
Depending on the underlying configuration, the factory can return a new connection or an existing
connection (in case a pool or shared native connection is used).

The easiest way to work with a RedisConnectionFactory is to configure the appropriate connector
through the IoC container and inject it into the using class.

Connector features

Unfortunately, currently, not all connectors support all Redis features. When invoking
a method on the Connection API that is unsupported by the underlying library, a
UnsupportedOperationException is thrown. This situation is likely to be fixed in the future,
as the various connectors mature.

Configuring Jedis connector

Jedis is one of the connectors supported by the Spring Data Redis module through the
org.springframework.data.redis.connection.jedis package. In its simplest form, the Jedis
configuration looks as follow:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <!-- Jedis ConnectionFactory -->

 <bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory"/

>

</beans>

For production use however, one might want to tweak the settings such as the host or password:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/orm.html#orm-exception-translation
http://github.com/xetorthio/jedis

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 9

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory"

 p:host-name="server" p:port="6379"/>

</beans>

Configuring JRedis connector

JRedis is another popular, open-source connector supported by Spring Data Redis through the
org.springframework.data.redis.connection.jredis package.

A typical JRedis configuration can looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="jredisConnectionFactory" class="org.springframework.data.redis.connection.jredis.JredisConnectionFactory"

 p:host-name="server" p:port="6379"/>

</beans>

The configuration is quite similar to Jedis, with one notable exception. By default, the
JredisConnectionFactory pools connections. In order to use a connection pool with JRedis,
configure the JredisConnectionFactory with an instance of JredisPool. For example:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="jredisConnectionFactory"

 class="org.springframework.data.redis.connection.jredis.JredisConnectionFactory">

 <constructor-arg>

 <bean

 class="org.springframework.data.redis.connection.jredis.DefaultJredisPool">

 <constructor-arg value="localhost" />

 <constructor-arg value="6379" />

 </bean>

 </constructor-arg>

 </bean>

</beans>

Configuring SRP connector

SRP (an acronym for Sam's Redis Protocol) is the third open-source connector supported by Spring
Data Redis through the org.springframework.data.redis.connection.srp package.

http://github.com/alphazero/jredis
https://github.com/spullara/redis-protocol

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 10

By now, its configuration is probably easy to guess:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="srpConnectionFactory" class="org.springframework.data.redis.connection.srp.SrpConnectionFactory"

 p:host-name="server" p:port="6379"/>

</beans>

Needless to say, the configuration is quite similar to that of the other connectors.

Configuring Lettuce connector

Lettuce is the fourth open-source connector supported by Spring Data Redis through the
org.springframework.data.redis.connection.lettuce package.

Its configuration is probably easy to guess:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="lettuceConnectionFactory" class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory"

 p:host-name="server" p:port="6379"/>

</beans>

There are also a few Lettuce-specific connection parameters that can be tweaked. By
default, all LettuceConnections created by the LettuceConnectionFactory share the
same thread-safe native connection for all non-blocking and non-transactional operations.
Set shareNativeConnection to false to use a dedicated connection each time.
LettuceConnectionFactory can also be configured with a LettucePool to use for pooling
blocking and transactional connections, or all connections if shareNativeConnection is set to false.

4.4 Redis Sentinel Support

For dealing with high available Redis there is support for Redis Sentinel using
RedisSentinelConfiguration.

Note
Please note that currently only Jedis supports Redis Sentinel.

https://github.com/wg/lettuce
http://redis.io/topics/sentinel
http://github.com/xetorthio/jedis

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 11

@Bean

public RedisConnectionFactory jedisConnectionFactory() {

 RedisSentinelConfiguration sentinelConfig = new RedisSentinelConfiguration()

 .master("mymaster")

 .sentinel("127.0.0.1", 26379)

 .sentinel("127.0.0.1", 26380);

 return new JedisConnectionFactory(sentinelConfig);

}

Sometimes direct interaction with the one of the Sentinels
is required. Using RedisConnectionFactory.getSentinelConnection() or
RedisConnection.getSentinelCommands() gives you access to the first active Sentinel
configured.

4.5 Working with Objects through RedisTemplate

Most users are likely to use RedisTemplate and its coresponding package
org.springframework.data.redis.core - the template is in fact the central class of the Redis
module due to its rich feature set. The template offers a high-level abstraction for Redis interactions.
While RedisConnection offers low level methods that accept and return binary values (byte arrays),
the template takes care of serialization and connection management, freeing the user from dealing with
such details.

