Spring for Apache Kafka

Gary Russell, Artem Bilan, Biju Kunjummen, Jay Bryant

Version 2.7.0-M2

Table of Contents

1. Preface
2. What’s new?
2.1. What’s New in 2.7 Since 2.6
2.1.1. Kafka Client Version
2.1.2. Listener Container Changes
2.1.3. @KafkalListener Changes
2.1.4. DeadlLetterPublishingRecover Changes
2.1.5. ChainedKafkaTransactionManager is Deprecated
3. Introduction
3.1. Quick Tour
3.1.1. Compatibility
3.1.2. Getting Started
Spring Boot Consumer App
Spring Boot Producer App
With Java Configuration (No Spring Boot)
4. Reference
4.1. Using Spring for Apache Kafka
4.1.1. Connecting to Kafka
Factory Listeners
4.1.2. Configuring Topics
4.1.3. Sending Messages
Using KafkaTemplate
Using RoutingKafkaTemplate
Using DefaultKafkaProducerFactory
Using ReplyingKafkaTemplate
Reply Type Message<?>
Aggregating Multiple Replies
4.1.4. Receiving Messages
Message Listeners
Message Listener Containers
@Kafkalistener Annotation
Obtaining the Consumer group.id
Container Thread Naming
@KafkalListener as a Meta Annotation
@KafkalListener on a Class
@Kafkalistener Lifecycle Management
@Kafkalistener @Payload Validation
Rebalancing Listeners

© 00 O O O U1 Ul b W W W W W w N

U1 U1 U1 U1 U1 U1 U1 W W W W W N NN R e e
O O U1 b W W DN WO U Uk W Ul OO Ul R R

Forwarding Listener Results using @SendTo
Filtering Messages
Retrying Deliveries
Stateful Retry
4.1.5. Listener Container Properties
4.1.6. Application Events
Detecting Idle and Non-Responsive Consumers
4.1.7. Topic/Partition Initial Offset
4.1.8. Seeking to a Specific Offset
4.1.9. Container factory
4.1.10. Thread Safety
4.1.11. Monitoring
Monitoring Listener Performance
Monitoring KafkaTemplate Performance
Micrometer Native Metrics
4.1.12. Transactions
Overview
Using KafkaTransactionManager
Transaction Synchronization
Using Consumer-Initiated Transactions
KafkaTemplate Local Transactions
transactionIdPrefix
KafkaTemplate Transactional and non-Transactional Publishing
Transactions with Batch Listeners
4.1.13. Exactly Once Semantics
4.1.14. Wiring Spring Beans into Producer/Consumer Interceptors
4.1.15. Pausing and Resuming Listener Containers
4.1.16. Pausing and Resuming Partitions on Listener Containers
4.1.17. Serialization, Deserialization, and Message Conversion
Overview
String serialization
JSON
Delegating Serializer and Deserializer
Retrying Deserializer
Spring Messaging Message Conversion
Using ErrorHandlingDeserializer
Payload Conversion with Batch Listeners
ConversionService Customization
Adding custom HandlerMethodArgumentResolver to @KafkalListener
4.1.18. Message Headers
4.1.19. Null Payloads and Log Compaction of 'Tombstone' Records

60
64

65
65
67
71
74
76
77
83
84
84
85
85
85
87
87
88
88
89
89
89
90
90
92
93
97
100
100
100
101
102
107
108
108
110
112
114
114
115
119

4.1.20. Handling Exceptions 121

Listener Error Handlers 121
Container Error Handlers 123
Consumer-Aware Container Error Handlers 124
Seek To Current Container Error Handlers 125
Retrying Batch Error Handler 129
Recovering Batch Error Handler 129
Container Stopping Error Handlers 132
After-rollback Processor 132
Delivery Attempts Header 135
Publishing Dead-letter Records 135
4.1.21. JAAS and Kerberos 139
4.2. Kafka Streams Support 139
4.2.1. Basics 139
4.2.2. Spring Management 140
4.2.3. KafkaStreams Micrometer Support 143
4.2.4. Streams JSON Serialization and Deserialization 143
4.2.5. Using KafkaStreamBrancher 143
4.2.6. Configuration 144
4.2.7. Header Enricher 145
4.2.8. MessagingTransformer 145
4.2.9. Recovery from Deserialization Exceptions 145
4.2.10. Kafka Streams Example 146
4.3. Testing Applications 149
4.3.1. KafkaTestUtils 149
4.3.2. JUnit 149
4.3.3. Configuring Topics 151
4.3.4. Using the Same Brokers for Multiple Test Classes 152
4.3.5. @EmbeddedKafka Annotation 153
4.3.6. @EmbeddedKafka Annotation with JUnit5 156
4.3.7. Embedded Broker in @SpringBootTest Annotations 157
JUnit4 Class Rule 157
@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean 158
4.3.8. Hamcrest Matchers 159
4.3.9. Assert] Conditions 160
4.3.10. Example 162

5. Non-Blocking Retries 165
5.1. How The Pattern Works 165
5.2. Configuration 165
5.2.1. Using the @RetryableTopic annotation 165

5.2.2. Using RetryTopicConfiguration beans 166

5.3. Features
5.3.1. BackOff Configuration
5.3.2. Single Topic Fixed Delay Retries
5.3.3. Global timeout
5.3.4. Exception Classifier
5.3.5. Include and Exclude Topics
5.3.6. Topics AutoCreation
5.4. Topic Naming
5.4.1. Retry Topics and DIt Suffixes
5.4.2. Appending the Topic’s Index or Delay
5.5. DIt Strategies
5.5.1. DIt Processing Method
5.5.2. DIt Failure Behavior
5.5.3. Configuring No DIt
5.6. Specifying a ListenerContainerFactory
6. Tips, Tricks and Examples
6.1. Manually Assigning All Partitions

6.2. Examples of Kafka Transactions with Other Transaction Managers

7. Other Resources
Appendix A: Override Spring Boot Dependencies
Appendix B: Change History
B.1. Changes between 2.5 and 2.6
B.1.1. Kafka Client Version
B.1.2. Listener Container Changes
B.1.3. @KafkaListener Changes
B.1.4. ErrorHandler Changes
B.1.5. Producer Factory Changes
B.2. Changes between 2.4 and 2.5
B.2.1. Consumer/Producer Factory Changes
B.2.2. StreamsBuilderFactoryBean Changes
B.2.3. Kafka Client Version
B.2.4. Class/Package Changes
B.2.5. Delivery Attempts Header
B.2.6. @KafkaListener Changes
B.2.7. Listener Container Changes
B.2.8. KafkaTemplate Changes
B.2.9. Kafka String Serializer/Deserializer
B.2.10. JsonDeserializer
B.2.11. Delegating Serializer/Deserializer
B.2.12. Testing Changes
B.3. Changes between 2.3 and 2.4

167
167
168
169
170
170
171
172
173
173
174
174
175
176
177
178
178
179
183
184
188
188
188
188
188
188
188
189
189
189
189
189
189
189
190
190
190
191
191
191
191

B.3.1. Kafka Client Version 191

B.3.2. ConsumerAwareRebalanceListener 191
B.3.3. GenericErrorHandler 191
B.3.4. KafkaTemplate 191
B.3.5. AggregatingReplyingKafkaTemplate 191
B.3.6. Listener Container 192
B.3.7. @KafkaListener 192
B.3.8. Kafka Streams 192
B.4. Changes Between 2.2 and 2.3 192
B.4.1. Tips, Tricks and Examples 192
B.4.2. Kafka Client Version 192
B.4.3. Class/Package Changes 192
B.4.4. Configuration Changes 192
B.4.5. Producer and Consumer Factory Changes 193
B.4.6. Listener Container Changes 193
B.4.7. ErrorHandler Changes 194
B.4.8. TopicBuilder 194
B.4.9. Kafka Streams Changes 194
B.4.10. JSON Component Changes 195
B.4.11. ReplyingKafkaTemplate 195
B.4.12. AggregatingReplyingKafkaTemplate 195
B.4.13. Transaction Changes 195
B.4.14. New Delegating Serializer/Deserializer 195
B.4.15. New Retrying Deserializer 195
B.5. Changes Between 2.1 and 2.2 196
B.5.1. Kafka Client Version 196
B.5.2. Class and Package Changes 196
B.5.3. After Rollback Processing 196
B.5.4. ConcurrentKafkalistenerContainerFactory Changes 196
B.5.5. Listener Container Changes 196
B.5.6. @KafkaListener Changes 197
B.5.7. Header Mapping Changes 197
B.5.8. Embedded Kafka Changes 197
B.5.9. JsonSerializer/Deserializer Enhancements 197
B.5.10. Kafka Streams Changes 198
B.5.11. Transactional ID 198
B.6. Changes Between 2.0 and 2.1 198
B.6.1. Kafka Client Version 198
B.6.2. JSON Improvements 198
B.6.3. Container Stopping Error Handlers 198

B.6.4. Pausing and Resuming Containers 198

B.6.5. Stateful Retry 198

B.6.6. Client ID 199
B.6.7. Logging Offset Commits 199
B.6.8. Default @KafkaHandler 199
B.6.9. ReplyingKafkaTemplate 199
B.6.10. ChainedKafkaTransactionManager 199
B.6.11. Migration Guide from 2.0 199
B.7. Changes Between 1.3 and 2.0 199
B.7.1. Spring Framework and Java Versions 199
B.7.2. @Kafkalistener Changes 199
B.7.3. Message Listeners 199
B.7.4. Using ConsumerAwareRebalancelistener 200
B.8. Changes Between 1.2 and 1.3 200
B.8.1. Support for Transactions 200
B.8.2. Support for Headers 200
B.8.3. Creating Topics 200
B.8.4. Support for Kafka Timestamps 200
B.8.5. @KafkalListener Changes 200
B.8.6. 0EmbeddedKafka Annotation 200
B.8.7. Kerberos Configuration 201
B.9. Changes Between 1.1 and 1.2 201
B.10. Changes Between 1.0 and 1.1 201
B.10.1. Kafka Client 201
B.10.2. Batch Listeners 201
B.10.3. Null Payloads 201
B.10.4. Initial Offset 201

B.10.5. Seek 201

© 2016 - 2021 VMware, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-
based messaging solutions. We provide a “template” as a high-level abstraction for sending

messages. We also provide support for Message-driven POJOs.

Chapter 2. What’s new?

2.1. What’s New in 2.7 Since 2.6

This section covers the changes made from version 2.5 to version 2.6. For changes in earlier
version, see Change History.

2.1.1. Kafka Client Version

This version requires the 2.7.0 kafka-clients.

2.1.2. Listener Container Changes

The onlyLogRecordMetadata container property is now true by default.
A new container property stopImmediate is now available.

See Listener Container Properties for more information.

Error handlers that use a BackOff between delivery attempts (e.g. SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor) will now exit the back off interval soon after the container is
stopped, rather than delaying the stop. See After-rollback Processor and Seek To Current Container
Error Handlers for more information.

Error handlers and after rollback processors that extend FailedRecordProcessor can now be
configured with one or more RetrylListener s to receive information about retry and recovery
progress.

See See After-rollback Processor, Seek To Current Container Error Handlers, and Recovering Batch
Error Handler for more information.

The RecordInterceptor now has additional methods called after the listener returns (normally, or by
throwing an exception). In addition, there is now a BatchInterceptor for batch listeners. See
Message Listener Containers for more information.

2.1.3. eKafkalistener Changes

You can now validate the payload parameter of @KafkaHandler methods (class-level listeners). See
@Kafkalistener @Payload Validation for more information.

2.1.4. DeadLetterPublishingRecover Changes

Now, if both the key and value fail deserialization, the original values are published to the DLT.
Previously, the value was populated but the key DeserializationException remained in the headers.
There is a breaking API change, if you subclassed the recoverer and overrode the
createProducerRecord method.

In addition, the recoverer verifies that the partition selected by the destination resolver actually
exists before publishing to it.

See Publishing Dead-letter Records for more information.

2.1.5. ChainedKafkaTransactionManager is Deprecated

See Transactions for more information.

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka
and the underlying concepts and some code snippets that can help you get up and running as
quickly as possible.

3.1. Quick Tour

Prerequisites: You must install and run Apache Kafka. Then you must put the spring-kafka JAR and
all of its dependencies on your class path. The easiest way to do that is to declare a dependency in

your build tool.

If you are not using Spring Boot, declare the spring-kafka jar as a dependency in your project.

Maven

<dependency>
<groupld>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.7.0-M2</version>

</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka:2.7.0-M2'

When using Spring Boot, (and you haven’t used start.spring.io to create your
project), omit the version and Boot will automatically bring in the correct version
that is compatible with your Boot version:

Maven
<dependency>
<groupId>org.springframework.kafka</groupId>

<artifactId>spring-kafka</artifactId>
</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka'

However, the quickest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits
and Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency.

https://start.spring.io

3.1.1. Compatibility
This quick tour works with the following versions:

* Apache Kafka Clients 2.7.0
* Spring Framework 5.3.x

* Minimum Java version: 8

3.1.2. Getting Started

The simplest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits and
Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency. Refer to the
Spring Boot documentation for more information about its opinionated auto configuration of the
infrastructure beans.

Here is a minimal consumer application.

Spring Boot Consumer App

https://start.spring.io
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-kafka

Example 1. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

(id = "myId", topics = "topicl")
public void listen(String in) {
System.out.println(in);
}

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@KafkalListener(id = "myId", topics = ["topic1"])
fun listen(‘in‘: String?) {

println(‘in')
}

fun main(args: Array<String>) = runApplication<Application>(*args)

Example 2. application.properties

spring.kafka.consumer.auto-offset-reset=earliest

The NewTopic bean causes the topic to be created on the broker; it is not needed if the topic already
exists.

Spring Boot Producer App

Example 3. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> {
template.send("topic1", "test");
i

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@Bean
fun runner(template: KafkaTemplate<String?, String?>) =

ApplicationRunner { template.send("topicl1", "test") }

fun main(args: Array<String>) = runApplication<Application>(*args)

With Java Configuration (No Spring Boot)

Spring for Apache Kafka is designed to be used in a Spring Application Context. For

o example, if you create the listener container yourself outside of a Spring context,
not all functions will work unless you satisfy all of the ---Aware interfaces that the
container implements.

Here is an example of an application that does not use Spring Boot; it has both a Consumer and
Producer.

Example 4. Without Boot
Java
public class Sender {

public static void main(String[] args) {
AnnotationConfigApplicationContext context = new
AnnotationConfigApplicationContext(Config.class);
context.qgetBean(Sender.class).send("test", 42);

}
private final KafkaTemplate<Integer, String> template;

public Sender(KafkaTemplate<Integer, String> template) {
this.template = template;

}

public void send(String toSend, int key) {
this.template.send("topic1", key, toSend);
}

}
public class Listener {

(id = "listen1", topics = "topic1")
public void listen1(String in) {
System.out.println(in);
}

public class Config {

ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalistenerContainerFactory(ConsumerFactory<Integer,
String> consumerFactory) {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerProps());

}

10

private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "group");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

IntegerDeserializer.class);

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

StringDeserializer.class);

props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
/] ...
return props;

public Sender sender(KafkaTemplate<Integer, String> template) {
return new Sender(template);

}

public Listener listener() {
return new Listener();

}

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(senderProps());

}

private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer

.class);

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer

.class);

//...
return props;

public KafkaTemplate<Integer, String> kafkaTemplate(ProducerFactory<Integer,

String> producerFactory) {

Kotlin

return new KafkaTemplate<Integer, String>(producerFactory);

}

class Sender(private val template: KafkaTemplate<Int, String>) {

fun send(toSend: String, key: Int) {
template.send("topic1", key, toSend)
}

fun main(args: Array<String>) {
val context = runApplication<Sender>(*args)
context.getBean(Sender::class.java).send("test", 42)

}

class Listener {

@Kafkalistener(id = "listen1", topics = ["topic1"])
fun listen1(‘in‘: String) {

println(tin')
}

}

@Configuration
@EnableKafka
class Config {

@Bean
fun kafkalistenerContainerFactory(consumerFactory: ConsumerFactory<Int,
String>) =
ConcurrentKafkalistenerContainerFactory<Int, String>().also {
it.consumerFactory = consumerFactory }

@Bean
fun consumerFactory() = DefaultKafkaConsumerFactory<Int,
String>(consumerProps)

val consumerProps = mapOf(

ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ConsumerConfig.GROUP_ID_CONFIG to "group",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG to

IntegerDeserializer::class.java,
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG to

StringDeserializer::class.java,
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to "earliest"

)

@Bean
fun sender(template: KafkaTemplate<Int, String>) = Sender(template)

@Bean

fun listener() = Listener()

@Bean
fun producerFactory() = DefaultKafkaProducerFactory<Int, String>(senderProps)

val senderProps = mapOf(
ProducerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ProducerConfig.LINGER_MS_CONFIG to 10,
ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG to
IntegerSerializer::class.java,
ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG to
StringSerializer::class.java

)

@Bean
fun kafkaTemplate(producerFactory: ProducerFactory<Int, String>) =
KafkaTemplate(producerFactory)

}

As you can see, you have to define several infrastructure beans when not using Spring Boot.

13

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring for
Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

4.1. Using Spring for Apache Kafka

This section offers detailed explanations of the various concerns that impact using Spring for
Apache Kafka. For a quick but less detailed introduction, see Quick Tour.

4.1.1. Connecting to Kafka

* KafkaAdmin - see Configuring Topics
* ProducerFactory - see Sending Messages

» ConsumerFactory - see Receiving Messages

Starting with version 2.5, each of these extends KafkaResourceFactory. This allows changing the
bootstrap servers at runtime by adding a Supplier<String> to their configuration:
setBootstrapServersSupplier(() »). This will be called for all new connections to get the list of
servers. Consumers and Producers are generally long-lived. To close existing Producers, call reset()
on the DefaultKafkaProducerFactory. To close existing Consumers, call stop() (and then start()) on
the KafkalistenerEndpointRegistry and/or stop() and start() on any other listener container beans.

For convenience, the framework also provides an ABSwitchCluster which supports two sets of
bootstrap servers; one of which is active at any time. Configure the ABSwitchCluster and add it to the
producer and consumer factories, and the KafkaAdmin, by calling setBootstrapServersSupplier().
When you want to switch, call primary() or secondary() and call reset() on the producer factory to
establish new connection(s); for consumers, stop() and start() all listener containers. When using
@KafkalListener s, stop() and start() the KafkalListenerEndpointRegistry bean.

See the Javadocs for more information.

Factory Listeners

Starting with version 2.5, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory can be
configured with a Listener to receive notifications whenever a producer or consumer is created or
closed.

14

Producer Factory Listener
interface Listener<k, V> {

default void producerAdded(String id, Producer<K, V> producer) {
}

default void producerRemoved(String id, Producer<K, V> producer) {

}

Consumer Factory Listener
interface Listener<K, V> {

default void consumerAdded(String id, Consumer<K, V> consumer) {

}

default void consumerRemoved(String id, Consumer<K, V> consumer) {

}

In each case, the id is created by appending the client-id property (obtained from the metrics()
after creation) to the factory beanName property, separated by ..

These listeners can be used, for example, to create and bind a Micrometer KafkaClientMetrics
instance when a new client is created (and close it when the client is closed).

