Spring Security Reference

4.1.0.RC1

Ben Alex , Luke Taylor , Rob Winch , Gunnar Hillert

Copyright © 2004-2015

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Security Reference

Table of Contents

.. XVil
T o =) =TT TSP PSOPPPPRPPTN 1
1T e 1] o IS r= V4 (T PSP 3
R 111 o 11 T3 1T o S 4
1.1. What iS SPriNg SECUIMTY? ..evuiiiiiieii et e e e e e e e e e e eaes 4

2 o 111 (o VAP PPTUPR 6

1.3, Release NUMDEINGuuiiiiiii et et e e e et e e eeba e e e 6

1.4. Getting SPriNGg SECUILY ...cuuuiiiiieii et e e e e e et e e e aaaas 7
Usage WIth IMAVEN ... e e eaa s 7

MaVveN REPOSITOMES ...ceuuiiiiiii e 7

Spring Framework BOMciiiiiiii i e e e e 8

L€ 7= To | = U TPPTUPTRN 8

Gradle REPOSIHOMIESuuieiiiiiii et 8

Using Spring 4.0.X and Gradlecoooviiiiiiiiiii e 9

ProjeCt MOAUIESiieie et e e 9

COore - SPriNG-SECUNLY-COMB.JAIuieieitieeeiiii ettt e e et e et e e et e eeeei e eenes 9

Remoting - spring-Security-remoting.jarcoocvveeeiiiieiii e 10

Web - Spring-Security-web.jaro 10

Config - sSpring-security-CoONfig.jarcciiviiiiiiiiei e 10

LDAP - spring-security-ldap.jarccooeeeiiiiiiieiie e 10

ACL - SPriNg-SECUNLY-8CLJAIc.uiiiiiiiii e 10

CAS - SPING-SECUIMEY-CAS.JAN ..eevvuieiiiiieeiiii ettt e ettt e et e e eert e e eeri e eees 10

OpenlID - spring-security-0penid.jarccccceuiieiiieiiie e 10

Checking OUL the SOUICEuiiiiiii e e 10

2. What's New in SPring SECUIMLY 4.1coouuiiiiiii ettt e eti e e eai e eees 12
TN F- V7= B @0 1o [U] =1 (o] o 13
3.1. Hello Web Security Java Configurationoooeuiiiiiniiiieiiicee e 13
AbstractSecurityWebApplicationInitializercooviiiiiiii 14
AbstractSecurityWebApplicationlnitializer without Existing Springc.cc.vee. 14
AbstractSecurityWebApplicationlnitializer with Spring MVCccoooiiiiiiiiiiiinne. 15

I o 11 1T T o 1Y PRSPPI 15

3.3. Java Configuration and FOrm LOGQINcccouuiiiiiiiiiiiieii e cee e e e e 16

3.4, AULNONIZE REQUESTSeeiiiii e e e eens 17

3.5, HANAING LOGOULS ...ttt e e 18

[0 T 10 11 =T T | = 19
LOgOULtSUCCESSHANMIET ... 19

Further Logout-Related RefErenCesooouviiiiiiiiiiiii e 19

3.6, AULNENLICALIONiiieiiieeie et 20

IN Memory AUThENtICAtIONoiiiii e 20

S| =T @R AN T |1 =T o1 i o= 11 o] o 20

LDAP AULNENEICALION ...cciiiiiiiiiiii e e 20
AUtheNtiCAtIONPIOVIAET e aeans 21
USEIDEIAIISSEIVICEiiviiiiii ettt e e e e e e e e et e e e eanaeees 21

LDAP AULNENEICALION ...cciiiiiiiiiiii e e 22

3.7. MUItIplE HIPSECUIILY ...t e e e e eaas 22

3.8. MEhOT SECUILY ...ieiiiiee et e e e 23
EnableGlobalMethOdSECUINILYocvuuiiiicie e 23

4.1.0.RC1 Spring Security iii

Spring Security Reference

GlobalMethodSecurityConfigurationc.ooviiiiiiiii e 24

3.9. Post Processing Configured ODJECESoiiviiiiiii e 24

4. Security Namespace Configurationoiiieiiiiiiiiii e 26
o T [11 o To L1 od 1o o I PP 26
Design of the NAMESPACEccuuiiiiiiiiie e 27

4.2. Getting Started with Security Namespace Configurationcccceeveveeiinneiiinnnnnn. 27
Web. XMl CoNfIQUIAtIONco.uiii e e 27

A Minimal <http> Configurationcoooiuiiiiiiii e 28

Form and BasiC LOGiN OPLIONSoiveiuiiiiiiiieeeii e 29

Setting a Default Post-Login Destinationcccoveviiiiiiiiiiiii e 30

(oo [0 U [l = F=Tg o |10 o PP PPTR PR 30

Using other Authentication ProVIderscccoiiiiiiiiiiiiiiiie e 30

Adding a Password ENCOTEToovuuiiiiiiiii e r e e 31

4.3. Advanced WED FEALUIESccuuiiiiiiii ettt e e 32
Remember-Me AUthentiCationcooiiiiiiiii e 32

Adding HTTP/HTTPS Channel SECUItYc.oiviiiiiiicie e 32

SESSION MANAGEIMENT ...t e ettt e e et e et e eaaeas 32

DeteCting TIMEOULScceuuniiiiii ettt e e e eeeees 32

Concurrent SESSION CONLIOIc.uuiiiiiiiiie i 33

Session Fixation Attack ProteCtionccoceiiiiiiiiiiiiiiiiieee e, 34

OPENID SUPPOIT ..ttt sttt et e r e e e e e e enens 34

ALHbUtE EXCRANGE ...coeeiiiicc e 35

RESPONSE HEAUEIS ... e 35

Adding i YOUr OWN FIlLEIS ...oouuiiiiii e e 35

Setting a Custom AuthenticationEntryPointcccooivviiiiiiinciiie e, 37

4.4, MO SECUILYniiteie et e e et e e e aenas 37

The <global-method-security> EIEMENtccoouviiiiiiiiiiiii e 37

Adding Security Pointcuts using protect-pointCutoccceveviiieiiiiieiineeennnn, 39

4.5. The Default ACCeSSDECISIONMANAGETccuuiiiiiiii i ea s 39
Customizing the AccessDeCISIONMANAGETc.uuieiiiiiiieiiiiiieee i 39

4.6. The Authentication Manager and the NamesSpacecceevvviviviiieviiieviii e, 39

5. Sample APPIICALIONS ... ettt 41
5.1, TULOHAl SAMPIE ..eeie e 41

I o] o] = Tox £ TSP PT PP UPPTPPN 41

5.3, LDAP SAMPIE ..ot 42

5.4. OPENID SAMPIE ..ottt ettt e 42

5.5, CAS SAMPIE ..oeeiiiici e 43

5.6, JAAS SaAMIPIE . 43

5.7. Pre-Authentication Sampleoooiiiiiiiiii e 43

6. SPring SeCUrity COMMUINILY ...iiuuiiii e e e e e e e e e e e e e et e e e e e e eetnaeeanaaees 44
6.1, ISSUE TTACKING ...uieiiiii i et et e e e eaans 44

6.2. BECOMING INVOIVEA ...ttt e 44

6.3. Further INfOrmationooouiiiii e 44

[ll. Architecture and IMPIEMENTALIONoiiuiiii e 45
A = Ted oL gL To= U @ A =T A 1= P 46
7.1. RUNLIME ENVIFONIMENT 1..uiiiiiiiii ettt e e e et e e e e s 46

7.2. COre COMPONENTS ..oeuitiiteit ettt ettt et e et e e e e e et e et e e e ea e e e eeneenaees 46
SecurityContextHolder, SecurityContext and Authentication Objects 46

Obtaining information about the current USerccoocivviiiieiiieciie e, 46

The USerDetailSSErVICEco.uuiiiuiiiiieiie et a7

4.1.0.RC1 Spring Security iv

Spring Security Reference

LT =T a1 (=To /U 11 0o]] Y/ 48
SUMIMIBITY ettt ettt et et et et e et et e eb e et e an e e e e et e enaenns 48

7.3, AUTNENTICALIONiieiiii e e e e e e e e e e e 48
What is authentication in SPring SECUILY?veiviiiiii e 48
Setting the SecurityContextHolder Contents Directlycooooiviiiiiiiiiiiiiiieins 51

7.4. Authentication in @ Web ApPlICatioNooovviiiiiiiii e 51
EXceptionTranslationFiltercoiiuiiiiii e 52
AUthentiCatiONENTIYPOINTc.uii e e e e e 52
Authentication MeChaniSIMcouiiiiiiii e 52
Storing the SecurityContext between reqUESESocvuviveeieiiiiieii e, 52

7.5. Access-Control (Authorization) in SPring SECUNLYooeuuiiiiiiiiiiiieieee e, 53
Security and AOP AGVICEoouuiiiiiiiii e 53
Secure Objects and the AbstractSecuritylnterceptorcccoeveviieeviiieiineeeieeenn, 54
What are Configuration AttribULES?cc.uiiiiiiiiiii e 54
RUNASMEANAGET ..ottt e e e 54

PN (T g LN ¥/oTox= 11T 0117 F= U = Vo = 55
Extending the Secure Object Model ... 56

AL T oY= - [) o [P 56
S Oo] (I ST = T AV o PP 58
8.1. The AuthenticationManager, ProviderManager and AuthenticationProvider 58
Erasing Credentials on Successful Authenticationccccooviiiiiiiiiiiiineeen, 59
DaoAuthentiCatioNPrOVIAEToiiiiiiiieii e 59

8.2. UserDetailsService IMplementationscocouiiiiiiiiiiie e 59
INn-Memory AUthentiCatioNoiviiiiiii e 60

N [| o Tod I 7= To 12 1] o PP 60
AULNONIEY GIOUPS ..ttt ettt e e et e e et e et e e e aeens 61

8.3. PasSSWOIrd ENCOAINGcceuuiniiiiiiieeeiit ettt ettt e e et e e et eeeena e eees 61
WhaL IS @ NASN? ..o e 61
Adding Salt to @ Hash ... 61
Hashing and AUthentiCationcoiieiiiii e 62

Y 1= 13V 63
9. TestiNg MEthOT SECUIILYcuuiiiii et e et e et e e et e e ea e e eanaas 64
9.1, SECUIMLY TESE SEIUP .evvuiiiiiitiie ettt e e e 64
9.2, @WItNIMOCKUSET ... ittt e ettt e e et e e e eaa e eees 65
9.3. @WIthANONYMOUSUSETiiiiiii ettt et e et e e e et e e e eaneees 66
9.4, @WIthUSEIDETAIIScoviiriiiiiii e 66
9.5. @WIthSECUItYCONIEXE . .ovuiiii i e e et e e e e ean s 67
9.6. TeSt Meta ANNOLALIONSccuuiiiteiii e et e e e eena s 68
10. Spring MVC TesSt INTEGIationocieiiiiiiiiiie e e e eee 70
10.1. Setting Up MockMvc and SpPring SECUNLYcvuuieiinieiii e e eeee e e e e eean 70
10.2. SecurityMOCKMVCREQUESLPOSIPIOCESSOISieuuieiiiiiiiieeie e 70
Testing with CSRF ProteCtioNoviiiiiiiiiiiii e 70
Running a Test as a User in Spring MVC TeStc..ciiviiiiiiii e 71
Running as a User in Spring MVC Test with RequestPostProcessor 71
Running as a User in Spring MVC Test with Annotations 72

Testing HTTP Basic AUthentiCationcocuuiiiiieiiii e 73
10.3. SecurityMockMvCReqUESIBUIIErSccuuiiiiiiiiiii e 73
Testing Form Based AUthentiCationcoooieeuiiiiiiiiiiiec e 73
=15 €1 o o o o U 74
10.4. SecurityMockMVCReSUItMAtChErSooooviii e 74

4.1.0.RC1 Spring Security v

Spring Security Reference

Unauthenticated ASSEITIONiiiiiiiieiiiii et e e e eeens 74
AuthentiCated ASSEITIONiuuiiii e 74

V. Web APPICALION SECUILY ...cciiiiiiiii ettt e e 76
11. The Security Filter Chainooouiiiii e e e e aes 77
11.1. DelegatingFilterPIOXY ettt e et ea e eaa s 77
11.2. FIREICRAINPTIOXY ..iiitiieieiii ettt e et e b 77
Bypassing the Filter Chaincocooiiiiiii e 78

R A 1 (T @ (o (=4 o T PP 79
11.4. Request Matching and HttpFirewallcoooiiiiiiiiiiii e 79
11.5. Use with other Filter-Based Frameworkscoooiiiiiiiiiiiiiiiiei e 80
11.6. Advanced Namespace ConfiQurationcooouuiiieiiiiiineiiie e 80

12. COre SECUNLY FltEIS ...ttt e e e e enees 82
12.1. FilterSeCUritYINtEICEPION . ..ieee e e e e e e aaas 82
12.2. ExceptionTranslationFilter ... e 83
AuthenticatioNENTrYPOINTiiiiiic e 83
AccesSDENIEAHANIEToouuiii e 83
SavedRequest s and the RequestCache Interfaceccooooviiiiiiiiiiiiiinee, 84

12.3. SecurityContextPersiSteNCERIILEriv i 84
SeCUrityCONtEXIREPOSITONY ...vuiieiiiii i eiie e e e e e e e e e e e ean s 85

12.4. UsernamePasswordAuthenticationFiltercooiiiiiiiiii e, 85
Application Flow on Authentication Success and Failureccccoooeviiinieiinnnnnn. 86

13. Serviet AP INtEOrationcccuuieiii i e e e e e e e et e e et e et e e e e 87
13.1. Servlet 2.5+ INtEGrationocoeuiiiiiiii e 87
HttpServietRequest.getReMOEUSEN()ccovveueiiiiiiieeiiii e 87
HttpServietRequest.getUserPrinCipal()covvvvveeieeinieiie e 87
HttpServietRequest.isUSEriNROIE(SIHNG)o.uuiieeiiiiieiiiee e 87

13.2. Serviet 3+ INTEQrationoooiiiuiiiiii e e 88
HttpServiletRequest.authenticate(HttpServlietRequest,HttpServletResponse) 88
HttpServietRequest.login(String,String)c.veeiiiiiiii e 88
HttpServietReqQUESLIOgOUL()uiieiiieeiiie e 88
AsyncContext.start(RUNNADIE)coouiiiiiiiiii e e 88

ASYNC SEIVIET SUPPOIT . ceeiit et eaa s 89

13.3. Serviet 3.1+ INtEGrationoiiiiiiiiieiiiie e e e e e e e e e e e aaaas 90
HttpServietRequest#changeSessionId()ovvveeveveiiiiiiieeie e, 90

14. Basic and Digest AUtheNtiCAtiONiiiuiiiiiiii e e 91
14.1. BasiCAUthentiCatioNFIIterco.uiiiiiie e 91

(@] 31T 81 r=\1 1o o 1P 91

14.2. DigestAUthentiCatioNFIIter e 91
CONFIGUIALION .ottt et ettt e e et e e eaan e eees 92

15. Remember-Me AUthentiCatioNiiiiiiiiiii e 94
L5, OVEIVIBW ittt ettt ettt e et e et et h e et e e et e e et e e et e et et e e eaeeeanns 94
15.2. Simple Hash-Based Token APProachcoccoiiiiiiiiiiniiiiii e 94
15.3. Persistent ToKen APProachccouiiiiiiiiii e 95
15.4. Remember-Me Interfaces and Implementationsccccoeiiiiiiiiiiniiineci e, 95
TokenBasedRemMEMDEIMESEIVICEScccuuiiiii it 95
PersistentTokenBasedRememberMeSEerviCeSccouuiieiiiiinieiiiiii e 96

16. Cross Site Request FOrgery (CSRIF) ... 97
T R OS] 4 e AN i 7= Tod PSR 97
16.2. Synchronizer TOKEN Patterncoovviiiiiiiii e 97
16.3. When to USe CSRF ProtECHON .. .c.uuiit ittt eaas 98

4.1.0.RC1 Spring Security Vi

Spring Security Reference

CSRF protection and JSONoiiiiiiiiici e e e 98
CSRF and Stateless Browser AppliCAtiONSovviuiiiiiiiiiiiiiieeeee e 98
16.4. Using Spring Security CSRF Protectionccoiiiiiiiiiiiiiiiiieeie e 99
Use proper HTTP VEIDSuiiiiii e e e e e e e 99
Configure CSRF ProteClONco.uuiiiiiiiii et 99
Include the CSRF TOKEN ... e 100
FOrm SUDMISSIONS ...euiiiiiiii e 100
Ajax and JSON REQUESESuiieiiiiiiieiii e 100
16.5. CSREF CAVEALSuiiuiiiiiiii ittt et et e e e et e e et e et e aa e anns 101
L8010 10 PP 101
(o o To 1o T I [HR ST PP PTR 102
LOGUING OUL .ttt e e e 102
Multipart (file Upload)coeeuniiiiiei e 102
Placing MultipartFilter before Spring SECUrityc.cccoiviiiiiiiiiiiiieenn, 102
Include CSRF toKeN iN @CtiONoovvviiiiiicii e 103
HiddenHttpMethOdFILEriiice e 103
16.6. Overriding Defaults ... 103
17. Security HTTP ReSPONSE HEAUEISuuiiiiiiiiiiiiiii et 105
17.1. Default Security HEAAEISoviviiiii e e 105
CaChe CONLIOl ... e e e 107
Content TYPE OPLIONSueiiiiiieeeiie ettt e et era e e eaans 108
HTTP Strict Transport Security (HSTS) ..ovvviiiiiieiii e 109
HTTP Public Key Pinning (HPKP) ... 110
X-Frame-OptioNSoooiiiiiiiiii e 111
D O SIS T o 0] (=T 1o o PSP 112
Content Security POlICY (CSP) ... e 113
Configuring Content Security POIICYcoooiiiiiiiiiiiiii e 114
AddItioNal RESOUICES ...covviiiiiiii i 115
17.2. CUSIOM HEAAEIS ...t ettt ea e eeas 115
S = L[l o [T To = £ P 115
HEAAEIS WIILET ..ottt e e e e enees 116
DelegatingRequestMatcherHeaderWIterooovuiiiiiiiiiiiii e 116
18. SeSSION MaANAGEMENTcovtiiiiiii ettt e et e e e et eeeaia e eees 118
18.1. SessionManagemeENtFIlterc.uui i 118
18.2. SessioNAUtheNntiCatiONSIIAtEOYc.uuiiuuiiii e 118
18.3. CoNCUITENCY CONIIOI .ouuiiiiiii et enees 119
Querying the SessionRegistry for currently authenticated users and their
1oL (o] LS OO UPPTUPPN 120
19. ANoONYMOUS AULNENTICALIONoouviiiiiiii e e e e eeaa e e 121
19,0, OVEIVIEW ettt ettt e e et e e e et e e e et e e e e et e e e e aban s 121
19.2. CONFIQUIALIONutieiei ettt et e et et e e e e een s 121
19.3. AuthenticatioNTIUSIRESOIVEToveeiiiiii e 122
20. WEDSOCKEE SECUNLY ..vvuiieiiiiii et e e e e e e e e et e e e eann s 123
20.1. WebSocket CoNfIQUIAtIONoieuiiiiiii e e e 123
20.2. WebSocket AUthentiCationoviiiiiiiii e 124
20.3. WebSocket AUTNOFIZALIONuuiiiiiiiee e 124
WebSocket AUthorization NOEESoieuiiiiii e 125
WebSocket Authorization on Message TYPESvvevvviiiieiiiiiieeiiiieeeeeiieen 125
WebSocket Authorization on Destinationsccoeevvviiiieiiiiieeiiiiin e, 126
OULDOUNI MESSAUES ... evneiiieeii et e e e e e eaaaeens 126

4.1.0.RC1 Spring Security Vii

Spring Security Reference

20.4. Enforcing Same Origin POICYocvvuiiiii i 126
WHhY SAmMe OFigINT ...ueiiie e et e e e e e e eaa e eees 126

Spring WebSocket AIoWed OFiginuuiiiiiiiieiiiiiieeeei e 126

Adding CSRF t0 Stomp HEAAEISoevviiiiiii e 127

Disable CSRF within WebS0ocCKetsoooiiiiiiiii e, 127

20.5. Working With SOCKJIScouiiiiii e 127
SOCKIS & frameE-OPtiONSucveeeiii i e e e e 128

S0CkJIS & Relaxing CSRF ...t e 128

RV TR U 11 o 2= U1 T o I 130
21. AUthorization AFCHITECIUIEcooii e e et 131
211, AUTNOFITIES ettt et e et e e et e e e e eaa s 131
21.2. Pre-Invocation HandliNgcooeuuiiiiiiicii e e e 131

The AcCeSSDECISIONMANAGETc.uuiiieiieii et ettt e e e e e e e e e e e e 131
Voting-Based AccessDecisionManager Implementationsccooooeeveeeneennn. 132
L] L=V 0] (T P 133
AULhENtICAIEAVOLETiiiiii e 133

CUSEOM VOIS ..ot ettt e e e e e ees 133

21.3. After Invocation HandliNgoooeeuiniiiiiiii e 134
21.4. HierarchiCal ROIESuuiiiiiii e e e e e eees 134

22. Secure Object IMPIEMENTALIONScieuiiiii e e e eees 136
22.1. AOP Alliance (MethodInvocation) Security INterceptorcccoovveveiviiieveiinneeens 136
Explicit MethodSecuritylnterceptor Configurationccoooeviiiiiiiiiin e, 136

22.2. AspectJ (JoinPoint) Security INtErCePLOrcouuuiiiiiiii e 136

23. Expression-Based ACCESS CONIOIuiiiiiiiiiiiiii e 139
P2 R O 1Y 1= PP UOPPRTRP 139
Common BUilt-IN EXPreSSIONScceuuiiiiiiiiiiaii et ea e 139

23.2. Web Security EXPreSSIONSooiiiiiiiiiiii et 140
Referring to Beans in Web Security EXPressionscccovevuiviviiieeineeviieeineennn. 140

Path Variables in Web Security EXPressionsooooviiiiiiiiiiiiiieceeeeeeen 141

23.3. Method Security EXPreSSIONSccoiuiiiiiiiiiie et 141
@Pre and @POSt ANNOLALIONSciiiiiieeiii e 142

Access Control using @PreAuthorize and @PostAuthorize 142

Filtering using @PreFilter and @POStFiltercccovvviiiiiiiiiie e, 143

BUIIE-IN EXPrESSIONS ..ovuiiiiiieiii e e et eanaaees 143

The PermissionEvaluator interfacecooviiiiiiiiiiii e 144

Method Security Meta ANNOLAtioNSccceuiiiiiiiiiniiii e 144

AV LR [[o F= T o] o oS 145
24. Domain Object SECUILY (ACLS) ..cuuiiit ittt e et e e e eeens 146
B T @ =T V1 PN 146
P QYA O o] o =T o] £ 146
24.3. GetliNg SEAMEAceeiii e 148

25. Pre-Authentication SCENAIIOScccuuiiiiieii e e e e 151
25.1. Pre-Authentication Framework ClasSesc.ooviiiiiiiiiiiiiiinee e 151
AbstractPreAuthenticatedProcessingFilter ..., 151
J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource 152
PreAuthenticatedAuthenticationProvidercoovviiiiieiiii e, 152
Http403ForbiddenENtryPOiNtc..iiiiiiii e 152

25.2. Concrete IMpPIEMENTALIONScoiuiiieiiii e 152
Request-Header Authentication (Siteminder)ccocooveviiiiiiiiii e, 152
Siteminder Example Configurationcooiiiiiiiiiiii e 153

4.1.0.RC1 Spring Security viii

Spring Security Reference

Java EE Container AuthentiCationccoveiiiiiiieiiiiiniee e 153

26. LDAP AUTNENTICALIONuiiiiiii ettt ettt e e e e e e e e et e e e e eaaeas 154
B T @ 1= 1 N 154
26.2. Using LDAP With SPring SECUILYcvuuiiiiieii e e e e 154
26.3. Configuring an LDAP SEIVETccuuiiiiiiiii et 154
Using an Embedded TeSt SEIVENuuiiiiiiiiiee e 155
Using Bind AUtheNntiCatioNiiiiiiiii e e e 155
Loading AUTNOIITIESiiei et e e 155
26.4. Implementation ClaSSESiiiiiiii i 156
LdapAuthenticator Implementationscccoceiieiiiieiiii e 156
CommonN FUNCHONANTY ..c..uiiitiieee e 156
BINAAULNENTICALOriiiieee e eeens 157
PasswordComparisonAuthenticatorcoooeiviiiiiiiiiic e 157
Connecting to the LDAP SEIVET ... 157
LDAP Search ODJECLSociiiiiiiiiii e 157
FilterBasedLdapUSErSearchcccoovviuiiiiiiiiii i 157
LdapAUuthoritieSPOPUIALOLcieeiiiee e 157
Spring Bean ConfiguIationc..uiiiiiiiiiioiiii e 157
LDAP Attributes and Customized UserDetailScoooiiieiiiiiiiiiiiiinieeciieeeees 158
26.5. Active Directory AUtNENLICAtIONccuuiiiuiiiii e 159
ActiveDirectoryLdapAuthenticationProviderccoooveeiiiiiiiiiniii e 159
Active Directory Error COUESoivuuiiiiiieiiieee e e e e e e e e 160

27. JSP Tag LIDIAIES ..ottt e e e e e e e e e ea e eaas 161
27.1. Declaring the TagliD ... 161
A I (== U T =T - Vo N 161
Disabling Tag Authorization for TESHNGcoevuiiiiiiiie e 162
27.3. The authentiCatioN TaAGoceeeruieiiiiiiee et 162
27.4. The acceSSCONIOIIST TAQ ..vvvuivveiiiiieii e ee e e e e e e e e e eees 162
27.5. The CSHINPUL TAQ . ovuiiiiieiiee ettt e e eeanas 163
27.6. The CSITMELATAGS TAG +.. o eeerrnieiiiii et e et e et e et e e et e eeeab e e eeaa e eenes 163
28. Java Authentication and Authorization Service (JAAS) Providercccooeveveviiieeinneennnn. 165
28. 1. OVEIVIEW ...ttt ettt ettt et ettt e ettt e et et et e e e e e et e e b e eanaeeen 165
28.2. AbstractJaasAuthenticationProvidercooooiviiiiiiiiiii e 165
JAAS CallbackHandIEriiiiiiiii e 165
JAAS AUTNOMTYGIANTEruiiie e eeens 165
28.3. DefaultJaasAuthenticatioNProVIAErcc.iiiiiiiiiieiie e 166
Ta\YiT=TaaTo] 4V @fo]) To U] -\ i o] o [N 166
DefaultJaasAuthenticationProvider Example Configurationccccoceeveeennnee. 166

28.4. JaasAUuthentiCatioNPIOVIAETooiiuiiiii i e e 167
28.5. RUNNING @S @ SUDJECT .. iiviiii i e e e e e 168
29. CAS AULNENLICALION ...ttt et e e e e e e eenns 169
P2 I T @ =T V1 N 169
29.2. HOW CAS WOTKS ...ttt ettt e et e et e e et e eeaaan s 169
Spring Security and CAS Interaction SEQUENCEcc.ueiiuiiiiiiiiiiieiiieeeieeais 169
29.3. Configuration 0f CAS CHENtoouuiiiiii e 171
Service Ticket AUthentiCationcoiiiiiii i 171

S [aTe]| (3 I o [o 11 | PP UPPTRPPINN 173
Authenticating to a Stateless Service with CASoooiiiiiiiii e, 174
Configuring CAS to Obtain Proxy Granting Ticketsc.ccceveviiiviiiineinnnns 174

Calling a Stateless Service Using a Proxy Ticketccoooiiiiiiiiiiiiniiinnns 175

4.1.0.RC1 Spring Security ix

Spring Security Reference

Proxy Ticket AUtheNntiCAtioNviiuiiiiiiie e e 175

30. X.509 AUTNENTICALIONieiiiii ettt e et e e e e e e et e eeaa e eaaaas 178
L0 T @ Y= 1 PN 178
30.2. Adding X.509 Authentication to Your Web Applicationccccccoevvviiiiiinennnnn. 178
30.3. Setting UP SSL N TOMCAL .. .cuuiiiiiiiiee e 178

31. Run-As Authentication ReplaCemMENTcc.uuiiiiiiiiiiii e 180
3 I I @ 1Y 1= PP SOPPRTPPN 180

I 2 ©%o] 1110 [V] =i o] o PP PPTR PRI 180

32. Spring Security Crypto MOGUIEiiiiiiiie e 182
122 I 1 o o ¥ Tox 1 o o PRSP 182
Y =1 0 10] Y] o (o] £ PP UP PP 182
BYESENCIYPION <. oeeiie e 182

1= =1 0] Y] (o 182

32.3. KEY GENEIALOISuiiiiitiei ettt ettt et et et e e ettt e et e e e e e e e e eeaees 183
BYtESKEYGENEIALONuiiiiiiii ettt et 183

Y1 pTe |GV CT=T 0 1= = (o 183

32.4. PasSWOrd ENCOINGuiiuniiiiieii e e 183

33. CONCUIMTENCY SUPPOIT ..eetieetiieeet ettt ettt ettt et et et e e e e n e et e eaneees 184
33.1. DelegatingSecurityContextRUNNADIEcccovuiiiiiiiiiiie e 184
33.2. DelegatingSecurityCONtEXIEXECULONiiueiiiiiiiii et 185
33.3. Spring Security Concurrency CIaSSEScocciiviiiiiiiiiiieeiii et 186

TS o ¢ Ta o AV Y @ 1o (=T [= 11 [o 187
34.1. @ENADIEWEDMVYCSECUIILYiietiiiiie e 187
34.2. @AUthentiCatioNPIINCIPALoviuiiii e 187
34.3. Spring MVC ASYNC INtEQrationccccuuieiiieiiieei e e e e e e e e eees 188
34.4. Spring MVC and CSRF INtegrationcc.uoiiuuiiiiiiiiieiii e 189
Automatic TOKEN INCIUSIONiiieiii e e 189

ResoIVING the CSHTOKEN ... e e 189

VIII. SPring Data INTEGIAtIONieun ittt ettt et e e e e e et e e et e eanaeeees 190
35. Spring Data & Spring Security Configurationcooveiiiiiniiiiiiiineei e 191
36. Security Expressions Within @QUETYccvuiiiiniiiiieeie e e e e e e e eees 192
DO Y o] o 1] o To | PP PTR PPN 193
37. Security Database SCREM@coouuiiiiii e 194
I A N B L= g Yol o =T o - OO 194
Group AULNOMEIESieei e e 194

37.2. Persistent Login (Remember-Me) Schemac.ccoovvviiiiiiiiiiiinic e 195
37.3. ACL SCREIMA ...t e e e e 195

[1Y/ 01T 651 @ | PSPPI 195
POSIOrES QL .o 197

MySQL and MariaDBcccuuiiiiiiiiiiieiie e e e e e e e e e 198

MiICroSOft SQL SEIVEL ...ueiie i e 199

Oracle Databasecoovuuiiiiii e 200

38. The SeCUrity NAMESPACEcevueiiiieiiii e e e e e e e e e e et e e e et e e et e e et e e e e e eeeens 201
38.1. Web APPIICAtION SECUNLYc.uniiitiiii et eae e 201
CABDUG ™ oo 201

S 11110 PSP 201

<SNEP> AFDULES ..o e e 201

Child Elements of <http>c..uiiiiiiiii e 203
<access-denied-handlers> ... 203

Parent Elements of <access-denied-handler>cccoooviiiiiiiiis 203

4.1.0.RC1 Spring Security X

Spring Security Reference

<access-denied-handler> Attributescccoiiiiiiiii 204
SRBATEISS ..ot et e a e 204
<headers> AttrDULEScooeiii 204
Parent Elements of <headers>cccoovviiiiiiiiiiii e 204
Child Elements of <headers>oooiiiiiiiiiiii e 204
o= (ol Lo oo] 10 205
<cache-control> ALHDULESoouuiiiii e 205
Parent Elements of <cache-control> ..o 205
S 15 5 PP 205
<hStS> ALIDULES .ovii e 205
Parent Elements of ShSIS> ... 205
R 1014 0 D PP 205
<hPKP> ARIDULES ..o 205
Parent Elements of <hpKp> ... 206
S 15 P 206
Child Elements Of <PINS>iiiiiiiiiic e 206
0] ST PPTRPPTRPPN 206
<PIN> AIDULES oeeei e 206
Parent Elements of <pin> ... 206
<CONLENt-SECUIILY-POICY> ...t 206
<content-security-policy> AttribUteSccooviiiiiiiii 206
Parent Elements of <content-security-poliCy>cooevviieiiiiiiiiiiiiiieenis 206
SErAME-OPLIONS ...t e ettt 206
<frame-optioNS> AUMDULESc.uuiiiiiii e 206
Parent Elements of <frame-options>occoviiiiiiiii i, 207
O ISR o] 0] (=Tod1 0] o bR UPPTUPTRUPTRPN 207
<XSS-Protection=> AUMNDULESuiiiiiii e 207
Parent Elements of <XSs-protection>cccoveviiiiiiiiiiiii e, 208
<CONTENT-TYPE-OPLIONSS ..oeiiit it e e et e e e e e eens 208
<content-type-options> ALtrbULEScoovviiiiiiii 208
Parent Elements of <content-type-options>cccoovviiviviiiiiiiiiii e, 208
SNBATEI> ...t e 208
<header-attributes> ARINDULEScooviiiiiiii e 208
Parent Elements of <header>cooiiiiiiiiiiiii e 208
= 1010] 0170 1[0 10 LS TP UPTPT 208
Parent Elements of <anonymMOUS>cooiiiiiiiiiiiiiiiiiiec e 208
<@NoONYMOUS> AMDULES ...cvvviiiii e e e e 208
(o= 4 PP UPPTRUPTRPN 209
Parent Elements of <CSIT> ..o, 209
SCSI> AHIDULES .ot e e e 209
SCUSTOMI-TILEIS L. et eeas 209
Parent Elements of <custom-filter>ccooiiiiiiiiii 209
<custoM-filter> AUMDULEScooeiiiie e 209
<eXPressioN-handIers> ... 209
Parent Elements of <expression-handler>cccooiiiiiiiiniiiiiinee, 210
<expression-handler> ARrHbULESccoviiiiiiii e 210
SEOMMI-IOGINS e 210
Parent Elements of <form-login> ..o 210
<form-1ogin> ARINDULESiii i 210
SEEP-DASICS ... e 211

4.1.0.RC1

Spring Security Xi

Spring Security Reference

Parent Elements of <http-basiC>ccooiviiiiiiiiii e 211
<http-basiC> AUIDULESiii e 211
<http-firewall> EIEMENTcoouuiiii e 211
<http-firewall> ALrDULESooieeie 211
101 1] (o<1) U | PP PPT 211
Parent Elements of <intercept-url>ccoccoviiiiiiiiiiiii e, 212
<intercept-url> AHDULESiiiiii e 212
(=TSSP UPPTRPPTRPPN 212
Parent Elements Of <JEE>o.iiiiiiiii i 212
<JEE> AHIDULES .ooiniie e 213
S (00 [0 11 | o O UPPTUPPIN 213
Parent Elements of <lOgoUt>oiiiiiiiiii e 213
S (00 [0 10 e N 11 01U] (= 213
<OPENIA-I0QIN L. e 213
Parent Elements of <openid-login>coooiiiiiiiiiiiii e 213
<openid-login> AtHDULEScc.uii e 213
Child Elements of <openid-login>c.ccoiiiiiiiiiiii e 214
<attribUtE-EXChANGE™ciiii e 214
Parent Elements of <attribute-exchange>ccccooiiiiiiii i, 214
<attribute-exchange> AMrbULESooouiiiiiii e, 215
Child Elements of <attribute-exchange>cccooiiiiiiiii 215
<OPENI-AttHIDULE> ..o 215
Parent Elements of <openid-attribute>ccooiiii 215
<openid-attribute> ALbUESo 215
S 10 1 20 0 =T o] o1 T 215
Parent Elements of <port-mappings>oooiiiiiiiiiiiiieiee e 215
Child Elements of <port-mappings=>cccuuiieiiuiinieiiiiieeeiie e 215
S 010 1 21 = o] o1 o 215
Parent Elements of <port-mapping>c.coooiiiiiiiiiiiieie e 215
<port-mapping> AtDULES 215
S =] 00 L=T 0] 01T 0 T PP 216
Parent Elements of <remember-me> ... 216
<remember-me> AtHDULESoouiiiiii e 216
<request-cache> EIeMeNtcoooiiiiiiiiiii e 217
Parent Elements of <request-cache>cccooiiiiiiiiiiiiiii e, 217
<request-cache> AHIDULESooiiiiiiii e 217
<SESSION-MANAGEMENTS ...ttt e e e e e e e e e e eanaeeaes 217
Parent Elements of <session-management>ccoovveiiiiiiiniiiiineiinneen. 217
<session-management> AtribUtesccoooiiiiiii i 217
Child Elements of <session-management>cccevvvuiieviiieeiiieeeiineennenns 218
<CONCUITENCY-CONIIOI> .ottt et e e et e e e eeas 218
Parent Elements of <concurrency-control>cccoovvveiiiiiiiiiineniiiineeeenen, 218
<concurrency-control> AtHDULEScoeviiviiiiiii e 218
D G101 DT PO PP PPTPTTRRPUUPPPPPPTN 218
Parent Elements of <X509>ciiiiiiiiiiiiiii e 218
<X509> AUNDULES ..o e 218
<fIlter-Chain-MaP> ... et e 219
<filter-chain-map> AUMNDULESouiiiiii e 219
Child Elements of <filter-chain-map>ccooooiiiiii i, 219
<SFIEI-CRAINS L. e 219

4.1.0.RC1

Spring Security Xii

Spring Security Reference

38.2.