Moreover, the template provides operations views (following the grouping from Redis command
reference) that offer rich, generified interfaces for working against a certain type or certain key (through
the KeyBound interfaces) as described below:

Table 4.1. Operational views

Interface Description

Key Type Operations

ValueOperations Redis string (or value) operations

ListOperations Redis list operations

SetOperations Redis set operations

ZSetOperations Redis zset (or sorted set) operations

HashOperations Redis hash operations

Key Bound Operations

BoundValueOperations Redis string (or value) key bound operations

BoundListOperations Redis list key bound operations

BoundSetOperations Redis set key bound operations

BoundZSetOperations Redis zset (or sorted set) key bound operations

BoundHashOperations Redis hash key bound operations

Once configured, the template is thread-safe and can be reused across multiple instances.

http://redis.io/commands

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 12

Out of the box, RedisTemplate uses a Java-based serializer for most of its operations. This means
that any object written or read by the template will be serializer/deserialized through Java. The
serialization mechanism can be easily changed on the template, and the Redis module offers several
implementations available in the org.springframework.data.redis.serializer package - see
Section 4.7, “Serializers” for more information. You can also set any of the serializers to null and use
RedisTemplate with raw byte arrays by setting the enableDefaultSerializer property to false.
Note that the template requires all keys to be non-null - values can be null as long as the underlying
serializer accepts them; read the javadoc of each serializer for more information.

For cases where a certain template view is needed, declare the view as a dependency and inject the
template: the container will automatically perform the conversion eliminating the opsFor[X] calls:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory"

 p:use-pool="true"/>

 <!-- redis template definition -->

 <bean id="redisTemplate" class="org.springframework.data.redis.core.RedisTemplate"

 p:connection-factory-ref="jedisConnectionFactory"/>

 ...

</beans>

public class Example {

 // inject the actual template

 @Autowired

 private RedisTemplate<String, String> template;

 // inject the template as ListOperations

 @Resource(name="redisTemplate")

 private ListOperations<String, String> listOps;

 public void addLink(String userId, URL url) {

 listOps.leftPush(userId, url.toExternalForm());

 }

}

4.6 String-focused convenience classes

Since it's quite common for the keys and values stored in Redis to be java.lang.String, the
Redis modules provides two extensions to RedisConnection and RedisTemplate, respectively
the StringRedisConnection (and its DefaultStringRedisConnection implementation) and
StringRedisTemplate as a convenient one-stop solution for intensive String operations. In addition
to being bound to String keys, the template and the connection use the StringRedisSerializer
underneath which means the stored keys and values are human readable (assuming the same encoding
is used both in Redis and your code). For example:

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 13

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory"

 p:use-pool="true"/>

 <bean id="stringRedisTemplate" class="org.springframework.data.redis.core.StringRedisTemplate"

 p:connection-factory-ref="jedisConnectionFactory"/>

 ...

</beans>

public class Example {

 @Autowired

 private StringRedisTemplate redisTemplate;

 public void addLink(String userId, URL url) {

 redisTemplate.opsForList().leftPush(userId, url.toExternalForm());

 }

}

As with the other Spring templates, RedisTemplate and StringRedisTemplate allow the developer
to talk directly to Redis through the RedisCallback interface. This gives complete control to the
developer as it talks directly to the RedisConnection. Note that the callback receives an instance of
StringRedisConnection when a StringRedisTemplate is used.

public void useCallback() {

 redisTemplate.execute(new RedisCallback<Object>() {

 public Object doInRedis(RedisConnection connection) throws DataAccessException {

 Long size = connection.dbSize();

 // Can cast to StringRedisConnection if using a StringRedisTemplate

 ((StringRedisConnection)connection).set("key", "value");

 ...

 }

 });

}

4.7 Serializers

From the framework perspective, the data stored in Redis is just bytes. While Redis itself supports
various types, for the most part these refer to the way the data is stored rather then what it
represents. It is up to the user to decide whether the information gets translated into Strings
or any other objects. The conversion between the user (custom) types and raw data (and
vice-versa) is handled in Spring Data Redis through the RedisSerializer interface (package
org.springframework.data.redis.serializer) which as the name implies, takes care of
the serialization process. Multiple implementations are available out of the box, two of which
have been already mentioned before in this documentation: the StringRedisSerializer and
the JdkSerializationRedisSerializer. However one can use OxmSerializer for Object/
XML mapping through Spring 3 OXM support or either JacksonJsonRedisSerializer or

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 14

Jackson2JsonRedisSerializer for storing data in JSON format. Do note that the storage format
is not limited only to values - it can be used for keys, values or hashes without any restrictions.