The framework provides listeners that do exactly that; see Micrometer Native Metrics.

4.1.2. Configuring Topics

If you define a KafkaAdmin bean in your application context, it can automatically add topics to the
broker. To do so, you can add a NewTopic @Bean for each topic to the application context. Version 2.3
introduced a new class TopicBuilder to make creation of such beans more convenient. The
following example shows how to do so:

15

Java

16

public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
return new KafkaAdmin(configs);

public NewTopic topicl() {
return TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build();

public NewTopic topic2() {
return TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

public NewTopic topic3() {
return TopicBuilder.name("thing3")
.assignReplicas(®, Arrays.asList(2, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

Kotlin

@Bean
fun admin() = KafkaAdmin(mapOf(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG to
"localhost:9092"))

@Bean
fun topic1() =
TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build()

©Bean
fun topic2() =
TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

@Bean
fun topic3() =
TopicBuilder.name("thing3")

.assignReplicas(@, Arrays.asList(@, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

Starting with version 2.6, you can omit .partitions() and/or replicas() and the broker defaults will
be applied to those properties. The broker version must be at least 2.4.0 to support this feature - see
KIP-464.

17

https://cwiki.apache.org/confluence/display/KAFKA/KIP-464%3A+Defaults+for+AdminClient%23createTopic

Java

public NewTopic topic4() {
return TopicBuilder.name("defaultBoth")
.build();

public NewTopic topich() {
return TopicBuilder.name("defaultPart")
.replicas(1)
.build();

public NewTopic topic6() {
return TopicBuilder.name("defaultRepl")

.partitions(3)
.build();
}
Kotlin
@Bean

fun topic4() = TopicBuilder.name("defaultBoth").build()

@Bean
fun topich()

TopicBuilder.name("defaultPart").replicas(1).build()

@Bean
fun topic6()

TopicBuilder.name("defaultRepl").partitions(3).build()

o When using Spring Boot, a KafkaAdmin bean is automatically registered so you only
need the NewTopic @Bean s.

By default, if the broker is not available, a message is logged, but the context continues to load. You
can programmatically invoke the admin’s initialize() method to try again later. If you wish this
condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable property to true. The
context then fails to initialize.

If the broker supports it (1.0.0 or higher), the admin increases the number of
o partitions if it is found that an existing topic has fewer partitions than the

NewTopic.numPartitions.

For more advanced features, you can use the AdminClient directly. The following example shows
how to do so:

18

private KafkaAdmin admin;

AdminClient client = AdminClient.create(admin.getConfigurationProperties());

client.close();

4.1.3. Sending Messages

This section covers how to send messages.

Using KafkaTemplate

This section covers how to use KafkaTemplate to send messages.

Overview

The KafkaTemplate wraps a producer and provides convenience methods to send data to Kafka
topics. The following listing shows the relevant methods from KafkaTemplate:

19

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data);

ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp,
K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V
data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long
timestamp, K key, V data);

ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);
Map<MetricName, ? extends Metric> metrics();

List<PartitionInfo> partitionsFor(String topic);

<T> T execute(ProducerCallback<K, V, T> callback);

// Flush the producer.

void flush();

interface ProducerCallback<K, V, T> {

T doInKafka(Producer<K, V> producer);

See the Javadoc for more detail.
The sendDefault API requires that a default topic has been provided to the template.

The API takes in a timestamp as a parameter and stores this timestamp in the record. How the user-
provided timestamp is stored depends on the timestamp type configured on the Kafka topic. If the
topic is configured to use CREATE_TIME, the user specified timestamp is recorded (or generated if not
specified). If the topic is configured to use LOG_APPEND_TIME, the user-specified timestamp is ignored
and the broker adds in the local broker time.

20

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/core/KafkaTemplate.html

The metrics and partitionsFor methods delegate to the same methods on the underlying Producer.
The execute method provides direct access to the underlying Producer.

To use the template, you can configure a producer factory and provide it in the template’s
constructor. The following example shows how to do so:

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.
class);
// See https://kafka.apache.org/documentation/#producerconfigs for more
properties
return props;

}

public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

Starting with version 2.5, you can now override the factory’s ProducerConfig properties to create
templates with different producer configurations from the same factory.

public KafkaTemplate<String, String> stringTemplate(ProducerFactory<String,
String> pf) {
return new KafkaTemplate<>(pf);

}

public KafkaTemplate<String, byte[]> bytesTemplate(ProducerFactory<String, byte[]>
pf) {
return new KafkaTemplate<>(pf,
Collections.singletonMap(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class));

}

21

https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html

Note that a bean of type ProducerFactory<?, 7> (such as the one auto-configured by Spring Boot) can
be referenced with different narrowed generic types.

You can also configure the template by using standard <bean/> definitions.
Then, to use the template, you can invoke one of its methods.

When you use the methods with a Message<?> parameter, the topic, partition, and key information is
provided in a message header that includes the following items:

» KafkaHeaders.TOPIC

e KafkaHeaders.PARTITION ID

e KafkaHeaders.MESSAGE_KEY

» KafkaHeaders.TIMESTAMP

The message payload is the data.

Optionally, you can configure the KafkaTemplate with a ProducerListener to get an asynchronous
callback with the results of the send (success or failure) instead of waiting for the Future to
complete. The following listing shows the definition of the ProducerListener interface:

public interface ProducerlListener<K, V> {

void onSuccess(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata);

void onError(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata,
Exception exception);

By default, the template is configured with a LoggingProducerListener, which logs errors and does
nothing when the send is successful.

For convenience, default method implementations are provided in case you want to implement
only one of the methods.

Notice that the send methods return a ListenableFuture<SendResult>. You can register a callback
with the listener to receive the result of the send asynchronously. The following example shows
how to do so:

22

ListenableFuture<SendResult<Integer, String>> future = template.send("myTopic",

"something");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(Throwable ex) {

}

1)

SendResult has two properties, a ProducerRecord and RecordMetadata. See the Kafka API
documentation for information about those objects.

The Throwable in onFailure can be cast to a KafkaProducerException; its failedProducerRecord
property contains the failed record.

Starting with version 2.5, you can use a KafkaSendCallback instead of a ListenableFutureCallback,
making it easier to extract the failed ProducerRecord, avoiding the need to cast the Throwable:

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(new KafkaSendCallback<Integer, String>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(KafkaProducerException ex) {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1

You can also use a pair of lambdas:

23

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(result -> {

}, (KafkaFailureCallback<Integer, String>) ex -> {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1)

If you wish to block the sending thread to await the result, you can invoke the future’s get()
method; using the method with a timeout is recommended. You may wish to invoke flush() before
waiting or, for convenience, the template has a constructor with an autoFlush parameter that
causes the template to flush() on each send. Flushing is only needed if you have set the linger.ms
producer property and want to immediately send a partial batch.

Examples

This section shows examples of sending messages to Kafka:

24

Example 5. Non Blocking (Async)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

ListenableFuture<SendResult<Integer, String>> future = template.send(record);

future.addCallback(new KafkaSendCallback<SendResult<Integer, String>>() {

public void onSuccess(SendResult<Integer, String> result) {
handleSuccess(data);

}

public void onFailure(KafkaProducerException ex) {
handleFailure(data, record, ex);

}

1)

Blocking (Sync)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

try {
template.send(record).get(10, TimeUnit.SECONDS);
handleSuccess(data);

}

catch (ExecutionException e) {
handleFailure(data, record, e.getCause());

}

catch (TimeoutException | InterruptedException e) {
handleFailure(data, record, e);

}

Note that the cause of the ExecutionException is KafkaProducerException with
failedProducerRecord property.

Using RoutingKafkaTemplate

the

Starting with version 2.5, you can use a RoutingKafkaTemplate to select the producer at runtime,

based on the destination topic name.

25

o The routing template does not support transactions, execute, flush, or metrics

operations because the topic is not known for those operations.

The template requires a map of java.util.regex.Pattern to ProducerFactory<Object,

Object>

instances. This map should be ordered (e.g. a LinkedHashMap) because it is traversed in order; you

should add more specific patterns at the beginning.

The following simple Spring Boot application provides an example of how to use the same template

to send to different topics, each using a different value serializer.

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public RoutingKafkaTemplate routingTemplate(GenericApplicationContext context,

ProducerFactory<Object, Object> pf) {

// Clone the PF with a different Serializer, register with Spring for
shutdown

Map<String, Object> configs = new HashMap<>(pf.getConfigurationProperties

));
configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

ByteArraySerializer.class);
DefaultKafkaProducerFactory<Object, Object> bytesPF = new
DefaultKafkaProducerFactory<>(configs);
context.registerBean(DefaultKafkaProducerFactory.class, "bytesPF",
bytesPF);

Map<Pattern, ProducerFactory<Object, Object>> map = new LinkedHashMap<>();

map.put(Pattern.compile("two"), bytesPF);

map.put(Pattern.compile(".+"), pf); // Default PF with StringSerializer

return new RoutingKafkaTemplate(map);

public ApplicationRunner runner(RoutingKafkaTemplate routingTemplate) {
return args -> {
routingTemplate.send("one", "thing1");
routingTemplate.send("two", "thing2".getBytes());

b

26

The corresponding @Kafkalistener s for this example are shown in Annotation Properties.

For another technique to achieve similar results, but with the additional capability of sending
different types to the same topic, see Delegating Serializer and Deserializer.

Using DefaultKafkaProducerFactory

As seen in Using KafkaTemplate, a ProducerFactory is used to create the producer.

When not using Transactions, by default, the DefaultKafkaProducerFactory creates a singleton
producer used by all clients, as recommended in the KafkaProducer javadocs. However, if you call
flush() on the template, this can cause delays for other threads using the same producer. Starting
with version 2.3, the DefaultKafkaProducerFactory has a new property producerPerThread. When set
to true, the factory will create (and cache) a separate producer for each thread, to avoid this issue.

When producerPerThread is true, user code must call closeThreadBoundProducer() on

o the factory when the producer is no longer needed. This will physically close the
producer and remove it from the ThreadlLocal. Calling reset() or destroy() will not
clean up these producers.

Also see KafkaTemplate Transactional and non-Transactional Publishing.

When creating a DefaultKafkaProducerFactory, key and/or value Serializer classes can be picked up
from configuration by calling the constructor that only takes in a Map of properties (see example in
Using KafkaTemplate), or Serializer instances may be passed to the DefaultKafkaProducerFactory
constructor (in which case all Producer s share the same instances). Alternatively you can provide
Supplier<Serializer> s (starting with version 2.3) that will be used to obtain separate Serializer
instances for each Producer:

public ProducerFactory<Integer, CustomValue> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs(), null, () -> new
CustomValueSerializer());

}

public KafkaTemplate<Integer, CustomValue> kafkaTemplate() {
return new KafkaTemplate<Integer, CustomValue>(producerFactory());

}

Starting with version 2.5.10, you can now update the producer properties after the factory is
created. This might be useful, for example, if you have to update SSL key/trust store locations after
a credentials change. The changes will not affect existing producer instances; call reset() to close
any existing producers so that new producers will be created using the new properties. NOTE: You
cannot change a transactional producer factory to non-transactional, and vice-versa.

Two new methods are now provided:

27

void updateConfigs(Map<String, Object> updates);

void removeConfig(String configKey);

Using ReplyingKafkaTemplate

Version 2.1.3 introduced a subclass of KafkaTemplate to provide request/reply semantics. The class is
named ReplyingKafkaTemplate and has two additional methods; the following shows the method
signatures:

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record,
Duration replyTimeout);

The result is a ListenableFuture that is asynchronously populated with the result (or an exception,
for a timeout). The result also has a sendFuture property, which is the result of calling
KafkaTemplate.send(). You can use this future to determine the result of the send operation.

If the first method is used, or the replyTimeout argument is null, the template’s defaultReplyTimeout
property is used (5 seconds by default).

The following Spring Boot application shows an example of how to use the feature:

28

public class KRequestingApplication {

public static void main(String[] args) {
SpringApplication.run(KRequestingApplication.class, args).close();
}

public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String>
template) {
return args -> {
ProducerRecord<String, String> record = new ProducerRecord<>(
"kRequests", "foo");
RequestReplyFuture<String, String, String> replyFuture = template
.sendAndReceive(record);
SendResult<String, String> sendResult = replyFuture.getSendFuture()
.get(10, TimeUnit.SECONDS);
System.out.println("Sent ok: " + sendResult.getRecordMetadata());
ConsumerRecord<String, String> consumerRecord = replyFuture.get(10,
TimeUnit.SECONDS);
System.out.println("Return value:

+ consumerRecord.value());

};

public ReplyingKafkaTemplate<String, String, String> replyingTemplate(
ProducerFactory<String, String> pf,
ConcurrentMessagelListenerContainer<String, String> repliesContainer) {

return new ReplyingKafkaTemplate<>(pf, repliesContainer);

public ConcurrentMessagelistenerContainer<String, String> repliesContainer(
ConcurrentKafkalistenerContainerFactory<String, String>
containerFactory) {

ConcurrentMessagelistenerContainer<String, String> repliesContainer =
containerFactory.createContainer("replies");

repliesContainer.getContainerProperties().setGroupId("repliesGroup”);

repliesContainer.setAutoStartup(false);

return repliesContainer;

public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)

29

.build();

public NewTopic kReplies() {
return TopicBuilder.name("kReplies")
.partitions(10)
.replicas(2)
.build();

Note that we can use Boot’s auto-configured container factory to create the reply container.

If a non-trivial deserializer is being used for replies, consider using an ErrorHandlingDeserializer
that delegates to your configured deserializer. When so configured, the RequestReplyFuture will be
completed exceptionally and you can catch the ExecutionException, with the
DeserializationException in its cause property.

The template sets a header (named KafkaHeaders.CORRELATION_ID by default), which must be echoed
back by the server side.

In this case, the following @KafkalListener application responds:

30

@SpringBootApplication
public class KReplyingApplication {

public static void main(String[] args) {
SpringApplication.run(KReplyingApplication.class, args);
}

@Kafkalistener(id="server", topics = "kRequests")

@SendTo // use default replyTo expression

public String listen(String in) {
System.out.println("Server received:
return in.toUpperCase();

+1n);
}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)
.build();
}

@Bean // not required if Jackson is on the classpath
public MessagingMessageConverter simpleMapperConverter() {
MessagingMessageConverter messagingMessageConverter = new
MessagingMessageConverter();
messagingMessageConverter.setHeaderMapper(new SimpleKafkaHeaderMapper());
return messagingMessageConverter;

The @Kafkalistener infrastructure echoes the correlation ID and determines the reply topic.

See Forwarding Listener Results using @SendTo for more information about sending replies. The
template uses the default header KafKaHeaders.REPLY_TOPIC to indicate the topic to which the reply
goes.

Starting with version 2.2, the template tries to detect the reply topic or partition from the
configured reply container. If the container is configured to listen to a single topic or a single
TopicPartitionOffset, it is used to set the reply headers. If the container is configured otherwise, the
user must set up the reply headers. In this case, an INFO log message is written during initialization.
The following example uses KafkaHeaders.REPLY_TOPIC:

31

record.headers().add(new RecordHeader (KafkaHeaders.REPLY_TOPIC, "kReplies"
.getBytes()));

When you configure with a single reply TopicPartitionOffset, you can use the same reply topic for
multiple templates, as long as each instance listens on a different partition. When configuring with
a single reply topic, each instance must use a different group.id. In this case, all instances receive
each reply, but only the instance that sent the request finds the correlation ID. This may be useful
for auto-scaling, but with the overhead of additional network traffic and the small cost of
discarding each unwanted reply. When you use this setting, we recommend that you set the
template’s sharedReplyTopic to true, which reduces the logging level of unexpected replies to DEBUG
instead of the default ERROR.

The following is an example of configuring the reply container to use the same shared reply topic:

public ConcurrentMessagelistenerContainer<String, String> replyContainer(
ConcurrentKafkalListenerContainerFactory<String, String> containerFactory)

{

ConcurrentMessagelistenerContainer<String, String> container =
containerFactory.createContainer("topic2");

container.getContainerProperties().setGroupId(UUID.randomUUID().toString());
// unique

Properties props = new Properties();

props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // so
the new group doesn't get old replies

container.getContainerProperties().setKafkaConsumerProperties(props);

return container;

If you have multiple client instances and you do not configure them as discussed
in the preceding paragraph, each instance needs a dedicated reply topic. An
alternative is to set the KafkaHeaders.REPLY_PARTITION and use a dedicated partition

o for each instance. The Header contains a four-byte int (big-endian). The server must
use this header to route the reply to the correct partition (@KafkalListener does
this). In this case, though, the reply container must not use Kafka’s group
management feature and must be configured to listen on a fixed partition (by
using a TopicPartitionOffset in its ContainerProperties constructor).

The DefaultKafkaHeaderMapper requires Jackson to be on the classpath (for the

o @KafkalListener). If it is not available, the message converter has no header mapper,
so you must configure a MessagingMessageConverter with a SimpleKafkaHeaderMapper,
as shown earlier.

32

By default, 3 headers are used:

» KafkaHeaders.CORRELATION_ID - used to correlate the reply to a request
» KafkaHeaders.REPLY_TOPIC - used to tell the server where to reply
» KafkaHeaders.REPLY_PARTITION - (optional) used to tell the server which partition to reply to

These header names are used by the @Kafkalistener infrastructure to route the reply.

Starting with version 2.3, you can customize the header names - the template has 3 properties
correlationHeaderName, replyTopicHeaderName, and replyPartitionHeaderName. This is useful if your
server is not a Spring application (or does not use the @Kafkalistener).

Reply Type Message<?>

When the @Kafkalistener returns a Message<?>, with versions before 2.5, it was necessary to
populate the reply topic and correlation id headers. In this example, we use the reply topic header
from the request:

(id = "requestor", topics = "request")

public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE KEY, 42)
.setHeader (KafkaHeaders.CORRELATION_ID, correlation)
.build();

This also shows how to set a key on the reply record.

Starting with version 2.5, the framework will detect if these headers are missing and populate them
with the topic - either the topic determined from the @SendTo value or the incoming
KafkaHeaders.REPLY_TOPIC header (if present). It will also echo the incoming
KafkaHeaders.CORRELATION_ID and KafkaHeaders.REPLY_PARTITION, if present.

(id = "requestor", topics = "request")
// default REPLY_TOPIC header
public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.build();

33

Aggregating Multiple Replies

The template in Using ReplyingKafkaTemplate is strictly for a single request/reply scenario. For cases
where multiple receivers of a single message return a reply, you can use the
AggregatingReplyingKafkaTemplate. This is an implementation of the client-side of the Scatter-Gather
Enterprise Integration Pattern.

Like the ReplyingKafkaTemplate, the AggregatingReplyingKafkaTemplate constructor takes a producer
factory and a listener container to receive the replies; it has a third parameter
BiPredicate<List<ConsumerRecord<K, R>>, Boolean> releaseStrategy which is consulted each time a
reply is received; when the predicate returns true, the collection of ConsumerRecord s is used to
complete the Future returned by the sendAndReceive method.

There is an additional property returnPartialOnTimeout (default false). When this is set to true,
instead of completing the future with a KafkaReplyTimeoutException, a partial result completes the
future normally (as long as at least one reply record has been received).