38.3.

38.4.

Parent Elements of <filter-chain>cccccoiiiiiiii e, 219
<filter-chain> AUINDULESooiiii e 219
<filter-security-metadata-SOUrCE>coouuiiiiiiiiiii e 219
<filter-security-metadata-source> Attributesccoocviviiii i 219
Child Elements of <filter-security-metadata-source>cccocceveveineennnnn. 220
WEDSOCKET SECUILY ..evvtiiiiiiie e e 220
<websocket-message-broker> ..o 220
<websocket-message-broker> Attributescoooeiiiiiiiiii 220
Child Elements of <websocket-message-broker>ccccccoeeeiiiiiiiiiinnnn, 221
S 101 1T (o=T) ol g TS TSTST= Vo = PP 221
Parent Elements of <intercept-message>ccooveiiiiiiiiiiiniiiii e 221
<intercept-message> AMNDULESoiiiiiiiiiii e 221
AULhENLICAtION SEIVICESuuiiiiiii et 221
<aUthentiCatioN-MANAGET™iiiii i e e e e e e eanns 221
<authentication-manager> Attributescccoooiiiiiii 221
Child Elements of <authentication-manager>cccoeeveiieviiiieviineennnennn. 222
<AUtheNntiCatioN-PrOVIAEISie e e e e 222
Parent Elements of <authentication-provider>cccoooiveiiiiiiieiiiiinnenens 222
<authentication-provider> AttrbULEScoovviiiiiiie e 222
Child Elements of <authentication-provider>ccccooeviinieiiniinneieiee. 222
SJADC-USEI-SEIVICE™S ... ittt ettt et e e et e e ent e eees 222
<jdbc-user-service> AtHDULESoivviiiiiiiici e e 222
<PASSWOIA-ENCOUERISiiiti ittt e e e et et e et e e e e eaaaaes 223
Parent Elements of <password-encoder>cccoooiviiiiiiiiniiiiiieiieeeiees 223
<password-encoder> AHDULEScooviiiiiiii 223
Child Elements of <password-encoder>coooeeuiiiiiiiiiiiniiiieiieeeis 223
Y= L Y010 (o7 >SS 223
Parent Elements of <Salt-SOUICE>ciiiiiiiiiiiiiiii e 224
<Salt-SoUrce> ALMDULEScuuiiiiiei e 224
ST ES T ST o7 U 224
<USEr-Service> AUMNDULES ...ocoiiiiiiiii e 224
Child Elements oOf SUSEI-SEIVICE>c..iiiiiiiiiiiiiiiieee e 224
S LS PP 224
Parent Elements Of SUSEI>oooiiiiiiiii e 224
SUSEI> ALHDULES .ot e 224
MELNOA SECUIMLY ...eietiieeiii e 225
<global-method-SECUNLY>iiii i e 225
<global-method-security> ALribUteSccooiiiiiiii e, 225
Child Elements of <global-method-security>occcoiiiiiiiiiiie, 225
<after-iNVocation-proVIdEr=>ccooiiiii e 226
Parent Elements of <after-invocation-provider>cccocooviiiiiiiineinnneen, 226
<after-invocation-provider> Attributesccooiiiiiiiiiii 226
<pre-post-annotation-handling>ccooiiiiiiiiii 226
Parent Elements of <pre-post-annotation-handling>ccccccoeeveninnnen. 226
Child Elements of <pre-post-annotation-handling>cccccooveiiiniinennnn. 226
<invocation-attribute-factory>ccooiiiiiii 226
Parent Elements of <invocation-attribute-factory>ccccoooiiiiiiinn 226
<invocation-attribute-factory> Attributesc.cooooiiiii 226
<POSt-INVOCALION-AAVICES ... ciieiiiii e e e e e e e eee 226
Parent Elements of <post-invocation-advice>ccooveiiiiiiiinniiinneennns 226

4.1.0.RC1

Spring Security Xiii

Spring Security Reference

<post-invocation-advice> ArbULEScoevviiiiiii i 227
<Pre-iNVOCAtION-AAVICE™Suiiii et eaans 227
Parent Elements of <pre-invocation-adviCe>ccceeviviiiiiieiiiiinnenennnnn. 227
<pre-invocation-advice> AtrbULESc.ccuiiiiiiiiiiii e 227

Securing Methods USINGooeuiii e 227
Parent Elements of <protect-pointCut>ccccoviiiiiiiiieiiiiiie e, 227
<protect-pointcut> AIDULEScovvviiii 227
<INLErCEPt-MENOUSS ...t e 227
<intercept-methods> AttribUteS ..o, 227

Child Elements of <intercept-methods>cccooiiiiiiiiiiii e, 227
<method-security-metadata-SOUrCE™cc.uiiiiiiiiiiiieiee e 227
<method-security-metadata-source> Attributescccovvviiiiiiinnennnn. 227

Child Elements of <method-security-metadata-source>cccoeevennnnns 228

N 0] (0] =Tox > PP UPTPPTN 228
Parent Elements of <protect>coiviiiiiiiiiiii 228

<ProteCt™ AHDULES ..ooveiee i 228

38.5. LDAP Namespace OPLIONSceuuiiiiiiii ettt et e e e e e e e eeas 228
Defining the LDAP Server using the ..o 228
<ldap-server> AtINDULEScooviiiiie e 228
<ldap-authentication-provider> ..o 229
Parent Elements of <ldap-authentication-provider>ccccoeiieeiinnnnnn. 229
<ldap-authentication-provider> Attributesc..cccovevii i, 229

Child Elements of <ldap-authentication-provider>ccoooiiiiiiiiniiinns 230
<PASSWOIA-COMPAIES ...ciiiiiieeiiii e eeeet e e ettt e e e et e e e e et e e e et e e e e et e e e e et e e e estanaas 230
Parent Elements of <password-compare>cccccoveviiiiiiiiieiiiieciineeaiees 230
<password-compare> AMINDULESooouiiiiiiiiii e 230

Child Elements of <password-CoOmpare>cocuuurrereiiinneeemiinneeeiinneeennn 230

e [0 1= 1o R U YT Y= T = 230
<ldap-user-service> AtrDULESco.iiiiiiiii 231

39. Spring Security DEPENUENCIESuiiieiiieieii ettt e e 232
ICTe I Yo 1T RS T U 2 oo = 232
39.2. SPriNg-SECUNLY-TEMOLING .. .c.uuiiitiiiiae ittt e e e e e eeens 233
39.3. SPriNG-SECUILY-WED ...t 233
39.4. SPriNG-SECUNLY-IAAP .. cieviieiieie e e e e e e 233
39.5. SPriNG-SECUNTY-CONTIG ...ceuniitiii e e 234
39.6. SPIING-SECUILY-BCI .. .cieiitiieieiii e et e e e e e eees 234
ICTe BT o 1T RS U] 2 o 1 P 235
39.8. SPriNG-SECUNTY-OPENITiieiiii ettt et e e e e e e eanns 235
39.9. sPring-SecuUrity-tagliDsuuiiiiiiiii 235
40. SPring SECUIMLY FAQ ovuiiiieii et et e e e e e e e et e e et e e et e e et e e et e aanaaes 237
40.1. General QUESHIONScuuiiiiiii e e e e e e aans 237
Will Spring Security take care of all my application security requirements? 237
Why not just use wWeb.Xml SECUNLY?covvuiiiii i 237
What Java and Spring Framework versions are required?ccoovvevieeenneennn. 238

I’'m new to Spring Security and | need to build an application that supports

CAS single sign-on over HTTPS, while allowing Basic authentication locally for

certain URLs, authenticating against multiple back end user information sources

(LDAP and JDBC). I've copied some configuration files | found but it doesn’t

work. What could Be WIONG?coovniiiiii e 239
40.2. ComMMON ProbIEMS ...t 239

4.1.0.RC1 Spring Security Xiv

Spring Security Reference

40.3.

40.4.

When | try to log in, | get an error message that says "Bad Credentials". What's
11T (o] o 17 TP 240
My application goes into an "endless loop" when | try to login, what's going on?

| get an exception with the message "Access is denied (user is anonymous);".
WRALE'S WIONG? ..ttt ettt e et e e et e e 241
Why can | still see a secured page even after I've logged out of my application?

... 241
| get an exception with the message "An Authentication object was not found in

the SecurityContext". What's WIONQG?co.vieiiiiii i e e e e e 241
| can’t get LDAP authentication to work. What's wrong with my configuration?..... 241
SESSION MANAGEMENT ...eiiiiiiiii e 242

I'm using Spring Security’s concurrent session control to prevent users from

logging in more than once at a time. When | open another browser window after
logging in, it doesn’t stop me from logging in again. Why can | log in more than

(o] 3 (o] PP PPPT PP 242
Why does the session Id change when | authenticate through Spring Security?.. 242
I’'m using Tomcat (or some other servlet container) and have enabled HTTPS

for my login page, switching back to HTTP afterwards. It doesn’t work - | just

end up back at the login page after authenticating.c...cccoiiiiiiiiiiiiinis 242
I’'m not switching between HTTP and HTTPS but my session is still getting lost. 243
I’'m trying to use the concurrent session-control support but it won't let me log

back in, even if I'm sure I've logged out and haven't exceeded the allowed

LTSS [1PN 243
Spring Security is creating a session somewhere, even though I've configured it

not to, by setting the create-session attribute to never.ccoocoeiiiiiiiiineennnn. 243
| get a 403 Forbidden when performing a POSTcooviiiiiiiiiiiiiiiecc e 243
I'm forwarding a request to another URL using the RequestDispatcher, but my
security constraints aren’t being applied. ..o 244

| have added Spring Security’s <global-method-security> element to my

application context but if | add security annotations to my Spring MVC controller
beans (Struts actions etc.) then they don’t seem to have an effect. 244
| have a user who has definitely been authenticated, but when | try to access

the SecurityContextHolder during some requests, the Authentication is null. Why

can’'t | see the user INfOrmMationN?ooiiiiiiiiii e 244
Spring Security Architecture QUESHIONScccuuuiiiiiiiiiiiii e 244
How do | know which package class X iS iN?ccooviiiiiiiiiiniii e, 245
How do the namespace elements map to conventional bean configurations? 245
What does "ROLE_" mean and why do | need it on my role names? 245
How do | know which dependencies to add to my application to work with Spring

S U LY 2 ettt ettt et et a et aean e 245
What dependencies are needed to run an embedded ApacheDS LDAP server?
... 246
What is a UserDetailsService and do 1 need 0ne?ccoviiiiiiiiiiiiiiniiiiiecees 246
Common "HOWLO" REQUESTSuiiiiiiiiieiiie e 246
| need to login in with more information than just the username. How do | add

support for extra login fields (e.g. a company Name)?ccoovveiiiiiiiieiiineennnnn. 247
How do | apply different intercept-url constraints where only the fragment value

of the requested URLs differs (e.g./foo#bar and /foo#blah?ccooeennl 247

4.1.0.RC1

Spring Security XV

Spring Security Reference

How do | access the user’s IP Address (or other web-request data) in a

USEIrDELAiISSEIVICE? ...ttt e e e ees 247
How do | access the HttpSession from a UserDetailsService?ccoovveunnneen. 247
How do | access the user’s password in a UserDetailsService?cccoeevuvven.n. 248
How do | define the secured URLs within an application dynamically? 248
How do | authenticate against LDAP but load user roles from a database? 249
| want to modify the property of a bean that is created by the namespace, but
there is nothing in the schema to support it. What can | do short of abandoning
NAMESPACE USE? .oeeeiiiiiti ettt e e ettt et et et e e et e e et reean e e ene e e et e enneees 249
41, Migrating frOM 3.X 10 4.X .ovuuiiii i ee e e e e 251
4.1.0.RC1 Spring Security XVi

Spring Security Reference

Spring Security is a powerful and highly customizable authentication and access-control framework. It
is the de-facto standard for securing Spring-based applications.

4.1.0.RC1 Spring Security XVii

Part |. Preface

Spring Security provides a comprehensive security solution for Java EE-based enterprise software
applications. As you will discover as you venture through this reference guide, we have tried to provide
you a useful and highly configurable security system.

Security is an ever-moving target, and it's important to pursue a comprehensive, system-wide approach.
In security circles we encourage you to adopt "layers of security”, so that each layer tries to be as secure
as possible in its own right, with successive layers providing additional security. The "tighter" the security
of each layer, the more robust and safe your application will be. At the bottom level you'll need to deal
with issues such as transport security and system identification, in order to mitigate man-in-the-middle
attacks. Next you'll generally utilise firewalls, perhaps with VPNs or IP security to ensure only authorised
systems can attempt to connect. In corporate environments you may deploy a DMZ to separate public-
facing servers from backend database and application servers. Your operating system will also play
a critical part, addressing issues such as running processes as non-privileged users and maximising
file system security. An operating system will usually also be configured with its own firewall. Hopefully
somewhere along the way you'll be trying to prevent denial of service and brute force attacks against
the system. An intrusion detection system will also be especially useful for monitoring and responding to
attacks, with such systems able to take protective action such as blocking offending TCP/IP addresses in
real-time. Moving to the higher layers, your Java Virtual Machine will hopefully be configured to minimize
the permissions granted to different Java types, and then your application will add its own problem
domain-specific security configuration. Spring Security makes this latter area - application security -
much easier.

Of course, you will need to properly address all security layers mentioned above, together with
managerial factors that encompass every layer. A non-exhaustive list of such managerial factors would
include security bulletin monitoring, patching, personnel vetting, audits, change control, engineering
management systems, data backup, disaster recovery, performance benchmarking, load monitoring,
centralised logging, incident response procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer, you will
find that there are as many different requirements as there are business problem domains. A banking
application has different needs from an ecommerce application. An ecommerce application has different
needs from a corporate sales force automation tool. These custom requirements make application
security interesting, challenging and rewarding.

Please read Part Il, “Getting Started”, in its entirety to begin with. This will introduce you to the framework
and the namespace-based configuration system with which you can get up and running quite quickly.
To get more of an understanding of how Spring Security works, and some of the classes you might need
to use, you should then read Part Ill, “Architecture and Implementation”. The remaining parts of this
guide are structured in a more traditional reference style, designed to be read on an as-required basis.
We'd also recommend that you read up as much as possible on application security issues in general.
Spring Security is not a panacea which will solve all security issues. It is important that the application
is designed with security in mind from the start. Attempting to retrofit it is not a good idea. In particular,
if you are building a web application, you should be aware of the many potential vulnerabilities such
as cross-site scripting, request-forgery and session-hijacking which you should be taking into account
from the start. The OWASP web site (http://www.owasp.org/) maintains a top ten list of web application
vulnerabilities as well as a lot of useful reference information.

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

http://www.owasp.org/

Finally, welcome to the Spring Security community.

Part Il. Getting Started

The later parts of this guide provide an in-depth discussion of the framework architecture and
implementation classes, which you need to understand if you want to do any serious customization. In
this part, we’ll introduce Spring Security 4.0, give a brief overview of the project’s history and take a
slightly gentler look at how to get started using the framework. In particular, we’ll look at namespace
configuration which provides a much simpler way of securing your application compared to the traditional
Spring bean approach where you have to wire up all the implementation classes individually.

We'll also take a look at the sample applications that are available. It's worth trying to run these and
experimenting with them a bit even before you read the later sections - you can dip back into them as
your understanding of the framework increases. Please also check out the project website as it has
useful information on building the project, plus links to articles, videos and tutorials.

http://spring.io/spring-security

Spring Security Reference

1. Introduction

1.1 What is Spring Security?

Spring Security provides comprehensive security services for Java EE-based enterprise software
applications. There is a particular emphasis on supporting projects built using The Spring Framework,
which is the leading Java EE solution for enterprise software development. If you're not using Spring for
developing enterprise applications, we warmly encourage you to take a closer look at it. Some familiarity
with Spring - and in particular dependency injection principles - will help you get up to speed with Spring
Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the security
features of Java EE’s Servlet Specification or EJB Specification lack the depth required for typical
enterprise application scenarios. Whilst mentioning these standards, it's important to recognise that they
are not portable at a WAR or EAR level. Therefore, if you switch server environments, it is typically a lot
of work to reconfigure your application’s security in the new target environment. Using Spring Security
overcomes these problems, and also brings you dozens of other useful, customisable security features.

As you probably know two major areas of application security are "authentication" and "authorization" (or
"access-control"). These are the two main areas that Spring Security targets. "Authentication" is the
process of establishing a principal is who they claim to be (a "principal" generally means a user, device
or some other system which can perform an action in your application)."Authorization" refers to the
process of deciding whether a principal is allowed to perform an action within your application. To arrive
at the point where an authorization decision is needed, the identity of the principal has already been
established by the authentication process. These concepts are common, and not at all specific to Spring
Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of
these authentication models are either provided by third parties, or are developed by relevant standards
bodies such as the Internet Engineering Task Force. In addition, Spring Security provides its own set of
authentication features. Specifically, Spring Security currently supports authentication integration with
all of these technologies:

» HTTP BASIC authentication headers (an IETF RFC-based standard)
» HTTP Digest authentication headers (an IETF RFC-based standard)
« HTTP X.509 client certificate exchange (an IETF RFC-based standard)

 LDAP (a very common approach to cross-platform authentication needs, especially in large
environments)

» Form-based authentication (for simple user interface needs)
» OpenlD authentication
» Authentication based on pre-established request headers (such as Computer Associates Siteminder)

» JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source
single sign-on system)

» Transparent authentication context propagation for Remote Method Invocation (RMI) and Httplinvoker
(a Spring remoting protocol)

4.1.0.RC1 Spring Security 4

Spring Security Reference

» Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a
predetermined period of time)

« Anonymous authentication (allowing every unauthenticated call to automatically assume a particular
security identity)

* Run-as authentication (which is useful if one call should proceed with a different security identity)
» Java Authentication and Authorization Service (JAAS)

» JEE container autentication (so you can still use Container Managed Authentication if desired)
» Kerberos

» Java Open Source Single Signh On (JOSSO) *

e OpenNMS Network Management Platform *

* AppFuse *

* AndroMDA *

* Mule ESB *

» Direct Web Request (DWR) *

* Grails *

* Tapestry *

* JTrac*

e Jasypt*

* Roller*

+ Elastic Path *

 Atlassian Crowd *

» Your own authentication systems (see below)

(* Denotes provided by a third party

Many independent software vendors (ISVs) adopt Spring Security because of this significant choice of
flexible authentication models. Doing so allows them to quickly integrate their solutions with whatever
their end clients need, without undertaking a lot of engineering or requiring the client to change their
environment. If none of the above authentication mechanisms suit your needs, Spring Security is an
open platform and it is quite simple to write your own authentication mechanism. Many corporate users
of Spring Security need to integrate with "legacy" systems that don't follow any particular security
standards, and Spring Security is happy to "play nicely" with such systems.

Irrespective of the authentication mechanism, Spring Security provides a deep set of authorization
capabilities. There are three main areas of interest - authorizing web requests, authorizing whether
methods can be invoked, and authorizing access to individual domain object instances. To help you
understand the differences, consider the authorization capabilities found in the Servlet Specification web

4.1.0.RC1 Spring Security 5

Spring Security Reference

pattern security, EJB Container Managed Security and file system security respectively. Spring Security
provides deep capabilities in all of these important areas, which we’ll explore later in this reference guide.

1.2 History

Spring Security began in late 2003 as "The Acegi Security System for Spring". A question was posed
on the Spring Developers' mailing list asking whether there had been any consideration given to a
Spring-based security implementation. At the time the Spring community was relatively small (especially
compared with the size today!), and indeed Spring itself had only existed as a SourceForge project from
early 2003. The response to the question was that it was a worthwhile area, although a lack of time
currently prevented its exploration.

With that in mind, a simple security implementation was built and not released. A few weeks later another
member of the Spring community inquired about security, and at the time this code was offered to them.
Several other requests followed, and by January 2004 around twenty people were using the code. These
pioneering users were joined by others who suggested a SourceForge project was in order, which was
duly established in March 2004.

In those early days, the project didn’t have any of its own authentication modules. Container Managed
Security was relied upon for the authentication process, with Acegi Security instead focusing on
authorization. This was suitable at first, but as more and more users requested additional container
support, the fundamental limitation of container-specific authentication realm interfaces became clear.
There was also a related issue of adding new JARs to the container’s classpath, which was a common
source of end user confusion and misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later,
Acegi Security became an official Spring Framework subproject. The 1.0.0 final release was published in
May 2006 - after more than two and a half years of active use in numerous production software projects
and many hundreds of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded
as "Spring Security".

Today Spring Security enjoys a strong and active open source community. There are thousands of
messages about Spring Security on the support forums. There is an active core of developers who work
on the code itself and an active community which also regularly share patches and support their peers.

1.3 Release Numbering

Itis useful to understand how Spring Security release numbers work, as it will help you identify the effort
(or lack thereof) involved in migrating to future releases of the project. Each release uses a standard
triplet of integers: MAJOR.MINOR.PATCH. The intent is that MAJOR versions are incompatible, large-
scale upgrades of the API. MINOR versions should largely retain source and binary compatibility with
older minor versions, thought there may be some design changes and incompatible updates. PATCH
level should be perfectly compatible, forwards and backwards, with the possible exception of changes
which are to fix bugs and defects.

The extent to which you are affected by changes will depend on how tightly integrated your code is. If
you are doing a lot of customization you are more likely to be affected than if you are using a simple
namespace configuration.

You should always test your application thoroughly before rolling out a new version.

4.1.0.RC1 Spring Security 6

Spring Security Reference

1.4 Getting Spring Security

You can get hold of Spring Security in several ways. You can download a packaged distribution from
the main Spring Security page, download individual jars from the Maven Central repository (or a Spring
Maven repository for snapshot and milestone releases) or, alternatively, you can build the project from
source yourself.

Usage with Maven
A minimal Spring Security Maven set of dependencies typically looks like the following:

pom.xml.

<dependenci es>

<l-- ... other dependency el enents ... -->

<dependency>
<groupl d>or g. spri ngf ramewor k. securi ty</groupl d>
<artifactld>spring-security-web</artifactld>
<ver si on>4. 1. 0. RC1</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. securi ty</groupl d>
<artifactld>spring-security-config</artifactld>
<version>4.1.0. RC1</version>

</ dependency>

</ dependenci es>

If you are using additional features like LDAP, OpenlD, etc. you will need to also include the appropriate
the section called “Project Modules”.

Maven Repositories

All GA releases (i.e. versions ending in .RELEASE) are deployed to Maven Central, so no additional
Maven repositories need to be declared in your pom.

If you are using a SNAPSHOT version, you will need to ensure you have the Spring Snapshot repository
defined as shown below:

pom.xml.

<repositories>
<l-- ... possibly other repository elenents ... -->
<reposi tory>
<i d>spri ng- snapshot </ i d>
<nanme>Spring Snapshot Repository</nanme>
<url>http://repo.spring.iolsnapshot</url>
</repository>
</repositories>

If you are using a milestone or release candidate version, you will need to ensure you have the Spring
Milestone repository defined as shown below:

pom.xml.

<repositories>
<l-- ... possibly other repository elenents ... -->
<repository>

<i d>spring-mlestone</id>

<nanme>Spring M| estone Repository</nane>

<url >http://repo.spring.io/mlestone</url>
</repository>
</repositories>

4.1.0.RC1 Spring Security 7

http://spring.io/spring-security

Spring Security Reference

Spring Framework Bom

Spring Security builds against Spring Framework 4.2.5.RELEASE, but should work with 4.0.x. The
problem that many users will have is that Spring Security’s transitive dependencies resolve Spring
Framework 4.2.5.RELEASE which can cause strange classpath problems.

One (tedious) way to circumvent this issue would be to include all the Spring Framework modules in
a <dependencyManagement> section of your pom. An alternative approach is to include the spri ng-
f r amewor k- bomwithin your <dependencyManagenent > section of your pom xm as shown below:

pom.xml.

<dependencyManagenent >

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-framework-bom</ artifactld>
<version>4. 2. 5. RELEASE</ ver si on>
<t ype>ponk/type>
<scope>i nport </ scope>

</ dependency>

</ dependenci es>

</ dependencyManagenent >

This will ensure that all the transitive dependencies of Spring Security use the Spring 4.2.5.RELEASE
modules.

Note

This approach uses Maven'’s "bill of materials" (BOM) concept and is only available in Maven
2.0.9+. For additional details about how dependencies are resolved refer to Maven'’s Introduction
to the Dependency Mechanism documentation.

Gradle

A minimal Spring Security Gradle set of dependencies typically looks like the following:

build.gradle.

dependenci es {
conpi l e "org. springframework. security:spring-security-web:4.1.0.RCl
conpil e "org. springfranmework. security:spring-security-config:4.1.0.RCl'

}

If you are using additional features like LDAP, OpenlD, etc. you will need to also include the appropriate
the section called “Project Modules”.

Gradle Repositories

All GA releases (i.e. versions ending in .RELEASE) are deployed to Maven Central, so using the
mavenCentral() repository is sufficient for GA releases.

build.gradle.

repositories {
mavenCentral ()

}

4.1.0.RC1 Spring Security 8

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Spring Security Reference

If you are using a SNAPSHOT version, you will need to ensure you have the Spring Snapshot repository
defined as shown below:

build.gradle.

repositories {
maven { url 'https://repo.spring.iol/snapshot' }

}

If you are using a milestone or release candidate version, you will need to ensure you have the Spring
Milestone repository defined as shown below:

build.gradle.

repositories {
maven { url 'https://repo.spring.io/ mlestone }

}

Using Spring 4.0.x and Gradle

By default Gradle will use the newest version when resolving transitive versions. This means that often
times no additional work is necessary when running Spring Security 4.1.0.RC1 with Spring Framework
4.2.5.RELEASE. However, at times there can be issues that come up so it is best to mitigate this using
Gradle’s ResolutionStrategy as shown below:

build.gradle.

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.springfranework') {
detail s.useVersion '4.2.5. RELEASE
}
}

}

This will ensure that all the transitive dependencies of Spring Security use the Spring 4.2.5.RELEASE
modules.

Note

This example uses Gradle 1.9, but may need modifications to work in future versions of Gradle
since this is an incubating feature within Gradle.

Project Modules

In Spring Security 3.0, the codebase has been sub-divided into separate jars which more clearly
separate different functionaltiy areas and third-party dependencies. If you are using Maven to build your
project, then these are the modules you will add to your pom xni . Even if you're not using Maven, we'd
recommend that you consult the pom xmi files to get an idea of third-party dependencies and versions.
Alternatively, a good idea is to examine the libraries that are included in the sample applications.

Core - spring-security-core.jar

Contains core authentication and access-contol classes and interfaces, remoting support and basic
provisioning APIs. Required by any application which uses Spring Security. Supports standalone
applications, remote clients, method (service layer) security and JDBC user provisioning. Contains the
top-level packages:

4.1.0.RC1 Spring Security 9

http://www.gradle.org/docs/current/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Spring Security Reference

e org.springfranework. security.core

» org.springfranework. security. access

e org.springframework. security. authentication
* org.springfranmework. security. provisioning
Remoting - spring-security-remoting.jar

Provides intergration with Spring Remoting. You don'’t need this unless you are writing a remote client
which uses Spring Remoting. The main package is or g. spri ngf ranewor k. security.renpoting.

Web - spring-security-web.jar

Contains filters and related web-security infrastructure code. Anything with a servlet APl dependency.
You'll need it if you require Spring Security web authentication services and URL-based access-control.
The main package is or g. spri ngf ranewor k. securi ty. web.

Config - spring-security-config.jar

Contains the security namespace parsing code & Java configuration code. You need it if you are using
the Spring Security XML namespace for configuration or Spring Security’s Java Configuration support.
The main package is or g. spri ngf ramewor k. securi ty. confi g. None of the classes are intended
for direct use in an application.

LDAP - spring-security-ldap.jar

LDAP authentication and provisioning code. Required if you need to use LDAP authentication or manage
LDAP user entries. The top-level package is or g. spri ngf ramewor k. security. | dap.

ACL - spring-security-acl.jar

Specialized domain object ACL implementation. Used to apply security to
specific domain object instances within your application. The top-level package is
org. springframework. security. acls.

CAS - spring-security-cas.jar

Spring Security’s CAS client integration. If you want to use Spring Security web authentication with a
CAS single sign-on server. The top-level package is or g. spri ngf ramewor k. security. cas.

OpenlID - spring-security-openid.jar

OpenID web authentication support. Used to authenticate users against an external OpenlD server.
org. springfranmewor k. security. openi d. Requires OpeniD4Java.

Checking out the Source

Since Spring Security is an Open Source project, we’'d strongly encourage you to check out the source
code using git. This will give you full access to all the sample applications and you can build the most
up to date version of the project easily. Having the source for a project is also a huge help in debugging.
Exception stack traces are no longer obscure black-box issues but you can get straight to the line that's
causing the problem and work out what's happening. The source is the ultimate documentation for a
project and often the simplest place to find out how something actually works.