4.8 Redis Messaging/PubSub

Spring Data provides dedicated messaging integration for Redis, very similar in functionality and naming
to the JMS integration in Spring Framework; in fact, users familiar with the JMS support in Spring should
feel right at home.

Redis messaging can be roughly divided into two areas of functionality, namely the production
or publication and consumption or subscription of messages, hence the shortcut pubsub (Publish/
Subscribe). The RedisTemplate class is used for message production. For asynchronous reception
similar to Java EE's message-driven bean style, Spring Data provides a dedicated message listener
container that is used to create Message-Driven POJOs (MDPs) and for synchronous reception, the
RedisConnection contract.

The package org.springframework.data.redis.connection and
org.springframework.data.redis.listener provide the core functionality for using Redis
messaging.

Sending/Publishing messages

To publish a message, one can use, as with the other operations, either the low-level
RedisConnection or the high-level RedisTemplate. Both entities offer the publish method that
accepts as argument the message that needs to be sent as well as the destination channel. While
RedisConnection requires raw-data (array of bytes), the RedisTemplate allow arbitrary objects to
be passed in as messages:

// send message through connection

RedisConnection con = ...

byte[] msg = ...

byte[] channel = ...

con.publish(msg, channel);

// send message through RedisTemplate

RedisTemplate template = ...

template.convertAndSend("hello!", "world");

Receiving/Subscribing for messages

On the receiving side, one can subscribe to one or multiple channels either by naming them directly or
by using pattern matching. The latter approach is quite useful as it not only allows multiple subscriptions
to be created with one command but to also listen on channels not yet created at subscription time (as
long as they match the pattern).

At the low-level, RedisConnection offers subscribe and pSubscribe methods that map the Redis
commands for subscribing by channel respectively by pattern. Note that multiple channels or patterns
can be used as arguments. To change the subscription of a connection or simply query whether it is
listening or not, RedisConnection provides getSubscription and isSubscribed method.

Important
Subscription commands in Spring Data Redis are blocking. That is, calling subscribe on a
connection will cause the current thread to block as it will start waiting for messages - the

http://en.wikipedia.org/wiki/JSON

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 15

thread will be released only if the subscription is canceled, that is an additional thread invokes
unsubscribe or pUnsubscribe on the same connection. See message listener container
below for a solution to this problem.

As mentioned above, once subscribed a connection starts waiting for messages. No other commands
can be invoked on it except for adding new subscriptions or modifying/canceling the existing ones. That
is, invoking anything other then subscribe, pSubscribe, unsubscribe, or pUnsubscribe is illegal
and will throw an exception.

In order to subscribe for messages, one needs to implement the MessageListener callback: each
time a new message arrives, the callback gets invoked and the user code executed through onMessage
method. The interface gives access not only to the actual message but to the channel it has been
received through and the pattern (if any) used by the subscription to match the channel. This information
allows the callee to differentiate between various messages not just by content but also through data.

Message Listener Containers

Due to its blocking nature, low-level subscription is not attractive as it requires connection
and thread management for every single listener. To alleviate this problem, Spring Data offers
RedisMessageListenerContainer which does all the heavy lifting on behalf of the user - users
familiar with EJB and JMS should find the concepts familiar as it is designed as close as possible to the
support in Spring Framework and its message-driven POJOs (MDPs)

RedisMessageListenerContainer acts as a message listener container; it is used to receive
messages from a Redis channel and drive the MessageListeners that are injected into it. The listener
container is responsible for all threading of message reception and dispatches into the listener for
processing. A message listener container is the intermediary between an MDP and a messaging
provider, and takes care of registering to receive messages, resource acquisition and release, exception
conversion and the like. This allows you as an application developer to write the (possibly complex)
business logic associated with receiving a message (and reacting to it), and delegates boilerplate Redis
infrastructure concerns to the framework.

Furthermore, to minimize the application footprint, RedisMessageListenerContainer allows one
connection and one thread to be shared by multiple listeners even though they do not share a
subscription. Thus no matter how many listeners or channels an application tracks, the runtime cost
will remain the same through out its lifetime. Moreover, the container allows runtime configuration
changes so one can add or remove listeners while an application is running without the need for restart.
Additionally, the container uses a lazy subscription approach, using a RedisConnection only when
needed - if all the listeners are unsubscribed, cleanup is automatically performed and the used thread
released.

To help with the asynch manner of messages, the container requires a
java.util.concurrent.Executor (or Spring's TaskExecutor) for dispatching the messages.
Depending on the load, the number of listeners or the runtime environment, one should change or tweak
the executor to better serve her needs - in particular in managed environments (such as app servers),
it is highly recommended to pick a a proper TaskExecutor to take advantage of its runtime.