Starting with version 2.3.5, the predicate is also called after a timeout (if returnPartialOnTimeout is
true). The first argument is the current list of records; the second is true if this call is due to a
timeout. The predicate can modify the list of records.

AggregatingReplyingKafkaTemplate<Integer, String, String> template =
new AggregatingReplyingKafkaTemplate<>(producerFactory, container,
coll -> coll.size() == releaseSize);

RequestReplyFuture<Integer, String, Collection<ConsumerRecord<Integer, String>>>
future =

template.sendAndReceive(record);
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, Collection<ConsumerRecord<Integer, String>>>
consumerRecord =

future.get(30, TimeUnit.SECONDS);

Notice that the return type is a ConsumerRecord with a value that is a collection of ConsumerRecord s.
The "outer" ConsumerRecord is not a "real" record, it is synthesized by the template, as a holder for
the actual reply records received for the request. When a normal release occurs (release strategy
returns true), the topic is set to aggregatedResults; if returnPartialOnTimeout is true, and timeout
occurs (and at least one reply record has been received), the topic is set to
partialResultsAfterTimeout. The template provides constant static variables for these "topic" names:

34

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a normal release by the release strategy.

*/

public static final String AGGREGATED_RESULTS_TOPIC = "aggregatedResults";

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a timeout.

*/

public static final String PARTIAL_RESULTS_AFTER_TIMEOUT_TOPIC =
"partialResultsAfterTimeout";

The real ConsumerRecord s in the Collection contain the actual topic(s) from which the replies are
received.

The listener container for the replies MUST be configured with AckMode.MANUAL or
AckMode .MANUAL_IMMEDIATE; the consumer property enable.auto.commit must be
false (the default since version 2.3). To avoid any possibility of losing messages,

o the template only commits offsets when there are zero requests outstanding, i.e.
when the last outstanding request is released by the release strategy. After a
rebalance, it is possible for duplicate reply deliveries; these will be ignored for any
in-flight requests; you may see error log messages when duplicate replies are
received for already released replies.

If you use an ErrorHandlingDeserializer with this aggregating template, the
framework will not automatically detect DeserializationException s. Instead, the
o record (with a null value) will be returned intact, with the deserialization
exception(s) in headers. It is recommended that applications call the utility method
ReplyingKafkaTemplate.checkDeserialization() method to determine if a
deserialization exception occurred. See its javadocs for more information.

4.1.4. Receiving Messages

You can receive messages by configuring a MessagelistenerContainer and providing a message
listener or by using the @Kafkalistener annotation.

Message Listeners

When you use a message listener container, you must provide a listener to receive data. There are
currently eight supported interfaces for message listeners. The following listing shows these
interfaces:

35

36

public interface Messagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data);
}
public interface AcknowledgingMessagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment);

}

public interface ConsumerAwareMessagelistener<K, V> extends Messagelistener<K, V>

{®
void onMessage(ConsumerRecord<K, V> data, Consumer<?, 7> consumer);

}

public interface AcknowledgingConsumerAwareMessagelistener<K, V> extends
Messagelistener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

}
public interface BatchMessagelistener<K, V> { ®
void onMessage(List<ConsumerRecord<K, V>> data);
}
public interface BatchAcknowledgingMessagelistener<K, V> { ®

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment

)
}

public interface BatchConsumerAwareMessagelistener<K, V> extends
BatchMessagelListener<K, V> { @

void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, 7> consumer);

}

public interface BatchAcknowledgingConsumerAwareMessagelistener<K, V> extends
BatchMessagelistener<K, V> {

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods.

® Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods. Access to the Consumer object is provided.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods. Access to
the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods.

@ Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch. Access to the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods. Access to the
Consumer object is provided.

o The Consumer object is not thread-safe. You must only invoke its methods on the
thread that calls the listener.

Message Listener Containers

Two MessagelistenerContainer implementations are provided:

» KafkaMessagelListenerContainer

* ConcurrentMessagelistenerContainer

The KafkaMessagelListenerContainer receives all message from all topics or partitions on a single
thread. The ConcurrentMessagelListenerContainer delegates to one or more
KafkaMessagelListenerContainer instances to provide multi-threaded consumption.

37

Starting with version 2.2.7, you can add a RecordInterceptor to the listener container; it will be
invoked before calling the listener allowing inspection or modification of the record. If the
interceptor returns null, the listener is not called. Starting with version 2.7, it has additional
methods which are called after the listener exits (normally, or by throwing an exception). Also,
starting with version 2.7, there is now a BatchInterceptor, providing similar functionality for Batch
Listeners.

Starting with version 2.3, the CompositeRecordInterceptor and CompositeBatchInterceptor can be
used to invoke multiple interceptors.

By default, when using transactions, the interceptor is invoked after the transaction has started.
Starting with version 2.3.4, you can set the listener container’s interceptBeforeTx property to invoke
the interceptor before the transaction has started instead.

Starting with versions 2.3.8, 2.4.6, the ConcurrentMessagelListenerContainer now supports Static
Membership when the concurrency is greater than one. The group.instance.id is suffixed with -n
with n starting at 1. This, together with an increased session.timeout.ms, can be used to reduce
rebalance events, for example, when application instances are restarted.

Using KafkaMessagelistenerContainer

The following constructor is available:

public KafkaMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It receives a ConsumerFactory and information about topics and partitions, as well as other
configuration, in a ContainerProperties object. ContainerProperties has the following constructors:

public ContainerProperties(TopicPartitionOffset... topicPartitions)
public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

The first constructor takes an array of TopicPartitionOffset arguments to explicitly instruct the
container about which partitions to use (using the consumer assign() method) and with an optional
initial offset. A positive value is an absolute offset by default. A negative value is relative to the
current last offset within a partition by default. A constructor for TopicPartitionOffset that takes an
additional boolean argument is provided. If this is true, the initial offsets (positive or negative) are
relative to the current position for this consumer. The offsets are applied when the container is
started. The second takes an array of topics, and Kafka allocates the partitions based on the
group.id property — distributing partitions across the group. The third uses a regex Pattern to select
the topics.

38

https://kafka.apache.org/documentation/#static_membership
https://kafka.apache.org/documentation/#static_membership

To assign a Messagelistener to a container, you can use the ContainerProps.setMessagelistener
method when creating the Container. The following example shows how to do so:

ContainerProperties containerProps = new ContainerProperties("topic1", "topic2");
containerProps.setMessagelListener(new Messagelistener<Integer, String>() {

3
DefaultKafkaConsumerFactory<Integer, String> cf =

new DefaultKafkaConsumerFactory<>(consumerProps());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Note that when creating a DefaultKafkaConsumerFactory, using the constructor that just takes in the
properties as above means that key and value Deserializer classes are picked up from
configuration. Alternatively, Deserializer instances may be passed to the
DefaultKafkaConsumerFactory constructor for key and/or value, in which case all Consumers share
the same instances. Another option is to provide Supplier<Deserializer> s (starting with version 2.3)
that will be used to obtain separate Deserializer instances for each Consumer:

DefaultKafkaConsumerFactory<Integer, CustomValue> cf =

new DefaultKafkaConsumerFactory<>(consumerProps(), null,
() -> new CustomValueDeserializer());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Refer to the Javadoc for ContainerProperties for more information about the various properties that
you can set.

Since version 2.1.1, a new property called logContainerConfig is available. When true and INFO
logging is enabled each listener container writes a log message summarizing its configuration
properties.

By default, logging of topic offset commits is performed at the DEBUG logging level. Starting with
version 2.1.2, a property in ContainerProperties called commitLoglLevel lets you specify the log level
for these messages. For example, to change the log level to INFO, you can use
containerProperties.setCommitLoglevel(LogIfLevelEnabled.Level.INFO);.

Starting with version 2.2, a new container property called missingTopicsFatal has been added
(default: false since 2.3.4). This prevents the container from starting if any of the configured topics
are not present on the broker. It does not apply if the container is configured to listen to a topic
pattern (regex). Previously, the container threads looped within the consumer.poll() method
waiting for the topic to appear while logging many messages. Aside from the logs, there was no

39

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/ContainerProperties.html

indication that there was a problem.

As of version 2.3.5, a new container property called authorizationExceptionRetryInterval has been
introduced. This causes the container to retry fetching messages after getting any
AuthorizationException from KafkaConsumer. This can happen when, for example, the configured
user is denied access to read certain topic. Defining authorizationExceptionRetryInterval should
help the application to recover as soon as proper permissions are granted.

o By default, no interval is configured - authorization errors are considered fatal,
which causes the container to stop.

Using ConcurrentMessagelistenerContainer

The single constructor is similar to the KafkalistenerContainer constructor. The following listing
shows the constructor’s signature:

public ConcurrentMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a concurrency property. For example, container.setConcurrency(3) creates three
KafkaMessagelListenerContainer instances.

For the first constructor, Kafka distributes the partitions across the consumers using its group
management capabilities.

When listening to multiple topics, the default partition distribution may not be
what you expect. For example, if you have three topics with five partitions each
and you want to use concurrency=15, you see only five active consumers, each
assigned one partition from each topic, with the other 10 consumers being idle.
This is because the default Kafka PartitionAssignor is the RangeAssignor (see its
Javadoc). For this scenario, you may want to consider using the RoundRobinAssignor
instead, which distributes the partitions across all of the consumers. Then, each
consumer is assigned one topic or partition. To change the PartitionAssignor, you
can set the partition.assignment.strategy consumer property

o (ConsumerConfigs.PARTITION_ASSIGNMENT _STRATEGY_CONFIG) in the properties provided
to the DefaultKafkaConsumerFactory.

When using Spring Boot, you can assign set the strategy as follows:

spring.kafka.consumer.properties.partition.assignment.strategy=\
org.apache.kafka.clients.consumer.RoundRobinAssignor

When the container properties are configured with TopicPartitionOffset s, the
ConcurrentMessagelistenerContainer distributes the TopicPartitionOffset instances across the

40

delegate KafkaMessagelListenerContainer instances.

If, say, six TopicPartitionOffset instances are provided and the concurrency is 3; each container gets
two partitions. For five TopicPartitionOffset instances, two containers get two partitions, and the
third gets one. If the concurrency is greater than the number of TopicPartitions, the concurrency is
adjusted down such that each container gets one partition.

The client.id property (if set) is appended with -n where n is the consumer
0 instance that corresponds to the concurrency. This is required to provide unique
names for MBeans when JMX is enabled.

Starting with version 1.3, the MessagelistenerContainer provides access to the metrics of the
underlying KafkaConsumer. In the case of ConcurrentMessagelListenerContainer, the metrics() method
returns the metrics for all the target KafkaMessagelistenerContainer instances. The metrics are
grouped into the Map<MetricName, ? extends Metric> by the client-id provided for the underlying
KafkaConsumer.

Starting with version 2.3, the ContainerProperties provides an idleBetweenPolls option to let the
main loop in the listener container to sleep between KafkaConsumer.poll() calls. An actual sleep
interval is selected as the minimum from the provided option and difference between the
max.poll.interval.ms consumer config and the current records batch processing time.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is
true, Kafka auto-commits the offsets according to its configuration. If it is false, the containers
support several AckMode settings (described in the next list). The default AckMode is BATCH. Starting
with version 2.3, the framework sets enable.auto.commit to false unless explicitly set in the
configuration. Previously, the Kafka default (true) was used if the property was not set.

The consumer poll() method returns one or more ConsumerRecords. The MessagelListener is called for
each record. The following lists describes the action taken by the container for each AckMode (when
transactions are not being used):

» RECORD: Commit the offset when the listener returns after processing the record.

* BATCH: Commit the offset when all the records returned by the pol1() have been processed.

* TIME: Commit the offset when all the records returned by the poll() have been processed, as
long as the ackTime since the last commit has been exceeded.

* COUNT: Commit the offset when all the records returned by the poll() have been processed, as
long as ackCount records have been received since the last commit.

o COUNT_TIME: Similar to TIME and COUNT, but the commit is performed if either condition is true.

» MANUAL: The message listener is responsible to acknowledge() the Acknowledgment. After that, the
same semantics as BATCH are applied.

o MANUAL_IMMEDIATE: Commit the offset immediately when the Acknowledgment.acknowledge()
method is called by the listener.

When using transactions, the offset(s) are sent to the transaction and the semantics are equivalent

41

to RECORD or BATCH, depending on the listener type (record or batch).

MANUAL, and MANUAL_IMMEDIATE require the listener to be an
AcknowledgingMessagelistener or a BatchAcknowledgingMessagelistener. See Message
Listeners.

Depending on the syncCommits container property, the commitSync() or commitAsync() method on the
consumer is used. syncCommits is true by default; also see setSyncCommitTimeout. See
setCommitCallback to get the results of asynchronous commits; the default callback is the
LoggingCommitCallback which logs errors (and successes at debug level).

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. Starting with version 2.3, it unconditionally
sets it to false unless specifically set in the consumer factory or the container’s consumer property
overrides.

The Acknowledgment has the following method:

public interface Acknowledgment {

void acknowledge();

This method gives the listener control over when offsets are committed.

Starting with version 2.3, the Acknowledgment interface has two additional methods nack(long sleep)
and nack(int index, long sleep). The first one is used with a record listener, the second with a
batch listener. Calling the wrong method for your listener type will throw an I1legalStateException.

If you want to commit a partial batch, using nack(), When using transactions, set
o the AckMode to MANUAL; invoking nack() will send the offsets of the successfully
processed records to the transaction.

o nack() can only be called on the consumer thread that invokes your listener.

With a record listener, when nack() is called, any pending offsets are committed, the remaing
records from the last poll are discarded, and seeks are performed on their partitions so that the
failed record and unprocessed records are redelivered on the next poll(). The consumer thread
can be paused before redelivery, by setting the sleep argument. This is similar functionality to
throwing an exception when the container is configured with a SeekToCurrentErrorHandler.

When using a batch listener, you can specify the index within the batch where the failure occurred.
When nack() is called, offsets will be committed for records before the index and seeks are
performed on the partitions for the failed and discarded records so that they will be redelivered on
the next poll(). This is an improvement over the SeekToCurrentBatchErrorHandler, which can only

42

seek the entire batch for redelivery.

See Seek To Current Container Error Handlers for more information. Also see Retrying Batch Error
Handler.

When using partition assignment via group management, it is important to ensure
the sleep argument (plus the time spent processing records from the previous poll)
is less than the consumer max.poll.interval.ms property.

Listener Container Auto Startup

The listener containers implement SmartlLifecycle, and autoStartup is true by default. The
containers are started in a late phase (Integer.MAX-VALUE - 100). Other components that implement
SmartLifecycle, to handle data from listeners, should be started in an earlier phase. The - 100
leaves room for later phases to enable components to be auto-started after the containers.

@Kafkalistener Annotation

The @Kafkalistener annotation is used to designate a bean method as a listener for a listener
container. The bean is wrapped in a MessagingMessagelListenerAdapter configured with various
features, such as converters to convert the data, if necessary, to match the method parameters.

You can configure most attributes on the annotation with SpEL by using #{:::} or property
placeholders (${::-}). See the Javadoc for more information.

Record Listeners

The ©Kafkalistener annotation provides a mechanism for simple POJO listeners. The following
example shows how to use it:

public class Listener {

(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId")
public void listen(String data) {

This mechanism requires an @EnableKafka annotation on one of your @Configuration classes and a
listener container factory, which is used to configure the underlying
ConcurrentMessagelListenerContainer. By default, a bean with name kafkalistenerContainerFactory is
expected. The following example shows how to use ConcurrentMessagelListenerContainer:

43

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/annotation/KafkaListener.html

public class KafkaConfig {

KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka
.getBrokersAsString());

return props;

Notice that, to set container properties, you must use the getContainerProperties() method on the
factory. It is used as a template for the actual properties injected into the container.

Starting with version 2.1.1, you can now set the client.id property for consumers created by the
annotation. The clientIdPrefix is suffixed with -n, where n is an integer representing the container
number when using concurrency.

Starting with version 2.2, you can now override the container factory’s concurrency and autoStartup
properties by using properties on the annotation itself. The properties can be simple values,
property placeholders, or SpEL expressions. The following example shows how to do so:

44

(id = "myListener", topics = "myTopic",
autoStartup = "${listen.auto.start:true}", concurrency =
"${listen.concurrency:3}")
public void listen(String data) {

}

Explicit Partition Assignment

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their
initial offsets). The following example shows how to do so:

(id = "thing2", topicPartitions =

{ (topic = "topic1", partitions = { "0", "1" }),
(topic = "topic2", partitions = "0",
partitionOffsets = (partition = "1", initialOffset =
"100"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

You can specify each partition in the partitions or partition0ffsets attribute but not both.

As with most annotation properties, you can use SpEL expressions; for an example of how to
generate a large list of partitions, see Manually Assigning All Partitions.

Starting with version 2.5.5, you can apply an initial offset to all assigned partitions:

(id = "thing3", topicPartitions =
{ (topic = "topic1", partitions = { "0", "1" },
partitionOffsets = (partition = "*", initialOffset =
"0"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

The * wildcard represents all partitions in the partitions attribute. There must only be one
@Partition0ffset with the wildcard in each @TopicPartition.

In addition, when the listener implements ConsumerSeekAware, onPartitionsAssigned is now called,

45

even when using manual assignment. This allows, for example, any arbitrary seek operations at
that time.

Starting with version 2.6.4, you can specify a comma-delimited list of partitions, or partition ranges:

(id = "pp", autoStartup = "false",
topicPartitions = (topic = "topic1",
partitions = "0-5, 7, 10-15"))
public void process(String in) {

}

The range is inclusive; the example above will assign partitions 0, 1, 2, 3, 4, 5, 7, 10, 11, 12,
13, 14, 15.

The same technique can be used when specifying initial offsets:

(id = "thing3", topicPartitions =
{ (topic = "topic1",
partitionOffsets = (partition = "0-5", initialOffset
- |l®|l))
1))

public void listen(ConsumerRecord<?, ?> record) {

}

The initial offset will be applied to all 6 partitions.

Manual Acknowledgment

When using manual AckMode, you can also provide the listener with the Acknowledgment. The
following example also shows how to use a different container factory.

(id = "cat", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")
public void listen(String data, Acknowledgment ack) {

ack.acknowledge();

Consumer Record Metadata

Finally, metadata about the record is available from message headers. You can use the following

46

header names to retrieve the headers of the message:

* KafkaHeaders.OFFSET

KafkaHeaders.RECEIVED_MESSAGE _KEY

KafkaHeaders.RECEIVED _TOPIC

KafkaHeaders.RECEIVED PARTITION_ID

KafkaHeaders.RECEIVED_TIMESTAMP

KafkaHeaders.TIMESTAMP_TYPE

Starting with version 2.5 the RECEIVED_MESSAGE_KEY is not present if the incoming record has a null
key; previously the header was populated with a null value. This change is to make the framework
consistent with spring-messaging conventions where null valued headers are not present.