4.1.0.RC1 Spring Security 10

Spring Security Reference

To obtain the source for the project, use the following git command:

git clone https://github.conl spring-projects/spring-security.git

This will give you access to the entire project history (including all releases and branches) on your local
machine.

4.1.0.RC1 Spring Security 11

Spring Security Reference

2. What’'s New in Spring Security 4.1

There were 100+ issues fixed in Spring Security 4.1. You can find the highlights below:

Path Variables in Web Security Expressions

Content Security Policy (CSP)

HTTP Public Key Pinning (HPKP)

Added For war dAut hent i cati onFai | ur eHandl er
For war dAut hent i cati onSuccessHandl er

SCrypt support with SCr ypt Passwor dEncoder
Meta Annotation Support

* Test Meta Annotations

« Method Security Meta Annotations

@WithAnonymousUser

@WithUserDetails allows specifying the User Det ai | sSer vi ce bean name

Simplified UserDetailsService Java Configuration

Simplified AuthenticationProvider Java Configuration

Moved to GitHub issues

4.1.0.RC1 Spring Security

12

https://github.com/spring-projects/spring-security/milestones/4.1.0%20RC1

Spring Security Reference

3. Java Configuration

General support for Java Configuration was added to Spring framework in Spring 3.1. Since Spring
Security 3.2 there has been Spring Security Java Configuration support which enables users to easily
configure Spring Security without the use of any XML.

If you are familiar with the Chapter 4, Security Namespace Configuration then you should find quite a
few similarities between it and the Security Java Configuration support.

Note

Spring Security provides lots of sample applications that end in - j ¢ which demonstrate the use
of Spring Security Java Configuration.

3.1 Hello Web Security Java Configuration

The first step is to create our Spring Security Java Configuration. The configuration creates a Servlet
Filter known as the spri ngSecuri t yFi | t er Chai n which is responsible for all the security (protecting
the application URLSs, validating submitted username and passwords, redirecting to the log in form, etc)
within your application. You can find the most basic example of a Spring Security Java configuration
below:

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. context.annotation.*;
i mport org.springframework. security.config.annotation. authentication.builders.*;
i mport org.springframework. security.config.annotation.web.configuration.*;

@nabl eWebSecurity
public class SecurityConfig extends WbSecurityConfigurerAdapter {

@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
auth
. i nMenor yAut hent i cati on()
. Wi thUser ("user"). password("password").rol es("USER");

Note

The name of the configureGlobal method is not important. However, it is important to only
configure AuthenticationManagerBuilder in a class annotated with either @nabl eWebSecurity,
@nabl ed obal Met hodSecurity, or @nabl ed obal Aut henti cati on. Doing otherwise
has unpredictable results.

There really isn't much to this configuration, but it does a lot. You can find a summary of the features
below:

» Require authentication to every URL in your application
» Generate a login form for you

» Allow the user with the Username user and the Password password to authenticate with form based
authentication

 Allow the user to logout

4.1.0.RC1 Spring Security 13

http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
https://github.com/spring-projects/spring-security/tree/master/samples

Spring Security Reference

» CSREF attack prevention

» Session Fixation protection

» Security Header integration

e HTTP Strict Transport Security for secure requests

« X-Content-Type-Options integration

Cache Control (can be overridden later by your application to allow caching of your static resources)

X-XSS-Protection integration

X-Frame-Options integration to help prevent Clickjacking
* Integrate with the following Servlet APl methods

* HttpServletRequest#getRemoteUser()

* HttpServletRequest.html#getUserPrincipal()

HttpServletRequest.html#isUserInRole(java.lang.String)

* HttpServletRequest.html#login(java.lang.String, java.lang.String)

HttpServletRequest.html#logout()

AbstractSecurityWebApplicationlnitializer

The next step is to register the springSecurityFilterChain with the war.
This can be done in Java Configuration with Spring’'s WebApplicationinitializer
support in a Servlet 3.0+ environment. Not suprisingly, Spring Security provides
a base class AbstractSecurityWbApplicationlnitializer that will ensure the
springSecurityFilterChain gets registered for you. The way in which we use
Abstract SecurityWebApplicationlnitializer differs depending on if we are already using
Spring or if Spring Security is the only Spring component in our application.

» the section called “AbstractSecurityWebApplicationlnitializer without Existing Spring” - Use these
instructions if you are not using Spring already

» the section called “AbstractSecurityWebApplicationinitializer with Spring MVC” - Use these
instructions if you are already using Spring

AbstractSecurityWebApplicationlInitializer without Existing Spring

If you are not using Spring or Spring MVC, you will need to pass in the Securit yConfi g into the
superclass to ensure the configuration is picked up. You can find an example below:

i mport org.springframework. security.web. context.*;

public class SecurityWbApplicationlnitializer
ext ends Abstract SecurityWebApplicationlnitializer {

public SecurityWbApplicationlnitializer() {
super (Securi tyConfig.cl ass);
}

}

4.1.0.RC1 Spring Security 14

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://msdn.microsoft.com/en-us/library/ie/gg622941(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd565647(v=vs.85).aspx
http://en.wikipedia.org/wiki/Clickjacking
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getRemoteUser()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getUserPrincipal()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#isUserInRole(java.lang.String)
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#login(java.lang.String,%20java.lang.String)
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#logout()
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-container-config
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-container-config

Spring Security Reference

The Securit yWebAppl i cati onl nitiali zer will do the following things:
» Automatically register the springSecurityFilterChain Filter for every URL in your application

» Add a ContextLoaderListener that loads the SecurityConfig.
AbstractSecurityWebApplicationlnitializer with Spring MVC

If we were using Spring elsewhere in our application we probably already had a
WebApplicationlnitializer that is loading our Spring Configuration. If we use the
previous configuration we would get an error. Instead, we should register Spring Security
with the existing Appli cati onContext. For example, if we were using Spring MVC our
Securi tyWebApplicationlnitializer wouldlook something like the following:

i nport org.springfranework. security.web. context.*;

public class SecurityWbApplicationlnitializer
extends Abstract SecurityWebApplicationlnitializer {

This would simply only register the springSecurityFilterChain Filter for every URL in your application.
After that we would ensure that Secur i t yConf i g was loaded in our existing ApplicationlInitializer. For
example, if we were using Spring MVC it would be added in the get Root Confi gCl asses()

public class M/cWebApplicationlnitializer extends
Abstract Annot at i onConf i gDi spat cher Servletlnitializer {

@verride
protected C ass<?>[] get Root ConfigC asses() {
return new O ass[] { SecurityConfig.class };

}

/1 ... other overrides ...

3.2 HttpSecurity

Thus far our SecurityConfig only contains information about how to authenticate our users.
How does Spring Security know that we want to require all users to be authenticated? How
does Spring Security know we want to support form based authentication? The reason for
this is that the WebSecurityConfi gurer Adapter provides a default configuration in the
configure(HttpSecurity http) method that looks like:

protected void configure(HttpSecurity http) throws Exception {
http

.aut hori zeRequest s()
. anyRequest () . aut henti cat ed()
.and()

. fornmiLogi n()
.and()

. httpBasic();

}

The default configuration above:
» Ensures that any request to our application requires the user to be authenticated

 Allows users to authenticate with form based login

4.1.0.RC1 Spring Security 15

Spring Security Reference

» Allows users to authenticate with HTTP Basic authentication

You will notice that this configuration is quite similar the XML Namespace configuration:

<htt p>
<intercept-url pattern="/**" access="authenticated"/>
<formlogin />
<http-basic />

</ http>

The Java Configuration equivalent of closing an XML tag is expressed using the and() method which
allows us to continue configuring the parent. If you read the code it also makes sense. | want to configure
authorized requests and configure form login and configure HTTP Basic authentication.

However, Java configuration has different defaults URLs and parameters. Keep this in mind when
creating custom login pages. The result is that our URLs are more RESTful. Additionally, it is not quite
so obvious we are using Spring Security which helps to prevent information leaks. For example:

3.3 Java Configuration and Form Login

You might be wondering where the login form came from when you were prompted to log in, since
we made no mention of any HTML files or JSPs. Since Spring Security’s default configuration does
not explicitly set a URL for the login page, Spring Security generates one automatically, based on the
features that are enabled and using standard values for the URL which processes the submitted login,
the default target URL the user will be sent to after logging in and so on.

While the automatically generated log in page is convenient to get up and running quickly, most
applications will want to provide their own log in page. To do so we can update our configuration as
seen below:

protected void configure(H tpSecurity http) throws Exception {
http
. aut hori zeRequest s()
. anyRequest () . aut henti cat ed()

.and()

.formLogi n()

.l ogi nPage("/l ogin") O
.permtAl(); O

O The updated configuration specifies the location of the log in page.

0 We must grant all users (i.e. unauthenticated users) access to our log in page. The
fornmLogi n(). pernitAll () method allows granting access to all users for all URLs associated
with form based log in.

An example log in page implemented with JSPs for our current configuration can be seen below:
Note

The login page below represents our current configuration. We could easily update our
configuration if some of the defaults do not meet our needs.

4.1.0.RC1 Spring Security 16

https://www.owasp.org/index.php/Information_Leak_(information_disclosure)

Spring Security Reference

<c:url value="/login" var="loginUl"/>

<form acti on="%${l ogi nUrl}" nethod="post"> O
<c:if test="${paramerror != null}"> O
<p>
Invalid usernanme and password.
</ p>
</c:if>
<c:if test="${paramlogout != null}"> O
<p>
You have been | ogged out.
</ p>
</c:if>
<p>

<l abel for="usernanme">User nanme</| abel >
<input type="text" id="usernane" nanme="usernane"/> [
</ p>
<p>
<l abel for="password">Password</| abel >
<i nput type="password" id="password" nanme="password"/> O
</ p>
<i nput type="hi dden" O
name="${_csrf. paranet er Nane}"
val ue="${_csrf.token}"/>
<button type="submt" class="btn">Log in</button>
</ fornm

A POST to the / | ogi n URL will attempt to authenticate the user

If the query parameter er r or exists, authentication was attempted and failed

If the query parameter | ogout exists, the user was successfully logged out

The username must be present as the HTTP parameter named username

The password must be present as the HTTP parameter named password

We must the section called “Include the CSRF Token” To learn more read the Chapter 16, Cross
Site Request Forgery (CSRF) section of the reference

Oo0Ooooogo

3.4 Authorize Requests

Our examples have only required users to be authenticated and have done so for every URL in our
application. We can specify custom requirements for our URLs by adding multiple children to our
htt p. aut hori zeRequest s() method. For example:

protected void configure(HttpSecurity http) throws Exception {

http

. aut hori zeRequest s() O
.ant Matchers("/resources/**", "/signup", "/about").permtAll() O
.ant Mat chers("/adm n/**") . hasRol e(" ADM N") O
.ant Mat chers("/db/**") . access("hasRol e(' ADM N) and hasRol e(' DBA")") 0
. anyRequest () . aut henti cat ed() O
.and()

...

.formLogin();

}

0 There are multiple children to the http. aut hori zeRequest s() method each matcher is
considered in the order they were declared.

0 We specified multiple URL patterns that any user can access. Specifically, any user can access a
request if the URL starts with "/resources/", equals "/signup”, or equals "/about".

O Any URL that starts with "/admin/" will be resticted to users who have the role "ROLE_ADMIN".
You will notice that since we are invoking the hasRol e method we do not need to specify the
"ROLE_" prefix.

4.1.0.RC1 Spring Security 17

Spring Security Reference

O Any URL that starts with "/db/" requires the user to have both "ROLE_ADMIN" and "ROLE_DBA".
You will notice that since we are using the hasRol e expression we do not need to specify the
"ROLE_" prefix.

O Any URL that has not already been matched on only requires that the user be authenticated

3.5 Handling Logouts

When using the WebSecuri t yConfi gur er Adapt er, logout capabilities are automatically applied.
The default is that accessing the URL / | ogout will log the user out by:

Invalidating the HTTP Session

» Cleaning up any RememberMe authentication that was configured

Clearing the Securi t yCont ext Hol der

Redirectto / | ogi n?success

Similar to configuring login capabilities, however, you also have various options to further customize
your logout requirements:

protected void configure(H tpSecurity http) throws Exception {
http
. 1 ogout () 0
.logout Url ("/ny/l ogout™)
. | ogout SuccessUrl ("/ ny/index")
. | ogout SuccessHandl er (| ogout SuccessHandl er)
.invalidateHttpSession(true)
. addLogout Handl er (| ogout Handl er)
. del et eCooki es(cooki eNanesTod ear)
.and()

Oo0ooooao

O Provides logout support. This is automatically applied when using
WebSecuri t yConfi gurer Adapt er.

0 The URL that triggers log out to occur (defaultis / | ogout). If CSRF protection is enabled (default),
then the request must also be a POST. For for information, please consult the JavaDoc.

0 The URL to redirect to after logout has occurred. The default is /| ogi n?l ogout. For for
information, please consult the JavaDoc.

0 Let'syou specify a custom Logout SuccessHandl er . If this is specified, | ogout SuccessUr| ()
is ignored. For for information, please consult the JavaDoc.

O Specify whether to invalidate the Ht t pSessi on at the time of logout. This is true by default.
Configures the Secur i t yCont ext Logout Handl er under the covers. For for information, please
consult the JavaDoc.

0 Adds a LogoutHandl er. SecurityContextlLogoutHandl er is added as the Ilast
Logout Handl er by default.

O Allows specifying the names of cookies to be removed on logout success. This is a shortcut for
adding a Cooki eC ear i ngLogout Handl er explicitly.

Note

Logouts can of course also be configured using the XML Namespace notation. Please see the
documentation for the logout element in the Spring Security XML Namespace section for further
details.

4.1.0.RC1 Spring Security 18

http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/config/annotation/web/configuration/WebSecurityConfigurerAdapter.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/config/annotation/web/configurers/LogoutConfigurer.html#logoutUrl(java.lang.String)
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/config/annotation/web/configurers/LogoutConfigurer.html#logoutSuccessUrl(java.lang.String)
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/config/annotation/web/configurers/LogoutConfigurer.html#logoutSuccessHandler(org.springframework.security.web.authentication.logout.LogoutSuccessHandler)
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/config/annotation/web/configurers/LogoutConfigurer.html#invalidateHttpSession(boolean)

Spring Security Reference

Generally, in order to customize logout functionality, you can add Logout Handl er and/or
Logout SuccessHandl er implementations. For many common scenarios, these handlers are applied
under the covers when using the fluent API.

LogoutHandler

Generally, Logout Handl er implementations indicate classes that are able to participate in logout
handling. They are expected to be invoked to perform necessary cleanup. As such they should not throw
exceptions. Various implementations are provided:

» PersistentTokenBasedRememberMeServices

» TokenBasedRememberMeServices

CookieClearingLogoutHandler

» CsrfLogoutHandler

» SecurityContextLogoutHandler

Please see Section 15.4, “Remember-Me Interfaces and Implementations” for details.

Instead of providing Logout Handl er implementations directly, the fluent APl also provides
shortcuts that provide the respective Logout Handl er implementations under the covers. E.g.
del et eCooki es() allows specifying the names of one or more cookies to be removed on logout
success. This is a shortcut compared to adding a Cooki eC ear i ngLogout Handl er.

LogoutSuccessHandler

The Logout SuccessHandl er is called after a successful logout by the Logout Fi | t er, to handle
e.g. redirection or forwarding to the appropriate destination. Note that the interface is almost the same
as the Logout Handl er but may raise an exception.

The following implementations are provided:

* SimpleUrlLogoutSuccessHandler

 HttpStatusReturningLogoutSuccessHandler

As mentioned above, you don’t need to specify the Si npl eUr | Logout SuccessHandl er directly.
Instead, the fluent API provides a shortcut by setting the | ogout SuccessUr | (). This will setup the
Si npl eUr | Logout SuccessHandl er under the covers. The provided URL will be redirected to after
a logout has occurred. The defaultis / | ogi n?l ogout .

The Htt pSt at usRet ur ni ngLogout SuccessHandl er can be interesting in REST API type
scenarios. Instead of redirecting to a URL upon the successful logout, this Logout SuccessHandl er
allows you to provide a plain HTTP status code to be returned. If not configured a status code 200 will
be returned by default.

Further Logout-Related References

* Logout Handling

e Testing Logout

» HttpServletRequest.logout()

Section 15.4, “Remember-Me Interfaces and Implementations

4.1.0.RC1 Spring Security 19

http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/LogoutHandler.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/LogoutSuccessHandler.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/LogoutHandler.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/rememberme/PersistentTokenBasedRememberMeServices.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/rememberme/TokenBasedRememberMeServices.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/CookieClearingLogoutHandler.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/csrf/CsrfLogoutHandler.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/SecurityContextLogoutHandler.html
http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/SimpleUrlLogoutSuccessHandler.html

Spring Security Reference

e Logging Out in section CSRF Caveats
» Section Single Logout (CAS protocol)

» Documentation for the logout element in the Spring Security XML Namespace section

3.6 Authentication

Thus far we have only taken a look at the most basic authentication configuration. Let’s take a look at
a few slightly more advanced options for configuring authentication.

In Memory Authentication

We have already seen an example of configuring in memory authentication for a single user. Below is
an example to configure multiple users:

@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h
. i nMenor yAut hent i cati on()
. W thUser ("user").password("password").rol es("USER"). and()
. W thUser ("adm n"). passwor d("password").rol es("USER', "ADM N');

JDBC Authentication

You can find the updates to suppport JDBC based authentication. The example below assumes that you
have already defined a Dat aSour ce within your application. The jdbc-jc sample provides a complete
example of using JDBC based authentication.

@\ut owi r ed
private DataSource dataSource;

@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h
. j dbcAut henti cati on()
. dat aSour ce(dat aSour ce)
. Wi t hDef aul t Schena()
. W thUser ("user") . password("password").rol es("USER") . and()
. W thUser ("adm n"). password("password").rol es("USER", "ADM N');

LDAP Authentication

You can find the updates to suppport LDAP based authentication. The Idap-jc sample provides a
complete example of using LDAP based authentication.

@\ut owi r ed
private Dat aSource dataSource;

@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h
. | dapAut henti cation()
.user DnPat t er ns(" ui d={ 0} , ou=peopl e")
. groupSear chBase(" ou=gr oups") ;

}
The example above uses the following LDIF and an embedded Apache DS LDAP instance.

users.ldif.

4.1.0.RC1 Spring Security 20

https://github.com/spring-projects/spring-security/tree/master/samples/jdbc-jc
https://github.com/spring-projects/spring-security/tree/master/samples/ldap-jc

Spring Security Reference

dn: ou=groups, dc=spri ngframewor k, dc=or g
obj ectcl ass: top

obj ectcl ass: organi zational Uni t

ou: groups

dn: ou=peopl e, dc=spri ngf ramewor k, dc=or g
obj ectcl ass: top

obj ectcl ass: organi zational Uni t

ou: people

dn: ui d=adni n, ou=peopl e, dc=spri ngf ramewor k, dc=or g
obj ectcl ass: top

obj ectcl ass: person

obj ectcl ass: organi zati onal Per son

obj ectcl ass: inet OrgPerson

cn: Rod Johnson

sn: Johnson

ui d: admin

user Passwor d: password

dn: ui d=user, ou=peopl e, dc=spri ngf ramewor k, dc=or g
obj ectcl ass: top

obj ectcl ass: person

obj ectcl ass: organi zati onal Per son

obj ectcl ass: inet OrgPerson

cn: Dianne Enmu

sn: Enu

ui d: user

user Passwor d: password

dn: cn=user, ou=gr oups, dc=spri ngf ramewor k, dc=or g

obj ectcl ass: top

obj ectcl ass: groupOf Names

cn: user

uni queMenber: ui d=adni n, ou=peopl e, dc=spri ngf ramewor k, dc=or g
uni queMenber: ui d=user, ou=peopl e, dc=spri ngf r amewor k, dc=or g

dn: cn=adm n, ou=gr oups, dc=spri ngf ramewor k, dc=or g

obj ectcl ass: top

obj ect cl ass: groupOf Nanes

cn: admin

uni queMenber: ui d=admni n, ou=peopl e, dc=spri ngf ramewor k, dc=or g

AuthenticationProvider

You can define custom authentication by exposing a custom Authenticati onProvi der
as a bean. For example, the following will customize authentication assuming that
Spri ngAut hent i cati onPr ovi der implements Aut henti cati onProvi der:

Note

This is only used if the Aut hent i cat i onManager Bui | der has not been populated

@Bean
publ i c SpringAut henticationProvider springAuthenticationProvider() {
return new SpringAut henticati onProvider();

}

UserDetailsService

You can define custom authentication by exposing a custom UserDetail sService
as a bean. For example, the following will customize authentication assuming that
Spri ngbDat aUser Det ai | sSer vi ce implements User Det ai | sSer vi ce:

4.1.0.RC1 Spring Security 21

Spring Security Reference

Note

This is only used if the Aut henti cati onManager Bui | der has not been populated and no
Aut henti cati onProvi der Bean is defined.

@Bean
publ i c SpringDat aUser Det ai | sServi ce springDataUser Detail sService() {
return new SpringDataUser Detail sService();

}

You can also customize how passwords are encoded by exposing a Passwor dEncoder as a bean.
For example, if you use bcrypt you can add a bean definition as shown below:

@ean
publ i ¢ BCrypt Passwor dEncoder passwor dEncoder () {
return new BCrypt Passwor dEncoder () ;

}

LDAP Authentication

3.7 Multiple HttpSecurity

We can configure multiple HttpSecurity instances just as we can have multiple <ht t p> blocks. The key
is to extend the WebSecuri t yConfi gur at i onAdapt er multiple times. For example, the following is
an example of having a different configuration for URL’s that start with / api / .

@nabl eWebSecurity
public class MultiHttpSecurityConfig {
@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) { O
auth
. i nMenor yAut hent i cati on()
.withUser("user").password("password").rol es("USER"). and()
. Wi thUser ("adm n"). password("password").rol es("USER', "ADM N');
}

@Conf i guration
@x der (1) O
public static class Api WebSecurityConfigurationAdapter extends WebSecurityConfigurerAdapter {
protected void configure(HttpSecurity http) throws Exception {
http
.ant Mat cher ("/api/**") O
.aut hori zeRequest s()
. anyRequest (). hasRol e(" ADM N')
.and()
. httpBasic();
}
}

@conf i guration [}
public static class Fornlogi nWWebSecurityConfi gurerAdapter extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
. aut hori zeRequest s()
. anyRequest () . aut henti cat ed()
.and()
.formLogin();
}
}

4.1.0.RC1 Spring Security 22

Spring Security Reference

O Configure Authentication as normal

O Create aninstance of WebSecur i t yConf i gur er Adapt er that contains @ der to specify which
WebSecuri t yConfi gur er Adapt er should be considered first.

O Thehttp. ant Mat cher states that this Ht t pSecur i t y will only be applicable to URLSs that start
with / api /

0 Create another instance of WebSecurityConfigurerAdapter. If the URL does not
start with /api/ this configuration will be used. This configuration is considered after
Api WebSecuri t yConfi gurati onAdapt er since it has an @ der value after 1 (no @ der
defaults to last).

3.8 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your
service layer methods. It provides support for JSR-250 annotation security as well as the framework’s
original @ecur ed annotation. From 3.0 you can also make use of new expression-based annotations.
You can apply security to a single bean, using the intercept-methods element to decorate the bean
declaration, or you can secure multiple beans across the entire service layer using the AspectJ style
pointcuts.

EnableGlobalMethodSecurity

We can enable annotation-based security using the @nabl ed obal Met hodSecur i t y annotation on
any @onf i gur at i on instance. For example, the following would enable Spring Security’s @ecur ed
annotation.

@nabl ed obal Met hodSecurity(securedEnabl ed = true)
public class MethodSecurityConfig {

...

}

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security’s native annotation support defines a set of attributes for the method. These
will be passed to the AccessDecisionManager for it to make the actual decision:

public interface BankService {

@ecur ed("1 S_AUTHENTI CATED_ANONYMOUSLY")
public Account readAccount(Long id);

@ecur ed(" 1 S_AUTHENTI CATED_ANONYMOUSLY")
public Account[] findAccounts();

@ecur ed(" ROLE_TELLER")
publ i c Account post (Account account, double anount);

}

Support for JSR-250 annotations can be enabled using

@Enabl ed obal Met hodSecurity(jsr250Enabl ed = true)
public class MethodSecurityConfig {
...

}

These are standards-based and allow simple role-based constraints to be applied but do not have the
power Spring Security’s native annotations. To use the new expression-based syntax, you would use

4.1.0.RC1 Spring Security 23

Spring Security Reference

@nabl ed obal Met hodSecuri ty(prePost Enabl ed = true)
public class MethodSecurityConfig {
...

}

and the equivalent Java code would be

public interface BankService {

@r eAut hori ze("i sAnonynous()")
publ i c Account readAccount(Long id);

@r eAut hori ze("i sAnonynous()")
public Account[] findAccounts();

@r eAut hori ze("hasAut hority(' ROLE_TELLER)")
publ i c Account post (Account account, double anount);

}

GlobalMethodSecurityConfiguration

Sometimes you may need to perform operations that are more complicated than are possible with
the @nabl ed obal Met hodSecuri ty annotation allow. For these instances, you can extend the
G obal Met hodSecuri t yConfi gurati on ensuring that the @tnabl ed obal Met hodSecurity
annotation is present on your subclass. For example, if you wanted to provide a custom
Met hodSecur i t yExpr essi onHander , you could use the following configuration:

@Enabl ed obal Met hodSecuri ty(prePost Enabl ed = true)
public class MethodSecurityConfig extends d obal MethodSecurityConfiguration {
@verride
protected MethodSecurityExpressionHandl er createExpressionHandl er () {
/1 ... create and return custom Met hodSecurityExpressi onHandl er ...
return expressi onHander;
}
}

For additional information about methods that can be overriden, refer to the
d obal Met hodSecuri t yConfi gurati on Javadoc.

3.9 Post Processing Configured Objects

Spring Security’s Java Configuration does not expose every property of every object that it configures.
This simplifies the configuration for a majority of users. Afterall, if every property was exposed, users
could use standard bean configuration.

While there are good reasons to not directly expose every property, users may still need
more advanced configuration options. To address this Spring Security introduces the concept
of an (nj ect Post Processor which can used to modify or replace many of the Object
instances created by the Java Configuration. For example, if you wanted to configure the
filterSecurityPublishAuthorizationSuccess propertyonFilterSecuritylnterceptor
you could use the following:

4.1.0.RC1 Spring Security 24

Spring Security Reference

@verride
protected void configure(H tpSecurity http) throws Exception {
http
.aut hori zeRequest s()
. anyRequest () . aut hent i cat ed()
. Wi t hObj ect Post Processor (new Cbj ect Post Processor <Fi |l ter Securitylnterceptor>() {
public <O extends FilterSecuritylnterceptor> O postProcess(
O fsi) {
fsi.setPublishAut hori zati onSuccess(true);
return fsi;

}
IoN

4.1.0.RC1 Spring Security

25

Spring Security Reference

4. Security Namespace Configuration

4.1 Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It allows you to
supplement the traditional Spring beans application context syntax with elements from additional XML
schema. You can find more information in the Spring Reference Documentation. A namespace element
can be used simply to allow a more concise way of configuring an individual bean or, more powerfully,
to define an alternative configuration syntax which more closely matches the problem domain and hides
the underlying complexity from the user. A simple element may conceal the fact that multiple beans
and processing steps are being added to the application context. For example, adding the following
element from the security namespace to an application context will start up an embedded LDAP server
for testing use within the application:

<security:| dap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common
alternative configuration requirements are supported by attributes on the | dap- ser ver element and
the user is isolated from worrying about which beans they need to create and what the bean property
names are. 2. Use of a good XML editor while editing the application context file should provide
information on the attributes and elements that are available. We would recommend that you try out the
Spring Tool Suite as it has special features for working with standard Spring namespaces.

To start using the security namespace in your application context, you need to have the spri ng-
security-config jar on your classpath. Then all you need to do is add the schema declaration to
your application context file:

<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"

xm ns: security="http://ww. springfranmework. org/ schema/ security"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocat i on="http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
htt p: // ww. spri ngf ramewor k. or g/ schema/ securi ty
http://wwv. spri ngfranework. org/ schena/ security/spring-security.xsd">

</ beans>

In many of the examples you will see (and in the sample) applications, we will often use "security”" as
the default namespace rather than "beans”, which means we can omit the prefix on all the security
namespace elements, making the content easier to read. You may also want to do this if you have your
application context divided up into separate files and have most of your security configuration in one of
them. Your security application context file would then start like this

<beans: beans xm ns="http://ww. springfranmework. org/ schema/ security"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd
ht t p: // www. spri ngf ramewor k. or g/ schema/ security
http://ww. springfranework. org/ schenma/ security/spring-security.xsd">

</ beans: beans>

We'll assume this syntax is being used from now on in this chapter.

2you can find out more about the use of the | dap- server element in the chapter on Chapter 26, LDAP Authentication.

4.1.0.RC1 Spring Security 26

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/
http://spring.io/tools/sts

Spring Security Reference

Design of the Namespace

The namespace is designed to capture the most common uses of the framework and provide a simplified
and concise syntax for enabling them within an application. The design is based around the large-scale
dependencies within the framework, and can be divided up into the following areas:

» Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to
apply the framework authentication mechanisms, to secure URLSs, render login and error pages and
much more.

» Business Object (Method) Security - options for securing the service layer.
» AuthenticationManager - handles authentication requests from other parts of the framework.

» AccessDecisionManager - provides access decisions for web and method security. A default one will
be registered, but you can also choose to use a custom one, declared using normal Spring bean
syntax.

» AuthenticationProviders - mechanisms against which the authentication manager authenticates
users. The namespace provides supports for several standard options and also a means of adding
custom beans declared using a traditional syntax.

» UserDetailsService - closely related to authentication providers, but often also required by other
beans.

We’'ll see how to configure these in the following sections.

4.2 Getting Started with Security Namespace Configuration

In this section, we'll look at how you can build up a namespace configuration to use some of the main
features of the framework. Let's assume you initially want to get up and running as quickly as possible
and add authentication support and access control to an existing web application, with a few test logins.
Then we'll look at how to change over to authenticating against a database or other security repository.
In later sections we’ll introduce more advanced namespace configuration options.

web.xml Configuration

The first thing you need to do is add the following filter declaration to your web. xmi file:

<filter>

<filter-name>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>

<filter-name>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

This provides a hook into the Spring Security web infrastructure. Del egat i ngFi | t er Pr oxy is a Spring
Framework class which delegates to a filter implementation which is defined as a Spring bean in your
application context. In this case, the bean is named "springSecurityFilterChain", which is an internal
infrastructure bean created by the namespace to handle web security. Note that you should not use
this bean name yourself. Once you've added this to your web. xm , you're ready to start editing your
application context file. Web security services are configured using the <ht t p> element.

4.1.0.RC1 Spring Security 27

Spring Security Reference

A Minimal <http> Configuration

All you need to enable web security to begin with is

<htt p>

<intercept-url pattern="/**" access="hasRole('USER)" />
<formlogin />

<l ogout />

</ http>

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER
to access them, we want to log in to the application using a form with username and password, and
that we want a logout URL registered which will allow us to log out of the application. <ht t p> element
is the parent for all web-related namespace functionality. The <i nt er cept - ur | > element defines a
pat t er n which is matched against the URLs of incoming requests using an ant path style syntax 4
You can also use regular-expression matching as an alternative (see the namespace appendix for more
details). The access attribute defines the access requirements for requests matching the given pattern.
With the default configuration, this is typically a comma-separated list of roles, one of which a user
must have to be allowed to make the request. The prefix"ROLE_" is a marker which indicates that a
simple comparison with the user's authorities should be made. In other words, a normal role-based
check should be used. Access-control in Spring Security is not limited to the use of simple roles (hence
the use of the prefix to differentiate between different types of security attributes). We'll see later how
the interpretation can vary footnote:[The interpretation of the comma-separated values in the access
attribute depends on the implementation of the #1# which is used. In Spring Security 3.0, the attribute
can also be populated with an #2#.

Note

You can use multiple <i nt er cept - ur| > elements to define different access requirements for
different sets of URLSs, but they will be evaluated in the order listed and the first match will be
used. So you must put the most specific matches at the top. You can also add a net hod attribute
to limit the match to a particular HTTP method (GET, POST, PUT etc.).

To add some users, you can define a set of test data directly in the namespace:

<aut henti cat i on- ranager >
<aut henti cati on- provi der >
<user - servi ce>
<user name="jim" password="jim spassword" authorities="ROLE USER, ROLE_ ADM N' />
<user nanme="bob" password="bobspassword" authorities="ROLE USER' />
</ user-servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

If you are familiar with pre-namespace versions of the framework, you can probably already
guess roughly what's going on here. The <http> element is responsible for creating a
Fi | t er Chai nPr oxy and the filter beans which it uses. Common problems like incorrect filter
ordering are no longer an issue as the filter positions are predefined.

The <aut hent i cati on- provi der > element creates a DaoAut hent i cati onPr ovi der bean
and the <user - servi ce> element creates an | nMenor yDaol npl . All aut henti cati on-

“See the section on Section 11.4, “Request Matching and HttpFirewall” in the Web Application Infrastructure chapter for more
details on how matches are actually performed.