The MessageListenerAdapter

The MessageListenerAdapter class is the final component in Spring's asynchronous messaging
support: in a nutshell, it allows you to expose almost any class as a MDP (there are of course some
constraints).

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 16

Consider the following interface definition. Notice that although the interface extends the
MessageListener interface, it can still be used as a MDP via the use of the
MessageListenerAdapter class. Notice also how the various message handling methods are
strongly typed according to the contents of the various Message types that they can receive and handle.
In addition, the channel or pattern to which a message is sent can be passed in to the method as the
second argument of type String:

public interface MessageDelegate {

 void handleMessage(String message);

 void handleMessage(Map message);

 void handleMessage(byte[] message);

 void handleMessage(Serializable message);

 // pass the channel/pattern as well

 void handleMessage(Serializable message, String channel);

}

public class DefaultMessageDelegate implements MessageDelegate {

 // implementation elided for clarity...

}

In particular, note how the above implementation of the MessageDelegate interface (the above
DefaultMessageDelegate class) has no Redis dependencies at all. It truly is a POJO that we will
make into an MDP via the following configuration.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:redis="http://www.springframework.org/schema/redis"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/redis http://www.springframework.org/schema/

redis/spring-redis.xsd">

 <!-- the default ConnectionFactory -->

 <redis:listener-container>

 <!-- the method attribute can be skipped as the default method name is "handleMessage"

 -->

 <redis:listener ref="listener" method="handleMessage" topic="chatroom" />

 </redis:listener-container>

 <bean id="listener" class="redisexample.DefaultMessageDelegate"/>

 ...

<beans>

Note
The listener topic can be either a channel (e.g. topic="chatroom") or a pattern (e.g.
topic="*room")

The example above uses the Redis namespace to declare the message listener container and
automatically register the POJOs as listeners. The full blown, beans definition is displayed below:

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 17

<!-- this is the Message Driven POJO (MDP) -->

<bean id="messageListener"

 class="org.springframework.data.redis.listener.adapter.MessageListenerAdapter">

 <constructor-arg>

 <bean class="redisexample.DefaultMessageDelegate"/>

 </constructor-arg>

</bean>

<!-- and this is the message listener container... -->

<bean id="redisContainer" class="org.springframework.data.redis.listener.RedisMessageListenerContainer">

 <property name="connectionFactory" ref="connectionFactory"/>

 <property name="messageListeners">

 <!-- map of listeners and their associated topics (channels or/and patterns) -->

 <map>

 <entry key-ref="messageListener">

 <bean class="org.springframework.data.redis.listener.ChannelTopic">

 <constructor-arg value="chatroom">

 </bean>

 </entry>

 </map>

 </property>

</bean>

Each time a message is received, the adapter automatically performs translation (using the configured
RedisSerializer) between the low-level format and the required object type transparently. Any
exception caused by the method invocation is caught and handled by the container (by default, being
logged).

4.9 Redis Transactions

Redis provides support for transactions through the multi, exec, and discard commands. These
operations are available on RedisTemplate, however RedisTemplate is not guaranteed to execute
all operations in the transaction using the same connection.

Spring Data Redis provides the SessionCallback interface for use when multiple operations need to
be performed with the same connection, as when using Redis transactions. For example:

 //execute a transaction

List<Object> txResults = redisTemplate.execute(new SessionCallback<List<Object>>() {

 public List<Object> execute(RedisOperations operations) throws DataAccessException {

 operations.multi();

 operations.opsForSet().add("key", "value1");

 // This will contain the results of all ops in the transaction

 return operations.exec();

 }

});

System.out.println("Number of items added to set: " + txResults.get(0));

RedisTemplate will use its value, hash key, and hash value serializers to deserialize all results of
exec before returning. There is an additional exec method that allows you to pass a custom serializer
for transaction results.

Note
An important change has been made to the exec methods of RedisConnection and
RedisTemplate in version 1.1. Previously these methods returned the results of transactions
directly from the connectors. This means that the data types often differed from those returned

http://redis.io/topics/transactions

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 18

from the methods of RedisConnection. For example, zAdd returns a boolean indicating that
the element has been added to the sorted set. Most connectors return this value as a long and
Spring Data Redis performs the conversion. Another common difference is that most connectors
return a status reply (usually the String "OK") for operations like set. These replies are typically
discarded by Spring Data Redis. Prior to 1.1, these conversions were not performed on the results
of exec. Also, results were not deserialized in RedisTemplate, so they often included raw byte
arrays. If this change breaks your application, you can set convertPipelineAndTxResults
to false on your RedisConnectionFactory to disable this behavior.