The following example shows how to use the headers:

(id = "qux", topicPattern = "myTopicl")
public void listen(String foo,
(name = KafkaHeaders.RECEIVED_MESSAGE_KEY, required = false)
Integer key,
(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
(KafkaHeaders.RECEIVED_TOPIC) String topic,
(KafkaHeaders.RECEIVED_TIMESTAMP) long ts
) {

Starting with version 2.5, instead of using discrete headers, you can receive record metadata in a
ConsumerRecordMetadata parameter.

(...)

public void listen(String str, ConsumerRecordMetadata meta) {

}

This contains all the data from the ConsumerRecord except the key and value.

Batch Listeners

Starting with version 1.1, you can configure @Kafkalistener methods to receive the entire batch of
consumer records received from the consumer poll. To configure the listener container factory to
create batch listeners, you can set the batchListener property. The following example shows how to
do so:

47

public KafkalistenerContainerFactory<?, 7> batchFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true); // <<<<<<<LLLLLLLLLLLLLLLLLKL
return factory;

The following example shows how to receive a list of payloads:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {

}

The topic, partition, offset, and so on are available in headers that parallel the payloads. The
following example shows how to use the headers:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list,

(KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys,

(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,

(KafkaHeaders.RECEIVED_TOPIC) List<String> topics,

(KafkaHeaders.OFFSET) List<Long> offsets) {

Alternatively, you can receive a List of Message<?> objects with each offset and other details in each
message, but it must be the only parameter (aside from optional Acknowledgment, when using
manual commits, and/or Consumer<?, 7> parameters) defined on the method. The following example
shows how to do so:

48

@Kafkalistener(id = "listMsg", topics = "myTopic", containerFactory =
"batchFactory")
public void listen14(List<Message<?>> list) {

}

@Kafkalistener(id = "listMsgAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen15(List<Message<?>> list, Acknowledgment ack) {

}

@Kafkalistener(id = "listMsgAckConsumer", topics = "myTopic", containerFactory
"batchFactory")

public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, 7>
consumer) {

}

No conversion is performed on the payloads in this case.

@Kafkalistener(id = "listCRs", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list) {

}

@Kafkalistener(id = "listCRsAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment

{
}

Starting with version 2.2, the listener can receive the complete ConsumerRecords<?,
returned by the pol1l() method, letting the listener access additional methods, such as partitions()
(which returns the TopicPartition instances in the list) and records(TopicPartition) (which gets

If the BatchMessagingMessageConverter is configured with a RecordMessageConverter, you can also add
a generic type to the Message parameter and the payloads are converted. See Payload Conversion
with Batch Listeners for more information.

You can also receive a list of ConsumerRecord<?, 7> objects, but it must be the only parameter (aside
from optional Acknowledgment, when using manual commits and Consumer<?, 7> parameters) defined
on the method. The following example shows how to do so:

ack)

7> object

49

selective records). Again, this must be the only parameter (aside from optional Acknowledgment,

when using manual commits or Consumer<?, 7> parameters) on the method. The following example
shows how to do so:

(id = "pollResults", topics = "myTopic", containerFactory =
"batchFactory")
public void pollResults(ConsumerRecords<?, 7> records) {

}

If the container factory has a RecordFilterStrategy configured, it is ignored for
ConsumerRecords<?, 7> listeners, with a WARN log message emitted. Records can only
be filtered with a batch listener if the <List<?>> form of listener is used.

Annotation Properties

Starting with version 2.0, the id property (if present) is used as the Kafka consumer group.id
property, overriding the configured property in the consumer factory, if present. You can also set
groupId explicitly or set idIsGroup to false to restore the previous behavior of using the consumer
factory group.id.

You can use property placeholders or SpEL expressions within most annotation properties, as the
following example shows:

"${some.property}")

(topics

(topics = "#{someBean.someProperty}",
groupIld = "#{someBean.someProperty}.group")

Starting with version 2.1.2, the SpEL expressions support a special token: __Tistener. It is a pseudo
bean name that represents the current bean instance within which this annotation exists.

Consider the following example:

50

public Listener listener1() {
return new Listener("topic1");

}

public Listener listener2() {
return new Listener("topic2");

}

Given the beans in the previous example, we can then use the following:

public class Listener {
private final String topic;

public Listener(String topic) {
this.topic = topic;
}

(topics = "#{__listener.topic}",
groupId = "#{__listener.topic}.group")
public void listen(...) {

}

public String getTopic() {
return this.topic;

}

If, in the unlikely event that you have an actual bean called __listener, you can change the
expression token byusing the beanRef attribute. The following example shows how to do so:

(beanRef = "__x", topics = "#{__x.topic}",
groupld = "#{__x.topic}.group")

Starting with version 2.2.4, you can specify Kafka consumer properties directly on the annotation,
these will override any properties with the same name configured in the consumer factory. You
cannot specify the group.id and client.id properties this way; they will be ignored; use the groupId
and clientIdPrefix annotation properties for those.

31

The properties are specified as individual strings with the normal Java Properties file format:
foo:bar, foo=bar, or foo bar.

(topics = "myTopic", groupId = "group", properties = {
"max.poll.interval.ms:60000",
ConsumerConfig.MAX_POLL_RECORDS_CONFIG + "=100"

}

The following is an example of the corresponding listeners for the example in Using
RoutingKafkaTemplate.

(id = "one", topics = "one")
public void listen1(String in) {
System.out.println("1: " + in);
}

(id = "two", topics = "two",
properties =
"value.deserializer:org.apache.kafka.common.serialization.ByteArrayDeserializer")
public void listen2(byte[] in) {
System.out.println("2: " + new String(in));
¥

Obtaining the Consumer group.id

When running the same listener code in multiple containers, it may be useful to be able to
determine which container (identified by its group.id consumer property) that a record came from.

You can call KafkaUtils.getConsumerGroupId() on the listener thread to do this. Alternatively, you
can access the group id in a method parameter.

(id = "bar", topicPattern = "${topicTwo:annotated2}", exposeGroupIld
= "${always:true}")
public void listener(String foo,
(KafkaHeaders.GROUP_ID) String groupId) {

This is available in record listeners and batch listeners that receive a List<?> of
o records. It is not available in a batch listener that receives a ConsumerRecords<?, 7>
argument. Use the KafkaUtils mechanism in that case.

32

Container Thread Naming

Listener containers currently use two task executors, one to invoke the consumer and another that
is used to invoke the listener when the kafka consumer property enable.auto.commit is false. You
can provide custom executors by setting the consumerExecutor and listenerExecutor properties of
the container’s ContainerProperties. When using pooled executors, be sure that enough threads are
available to handle the concurrency across all the containers in which they are used. When using
the ConcurrentMessagelistenerContainer, a thread from each is used for each consumer (
concurrency).

If you do not provide a consumer executor, a SimpleAsyncTaskExecutor is used. This executor creates
threads with names similar to <beanName>-C-1 (consumer thread). For the
ConcurrentMessageListenerContainer, the <beanName> part of the thread name becomes <beanName>-m,
where m represents the consumer instance. n increments each time the container is started. So, with
a bean name of container, threads in this container will be named container-0-C-1, container-1-C-1
etc., after the container is started the first time; container-0-C-2, container-1-C-2 etc., after a stop
and subsequent start.

@Kafkalistener as a Meta Annotation

Starting with version 2.2, you can now use @Kafkalistener as a meta annotation. The following
example shows how to do so:

(ElementType.METHOD)
(RetentionPolicy.RUNTIME)

public MyThreeConsumersListener {

Kafkalistener.class, attribute = "id")

(annotation
String id();

(annotation = Kafkalistener.class, attribute = "topics")

String[] topics();

(annotation = Kafkalistener.class, attribute = "concurrency")
String concurrency() default "3";

You must alias at least one of topics, topicPattern, or topicPartitions (and, usually, id or groupId
unless you have specified a group.id in the consumer factory configuration). The following example
shows how to do so:

33

@MyThreeConsumersListener(id = "my.group”, topics = "my.topic")
public void listen1(String in) {

}

@KafkalListener on a Class

When you use @KafkalListener at the class-level, you must specify @KafkaHandler at the method level.
When messages are delivered, the converted message payload type is used to determine which
method to call. The following example shows how to do so:

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String foo) {

}

@KafkaHandler
public void listen(Integer bar) {

}

@KafkaHandler (isDefault = true)
public void listenDefault(Object object) {

}

Starting with version 2.1.3, you can designate a @KafkaHandler method as the default method that is
invoked if there is no match on other methods. At most, one method can be so designated. When
using @KafkaHandler methods, the payload must have already been converted to the domain object
(so the match can be performed). Use a custom deserializer, the JsonDeserializer, or the
JsonMessageConverter with its TypePrecedence set to TYPE_ID. See Serialization, Deserialization, and
Message Conversion for more information.

Due to some limitations in the way Spring resolves method arguments, a default
o @KafkaHandler = cannot receive discrete headers; it must use the

ConsumerRecordMetadata as discussed in Consumer Record Metadata.

For example:

54

(isDefault = true)
public void listenDefault(Object object, (KafkaHeaders.RECEIVED_TOPIC)
String topic) {

}

This won’t work if the object is a String; the topic parameter will also get a reference to object.

If you need metadata about the record in a default method, use this:

(isDefault = true)
void listen(Object in, (KafkaHeaders.RECORD_METADATA)
ConsumerRecordMetadata meta) {
String topic = meta.topic();

@Kafkalistener Lifecycle Management

The listener containers created for @Kafkalistener annotations are not beans in the application
context. Instead, they are registered with an infrastructure bean of type
KafkalistenerEndpointRegistry. This bean is automatically declared by the framework and manages
the containers' lifecycles; it will auto-start any containers that have autoStartup set to true. All
containers created by all container factories must be in the same phase. See Listener Container Auto
Startup for more information. You can manage the lifecycle programmatically by using the registry.
Starting or stopping the registry will start or stop all the registered containers. Alternatively, you
can get a reference to an individual container by using its id attribute. You can set autoStartup on
the annotation, which overrides the default setting configured into the container factory. You can
get a reference to the bean from the application context, such as auto-wiring, to manage its
registered containers. The following examples show how to do so:

55

(id = "myContainer", topics = "myTopic", autoStartup = "false")
public void listen(...) { ... }

private KafkalistenerEndpointRegistry registry;

this.registry.getListenerContainer("myContainer").start();

The registry only maintains the life cycle of containers it manages; containers declared as beans are
not managed by the registry and can be obtained from the application context. A collection of
managed containers can be obtained by calling the registry’s getListenerContainers() method.
Version 2.2.5 added a convenience method getAllListenerContainers(), which returns a collection
of all containers, including those managed by the registry and those declared as beans. The
collection returned will include any prototype beans that have been initialized, but it will not
initialize any lazy bean declarations.

@Kafkalistener @Payload Validation

Starting with version 2.2, it is now easier to add a Validator to validate @Kafkalistener @Payload
arguments. Previously, you had to configure a custom DefaultMessageHandlerMethodFactory and add
it to the registrar. Now, you can add the validator to the registrar itself. The following code shows
how to do so:

public class Config implements KafkalListenerConfigurer {

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

{
registrar.setValidator(new MyValidator());
}
}
o When you use Spring Boot with the validation starter, a LocalValidatorFactoryBean
is auto-configured, as the following example shows:

36

@Configuration
@EnableKafka
public class Config implements KafkalListenerConfigurer {

@Autowired
private LocalValidatorFactoryBean validator;

@Override
public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)
{
registrar.setValidator(this.validator);
}
¥

The following examples show how to validate:

57

public static class Validated(Class {

@Max(10)
private int bar;

public int getBar() {
return this.bar;

}

public void setBar(int bar) {
this.bar = bar;

}

@Kafkalistener(id="validated", topics = "annotated35", errorHandler =
"validationErrorHandler",

containerFactory = "kafkalsonListenerContainerFactory")
public void validatedlListener(@Payload @Valid Validated(Class val) {

}

@Bean
public KafkalListenerErrorHandler validationErrorHandler() {
return (m, e) -> {

};

Starting with version 2.5.11, validation now works on payloads for @KafkaHandler methods in a
class-level listener. See @KafkalListener on a Class.

Rebalancing Listeners

ContainerProperties has a property called consumerRebalancelistener, which takes an
implementation of the Kafka client’s ConsumerRebalancelistener interface. If this property is not
provided, the container configures a logging listener that logs rebalance events at the INFO level.
The framework also adds a sub-interface ConsumerAwareRebalancelistener. The following listing
shows the ConsumerAwareRebalancelistener interface definition:

38

public interface ConsumerAwareRebalancelistener extends ConsumerRebalancelistener

{

void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection
<TopicPartition> partitions);

void onPartitionsRevokedAfterCommit(Consumer<?, 7> consumer, Collection
<TopicPartition> partitions);

void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition>
partitions);

void onPartitionsLost(Consumer<?, 7> consumer, Collection<TopicPartition>
partitions);

}

Notice that there are two callbacks when partitions are revoked. The first is called immediately. The
second is called after any pending offsets are committed. This is useful if you wish to maintain
offsets in some external repository, as the following example shows:

containerProperties.setConsumerRebalancelistener(new
ConsumerAwareRebalancelistener() {

public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
// acknowledge any pending Acknowledgments (if using manual acks)

}

public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
/] ...
store(consumer.position(partition));
/] ...

public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
/] ...
consumer.seek(partition, offsetTracker.getOffset() + 1);
/] ...

b

39

Starting with version 2.4, a new method onPartitionsLost() has been added
(similar to a method with the same name in ConsumerRebalancelister). The default
implementation on ConsumerRebalancelister simply calls onPartionsRevoked. The
default implementation on ConsumerAwareRebalancelistener does nothing. When
supplying the listener container with a custom listener (of either type), it is

o important that your implementation not call onPartitionsRevoked from
onPartitionsLost. If you implement ConsumerRebalancelListener you should override
the default method. This is because the listener container will call its own
onPartitionsRevoked from its implementation of onPartitionsLost after calling the
method on your implementation. If you implementation delegates to the default
behavior, onPartitionsRevoked will be called twice each time the Consumer calls that
method on the container’s listener.

Forwarding Listener Results using @SendTo

Starting with version 2.0, if you also annotate a @KafkalListener with a @SendTo annotation and the
method invocation returns a result, the result is forwarded to the topic specified by the @SendTo.

The @SendTo value can have several forms:

» @SendTo("someTopic") routes to the literal topic

» @SendTo("#{someExpression}") routes to the topic determined by evaluating the expression once
during application context initialization.

* @SendTo("!{someExpression}") routes to the topic determined by evaluating the expression at
runtime. The #root object for the evaluation has three properties:

o request: The inbound ConsumerRecord (or ConsumerRecords object for a batch listener))
o source: The org.springframework.messaging.Message<?> converted from the request.
o result: The method return result.
* @SendTo (no properties): This is treated as !{source.headers["kafka_replyTopic']} (since version
2.1.3).

Starting with versions 2.1.11 and 2.2.1, property placeholders are resolved within @SendTo values.

The result of the expression evaluation must be a String that represents the topic name. The
following examples show the various ways to use @SendTo:

60

@Kafkalistener(topics = "annotated21")
@SendTo("!{request.value()}") // runtime SpEL
public String replyinglListener(String in) {

}

@Kafkalistener(topics = "${some.property:annotated22}")
@SendTo("#{myBean.replyTopic}") // config time SpEL
public Collection<String> replyingBatchListener(List<String> in) {

}

@Kafkalistener(topics = "annotated23", errorHandler = "replyErrorHandler")
@SendTo("annotated23reply") // static reply topic definition
public String replyinglListenerWithErrorHandler(String in) {

}

@Kafkalistener(topics = "annotated25")
@SendTo("annotated25reply1")
public class MultiListenerSendTo {

@KafkaHandler
public String foo(String in) {

}

@KafkaHandler

@SendTo("!{"'annotated25reply2'}")

public String bar(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

In order to support @SendTo, the listener container factory must be provided with a
KafkaTemplate (in its replyTemplate property), which is used to send the reply. This

o should be a KafkaTemplate and not a ReplyingKafkaTemplate which is used on the
client-side for request/reply processing. When using Spring Boot, boot will auto-
configure the template into the factory; when configuring your own factory, it
must be set as shown in the examples below.

Starting with version 2.2, you can add a ReplyHeadersConfigurer to the listener container factory.

This is consulted to determine which headers you want to set in the reply message. The following
example shows how to add a ReplyHeadersConfigurer:

61

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer((k, v) -> k.equals(“cat"));
return factory;

You can also add more headers if you wish. The following example shows how to do so:

public ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer(new ReplyHeadersConfigurer() {

public boolean shouldCopy(String headerName, Object headerValue) {
return false;

}

public Map<String, Object> additionalHeaders() {
return Collections.singletonMap("qux", "fiz");

}
1

return factory;

When you use @SendTo, you must configure the ConcurrentKafkalListenerContainerFactory with a
KafkaTemplate in its replyTemplate property to perform the send.

Unless you use request/reply semantics only the simple send(topic, value) method

o is used, so you may wish to create a subclass to generate the partition or key. The
following example shows how to do so:

62

public KafkaTemplate<String, String> myReplyingTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory()) {

public ListenableFuture<SendResult<String, String>> send(String topic,
String data) {
return super.send(topic, partitionForData(data), keyForData(data),
data);

If the listener method returns Message<?> or Collection<Message<?>>, the listener
method is responsible for setting up the message headers for the reply. For
example, when handling a request from a ReplyingKafkaTemplate, you might do the
following:

(id = "messageReturned", topics = "someTopic")
public Message<?> listen(String in, (KafkaHeaders
o .REPLY_TOPIC) byte[] replyTo,
(KafkaHeaders.CORRELATION_ID) byte[] correlation) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.setHeader ("someOtherHeader"”, "someValue")
.build();

When using request/reply semantics, the target partition can be requested by the sender.

63

You can annotate a @Kafkalistener method with @SendTo even if no result is
returned. This is to allow the configuration of an errorHandler that can forward
information about a failed message delivery to some topic. The following example
shows how to do so:

(id = "voidlListenerWithReplyingErrorHandler", topics
= "someTopic",
errorHandler = "voidSendToErrorHandler")
("failures")
public void voidListenerWithReplyingErrorHandler(String in) {
o throw new RuntimeException("fail");
}

public KafkalistenerErrorHandler voidSendToErrorHandler() {
return (m, e) -> {
return ... // some information about the failure and input
data

};

See Handling Exceptions for more information.

If a listener method returns an Iterable, by default a record for each element as
the value is sent. Starting with version 2.3.5, set the splitIterables property on

e @Kafkalistener to false and the entire result will be sent as the value of a single
ProducerRecord. This requires a suitable serializer in the reply template’s producer
configuration. However, if the reply is Iterable<Message<?>> the property is
ignored and each message is sent separately.

Filtering Messages

In certain scenarios, such as rebalancing, a message that has already been processed may be
redelivered. The framework cannot know whether such a message has been processed or not. That
is an application-level function. This is known as the Idempotent Receiver pattern and Spring
Integration provides an implementation of it.

The Spring for Apache Kafka project also provides some assistance by means of the
FilteringMessagelistenerAdapter class, which can wrap your Messagelistener. This class takes an
implementation of RecordFilterStrategy in which you implement the filter method to signal that a
message is a duplicate and should be discarded. This has an additional property called
ackDiscarded, which indicates whether the adapter should acknowledge the discarded record. It is
false by default.