4.1.0.RC1 Spring Security 28

Spring Security Reference

provi der elements must be children of the <aut henti cat i on- nanager > element, which
creates a Pr ovi der Manager and registers the authentication providers with it. You can find more
detailed information on the beans that are created in the namespace appendix. It's worth cross-
checking this if you want to start understanding what the important classes in the framework are
and how they are used, particularly if you want to customise things later.

The configuration above defines two users, their passwords and their roles within the application (which
will be used for access control). It is also possible to load user information from a standard properties
file using the pr operti es attribute on user - ser vi ce. See the section on in-memory authentication
for more details on the file format. Using the <aut hent i cat i on- pr ovi der > element means that the
user information will be used by the authentication manager to process authentication requests. You
can have multiple <aut hent i cat i on- pr ovi der > elements to define different authentication sources
and each will be consulted in turn.

At this point you should be able to start up your application and you will be required to log in to proceed.
Try it out, or try experimenting with the"tutorial" sample application that comes with the project.

Form and Basic Login Options

You might be wondering where the login form came from when you were prompted to log in, since we
made no mention of any HTML files or JSPs. In fact, since we didn't explicitly set a URL for the login
page, Spring Security generates one automatically, based on the features that are enabled and using
standard values for the URL which processes the submitted login, the default target URL the user will
be sent to after logging in and so on. However, the namespace offers plenty of support to allow you to
customize these options. For example, if you want to supply your own login page, you could use:

<htt p>

<intercept-url pattern="/login.jsp*" access="1S_ AUTHENTI CATED_ANONYMOUSLY"/ >
<intercept-url pattern="/**" access="ROLE USER' />

<form 1l ogin | ogin-page='/login.jsp'/>

</ http>

Also note that we've added an extra i nt er cept - ur| element to say that any requests for the login
page should be available to anonymous users > and also the AuthenticatedVoter class for more details
on how the value | S_AUTHENTI CATED ANONYMOUSLY is processed.]. Otherwise the request would be
matched by the pattern /** and it wouldn't be possible to access the login page itself! This is a common
configuration error and will result in an infinite loop in the application. Spring Security will emit a warning
in the log if your login page appears to be secured. It is also possible to have all requests matching a
particular pattern bypass the security filter chain completely, by defining a separate ht t p element for
the pattern like this:

<http pattern="/css/**" security="none"/>
<http pattern="/login.jsp*" security="none"/>

<http use-expressi ons="fal se">

<intercept-url pattern="/**" access="ROLE_USER' />
<form 1l ogin | ogin-page='/login.jsp' />

</ http>

From Spring Security 3.1 it is now possible to use multiple ht t p elements to define separate security
filter chain configurations for different request patterns. If the pat t er n attribute is omitted froman ht t p
element, it matches all requests. Creating an unsecured pattern is a simple example of this syntax,

SSee the chapter on Chapter 19, Anonymous Authentication

4.1.0.RC1 Spring Security 29

Spring Security Reference

where the pattern is mapped to an empty filter chain ®. we'll look at this new syntax in more detail in
the chapter on the Security Filter Chain.

It's important to realise that these unsecured requests will be completely oblivious to any Spring
Security web-related configuration or additional attributes such as r equi r es- channel , so you will
not be able to access information on the current user or call secured methods during the request. Use
access='1S_AUTHENTI CATED ANONYMOUSLY' as an alternative if you still want the security filter
chain to be applied.

If you want to use basic authentication instead of form login, then change the configuration to

<http use-expressions="fal se">

<intercept-url pattern="/**" access="ROLE USER' />
<http-basic />

</ http>

Basic authentication will then take precedence and will be used to prompt for a login when a user
attempts to access a protected resource. Form login is still available in this configuration if you wish to
use it, for example through a login form embedded in another web page.

Setting a Default Post-Login Destination

If a form login isn’t prompted by an attempt to access a protected resource, the def aul t -t ar get -
ur| option comes into play. This is the URL the user will be taken to after successfully logging in, and
defaults to "/". You can also configure things so that the user always ends up at this page (regardless
of whether the login was "on-demand" or they explicitly chose to log in) by setting the al ways- use-
def aul t -t arget attribute to "true". This is useful if your application always requires that the user
starts at a "home" page, for example:

<http pattern="/login. htn" security="none"/>

<http use-expressions="fal se">

<intercept-url pattern='/**' access=' ROLE USER />

<form | ogin |ogin-page="/login. htm default-target-url="/hone.htm
al ways- use-defaul t-target="true' />

</ http>

For even more control over the destination, you can use the aut henti cat i on- success- handl er -
r ef attribute as an alternative to def aul t -t ar get - ur | . The referenced bean should be an instance
of Aut hent i cati onSuccessHandl er. You'll find more on this in the Core Filters chapter and also in
the namespace appendix, as well as information on how to customize the flow when authentication fails.

Logout Handling

The | ogout element adds support for logging out by navigating to a particular URL. The default logout
URL s/ | ogout , but you can set it to something else using the | ogout - ur | attribute. More information
on other available attributes may be found in the namespace appendix.

Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to the
application context file. Most likely you will want to store your user information in something like a

5The use of multiple <ht t p> elements is an important feature, allowing the nhamespace to simultaneously support both stateful
and stateless paths within the same application, for example. The previous syntax, using the attribute fi | t er s="none" on an
i ntercept-url elementisincompatible with this change and is no longer supported in 3.1.

4.1.0.RC1 Spring Security 30

Spring Security Reference

database or an LDAP server. LDAP namespace configuration is dealt with in the LDAP chapter, so we
won'’t cover it here. If you have a custom implementation of Spring Security’s User Det ai | sSer vi ce,
called "myUserDetailsService" in your application context, then you can authenticate against this using

<aut henti cati on- manager >
<aut henti cati on- provi der user-service-ref="nmyUserDetail sService'/>
</ aut henti cati on- manager >

If you want to use a database, then you can use

<aut henti cati on- manager >
<aut henti cati on- provi der >
<j dbc- user-servi ce data-source-ref="securityDataSource"/>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

Where "securityDataSource" is the name of a Dat aSour ce bean in the application context, pointing at
a database containing the standard Spring Security user data tables. Alternatively, you could configure
a Spring Security JdbcDaol npl bean and point at that using the user - ser vi ce- r ef attribute:

<aut henti cat i on- mranager >
<aut hentication-provider user-service-ref="nyUserDetail sService'/>
</ aut henti cati on- manager >

<beans: bean i d="nmyUser Det ai | sServi ce"

cl ass="org. springframework. security.core.userdetails.jdbc.JdbcDaol npl ">
<beans: property name="dat aSour ce" ref="dataSource"/>
</ beans: bean>

You can also use standard Aut henti cati onPr ovi der beans as follows

<aut henti cati on- manager >
<aut hentication-provider ref="nyAuthenticationProvider'/>
</ aut henti cati on- manager >

where myAut henti cati onProvi der is the name of a bean in your application context which
implements Aut henti cati onProvi der. You can use multiple aut henti cati on-provider
elements, in which case the providers will be queried in the order they are declared. See Section 4.6,
“The Authentication Manager and the Namespace” for more on information on how the Spring Security
Aut hent i cati onManager is configured using the namespace.

Adding a Password Encoder

Passwords should always be encoded using a secure hashing algorithm designed for the purpose (not
a standard algorithm like SHA or MD5). This is supported by the <passwor d- encoder > element. With
bcrypt encoded passwords, the original authentication provider configuration would look like this:

<beans: bean nanme="bcrypt Encoder"
cl ass="org. springfranmework. security.crypto.bcrypt.BCrypt Passwor dEncoder"/ >

<aut henti cati on- manager >
<aut henti cati on- provi der >
<passwor d- encoder ref="bcrypt Encoder"/>
<user - servi ce>
<user name="jim" password="d7e6351eaal3189a5a3641bab846c8e8c69ba39f"
aut horiti es="ROLE_USER, ROLE_ADM N' />
<user nanme="bob" password="4e7421b1b8765d8f 9406d87e7cc6aa784c4ab97f"
aut hori ti es="ROLE_USER"' />
</ user -servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

4.1.0.RC1 Spring Security 31

Spring Security Reference

Berypt is a good choice for most cases, unless you have a legacy system which forces you to use
a different algorithm. If you are using a simple hashing algorithm or, even worse, storing plain text
passwords, then you should consider migrating to a more secure option like berypt.

4.3 Advanced Web Features

Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLs can only
be accessed over HTTPS, then this is directly supported using the r equi r es- channel attribute on
<intercept-url>:

<htt p>
<intercept-url pattern="/secure/**" access="ROLE _USER' requires-channel ="https"/>
<intercept-url pattern="/**" access="ROLE _USER' requires-channel ="any"/>

</ http>

With this configuration in place, if a user attempts to access anything matching the "/secure/**" pattern
using HTTP, they will first be redirected to an HTTPS URL ' The available options are "http", "https" or
"any". Using the value "any" means that either HTTP or HTTPS can be used.

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify a list of port
mappings as follows:

<htt p>

<port - mappi ngs>

<port-mappi ng http="9080" https="9443"/>
</ port - mappi ngs>
</ http>

Note that in order to be truly secure, an application should not use HTTP at all or switch between
HTTP and HTTPS. It should start in HTTPS (with the user entering an HTTPS URL) and use a secure
connection throughout to avoid any possibility of man-in-the-middle attacks.

Session Management

Detecting Timeouts

You can configure Spring Security to detect the submission of an invalid session ID and redirect the
user to an appropriate URL. This is achieved through the sessi on- managenent element:

<ht t p>

<sessi on- managenent invalid-session-url="/invalidSession. htm' />
</ http>

Note that if you use this mechanism to detect session timeouts, it may falsely report an error if the
user logs out and then logs back in without closing the browser. This is because the session cookie is

"For more details on how channel-processing is implemented, see the Javadoc for Channel Processi ngFi | t er and related
classes.

4.1.0.RC1 Spring Security 32

Spring Security Reference

not cleared when you invalidate the session and will be resubmitted even if the user has logged out.
You may be able to explicitly delete the JSESSIONID cookie on logging out, for example by using the
following syntax in the logout handler:

<htt p>
<l ogout del et e- cooki es="JSESSI ONI D" />
</ http>

Unfortunately this can’t be guaranteed to work with every servlet container, so you will need to test it
in your environment

Note

If you are running your application behind a proxy, you may also be able to remove the session
cookie by configuring the proxy server. For example, using Apache HTTPD’s mod_headers, the
following directive would delete the JSESSI ONI D cookie by expiring it in the response to a logout
request (assuming the application is deployed under the path / t ut ori al):

<Locati onMatch "/tutorial/l ogout">
Header al ways set Set-Cookie "JSESSI ONl D=; Pat h=/tutori al ; Expi res=Thu, 01 Jan 1970 00: 00: 00 GMI"
</ Locat i onMat ch>

Concurrent Session Control

If you wish to place constraints on a single user’s ability to log in to your application, Spring Security
supports this out of the box with the following simple additions. First you need to add the following
listener to your web. xm file to keep Spring Security updated about session lifecycle events:

<l i stener>
<listener-class>
org. springframework. security.web. sessi on. Ht t pSessi onEvent Publ i sher
</listener-class>
</listener>

Then add the following lines to your application context:

<htt p>

<sessi on- nanagenent >

<concurrency-control max-sessions="1" />
</ sessi on- managenent >
</ http>

This will prevent a user from logging in multiple times - a second login will cause the first to be invalidated.
Often you would prefer to prevent a second login, in which case you can use

<htt p>

<sessi on- managenent >

<concurrency-control max-sessions="1" error-if-maxi mum exceeded="true" />
</ sessi on- managenent >
</ http>

The second login will then be rejected. By "rejected”, we mean that the user will be sent to the
aut henti cation-fail ure-url ifform-based login is being used. If the second authentication takes
place through another non-interactive mechanism, such as "remember-me", an "unauthorized" (401)
error will be sent to the client. If instead you want to use an error page, you can add the attribute
sessi on-aut henti cation-error-url tothe sessi on- ranagenent element.

4.1.0.RC1 Spring Security 33

Spring Security Reference

If you are using a customized authentication filter for form-based login, then you have to configure
concurrent session control support explicitly. More details can be found in the Session Management

chapter.

Session Fixation Attack Protection

Session fixation attacks are a potential risk where it is possible for a malicious attacker to create a
session by accessing a site, then persuade another user to log in with the same session (by sending
them a link containing the session identifier as a parameter, for example). Spring Security protects
against this automatically by creating a new session or otherwise changing the session ID when a user
logs in. If you don't require this protection, or it conflicts with some other requirement, you can control the
behavior using the sessi on-fi xat i on- pr ot ect i on attribute on <sessi on- managenent >, which
has four options

* none - Don’t do anything. The original session will be retained.

* newSessi on - Create a new "clean" session, without copying the existing session data (Spring
Security-related attributes will still be copied).

e m gr at eSessi on - Create a new session and copy all existing session attributes to the new session.
This is the default in Servlet 3.0 or older containers.

» changeSessi onl d - Do not create a new session. Instead, use the session fixation protection
provided by the Servlet container (Ht t pSer vl et Request #changeSessi onl d()). This option is
only available in Servlet 3.1 (Java EE 7) and newer containers. Specifying it in older containers will
result in an exception. This is the default in Servlet 3.1 and newer containers.

When session fixation protection occurs, it results in a Sessi onFi xat i onPr ot ecti onEvent being
published in the application context. If you use changeSessi onl d, this protection will also result in
anyj avax. servlet. http. Ht t pSessi onl dLi st ener s being notified, so use caution if your code
listens for both events. See the Session Management chapter for additional information.

OpenID Support

The namespace supports OpenlID login either instead of, or in addition to normal form-based login, with
a simple change:

<htt p>

<intercept-url pattern="/**" access="ROLE_USER' />
<openi d-login />

</ http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the user
information to your in-memory <user - ser vi ce>:

<user name="http://jim.hendrix.nyopenid.com" authorities="ROLE_USER' />

You should be able to login using the nyopeni d. comsite to authenticate. It is also possible to select a
specific User Det ai | sSer vi ce bean for use OpenID by setting the user - ser vi ce-r ef attribute on
the openi d- | ogi n element. See the previous section on authentication providers for more information.
Note that we have omitted the password attribute from the above user configuration, since this set of
user data is only being used to load the authorities for the user. A random password will be generate
internally, preventing you from accidentally using this user data as an authentication source elsewhere
in your configuration.

4.1.0.RC1 Spring Security 34

http://en.wikipedia.org/wiki/Session_fixation
http://openid.net/

Spring Security Reference

Attribute Exchange

Support for OpenlD attribute exchange. As an example, the following configuration would attempt to
retrieve the email and full name from the OpenlID provider, for use by the application:

<openi d- | ogi n>

<attri but e- exchange>
<openi d-attribute nane="enmil" type="http://axschena.org/contact/enuil" required="true"/>
<openi d-attribute nanme="nane" type="http://axschena. org/ namePerson"/>

</ attribute-exchange>

</ openi d- | ogi n>

The "type" of each OpenlID attribute is a URI, determined by a particular schema, in this case http://
axschema.org/. If an attribute must be retrieved for successful authentication, the r equi r ed attribute
can be set. The exact schema and attributes supported will depend on your OpenID provider. The
attribute values are returned as part of the authentication process and can be accessed afterwards
using the following code:

Openl DAut henti cati onToken token =
(Openl DAut hent i cati onToken) Securi t yCont ext Hol der. get Cont ext (). get Aut henti cation();
Li st<Openl DAttribute> attributes = token.getAttributes();

The Openl DAt tri but e contains the attribute type and the retrieved value (or values in the case
of multi-valued attributes). We’ll see more about how the Secur it yCont ext Hol der class is used
when we look at core Spring Security components in the technical overview chapter. Multiple attribute
exchange configurations are also be supported, if you wish to use multiple identity providers. You can
supply multiple at t ri but e- exchange elements, usingani denti fi er - mat cher attribute on each.
This contains a regular expression which will be matched against the OpenlID identifier supplied by
the user. See the OpenID sample application in the codebase for an example configuration, providing
different attribute lists for the Google, Yahoo and MyOpenlID providers.

Response Headers

For additional information on how to customize the headers element refer to the Chapter 17, Security
HTTP Response Headers section of the reference.

Adding in Your Own Filters

If you've used Spring Security before, you'll know that the framework maintains a chain of filters in
order to apply its services. You may want to add your own filters to the stack at particular locations
or use a Spring Security filter for which there isn’t currently a namespace configuration option (CAS,
for example). Or you might want to use a customized version of a standard namespace filter, such as
the User nanmePasswor dAut henti cat i onFi | t er which is created by the <f or m | ogi n> element,
taking advantage of some of the extra configuration options which are available by using the bean
explicitly. How can you do this with namespace configuration, since the filter chain is not directly
exposed?

The order of the filters is always strictly enforced when using the namespace. When the application
context is being created, the filter beans are sorted by the namespace handling code and the standard
Spring Security filters each have an alias in the namespace and a well-known position.

Note

In previous versions, the sorting took place after the filter instances had been created, during
post-processing of the application context. In version 3.0+ the sorting is now done at the bean

4.1.0.RC1 Spring Security 35

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://axschema.org/
http://axschema.org/

Spring Security Reference

metadata level, before the classe

s have been instantiated. This has implications for how you add

your own filters to the stack as the entire filter list must be known during the parsing of the <ht t p>
element, so the syntax has changed slightly in 3.0.

The filters, aliases and namespace elements/attributes which create the filters are shown in Table 4.1,
“Standard Filter Aliases and Ordering”. The filters are listed in the order in which they occur in the filter

chain.

Table 4.1. Standard Filter Aliases and Ordering

Alias

CHANNEL_FILTER

Namespace Element or
Attribute

Filter Class

Channel ProcessingFilter http/intercept-

url @ equi res-channel

SECURITY_CONTEXT_FILTER

Secur it yCont ext Per si st encéFt pt er

CONCURRENT_SESSION_FILT

HEADERS_FILTER
CSRF_FILTER
LOGOUT_FILTER
X509_FILTER

PRE_AUTH_FILTER

sessi on- managenent /
concurrency-contr ol

E®ncur rent Sessi onFi |l ter

HeaderWiterFilter htt p/ headers

CsrfFilter http/csrf

Logout Fil ter htt p/ | ogout

X509Aut henti cati onFilter http/x509

Abstract PreAut henti cat edPNd&essi ngFi | ter
Subclasses

CAS_FILTER
FORM_LOGIN_FILTER
BASIC_AUTH_FILTER

SERVLET_API_SUPPORT_FILT

CasAut henticationFilter N/A
User namePasswor dAut hent i chat t phFil tret ogi n
Basi cAut henticationFilterhttp/ http-basic

EBSecuri t yCont ext Hol der Awar BReqgué&eFvI eeF api -
provi si on

JAAS_API_SUPPORT_FILTER

REMEMBER_ME_FILTER
ANONYMOUS_FILTER

SESSION_MANAGEMENT_FILT
EXCEPTION_TRANSLATION_F
FILTER_SECURITY_INTERCEP

SWITCH_USER_FILTER

You can add your own filter to the

htt p/ @ aas- api -
provi si on

JaasApi I ntegrationFilter

Renmenber MeAut hent i cati onFhtt ef r emenber - me
AnonynousAut henti cat i onFi ht ep/ anonynous
ERessi onManagenent Fil ter sessi on- nanagenent
I[BEERpti onTransl ati onFiltehttp

TRt er Securitylnterceptorhttp

SwitchUserFil ter N/A

stack, using the custom fi | t er element and one of these names

to specify the position your filter should appear at:

4.1.0.RC1

Spring Security 36

Spring Security Reference

<htt p>
<customfilter position="FORM LOG N_FILTER' ref="nyFilter" />
</ http>

<beans: bean id="nyFilter" class="com nyconpany. M/Speci al Aut henticationFilter"/>

You can also use the af t er or bef or e attributes if you want your filter to be inserted before or after
another filter in the stack. The names "FIRST" and "LAST" can be used with the posi t i on attribute to
indicate that you want your filter to appear before or after the entire stack, respectively.

Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the standard
filters created by the namespace then it's important that you don’t include the namespace versions
by mistake. Remove any elements which create filters whose functionality you want to replace.

Note that you can’t replace filters which are created by the use of the <http>
element itself - Securi t yCont ext Per si st enceFi | ter, Excepti onTransl ati onFilter
or FilterSecuritylnterceptor. Some other filters are added by default, but you can
disable them. An AnonynousAut hent i cati onFi | t er is added by default and unless you have
session-fixation protection disabled, a Sessi onManagenent Fi | t er will also be added to the
filter chain.

If you're replacing a namespace filter which requires an authentication entry point (i.e. where the
authentication process is triggered by an attempt by an unauthenticated user to access to a secured
resource), you will need to add a custom entry point bean too.

Setting a Custom AuthenticationEntryPoint

If you aren’t using form login, OpenID or basic authentication through the namespace, you may want
to define an authentication filter and entry point using a traditional bean syntax and link them into the
namespace, as we've just seen. The corresponding Aut hent i cat i onEnt r yPoi nt can be set using
the ent ry- poi nt - r ef attribute on the <ht t p> element.

The CAS sample application is a good example of the use of custom beans with the namespace,
including this syntax. If you aren’t familiar with authentication entry points, they are discussed in the
technical overview chapter.

4.4 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your
service layer methods. It provides support for JSR-250 annotation security as well as the framework’s
original @ecur ed annotation. From 3.0 you can also make use of new expression-based annotations.
You can apply security to a single bean, using the i nt er cept - net hods element to decorate the bean
declaration, or you can secure multiple beans across the entire service layer using the AspectJ style
pointcuts.

The <global-method-security> Element

This element is used to enable annotation-based security in your application (by setting the appropriate
attributes on the element), and also to group together security pointcut declarations which will be applied
across your entire application context. You should only declare one <gl obal - met hod- security>
element. The following declaration would enable support for Spring Security’'s @ecur ed:

4.1.0.RC1 Spring Security 37

Spring Security Reference

<gl obal - mret hod- security secured-annotati ons="enabl ed" />

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security’s native annotation support defines a set of attributes for the method. These
will be passed to the AccessDeci si onManager for it to make the actual decision:

public interface BankService {

@ecur ed("1 S_AUTHENTI CATED_ANONYMOUSLY")
public Account readAccount(Long id);

@ecur ed(" | S_AUTHENTI CATED_ANONYMOUSLY")
public Account[] findAccounts();

@ecur ed(" ROLE_TELLER")
public Account post(Account account, double amount);

}

Support for JSR-250 annotations can be enabled using

<gl obal - met hod- security jsr250-annotati ons="enabl ed" />

These are standards-based and allow simple role-based constraints to be applied but do not have the
power Spring Security’s native annotations. To use the new expression-based syntax, you would use

<gl obal - net hod-security pre-post-annotations="enabl ed" />

and the equivalent Java code would be

public interface BankService {

@r eAut hori ze("i sAnonynous()")
public Account readAccount(Long id);

@r eAut hori ze("i sAnonynous()")
public Account[] findAccounts();

@r eAut hori ze("hasAut hority(' ROLE_TELLER)")
public Account post(Account account, double amount);

}

Expression-based annotations are a good choice if you need to define simple rules that go beyond
checking the role names against the user’s list of authorities.

Note

The annotated methods will only be secured for instances which are defined as Spring beans (in
the same application context in which method-security is enabled). If you want to secure instances
which are not created by Spring (using the new operator, for example) then you need to use
Aspect].

Note

You can enable more than one type of annotation in the same application, but only one type
should be used for any interface or class as the behaviour will not be well-defined otherwise. If two
annotations are found which apply to a particular method, then only one of them will be applied.

4.1.0.RC1 Spring Security 38

Spring Security Reference

Adding Security Pointcuts using protect-pointcut

The use of pr ot ect - poi nt cut is particularly powerful, as it allows you to apply security to many
beans with only a simple declaration. Consider the following example:

<gl obal - met hod- security>

<protect-pointcut expression="execution(* com myconpany.*Service.*(..))"
access="ROLE_USER'/ >

</ gl obal - net hod- security>

This will protect all methods on beans declared in the application context whose classes are in the
com nycomnpany package and whose class names end in "Service". Only users with the ROLE_USER
role will be able to invoke these methods. As with URL matching, the most specific matches must come
first in the list of pointcuts, as the first matching expression will be used. Security annotations take
precedence over pointcuts.

4.5 The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within
Spring Security. If you don’t you can skip it and come back to it later, as this section is only really relevant
for people who need to do some customization in order to use more than simple role-based security.

When you use a namespace configuration, a default instance of AccessDeci si onManager is
automatically registered for you and will be used for making access decisions for method invocations and
web URL access, based on the access attributes you specify in your i nt er cept - ur| and pr ot ect -
poi nt cut declarations (and in annotations if you are using annotation secured methods).

The default strategy is to use an Af f i r mat i veBased AccessDeci si onManager with a Rol eVot er
and an Aut hent i cat edVot er. You can find out more about these in the chapter on authorization.

Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an alternative for
both method and web security.

For method security, you do this by setting the access- deci si on- nanager -ref attribute on
gl obal - net hod- security to the i d of the appropriate AccessDeci si onManager bean in the
application context:

<gl obal - met hod- security access-deci si on- manager - ref =" nmyAccessDeci si onManager Bean" >

</ gl obal - met hod- security>

The syntax for web security is the same, but on the ht t p element:

<http access-deci si on- manager - r ef =" myAccessDeci si onManager Bean" >

</ http>

4.6 The Authentication Manager and the Namespace

The main interface which provides authentication services in Spring Security is the
Aut hent i cat i onManager . This is usually an instance of Spring Security’s Pr ovi der Manager class,
which you may already be familiar with if you've used the framework before. If not, it will be covered
later, in the technical overview chapter. The bean instance is registered using the aut henti cati on-

4.1.0.RC1 Spring Security 39

Spring Security Reference

nmanager namespace element. You can’t use a custom Aut henti cat i onManager if you are using
either HTTP or method security through the namespace, but this should not be a problem as you have
full control over the Aut hent i cati onProvi der s that are used.

You may want to register additional Aut hent i cat i onProvi der beans with the Pr ovi der Manager
and you can do this using the <aut henti cat i on- pr ovi der > element with the r ef attribute, where
the value of the attribute is the name of the provider bean you want to add. For example:

<aut henti cati on- manager >
<aut henti cati on-provi der ref="casAuthenticati onProvider"/>
</ aut henti cati on- manager >

<bean id="casAut henti cationProvider"
class="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">

</ bean>

Another common requirement is that another bean in the context may require a reference to the
Aut hent i cat i onManager . You can easily register an alias for the Aut hent i cati onManager and
use this name elsewhere in your application context.

<security:authentication-nmanager alias="authenticationManager">
</security: authentication- manager >
<bean id="custom zedFornlLogi nFilter"

cl ass="com sonmeconpany. security.web. Cust onfor nLogi nFil ter">

<property name="aut henti cati onManager" ref="authenticati onManager"/>

</ bean>

4.1.0.RC1 Spring Security 40

Spring Security Reference

5. Sample Applications

There are several sample web applications that are available with the project. To avoid an overly large
download, only the "tutorial" and "contacts" samples are included in the distribution zip file. The others
can be built directly from the source which you can obtain as described in the introduction. It's easy to
build the project yourself and there’s more information on the project web site at http://spring.io/spring-
security/. All paths referred to in this chapter are relative to the project source directory.

5.1 Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration
throughout. The compiled application is included in the distribution zip file, ready to be deployed
into your web container (spri ng-security-sanpl es-tutorial-3.1.x.war). The form-based
authentication mechanism is used in combination with the commonly-used remember-me authentication
provider to automatically remember the login using cookies.

We recommend you start with the tutorial sample, as the XML is minimal and easy to follow. Most
importantly, you can easily add this one XML file (and its corresponding web. xnl entries) to your
existing application. Only when this basic integration is achieved do we suggest you attempt adding in
method authorization or domain object security.

5.2 Contacts

The Contacts Sample is an advanced example in that it illustrates the more powerful features of domain
object access control lists (ACLS) in addition to basic application security. The application provides an
interface with which the users are able to administer a simple database of contacts (the domain objects).

To deploy, simply copy the WAR file from Spring Security distribution into your container’'s webapps
directory. The war should be called spring-security-sanpl es-contacts-3.1.x.war (the
appended version number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://localhost:8080/contacts (or
whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords
are suggested on that page. Simply authenticate with any of these and view the resulting page. It should
contain a success message similar to the following:

4.1.0.RC1 Spring Security 41

http://spring.io/spring-security/
http://spring.io/spring-security/
http://localhost:8080/contacts

Spring Security Reference

Security Debug I nformation

Aut henti cation object is of type:
org. springfranmework. security. authentication. User nanePasswor dAut henti cati onToken

Aut henti cation object as a String:

org. springframewor k. security. authenticati on. User namePasswor dAut henti cati onToken@Lf 127853:
Principal : org.springfranmework. security.core.userdetails.User @07ed00: Usernane: rod; \
Password: [PROTECTED]; Enabl ed: true; Account NonExpired: true;

credenti al sNonExpired: true; AccountNonLocked: true; \

Granted Authorities: ROLE_SUPERVI SOR, ROLE_USER; \

Password: [PROTECTED]; Authenticated: true; \

Det ai |l s: org.springfranmework. security.web. aut henti cati on. WebAut henti cationDetails@: \
Renot el pAddress: 127.0.0.1; Sessionld: 8fkp8t83ohar; \

Granted Authorities: ROLE_SUPERVI SOR, ROLE_USER

Aut henti cation object holds the follow ng granted authorities:

ROLE_SUPERVI SOR (get Aut hority(): ROLE_SUPERVI SOR)
ROLE_USER (get Aut hority(): ROLE_USER)

Success! Your web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application’s home page and
click "Manage". You can then try out the application. Notice that only the contacts available to the
currently logged on user are displayed, and only users with ROLE_SUPERVI SOR are granted access to
delete their contacts. Behind the scenes, the Met hodSecuri t yl nt er cept or is securing the business
objects.

The application allows you to modify the access control lists associated with different contacts. Be sure
to give this a try and understand how it works by reviewing the application context XML files.

5.3 LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace
configuration and an equivalent configuration using traditional beans, both in the same application
context file. This means there are actually two identical authentication providers configured in this
application.

5.4 OpenlID Sample

The OpenID sample demonstrates how to use the namespace to configure OpenlD and how to set
up attribute exchange configurations for Google, Yahoo and MyOpenID identity providers (you can
experiment with adding others if you wish). It uses the JQuery-based openid-selector project to provide
a user-friendly login page which allows the user to easily select a provider, rather than typing in the
full OpenlD identifier.

The application differs from normal authentication scenarios in that it allows any user to access the site
(provided their OpenlID authentication is successful). The first time you login, you will get a "Welcome
[your name]"™ message. If you logout and log back in (with the same OpenlD identity) then this should
change to "Welcome Back". This is achieved by using a custom User Det ai | sSer vi ce which assigns
a standard role to any user and stores the identities internally in a map. Obviously a real application
would use a database instead. Have a look at the source form more information. This class also takes
into account the fact that different attributes may be returned from different providers and builds the
name with which it addresses the user accordingly.

4.1.0.RC1 Spring Security 42

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://code.google.com/p/openid-selector/

Spring Security Reference

5.5 CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn't included in the
distribution so you should check out the project code as described in the introduction. You'll find the
relevant files under the sanpl e/ cas directory. There’s also a Readne. t xt file in there which explains
how to run both the server and the client directly from the source tree, complete with SSL support.

5.6 JAAS Sample

The JAAS sample is very simple example of how to use a JAAS LoginModule with Spring Security.
The provided LoginModule will successfully authenticate a user if the username equals the password
otherwise a LoginException is thrown. The AuthorityGranter used in this example always grants the role
ROLE_USER. The sample application also demonstrates how to run as the JAAS Subject returned by
the LoginModule by setting jaas-api-provision equal to "true".

5.7 Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to
make use of login information from a Java EE container. The user name and roles are those setup by
the container.

The code is in sanpl es/ pr eaut h.

4.1.0.RC1 Spring Security 43

Spring Security Reference

6. Spring Security Community

6.1 Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please
log a report using JIRA. Do not log it on the support forum, mailing list or by emailing the project’s
developers. Such approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour.
Or, better yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged
in the issue tracker, although we only accept enhancement requests if you include corresponding unit
tests. This is necessary to ensure project test coverage is adequately maintained.

You can access the issue tracker at https://github.com/spring-projects/spring-security/issues.

6.2 Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways of contributing,
including reading the forum and responding to questions from other people, writing new code,
improving existing code, assisting with documentation, developing samples or tutorials, or simply making
suggestions.

6.3 Further Information

Questions and comments on Spring Security are welcome. You can use the Spring at StackOverflow
web site at http://spring.io/questions to discuss Spring Security with other users of the framework.
Remember to use JIRA for bug reports, as explained above.

4.1.0.RC1 Spring Security 44

https://github.com/spring-projects/spring-security/issues
http://spring.io/questions

Part Ill. Architecture
and Implementation

Once you are familiar with setting up and running some namespace-configuration based applications,
you may wish to develop more of an understanding of how the framework actually works behind the
namespace facade. Like most software, Spring Security has certain central interfaces, classes and
conceptual abstractions that are commonly used throughout the framework. In this part of the reference
guide we will look at some of these and see how they work together to support authentication and
access-control within Spring Security.