@Transactional Support

Transaction Support is disabled by default and has explicitly to be enabled for each
RedisTemplate in use by setting setEnableTransactionSupport(true). This will force binding
the RedisConnection in use to the current Thread triggering MULTI. If the transaction finishes
without errors, EXEC is called, otherwise DISCARD. Once in MULTI, RedisConnection would queue
write operations, all readonly operations, such as KEYS are piped to a fresh (non thread bound)
RedisConnection.

 /** Sample Configuration **/

@Configuration

public class RedisTxContextConfiguration {

 @Bean

 public StringRedisTemplate redisTemplate() {

 StringRedisTemplate template = new StringRedisTemplate(redisConnectionFactory());

 // explicitly enable transaction support

 template.setEnableTransactionSupport(true);

 return template;

 }

 @Bean

 public PlatformTransactionManager transactionManager() throws SQLException {

 return new DataSourceTransactionManager(dataSource());

 }

 @Bean

 public RedisConnectionFactory redisConnectionFactory(

 // jedis, lettuce, srp,...

);

 @Bean

 public DataSource dataSource() throws SQLException {

 // ...

 }

}

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 19

 /** Usage Constrainsts **/

 // executed on thread bound connection

 template.opsForValue().set("foo", "bar");

 // read operation executed on a free (not tx-aware) connection

 template.keys("*");

 // returns null as values set within transaction are not visible

 template.opsForValue().get("foo");

4.10 Pipelining

Redis provides support for pipelining, which involves sending multiple commands to the server without
waiting for the replies and then reading the replies in a single step. Pipelining can improve performance
when you need to send several commands in a row, such as adding many elements to the same List.

Spring Data Redis provides several RedisTemplate methods for executing commands in a pipeline.
If you don't care about the results of the pipelined operations, you can use the standard execute
method, passing true for the pipeline argument. The executePipelined methods will execute
the provided RedisCallback or SessionCallback in a pipeline and return the results. For example:

 //pop a specified number of items from a queue

List<Object> results = stringRedisTemplate.executePipelined(new RedisCallback<Object>() {

 public Object doInRedis(RedisConnection connection) throws DataAccessException {

 StringRedisConnection stringRedisConn = (StringRedisConnection)connection;

 for(int i=0; i< batchSize; i++) {

 stringRedisConn.rPop("myqueue");

 }

 return null;

 }

});

The example above executes a bulk right pop of items from a queue in a pipeline. The results List
contains all of the popped items. RedisTemplate uses its value, hash key, and hash value serializers to
deserialize all results before returning, so the returned items in the above example will be Strings. There
are additional executePipelined methods that allow you to pass a custom serializer for pipelined
results.

Note that the value returned from the RedisCallback is required to be null, as this value is discarded
in favor of returning the results of the pipelined commands.

Note
An important change has been made to the closePipeline method of RedisConnection
in version 1.1. Previously this method returned the results of pipelined operations directly
from the connectors. This means that the data types often differed from those returned by
the methods of RedisConnection. For example, zAdd returns a boolean indicating that
the element has been added to the sorted set. Most connectors return this value as a long
and Spring Data Redis performs the conversion. Another common difference is that most
connectors return a status reply (usually the String "OK") for operations like set. These
replies are typically discarded by Spring Data Redis. Prior to 1.1, these conversions were not
performed on the results of closePipeline. If this change breaks your application, you can set
convertPipelineAndTxResults to false on your RedisConnectionFactory to disable
this behavior.

http://redis.io/topics/pipelining

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 20

4.11 Redis Scripting

Redis versions 2.6 and higher provide support for execution of Lua scripts through the eval and
evalsha commands. Spring Data Redis provides a high-level abstraction for script execution that handles
serialization and automatically makes use of the Redis script cache.

Scripts can be run through the execute methods of RedisTemplate. RedisTemplate uses a
configurable ScriptExecutor to execute the provided script. By default, the ScriptExecutor takes
care of serializing the provided keys and arguments and deserializing the script result. This is done with
the RedisTemplate key and value serializers. There is an additional execute method that allows you
to pass custom serializers for the script arguments and result.

The default ScriptExecutor optimizes performance by retrieving the SHA1 of the script and
attempting first to run evalsha, falling back to eval if the script is not yet present in the Redis script
cache.