When you use @Kafkalistener, set the RecordFilterStrategy (and optionally ackDiscarded) on the
container factory so that the listener is wrapped in the appropriate filtering adapter.

64

https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://docs.spring.io/spring-integration/reference/html/#idempotent-receiver

In addition, a FilteringBatchMessagelistenerAdapter is provided, for when you use a batch message
listener.

The FilteringBatchMessagelistenerAdapter is ignored if your @Kafkalistener
o receives a ConsumerRecords<?, 7> instead of List<ConsumerRecord<?, 7>>, because
ConsumerRecords is immutable.

Retrying Deliveries

If your listener throws an exception, the default behavior is to invoke the Container Error
Handlers, if configured, or logged otherwise.

NOTE: To retry deliveries, a convenient listener adapter RetryingMessagelistenerAdapter is
provided.

You can configure it with a RetryTemplate and Recovery(Callback<Void> - see the spring-retry project
for information about these components. If a recovery callback is not provided, the exception is
thrown to the container after retries are exhausted. In that case, the ErrorHandler is invoked, if
configured, or logged otherwise.

When you use @Kafkalistener, you can set the RetryTemplate (and optionally recoveryCallback) on
the container factory. When you do so, the listener is wrapped in the appropriate retrying adapter.

The contents of the RetryContext passed into the RecoveryCallback depend on the type of listener.
The context always has a record attribute, which is the record for which the failure occurred. If
your listener is acknowledging or consumer aware, additional acknowledgment or consumer attributes
are available. For convenience, the RetryingMessagelistenerAdapter provides static constants for
these keys. See its Javadoc for more information.

A retry adapter is not provided for any of the batch message listeners, because the framework has
no knowledge of where in a batch the failure occurred. If you need retry capabilities when you use
a batch listener, we recommend that you use a RetryTemplate within the listener itself.

Stateful Retry

Now that the SeekToCurrentErrorHandler can be configured with a BackOff and has
the ability to retry only certain exceptions (since version 2.3), the use of stateful

o retry, via the listener adapter retry configuration, is no longer necessary. You can
provide the same functionality with appropriate configuration of the error
handler and remove all retry configuration from the listener adatper. See Seek To
Current Container Error Handlers for more information.

You should understand that the retry discussed in the preceding section suspends the consumer
thread (if a BackOffPolicy is used). There are no calls to Consumer.poll() during the retries. Kafka
has two properties to determine consumer health. The session.timeout.ms is used to determine if
the consumer is active. Since kafka-clients version 0.10.1.0, heartbeats are sent on a background
thread, so a slow consumer no longer affects that. max.poll.interval.ms (default: five minutes) is
used to determine if a consumer appears to be hung (taking too long to process records from the
last poll). If the time between poll() calls exceeds this, the broker revokes the assigned partitions

65

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/adapter/AbstractRetryingMessageListenerAdapter.html

and performs a rebalance. For lengthy retry sequences, with back off, this can easily happen.

Since version 2.1.3, you can avoid this problem by using stateful retry in conjunction with a
SeekToCurrentErrorHandler. In this case, each delivery attempt throws the exception back to the
container, the error handler re-seeks the unprocessed offsets, and the same message is redelivered
by the next poll(). This avoids the problem of exceeding the max.poll.interval.ms property (as long
as an individual delay between attempts does not exceed it). So, when you use an
ExponentialBackOffPolicy, you must ensure that the maxInterval 1is less than the
max.poll.interval.ms property. To enable stateful retryy, you can use the
RetryingMessagelistenerAdapter constructor that takes a stateful boolean argument (set it to true).
When you configure the listener container factory (for @Kafkalistener), set the factory’s
statefulRetry property to true.

Version 2.2 added recovery to the SeekToCurrentErrorHandler, such as sending a
failed record to a dead-letter topic. When using stateful retry, you must perform
the recovery in the retry RecoveryCallback and NOT in the error handler.
Otherwise, if the recovery is done in the error handler, the retry template’s state

o will never be cleared. Also, you must ensure that the maxFailures in the
SeekToCurrentErrorHandler must be at least as many as configured in the retry
policy, again to ensure that the retries are exhausted and the state cleared. Here is
an example for retry configuration when used with a SeekToCurrentErrorHandler
where factory is the ConcurrentKafkalistenerContainerFactory.

DeadLetterPublishingRecoverer recoverer;

factory.setRetryTemplate(new RetryTemplate()); // 3 retries by default
factory.setStatefulRetry(true);
factory.setRecoveryCallback(context -> {
recoverer.accept((ConsumerRecord<?, 7>) context.getAttribute("record"),
(Exception) context.getlastThrowable());
return null;

;i

public SeekToCurrentErrorHandler eh() {
return new SeekToCurrentErrorHandler(new FixedBackOff(0L, 3L)); // at least 3
}

However, see the note at the beginning of this section; you can avoid using the RetryTemplate
altogether.

66

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the error
handler’s resetStateOnRecoveryFailure to false.

Starting with version 2.6, you can now provide the error handler with a
BiFunction<ConsumerRecord<?, 7>, Exception, BackOff> to determine the BackOff to use, based on
the failed record and/or the exception:

handler.setBackOffFunction((record, ex) -> { ... });

If the function returns null, the handler’s default BackOff will be used.

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new BackOff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

4.1.5. Listener Container Properties

Table 1. ContainerProperties Properties
Property Default Description

ackCount 1 The number of records before committing pending offsets
when the ackMode is COUNT or COUNT _TIME.

adviceChain null A chain of Advice objects (e.g. MethodInterceptor around
advice) wrapping the message listener, invoked in order.

ackMode BATCH Controls how often offsets are committed - see Committing
Offsets.

ackOnError false [DEPRECATED in favor of ErrorHandler.isAckAfterHandle()]

ackTime 5000 The time in milliseconds after which pending offsets are

committed when the ackMode is TIME or COUNT _TIME.

assignment LATEST_O Wohether or not to commit the initial position on assignment;
CommitOption NLY by default, the initial offset will only be committed if the
_NO_TX ConsumerConfig.AUTO_OFFSET_RESET_CONFIG is latest and it won’t
run in a transaction even if there is a transaction manager
present. See the javadocs for
ContainerProperties.AssignmentCommitOption for more
information about the available options.

67

Property Default

authorizationExcepti null
on

RetryInterval

clientId (empty
string)

commitCallback null

commitLoglevel DEBUG

consumerRebalancelis null
tener

consumerStartTimout 30s

consumerTaskExecutor SimpleAsyn

c
TaskExecut
or

deliveryAttemptHeade false
.

eosMode BETA
fixTx0ffsets false
groupld null

68

Description

When not null, a Duration to sleep between polls when an
AuthorizationException is thrown by the Kafka client. When
null, such exceptions are considered fatal and the container
will stop.

A prefix for the client.id consumer property. Overrides the
consumer factory client.id property; in a concurrent
container, -n is added as a suffix for each consumer instance.

When present and syncCommits is false a callback invoked
after the commit completes.

The logging level for logs pertaining to committing offsets.

A rebalance listener; see Rebalancing Listeners.

The time to wait for the consumer to start before logging an
error; this might happen if, say, you use a task executor with
insufficient threads.

A task executor to run the consumer threads. The default
executor creates threads named <name>-C-n; with the
KafkaMessagelListenerContainer, the name is the bean name;
with the ConcurrentMessagelistenerContainer the name is the
bean name suffixed with -n where n is incremented for each
child container.

See Delivery Attempts Header.

Exactly Once Semantics mode; see Exactly Once Semantics.

When consuming records produced by a transactional
producer, and the consumer is positioned at the end of a
partition, the lag can incorrectly be reported as greater than
zero, due to the pseudo record used to indicate transaction
commit/rollback and, possibly, the presence of rolled-back
records. This does not functionally affect the consumer but
some users have expressed concern that the "lag" is non-zero.
Set this property to true and the container will correct such
mis-reported offsets. The check is performed before the next
poll to avoid adding significant complexity to the commit
processing. At the time of writing, the lag will only be
corrected if the consumer is configured with
isolation.level=read_committed and max.poll.records is
greater than 1. See KAFKA-10683 for more information.

Overrides the consumer group.id property; automatically set
by the @Kafkalistener id or groupIld property.

https://issues.apache.org/jira/browse/KAFKA-10683

Property
idleBetweenPolls

idleEventInterval

idlePartitionEventIn
terval

kafkaConsumerPropert
ies

logContainerConfig
messagelistener

micrometerEnabled

missingTopicsFatal

monitorInterval

noPol1lThreshold

onlylLogRecord
Metadata

pollTimeout

scheduler

shutdownTimeout

stopContainerWhenFen
ced

stopImmediate

subBatchPerPartition

Default
0

null

null

None

false
null

true

false

30s

3.0

false

5000

ThreadPool

TaskSchedu
ler

10000

false

false

See desc.

Description

Used to slow down deliveries by sleeping the thread between
polls. The time to process a batch of records plus this value
must be less than the max.poll.interval.ms consumer property.

When set, enables publication of ListenerContainerIdleEvent s,
see Application Events and Detecting Idle and Non-Responsive
Consumers.

When set, enables publication of
ListenerContainerIdlePartitionEvent s, see Application Events
and Detecting Idle and Non-Responsive Consumers.

Used to override any arbitrary consumer properties
configured on the consumer factory.

Set to true to log at INFO level all container properties.
The message listener.

Whether or not to maintain Micrometer timers for the
consumer threads.

When true prevents the container from starting if the
confifgured topic(s) are not present on the broker.

How often to check the state of the consumer threads for
NonResponsiveConsumerEvent s. See noPol1Threshold and
pollTimeout.

Multiplied by pol1TimeQOut to determine whether to publish a
NonResponsiveConsumerEvent. See monitorInterval.

Set to false to log the complete consumer record (in error,
debug logs etc) instead of just topic-partition@offset.

The timeout passed into Consumer.poll().

A scheduler on which to run the consumer monitor task.

The maximum time in ms to block the stop() method until all
consumers stop and before publishing the container stopped
event.

Stop the listener container if a ProducerFencedException is
thrown. See After-rollback Processor for more information.

When the container is stopped, stop processing after the
current record instead of after processing all the records from
the previous poll.

When using a batch listener, if this is true, the listener is called
with the results of the poll split into sub batches, one per
partition. Default false except when using transactions with
EOSMode .ALPHA - see Exactly Once Semantics.

69

Property

syncCommitTimeout

syncCommits

topics
topicPattern
topicPartitions

transactionManager

Default
null

true

n/a

null

Description

The timeout to use when syncCommits is true. When not set, the
container will attempt to determine the
default.api.timeout.ms consumer property and use that;
otherwise it will use 60 seconds.

Whether to use sync or async commits for offsets; see
commitCallback.

The configured topics, topic pattern or explicitly assigned
topics/partitions. Mutually exclusive; at least one must be
provided; enforced by ContainerProperties constructors.

See Transactions.

Table 2. AbstractListenerContainer Properties

Property

afterRollback
Processor

applicationEventPubl

isher

batchError
Handler

batch
Interceptor

beanName

containerProperties

errorHandler

genericErrorHandler
groupld
intercept

BeforeTx

listenerld

70

Default

DefaultAft
er

Rollback
Processor

applicatio
n context

See desc.

null

bean
name

Container
Properties

See desc.

See desc.

See desc.

false

See desc.

Description

An AfterRollbackProcessor to invoke after a transaction is
rolled back.

The event publisher.

An error handler for a batch listener; defaults to a
RecoveringBatchErrorHandler or null if transactions are being
used (errors are handled by the AfterRollbackProcessor).

Set a BatchInterceptor to call before invoking the batch
listener; does not apply to record listeners. Also see
interceptBeforeTx.

The bean name of the container; suffixed with -n for child
containers.

The container properties instance.

An error handler for a record listener; defaults to a
SeekToCurrentErrorHandler or null if transactions are being
used (errors are handled by the AfterRollbackProcessor).

Either a batch or record error handler - see batchErrorHandler
and errorHandler.

The containerProperties.groupld, if present, otherwise the
group.id property from the consumer factory.

Determines whether the recordInterceptor is called before or
after a transaction starts.

The bean name for user-configured containers or the id
attribute of @Kafkalistener s.

Property Default Description

pause (read True if a consumer pause has been requested.

Requested only)

record null Set a RecordInterceptor to call before invoking the record

Interceptor listener; does not apply to batch listeners. Also see
interceptBeforeTx.

topicCheck 30s When the missingTopicsFatal container property is true, how

Timeout long to wait, in seconds, for the describeTopics operation to
complete.

Table 3. KafkaMessagelListenerContainer Properties

Property Default Description

assigned (read The partitions currently assigned to this container (explicitly

Partitions only) or not)

assigned (read The partitions currently assigned to this container (explicitly

Partitions only) or not).

ByClientId

clientId null Used by the concurrent container to give each child

Suffix container’s consumer a unique client.id.

containerPaused n/a True if pause has been requested and the consumer has
actually paused.

Table 4. ConcurrentMessagelListenerContainer Properties

Property Default Description

alwaysClientId true Set to false to suppress adding a suffix to the client.id

Suffix consumer property, when the concurrency is only 1.

assigned (read The aggregate of partitions currently assigned to this

Partitions only) container’s child KafkaMessageListenerContainer s (explicitly or
not).

assigned (read The partitions currently assigned to this container’s child

Part1_t1ons only) KafkaMessagelistenerContainer s (explicitly or not), keyed by

ByClientId the child container’s consumer’s client.id property.

concurrency 1 The number of child KafkaMessageListenerContainer s to
manage.

containerPaused n/a True if pause has been requested and all child containers'

consumer has actually paused.

containers n/a A reference to all child KafkaMessageListenerContainer s.

4.1.6. Application Events

The following Spring application events are published by listener containers and their consumers:

71

ConsumerStartingEvent - published when a consumer thread is first started, before it starts
polling.

ConsumerStartedEvent - published when a consumer is about to start polling.

ConsumerFailedToStartEvent - published if no ConsumerStartingEvent is published within the
consumerStartTimeout container property. This event might signal that the configured task
executor has insufficient threads to support the containers it is used in and their concurrency.
An error message is also logged when this condition occurs.

ListenerContainerIdleEvent: published when no messages have been received in idleInterval (if
configured).

ListenerContainerNoLongerIdleEvent: published when a record is consumed after previously
publishing a ListenerContainerIdleEvent.

ListenerContainerPartitionIdleEvent: published when no messages have been received from
that partition in idlePartitionEventInterval (if configured).

ListenerContainerPartitionNoLongerIdleEvent: published when a record is consumed from a
partition that has previously published a ListenerContainerPartitionIdleEvent.

NonResponsiveConsumerEvent: published when the consumer appears to be blocked in the poll
method.

ConsumerPartitionPausedEvent: published by each consumer when a partition is paused.
ConsumerPartitionResumedEvent: published by each consumer when a partition is resumed.
ConsumerPausedEvent: published by each consumer when the container is paused.
ConsumerResumedEvent: published by each consumer when the container is resumed.
ConsumerStoppingEvent: published by each consumer just before stopping.
ConsumerStoppedEvent: published after the consumer is closed. See Thread Safety.

ContainerStoppedEvent: published when all consumers have stopped.

By default, the application context’s event multicaster invokes event listeners on

o the calling thread. If you change the multicaster to use an async executor, you
must not invoke any Consumer methods when the event contains a reference to the
consumer.

The ListenerContainerIdleEvent has the following properties:

72

source: The listener container instance that published the event.

container: The listener container or the parent listener container, if the source container is a
child.

id: The listener ID (or container bean name).
idleTime: The time the container had been idle when the event was published.

topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener
Containers for more information.

The ListenerContainerNoLongerIdleEvent has the same properties, except idleTime and paused.
The ListenerContainerPartitionIdleEvent has the following properties:

* source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

* id: The listener ID (or container bean name).
* idleTime: The time partition consumption had been idle when the event was published.
* topicPartition: The topic and partition that triggered the event.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether that partition consumption is currently paused for that consumer. See Pausing

and Resuming Listener Containers for more information.

The ListenerContainerPartitionNoLongerIdleEvent has the same properties, except idleTime and
paused.

The NonResponsiveConsumerEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e id: The listener ID (or container bean name).
» timeSincelastPoll: The time just before the container last called poll().

* topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener
Containers for more information.

The ConsumerPausedEvent, ConsumerResumedEvent, and ConsumerStopping events have the following
properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partitions: The TopicPartition instances involved.

The ConsumerPartitionPausedEvent, ConsumerPartitionResumedEvent events have the following

73

properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partition: The TopicPartition instance involved.
The ConsumerStartingEvent, ConsumerStartingEvent, ConsumerFailedToStartEvent,
ConsumerStoppedEvent and ContainerStoppedEvent events have the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a

child.

All containers (whether a child or a parent) publish ContainerStoppedEvent. For a parent container,
the source and container properties are identical.

In addition, the ConsumerStoppedEvent has the following additional property:

* reason
o NORMAL - the consumer stopped normally (container was stopped).
o ERROR - a java.lang.Error was thrown.

o FENCED - the transactional producer was fenced and the stopContainerWhenFenced container
property is true.

o AUTH - an AuthorizationException was thrown and the authorizationExceptionRetryInterval is
not configured.

o NO_OFFSET - there is no offset for a partition and the auto.offset.reset policy is none.

You can use this event to restart the container after such a condition:

if (event.getReason.equals(Reason.FENCED)) {
event.getSource(MessagelistenerContainer.class).start();

Detecting Idle and Non-Responsive Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle. You
might want to take some action if no messages arrive for some period of time.

You can configure the listener container to publish a ListenerContainerIdleEvent when some time
passes with no message delivery. While the container is idle, an event is published every
idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container. The following example shows
how to do so:

74

public KafkaMessageListenerContainer(ConsumerFactory<String, String>
consumerFactory) {

ContainerProperties containerProps = new ContainerProperties("topicl1",
topic2");

containerProps.setIdleEventInterval(60000L);

KafkaMessagelistenerContainer<String, String> container = new
KafKaMessagelistenerContainer<>(...);
return container;

}

The following example shows how to set the idleEventInterval for a @Kafkalistener:

public ConcurrentKafkalistenerContainerFactory kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<String, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.getContainerProperties().setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

In addition, if the broker is unreachable, the consumer poll() method does not exit, So no messages
are received and idle events cannot be generated. To solve this issue, the container publishes a
NonResponsiveConsumerEvent if a poll does not return within 3x the pollTimeout property. By default,
this check is performed once every 30 seconds in each container. You can modify this behavior by
setting the monitorInterval (default 30 seconds) and noPollThreshold (default 3.0) properties in the
ContainerProperties when configuring the listener container. The noPollThreshold should be greater
than 1.0 to avoid getting spurious events due to a race condition. Receiving such an event lets you
stop the containers, thus waking the consumer so that it can stop.

Starting with version 2.6.2, if a container has published a ListenerContainerIdleEvent, it will publish
a ListenerContainerNoLongerIdleEvent when a record is subsequently received.

Event Consumption

You can capture these events by implementing ApplicationlListener —either a general listener or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

75

The next example combines @Kafkalistener and @EventListener into a single class. You should
understand that the application listener gets events for all containers, so you may need to check the
listener ID if you want to take specific action based on which container is idle. You can also use the
@EventListener condition for this purpose.