Spring Security Reference

7. Technical Overview

7.1 Runtime Environment

Spring Security 3.0 requires a Java 5.0 Runtime Environment or higher. As Spring Security aims to
operate in a self-contained manner, there is no need to place any special configuration files into your
Java Runtime Environment. In particular, there is no need to configure a special Java Authentication
and Authorization Service (JAAS) policy file or place Spring Security into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any special
configuration files anywhere, nor include Spring Security in a server classloader. All the required files
will be contained within your application.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact (be
it a JAR, WAR or EAR) from one system to another and it will immediately work.

7.2 Core Components

In Spring Security 3.0, the contents of the spri ng-security-core jar were stripped down to the
bare minimum. It no longer contains any code related to web-application security, LDAP or namespace
configuration. We'll take a look here at some of the Java types that you'll find in the core module. They
represent the building blocks of the the framework, so if you ever need to go beyond a simple namespace
configuration then it's important that you understand what they are, even if you don’t actually need to
interact with them directly.

SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is Securi t yCont ext Hol der. This is where we store details of the
present security context of the application, which includes details of the principal currently using the
application. By default the Securi t yCont ext Hol der uses a Thr eadLocal to store these details,
which means that the security context is always available to methods in the same thread of execution,
even if the security context is not explicitly passed around as an argument to those methods. Using a
Thr eadLocal in this way is quite safe if care is taken to clear the thread after the present principal’s
request is processed. Of course, Spring Security takes care of this for you automatically so there is no
need to worry about it.

Some applications aren’t entirely suitable for using a Thr eadLocal , because of the specific way
they work with threads. For example, a Swing client might want all threads in a Java Virtual Machine
to use the same security context. Securi t yCont ext Hol der can be configured with a strategy on
startup to specify how you would like the context to be stored. For a standalone application you
would use the Securit yCont ext Hol der. MODE_GLOBAL strategy. Other applications might want
to have threads spawned by the secure thread also assume the same security identity. This is
achieved by using Secur i t yCont ext Hol der . MODE | NHERI TABLETHREADL OCAL. You can change
the mode from the default Secur i t yCont ext Hol der . MODE_THREADLQOCAL in two ways. The first is
to set a system property, the second is to call a static method on Secur i t yCont ext Hol der . Most
applications won't need to change from the default, but if you do, take a look at the JavaDocs for
Securi t yCont ext Hol der to learn more.

Obtaining information about the current user

Inside the Securi t yCont ext Hol der we store details of the principal currently interacting with the
application. Spring Security uses an Aut hent i cat i on object to represent this information. You won't

4.1.0.RC1 Spring Security 46

Spring Security Reference

normally need to create an Aut hent i cat i on object yourself, but it is fairly common for users to query
the Aut hent i cat i on object. You can use the following code block - from anywhere in your application
- to obtain the name of the currently authenticated user, for example:

Obj ect principal = SecurityContextHol der. get Cont ext().getAuthentication().getPrincipal();

if (principal instanceof UserDetails) {

String username = ((UserDetail s)principal).getUsernane();
} else {

String username = principal.toString();

}

The object returned by the call to get Cont ext () is an instance of the Securi t yCont ext interface.
This is the object that is kept in thread-local storage. As we’ll see below, most authentication
mechanisms withing Spring Security return an instance of User Det ai | s as the principal.

The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from the
Aut hent i cati on object. The principal is just an Obj ect . Most of the time this can be cast into a
User Det ai | s object. User Det ai | s is a core interface in Spring Security. It represents a principal,
but in an extensible and application-specific way. Think of User Det ai | s as the adapter between your
own user database and what Spring Security needs inside the Securi t yCont ext Hol der . Being a
representation of something from your own user database, quite often you will cast the User Det ai | s
to the original object that your application provided, so you can call business-specific methods (like
get Emai | (), get Enpl oyeeNunber () and so on).

By now you're probably wondering, so when do | provide a User Det ai | s object? How do | do that? |
thought you said this thing was declarative and | didn’'t need to write any Java code - what gives? The
short answer is that there is a special interface called User Det ai | sSer vi ce. The only method on this
interface accepts a St ri ng-based username argument and returns a User Det ai | s:

User Det ai | s | oadUser ByUser nane(String usernane) throws UsernaneNot FoundExcepti on;

This is the most common approach to loading information for a user within Spring Security and you will
see it used throughout the framework whenever information on a user is required.

On successful authentication, User Det ai | s is used to build the Aut henti cati on object that is
stored in the Securi t yCont ext Hol der (more on this below). The good news is that we provide
a number of User Det ai | sSer vi ce implementations, including one that uses an in-memory map
(I nMenor yDaol npl) and another that uses JDBC (JdbcDaol npl). Most users tend to write their
own, though, with their implementations often simply sitting on top of an existing Data Access Object
(DAO) that represents their employees, customers, or other users of the application. Remember
the advantage that whatever your User Det ai | sSer vi ce returns can always be obtained from the
Securi t yCont ext Hol der using the above code fragment.

Note

There is often some confusion about User Det ai | sServi ce. It is purely a DAO for user
data and performs no other function other than to supply that data to other components
within the framework. In particular, it does not authenticate the user, which is done
by the Authenticati onManager. In many cases it makes more sense to implement
Aut hent i cati onPr ovi der directly if you require a custom authentication process.

4.1.0.RC1 Spring Security 47

Spring Security Reference

GrantedAuthority

Besides the principal, another important method provided by Authentication is
get Authorities(). This method provides an array of GrantedAuthority objects. A
Grant edAut hor i ty is, not surprisingly, an authority that is granted to the principal. Such authorities
are usually "roles", such as ROLE_ADM NI STRATOR or ROLE_HR_SUPERVI SOR. These roles are later
on configured for web authorization, method authorization and domain object authorization. Other
parts of Spring Security are capable of interpreting these authorities, and expect them to be present.
Grant edAut hor i ty objects are usually loaded by the User Det ai | sSer vi ce.

Usually the Gr ant edAut hor i t y objects are application-wide permissions. They are not specific to a
given domain object. Thus, you wouldn't likely have a Gr ant edAut hori t y to represent a permission
to Enpl oyee object number 54, because if there are thousands of such authorities you would quickly
run out of memory (or, at the very least, cause the application to take a long time to authenticate a user).
Of course, Spring Security is expressly designed to handle this common requirement, but you'd instead
use the project’s domain object security capabilities for this purpose.

Summary
Just to recap, the major building blocks of Spring Security that we’ve seen so far are:
» SecurityCont ext Hol der, to provide access to the Secur i t yCont ext .

* SecurityContext, to hold the Authentication and possibly request-specific security
information.

« Aut henti cati on, to represent the principal in a Spring Security-specific manner.
e Grant edAut hori ty, to reflect the application-wide permissions granted to a principal.

* UserDetails, to provide the necessary information to build an Authentication object from your
application’s DAOSs or other source of security data.

* UserDetail sServi ce, to create a User Det ai | s when passed in a St ri ng-based username (or
certificate ID or the like).

Now that you've gained an understanding of these repeatedly-used components, let’s take a closer look
at the process of authentication.

7.3 Authentication

Spring Security can participate in many different authentication environments. While we recommend
people use Spring Security for authentication and not integrate with existing Container Managed
Authentication, it is nevertheless supported - as is integrating with your own proprietary authentication
system.

What is authentication in Spring Security?
Let’s consider a standard authentication scenario that everyone is familiar with.
1. A user is prompted to log in with a username and password.

2. The system (successfully) verifies that the password is correct for the username.

4.1.0.RC1 Spring Security 48

Spring Security Reference

3.

4.

5.

The context information for that user is obtained (their list of roles and so on).
A security context is established for the user

The user proceeds, potentially to perform some operation which is potentially protected by an access
control mechanism which checks the required permissions for the operation against the current
security context information.

The first three items constitute the authentication process so we'll take a look at how these take place
within Spring Security.

1.

The username and password are obtained and combined into an instance of
User namePasswor dAut hent i cat i onToken (an instance of the Aut henti cati on interface,
which we saw earlier).

. The token is passed to an instance of Aut hent i cat i onManager for validation.

. The Aut hent i cat i onManager returns a fully populated Aut hent i cat i on instance on successful

authentication.

. The security context is established by calling

Securi t yCont ext Hol der . get Cont ext () . set Aut henti cati on(..), passing in the returned
authentication object.

From that point on, the user is considered to be authenticated. Let’s look at some code as an example.

4.1.0.RC1 Spring Security 49

Spring Security Reference

i nport org.springfranework. security. authentication.*;

i nport org.springfranework. security.core.*;

i mport org.springframework. security.core.authority.SinpleG antedAuthority;
i nport org.springframework. security. core.context.SecurityContextHol der;

public class Authenticati onExanple {
private static Authenticati onManager am = new Sanpl eAut henti cati onManager () ;

public static void main(String[] args) throws Exception {
Buf f eredReader in = new Buf f eredReader (new | nput St reanReader (Systemin));

while(true) {
Systemout.println("Please enter your usernane:");
String name = in.readLine();
Systemout. println("Please enter your password:");
String password = in.readLine();
try {
Aut henti cati on request = new User nanePasswor dAut henti cati onToken(nane, password);
Aut hentication result = am aut henti cate(request);
Securi t yCont ext Hol der. get Cont ext (). set Aut hentication(result);
br eak;
} catch(AuthenticationException e) {
System out. println("Authentication failed:
}
}

System out. println("Successfully authenticated. Security context contains: " +
Securi t yCont ext Hol der. get Cont ext (). get Aut hentication());

+ e. get Message());

}
}

cl ass Sanpl eAut henti cati onManager inpl enents Authenticati onManager {
static final List<GantedAuthority> AUTHORI TI ES = new ArrayLi st <G ant edAut hority>();

static {
AUTHORI Tl ES. add(new Si npl eG ant edAut hori ty("ROLE_USER"));
}

public Authentication authenticate(Authentication auth) throws AuthenticationException {
if (auth.getName().equal s(auth.getCredentials())) {
return new User namePasswor dAut henti cati onToken(aut h. get Nare(),
aut h. get Credenti al s(), AUTHORI TIES);
}
t hrow new BadCredenti al sExcepti on("Bad Credential s");
}
}

Here we have written a little program that asks the user to enter a username and password and performs
the above sequence. The Aut hent i cat i onManager which we've implemented here will authenticate
any user whose username and password are the same. It assigns a single role to every user. The output
from the above will be something like:

Pl ease enter your usernane:

bob

Pl ease enter your password:

passwor d

Aut hentication failed: Bad Credentials

Pl ease enter your usernane:

bob

Pl ease enter your password:

bob

Successfully authenticated. Security context contains: \
org. springframewor k. security. aut henticati on. User nanePasswor dAut henti cati onToken@41d0230: \
Princi pal : bob; Password: [PROTECTED]; \

Aut henticated: true; Details: null; \

Granted Authorities: ROLE_USER

Note that you don’t normally need to write any code like this. The process will normally occur internally,
in a web authentication filter for example. We've just included the code here to show that the question

4.1.0.RC1 Spring Security 50

Spring Security Reference

of what actually constitutes authentication in Spring Security has quite a simple answer. A user is
authenticated when the Securit yCont ext Hol der contains a fully populated Aut henti cati on
object.

Setting the SecurityContextHolder Contents Directly

In fact, Spring Security doesn't mind how vyou put the Authentication object
inside the SecurityContextHol der. The only critical requirement is that the
Securi t yCont ext Hol der contains an Aut henti cati on which represents a principal before the
Abst ract Securityl nterceptor (which we'll see more about later) needs to authorize a user
operation.

You can (and many users do) write their own filters or MVC controllers to provide interoperability
with authentication systems that are not based on Spring Security. For example, you might be using
Container-Managed Authentication which makes the current user available from a ThreadLocal or JNDI
location. Or you might work for a company that has a legacy proprietary authentication system, which
is a corporate "standard" over which you have little control. In situations like this it's quite easy to
get Spring Security to work, and still provide authorization capabilities. All you need to do is write a
filter (or equivalent) that reads the third-party user information from a location, build a Spring Security-
specific Aut hent i cat i on object, and putitinto the Secur i t yCont ext Hol der . In this case you also
need to think about things which are normally taken care of automatically by the built-in authentication
infrastructure. For example, you might need to pre-emptively create an HTTP session to cache the
context between requests, before you write the response to the client footnote:[It isn't possible to create
a session once the response has been committed.

If you're wondering how the Aut hent i cat i onManager is implemented in a real world example, we’ll
look at that in the core services chapter.

7.4 Authentication in a Web Application

Now let's explore the situation where you are using Spring Security in a web application (without
web. xm security enabled). How is a user authenticated and the security context established?

Consider a typical web application’s authentication process:
1. You visit the home page, and click on a link.
2. Arequest goes to the server, and the server decides that you've asked for a protected resource.

3. As you're not presently authenticated, the server sends back a response indicating that you must
authenticate. The response will either be an HTTP response code, or a redirect to a particular web

page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web
page so that you can fill out the form, or the browser will somehow retrieve your identity (via a BASIC
authentication dialogue box, a cookie, a X.509 certificate etc.).

5. The browser will send back a response to the server. This will either be an HTTP POST containing
the contents of the form that you filled out, or an HTTP header containing your authentication details.

6. Next the server will decide whether or not the presented credentials are valid. If they're valid, the
next step will happen. If they're invalid, usually your browser will be asked to try again (so you return
to step two above).

4.1.0.RC1 Spring Security 51

Spring Security Reference

7. The original request that you made to cause the authentication process will be retried. Hopefully
you've authenticated with sufficient granted authorities to access the protected resource. If you have
sufficient access, the request will be successful. Otherwise, you'll receive back an HTTP error code
403, which means "forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The
main participants (in the order that they are used) are the Excepti onTransl ati onFilter, an
Aut hent i cati onEnt r yPoi nt and an "authentication mechanism", which is responsible for calling
the Aut hent i cat i onManager which we saw in the previous section.

ExceptionTranslationFilter

ExceptionTransl ationFilter is a Spring Security filter that has responsibility for detecting
any Spring Security exceptions that are thrown. Such exceptions will generally be thrown by an
Abst ract Securityl nterceptor, which is the main provider of authorization services. We will
discuss Abst ract Securi t yl nt er cept or in the next section, but for now we just need to know that it
produces Java exceptions and knows nothing about HTTP or how to go about authenticating a principal.
Instead the Excepti onTr ansl ati onFi | t er offers this service, with specific responsibility for either
returning error code 403 (if the principal has been authenticated and therefore simply lacks sufficient
access - as per step seven above), or launching an Aut henti cati onEnt r yPoi nt (if the principal
has not been authenticated and therefore we need to go commence step three).

AuthenticationEntryPoint

The Aut hent i cati onEnt r yPoi nt is responsible for step three in the above list. As you can imagine,
each web application will have a default authentication strategy (well, this can be configured like nearly
everything else in Spring Security, but let's keep it simple for now). Each major authentication system
will have its own Aut hent i cat i onEnt r yPoi nt implementation, which typically performs one of the
actions described in step 3.

Authentication Mechanism

Once your browser submits your authentication credentials (either as an HTTP form post or HTTP
header) there needs to be something on the server that"collects" these authentication details. By now
we’re at step six in the above list. In Spring Security we have a special name for the function of collecting
authentication details from a user agent (usually a web browser), referring to it as the "authentication
mechanism". Examples are form-base login and Basic authentication. Once the authentication details
have been collected from the user agent, an Aut henti cati on "request" object is built and then
presented to the Aut hent i cati onManager .

After the authentication mechanism receives back the fully-populated Aut hent i cat i on object, it will
deem the request valid, put the Aut hent i cat i on into the Secur i t yCont ext Hol der, and cause the
original request to be retried (step seven above). If, on the other hand, the Aut hent i cat i onManager
rejected the request, the authentication mechanism will ask the user agent to retry (step two above).

Storing the SecurityContext between requests

Depending on the type of application, there may need to be a strategy in place to store the security
context between user operations. In a typical web application, a user logs in once and is subsequently
identified by their session Id. The server caches the principal information for the duration session. In
Spring Security, the responsibility for storing the Securi t yCont ext between requests falls to the
Securi t yCont ext Per si st enceFi | t er, which by default stores the context as an Ht t pSessi on
attribute between HTTP requests. It restores the context to the Securi t yCont ext Hol der for each

4.1.0.RC1 Spring Security 52

Spring Security Reference

request and, crucially, clears the SecurityCont ext Hol der when the request completes. You
shouldn’t interact directly with the Ht t pSessi on for security purposes. There is simply no justification
for doing so - always use the Secur i t yCont ext Hol der instead.

Many other types of application (for example, a stateless RESTful web service) do not use
HTTP sessions and will re-authenticate on every request. However, it is still important that
the SecurityCont ext Persi stenceFilter is included in the chain to make sure that the
Securi t yCont ext Hol der is cleared after each request.

Note

In an application which receives concurrent requests in a single session, the same
Securi t yCont ext instance will be shared between threads. Even though a Thr eadLocal
is being used, it is the same instance that is retrieved from the HttpSession for
each thread. This has implications if you wish to temporarily change the context under
which a thread is running. If you just use SecurityCont ext Hol der. get Cont ext (),
and call setAuthentication(anAuthentication) on the returned context object,
then the Authentication object will change in all concurrent threads which
share the same SecurityContext instance. You can customize the behaviour of
Securi t yCont ext Per si st enceFi | t er to create a completely new Securi t yCont ext for
each request, preventing changes in one thread from affecting another. Alternatively you can
create a new instance just at the point where you temporarily change the context. The method
Securi t yCont ext Hol der . cr eat eEnpt yCont ext () always returns a new context instance.

7.5 Access-Control (Authorization) in Spring Security

The main interface responsible for making access-control decisions in Spring Security is the
AccessDeci si onManager. It has a deci de method which takes an Aut henti cati on object
representing the principal requesting access, a "secure object" (see below) and a list of security
metadata attributes which apply for the object (such as a list of roles which are required for access to
be granted).

Security and AOP Advice

If you're familiar with AOP, you’d be aware there are different types of advice available: before, after,
throws and around. An around advice is very useful, because an advisor can elect whether or not to
proceed with a method invocation, whether or not to modify the response, and whether or not to throw an
exception. Spring Security provides an around advice for method invocations as well as web requests.
We achieve an around advice for method invocations using Spring’s standard AOP support and we
achieve an around advice for web requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you protect
method invocations as well as web requests. Most people are interested in securing method invocations
on their services layer. This is because the services layer is where most business logic resides in current-
generation Java EE applications. If you just need to secure method invocations in the services layer,
Spring’s standard AOP will be adequate. If you need to secure domain objects directly, you will likely
find that AspectJ is worth considering.

You can elect to perform method authorization using Aspect] or Spring AOP, or you can elect to
perform web request authorization using filters. You can use zero, one, two or three of these approaches
together. The mainstream usage pattern is to perform some web request authorization, coupled with
some Spring AOP method invocation authorization on the services layer.

4.1.0.RC1 Spring Security 53

Spring Security Reference

Secure Objects and the AbstractSecuritylnterceptor

So what is a "secure object" anyway? Spring Security uses the term to refer to any object that can
have security (such as an authorization decision) applied to it. The most common examples are method
invocations and web requests.

Each supported secure object type has its own interceptor class, which is a subclass of
Abst ract Securi tyl nt er cept or. Importantly, by the time the Abst ract Securi tyl nterceptor
is called, the Securit yCont ext Hol der will contain a valid Aut henti cati on if the principal has
been authenticated.

Abst ract Securityl nterceptor provides a consistent workflow for handling secure object
requests, typically:

1. Look up the "configuration attributes” associated with the present request

2. Submitting the secure object, current Aut hentication and configuration attributes to the
AccessDeci si onManager for an authorization decision

3. Optionally change the Aut hent i cat i on under which the invocation takes place
4. Allow the secure object invocation to proceed (assuming access was granted)

5. Call the Afterlnvocati onManager if configured, once the invocation has returned. If the
invocation raised an exception, the Af t er | nvocat i onManager will not be invoked.

What are Configuration Attributes?

A "configuration attribute" can be thought of as a String that has special meaning to the
classes used by Abstract Securitylnterceptor. They are represented by the interface
Confi gAttri but e within the framework. They may be simple role names or have more complex
meaning, depending on the how sophisticated the AccessDeci si onManager implementation is. The
Abst ract Securityl nterceptor is configured with a Securi t yMet adat aSour ce which it uses
to look up the attributes for a secure object. Usually this configuration will be hidden from the user.
Configuration attributes will be entered as annotations on secured methods or as access attributes
on secured URLs. For example, when we saw something like <i ntercept-url pattern='/
secure/**' access=' ROLE A, ROLE _B' /> in the namespace introduction, this is saying that the
configuration attributes ROLE_A and ROLE_B apply to web requests matching the given pattern. In
practice, with the default AccessDeci si onManager configuration, this means that anyone who has a
Gr ant edAut hor i t y matching either of these two attributes will be allowed access. Strictly speaking
though, they are just attributes and the interpretation is dependent on the AccessDeci si onManager
implementation. The use of the prefix ROLE_ is a marker to indicate that these attributes are roles
and should be consumed by Spring Security’s Rol eVot er . This is only relevant when a voter-based
AccessDeci si onManager is in use. We'll see how the AccessDeci si onManager is implemented
in the authorization chapter.

RunAsManager

Assuming AccessDeci si onManager decides to allow the request, the
Abst ract Securityl nterceptor wil normally just proceed with the request. Having said that,
on rare occasions users may want to replace the Aut henti cati on inside the Securit yCont ext
with a different Aut henti cati on, which is handled by the AccessDeci si onManager calling a
RunAsManager . This might be useful in reasonably unusual situations, such as if a services layer

4.1.0.RC1 Spring Security 54

Spring Security Reference

method needs to call a remote system and present a different identity. Because Spring Security
automatically propagates security identity from one server to another (assuming you're using a properly-
configured RMI or Httplnvoker remoting protocol client), this may be useful.

AfterInvocationManager

Following the secure object invocation proceeding and then returning - which may mean a method
invocation completing or a filter chain proceeding - the Abst r act Securi tyl nt er cept or gets one
final chance to handle the invocation. At this stage the Abst r act Securi t yl nt er cept or is interested
in possibly modifying the return object. We might want this to happen because an authorization
decision couldn't be made "on the way in" to a secure object invocation. Being highly pluggable,
Abst ract Securityl nterceptor will pass control to an Aft erl nvocat i onManager to actually
modify the object if needed. This class can even entirely replace the object, or throw an exception, or not
change it in any way as it chooses. The after-invocation checks will only be executed if the invocation
is successful. If an exception occurs, the additional checks will be skipped.

Abstract Securitylnterceptor and its related objects are shown in Figure 7.1, “Security
interceptors and the "secure object" model”

AuthenticationManager

AccessDecisionManager

securityMetadatasource

RunAsManager AbstractSecuritylnterceptor

AfterlnvocationMal

Aspect)Securitylnterceptor

FilterSecuritylnterceptor

Method Securitylnterceptor

JoinPaoint

Filterlnvocation

Figure 7.1. Security interceptors and the "secure object" model

4.1.0.RC1 Spring Security 55

Methodinvocation

Spring Security Reference

Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need
to use secure objects directly. For example, it would be possible to build a new secure object to secure
calls to a messaging system. Anything that requires security and also provides a way of intercepting
a call (like the AOP around advice semantics) is capable of being made into a secure object. Having
said that, most Spring applications will simply use the three currently supported secure object types
(AOP Alliance Met hodl nvocat i on, AspectJ Joi nPoi nt and webrequestFi | t er | nvocat i on)with
complete transparency.

7.6 Localization

Spring Security supports localization of exception messages that end users are likely to see. If your
application is designed for English-speaking users, you don’t need to do anything as by default all
Security Security messages are in English. If you need to support other locales, everything you need
to know is contained in this section.

All exception messages can be localized, including messages related to authentication failures and
access being denied (authorization failures). Exceptions and logging messages that are focused on
developers or system deployers (including incorrect attributes, interface contract violations, using
incorrect constructors, startup time validation, debug-level logging) are not localized and instead are
hard-coded in English within Spring Security’s code.

Shipping in the Spring-security-core-xx.jar you will find an
org. springframework. security package that in turn contains a nessages. properti es file,
as well as localized versions for some common languages. This should be referred to by your
Appl i cati onCont ext, as Spring Security classes implement Spring's MessageSour ceAwar e
interface and expect the message resolver to be dependency injected at application context startup time.
Usually all you need to do is register a bean inside your application context to refer to the messages.
An example is shown below:

<bean i d="nmessageSource"

cl ass="org. spri ngframewor k. cont ext . support . Rel oadabl eResour ceBundl eMessageSour ce" >
<property nanme="basenane" val ue="cl asspath: or g/ spri ngframework/ security/ messages"/ >
</ bean>

The messages. properti es is named in accordance with standard resource bundles and represents
the default language supported by Spring Security messages. This default file is in English.

If you wish to customize the messages. pr opert i es file, or support other languages, you should copy
the file, rename it accordingly, and register it inside the above bean definition. There are not a large
number of message keys inside this file, so localization should not be considered a major initiative. If
you do perform localization of this file, please consider sharing your work with the community by logging
a JIRA task and attaching your appropriately-named localized version of nessages. properti es.

Spring Security relies on Spring’s localization support in order to actually lookup the appropriate
message. In order for this to work, you have to make sure that the locale from the incoming
request is stored in Spring’s or g. spri ngframewor k. cont ext . i 18n. Local eCont ext Hol der .
Spring MVC's Di spat cher Ser vl et does this for your application automatically, but since Spring
Security’s filters are invoked before this, the Local eCont ext Hol der needs to be set up to contain
the correct Local e before the filters are called. You can either do this in a filter yourself (which must
come before the Spring Security filters in web. xm) or you can use Spring’s Request Cont ext Fi |l t er.
Please refer to the Spring Framework documentation for further details on using localization with Spring.

4.1.0.RC1 Spring Security 56

Spring Security Reference

The "contacts" sample application is set up to use localized messages.

4.1.0.RC1 Spring Security

57

Spring Security Reference

8. Core Services

Now that we have a high-level overview of the Spring Security architecture and its core classes,
let's take a closer look at one or two of the core interfaces and their implementations, in particular
the Aut hent i cat i onManager, User Det ai | sSer vi ce and the AccessDeci si onManager . These
crop up regularly throughout the remainder of this document so it's important you know how they are
configured and how they operate.

8.1 The AuthenticationManager, ProviderManager and
AuthenticationProvider

The Aut hent i cat i onManager is just an interface, so the implementation can be anything we choose,
but how does it work in practice? What if we need to check multiple authentication databases or a
combination of different authentication services such as a database and an LDAP server?

The default implementation in Spring Security is called Pr ovi der Manager and rather than handling
the authentication request itself, it delegates to a list of configured Aut henti cati onProvi der s,
each of which is queried in turn to see if it can perform the authentication. Each provider will either
throw an exception or return a fully populated Aut hent i cat i on object. Remember our good friends,
User Det ai | s and User Det ai | sSer vi ce? If not, head back to the previous chapter and refresh your
memory. The most common approach to verifying an authentication request is to load the corresponding
User Det ai | s and check the loaded password against the one that has been entered by the user. This
is the approach used by the DaoAut henti cati onProvi der (see below). The loaded User Det ai | s
object - and particularly the Gr ant edAut hori ty s it contains - will be used when building the fully
populated Aut hent i cat i on object which is returned from a successful authentication and stored in
the Securi t yCont ext .

If you are using the namespace, an instance of Pr ovi der Manager is created and maintained internally,
and you add providers to it by using the namespace authentication provider elements (see the
namespace chapter). In this case, you should not declare a Pr ovi der Manager bean in your application
context. However, if you are not using the namespace then you would declare it like so:

<bean id="aut henti cati onManager"
cl ass="org. springframework. security.authentication. Provi der Manager ">
<constructor-arg>
<list>
<ref |ocal ="daoAut henti cati onProvider"/>
<ref | ocal ="anonynousAut henti cati onProvi der"/>
<ref | ocal ="| dapAut henti cati onProvi der"/>
</list>
</ constructor-arg>
</ bean>

In the above example we have three providers. They are tried in the order shown (which is implied
by the use of a Li st), with each provider able to attempt authentication, or skip authentication
by simply returning nul | . If all implementations return null, the Provi der Manager will throw a
Pr ovi der Not FoundExcept i on. If you're interested in learning more about chaining providers, please
refer to the Pr ovi der Manager JavaDocs.

Authentication mechanisms such as a web form-login processing filter are injected with a reference
to the Provi der Manager and will call it to handle their authentication requests. The providers you
require will sometimes be interchangeable with the authentication mechanisms, while at other times they
will depend on a specific authentication mechanism. For example, DaoAut hent i cati onPr ovi der
and LdapAut henti cati onProvi der are compatible with any mechanism which submits a simple

4.1.0.RC1 Spring Security 58

Spring Security Reference

username/password authentication request and so will work with form-based logins or HTTP Basic
authentication. On the other hand, some authentication mechanisms create an authentication
request object which can only be interpreted by a single type of Aut henti cati onProvi der.
An example of this would be JA-SIG CAS, which uses the notion of a service ticket and so
can therefore only be authenticated by a CasAut henti cati onProvi der. You needn't be too
concerned about this, because if you forget to register a suitable provider, you'll simply receive a
Pr ovi der Not FoundExcept i on when an attempt to authenticate is made.

Erasing Credentials on Successful Authentication

By default (from Spring Security 3.1 onwards) the Provi der Manager will attempt to clear any
sensitive credentials information from the Aut hent i cat i on object which is returned by a successful
authentication request. This prevents information like passwords being retained longer than necessary.

This may cause issues when you are using a cache of user objects, for example, to improve performance
in a stateless application. If the Aut hent i cat i on contains a reference to an object in the cache (such
as a User Det ai | s instance) and this has its credentials removed, then it will no longer be possible
to authenticate against the cached value. You need to take this into account if you are using a cache.
An obvious solution is to make a copy of the object first, either in the cache implementation or in the
Aut hent i cati onProvi der which creates the returned Aut hent i cat i on object. Alternatively, you
can disable the er aseCr edent i al sAft er Aut henti cati on property on Provi der Manager . See
the Javadoc for more information.

DaoAuthenticationProvider

The simplest Authenticati onProvider implemented by Spring Security is
DaoAut henti cati onProvi der, which is also one of the earliest supported by the framework. It
leverages a User Det ai | sServi ce (as a DAO) in order to lookup the username, password and
Grant edAut hori ty s. It authenticates the user simply by comparing the password submitted in a
User nanmePasswor dAut hent i cat i onToken againstthe one loaded by the User Det ai | sSer vi ce.
Configuring the provider is quite simple:

<bean id="daoAut henti cati onProvi der"
cl ass="org. springfranmework. security. authentication. dao. DaoAut henti cati onProvi der" >
<property name="user Detail sServi ce" ref="i nMenoryDaol npl "/ >
<property name="passwor dEncoder" ref="passwordEncoder"/>
</ bean>

The Passwor dEncoder is optional. A Passwor dEncoder provides encoding and decoding
of passwords presented in the UserDetails object that is returned from the configured
User Det ai | sSer vi ce. This will be discussed in more detail below.

8.2 UserDetailsService Implementations

As mentioned in the earlier in this reference guide, most authentication providers take advantage
of the UserDetails and UserDetail sService interfaces. Recall that the contract for
User Det ai | sSer vi ce is a single method:

User Det ai | s | oadUser ByUser nane(String usernane) throws UsernaneNot FoundExcepti on;

The returned User Det ai | s is an interface that provides getters that guarantee non-null provision of
authentication information such as the username, password, granted authorities and whether the user
account is enabled or disabled. Most authentication providers will use a User Det ai | sSer vi ce, even
if the username and password are not actually used as part of the authentication decision. They may

4.1.0.RC1 Spring Security 59

Spring Security Reference

use the returned User Det ai | s object just for its Gr ant edAut hor ity information, because some
other system (like LDAP or X.509 or CAS etc) has undertaken the responsibility of actually validating
the credentials.

Given User Det ai | sServi ce is so simple to implement, it should be easy for users to retrieve
authentication information using a persistence strategy of their choice. Having said that, Spring Security
does include a couple of useful base implementations, which we’ll look at below.

In-Memory Authentication

Is easy to use create a custom User Det ai | sSer vi ce implementation that extracts information from a
persistence engine of choice, but many applications do not require such complexity. This is particularly
true if you're building a prototype application or just starting integrating Spring Security, when you don't
really want to spend time configuring databases or writing User Det ai | sSer vi ce implementations.
For this sort of situation, a simple option is to use the user-servi ce element from the security

namespace:
<user-service id="userDetail sService">
<user nanme="jim" password="jim spassword" authorities="ROLE USER, ROLE_ADM N' />

<user nane="bob" password="bobspassword" authorities="ROLE_USER' />
</ user -servi ce>

This also supports the use of an external properties file:

<user-service id="userDetail sService" properti es="users. properties"/>

The properties file should contain entries in the form

user name=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]

For example

jim=jimspassword, ROLE_USER, ROLE_ADM N, enabl ed
bob=bobspasswor d, ROLE_USER, enabl ed

JdbcDaolmpl

Spring Security also includes a User Det ai | sSer vi ce that can obtain authentication information from
a JDBC data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured object
relational mapper (ORM) just to store user details. If your application does use an ORM tool, you might
prefer to write a custom User Det ai | sSer vi ce to reuse the mapping files you've probably already
created. Returning to JdbcDaol npl , an example configuration is shown below:

<bean id="dataSource" class="org.springframework.jdbc.datasource. Dri ver Manager Dat aSour ce" >
<property name="driverd assName" val ue="org. hsql db. j dbcDriver"/>

<property name="url" val ue="j dbc: hsql db: hsqgl : / /1 ocal host: 9001"/ >

<property name="usernanme" val ue="sa"/>

<property name="password" val ue=""/>

</ bean>

<bean id="userDetail sService"

cl ass="org. springfranmework. security.core.userdetails.jdbc.JdbcDaol npl ">
<property name="dat aSource" ref="dataSource"/>
</ bean>

You can wuse different relational database management systems by modifying the
Dri ver Manager Dat aSour ce shown above. You can also use a global data source obtained from
JNDI, as with any other Spring configuration.