Here's an example that executes a common "check-and-set" scenario using a Lua script. This is an
ideal use case for a Redis script, as it requires that we execute a set of commands atomically and the
behavior of one command is influenced by the result of another.

@Bean

public RedisScript<Boolean> script() {

 DefaultRedisScript<Boolean> redisScript = new DefaultRedisScript<Boolean>();

 redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("META-INF/

scripts/checkandset.lua")));

 redisScript.setResultType(Boolean.class);

}

public class Example {

 @Autowired

 RedisScript<Boolean> script;

 public boolean checkAndSet(String expectedValue, String newValue) {

 return redisTemplate.execute(script, Collections.singletonList("key"),

 expectedValue, newValue);

 }

}

-- checkandset.lua

local current = redis.call('GET', KEYS[1])

if current == ARGV[1]

then

 redis.call('SET', KEYS[1], ARGV[2])

 return true

end

return false

The XML above configures a DefaultRedisScript pointing to a file called checkandset.lua,
which is expected to return a boolean value. The script resultType should be one of Long, Boolean,
List, or deserialized value type. It can also be null if the script returns a throw-away status (i.e "OK").
It is ideal to configure a single instance of DefaultRedisScript in your application context to avoid
re-calculation of the script's SHA1 on every script execution.

http://redis.io/commands/eval
http://redis.io/commands/evalsha

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 21

The checkAndSet method above then executes the configured RedisScript with the provided key
and arguments and returns the result.

Scripts can be executed within a SessionCallback as part of a transaction or pipeline. See
Section 4.9, “Redis Transactions” and Section 4.10, “Pipelining” for more information.

The scripting support provided by Spring Data Redis also allows you to schedule Redis scripts for
periodic execution using the Spring Task and Scheduler abstractions. See the Spring Framework
documentation for more details.

4.12 Support Classes

Package org.springframework.data.redis.support offers various reusable components that
rely on Redis as a backing store. Curently the package contains various JDK-based interface
implementations on top of Redis such as atomic counters and JDK Collections.

The atomic counters make it easy to wrap Redis key incrementation while the collections allow easy
management of Redis keys with minimal storage exposure or API leakage: in particular the RedisSet
and RedisZSet interfaces offer easy access to the set operations supported by Redis such as
intersection and union while RedisList implements the List, Queue and Deque contracts (and
their equivalent blocking siblings) on top of Redis, exposing the storage as a FIFO (First-In-First-Out),
LIFO (Last-In-First-Out) or capped collection with minimal configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd">

 <bean id="queue" class="org.springframework.data.redis.support.collections.DefaultRedisList">

 <constructor-arg ref="redisTemplate"/>

 <constructor-arg value="queue-key"/>

 </bean>

</beans>

public class AnotherExample {

 // injected

 private Deque<String> queue;

 public void addTag(String tag) {

 queue.push(tag);

 }

}

As shown in the example above, the consuming code is decoupled from the actual storage
implementation - in fact there is no indication that Redis is used underneath. This makes moving
from development to production environments transparent and highly increases testability (the Redis
implementation can just as well be replaced with an in-memory one).

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/Collection.html

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 22

Support for Spring Cache Abstraction

Spring Redis provides an implementation for Spring cache abstraction through the
org.springframework.data.redis.cache package. To use Redis as a backing implementation,
simply add RedisCacheManager to your configuration:

<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xmlns:cache="http://www.springframework.org/schema/cache"

 xmlns:c="http://www.springframework.org/schema/c"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/cache http://www.springframework.org/schema/

cache/spring-cache.xsd">

 <!-- turn on declarative caching -->

 <cache:annotation-driven />

 <!-- declare Redis Cache Manager -->

 <bean id="cacheManager" class="org.springframework.data.redis.cache.RedisCacheManager" c:template-

ref="redisTemplate"/>

</beans>

Note
By default RedisCacheManager will lazily initialize RedisCache whenever a Cache is
requested. This can be changed by predefining a Set of cache names.

Note
By default RedisCacheManager will not participate in any ongoing transaction. Use
setTransactionAware to enable transaction support.

4.13 Roadmap ahead

Spring Data Redis project is in its early stages. We are interested in feedback, knowing what your use
cases are, what are the common patters you encounter so that the Redis module better serves your
needs. Do contact us using the channels mentioned above, we are interested in hearing from you!

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html

Part III. Appendixes

Document structure
Various appendixes outside the reference documentation.

Appendix A, Spring Data Redis Schema(s) defines the schemas provided by Spring Data Redis.