See Application Events for information about event properties.

The event is normally published on the consumer thread, so it is safe to interact with the Consumer
object.

The following example uses both @Kafkalistener and @EventListener:

public class Listener {

@KafkalListener(id = "qux", topics = "annotated")
public void listen4(@Payload String foo, Acknowledgment ack) {

}

@EventListener(condition = "event.listenerId.startsWith('qux-")")
public void eventHandler(ListenerContainerIdleEvent event) {

}

Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID. Since containers

o created for the @Kafkalistener support concurrency, the actual containers are
named id-n where the n is a unique value for each instance to support the
concurrency. That is why we use startsWith in the condition.

If you wish to use the idle event to stop the lister container, you should not call
container.stop() on the thread that calls the listener. Doing so causes delays and
o unnecessary log messages. Instead, you should hand off the event to a different
thread that can then stop the container. Also, you should not stop() the container
instance if it is a child container. You should stop the concurrent container instead.

Current Positions when Idle

Note that you can obtain the current positions when idle is detected by implementing
ConsumerSeekAware in your listener. See onIdleContainer() in Seeking to a Specific Offset.

4.1.7. Topic/Partition Initial Offset

There are several ways to set the initial offset for a partition.

76

When manually assigning partitions, you can set the initial offset (if desired) in the configured
TopicPartitionOffset arguments (see Message Listener Containers). You can also seek to a specific
offset at any time.

When you use group management where the broker assigns partitions:
» For a new group.id, the initial offset is determined by the auto.offset.reset consumer property

(earliest or latest).

» For an existing group ID, the initial offset is the current offset for that group ID. You can,
however, seek to a specific offset during initialization (or at any time thereafter).

4.1.8. Seeking to a Specific Offset

In order to seek, your listener must implement ConsumerSeekAware, which has the following
methods:

void registerSeekCallback(ConsumerSeekCallback callback);

void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback);

void onPartitionsRevoked(Collection<TopicPartition> partitions)

void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback
callback);

The registerSeekCallback is called when the container is started and whenever partitions are
assigned. You should use this callback when seeking at some arbitrary time after initialization. You
should save a reference to the callback. If you use the same listener in multiple containers (or in a
ConcurrentMessagelListenerContainer), you should store the callback in a ThreadLocal or some other
structure keyed by the listener Thread.

When using group management, onPartitionsAssigned is called when partitions are assigned. You
can use this method, for example, for setting initial offsets for the partitions, by calling the callback.
You can also use this method to associate this thread’s callback with the assigned partitions (see the
example below). You must use the callback argument, not the one passed into registerSeekCallback.
Starting with version 2.5.5, this method is called, even when using manual partition assignment.

onPartitionsRevoked is called when the container is stopped or Kafka revokes assignments. You
should discard this thread’s callback and remove any associations to the revoked partitions.

The callback has the following methods:

77

void seek(String topic, int partition, long offset);

void seekToBeginning(String topic, int partition);

void seekToBeginning(Collection=<TopicPartitions> partitions);

void seekToEnd(String topic, int partition);

void seekToEnd(Collection=<TopicPartitions> partitions);

void seekRelative(String topic, int partition, long offset, boolean toCurrent);
void seekToTimestamp(String topic, int partition, long timestamp);

void seekToTimestamp(Collection<TopicPartition> topicPartitions, long timestamp);

seekRelative was added in version 2.3, to perform relative seeks.

» offset negative and toCurrent false - seek relative to the end of the partition.
» offset positive and toCurrent false - seek relative to the beginning of the partition.
» offset negative and toCurrent true - seek relative to the current position (rewind).

» offset positive and toCurrent true - seek relative to the current position (fast forward).

The seekToTimestamp methods were also added in version 2.3.

When seeking to the same timestamp for multiple partitions in the onIdleContainer
or onPartitionsAssigned methods, the second method is preferred because it is

o more efficient to find the offsets for the timestamps in a single call to the
consumer’s offsetsForTimes method. When called from other locations, the
container will gather all timestamp seek requests and make one call to
offsetsForTimes.

You can also perform seek operations from onIdleContainer() when an idle container is detected.
See Detecting Idle and Non-Responsive Consumers for how to enable idle container detection.

The seekToBeginning method that accepts a collection is useful, for example, when

o processing a compacted topic and you wish to seek to the beginning every time the
application is started:

78

public class MyListener implements ConsumerSeekAware {

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {

callback.seekToBeginning(assignments.keySet());
}

To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback for the
appropriate thread.

Here is a trivial Spring Boot application that demonstrates how to use the callback; it sends 10
records to the topic; hitting <Enter> in the console causes all partitions to seek to the beginning.

79

80

public class SeekExampleApplication {

public static void main(String[] args) {
SpringApplication.run(SeekExampleApplication.class, args);
}

public ApplicationRunner runner(Listener listener, KafkaTemplate<String,
String> template) {
return args -> {

IntStream.range(@, 10).forEach(i -> template.send(
new ProducerRecord<>("seekExample", i % 3, "foo", "bar")));

while (true) {
System.in.read();
listener.seekToStart();

public NewTopic topic() {
return new NewTopic("seekExample", 3, (short) 1);

}

class Listener implements ConsumerSeekAware {

private static final Logger logger = LoggerFactory.getlLogger(Listener.class);

private final ThreadlLocal<ConsumerSeekCallback> callbackForThread = new
ThreadlLocal<>();
private final Map<TopicPartition, ConsumerSeekCallback> callbacks = new

ConcurrentHashMap<>();

public void registerSeekCallback(ConsumerSeekCallback callback) {
this.callbackForThread.set(callback);

}

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
assignments.keySet().forEach(tp -> this.callbacks.put(tp, this
.callbackForThread.qget()));
}

public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
partitions.forEach(tp -> this.callbacks.remove(tp));
this.callbackForThread.remove();

public void onIdleContainer(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
}

(id = "seekExample", topics = "seekExample", concurrency = "3")
public void listen(ConsumerRecord<String, String> in) {
logger.info(in.toString());
}

public void seekToStart() {
this.callbacks.forEach((tp, callback) -> callback.seekToBeginning(tp.
topic(), tp.partition()));
}

To make things simpler, version 2.3 added the AbstractConsumerSeekAware class, which keeps track of
which callback is to be used for a topic/partition. The following example shows how to seek to the
last record processed, in each partition, each time the container goes idle. It also has methods that
allow arbitrary external calls to rewind partitions by one record.

81

public class SeekTolLastOnIdlelListener extends AbstractConsumerSeekAware {

(id = "seekOnIdle", topics = "seekOnIdle")
public void listen(String in) {

}

public void onIdleContainer(Map<org.apache.kafka.common.TopicPartition, Long>
assignments,
ConsumerSeekCallback callback) {

assignments.keySet().forEach(tp -> callback.seekRelative(tp.topic(),
tp.partition(), -1, true));
}

/**
* Rewind all partitions one record.
*
/
public void rewindAl1OneRecord() {
getSeekCallbacks()
.forEach((tp, callback) ->
callback.seekRelative(tp.topic(), tp.partition(), -1, true));

}

/**
* Rewind one partition one record.
*/
public void rewindOnePartitionOneRecord(String topic, int partition) {
getSeekCallbackFor(new org.apache.kafka.common.TopicPartition(topic,
partition))
.seekRelative(topic, partition, -1, true);

}

Version 2.6 added convenience methods to the abstract class:

» seekToBeginning() - seeks all assigned partitions to the beginning
* seekToEnd() - seeks all assigned partitions to the end

* seekToTimestamp(long time) - seeks all assigned partitions to the offset represented by that
timestamp.

Example:

82

public class MyListener extends AbstractConsumerSeekAware {

(...)
void listn(...) {

public class SomeQtherBean {

MyListener listener;

void someMethod() {
this.listener.seekToTimestamp(System.currentTimeMillis - 60_000);

4.1.9. Container factory

As discussed in @KafkalListener Annotation, a ConcurrentKafkalistenerContainerFactory is used to
create containers for annotated methods.

Starting with version 2.2, you can wuse the same factory to create any
ConcurrentMessagelistenerContainer. This might be useful if you want to create several containers
with similar properties or you wish to use some externally configured factory, such as the one
provided by Spring Boot auto-configuration. Once the container is created, you can further modify
its properties, many of which are set by using container.getContainerProperties(). The following
example configures a ConcurrentMessagelListenerContainer:

public ConcurrentMessagelistenerContainer<String, String>(
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> container =
factory.createContainer("topic1", "topic2");

container.setMessagelListener(m -> { ... });

return container;

83

Containers created this way are not added to the endpoint registry. They should be
o created as @Bean definitions so that they are registered with the application
context.

Starting with version 2.3.4, you can add a ContainerCustomizer to the factory to further configure
each container after it has been created and configured.

public KafkalistenerContainerFactory<?, 7> kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setContainerCustomizer(container -> { /* customize the container */ }

)i
return factory;
}
4.1.10. Thread Safety

When using a concurrent message listener container, a single listener instance is invoked on all
consumer threads. Listeners, therefore, need to be thread-safe, and it is preferable to use stateless
listeners. If it is not possible to make your listener thread-safe or adding synchronization would
significantly reduce the benefit of adding concurrency, you can use one of a few techniques:

* Use n containers with concurrency=1 with a prototype scoped MessagelListener bean so that each
container gets its own instance (this is not possible when using @KafkalListener).

* Keep the state in ThreadlLocal<?> instances.

* Have the singleton listener delegate to a bean that is declared in SimpleThreadScope (or a similar
scope).

To facilitate cleaning up thread state (for the second and third items in the preceding list), starting
with version 2.2, the listener container publishes a ConsumerStoppedEvent when each thread exits.
You can consume these events with an ApplicationListener or @EventlListener method to remove
ThreadlLocal<?> instances or remove() thread-scoped beans from the scope. Note that
SimpleThreadScope does not destroy beans that have a destruction interface (such as DisposableBean),
so you should destroy() the instance yourself.

By default, the application context’s event multicaster invokes event listeners on
o the calling thread. If you change the multicaster to use an async executor, thread
cleanup is not effective.

4.1.11. Monitoring

84

Monitoring Listener Performance

Starting with version 2.3, the listener container will automatically create and update Micrometer
Timer s for the listener, if Micrometer is detected on the class path, and a single MeterRegistry is
present in the application context. The timers can be disabled by setting the ContainerProperty
micrometerEnabled to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.listener and have the following tags:

e name : (container bean name)
e result: success or failure

» exception:none or ListenerExecutionFailedException

You can add additional tags using the ContainerProperties micrometerTags property.

o With the concurrent container, timers are created for each thread and the name tag
is suffixed with -n where n is @ to concurrency-1.

Monitoring KafkaTemplate Performance

Starting with version 2.5, the template will automatically create and update Micrometer Timer s for
send operations, if Micrometer is detected on the class path, and a single MeterRegistry is present in
the application context. The timers can be disabled by setting the template’s micrometerEnabled
property to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.template and have the following tags:

* name : (template bean name)
e result: success or failure

* exception : none or the exception class name for failures

You can add additional tags using the template’s micrometerTags property.

Micrometer Native Metrics

Starting with version 2.5, the framework provides Factory Listeners to manage a Micrometer
KafkaClientMetrics instance whenever producers and consumers are created and closed.

To enable this feature, simply add the listeners to your producer and consumer factories:

85

public ConsumerFactory<String, String> myConsumerFactory() {
Map<String, Object> configs = consumerConfigs();

DefaultKafkaConsumerFactory<String, String> cf = new
DefaultKafkaConsumerFactory<>(configs);

cf.addListener(new MicrometerConsumerListener<String, String>(meterRegistry(),
Collections.singletonlList(new ImmutableTag("customTag",
"customTagValue"))));

return cf;

public ProducerFactory<String, String> myProducerFactory() {
Map<String, Object> configs = producerConfigs();
configs.put(ProducerConfig.CLIENT_ID_CONFIG, "myClientId");

DefaultKafkaProducerFactory<String, String> pf = new
DefaultKafkaProducerFactory<>(configs);

pf.addListener(new MicrometerProducerListener<String, String>(meterRegistry(),
Collections.singletonlList(new ImmutableTag("customTag",
"customTagValue"))));

return pf;

The consumer/producer id passed to the listener is added to the meter’s tags with tag name
spring.id.

An example of obtaining one of the Kafka metrics

double count = this.meterRegistry.get("kafka.producer.node.incoming.byte.total")
.tag("customTag", "customTagValue")
.tag("spring.id", "myProducerFactory.myClientId-1")
.functionCounter ()
.count()

A similar listener is provided for the StreamsBuilderFactoryBean - see KafkaStreams Micrometer
Support.

86

4.1.12. Transactions

This section describes how Spring for Apache Kafka supports transactions.

Overview

The 0.11.0.0 client library added support for transactions. Spring for Apache Kafka adds support in
the following ways:

* KafkaTransactionManager: Used with normal Spring transaction support (@Transactional,
TransactionTemplate etc).

» Transactional KafkaMessagelListenerContainer
 Local transactions with KafkaTemplate

* Transaction synchronization with other transaction managers

Transactions are enabled by providing the DefaultKafkaProducerFactory with a transactionIdPrefix.
In that case, instead of managing a single shared Producer, the factory maintains a cache of
transactional producers. When the user calls close() on a producer, it is returned to the cache for
reuse instead of actually being closed. The transactional.id property of each producer is
transactionIdPrefix + n, where n starts with @ and is incremented for each new producer, unless the
transaction is started by a listener container with a record-based listener. In that case, the
transactional.id is <transactionIdPrefix>.<group.id>.<topic>.<partition>. This is to properly
support fencing zombies, as described here. This new behavior was added in versions 1.3.7, 2.0.6,
2.1.10, and 2.2.0. If you wish to revert to the previous behavior, you can set the
producerPerConsumerPartition property on the DefaultKafkaProducerFactory to false.

While transactions are supported with batch listeners, by default, zombie fencing
is not supported because a batch may contain records from multiple topics or
partitions. However, starting with version 2.3.2, zombie fencing is supported if you
set the container property subBatchPerPartition to true. In that case, the batch

o listener is invoked once per partition received from the last poll, as if each poll
only returned records for a single partition. This is true by default since version
2.5 when transactions are enabled with EOSMode.ALPHA; set it to false if you are
using transactions but are not concerned about zombie fencing. Also see Exactly
Once Semantics.

Also see transactionIdPrefix.

With Spring Boot, it is only necessary to set the spring.kafka.producer.transaction-id-prefix
property - Boot will automatically configure a KafkaTransactionManager bean and wire it into the
listener container.

87

https://www.confluent.io/blog/transactions-apache-kafka/

Starting with version 2.5.8, you can now configure the maxAge property on the
producer factory. This is useful when using transactional producers that might lay

o idle for the broker’s transactional.id.expiration.ms. With current kafka-clients,
this can cause a ProducerFencedException without a rebalance. By setting the maxAge
to less than transactional.id.expiration.ms, the factory will refresh the producer if
it is past it’s max age.

Using KafkaTransactionManager

The KafkaTransactionManager is an implementation of Spring Framework’s
PlatformTransactionManager. It is provided with a reference to the producer factory in its
constructor. If you provide a custom producer factory, it must support transactions. See
ProducerFactory.transactionCapable().

You can use the KafkaTransactionManager with normal Spring transaction support (@Transactional,
TransactionTemplate, and others). If a transaction is active, any KafkaTemplate operations performed
within the scope of the transaction use the transaction’s Producer. The manager commits or rolls
back the transaction, depending on success or failure. You must configure the KafkaTemplate to use
the same ProducerFactory as the transaction manager.

Transaction Synchronization

This section refers to producer-only transactions (transactions not started by a listener container);
see Using Consumer-Initiated Transactions for information about chaining transactions when the
container starts the transaction.

If you want to send records to kafka and perform some database updates, you can use normal
Spring transaction management with, say, a DataSourceTransactionManager.

public void process(List<Thing> things) {
things.forEach(thing -> this.kafkaTemplate.send("topic", thing));
updateDb(things);

The interceptor for the @Transactional annotation starts the transaction and the KafkaTemplate will
synchronize a transaction with that transaction manager; each send will participate in that
transaction. When the method exits, the database transaction will commit followed by the Kafka
transaction. If you wish the commits to be performed in the reverse order (Kafka first), use nested
@Transactional methods, with the outer method configured to use the DataSourceTransactionManager,
and the inner method configured to use the KafkaTransactionManager.

See Examples of Kafka Transactions with Other Transaction Managers for examples of an
application that synchronizes JDBC and Kafka transactions in Kafka-first or DB-first configurations.

88

Using Consumer-Initiated Transactions

The ChainedKafkaTransactionManager is now deprecated, since version 2.7; see the javadocs for its
super class ChainedTransactionManager for more information. Instead, use a KafkaTransactionManager
in the container to start the Kafka transaction and annotate the listener method with
@Transactional to start the other transaction.

See Examples of Kafka Transactions with Other Transaction Managers for an example application
that chains JDBC and Kafka transactions.

KafkaTemplate Local Transactions

You can use the KafkaTemplate to execute a series of operations within a local transaction. The
following example shows how to do so:

boolean result = template.executeInTransaction(t -> {
t.sendDefault("thing1", "thing2");
t.sendDefault("cat", "hat");
return true;

1

The argument in the callback is the template itself (this). If the callback exits normally, the
transaction is committed. If an exception is thrown, the transaction is rolled back.

o If there is a KafkaTransactionManager (or synchronized) transaction in process, it is
not used. Instead, a new "nested" transaction is used.

transactionIdPrefix

As mentioned in the overview, the producer factory is configured with this property to build the
producer transactional.id property. There is a dichotomy when specifying this property in that,
when running multiple instances of the application with EOSMode.ALPHA, it must be the same on all
instances to satisfy fencing zombies (also mentioned in the overview) when producing records on a
listener container thread. However, when producing records using transactions that are not started
by a listener container, the prefix has to be different on each instance. Version 2.3, makes this
simpler to configure, especially in a Spring Boot application. In previous versions, you had to create
two producer factories and KafkaTemplate s - one for producing records on a listener container
thread and one for stand-alone transactions started by kafkaTemplate.executeInTransaction() or by
a transaction interceptor on a @Transactional method.

Now, you can override the factory’s transactionalldPrefix on the KafkaTemplate and the
KafkaTransactionManager.

When using a transaction manager and template for a listener container, you would normally leave
this to default to the producer factory’s property. This value should be the same for all application
instances when using EOSMode.ALPHA. With EOSMode.BETA it is no longer necessary to use the same
transactional.id, even for consumer-initiated transactions; in fact, it must be unique on each

89

instance the same as producer-initiated transactions. For transactions started by the template (or
the transaction manager for @Transaction) you should set the property on the template and
transaction manager respectively. This property must have a different value on each application
instance.

This problem (different rules for transactional.id) has been eliminated when EOSMode.BETA is being
used (with broker versions >= 2.5); see Exactly Once Semantics.