4.1.0.RC1 Spring Security 60

Spring Security Reference

Authority Groups

By default, JdbcDaol npl loads the authorities for a single user with the assumption that the authorities
are mapped directly to users (see the database schema appendix). An alternative approach is to partition
the authorities into groups and assign groups to the user. Some people prefer this approach as a means
of administering user rights. See the JdbcDaol npl Javadoc for more information on how to enable the
use of group authorities. The group schema is also included in the appendix.

8.3 Password Encoding

Spring Security’s Passwor dEncoder interface is used to support the use of passwords which
are encoded in some way in persistent storage. You should never store passwords in plain text.
Always use a one-way password hashing algorithm such as bcrypt which uses a built-in salt
value which is different for each stored password. Do not use a plain hash function such as
MD5 or SHA, or even a salted version. Bcerypt is deliberately designed to be slow and to hinder
offline password cracking, whereas standard hash algorithms are fast and can easily be used
to test thousands of passwords in parallel on custom hardware. You might think this doesn'’t
apply to you since your password database is secure and offline attacks aren’t a risk. If so, do
some research and read up on all the high-profile sites which have been compromised in this
way and have been pilloried for storing their passwords insecurely. It's best to be on the safe
side. Using or g. spri ngf ramewor k. security. crypto. bcrypt. BCrypt Passwor dEncoder " is
a good choice for security. There are also compatible implementations in other common programming
languages so it a good choice for interoperability too.

If you are using a legacy system which already has hashed passwords, then you will need to
use an encoder which matches your current algorithm, at least until you can migrate your users
to a more secure scheme (usually this will involve asking the user to set a new password, since
hashes are irreversible). Spring Security has a package containing legacy password encoding
implementation, namely, or g. spri ngf ranmewor k. security. aut henti cati on. encodi ng. The
DaoAut henti cati onProvi der can be injected with either the new or legacy Passwor dEncoder

types.

What is a hash?

Password hashing is not unique to Spring Security but is a common source of confusion for users who
are not familiar with the concept. A hash (or digest) algorithm is a one-way function which produces a
piece of fixed-length output data (the hash) from some input data, such as a password. As an example,
the MD5 hash of the string "password" (in hexadecimal) is

5f 4dcc3b5aa765d61d8327deb882cf 99

A hash is "one-way" in the sense that it is very difficult (effectively impossible) to obtain the original
input given the hash value, or indeed any possible input which would produce that hash value. This
property makes hash values very useful for authentication purposes. They can be stored in your user
database as an alternative to plaintext passwords and even if the values are compromised they do not
immediately reveal a password which can be used to login. Note that this also means you have no way
of recovering the password once it is encoded.

Adding Salt to a Hash

One potential problem with the use of password hashes that it is relatively easy to get round the one-way
property of the hash if a common word is used for the input. People tend to choose similar passwords

4.1.0.RC1 Spring Security 61

Spring Security Reference

and huge dictionaries of these from previously hacked sites are available online. For example, if you
search for the hash value 5f 4dcc3b5aa765d61d8327deb882cf 99 using google, you will quickly
find the original word "password". In a similar way, an attacker can build a dictionary of hashes from
a standard word list and use this to lookup the original password. One way to help prevent this is to
have a suitably strong password policy to try to prevent common words from being used. Another is to
use a"salt" when calculating the hashes. This is an additional string of known data for each user which
is combined with the password before calculating the hash. Ideally the data should be as random as
possible, but in practice any salt value is usually preferable to none. Using a salt means that an attacker
has to build a separate dictionary of hashes for each salt value, making the attack more complicated
(but not impossible).

Bcrypt automatically generates a random salt value for each password when it is encoded, and stores
it in the bcrypt string in a standard format.

Note

The legacy approach to handling salt was to inject a SaltSource into the
DaoAut henti cati onPr ovi der, which would obtain a salt value for a particular user and pass
it to the Passwor dEncoder . Using bcrypt means you don’t have worry about the details of salt
handling (such as where the the value is stored), as it is all done internally. So we’d strongly
recommend you use bcrypt unless you already have a system in place which stores the salt
separately.

Hashing and Authentication

When an authentication provider (such as Spring Security’s DaoAut hent i cati onPr ovi der) needs
to check the password in a submitted authentication request against the known value for a user, and
the stored password is encoded in some way, then the submitted value must be encoded using exactly
the same algorithm. It's up to you to check that these are compatible as Spring Security has no control
over the persistent values. If you add password hashing to your authentication configuration in Spring
Security, and your database contains plaintext passwords, then there is no way authentication can
succeed. Even if you are aware that your database is using MD5 to encode the passwords, for example,
and your application is configured to use Spring Security’s MI5Passwor dEncoder , there are still things
that can go wrong. The database may have the passwords encoded in Base 64, for example while the
encoder is using hexadecimal strings (the default). Alternatively your database may be using upper-case
while the output from the encoder is lower-case. Make sure you write a test to check the output from your
configured password encoder with a known password and salt combination and check that it matches
the database value before going further and attempting to authenticate through your application. Using
a standard like berypt will avoid these issues.

If you want to generate encoded passwords directly in Java for storage in your user database, then you
can use the encode method on the Passwor dEncoder .

4.1.0.RC1 Spring Security 62

Part IV. Testing

Spring Security Reference

9. Testing Method Security

This section demonstrates how to use Spring Security’s Test support to test method based security. We

first introduce a MessageSer vi ce that requires the user to be authenticated in order to access it.

public class Hell oMessageService i npl enents MessageService {

@r eAut hori ze("aut henti cat ed")
public String get Message() {
Aut henti cation authentication = SecurityContextHol der. get Cont ext ()
. get Aut henti cation();
return "Hello " + authentication;

}

}

The result of get Message is a String saying "Hello" to the current Spring Security Aut henti cati on.

An example of the output is displayed below.

Hel I o org. springfranmework. security. authentication. User nanePasswor dAut hent i cati onToken@a25360:
Principal: org.springfranmework. security.core.userdetails.User @6ebcbh: Usernanme: user; Password:
[PROTECTED] ; Enabl ed: true; Account NonExpired: true; credential sNonExpired: true; AccountNonLocked:
true; Granted Authorities: ROLE_USER, Credentials: [PROTECTED]; Authenticated: true; Details: null;
G anted Authorities: ROLE_USER

9.1 Security Test Setup

Before we can use Spring Security Test support, we must perform some setup. An example can be

seen below:

@unW th(SpringJUnit4d assRunner.class) O
@ont ext Configuration O
public class WthMckUserTests {

This is a basic example of how to setup Spring Security Test. The highlights are:

0 @unW't h instructs the spring-test module that it should create an ApplicationContext This is no
different than using the existing Spring Test support. For additional information, refer to the Spring
Reference

0 @ontext Configuration instructs the spring-test the configuration to use to create the
Appl i cat i onCont ext . Since no configuration is specified, the default configuration locations will
be tried. This is no different than using the existing Spring Test support. For additional information,
refer to the Spring Reference

Note
Spring Security hooks into Spring Test support using the

W t hSecurit yCont ext Test Execut i onLi st ener which will ensure our tests are ran with
the correct user. It does this by populating the Securit yCont ext Hol der prior to running
our tests. After the test is done, it will clear out the SecurityCont ext Hol der. If you
only need Spring Security related support, you can replace @ont ext Confi gur ati on with
@ecur it yExecuti onLi st eners.

Remember we added the @ eAut hori ze annotation to our Hel | oMessageSer vi ce and so it
requires an authenticated user to invoke it. If we ran the following test, we would expect the following

test will pass:

4.1.0.RC1 Spring Security

64

http://docs.spring.io/spring-framework/docs/4.0.x/spring-framework-reference/htmlsingle/#integration-testing-annotations-standard
http://docs.spring.io/spring-framework/docs/4.0.x/spring-framework-reference/htmlsingle/#integration-testing-annotations-standard
http://docs.spring.io/spring-framework/docs/4.0.x/spring-framework-reference/htmlsingle/#testcontext-ctx-management

Spring Security Reference

@est (expected = Aut henti cati onCredenti al sNot FoundExcepti on. cl ass)
public void get MessageUnaut henti cated() {
messageSer vi ce. get Message() ;

}

9.2 @WithMockUser

The question is "How could we most easily run the test as a specific user?" The answer is to use
@N t hMockUser . The following test will be ran as a user with the username "user", the password
"password", and the roles "ROLE_USER".

@est

@N t hMbckUser

public void get MessageW t hMockUser () {
String nessage = nmessageServi ce. get Message();

}
Specifically the following is true:
» The user with the username "user" does not have to exist since we are mocking the user

e The Authentication that is populated in the SecurityContext is of type
User namePasswor dAut henti cati onToken

» The principal on the Aut hent i cati on is Spring Security’s User object

« The User will have the username of "user', the password "password", and a single
G ant edAut hori t y named "ROLE_USER" is used.

Our example is nice because we are able to leverage a lot of defaults. What if we wanted to run the
test with a different username? The following test would run with the username "customUser". Again,
the user does not need to actually exist.

@est

@\ t hMbckUser (" cust onUser nane™)

public void get MessageW t hMbckUser Cust oniser nane() {
String message = nmessageServi ce. get Message();

We can also easily customize the roles. For example, this test will be invoked with the username "admin"
and the roles "ROLE_USER" and "ROLE_ADMIN".

@est

@N t hMbckUser (user nane="adnmi n", rol es={"USER', " ADM N'})

public void get MessageW t hMbckUser Cust omser () {
String message = nmessageServi ce. get Message();

If we do not want the value to automatically be prefixed with ROLE_ we can leverage the authorities
attribute. For example, this test will be invoked with the username "admin" and the authorities "USER"
and "ADMIN".

@est
@N t hMbckUser (usernane = "adnmin", authorities = { "ADMN', "USER' })
public void get MessageW t hMbckUser Cust omAut horities() {

String message = nessageServi ce. get Message();

4.1.0.RC1 Spring Security 65

Spring Security Reference

Of course it can be a bit tedious placing the annotation on every test method. Instead, we can place
the annotation at the class level and every test will use the specified user. For example, the following
would run every test with a user with the username "admin", the password "password", and the roles
"ROLE_USER" and "ROLE_ADMIN".

@unW t h(SpringJUnit4d assRunner. cl ass)

@ont ext Confi guration

@V t hMbckUser (user nane="admi n", rol es={"USER", "ADM N'})
public class WthMckUserTests {

9.3 @WithAnonymousUser

Using @V t hAnonynmousUser allows running as an anonymous user. This is especially convenient
when you wish to run most of your tests with a specific user, but want to run a few tests as an anonymous
user. For example, the following will run withMockUserl and withMockUser2 using @WithMockUser
and anonymous as an anonymous user.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@Vt hMockUser
public class WthUserC assLevel Aut henti cationTests {

@est
public void wi thMckUser1() {
}

@est
public void w thMckUser2() {

}

@est
@\ t hAnonynousUser
public void anonymous() throws Exception {
/'l override default to run as anonynous user
}
}

9.4 @WithUserDetalils

While @V t hMbckUser is a very convenient way to get started, it may not work in all instances. For
example, it is common for applications to expect that the Aut hent i cat i on principal be of a specific
type. This is done so that the application can refer to the principal as the custom type and reduce
coupling on Spring Security.

The custom principal is often times returned by a custom User Det ai | sSer vi ce that returns an object
that implements both User Det ai | s and the custom type. For situations like this, it is useful to create the
test user using the custom User Det ai | sSer vi ce. That is exactly what @V t hUser Det ai | s does.

Assuming we have a User Det ai | sSer vi ce exposed as a bean, the following test will be invoked
with an Aut hent i cat i on of type User nanePasswor dAut hent i cat i onToken and a principal that
is returned from the User Det ai | sSer vi ce with the username of "user".

@rest

@VthUserDetails

public void get MessageW t hUser Detai | s() {
String message = nessageServi ce. get Message();

4.1.0.RC1 Spring Security 66

Spring Security Reference

We can also customize the username used to lookup the user from our User Det ai | sSer vi ce. For
example, this test would be executed with a principal that is returned from the User Det ai | sSer vi ce
with the username of "customUsername”.

@est

@\t hUser Det ai | s("cust onJser nane")

public void get MessageW t hUser Det ai | sCust omJser nane() {
String message = nmessageServi ce. get Message();

We can also provide an explicit bean name to look up the User Det ai | sSer vi ce. For example, this
test would look up the username of "customUsername" using the User Det ai | sSer vi ce with the bean
name "myUserDetailsService".

@est
@V t hUser Det ai | s(val ue="cust onlJser nane", user Det ai | sServi ceBeanNanme="nmnyUser Det ai | sServi ce")
public void get MessageW t hUser Det ai | sSer vi ceBeanNane() {

String message = nmessageServi ce. get Message();

Like @Vt hMbckUser we can also place our annotation at the class level so that every test uses the
same user. However unlike @V t hMockUser , @V t hUser Det ai | s requires the user to exist.

9.5 @WithSecurityContext

We have seen that @V thMckUser is an excellent choice if we are not using a custom
Aut hent i cati on principal. Next we discovered that @V t hUser Det ai | s would allow us to use a
custom User Det ai | sSer vi ce to create our Aut hent i cat i on principal but required the user to exist.
We will now see an option that allows the most flexibility.

We can create our own annotation that uses the @NthSecurityContext to create
any SecurityContext we want. For example, we might create an annotation named
@\ t hMbckCust omUser as shown below:

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
@Vt hSecurityContext(factory = WthMckCust omJser Securit yCont ext Fact ory. cl ass)
public @nterface WthMckCustonser {

String username() default "rob";

String name() default "Rob Wnch";
}

You can see that @Vt hMckCust omUser is annotated with the @N thSecurityCont ext
annotation. This is what signals to Spring Security Test support that we
intend to create a SecurityContext for the testt The @NthSecurityContext
annotation requires we specify a SecurityContextFactory that wil create a new
SecurityContext given our @NthMckCustonlser annotation. You can find our
W t hMockCust onlser Secur i t yCont ext Fact or y implementation below:

4.1.0.RC1 Spring Security 67

Spring Security Reference

public class WthMckCust onser SecurityCont ext Fact ory
i mpl ements Wt hSecurityContext Fact or y<Wt hMbckCust onlser > {
@verride
public SecurityContext createSecurityContext(WthMckCustoniser custonser) {
Securi tyCont ext context = SecurityContextHol der. creat eEnpt yCont ext ();

Cust onmJserDetail s principal =
new Cust onJser Det ai | s(cust onmJser. name(), custoniser. usernane());
Aut henti cation auth =
new User namePasswor dAut henti cati onToken(princi pal, "password", principal.getAuthorities());
cont ext . set Aut henti cati on(auth);
return context;

}

}

We can now annotate a test class or a test method with our new annotation and Spring Security’s
Wt hSecurityCont ext Test Executi onLi st ener will ensure that our SecurityContext is
populated appropriately.

When creating your own W thSecurityContextFactory implementations, it is nice to
know that they can be annotated with standard Spring annotations. For example, the
Wt hUser Det ai | sSecurityCont ext Fact ory uses the @\wut owi r ed annotation to acquire the
User Det ai | sServi ce:

final class WthUserDetail sSecurityContextFactory
inpl ements WthSecurityContextFactory<WthUserDetail s> {

private UserDetail sService userDetail sService;

@A\ut owi r ed
public WthUserDetail sSecurityContextFactory(UserDetail sService userDetail sService) {
this.userDetail sService = userDetail sService;

}

public SecurityContext createSecurityContext(WthUserDetails w thUser) {
String username = w thUser. val ue();
Assert. hasLengt h(usernanme, "value() nust be non enpty String");
UserDetails principal = userDetail sService.|oadUser ByUser nane(user nane) ;
Aut henti cation authentication = new User namePasswor dAut henti cati onToken(pri nci pal ,
principal . get Password(), principal.getAuthorities());
SecurityCont ext context = SecurityContextHol der. creat eEnptyContext();
cont ext. set Aut henti cati on(aut henti cation);
return context;
}
}

9.6 Test Meta Annotations

If you reuse the same user within your tests often, it is not ideal to have to repeatedly specify the
attributes. For example, if there are many tests related to an administrative user with the username
"admin" and the roles ROLE_USER and ROLE_ADM N you would have to write:

@\ t hMockUser (user nane="adni n", rol es={" USER', " ADM N'})

Rather than repeating this everywhere, we can use a meta annotation. For example, we could create
a meta annotation named W t hMock Admi n:

@ret enti on(Ret enti onPol i cy. RUNTI MVE)
@\t hMbckUser (val ue="rob", rol es="ADM N')
public @nterface WthWckAdmn { }

Now we can use @V t hMbckAdni n in the same way as the more verbose @V t hMbckUser .

4.1.0.RC1 Spring Security 68

Spring Security Reference

Meta annotations work with any of the testing annotations described above. For example, this means
we could create a meta annotation for @V t hUser Det ai | s("adm n") as well.

4.1.0.RC1 Spring Security 69

Spring Security Reference

10. Spring MVC Test Integration

Spring Security provides comprehensive integration with Spring MVC Test

10.1 Setting Up MockMvc and Spring Security

In order to use Spring Security with Spring MVC Test it is necessary to add the
Spring Security FilterChainProxy as a Filter. It is also necessary to add Spring
Security’s Test Securi t yCont ext Hol der Post Processor to support Running as a User
in _Spring MVC Test with Annotations. This can be done using Spring Security’s
SecurityMockMcConfigurers. springSecurity().Forexample:

Note

Spring Security’s testing support requires spring-test-4.1.3.RELEASE or greater.

i nport static org.springfranework. security.test.web.servlet.setup. SecurityMckMcConfigurers.*;

@RunW 't h(Spri ngJUni t 4Cl assRunner . cl ass)
@ont ext Confi gurati on

@\ebAppConfi guration

public class CsrfShowcaseTests {

@A\ut owi red
private WebApplicationContext context;

private MdckMic nmvc;

@Before
public void setup() {
mvc = MbckMcBui | ders
. webAppCont ext Set up(cont ext)
.appl y(springSecurity()) O
Lbuild();
}

0 SecurityMockMcConfigurers.springSecurity() wil perform all of the initial setup we
need to integrate Spring Security with Spring MVC Test

10.2 SecurityMockMvcRequestPostProcessors

Spring MVC Test provides a convenient interface called a Request Post Processor that can be used
to modify a request. Spring Security provides a number of Request Post Pr ocessor implementations
that make testing easier. In order to use Spring Security’'s Request Post Pr ocessor implementations
ensure the following static import is used:

inport static
org. springframework. security.test.web. servlet.request. SecurityMckMcRequest Post Processors. *;

Testing with CSRF Protection

When testing any non safe HTTP methods and using Spring Security’s CSRF protection, you must
be sure to include a valid CSRF Token in the request. To specify a valid CSRF token as a request
parameter using the following:

4.1.0.RC1 Spring Security 70

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html#spring-mvc-test-framework

Spring Security Reference

m/c
.perform(post("/").with(csrf()))

If you like you can include CSRF token in the header instead:

m/c
.perfornm(post("/").with(csrf().asHeader()))

You can also test providing an invalid CSRF token using the following:

m/c
.perform(post("/").wi th(csrf().uselnvalidToken()))

Running a Test as a User in Spring MVC Test
It is often desirable to run tests as a specific user. There are two simple ways of populating the user:

* Running as a User in Spring MVC Test with RequestPostProcessor

* Running as a User in Spring MVC Test with Annotations

Running as a User in Spring MVC Test with RequestPostProcessor

There are a number of options available to associate a user to the current Ht t pSer vl et Request . For
example, the following will run as a user (which does not need to exist) with the username "user", the
password "password”, and the role "ROLE_USER":

Note

The support works by associating the wuser to the HtpServletRequest. To
associate the request to the SecurityContextHol der you need to ensure that the
Securi t yCont ext Per si st enceFi | t er is associated with the MockMvc instance. A few ways
to do this are:

+ Invoking apply(springSecurity())

» Adding Spring Security’s Fi | t er Chai nPr oxy to MockMrsc

* Manually adding Secur it yCont ext Persi st enceFilter to the MockM/c instance may
make sense when using MockM/cBui | der s. st andal oneSet up

mvc
.perforn(get("/").w th(user("user")))
You can easily make customizations. For example, the following will run as a user (which does not
need to exist) with the username "admin", the password "pass"”, and the roles "ROLE_USER" and
"ROLE_ADMIN".

mvc
.perform(get("/adm n").with(user("adm n").password("pass").rol es("USER',"ADM N')))

If you have a custom User Det ai | s that you would like to use, you can easily specify that as well. For
example, the following will use the specified User Det ai | s (which does not need to exist) to run with
a User nanmePasswor dAut hent i cat i onToken that has a principal of the specified User Det ai | s:

nc
.perform(get("/").with(user(userDetails)))

4.1.0.RC1 Spring Security 71

Spring Security Reference

You can run as anonymous user using the following:

mvc
.perform(get("/").w th(anonynous()))

This is especially useful if you are running with a default user and wish to execute a few requests as
an anonymous user.

If youwant a custom Aut hent i cat i on (which does not need to exist) you can do so using the following:

mc
.perform(get("/").w th(authentication(authentication)))

You can even customize the Secur i t yCont ext using the following:

mvc
.perform(get("/").w th(securityContext(securityContext)))

We can also ensure to run as a specific user for every request by using MockM/cBui | der s's default
request. For example, the following will run as a user (which does not need to exist) with the username
"admin”, the password "password", and the role "ROLE_ADMIN":

m/c = MockMvcBui | ders
. webAppCont ext Set up(cont ext)
. def aul t Request (get ("/").wi th(user("user").roles("ADM N')))

.appl y(springSecurity())
Lbuild();

If you find you are using the same user in many of your tests, it is recommended to move
the user to a method. For example, you can specify the following in your own class named
Cust onBecuri t yMbckM/cRequest Post Processors:

public static RequestPostProcessor rob() {
return user("rob").roles("ADM N');
}

Now you can perform a static import on Securi t yMbckM/cRequest Post Processor s and use that
within your tests:

inport static sanple. CustonBSecurityMckM/ cRequest Post Processors. *;

nmc
.perform(get("/").with(rob()))

Running as a User in Spring MVC Test with Annotations

As an alternative to using a Request Post Pr ocessor to create your user, you can use annotations
described in Chapter 9, Testing Method Security. For example, the following will run the test with the
user with username "user", password "password", and role "ROLE_USER":

@est

@\ t hMockUser

public void requestProtectedU | WthUser () throws Exception {
mc

.perform(get("/"))

4.1.0.RC1 Spring Security 72

Spring Security Reference

Alternatively, the following will run the test with the user with username "user", password "password",
and role "ROLE_ADMIN":

@rest
@N t hMbckUser (rol es="ADM N")
public void requestProtectedU | WthUser() throws Exception {
mc
.perforn(get("/"))

Testing HTTP Basic Authentication

While it has always been possible to authenticate with HTTP Basic, it was a bit tedious to remember the
header name, format, and encode the values. Now this can be done using Spring Security’s ht t pBasi ¢
Request Post Processor . For example, the snippet below:

m/c
.perform(get("/").with(httpBasic("user","password")))

will attempt to use HTTP Basic to authenticate a user with the username "user" and the password
"password" by ensuring the following header is populated on the HTTP Request:

Aut hori zati on: Basic dXN cj pwYXNzd29yZA==

10.3 SecurityMockMvcRequestBuilders

Spring MVC Test also provides a Request Bui | der interface that can be used to create the
MockHt t pSer vl et Request used in your test. Spring Security provides a few Request Bui | der
implementations that can be used to make testing easier. In order to use Spring Security’s
Request Bui | der implementations ensure the following static import is used:

i nport static org.springfranework. security.test.web.servlet.request. SecurityMckMcRequestBuil ders. *;

Testing Form Based Authentication

You can easily create a request to test a form based authentication using Spring Security’s testing
support. For example, the following will submit a POST to "/login" with the username "user", the
password "password”, and a valid CSRF token:

m/c
. per forn(fornLogin())

It is easy to customize the request. For example, the following will submit a POST to "/auth" with the
username "admin", the password "pass”, and a valid CSRF token:

mvc
. perform(formiogi n("/auth").user("adm n"). password("pass"))

We can also customize the parameters names that the username and password are included on. For
example, this is the above request modified to include the username on the HTTP parameter "u" and
the password on the HTTP parameter "p".

mc
.perform(fornLogi n("/auth").user("u","adm n").password("p", "pass"))

4.1.0.RC1 Spring Security 73

Spring Security Reference

Testing Logout

While fairly trivial using standard Spring MVC Test, you can use Spring Security’s testing support to
make testing log out easier. For example, the following will submit a POST to "/logout" with a valid

CSRF token:
e
. perforn(logout())

You can also customize the URL to post to. For example, the snippet below will submit a POST to "/
signout” with a valid CSRF token:

m/c
. perforn(l ogout ("/signout"))

10.4 SecurityMockMvcResultMatchers

Attimes itis desirable to make various security related assertions about a request. To accommodate this
need, Spring Security Test support implements Spring MVC Test's Resul t Mat cher interface. In order
to use Spring Security’s Resul t Mat cher implementations ensure the following static import is used:

inport static org.springframework. security.test.web.servlet.response. SecurityMckMcResult Matchers. *;

Unauthenticated Assertion

At times it may be valuable to assert that there is no authenticated user associated with the result of a
Mock M c invocation. For example, you might want to test submitting an invalid username and password
and verify that no user is authenticated. You can easily do this with Spring Security’s testing support
using something like the following:

m/c
. per forn(forniLogi n().password("invalid"))
. andExpect (unaut henti cat ed());

Authenticated Assertion

It is often times that we must assert that an authenticated user exists. For example, we may want to
verify that we authenticated successfully. We could verify that a form based login was successful with
the following snippet of code:

m/c
. per fornm(fornLogin())
. andExpect (aut henti cated());

If we wanted to assert the roles of the user, we could refine our previous code as shown below:

m/c
. perfornm(forniLogi n().user("adm n"))
. andExpect (aut henti cat ed() . wi t hRol es("USER", "ADM N')) ;

Alternatively, we could verify the username:

m/c
.perform(fornLogin().user("admn"))
. andExpect (aut henti cat ed() . w t hUser nane("admi n"));

We can also combine the assertions:

4.1.0.RC1 Spring Security 74

Spring Security Reference

m/c
. perfornm(forniLogin().user("adm n").rol es("USER", "ADM N'))
. andExpect (aut henti cated().w t hUser name("admi n"));

4.1.0.RC1 Spring Security

75

Part V. Web Application Security

Most Spring Security users will be using the framework in applications which make user of HTTP
and the Servlet API. In this part, we’'ll take a look at how Spring Security provides authentication
and access-control features for the web layer of an application. We’'ll look behind the facade of the
namespace and see which classes and interfaces are actually assembled to provide web-layer security.
In some situations it is necessary to use traditional bean configuration to provide full control over the
configuration, so we’ll also see how to configure these classes directly without the namespace.

Spring Security Reference

11. The Security Filter Chain

Spring Security’s web infrastructure is based entirely on standard servlet filters. It doesn’t use servlets
or any other servlet-based frameworks (such as Spring MVC) internally, so it has no strong links to any
particular web technology. It deals in Ht t pSer vl et Request s and Ht t pSer vl et Response s and
doesn’t care whether the requests come from a browser, a web service client, an Ht t pl nvoker or an
AJAX application.

Spring Security maintains a filter chain internally where each of the filters has a particular responsibility
and filters are added or removed from the configuration depending on which services are required. The
ordering of the filters is important as there are dependencies between them. If you have been using
namespace configuration, then the filters are automatically configured for you and you don’t have to
define any Spring beans explicitly but here may be times when you want full control over the security
filter chain, either because you are using features which aren’t supported in the namespace, or you are
using your own customized versions of classes.

11.1 DelegatingFilterProxy

When using servlet filters, you obviously need to declare them in your web. xni , or they will be ignored
by the servlet container. In Spring Security, the filter classes are also Spring beans defined in the
application context and thus able to take advantage of Spring’s rich dependency-injection facilities and
lifecycle interfaces. Spring’s Del egat i ngFi | t er Pr oxy provides the link between web. xm and the
application context.

When using Del egat i ngFi | t er Pr oxy, you will see something like this in the web. xni file:

<filter>

<filter-nane>nyFilter</filter-name>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>

<filter-name>nyFilter</filter-nane>

<url -pattern>/*</url -pattern>

</filter-mappi ng>

Notice that the filter is actually a Del egati ngFi |l t er Proxy, and not the class that will actually
implement the logic of the filter. What Del egati ngFi | t er Proxy does is delegate the Filter 's
methods through to a bean which is obtained from the Spring application context. This enables the bean
to benefit from the Spring web application context lifecycle support and configuration flexibility. The bean
must implement j avax. servl et. Fi | t er and it must have the same name as that in the fil ter-
name element. Read the Javadoc for Del egat i ngFi | t er Pr oxy for more information

11.2 FilterChainProxy

Spring Security’s web infrastructure should only be used by delegating to an instance of
Fi | t er Chai nProxy. The security filters should not be used by themselves. In theory you could
declare each Spring Security filter bean that you require in your application context file and add a
corresponding Del egati ngFi | t er Proxy entry to web. xm for each filter, making sure that they
are ordered correctly, but this would be cumbersome and would clutter up the web. xm file quickly
if you have a lot of filters. Fi | t er Chai nProxy lets us add a single entry to web. xm and deal
entirely with the application context file for managing our web security beans. It is wired using a
Del egati ngFi | t er Pr oxy, just like in the example above, but with the fi | t er - nane set to the bean

4.1.0.RC1 Spring Security 77

Spring Security Reference

name "filterChainProxy". The filter chain is then declared in the application context with the same bean
name. Here’s an example:

<bean id="filterChai nProxy" class="org.springframework.security.web.FilterChainProxy">
<constructor-arg>
<list>
<sec:filter-chain pattern="/restful /**" filters="
securi tyCont ext Per si st enceFi | t er Wt hASCFal se,
basi cAut henticationFilter,
exceptionTransl ationFilter,
filterSecuritylnterceptor" />
<sec:filter-chain pattern="/**" filters="
securi t yCont ext Per si st enceFi | t er Wt hASCTr ue,
fornLogi nFilter,
exceptionTransl ationFilter,
filterSecuritylnterceptor" />
</list>
</ constructor-arg>
</ bean>

The namespace element fi |l t er - chai n is used for convenience to set up the security filter chain(s)
which are required within the application. Lot maps a particular URL pattern to a list of filters built
up from the bean names specified in the filt ers element, and combines them in a bean of type
Securi tyFil ter Chai n. The pat t er n attribute takes an Ant Paths and the most specific URIs should
appear first 2. At runtime the Fi | t er Chai nPr oxy will locate the first URI pattern that matches the
current web request and the list of filter beans specified by the fi | t er s attribute will be applied to that
request. The filters will be invoked in the order they are defined, so you have complete control over the
filter chain which is applied to a particular URL.

You may have noticed we have declared two SecurityContextPersistenceFilter
s in the filter chain (ASC is short for allowSessionCreation, a property of
Securi t yCont ext Per si st enceFi | t er). As web services will never present a j sessi oni d on
future requests, creating Ht t pSessi on s for such user agents would be wasteful. If you had a high-
volume application which required maximum scalability, we recommend you use the approach shown
above. For smaller applications, using a single Securit yCont ext Per si st enceFi | t er (with its
default al | owSessi onCr eati on ast rue) would likely be sufficient.

Note that Fi | t er Chai nProxy does not invoke standard filter lifecycle methods on the filters it
is configured with. We recommend you use Spring’s application context lifecycle interfaces as an
alternative, just as you would for any other Spring bean.

When we looked at how to set up web security using namespace configuration, we used a
Del egati ngFi | t er Pr oxy with the name "springSecurityFilterChain". You should now be able to see
that this is the name of the Fi | t er Chai nPr oxy which is created by the namespace.

Bypassing the Filter Chain

You can use the attribute fil ters = "none" as an alternative to supplying a filter bean list. This will
omit the request pattern from the security filter chain entirely. Note that anything matching this path will
then have no authentication or authorization services applied and will be freely accessible. If you want
to make use of the contents of the Securi t yCont ext contents during a request, then it must have

"Note that you'll need to include the security namespace in your application context XML file in order to use this syntax. The older
syntax which used a fi | t er - chai n- map is still supported, but is deprecated in favour of the constructor argument injection.
%Instead of a path pattern, the r equest - mat cher - r ef attribute can be used to specify a Request Mat cher instance for more
powerful matching

4.1.0.RC1 Spring Security 78

Spring Security Reference

passed through the security filter chain. Otherwise the Secur i t yCont ext Hol der will not have been
populated and the contents will be null.