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 24

Appendix A. Spring Data Redis
Schema(s)
Core schema

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 25

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.springframework.org/schema/redis"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:tool="http://www.springframework.org/schema/tool"

 targetNamespace="http://www.springframework.org/schema/redis"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:import namespace="http://www.springframework.org/schema/

tool" schemaLocation="http://www.springframework.org/schema/tool/spring-tool.xsd"/>

 <xsd:annotation>

 <xsd:documentation><![CDATA[

Defines the configuration elements for the Spring Data Redis support.

Allows for configuring Redis listener containers in XML 'shortcut' style.

]]></xsd:documentation>

 </xsd:annotation>

 <xsd:element name="listener-container">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

Container of Redis listeners. All listeners will be hosted by the same container.

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation>

 <tool:exports type="org.springframework.data.redis.listener.RedisMessageListenerContainer"/

>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="listener" type="listenerType" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="connection-

factory" type="xsd:string" default="redisConnectionFactory">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

A reference to the Redis ConnectionFactory bean.

Default is "redisConnectionFactory".

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation kind="ref">

 <tool:expected-

type type="org.springframework.data.redis.connection.ConnectionFactory"/>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="task-executor" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing

Redis listener invokers. Default is a SimpleAsyncTaskExecutor.

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation kind="ref">

 <tool:expected-type type="java.util.concurrent.Executor"/>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="subscription-task-executor" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for listening

to Redis messages. By default reuses the 'task-executor' value.

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation kind="ref">

 <tool:expected-type type="java.util.concurrent.Executor"/>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="topic-serializer" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

A reference to the RedisSerializer strategy for converting Redis channels/patterns to

serialized format. Default is a StringRedisSerializer.

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation kind="ref">

 <tool:expected-

type type="org.springframework.data.redis.serializer.RedisSerializer"/>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="phase" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

The lifecycle phase within which this container should start and stop. The lower

the value the earlier this container will start and the later it will stop. The

default is Integer.MAX_VALUE meaning the container will start as late as possible

and stop as soon as possible.

]]></xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="listenerType">

 <xsd:attribute name="ref" type="xsd:string" use="required">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

 The bean name of the listener object, implementing

 the MessageListener interface or defining the specified listener method.

 Required.

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation kind="ref"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="topic" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

The topics(s) to which the listener is subscribed. Can be (in Redis terminology) a

channel or/and a pattern. Multiple values can be specified by separating them with

spaces. Patterns can be specified by using the '*' character.

]]></xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="method" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

The name of the listener method to invoke. If not specified,

the target bean is supposed to implement the MessageListener

interface or provide a method named 'handleMessage'.

]]></xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="serializer" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

A reference to the RedisSerializer strategy for converting Redis Messages to

listener method arguments. Default is a StringRedisSerializer.

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation kind="ref">

 <tool:expected-

type type="org.springframework.data.redis.serializer.RedisSerializer"/>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

 <xsd:element name="collection">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

Factory creating collections on top of Redis keys.

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation>

 <tool:exports type="org.springframework.data.redis.support.collections.RedisCollectionFactoryBean"/

>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:attribute name="id" type="xsd:ID">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

The name of the Redis collection.]]></xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="key" type="xsd:string" use="optional">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

Redis key of the created collection. Defaults to bean id.

]]></xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="template" type="xsd:string" default="redisTemplate">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

A reference to a RedisTemplate bean.Default is "redisTemplate".

]]></xsd:documentation>

 <xsd:appinfo>

 <tool:annotation kind="ref">

 <tool:expected-

type type="org.springframework.data.redis.core.RedisTemplate"/>

 </tool:annotation>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="type" default="LIST" use="optional">

 <xsd:annotation>

 <xsd:documentation><![CDATA[

The collection type (default is list).

If the key exists, its type takes priority. The type is used to disambiguate the

 collection type (map vs properties) or

specify one in case the key is missing.]]></xsd:documentation>

 </xsd:annotation>

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="LIST"/>

 <xsd:enumeration value="SET"/>

 <xsd:enumeration value="ZSET"/>

 <xsd:enumeration value="MAP"/>

 <xsd:enumeration value="PROPERTIES"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 26

Appendix B. Spring Data Redis
Supported Commands
Table B.1. Redis commands supported by RedisTemplate.