KafkaTemplate Transactional and non-Transactional Publishing

Normally, when a KafkaTemplate is transactional (configured with a transaction-capable producer
factory), transactions are required. The transaction can be started by a TransactionTemplate, a
@Transactional method, calling executeInTransaction, or by a listener container, when configured
with a KafkaTransactionManager. Any attempt to use the template outside the scope of a transaction
results in the template throwing an I1legalStateException. Starting with version 2.4.3, you can set
the template’s allowNonTransactional property to true. In that case, the template will allow the
operation to run without a transaction, by calling the ProducerFactory 's
createNonTransactionalProducer () method; the producer will be cached, or thread-bound, as normal
for reuse. See Using DefaultKafkaProducerFactory.

Transactions with Batch Listeners

When a listener fails while transactions are being used, the AfterRollbackProcessor is invoked to
take some action after the rollback occurs. When using the default AfterRollbackProcessor with a
record listener, seeks are performed so that the failed record will be redelivered. With a batch
listener, however, the whole batch will be redelivered because the framework doesn’t know which
record in the batch failed. See After-rollback Processor for more information.

When using a batch listener, version 2.4.2 introduced an alternative mechanism to deal with
failures while processing a batch; the BatchToRecordAdapter. When a container factory with
batchListener set to true is configured with a BatchToRecordAdapter, the listener is invoked with one
record at a time. This enables error handling within the batch, while still making it possible to stop
processing the entire batch, depending on the exception type. A default BatchToRecordAdapter is
provided, that can be configured with a standard ConsumerRecordRecoverer such as the
DeadLetterPublishingRecoverer. The following test case configuration snippet illustrates how to use
this feature:

90

public static class TestListener {
final List<String> values = new ArraylList<>();

(id = "batchRecordAdapter"”, topics = "test")
public void listen(String data) {
values.add(data);
if ("bar".equals(data)) {
throw new RuntimeException("reject partial");

}

public static class Config {

ConsumerRecord<?, 7> failed;

public TestlListener test() {
return new TestlListener();

}

public ConsumerFactory<?, 7> consumerFactory() {
return mock(ConsumerFactory.class);

}

public ConcurrentKafkalistenerContainerFactory<String, String>

kafkalListenerContainerFactory() {

ConcurrentKafkalistenerContainerFactory factory = new
ConcurrentKafkalistenerContainerFactory();

factory.setConsumerFactory(consumerFactory());

factory.setBatchListener(true);

factory.setBatchToRecordAdapter(new DefaultBatchToRecordAdapter<>((record,
ex) > |

this.failed = record;
1)

return factory;

4.1.13. Exactly Once Semantics

You can provide a listener container with a KafkaAwareTransactionManager instance. When so
configured, the container starts a transaction before invoking the listener. Any KafkaTemplate
operations performed by the listener participate in the transaction. If the listener successfully
processes the record (or multiple records, when using a BatchMessagelListener), the container sends
the offset(s) to the transaction by wusing producer.send0ffsetsToTransaction()), before the
transaction manager commits the transaction. If the listener throws an exception, the transaction is
rolled back and the consumer is repositioned so that the rolled-back record(s) can be retrieved on
the next poll. See After-rollback Processor for more information and for handling records that
repeatedly fail.

Using transactions enables Exactly Once Semantics (EOS).

This means that, for a read»>process-write sequence, it is guaranteed that the sequence is completed
exactly once. (The read and process are have at least once semantics).

Spring for Apache Kafka version 2.5 and later supports two EOS modes:

* ALPHA - aka transactional.id fencing (since version 0.11.0.0)

* BETA - aka fetch-offset-request fencing (since version 2.5)

With mode ALPHA, the producer is "fenced" if another instance with the same transactional.id is
started. Spring manages this by using a Producer for each group.id/topic/partition; when a
rebalance occurs a new instance will use the same transactional.id and the old producer is fenced.

With mode BETA, it is not necessary to have a producer for each group.id/topic/partition because
consumer metadata is sent along with the offsets to the transaction and the broker can determine if
the producer is fenced using that information instead.

Starting with version 2.6, the default EOSMode is BETA.

To configure the container to use mode ALPHA, set the container property EOSMode to ALPHA, to revert
to the previous behavior.

With BETA, your brokers must be version 2.5 or later, however with kafka-clients
version 2.6, the producer will automatically fall back to ALPHA if the broker does

o not support BETA. The DefaultKafkaProducerFactory is configured to enable that
behavior. If your brokers are earlier than 2.5, be sure to leave the
DefaultKafkaProducerFactory producerPerConsumerPartition set to true and, if you
are using a batch listener, you should set subBatchPerPartition to true.

When your brokers are upgraded to 2.5 or later, the producer will automatically switch to using
mode BETA, but the number of producers will remain as before. You can then do a rolling upgrade of
your application with producerPerConsumerPartition set to false to reduce the number of producers;
you should also no longer set the subBatchPerPartition container property.

If your brokers are already 2.5 or newer, you should set the DefaultKafkaProducerFactory
producerPerConsumerPartition property to false, to reduce the number of producers needed.

92

o When using EOSMode.BETA with producerPerConsumerPartition=false the
transactional.id must be unique across all application instances.

When using BETA mode, it is no longer necessary to set the subBatchPerPartition to true; it will
default to false when the EOSMode is BETA.

Refer to KIP-447 for more information.

4.1.14. Wiring Spring Beans into Producer/Consumer Interceptors

Apache Kafka provides a mechanism to add interceptors to producers and consumers. These
objects are managed by Kafka, not Spring, and so normal Spring dependency injection won’t work
for wiring in dependent Spring Beans. However, you can manually wire in those dependencies
using the interceptor config() method. The following Spring Boot application shows how to do this
by overriding boot’s default factories to add some dependent bean into the configuration
properties.

93

https://cwiki.apache.org/confluence/display/KAFKA/KIP-447%3A+Producer+scalability+for+exactly+once+semantics

94

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public ConsumerFactory<?, 7> kafkaConsumerFactory(KafkaProperties properties,

SomeBean someBean) {

Map<String, Object> consumerProperties = properties
.buildConsumerProperties();

consumerProperties.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyConsumerInterceptor.class.getName());

consumerProperties.put("some.bean", someBean);

return new DefaultKafkaConsumerFactory<>(consumerProperties);

public ProducerFactory<?, 7> kafkaProducerFactory(KafkaProperties properties,
SomeBean someBean) {
Map<String, Object> producerProperties = properties
.buildProducerProperties();
producerProperties.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyProducerInterceptor.class.getName());
producerProperties.put("some.bean", someBean);
DefaultKafkaProducerFactory<?, 7> factory = new
DefaultKafkaProducerFactory<>(producerProperties);
String transactionIdPrefix = properties.getProducer()
.getTransactionIdPrefix();
if (transactionIdPrefix != null) {
factory.setTransactionIdPrefix(transactionIdPrefix);

}

return factory;

public SomeBean someBean() {
return new SomeBean();

}

(id = "kgk897", topics = "kgh897")
public void listen(String in) {
System.out.println("Received " + in);

}

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> template.send("kgh897", "test");

}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kgh897")
.partitions(1)
.replicas(1)
.build();

public class SomeBean {

public void someMethod(String what) {
System.out.println(what + " in my foo bean");

}

95

96

public class MyProducerInterceptor implements ProducerInterceptor<String, String>

{

private SomeBean bean;

@0verride
public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}

@0verride
public ProducerRecord<String, String> onSend(ProducerRecord<String, String>
record) {
this.bean.someMethod("producer interceptor");
return record;

}

@0verride
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {

}

@0verride
public void close() {
}

public class MyConsumerInterceptor implements ConsumerInterceptor<String, String>

{

private SomeBean bean;

public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}

public ConsumerRecords<String, String> onConsume(ConsumerRecords<String,
String> records) {
this.bean.someMethod("consumer interceptor");
return records;

public void onCommit(Map<TopicPartition, OffsetAndMetadata> offsets) {
}

public void close() {
}

Result:

producer interceptor in my foo bean
consumer interceptor in my foo bean
Received test

4.1.15. Pausing and Resuming Listener Containers

Version 2.1.3 added pause() and resume() methods to listener containers. Previously, you could
pause a consumer within a ConsumerAwareMessagelistener and resume it by listening for a
ListenerContainerIdleEvent, which provides access to the Consumer object. While you could pause a
consumer in an idle container by using an event listener, in some cases, this was not thread-safe,
since there is no guarantee that the event listener is invoked on the consumer thread. To safely
pause and resume consumers, you should use the pause and resume methods on the listener
containers. A pause() takes effect just before the next poll(); a resume() takes effect just after the
current poll() returns. When a container is paused, it continues to poll() the consumer, avoiding a
rebalance if group management is being used, but it does not retrieve any records. See the Kafka

97

documentation for more information.

Starting with version 2.1.5, you can call isPauseRequested() to see if pause() has been called.
However, the consumers might not have actually paused yet. isConsumerPaused() returns true if all
Consumer instances have actually paused.

In addition (also since 2.1.5), ConsumerPausedEvent and ConsumerResumedEvent instances are published
with the container as the source property and the TopicPartition instances involved in the
partitions property.

The following simple Spring Boot application demonstrates by using the container registry to get a
reference to a @Kafkalistener method’s container and pausing or resuming its consumers as well as
receiving the corresponding events:

98

@SpringBootApplication
public class Application implements ApplicationlListener<KafkaEvent> {

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();

}

@0verride

public void onApplicationEvent(KafkaEvent event) {
System.out.println(event);

}

@Bean
public ApplicationRunner runner(KafkalListenerEndpointRegistry registry,
KafkaTemplate<String, String> template) {
return args -> {
template.send("pause.resume.topic", "thing1");
Thread.sleep(10_000);
System.out.println("pausing");
registry.getListenerContainer("pause.resume").pause();
Thread.sleep(10_000);
template.send("pause.resume.topic", "thing2");
Thread.sleep(10_000);
System.out.println("resuming");
registry.getlListenerContainer("pause.resume").resume();
Thread.sleep(10_000);
I
}

@Kafkalistener(id = "pause.resume", topics = "pause.resume.topic")
public void listen(String in) {

System.out.println(in);
}

@Bean
public NewTopic topic() {
return TopicBuilder.name("pause.resume.topic")
.partitions(2)
.replicas(1)
.build();

The following listing shows the results of the preceding example:

partitions assigned: [pause.resume.topic-1, pause.resume.topic-0]

thing1

pausing

ConsumerPausedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
resuming

ConsumerResumedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
thing2

4.1.16. Pausing and Resuming Partitions on Listener Containers

Since version 2.7 you can pause and resume the consumption of specific partitions assigned to that
consumer by using the pausePartition(TopicPartition topicPartition) and
resumePartition(TopicPartition topicPartition) methods in the listener containers. The pausing
and resuming takes place respectively before and after the poll() similar to the pause() and
resume() methods. The isPartitionPauseRequested() method returns true if pause for that partition
has been requested. The isPartitionPaused() method returns true if that partition has effectively
been paused.

Also since version 2.7 ConsumerPartitionPausedEvent and ConsumerPartitionResumedEvent instances
are published with the container as the source property and the TopicPartition instance.

4.1.17. Serialization, Deserialization, and Message Conversion

Overview

Apache Kafka provides a high-level API for serializing and deserializing record values as well as
their keys. It is present with the org.apache.kafka.common.serialization.Serializer<T> and
org.apache.kafka.common.serialization.Deserializer<T> abstractions with some built-in
implementations. Meanwhile, we can specify serializer and deserializer classes by using Producer or
Consumer configuration properties. The following example shows how to do so:

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class
)i

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.
class);

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

For more complex or particular cases, the KafkaConsumer (and, therefore, KafkaProducer) provides
overloaded constructors to accept Serializer and Deserializer instances for keys and values,
respectively.

When you use this API, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory also

100

provide properties (through constructors or setter methods) to inject custom Serializer and
Deserializer instances into the target Producer or Consumer. Also, you can pass in
Supplier<Serializer> or Supplier<Deserializer> instances through constructors - these Supplier s
are called on creation of each Producer or Consumer.

String serialization

Since version 2.5, Spring Kafka provides ToStringSerializer and ParseStringDeserializer classes
that use String representation of entities. They rely on methods toString and some Function<String>
or BiFunction<String, Headers> to parse the String and populate properties of an instance. Usually,
this would invoke some static method on the class, such as parse:

ToStringSerializer<Thing> thingSerializer = new ToStringSerializer<>();

//...

ParseStringDeserializer<Thing> deserializer = new ParseStringDeserializer<>(Thing
iparse);

By default, the ToStringSerializer is configured to convey type information about the serialized
entity in the record Headers. You can disable this by setting the addTypeInfo property to false. This
information can be used by ParseStringDeserializer on the receiving side.

* ToStringSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the ToStringSerializer (sets the addTypeInfo property).

ParseStringDeserializer<Object> deserializer = new ParseStringDeserializer<>((str,
headers) -> {
byte[] header = headers.lastHeader(ToStringSerializer.VALUE_TYPE).value();
String entityType = new String(header);

if (entityType.contains("Thing")) {
return Thing.parse(str);

}
else {

// ...parsing logic
}

b

You can configure the Charset used to convert String to/from byte[] with the default being UTF-8.

You can configure the deserializer with the name of the parser method using ConsumerConfig
properties:

» ParseStringDeserializer.KEY_PARSER
» ParseStringDeserializer.VALUE_PARSER

101

The properties must contain the fully qualified name of the class followed by the method name,
separated by a period .. The method must be static and have a signature of either (String, Headers)
or (String).

A ToFromStringSerde is also provided, for use with Kafka Streams.

JSON

Spring for Apache Kafka also provides JsonSerializer and JsonDeserializer implementations that
are based on the Jackson JSON object mapper. The JsonSerializer allows writing any Java object as
a JSON byte[]. The JsonDeserializer requires an additional Class<?> targetType argument to allow
the deserialization of a consumed byte[] to the proper target object. The following example shows
how to create a JsonDeserializer:

JsonDeserializer<Thing> thingDeserializer = new JsonDeserializer<>(Thing.class);

You can customize both JsonSerializer and JsonDeserializer with an ObjectMapper. You can also
extend them to implement some particular configuration logic in the configure(Map<String, 7>
configs, boolean isKey) method.

Starting with version 2.3, all the JSON-aware components are configured by default with a
JacksonUtils.enhancedObjectMapper() instance, which comes with the
MapperFeature.DEFAULT_VIEW_INCLUSION and DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES
features disabled. Also such an instance is supplied with well-known modules for custom data
types, such a Java time and Kotlin support. See JacksonUtils.enhancedObjectMapper() JavaDocs for
more information. This method also registers a
org.springframework.kafka.support.JacksonMimeTypeModule for org.springframework.util.MimeType
objects serialization into the plain string for inter-platform compatibility over the network. A
JacksonMimeTypeModule can be registered as a bean in the application context and it will be auto-
configured into Spring Boot ObjectMapper instance.

Also starting with version 2.3, the JsonDeserializer provides TypeReference-based constructors for
better handling of target generic container types.

Starting with version 2.1, you can convey type information in record Headers, allowing the handling
of multiple types. In addition, you can configure the serializer and deserializer by using the
following Kafka properties. They have no effect if you have provided Serializer and Deserializer
instances for KafkaConsumer and KafkaProducer, respectively.

Configuration Properties

* JsonSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the JsonSerializer (sets the addTypeInfo property).

» JsonSerializer.TYPE_MAPPINGS (default empty): See Mapping Types.

» JsonDeserializer.USE_TYPE_INFO_HEADERS (default true): You can set it to false to ignore headers
set by the serializer.

102

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html#howto-customize-the-jackson-objectmapper

e JsonDeserializer.REMOVE _TYPE_INFO_HEADERS (default true): You can set it to false to retain
headers set by the serializer.

* JsonDeserializer.KEY_DEFAULT_TYPE: Fallback type for deserialization of keys if no header
information is present.

» JsonDeserializer.VALUE_DEFAULT_TYPE: Fallback type for deserialization of values if no header
information is present.

* JsonDeserializer.TRUSTED_PACKAGES (default java.util, java.lang): Comma-delimited list of
package patterns allowed for deserialization. * means deserialize all.

* JsonDeserializer.TYPE_MAPPINGS (default empty): See Mapping Types.
* JsonDeserializer.KEY_TYPE_METHOD (default empty): See Using Methods to Determine Types.
* JsonDeserializer.VALUE_TYPE_METHOD (default empty): See Using Methods to Determine Types.

Starting with version 2.2, the type information headers (if added by the serializer) are removed by
the deserializer. You can revert to the previous behavior by setting the removeTypeHeaders property
to false, either directly on the deserializer or with the configuration property described earlier.

Mapping Types

Starting with version 2.2, when using JSON, you can now provide type mappings by using the
properties in the preceding list. Previously, you had to customize the type mapper within the
serializer and deserializer. Mappings consist of a comma-delimited list of token:className pairs. On
outbound, the payload’s class name is mapped to the corresponding token. On inbound, the token
in the type header is mapped to the corresponding class name.

The following example creates a set of mappings:

senderProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.
class);

senderProps.put(JsonSerializer.TYPE_MAPPINGS, "cat:com.mycat.Cat,
hat:com.myhat.hat");

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
JsonDeserializer.class);

consumerProps.put(JsonDeSerializer.TYPE_MAPPINGS, "cat:com.yourcat.(Cat,
hat:com.yourhat.hat");

o The corresponding objects must be compatible.

If you use Spring Boot, you can provide these properties in the application.properties (or yaml)
file. The following example shows how to do so:

103

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html#boot-features-kafka

spring.kafka.producer.value-
serializer=org.springframework.kafka.support.serializer.JsonSerializer
spring.kafka.producer.properties.spring.json.type.mapping=cat:com.mycat.Cat,hat:co
m.myhat.Hat

You can perform only simple configuration with properties. For more advanced
configuration (such as using a custom ObjectMapper in the serializer and
deserializer), you should use the producer and consumer factory constructors that
accept a pre-built serializer and deserializer. The following Spring Boot example
overrides the default factories:

public ConsumerFactory<Foo, Bar> kafkaConsumerFactory
(KafkaProperties properties,
JsonDeserializer customDeserializer) {

return new DefaultKafkaConsumerFactory<>(properties

.buildConsumerProperties(),
o customDeserializer, customDeserializer);

}

public ProducerFactory<Foo, Bar> kafkaProducerFactory
(KafkaProperties properties,
JsonSerializer customSerializer) {

return new DefaultKafkaProducerFactory<>(properties
.buildProducerProperties(),
customSerializer, customSerializer);

}

Setters are also provided, as an alternative to using these constructors.

Starting with version 2.2, you can explicitly configure the deserializer to use the supplied target
type and ignore type information in headers by using one of the overloaded constructors that have
a boolean useHeadersIfPresent (which is true by default). The following example shows how to do
so:

DefaultKafkaConsumerFactory<Integer, Cat1> cf = new DefaultKafkaConsumerFactory<>
(props,
new IntegerDeserializer(), new JsonDeserializer<>(Cat1.class, false));

104

Using Methods to Determine Types

Starting with version 2.5, you can now configure the deserializer, via properties, to invoke a
method to determine the target type. If present, this will override any of the other techniques
discussed above. This can be useful if the data is published by an application that does not use the
Spring serializer and you need to deserialize to different types depending on the data, or other
headers. Set these properties to the method name - a fully qualified class name followed by the
method name, separated by a period .. The method must be declared as public static, have one of
three signatures (String topic, byte[] data, Headers headers), (byte[] data, Headers headers) or
(byte[] data) and return a Jackson JavaType.