11.3 Filter Ordering

The order that filters are defined in the chain is very important. Irrespective of which filters you are
actually using, the order should be as follows:

» Channel Processi ngFi |l t er, because it might need to redirect to a different protocol

e SecurityContextPersistenceFilter, so a SecurityContext can be set up in the
Securi tyCont ext Hol der at the beginning of a web request, and any changes to the
Securi t yCont ext can be copied to the Ht t pSessi on when the web request ends (ready for use
with the next web request)

e Concurrent Sessi onFi |l t er, because it uses the Securi t yCont ext Hol der functionality and
needs to update the Sessi onRegi st ry to reflect ongoing requests from the principal

» Authentication processing mechanisms - User nanePasswor dAut henti cati onFilter,
CasAut henticationFilter, BasicAuthenticationFilter etc - so that the
Securi t yCont ext Hol der can be modified to contain a valid Aut hent i cat i on request token

» The SecurityCont ext Hol der Awar eRequest Fi |l ter, if you are using it to install a Spring
Security aware Ht t pSer vl et Request W apper into your servlet container

e The JaasApilntegrationFilter, if a JaasAuthenticationToken is in the
Securi t yCont ext Hol der this will process the FilterChain as the Subject in the
JaasAut henti cati onToken

* Remenber MeAut henti cati onFi | t er, so that if no earlier authentication processing mechanism
updated the Secur i t yCont ext Hol der, and the request presents a cookie that enables remember-
me services to take place, a suitable remembered Aut hent i cat i on object will be put there

e AnonynopusAut henti cati onFil ter, so that if no earlier authentication processing mechanism
updated the Secur i t yCont ext Hol der, an anonymous Aut hent i cat i on object will be put there

» ExceptionTransl ationFilter,tocatch any Spring Security exceptions so that either an HTTP
error response can be returned or an appropriate Aut hent i cati onEnt r yPoi nt can be launched

 FilterSecuritylnterceptor, to protect web URIs and raise exceptions when access is denied

11.4 Request Matching and HttpFirewall

Spring Security has several areas where patterns you have defined are tested against incoming
requests in order to decide how the request should be handled. This occurs when the
Fi | t er Chai nPr oxy decides which filter chain a request should be passed through and also when the
FilterSecurityl nterceptor decides which security constraints apply to a request. It's important
to understand what the mechanism is and what URL value is used when testing against the patterns
that you define.

The Servlet Specification defines several properties for the HttpServl et Request which are
accessible via getter methods, and which we might want to match against. These are the cont ext Pat h,
servl et Pat h, pat hl nfo and queryStri ng. Spring Security is only interested in securing paths
within the application, so the cont ext Pat h is ignored. Unfortunately, the servlet spec does not define

4.1.0.RC1 Spring Security 79

Spring Security Reference

exactly what the values of ser vl et Pat h and pat hl nf o will contain for a particular request URI.
For example, each path segment of a URL may contain parameters, as defined in REC 2396 4
The Specification does not clearly state whether these should be included in the ser vl et Pat h and
pat hl nf o values and the behaviour varies between different servlet containers. There is a danger that
when an application is deployed in a container which does not strip path parameters from these values,
an attacker could add them to the requested URL in order to cause a pattern match to succeed or fail
unexpectedly. ®. Other variations in the incoming URL are also possible. For example, it could contain
path-traversal sequences (like / . . /) or multiple forward slashes (/ /) which could also cause pattern-
matches to fail. Some containers normalize these out before performing the servlet mapping, but others
don't. To protect against issues like these, Fi | t er Chai nPr oxy uses an Ht t pFi rewal | strategy to
check and wrap the request. Un-normalized requests are automatically rejected by default, and path
parameters and duplicate slashes are removed for matching purposes. ®. Itis therefore essential that
a Fi | t er Chai nPr oxy is used to manage the security filter chain. Note that the ser vl et Pat h and
pat hl nf o values are decoded by the container, so your application should not have any valid paths
which contain semi-colons, as these parts will be removed for matching purposes.

As mentioned above, the default strategy is to use Ant-style paths for matching and this is likely to be
the best choice for most users. The strategy is implemented in the class Ant Pat hRequest Mat cher
which uses Spring’s Ant Pat hivat cher to perform a case-insensitive match of the pattern against the
concatenated ser vl et Pat h and pat hl nf o, ignoring the quer ySt ri ng.

If for some reason, you need a more powerful matching strategy, you can use regular expressions.
The strategy implementation is then RegexRequest Mat cher . See the Javadoc for this class for more
information.

In practice we recommend that you use method security at your service layer, to control access to your
application, and do not rely entirely on the use of security constraints defined at the web-application
level. URLs change and it is difficult to take account of all the possible URLs that an application might
support and how requests might be manipulated. You should try and restrict yourself to using a few
simple ant paths which are simple to understand. Always try to use a"deny-by-default" approach where
you have a catch-all wildcard (/ or) defined last and denying access.

Security defined at the service layer is much more robust and harder to bypass, so you should always
take advantage of Spring Security’s method security options.

11.5 Use with other Filter-Based Frameworks

If you're using some other framework that is also filter-based, then you need to make sure that the
Spring Security filters come first. This enables the Secur i t yCont ext Hol der to be populated in time
for use by the other filters. Examples are the use of SiteMesh to decorate your web pages or a web
framework like Wicket which uses a filter to handle its requests.

11.6 Advanced Namespace Configuration

As we saw earlier in the namespace chapter, it's possible to use multiple ht t p elements to define
different security configurations for different URL patterns. Each element creates a filter chain within the

*You have probably seen this when a browser doesn’t support cookies and the j sessi oni d parameter is appended to the URL
after a semi-colon. However the RFC allows the presence of these parameters in any path segment of the URL

5The original values will be returned once the request leaves the Fi | t er Chai nPr oxy, so will still be available to the application.
830, for example, an original request path / secure; hack=1/sonmefile. ht m ; hack=2 will be returned as /secure/
sonefile. htni.

4.1.0.RC1 Spring Security 80

http://www.ietf.org/rfc/rfc2396.txt

Spring Security Reference

internal Fi | t er Chai nPr oxy and the URL pattern that should be mapped to it. The elements will be
added in the order they are declared, so the most specific patterns must again be declared first. Here’s
another example, for a similar situation to that above, where the application supports both a stateless
RESTful API and also a normal web application which users log into using a form.

<l-- Statel ess RESTful service using Basic authentication -->
<http pattern="/restful/**" create-session="statel ess">
<intercept-url pattern='/**' access="hasRol e(' REMOTE)" />
<http-basic />

</ http>

<!-- Enpty filter chain for the |ogin page -->
<http pattern="/login. htnm" security="none"/>

<l-- Additional filter chain for normal users, matching all other requests -->
<ht t p>

<intercept-url pattern='/**' access="hasRole('USER)" />

<form | ogin |ogin-page="/login.htm default-target-url="/home. htn/>

<l ogout />

</ http>

4.1.0.RC1 Spring Security 81

Spring Security Reference

12. Core Security Filters

There are some key filters which will always be used in a web application which uses Spring Security,
so we'll look at these and their supporting classes and interfaces first. We won'’t cover every feature, so
be sure to look at the Javadoc for them if you want to get the complete picture.

12.1 FilterSecuritylnterceptor

We've already seen FilterSecuritylnterceptor briefly when discussing access-control in
general, and we've already used it with the namespace where the <i nt ercept - url > elements
are combined to configure it internally. Now we’ll see how to explicitly configure it for use with a
Fi | t er Chai nPr oxy, along with its companion filter Excepti onTransl ati onFilter. A typical
configuration example is shown below:

<bean id="filterSecuritylnterceptor"
cl ass="org. springframework. security.web. access.intercept.FilterSecuritylnterceptor">
<property name="aut henti cati onManager" ref="authenticati onManager"/>
<property name="accessDeci si onManager" ref="accessDeci si onManager"/>
<property name="securityMetadataSource">
<security:filter-security-netadata-source>
<security:intercept-url pattern="/secure/super/**" access="ROLE_WE DONT_HAVE"/ >
<security:intercept-url pattern="/secure/**" access="ROLE SUPERVI SOR, ROLE TELLER'/ >
</security:filter-security-netadata-source>
</ property>
</ bean>

FilterSecurityl nterceptor isresponsible for handling the security of HTTP resources. It requires
a reference to an Aut hent i cati onManager and an AccessDeci si onManager . It is also supplied
with configuration attributes that apply to different HTTP URL requests. Refer back to the original
discussion on these in the technical introduction.

The FilterSecuritylnterceptor can be configured with configuration attributes in two ways.
The first, which is shown above, is using the <fi | t er - securi t y- met adat a- sour ce> namespace
element. This is similar to the <ht t p> element from the namespace chapter but the <i nt er cept -
ur | > child elements only use the pattern and access attributes. Commas are used to delimit
the different configuration attributes that apply to each HTTP URL. The second option is to
write your own SecurityMet adat aSour ce, but this is beyond the scope of this document.
Irrespective of the approach used, the Securit yMet adat aSour ce is responsible for returning a
Li st <Confi gAtt ri but e>containing all of the configuration attributes associated with a single secure
HTTP URL.

It should be noted that the FilterSecuritylnterceptor.setSecurityMetadataSource()
method actually expects an instance of FilterlnvocationSecurityMetadataSource. This
is a marker interface which subclasses SecurityMetadataSource. It simply denotes
the SecurityMetadataSource understands Filterlnvocation s. In the interests of
simplicity we’ll continue to refer to the FilterlnvocationSecurityMetadataSource as a
Securi t yMet adat aSour ce, as the distinction is of little relevance to most users.

The Securi t yMet adat aSour ce created by the namespace syntax obtains the configuration attributes
for a particular Fi | t er | nvocat i on by matching the request URL against the configured pattern
attributes. This behaves in the same way as it does for namespace configuration. The default is
to treat all expressions as Apache Ant paths and regular expressions are also supported for more
complex cases. The r equest - nat cher attribute is used to specify the type of pattern being used.

4.1.0.RC1 Spring Security 82

Spring Security Reference

It is not possible to mix expression syntaxes within the same definition. As an example, the previous
configuration using regular expressions instead of Ant paths would be written as follows:

<bean id="filterlnvocationlnterceptor"
cl ass="org. springframework. security.web. access.intercept.FilterSecuritylnterceptor">

<property name="aut henti cati onManager" ref="authenticati onManager"/>

<property name="accessDeci si onManager" ref="accessDeci si onManager"/ >

<property name="runAsManager" ref="runAsManager"/>

<property name="securityMetadat aSource">
<security:filter-security-netadata-source request-matcher="regex">
<security:intercept-url pattern="\A/secure/super/.*\Z" access="ROLE WE_DONT_HAVE"/ >
<security:intercept-url pattern="\A/secure/.*\" access="ROLE_SUPERVI SOR, ROLE_TELLER'/ >
</security:filter-security-netadata-source>

</ property>

</ bean>

Patterns are always evaluated in the order they are defined. Thus it is important that more specific
patterns are defined higher in the list than less specific patterns. This is reflected in our example above,
where the more specific / secur e/ super/ pattern appears higher than the less specific / secur e/
pattern. If they were reversed, the / secur e/ pattern would always match and the / secur e/ super/
pattern would never be evaluated.

12.2 ExceptionTranslationFilter

The Excepti onTransl ati onFi |l t er sitsabovetheFi | t er Securi tyl nt er cept or inthe security
filter stack. It doesn’t do any actual security enforcement itself, but handles exceptions thrown by the
security interceptors and provides suitable and HTTP responses.

<bean id="exceptionTranslationFilter"

cl ass="org. springframework. security.web. access. Excepti onTransl ationFilter">
<property name="aut henticati onEntryPoi nt" ref="authenticati onEntryPoint"/>
<property name="accessDeni edHandl er" ref="accessDeni edHandl er"/>

</ bean>

<bean id="aut henticati onEntryPoi nt"

cl ass="org. springframework. security.web. aut henti cati on. Logi nUr| Aut henti cati onEntryPoi nt">
<property name="|ogi nFornmJrl" value="/login.jsp"/>

</ bean>

<bean id="accessDeni edHandl er"

cl ass="org. springfranmework. security.web. access. AccessDeni edHandl er | npl ">
<property name="errorPage" val ue="/accessDeni ed. ht ni'/ >
</ bean>

AuthenticationEntryPoint

The Aut hent i cat i onEnt r yPoi nt will be called if the user requests a secure HTTP resource but they
are not authenticated. An appropriate Aut hent i cati onExcepti on or AccessDeni edExcepti on
will be thrown by a security interceptor further down the call stack, triggering the cormence method
on the entry point. This does the job of presenting the appropriate response to the user so that
authentication can begin. The one we’'ve used here is Logi nUr| Aut henti cati onEnt ryPoi nt,
which redirects the request to a different URL (typically a login page). The actual implementation used
will depend on the authentication mechanism you want to be used in your application.

AccessDeniedHandler

What happens if a user is already authenticated and they try to access a protected resource? In normal
usage, this shouldn’t happen because the application workflow should be restricted to operations to
which a user has access. For example, an HTML link to an administration page might be hidden from

4.1.0.RC1 Spring Security 83

Spring Security Reference

users who do not have an admin role. You can't rely on hiding links for security though, as there’s
always a possibility that a user will just enter the URL directly in an attempt to bypass the restrictions.
Or they might modify a RESTful URL to change some of the argument values. Your application must
be protected against these scenarios or it will definitely be insecure. You will typically use simple web
layer security to apply constraints to basic URLs and use more specific method-based security on your
service layer interfaces to really nail down what is permissible.

Ifan AccessDeni edExcept i on is thrown and a user has already been authenticated, then this means
that an operation has been attempted for which they don’t have enough permissions. In this case,
Excepti onTransl ati onFi | t er will invoke a second strategy, the AccessDeni edHandl er. By
default, an AccessDeni edHand! er | npl is used, which just sends a 403 (Forbidden) response to the
client. Alternatively you can configure an instance explicitly (as in the above example) and set an error
page URL which it will forwards the request to ! This can be a simple "access denied" page, such
as a JSP, or it could be a more complex handler such as an MVC controller. And of course, you can
implement the interface yourself and use your own implementation.

It's also possible to supply a custom AccessDeni edHandl er when you're using the namespace to
configure your application. See the namespace appendix for more details.

SavedRequest s and the RequestCache Interface

Another responsibility of Excepti onTransl ati onFi | t er responsibilities is to save the current
request before invoking the Aut henti cati onEntryPoi nt. This allows the request to be restored
after the use has authenticated (see previous overview of web authentication). A typical example
would be where the user logs in with a form, and is then redirected to the original URL by the default
SavedRequest Awar eAut hent i cat i onSuccessHandl er (see below).

The Request Cache encapsulates the functionality required for storing and retrieving
Ht t pSer vl et Request instances. By default the Ht t pSessi onRequest Cache is used, which stores
the request in the Ht t pSessi on. The Request CacheFi | t er has the job of actually restoring the
saved request from the cache when the user is redirected to the original URL.

Under normal circumstances, you shouldn’t need to modify any of this functionality, but the saved-
request handling is a "best-effort" approach and there may be situations which the default configuration
isn't able to handle. The use of these interfaces makes it fully pluggable from Spring Security 3.0
onwards.

12.3 SecurityContextPersistencekFilter

We covered the purpose of this all-important filter in the Technical Overview chapter so you might want
to re-read that section at this point. Let’s first take a look at how you would configure it for use with a
Fi | t er Chai nPr oxy. A basic configuration only requires the bean itself

<bean id="securityContext PersistenceFilter"
cl ass="org. springframework. security.web. context. SecurityContextPersistenceFilter"/>

As we saw previously, this filter has two main tasks. It is responsible for storage of the
Securi t yCont ext contents between HTTP requests and for clearing the Secur i t yCont ext Hol der

Ywe use a forward so that the SecurityContextHolder still contains details of the principal, which may be useful for displaying to
the user. In old releases of Spring Security we relied upon the servlet container to handle a 403 error message, which lacked
this useful contextual information.

4.1.0.RC1 Spring Security 84

Spring Security Reference

when a request is completed. Clearing the Thr eadLocal in which the context is stored is essential, as
it might otherwise be possible for a thread to be replaced into the servlet container’s thread pool, with
the security context for a particular user still attached. This thread might then be used at a later stage,
performing operations with the wrong credentials.

SecurityContextRepository

From Spring Security 3.0, the job of loading and storing the security context is now delegated to a
separate strategy interface:

public interface SecurityContextRepository {
Securi tyCont ext | oadCont ext (Ht t pRequest ResponseHol der request ResponseHol der);
voi d saveCont ext (SecurityContext context, HtpServletRequest request,

Ht t pSer vl et Response response);
}

The Ht t pRequest ResponseHol der is simply a container for the incoming request and response
objects, allowing the implementation to replace these with wrapper classes. The returned contents will
be passed to the filter chain.

The default implementation is Ht t pSessi onSecuri t yCont ext Reposi t ory, which stores the
security context as an Ht t pSessi on attribute 2. The most important configuration parameter for this
implementation is the al | owSessi onCr eat i on property, which defaults to t r ue, thus allowing the
class to create a session if it needs one to store the security context for an authenticated user (it
won't create one unless authentication has taken place and the contents of the security context have
changed). If you don’t want a session to be created, then you can set this property to f al se:

<bean id="securityContextPersistenceFilter"
cl ass="org. springframework. security.web. cont ext. SecurityCont ext PersistenceFilter">
<property nanme='securityContext Repository' >
<bean cl ass='org. spri ngfranmework. security.web. context. HttpSessi onSecurityContextRepository' >
<property nanme='al | owSessi onCreation' value='false' />
</ bean>
</ property>
</ bean>

Alternatively you could provide an instance of Nul | Securi t yCont ext Reposi t ory, a null object
implementation, which will prevent the security context from being stored, even if a session has already
been created during the request.

12.4 UsernamePasswordAuthenticationFilter

We've now seen the three main filters which are always present in a Spring Security web configuration.
These are also the three which are automatically created by the namespace <htt p> element and
cannot be substituted with alternatives. The only thing that's missing now is an actual authentication
mechanism, something that will allow a user to authenticate. This filter is the most commonly used
authentication filter and the one that is most often customized *. It also provides the implementation used
by the <f or m | ogi n> element from the namespace. There are three stages required to configure it.

2In Spring Security 2.0 and earlier, this filter was called Ht t pSessi onCont ext | nt egrati onFi | t er and performed all the
work of storing the context was performed by the filter itself. If you were familiar with this class, then most of the configuration
options which were available can now be found on Ht t pSessi onSecuri t yCont ext Reposi tory.

*For historical reasons, prior to Spring Security 3.0, this filter was called Aut hent i cati onProcessi ngFi | t er and the entry
point was called Aut hent i cati onProcessi ngFi | t er Ent r yPoi nt . Since the framework now supports many different forms
of authentication, they have both been given more specific names in 3.0.

4.1.0.RC1 Spring Security 85

http://en.wikipedia.org/wiki/Null_Object_pattern

Spring Security Reference

» Configure a Logi nUr | Aut henti cati onEnt r yPoi nt with the URL of the login page, just as we
did above, and set it on the Excepti onTransl ati onFil ter.

* Implement the login page (using a JSP or MVC controller).

» Configure an instance of User namePasswor dAut hent i cati onFi | t er in the application context

Add the filter bean to your filter chain proxy (making sure you pay attention to the order).

The login form simply contains user nane and passwor d input fields, and posts to the URL that is
monitored by the filter (by default this is/ | ogi n). The basic filter configuration looks something like this:

<bean id="authenticationFilter" class=

"org. springframework. security.web. aut henti cati on. User nanePasswor dAut henti cati onFilter">
<property name="aut henti cati onManager" ref="authenticati onManager"/>

</ bean>

Application Flow on Authentication Success and Failure

The filter calls the configured Aut henticationManager to process each authentication
request. The destination following a successful authentication or an authentication failure is
controlled by the Authenti cati onSuccessHandl er and Aut henti cati onFai |l ur eHandl er
strategy interfaces, respectively. The filter has properties which allow you to
set these so you can customize the behaviour completely °® Some standard
implementations are supplied such as SinpleUrl Aut henti cati onSuccessHandl er,
SavedRequest Awar eAut hent i cat i onSuccessHandl er,

Si npl eUr | Aut hent i cati onFai | ur eHandl er and
Except i onMappi ngAut henti cat i onFai | ureHandl er. Have a look at the Javadoc for these
classes and also for Abst r act Aut henti cati onProcessi ngFi | t er to get an overview of how they
work and the supported features.

If authentication is successful, the resulting Aut henti cati on object will be placed into the
Securi tyCont ext Hol der. The configured Aut henticati onSuccessHandl er will then be
called to either redirect or forward the user to the appropriate destination. By default a
SavedRequest Awar eAut hent i cat i onSuccessHandl er is used, which means that the user will
be redirected to the original destination they requested before they were asked to login.

Note

The Excepti onTransl ati onFi | t er caches the original request a user makes. When the user
authenticates, the request handler makes use of this cached request to obtain the original URL
and redirect to it. The original request is then rebuilt and used as an alternative.

If authentication fails, the configured Aut hent i cati onFai | ur eHandl er will be invoked.

5In versions prior to 3.0, the application flow at this point had evolved to a stage was controlled by a mix of properties on this class
and strategy plugins. The decision was made for 3.0 to refactor the code to make these two strategies entirely responsible.

4.1.0.RC1 Spring Security 86

Spring Security Reference

13. Servlet APl integration

This section describes how Spring Security is integrated with the Servlet API. The servletapi-xml sample
application demonstrates the usage of each of these methods.

13.1 Servlet 2.5+ Integration

HttpServletRequest.getRemoteUser()

The HttpServietRequest.getRemoteUser() will return the result of
Securi t yCont ext Hol der. get Cont ext (). get Aut henti cati on(). get Name() which is
typically the current username. This can be useful if you want to display the current username in your
application. Additionally, checking if this is null can be used to indicate if a user has authenticated or
is anonymous. Knowing if the user is authenticated or not can be useful for determining if certain Ul
elements should be shown or not (i.e. a log out link should only be displayed if the user is authenticated).

HttpServletRequest.getUserPrincipal()

The HttpServietRequest.getUserPrincipal() will return the result of
Securi t yCont ext Hol der. get Cont ext () . get Aut henti cation(). This means it is an
Aut hent i cati on which is typically an instance of User nanePasswor dAut hent i cati onToken
when using username and password based authentication. This can be useful if you need additional
information about your user. For example, you might have created a custom User Det ai | sSer vi ce
that returns a custom User Det ai | s containing a first and last name for your user. You could obtain
this information with the following:

Aut henti cation auth = httpServl et Request. get User Pri nci pal ();

/| assune integrated custom UserDetails called M/CustonserDetails

/1 by default, typically instance of UserDetails

MyCust omUser Det ai | s userDetails = (MyCustonijserDetails) auth.getPrincipal();
String firstName = userDetails. getFirstName();

String | ast Nanme = userDetails. getLastNane();

Note

It should be noted that it is typically bad practice to perform so much logic throughout your
application. Instead, one should centralize it to reduce any coupling of Spring Security and the
Servlet API's.

HttpServletRequest.isUserinRole(String)

The HttpServletRequest.isUserInRole(String) will determine if
Securi t yCont ext Hol der. get Cont ext (). get Aut henti cation().get Authorities()
contains a G- ant edAut hor i t y with the role passed into i sUser | nRol e(Stri ng) . Typically users
should not pass in the "ROLE_" prefix into this method since it is added automatically. For example,
if you want to determine if the current user has the authority "ROLE_ADMIN", you could use the the
following:

bool ean i sAdmin = httpServl et Request.isUserlnRol e("ADM N");

This might be useful to determine if certain Ul components should be displayed. For example, you might
display admin links only if the current user is an admin.

4.1.0.RC1 Spring Security 87

https://github.com/spring-projects/spring-security/tree/master/samples/servletapi-xml
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getRemoteUser()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getUserPrincipal()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#isUserInRole(java.lang.String)

Spring Security Reference

13.2 Servlet 3+ Integration
The following section describes the Servlet 3 methods that Spring Security integrates with.
HttpServletRequest.authenticate(HttpServletRequest,HttpServiletResponse)

The HttpServletRequest.authenticate(HttpServietRequest,HttpServlietResponse) method can be used
to ensure that a user is authenticated. If they are not authenticated, the configured
AuthenticationEntryPoint will be used to request the user to authenticate (i.e. redirect to the login page).

HttpServletRequest.login(String,String)

The HttpServletRequest.login(String,String) method can be used to authenticate the user with the
current Aut hent i cat i onManager . For example, the following would attempt to authenticate with the
username "user" and password "password":

try {

ht t pSer vl et Request . | ogi n("user", "password");
} catch(Servl et Exception e) {

/1 fail to authenticate

}

Note

It is not necessary to catch the ServletException if you want Spring Security to process the failed
authentication attempt.

HttpServletRequest.logout()

The HttpServletRequest.logout() method can be used to log the current user out.

Typically this means that the SecurityContextHolder will be cleared out, the HttpSession will be
invalidated, any "Remember Me" authentication will be cleaned up, etc. However, the configured
LogoutHandler implementations will vary depending on your Spring Security configuration. Itis important
to note that after HttpServletRequest.logout() has been invoked, you are still in charge of writing a
response out. Typically this would involve a redirect to the welcome page.

AsyncContext.start(Runnable)

The AsynchContext.start(Runnable) method that ensures your credentials will be propagated to
the new Thread. Using Spring Security’s concurrency support, Spring Security overrides the
AsyncContext.start(Runnable) to ensure that the current SecurityContext is used when processing the
Runnable. For example, the following would output the current user’'s Authentication:

final AsyncContext async = httpServl et Request. startAsync();
async. start (new Runnabl e() {
public void run() {
Aut henti cati on aut hentication = SecurityContextHol der. get Cont ext (). get Aut henti cation();
try {
final HttpServl et Response asyncResponse = (HttpServl et Response) async. get Response();
asyncResponse. set St at us(Ht t pSer vl et Response. SC_OK) ;
asyncResponse. getWiter().wite(String.val ueC (authentication));
async. conpl ete();
} catch(Exception e) {
t hrow new Runti meException(e);

}
}
1)

4.1.0.RC1 Spring Security 88

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#authenticate%28javax.servlet.http.HttpServletResponse%29
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#login%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#logout%28%29
http://docs.oracle.com/javaee/6/api/javax/servlet/AsyncContext.html#start%28java.lang.Runnable%29

Spring Security Reference

Async Servlet Support

If you are using Java Based configuration, you are ready to go. If you are using XML configuration, there
are a few updates that are necessary. The first step is to ensure you have updated your web.xml to use
at least the 3.0 schema as shown below:

<web-app xm ns="http://java. sun. conf xm / ns/j avaee"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocation="http://java. sun.com xnl/ns/javaee http://java.sun.com xnl/ns/javaeel/ web-app_3_0. xsd"
version="3.0">

</ web- app>

Next you need to ensure that your springSecurityFilterChain is setup for processing asynchronous
requests.

<filter>
<filter-name>springSecurityFilterChain</filter-nanme>
<filter-class>

org. springframework. web. filter.Del egatingFilterProxy
</filter-class>
<async- support ed>t rue</ async- support ed>
</[filter>
<filter-mppi ng>
<filter-name>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >ASYNC</ di spat cher >
</filter-mappi ng>

That's it! Now Spring Security will ensure that your SecurityContext is propagated on asynchronous
requests too.

So how does it work? If you are not really interested, feel free to skip the remainder of this section,
otherwise read on. Most of this is built into the Servlet specification, but there is a little bit of tweaking
that Spring Security does to ensure things work with asynchronous requests properly. Prior to Spring
Security 3.2, the SecurityContext from the SecurityContextHolder was automatically saved as soon as
the HitpServletResponse was committed. This can cause issues in a Async environment. For example,
consider the following:

ht t pSer vl et Request . start Async();
new Thread("AsyncThread") {
@verride
public void run() {
try {
/1 Do work
Ti meUni t . SECONDS. sl eep(1);

/'l Wite to and commt the httpServl et Response
htt pSer vl et Response. get Qut put Strean().fl ush();
} catch (Exception e) {

e.printStackTrace();

}

}
}.start();

The issue is that this Thread is not known to Spring Security, so the SecurityContext is not propagated
to it. This means when we commit the HttpServletResponse there is no SecuriytContext. When Spring
Security automatically saved the SecurityContext on committing the HttpServietResponse it would lose
our logged in user.

4.1.0.RC1 Spring Security 89

Spring Security Reference

Since version 3.2, Spring Security is smart enough to no longer automatically save the SecurityContext
on commiting the HttpServletResponse as soon as HttpServletRequest.startAsync() is invoked.

13.3 Servlet 3.1+ Integration
The following section describes the Servlet 3.1 methods that Spring Security integrates with.
HttpServletRequest#changeSessionld()

The HttpServletRequest.changeSessionld() is the default method for protecting against Session
Fixation attacks in Servlet 3.1 and higher.

4.1.0.RC1 Spring Security 90

http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html#changeSessionId()

Spring Security Reference

14. Basic and Digest Authentication

Basic and digest authentiation are alternative authentication mechanisms which are popular in web
applications. Basic authentication is often used with stateless clients which pass their credentials on
each request. It's quite common to use it in combination with form-based authentication where an
application is used through both a browser-based user interface and as a web-service. However, basic
authentication transmits the password as plain text so it should only really be used over an encrypted
transport layer such as HTTPS.

14.1 BasicAuthenticationFilter

Basi cAut henti cati onFilter is responsible for processing basic authentication credentials
presented in HTTP headers. This can be used for authenticating calls made by Spring remoting protocols
(such as Hessian and Burlap), as well as normal browser user agents (such as Firefox and Internet
Explorer). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11,
and Basi cAut henti cati onFi |l t er conforms with this RFC. Basic Authentication is an attractive
approach to authentication, because it is very widely deployed in user agents and implementation is
extremely simple (it's just a Base64 encoding of the username:password, specified in an HTTP header).

Configuration

To implement HTTP Basic Authentication, you need to add a Basi cAut henti cati onFi | t er to your
filter chain. The application context should contain Basi cAut henti cati onFi | t er and its required
collaborator:

<bean id="basi cAuthenticationFilter"
cl ass="org. springframework. security.web. aut henti cati on. ww. Basi cAut henti cati onFilter">

<property name="aut henti cati onManager" ref="authenticati onManager"/>
<property name="aut henticati onEntryPoi nt" ref="authenticati onEntryPoint"/>
</ bean>

<bean id="authenticati onEntryPoint"

cl ass="org. springframework. security.web. aut henti cati on. ww. Basi cAut henti cati onEntryPoi nt">
<property nanme="real nNane" val ue="Nane O Your Real n{'/>

</ bean>

The configured Aut hent i cati onManager processes each authentication request. If authentication
fails, the configured Aut hent i cati onEnt r yPoi nt will be used to retry the authentication process.
Usually you will use the filter in combination with a Basi cAut henti cati onEntryPoi nt, which
returns a 401 response with a suitable header to retry HTTP Basic authentication. If authentication is
successful, the resulting Aut hent i cat i on object will be placed into the Secur i t yCont ext Hol der
as usual.

If the authentication event was successful, or authentication was not attempted because the
HTTP header did not contain a supported authentication request, the filter chain will continue
as normal. The only time the filter chain will be interrupted is if authentication fails and the
Aut hent i cati onEnt r yPoi nt is called.

14.2 DigestAuthenticationFilter

Di gest Aut henti cationFilter is capable of processing digest authentication credentials
presented in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of
Basic authentication, specifically by ensuring credentials are never sent in clear text across the wire.

4.1.0.RC1 Spring Security 91

Spring Security Reference

Many user agents support Digest Authentication, including FireFox and Internet Explorer. The standard
governing HTTP Digest Authentication is defined by RFC 2617, which updates an earlier version of
the Digest Authentication standard prescribed by RFC 2069. Most user agents implement RFC 2617.
Spring Security’s Di gest Aut henti cati onFi | t er is compatible with the “auth” quality of protection
(qop) prescribed by RFC 2617, which also provides backward compatibility with RFC 2069. Digest
Authentication is a more attractive option if you need to use unencrypted HTTP (i.e. no TLS/HTTPS) and
wish to maximise security of the authentication process. Indeed Digest Authentication is a mandatory
requirement for the WebDAYV protocol, as noted by RFC 2518 Section 17.1.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic
Authentication and Digest Authentication, although extra security also means more complex user agent
implementations. Central to Digest Authentication is a "nonce". This is a value the server generates.
Spring Security’s nonce adopts the following format:

base64(expirationTinme + ":" + nmi5Hex(expirationTime + ":" + key))
expirationTi ne: The date and tine when the nonce expires, expressed in mlliseconds
key: A private key to prevent nodification of the nonce token

The Di gest Aut hent i cat onEnt r yPoi nt has a property specifying the key used for generating the
nonce tokens, along with a nonceVal i di t ySeconds property for determining the expiration time
(default 300, which equals five minutes). Whist ever the nonce is valid, the digest is computed by
concatenating various strings including the username, password, nonce, URI being requested, a client-
generated nonce (merely arandom value which the user agent generates each request), the realm name
etc, then performing an MD5 hash. Both the server and user agent perform this digest computation,
resulting in different hash codes if they disagree on an included value (eg password). In Spring Security
implementation, if the server-generated nonce has merely expired (but the digest was otherwise valid),
the Di gest Aut henti cati onEnt ryPoi nt will send a "st al e=true" header. This tells the user
agent there is no need to disturb the user (as the password and username etc is correct), but simply
to try again using a new nonce.