Command Template Support

APPEND X

AUTH X

BGREWRITEAOF X

BGSAVE X

BITCOUNT X

BITOP X

BLPOP X

BRPOP X

BRPOPLPUSH X

CLIENT KILL X

CLIENT GETNAME X

CLIENT LIST X

CLIENT SETNAME X

CONFIG GET X

CONFIG RESETSTAT X

CONFIG REWRITE -

CONFIG SET X

DBSIZE X

DEBUG OBJECT -

DEBUG SEGFAULT -

DECR X

DECRBY X

DEL X

DISCARD X

DUMP X

ECHO X

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 27

Command Template Support

EVAL X

EVALSHA X

EXEC X

EXISTS X

EXPIRE X

EXPIREAT X

FLUSHALL X

FLUSHDB X

GET X

GETBIT X

GETRANGE X

GETSET X

HDEL X

HEXISTS X

HGET X

HGETALL X

HINCRBY X

HINCRBYFLOAT X

HKEYS X

HLEN X

HMGET X

HMSET X

HSCAN X

HSET X

HSETNX X

HVALS X

INCR X

INCRBY X

INCRBYFLOAT X

INFO X

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 28

Command Template Support

KEYS X

LASTSAVE X

LINDEX X

LINSERT X

LLEN X

LPOP X

LPUSH X

LPUSHX X

LRANGE X

LREM X

LSET X

LTRIM X

MGET X

MIGRATE -

MONITOR -

MOVE X

MSET X

MSETNX X

MULTI X

OBJECT -

PERSIST X

PEXIPRE X

PEXPIREAT X

PING X

PSETEX X

PSUBSCRIBE X

PTTL X

PUBLISH X

PUBSUB -

PUBSUBSCRIBE -

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 29

Command Template Support

QUIT X

RANDOMKEY X

RENAME X

RENAMENX X

RESTORE X

RPOP X

RPOPLPUSH X

RPUSH X

RPUSHX X

SADD X

SAVE X

SCAN X

SCARD X

SCRIPT EXITS X

SCRIPT FLUSH X

SCRIPT KILL X

SCRIPT LOAD X

SDIFF X

SDIFFSTORE X

SELECT X

SENTINEL FAILOVER -

SENTINEL GET-MASTER-ADD-BY-NAME -

SENTINEL MASTER -

SENTINEL MASTERS -

SENTINEL MONITOR -

SENTINEL REMOVE -

SENTINEL RESET -

SENTINEL SET -

SENTINEL SLAVES -

SET X

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 30

Command Template Support

SETBIT X

SETEX X

SETNX X

SETRANGE X

SHUTDOWN X

SINTER X

SINTERSTORE X

SISMEMBER X

SLAVEOF X

SLOWLOG -

SMEMBERS X

SMOVE X

SORT X

SPOP X

SRANDMEMBER X

SREM X

SSCAN X

STRLEN X

SUBSCRIBE X

SUNION X

SUNIONSTORE X

SYNC -

TIME X

TTL X

TYPE X

UNSUBSCRIBE X

UNWATCH X

WATCH X

ZADD X

ZCARD X

Spring Data Redis

1.4.0.RC1
Spring Data Redis

Reference Documentation 31

Command Template Support

ZCOUNT X

ZINCRBY X

ZINTERSTORE X

ZRANGE X

ZRANGEBYSCORE X

ZRANK X

ZREM X

ZREMRANGEBYRANK X

ZREVRANGE X

ZREVRANGEBYSCORE X

ZREVRANK X

ZSCAN X

ZSCORE X

ZUNINONSTORE X

	Spring Data Redis Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Why Spring Data Redis?
	2. Requirements
	3. Getting Started
	3.1 First Steps
	Knowing Spring
	Knowing NoSQL and Key Value stores
	Trying Out The Samples

	3.2 Need Help?
	Community Support
	Professional Support

	3.3 Following Development

	Part II. Reference Documentation
	4. Redis support
	4.1 Redis Requirements
	4.2 Redis Support High Level View
	4.3 Connecting to Redis
	RedisConnection and RedisConnectionFactory
	Configuring Jedis connector
	Configuring JRedis connector
	Configuring SRP connector
	Configuring Lettuce connector

	4.4 Redis Sentinel Support
	4.5 Working with Objects through RedisTemplate
	4.6 String-focused convenience classes
	4.7 Serializers
	4.8 Redis Messaging/PubSub
	Sending/Publishing messages
	Receiving/Subscribing for messages
	Message Listener Containers
	The MessageListenerAdapter

	4.9 Redis Transactions
	@Transactional Support

	4.10 Pipelining
	4.11 Redis Scripting
	4.12 Support Classes
	Support for Spring Cache Abstraction

	4.13 Roadmap ahead

	Part III. Appendixes
	Appendix A. Spring Data Redis Schema(s)
	Appendix B. Spring Data Redis Supported Commands