* JsonDeserializer.KEY_TYPE_METHOD : spring.json.key.type.method
» JsonDeserializer.VALUE_TYPE_METHOD : spring.json.value.type.method

You can use arbitrary headers or inspect the data to determine the type.

Example

JavaType thing1Type = TypeFactory.defaultInstance().constructType(Thingl.class);

JavaType thing1Type = TypeFactory.defaultInstance().constructType(Thing2.class);
public static JavaType thingOneOrThingTwo(byte[] data, Headers headers) {
// {"thisIsAFieldInThing1":"value", ...
if (data[21] == '"1") {
return thing1Type;

}
else {

return thing2Type;
}

For more sophisticated data inspection consider using JsonPath or similar but, the simpler the test
to determine the type, the more efficient the process will be.

The following is an example of creating the deserializer programmatically (when providing the
consumer factory with the deserializer in the constructor):

105

JsonDeserializer<Object> deser = new JsonDeserializer<>()
.trustedPackages("*")
.typeResolver(SomeClass::thing1Thing2JavaTypeForTopic);

public static JavaType thing1Thing2JavaTypeForTopic(String topic, byte[] data,
Headers headers) {

}

Programmatic Construction

When constructing the serializer/deserializer programmatically for use in the producer/consumer
factory, since version 2.3, you can use the fluent API, which simplifies configuration.

The following example assumes you are using Spring Boot:

public DefaultKafkaProducerFactory pf(KafkaProperties properties) {
Map<String, Object> props = properties.buildProducerProperties();
DefaultKafkaProducerFactory pf = new DefaultKafkaProducerFactory(props,
new JsonSerializer<>(MyKeyType.class)
.forKeys()
.noTypeInfo(),
new JsonSerializer<>(MyValueType.class)
.noTypeInfo());

public DefaultKafkaConsumerFactory pf(KafkaProperties properties) {
Map<String, Object> props = properties.buildConsumerProperties();
DefaultKafkaConsumerFactory pf = new DefaultKafkaConsumerFactory(props,
new JsonDeserializer<>(MyKeyType.class)
.forKeys()
.ignoreTypeHeaders(),
new JsonDeserializer<>(MyValueType.class)
.ignoreTypeHeaders());

To provide type mapping programmatically, similar to Using Methods to Determine Types, use the
typeFunction property.

106

Example

JsonDeserializer<Object> deser = new JsonDeserializer<>()
.trustedPackages("*")
.typeFunction(MyUtils::thingOneOrThingTwo);

Delegating Serializer and Deserializer

Version 2.3 introduced the DelegatingSerializer and DelegatingDeserializer, which allow
producing and consuming records with different key and/or value types. Producers must set a
header DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR to a selector value that is used to select
which serializer to use for the value and DelegatingSerializer.KEY_SERIALIZATION_SELECTOR for the
key; if a match is not found, an I11legalStateException is thrown.

For incoming records, the deserializer uses the same headers to select the deserializer to use; if a
match is not found or the header is not present, the raw byte[] is returned.

You can configure the map of selector to Serializer / Deserializer via a constructor, or you can
configure it via Kafka producer/consumer properties with the keys
DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR_CONFIG and
DelegatingSerializer.KEY_SERIALIZATION_SELECTOR_CONFIG. For the serializer, the producer property
can be a Map<String, Object> where the key is the selector and the value is a Serializer instance, a
serializer (Class or the class name. The property can also be a String of comma-delimited map
entries, as shown below.

For the deserializer, the consumer property can be a Map<String, Object> where the key is the
selector and the value is a Deserializer instance, a deserializer Class or the class name. The
property can also be a String of comma-delimited map entries, as shown below.

To configure using properties, use the following syntax:

producerProps.put(DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Serializer, thing2:com.example.MyThing2Serializer

")

consumerProps.put(DelegatingDeserializer.VALUE_SERIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Deserializer,
thing2:com.example.MyThing2Deserializer")

Producers would then set the DelegatingSerializer.VALUE_SERTALIZATION_SELECTOR header to thingT
or thing2.

This technique supports sending different types to the same topic (or different topics).

107

Starting with version 2.5.1, it is not necessary to set the selector header, if the type
(key or value) is one of the standard types supported by Serdes (Long, Integer, etc).

o Instead, the serializer will set the header to the class name of the type. It is not
necessary to configure serializers or deserializers for these types, they will be
created (once) dynamically.

For another technique to send different types to different topics, see Using RoutingKafkaTemplate.

Retrying Deserializer

The RetryingDeserializer uses a delegate Deserializer and RetryTemplate to retry deserialization
when the delegate might have transient errors, such a network issues, during deserialization.

ConsumerFactory cf = new DefaultKafkaConsumerFactory(myConsumerConfigs,
new RetryingDeserializer(myUnreliableKeyDeserializer, retryTemplate),
new RetryingDeserializer(myUnreliableValueDeserializer, retryTemplate));

Refer to the spring-retry project for configuration of the RetryTemplate with a retry policy, back off
policy, etc.

Spring Messaging Message Conversion

Although the Serializer and Deserializer API is quite simple and flexible from the low-level Kafka
Consumer and Producer perspective, you might need more flexibility at the Spring Messaging level,
when using either @Kafkalistener or [Spring Integration’s Apache Kafka Support. To let you easily
convert to and from org.springframework.messaging.Message, Spring for Apache Kafka provides a
MessageConverter abstraction with the MessagingMessageConverter implementation and its
JsonMessageConverter (and subclasses) customization. You can inject the MessageConverter into a
KafkaTemplate instance directly and by using AbstractKafkalistenerContainerFactory bean definition
for the @Kafkalistener.containerFactory() property. The following example shows how to do so:

108

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#kafka

public KafkalistenerContainerFactory<?, 7> kafkalsonListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setMessageConverter(new JsonMessageConverter());
return factory;

(topics = "jsonData",
containerFactory = "kafkalsonListenerContainerFactory")
public void jsonListener(Cat cat) {

}

When you use a @Kafkalistener, the parameter type is provided to the message converter to assist
with the conversion.

This type inference can be achieved only when the @Kafkalistener annotation is

o declared at the method level. With a class-level @KafkalListener, the payload type is
used to select which @KafkaHandler method to invoke, so it must already have been
converted before the method can be chosen.

On the consumer side, you can configure a JsonMessageConverter; it can handle
ConsumerRecord values of type byte[], Bytes and String so should be used in
conjunction with a ByteArrayDeserializer, BytesDeserializer or
StringDeserializer. (byte[] and Bytes are more efficient because they avoid an
unnecessary byte[] to String conversion). You can also configure the specific
subclass of JsonMessageConverter corresponding to the deserializer, if you so wish.

On the producer side, when you wuse Spring Integration or the
KafkaTemplate.send(Message<?> message) method (see Using KafkaTemplate), you
must configure a message converter that is compatible with the configured Kafka

o Serializer.
» StringJsonMessageConverter with StringSerializer
* BytesJsonMessageConverter with BytesSerializer
* ByteArrayJsonMessageConverter with ByteArraySerializer

Again, using byte[] or Bytes is more efficient because they avoid a String to byte[]
conversion.

For convenience, starting with version 2.3, the framework also provides a
StringOrBytesSerializer which can serialize all three value types so it can be used
with any of the message converters.

109

Using Spring Data Projection Interfaces

Starting with version 2.1.1, you can convert JSON to a Spring Data Projection interface instead of a
concrete type. This allows very selective, and low-coupled bindings to data, including the lookup of
values from multiple places inside the JSON document. For example the following interface can be
defined as message payload type:

interface SomeSample {

({ "$.username", "$.user.name" })
String getUsername();

(id="projection.listener", topics = "projection")
public void projection(SomeSample in) {
String username = in.getUsername();

Accessor methods will be used to lookup the property name as field in the received JSON document
by default. The @JsonPath expression allows customization of the value lookup, and even to define
multiple JSON Path expressions, to lookup values from multiple places until an expression returns
an actual value.

To enable this feature, use a ProjectingMessageConverter configured with an appropriate delegate
converter (used for outbound conversion and converting non-projection interfaces). You must also
add spring-data:spring-data-commons and com.jayway.jsonpath:json-path to the class path.

When used as the parameter to a @Kafkalistener method, the interface type is automatically passed
to the converter as normal.

Using ErrorHandlingDeserializer

When a deserializer fails to deserialize a message, Spring has no way to handle the problem,
because it occurs before the poll() returns. To solve this problem, the ErrorHandlingDeserializer
has been introduced. This deserializer delegates to a real deserializer (key or value). If the delegate
fails to deserialize the record content, the ErrorHandlingDeserializer returns a null value and a
DeserializationException in a header that contains the cause and the raw bytes. When you use a
record-level Messagelistener, if the ConsumerRecord contains a DeserializationException header for
either the key or value, the container’s ErrorHandler is called with the failed ConsumerRecord. The
record is not passed to the listener.

Alternatively, you can configure the ErrorHandlingDeserializer to create a custom value by
providing a failedDeserializationFunction, which is a Function<FailedDeserializationInfo, T>.This

110

function is invoked to create an instance of T, which is passed to the listener in the usual fashion.
An object of type FailedDeserializationInfo, which contains all the contextual information is
provided to the function. You can find the DeserializationException (as a serialized Java object) in
headers. See the Javadoc for the ErrorHandlingDeserializer for more information.

° When you use a BatchMessagelistener, you must provide a
failedDeserializationFunction. Otherwise, the batch of records are not type safe.

You can use the DefaultKafkaConsumerFactory constructor that takes key and value Deserializer
objects and wire in appropriate ErrorHandlingDeserializer instances that you have configured with
the proper delegates. Alternatively, you can use consumer configuration properties (which are used
by the ErrorHandlingDeserializer) to instantiate the delegates. The property names are
ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS and
ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS. The property value can be a class or class
name. The following example shows how to set these properties:

. // other props
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer.class);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, ErrorHandlingDeserializer
.class);
props.put(ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS, JsonDeserializer.
class);
props.put(JsonDeserializer.KEY_DEFAULT_TYPE, "com.example.MyKey")
props.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS, JsonDeserializer
.class.getName());
props.put(JsonDeserializer.VALUE_DEFAULT_TYPE, "com.example.MyValue")
props.put(JsonDeserializer.TRUSTED_PACKAGES, "com.example")
return new DefaultKafkaConsumerFactory<>(props);

The following example uses a failedDeserializationFunction.

111

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/serializer/ErrorHandlingDeserializer.html

public class BadFoo extends Foo {
private final FailedDeserializationInfo failedDeserializationInfo;

public BadFoo(FailedDeserializationInfo failedDeserializationInfo) {
this.failedDeserializationInfo = failedDeserializationInfo;

}

public FailedDeserializationInfo getFailedDeserializationInfo() {
return this.failedDeserializationInfo;

}
}

public class FailedFooProvider implements Function<FailedDeserializationInfo, Foo>

{

public Foo apply(FailedDeserializationInfo info) {
return new BadFoo(info);

}

The preceding example uses the following configuration:

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS,
JsonDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer.VALUE_FUNCTION, FailedFooProvider
.class);

Payload Conversion with Batch Listeners

You can also use a JsonlMessageConverter within a BatchMessagingMessageConverter to convert batch
messages when you use a batch listener container factory. See Serialization, Deserialization, and
Message Conversion and Spring Messaging Message Conversion for more information.

By default, the type for the conversion is inferred from the listener argument. If you configure the
JsonMessageConverter with a Defaultlackson2TypeMapper that has its TypePrecedence set to TYPE_ID
(instead of the default INFERRED), the converter uses the type information in headers (if present)
instead. This allows, for example, listener methods to be declared with interfaces instead of

112

concrete classes. Also, the type converter supports mapping, so the deserialization can be to a
different type than the source (as long as the data is compatible). This is also useful when you use
class-level @Kafkalistener instances where the payload must have already been converted to
determine which method to invoke. The following example creates beans that use this method:

public KafkalListenerContainerFactory<?, 7> kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true);
factory.setMessageConverter(new BatchMessagingMessageConverter(converter()));
return factory;

public JsonMessageConverter converter() {
return new JsonMessageConverter();

}

Note that, for this to work, the method signature for the conversion target must be a container
object with a single generic parameter type, such as the following:

(topics = "ble1")
public void listen(List<Foo> foos, (KafkaHeaders.OFFSET) List<Long>
offsets) {

}

Note that you can still access the batch headers.

If the batch converter has a record converter that supports it, you can also receive a list of messages
where the payloads are converted according to the generic type. The following example shows how
to do so:

(topics = "ble3", groupld = "blc3")
public void listen1(List<Message<Foo>> foolMessages) {

}

113

ConversionService Customization

Starting with version 2.1.1, the org.springframework.core.convert.ConversionService used by the
default 0.s.messaging.handler.annotation.support.MessageHandlerMethodFactory to resolve
parameters for the invocation of a listener method is supplied with all beans that implement any of
the following interfaces:

* org.springframework.core.convert.converter.Converter

* org.springframework.core.convert.converter.GenericConverter

* org.springframework.format.Formatter

This lets you further customize listener deserialization without changing the default configuration
for ConsumerFactory and KafkalistenerContainerFactory.

Setting a custom MessageHandlerMethodFactory on the
KafkalListenerEndpointRegistrar through a KafkalistenerConfigurer bean disables
this feature.

Adding custom HandlerMethodArgumentResolver to @Kafkalistener

Starting with version 2.4.2 you are able to add your own HandlerMethodArgumentResolver and resolve
custom method parameters. All you need is to implement KafkalListenerConfigurer and use method
setCustomMethodArgumentResolvers() from class KafkalListenerEndpointRegistrar.

114

class CustomKafkaConfig implements KafkalistenerConfigurer {

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setCustomMethodArgumentResolvers(
new HandlerMethodArgumentResolver() {

public boolean supportsParameter(MethodParameter parameter) {

return CustomMethodArgument.class.isAssignableFrom(parameter

.getParameterType());
}

public Object resolveArgument(MethodParameter parameter, Message<

7> message) {
return new CustomMethodArgument(
message.getHeaders().get(KafkaHeaders.RECEIVED_TOPIC,

String.class)

4.1.18. Message Headers

The 0.11.0.0 client introduced support for headers in messages. As of version 2.0, Spring for Apache

Kafka now supports mapping these headers to and from spring-messaging MessageHeaders.

Previous versions mapped ConsumerRecord and ProducerRecord to spring-messaging
o Message<?>, where the value property is mapped to and from the payload and other
properties (topic, partition, and so on) were mapped to headers. This is still the

case, but additional (arbitrary) headers can now be mapped.

Apache Kafka headers have a simple API, shown in the following interface definition:

115

public interface Header {
String key();

byte[] value();

The KafkaHeaderMapper strategy is provided to map header entries between Kafka Headers and
MessageHeaders. Its interface definition is as follows:

public interface KafkaHeaderMapper {
void fromHeaders(MessageHeaders headers, Headers target);

void toHeaders(Headers source, Map<String, Object> target);

The DefaultKafkaHeaderMapper maps the key to the MessageHeaders header name and, in order to
support rich header types for outbound messages, JSON conversion is performed. A “special”
header (with a key of spring_json_header_types) contains a JSON map of <key>:<type>. This header is
used on the inbound side to provide appropriate conversion of each header value to the original

type.

On the inbound side, all Kafka Header instances are mapped to MessageHeaders. On the outbound
side, by default, all MessageHeaders are mapped, except id, timestamp, and the headers that map to
ConsumerRecord properties.

You can specify which headers are to be mapped for outbound messages, by providing patterns to
the mapper. The following listing shows a number of example mappings:

116

public DefaultKafkaHeaderMapper() { @®

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper) { @

}

public DefaultKafkaHeaderMapper(String... patterns) { ®

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper, String... patterns) {
@

@ Uses a default Jackson ObjectMapper and maps most headers, as discussed before the
example.

@ Uses the provided Jackson ObjectMapper and maps most headers, as discussed before the
example.

® Uses a default Jackson ObjectMapper and maps headers according to the provided patterns.

@ Uses the provided Jackson ObjectMapper and maps headers according to the provided
patterns.

Patterns are rather simple and can contain a leading wildcard (), a trailing wildcard, or both
(for example, .cat.*). You can negate patterns with a leading !. The first pattern that matches a
header name (whether positive or negative) wins.

When you provide your own patterns, we recommend including !id and !timestamp, since these
headers are read-only on the inbound side.

By default, the mapper deserializes only classes in java.lang and java.util. You
can trust other (or all) packages by adding trusted packages with the

o addTrustedPackages method. If you receive messages from untrusted sources, you
may wish to add only those packages you trust. To trust all packages, you can use
mapper.addTrustedPackages("*").

o Mapping String header values in a raw form is useful when communicating with
systems that are not aware of the mapper’s JSON format.

Starting with version 2.2.5, you can specify that certain string-valued headers should not be
mapped using JSON, but to/from a raw byte[]. The AbstractkafkaHeaderMapper has new properties;
mapAllStringsOut when set to true, all string-valued headers will be converted to byte[] using the
charset property (default UTF-8). In addition, there is a property rawMappedHeaders, which is a map of

117

header name : boolean; if the map contains a header name, and the header contains a String value,
it will be mapped as a raw byte[] using the charset. This map is also used to map raw incoming
byte[] headers to String using the charset if, and only if, the boolean in the map value is true. If the
boolean is false, or the header name is not in the map with a true value, the incoming header is
simply mapped as the raw unmapped header.

The following test case illustrates this mechanism.

public void testSpecificStringConvert() {
DefaultKafkaHeaderMapper mapper = new DefaultKafkaHeaderMapper();
Map<String, Boolean> rawMappedHeaders = new HashMap<>();
rawMappedHeaders.put("thisOnesAString", true);
rawMappedHeaders.put("thisOnesBytes", false);
mapper .setRawMappedHeaders(rawMappedHeaders);
Map<String, Object> headersMap = new HashMap<>();
headersMap.put("thisOnesAString", "thing1");
headersMap.put("thisOnesBytes", "thing2");
headersMap.put("alwaysRaw", "thing3".getBytes());
MessageHeaders headers = new MessageHeaders(headersMap);
Headers target = new RecordHeaders();
mapper . fromHeaders(headers, target);
assertThat(target).containsExactlyInAnyOrder(
new RecordHeader ("thisOnesAString", "thing1".getBytes()),
new RecordHeader ("thisOnesBytes", "thing2".getBytes()),
new RecordHeader("alwaysRaw", "thing3".getBytes()));
headersMap.clear();
mapper .toHeaders(target, headersMap);
assertThat(headersMap).contains(
entry("thisOnesAString", "thing1"),
entry("thisOnesBytes", "thing2".getBytes()),
entry("alwaysRaw", "thing3".getBytes()));

By default, the DefaultKafkaHeaderMapper is wused in the MessagingMessageConverter and
BatchMessagingMessageConverter, as long as Jackson is on the class path.

With the batch converter, the converted headers are available in the
KafkaHeaders.BATCH_CONVERTED_HEADERS as a List<Map<String, Object>> where the map in