An appropriate value for the nonceVal i di t ySeconds parameter of
Di gest Aut henti cati onEntryPoi nt depends on your application. Extremely secure applications
should note that an intercepted authentication header can be used to impersonate the principal until
the expi rati onTi me contained in the nonce is reached. This is the key principle when selecting an
appropriate setting, but it would be unusual for immensely secure applications to not be running over
TLS/HTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent
issues. For example, Internet Explorer fails to present an “opaque” token on subsequent requests in
the same session. Spring Security filters therefore encapsulate all state information into the “nonce”
token instead. In our testing, Spring Security’s implementation works reliably with FireFox and Internet
Explorer, correctly handling nonce timeouts etc.

Configuration
Now that we've reviewed the theory, let's see how to use it. To implement HTTP Digest Authentication,

it is necessary to define Di gest Aut henti cati onFi |l t er in the filter chain. The application context
will need to define the Di gest Aut henti cati onFi | t er and its required collaborators:

4.1.0.RC1 Spring Security 92

Spring Security Reference

<bean id="digestFilter" class=
"org.springframework. security.web. aut henti cati on. ww. Di gest Aut henti cationFilter">
<property name="user Detail sServi ce" ref="jdbcDaol npl"/>
<property name="aut henti cationEntryPoint" ref="digestEntryPoint"/>
<property name="user Cache" ref="user Cache"/>
</ bean>

<bean id="di gest EntryPoi nt" class=

"org.springframework. security.web. aut henti cati on. ww. Di gest Aut henti cati onEntryPoi nt">
<property name="real nName" val ue="Contacts Real mvia Digest Authentication"/>
<property name="key" val ue="acegi"/>
<property name="nonceVal i ditySeconds" val ue="10"/>
</ bean>

The configured User Det ai | sSer vi ce is needed because Di gest Aut henti cati onFi | t er must
have direct access to the clear text password of a user. Digest Authentication will NOT work if you
are using encoded passwords in your DAO ! The DAO collaborator, along with the User Cache, are
typically shared directly with a DaoAut hent i cat i onPr ovi der . The aut hent i cat i onEnt r yPoi nt
property must be Di gest Aut henti cati onEnt ryPoi nt, sothat Di gest Aut henti cationFilter
can obtain the correct r eal nNane and key for digest calculations.

Like Basi cAut henti cati onFi | t er, if authentication is successful an Aut henti cati on request
token will be placed into the Securi t yCont ext Hol der . If the authentication event was successful,
or authentication was not attempted because the HTTP header did not contain a Digest Authentication
request, the filter chain will continue as normal. The only time the filter chain will be interrupted is if
authentication fails and the Aut henti cati onEntryPoi nt is called, as discussed in the previous
paragraph.

Digest Authentication’s RFC offers a range of additional features to further increase security. For
example, the nonce can be changed on every request. Despite this, Spring Security implementation
was designed to minimise the complexity of the implementation (and the doubtless user agent
incompatibilities that would emerge), and avoid needing to store server-side state. You are invited to
review RFC 2617 if you wish to explore these features in more detail. As far as we are aware, Spring
Security’s implementation does comply with the minimum standards of this RFC.

Yt is possible to encode the password in the format HEX(MD5(username:realm:password)) provided the

Di gest Aut henti cati onFi | t er. passwor dAl r eadyEncoded is set to t r ue. However, other password encodings will not
work with digest authentication.

4.1.0.RC1 Spring Security 93

Spring Security Reference

15. Remember-Me Authentication

15.1 Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity
of a principal between sessions. This is typically accomplished by sending a cookie to the browser,
with the cookie being detected during future sessions and causing automated login to take place.
Spring Security provides the necessary hooks for these operations to take place, and has two concrete
remember-me implementations. One uses hashing to preserve the security of cookie-based tokens and
the other uses a database or other persistent storage mechanism to store the generated tokens.

Note that both implemementations require a User Det ai | sSer vi ce. If you are using an authentication
provider which doesn’t use a User Det ai | sSer vi ce (for example, the LDAP provider) then it won't
work unless you also have a User Det ai | sSer vi ce bean in your application context.

15.2 Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to
the browser upon successful interactive authentication, with the cookie being composed as follows:

base64(usernanme + ":" + expirationTime + ":" +

nd5Hex(usernane + ":" + expirationTine + ":" password + ":" + key))

user nane: As identifiable to the UserDetail sService

passwor d: That matches the one in the retrieved UserDetails

expirationTi ne: The date and time when the renenber-ne token expires, expressed in mlliseconds
key: A private key to prevent nodification of the renenber-ne token

As such the remember-me token is valid only for the period specified, and provided that the username,
password and key does not change. Notably, this has a potential security issue in that a captured
remember-me token will be usable from any user agent until such time as the token expires. This is
the same issue as with digest authentication. If a principal is aware a token has been captured, they
can easily change their password and immediately invalidate all remember-me tokens on issue. If more
significant security is needed you should use the approach described in the next section. Alternatively
remember-me services should simply not be used at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable
remember-me authentication just by adding the <r enenber - me> element:

<htt p>

<renenber - me key="nyAppKey"/ >
</ http>

The User Det ai | sSer vi ce will normally be selected automatically. If you have more than one in
your application context, you need to specify which one should be used with the user - ser vi ce-r ef
attribute, where the value is the name of your User Det ai | sSer vi ce bean.

4.1.0.RC1 Spring Security 94

Spring Security Reference

15.3 Persistent Token Approach

This approach is based on the article http://jaspan.com/
improved_persistent_login_cookie_best_practice with some minor modifications *. To use the this
approach with namespace configuration, you would supply a datasource reference:

<htt p>

<renmenber - me dat a- sour ce- r ef =" someDat aSour ce"/ >
</ http>

The database should contain a per si st ent | ogi ns table, created using the following SQL (or
equivalent):

create table persistent_|logins (usernane varchar(64) not null,
series varchar(64) primry key,
token varchar (64) not null,
| ast _used tinmestanp not null)

15.4 Remember-Me Interfaces and Implementations

Remember-me is used with User nanePasswor dAut henti cati onFi |l t er, and is implemented via
hooks in the Abstract Aut henti cati onProcessi ngFilter superclass. It is also used within
Basi cAut henti cati onFi |l ter. The hooks will invoke a concrete Remenber MeSer vi ces at the
appropriate times. The interface looks like this:

Aut henti cati on autolLogi n(H t pServl et Request request, HttpServl et Response response);
voi d | ogi nFai | (Htt pServl et Request request, HttpServl et Response response);

voi d | ogi nSuccess(HttpServl et Request request, HttpServl et Response response,
Aut henti cati on successful Aut henti cation);

Please refer to the JavaDocs for a fuller discussion on what the methods do, although
note at this stage that Abstract AuthenticationProcessingFilter only calls the
loginFail () and |oginSuccess() methods. The autolLogin() method is called by
Renmember MeAut hent i cati onFi | t er whenever the Securi t yCont ext Hol der does not contain
an Aut hent i cati on. This interface therefore provides the underlying remember-me implementation
with sufficient notification of authentication-related events, and delegates to the implementation
whenever a candidate web request might contain a cookie and wish to be remembered. This design
allows any number of remember-me implementation strategies. We've seen above that Spring Security
provides two implementations. We'll look at these in turn.

TokenBasedRememberMeServices

This implementation supports the simpler approach described in
Section 15.2, “Simple Hash-Based Token Approach”. TokenBasedRenmenber MeServices
generates a Renmember MeAut hent i cati onToken, which is processed by

Renenmber MeAut hent i cati onProvi der. A key is shared between this authentication provider
and the TokenBasedRenenber MeServi ces. In addition, TokenBasedRenmenber MeServi ces
requires A UserDetailsService from which it can retrieve the username and password for signature
comparison purposes, and generate the Renmenber MeAut hent i cat i onToken to contain the correct

1Essentially, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion
on this in the comments section of this article.

4.1.0.RC1 Spring Security 95

http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice

Spring Security Reference

Grant edAut hority s. Some sort of logout command should be provided by the application that
invalidates the cookie if the user requests this. TokenBasedRenenber MeSer vi ces also implements
Spring Security’s Logout Handl er interface so can be used with Logout Fi | t er to have the cookie
cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean id="remenber MeFilter" class=

"org.springframework. security.web. aut henti cati on. renenber ne. Renenber MeAut henti cationFilter">
<property name="renmenber MeServi ces" ref="renmenber MeServi ces"/ >

<property name="aut henti cati onManager" ref="theAuthenticati onManager" />

</ bean>

<bean id="remenber MeServi ces" class=

"org.springframework. security.web. aut henti cati on. renenber ne. TokenBasedRenmenber MeSer vi ces" >
<property name="user Detail sService" ref="nmyUserDetail sService"/>

<property name="key" val ue="springRocks"/>

</ bean>

<bean id="remenber MeAut henti cati onProvi der" class=

"org. springframework. security. aut henti cati on. Remenber MeAut henti cati onProvi der" >
<property name="key" val ue="springRocks"/>

</ bean>

Don’t forget to add your Remenber MeSer vi ces implementation to your
User nanmePasswor dAut henti cati onFi |l t er. set Remenber MeSer vi ces() property, include the
Renmenber MeAut henti cati onProvi der in your Aut henti cati onManager. set Provi ders()
list, and add Remenber MeAut henti cationFilter into your FilterChainProxy (typically
immediately after your User nanePasswor dAut henti cati onFil ter).

PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRenenber MeSer vi ces, but it additionally
needs to be configured with a Per si st ent TokenReposi t ory to store the tokens. There are two
standard implementations.

e I nMenor yTokenReposi t oryl npl which is intended for testing only.
« JdbcTokenReposi t oryl npl which stores the tokens in a database.

The database schema is described above in Section 15.3, “Persistent Token Approach”.

4.1.0.RC1 Spring Security 96

Spring Security Reference

16. Cross Site Request Forgery (CSRF)

This section discusses Spring Security’s _Cross Site Request Forgery (CSRF) support.

16.1 CSRF Attacks

Before we discuss how Spring Security can protect applications from CSRF attacks, we will explain
what a CSRF attack is. Let’s take a look at a concrete example to get a better understanding.

Assume that your bank’s website provides a form that allows transferring money from the currently
logged in user to another bank account. For example, the HTTP request might look like:

POST /transfer HITTP/ 1.1

Host: bank. exanpl e. com

Cooki e: JSESSI ONIl D=r andoni d; Dommi n=bank. exanpl e. com Secure; HtpOnly
Cont ent - Type: application/ x-ww«form url encoded

anmount =100. 00&r out i ngNunber =1234&account =9876

Now pretend you authenticate to your bank’s website and then, without logging out, visit an evil website.
The evil website contains an HTML page with the following form:

<form acti on="https://bank. exanpl e. com transfer" nethod="post">
<i nput type="hi dden"
nanme="anmount "
val ue="100. 00"/ >
<i nput type="hi dden"
nane="r out i ngNunber"
val ue="evi | sRout i ngNunber"/ >
<i nput type="hi dden"
nanme="account "
val ue="evi | sAccount Nunber "/ >
<input type="submt"
val ue="Wn Money!"/>
</form

You like to win money, so you click on the submit button. In the process, you have unintentionally
transferred $100 to a malicious user. This happens because, while the evil website cannot see your
cookies, the cookies associated with your bank are still sent along with the request.

Worst yet, this whole process could have been automated using JavaScript. This means you didn’t even
need to click on the button. So how do we protect ourselves from such attacks?

16.2 Synchronizer Token Pattern

The issue is that the HTTP request from the bank’s website and the request from the evil website are
exactly the same. This means there is no way to reject requests coming from the evil website and allow
requests coming from the bank’s website. To protect against CSRF attacks we need to ensure there is
something in the request that the evil site is unable to provide.

One solution is to use the Synchronizer Token Pattern. This solution is to ensure that each request
requires, in addition to our session cookie, a randomly generated token as an HTTP parameter. When
a request is submitted, the server must look up the expected value for the parameter and compare it
against the actual value in the request. If the values do not match, the request should fail.

We can relax the expectations to only require the token for each HTTP request that updates state.
This can be safely done since the same origin policy ensures the evil site cannot read the response.

4.1.0.RC1 Spring Security 97

http://en.wikipedia.org/wiki/Cross-site_request_forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern

Spring Security Reference

Additionally, we do not want to include the random token in HTTP GET as this can cause the tokens
to be leaked.

Let’s take a look at how our example would change. Assume the randomly generated token is present
in an HTTP parameter named _csrf. For example, the request to transfer money would look like this:

POST /transfer HTTP/1.1

Host: bank. exanpl e. com

Cooki e: JSESSI ONI D=r andoni d; Donmi n=bank. exanpl e. com Secure; HtpOnly
Cont ent - Type: appl i cati on/ x-ww«form url encoded

anmount =100. 00&r out i ngNunber =1234&account =9876& csr f =<secur e- r andon®
You will notice that we added the _csrf parameter with a random value. Now the evil website will not

be able to guess the correct value for the _csrf parameter (which must be explicitly provided on the evil
website) and the transfer will fail when the server compares the actual token to the expected token.

16.3 When to use CSRF protection

When should you use CSRF protection? Our recommendation is to use CSRF protection for any request
that could be processed by a browser by normal users. If you are only creating a service that is used
by non-browser clients, you will likely want to disable CSRF protection.

CSRF protection and JSON

A common question is "do | need to protect JSON requests made by javascript?" The short answer
is, it depends. However, you must be very careful as there are CSRF exploits that can impact JSON
requests. For example, a malicious user can create a CSRF with JSON using the following form:

<form acti on="https://bank. exanpl e. conftransfer" nethod="post" enctype="text/plain">

<i nput name='{"anount": 100, "routi ngNunmber": "evi | sRouti ngNunber ", "account": "evi | sAccount Nunber",
"ignore_me":"' value='test"}' type='hidden' >

<input type="submt"
val ue="Wn Money!"/>

</form

This will produce the following JSON structure

{ "anmount": 100,

"routingNunber": "evil sRouti ngNunber",
"account": "evil sAccount Nunber",
"ignore_me": "=test"

}

If an application were not validating the Content-Type, then it would be exposed to this exploit.
Depending on the setup, a Spring MVC application that validates the Content-Type could still be
exploited by updating the URL suffix to end with ".json" as shown below:

<form acti on="https://bank. exanpl e. conf transfer.json" nmethod="post" enctype="text/plain">

<i nput nanme='{"anount": 100, "routi ngNunmber": "evi | sRouti ngNunber", "account": "evi | sAccount Nunber",
"ignore_nme":"' value='test"}' type='hidden' >

<i nput type="submt"
val ue="Wn Money!"/>

</ form

CSRF and Stateless Browser Applications

What if my application is stateless? That doesn’t necessarily mean you are protected. In fact, if a
user does not need to perform any actions in the web browser for a given request, they are likely still
vulnerable to CSRF attacks.

4.1.0.RC1 Spring Security 98

http://blog.opensecurityresearch.com/2012/02/json-csrf-with-parameter-padding.html

Spring Security Reference

For example, consider an application uses a custom cookie that contains all the state within it for
authentication instead of the JSESSIONID. When the CSRF attack is made the custom cookie will
be sent with the request in the same manner that the JSESSIONID cookie was sent in our previous
example.

Users using basic authentication are also vulnerable to CSRF attacks since the browser will
automatically include the username password in any requests in the same manner that the JSESSIONID
cookie was sent in our previous example.

16.4 Using Spring Security CSRF Protection

So what are the steps necessary to use Spring Security’s to protect our site against CSRF attacks? The
steps to using Spring Security’s CSRF protection are outlined below:

e Use proper HTTP verbs

» Configure CSRF Protection

e Include the CSRF Token

Use proper HTTP verbs

The first step to protecting against CSRF attacks is to ensure your website uses proper HTTP verbs.
Specifically, before Spring Security’s CSRF support can be of use, you need to be certain that your
application is using PATCH, POST, PUT, and/or DELETE for anything that modifies state.

This is not a limitation of Spring Security’s support, but instead a general requirement for proper CSRF
prevention. The reason is that including private information in an HTTP GET can cause the information to
be leaked. See RFC 2616 Section 15.1.3 Encoding Sensitive Information in URI's for general guidance
on using POST instead of GET for sensitive information.

Configure CSRF Protection

The next step is to include Spring Security’s CSRF protection within your application. Some frameworks
handle invalid CSRF tokens by invaliding the user’s session, but this causes its own problems. Instead
by default Spring Security’s CSRF protection will produce an HTTP 403 access denied. This can
be customized by configuring the AccessDeniedHandler to process | nval i dCsr f TokenExcepti on
differently.

As of Spring Security 4.0, CSRF protection is enabled by default with XML configuration. If you would
like to disable CSRF protection, the corresponding XML configuration can be seen below.

<htt p>

S

<csrf disabl ed="true"/>
</ http>

CSREF protection is enabled by default with Java configuration. If you would like to disable CSRF,
the corresponding Java configuration can be seen below. Refer to the Javadoc of csrf() for additional
customizations in how CSRF protection is configured.

4.1.0.RC1 Spring Security 99

http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3

Spring Security Reference

@Enabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride

protected void configure(HttpSecurity http) throws Exception {
http

.csrf().disable();

}
}

Include the CSRF Token

Form Submissions

The last step is to ensure that you include the CSRF token in all PATCH, POST, PUT, and DELETE
methods. One way to approach this is to use the _csrf request attribute to obtain the current
Csr f Token. An example of doing this with a JSP is shown below:

<c:url var="logoutUl" val ue="/1ogout"/>
<form action="${| ogout Ur| }"
nmet hod="post" >
<input type="submt"
val ue="Log out" />
<i nput type="hi dden"
name="${_csrf. paranet er Nane}"
val ue="${_csrf.token}"/>
</ fornm

An easier approach is to use the csrflnput tag from the Spring Security JSP tag library.

Note

If you are using Spring MVC <formform> tag or Thymeleaf 2.1+ and are using
@nabl eWebSecurity, the CsrfToken is automatically included for you (using the
Csr f Request Dat aVal uePr ocessor).

Ajax and JSON Requests

If you are using JSON, then it is not possible to submit the CSRF token within an HTTP parameter.
Instead you can submit the token within a HTTP header. A typical pattern would be to include the CSRF
token within your meta tags. An example with a JSP is shown below:

<htm >
<head>
<meta name="_csrf" content="${_csrf.token}"/>
<!-- default header name is X-CSRF- TOKEN -->
<meta name="_csrf_header" content="${_csrf.header Nane}"/>
<l-- ... -->
</ head>
<l-- ... -->

Instead of manually creating the meta tags, you can use the simpler csrfMetaTags tag from the Spring
Security JSP tag library.

You can then include the token within all your Ajax requests. If you were using jQuery, this could be
done with the following:

4.1.0.RC1 Spring Security 100

http://www.thymeleaf.org/whatsnew21.html#reqdata

Spring Security Reference

$(function () {
var token = $("neta[name='_csrf']").attr("content")
var header = $("neta[nane="_csrf_header']").attr("content")
$(docurent) . aj axSend(function(e, xhr, options) {
xhr. set Request Header (header, token);
b))
5D

As an alternative to jQuery, we recommend using cujoJS’s rest.js. The rest.js module provides advanced
support for working with HTTP requests and responses in RESTful ways. A core capability is the ability
to contextualize the HTTP client adding behavior as needed by chaining interceptors on to the client.

var client = rest.chain(csrf, {
token: $("neta[nane="_csrf']").attr("content"),
name: $("neta[nane='_csrf_header']").attr("content")

1)

The configured client can be shared with any component of the application that needs to make a
request to the CSRF protected resource. One significant different between rest.js and jQuery is that only
requests made with the configured client will contain the CSRF token, vs jQuery where all requests will
include the token. The ability to scope which requests receive the token helps guard against leaking the
CSRF token to a third party. Please refer to the rest.js reference documentation for more information
on rest.js.

16.5 CSRF Caveats

There are a few caveats when implementing CSRF.
Timeouts

One issue is that the expected CSRF token is stored in the HttpSession, so as soon as the HttpSession
expires your configured AccessDeni edHandl er will receive a InvalidCsrfTokenException. If you are
using the default AccessDeni edHandl er, the browser will get an HTTP 403 and display a poor error
message.

Note

One might ask why the expected Csr f Token isn’t stored in a cookie. This is because there are
known exploits in which headers (i.e. specify the cookies) can be set by another domain. This is
the same reason Ruby on Rails no longer skips CSRF checks when the header X-Requested-
With is present. See this webappsec.org thread for details on how to perform the exploit. Another
disadvantage is that by removing the state (i.e. the timeout) you lose the ability to forcibly terminate
the token if it is compromised.

A simple way to mitigate an active user experiencing a timeout is to have some JavaScript that lets
the user know their session is about to expire. The user can click a button to continue and refresh the
session.

Alternatively, specifying a custom AccessDeni edHandl er allows you to process the
I nval i dCsrf TokenExcepti on any way you like. For an example of how to customize the
AccessDeni edHandl er refer to the provided links for both xml and Java configuration.

4.1.0.RC1 Spring Security 101

http://cujojs.com/
https://github.com/cujojs/rest
https://github.com/cujojs/rest/tree/master/docs
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
https://github.com/spring-projects/spring-security/blob/3.2.0.RC1/config/src/test/groovy/org/springframework/security/config/annotation/web/configurers/NamespaceHttpAccessDeniedHandlerTests.groovy#L64

Spring Security Reference

Logging In

In order to protect against forging log in requests the log in form should be protected against CSRF
attacks too. Since the Csr f Token is stored in HttpSession, this means an HttpSession will be created
as soon as Csrf Token token attribute is accessed. While this sounds bad in a RESTful / stateless
architecture the reality is that state is necessary to implement practical security. Without state, we have
nothing we can do if a token is compromised. Practically speaking, the CSRF token is quite small in
size and should have a negligible impact on our architecture.

Logging Out

Adding CSRF will update the LogoutFilter to only use HTTP POST. This ensures that log out requires
a CSRF token and that a malicious user cannot forcibly log out your users.

One approach is to use a form for log out. If you really want a link, you can use JavaScript to have the
link perform a POST (i.e. maybe on a hidden form). For browsers with JavaScript that is disabled, you
can optionally have the link take the user to a log out confirmation page that will perform the POST.

If you really want to use HTTP GET with logout you can do so, but remember this is generally not
recommended. For example, the following Java Configuration will perform logout with the URL /logout
is requested with any HTTP method:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecurityConfi gurer Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
. I ogout ()
. | ogout Request Mat cher (new Ant Pat hRequest Mat cher ("/ 1 ogout"));

Multipart (file upload)
There are two options to using CSRF protection with multipart/form-data. Each option has its tradeoffs.

» Placing MultipartFilter before Spring Security

* Include CSRF token in action

Note

Before you integrate Spring Security’s CSRF protection with multipart file upload, ensure that you
can upload without the CSRF protection first. More information about using multipart forms with
Spring can be found within the 17.10 Spring’s multipart (file upload) support section of the Spring
reference and the MultipartFilter javadoc.

Placing MultipartFilter before Spring Security

The first option is to ensure that the Mul ti part Fi |l t er is specified before the Spring Security filter.
Specifyingthe Mul ti part Fi | t er before the Spring Security filter means that there is no authorization
for invoking the Mul ti part Fi | t er which means anyone can place temporary files on your server.
However, only authorized users will be able to submit a File that is processed by your application. In

4.1.0.RC1 Spring Security 102

http://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-multipart
http://docs.spring.io/spring/docs/3.2.x/javadoc-api/org/springframework/web/multipart/support/MultipartFilter.html

Spring Security Reference

general, this is the recommended approach because the temporary file upload should have a negligble
impact on most servers.

Toensure Mul ti part Fi | t er isspecified before the Spring Security filter with java configuration, users
can override beforeSpringSecurityFilterChain as shown below:

public class SecurityApplicationlnitializer extends Abstract SecurityWbApplicationlnitializer {

@verride
protected voi d beforeSpringSecurityFilterChain(ServletContext servletContext) {
insertFilters(servletContext, new MiltipartFilter());
}
}

To ensure Mul tipartFilter is specified before the Spring Security filter with XML configuration,
users can ensure the <filter-mapping> element of the Mul ti partFilter is placed before the
springSecurityFilterChain within the web.xml as shown below:

<filter>

<filter-name>MultipartFilter</filter-nanme>

<filter-class>org.springframework.web. multipart.support. MultipartFilter</filter-class>
</filter>

<filter>

<filter-name>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>

<filter-name>Mul tipartFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-nmappi ng>

<filter-mppi ng>

<filter-name>springSecurityFiltercChain</filter-nanme>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

Include CSRF token in action

If allowing unauthorized users to upload temporariy files is not acceptable, an alternative is to place the
Mul tipartFilter after the Spring Security filter and include the CSRF as a query parameter in the
action attribute of the form. An example with a jsp is shown below

<form action="./upl oad?${_csrf. paranet er Name} =${ _csrf.token}" nethod="post" enctype="nultipart/form
data">

The disadvantage to this approach is that query parameters can be leaked. More genearlly, it is
considered best practice to place sensitive data within the body or headers to ensure it is not leaked.
Additional information can be found in REC 2616 Section 15.1.3 Encoding Sensitive Information in URI’s.

HiddenHttpMethodFilter

The HiddenHttpMethodFilter should be placed before the Spring Security filter. In general this is true,
but it could have additional implications when protecting against CSRF attacks.

Note that the HiddenHttpMethodFilter only overrides the HTTP method on a POST, so this is actually
unlikely to cause any real problems. However, it is still best practice to ensure it is placed before Spring
Security’s filters.

16.6 Overriding Defaults

Spring Security’s goal is to provide defaults that protect your users from exploits. This does not mean
that you are forced to accept all of its defaults.

4.1.0.RC1 Spring Security 103

http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3

Spring Security Reference

For example, you can provide a custom CsrfTokenRepository to override the way in which the
Csrf Token is stored.

You can also specify a custom RequestMatcher to determine which requests are protected by CSRF
(i.e. perhaps you don't care if log out is exploited). In short, if Spring Security’'s CSRF protection
doesn’t behave exactly as you want it, you are able to customize the behavior. Refer to the the
section called “<csrf>" documentation for details on how to make these customizations with XML and
the Csrf Confi gurer javadoc for details on how to make these customizations when using Java
configuration.

4.1.0.RC1 Spring Security 104

Spring Security Reference

17. Security HTTP Response Headers

This section discusses Spring Security’s support for adding various security headers to the response.

17.1 Default Security Headers

Spring Security allows users to easily inject the default security headers to assist in protecting their
application. The default for Spring Security is to include the following headers:

Cache- Control : no-cache, no-store, max-age=0, nust-revalidate
Pragma: no-cache

Expires: 0

X- Cont ent - Type- Opti ons: nosniff

Strict-Transport-Security: max-age=31536000 ; incl udeSubDomai ns
X- Frame- Opti ons: DENY

X-XSS-Protection: 1; node=bl ock

Note

Strict-Transport-Security is only added on HTTPS requests

For additional details on each of these headers, refer to the corresponding sections:

» Cache Control

Content Type Options

HTTP Strict Transport Security

» X-Frame-Options

X-XSS-Protection

While each of these headers are considered best practice, it should be noted that not all clients utilize
the headers, so additional testing is encouraged.

You can customize specific headers. For example, assume that want your HTTP response headers to
look like the following:

Cache- Control : no-cache, no-store, max-age=0, nust-revalidate
Pragma: no-cache

Expires: 0

X- Cont ent - Type- Opti ons: nosniff

X- Frame- Opti ons: SAMEORI G N

X- XSS- Protection: 1; node=bl ock

Specifically, you want all of the default headers with the following customizations:

» X-Frame-Options to allow any request from same domain

e HTTP Strict Transport Security (HSTS) will not be addded to the response

You can easily do this with the following Java Configuration:

4.1.0.RC1 Spring Security 105

Spring Security Reference

@Enabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConf i gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
11
. header s()
.frameOptions().sanmeOrigin()
.httpStrictTransport Security().disable()

Alternatively, if you are using Spring Security XML Configuration, you can use the following:

<htt p>
<l-- ... -->

<header s>
<frame-opti ons policy="SAMEORIG N' />
<hsts di sabl e="true"/>

</ header s>

</ http>

If you do not want the defaults to be added and want explicit control over what should be used, you can
disable the defaults. An example for both Java and XML based configuration is provided below:

If you are using Spring Security’s Java Configuration the following will only add Cache Control.

@Enabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride
protected void configure(HtpSecurity http) throws Exception {
http
/1
. header s()
/1 do not use any default headers unless explicitly listed
. def aul t sDi sabl ed()
.cacheControl ();
}
}

The following XML will only add Cache Control.

<htt p>
<l-- ... -->

<header s defaul ts-di sabl ed="true">
<cache-control / >

</ header s>

</ http>

If necessary, you can disable all of the HTTP Security response headers with the following Java
Configuration:

4.1.0.RC1 Spring Security 106

Spring Security Reference

@Enabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride

protected void configure(HttpSecurity http) throws Exception {
http

I

. headers() . di sabl e();
}
}

If necessary, you can disable all of the HTTP Security response headers with the following XML
configuration below:

<htt p>
<l-- ... -->

<headers di sabl ed="true" />
</ http>

Cache Control

In the past Spring Security required you to provide your own cache control for your web application.
This seemed reasonable at the time, but browser caches have evolved to include caches for secure
connections as well. This means that a user may view an authenticated page, log out, and then a
malicious user can use the browser history to view the cached page. To help mitigate this Spring Security
has added cache control support which will insert the following headers into you response.

Cache- Control : no-cache, no-store, max-age=0, nust-revalidate
Pragma: no-cache
Expires: 0

Simply adding the <headers> element with no child elements will automatically add Cache Control and
quite a few other protections. However, if you only want cache control, you can enable this feature
using Spring Security’s XML namespace with the <cache-control> element and the headers@defaults-
disabled attribute.

<ht t p>
<l-- ... -->

<headers defaul ts-di sabl e="true">
<cache-control />
</ header s>
</ http>

Similarly, you can enable only cache control within Java Configuration with the following:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
11
. header s()
. def aul t sDi sabl ed()
.cacheControl ();
}
}

4.1.0.RC1 Spring Security 107

Spring Security Reference

If you actually want to cache specific responses, your application can selectively invoke
HttpServletResponse.setHeader(String,String) to override the header set by Spring Security. This is
useful to ensure things like CSS, JavaScript, and images are properly cached.

When using Spring Web MVC, this is typically done within your configuration. For example, the following
configuration will ensure that the cache headers are set for all of your resources:

@nabl eWebM/c
public class WebMcConfiguration extends WebMcConfi gurer Adapter {

@verride
public voi d addResour ceHandl er s(Resour ceHandl er Regi stry registry) {
registry
. addResour ceHandl er ("/ resources/ **")
. addResour ceLocat i ons("/resources/")
. set CachePeri od(31556926) ;
}

1o
}

Content Type Options

Historically browsers, including Internet Explorer, would try to guess the content type of a request using
content sniffing. This allowed browsers to improve the user experience by guessing the content type on
resources that had not specified the content type. For example, if a browser encountered a JavaScript
file that did not have the content type specified, it would be able to guess the content type and then
execute it.

Note

There are many additional things one should do (i.e. only display the document in a distinct
domain, ensure Content-Type header is set, sanitize the document, etc) when allowing content
to be uploaded. However, these measures are out of the scope of what Spring Security provides.
It is also important to point out when disabling content sniffing, you must specify the content type
in order for things to work properly.

The problem with content sniffing is that this allowed malicious users to use polyglots (i.e. a file that is
valid as multiple content types) to execute XSS attacks. For example, some sites may allow users to
submit a valid postscript document to a website and view it. A malicious user might create a postscript
document that is also a valid JavaScript file and execute a XSS attack with it.

Content sniffing can be disabled by adding the following header to our response:

X- Cont ent - Type- Opti ons: nosni ff

Just as with the cache control element, the nosniff directive is added by default when using the
<headers> element with no child elements. However, if you want more control over which headers are
added you can use the <content-type-options> element and the headers@defaults-disabled attribute
as shown below:

<htt p>
<<l-- ... -->
<header s defaul ts-di sabl ed="true">

<content-type-options />
</ header s>
</ http>

4.1.0.RC1 Spring Security 108

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html#setHeader(java.lang.String,java.lang.String)
http://en.wikipedia.org/wiki/Content_sniffing
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf

Spring Security Reference

The X-Content-Type-Options header is added by default with Spring Security Java configuration. If you
want more control over the headers, you can explicitly specify the content type options with the following:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecurit yConfi gur er Adapt er {

@verride
protected void configure(HtpSecurity http) throws Exception {
http
...
. headers()
. def aul t sDi sabl ed()
.cont ent TypeOptions();
}
}

HTTP Strict Transport Security (HSTS)

When you type in your bank’s website, do you enter mybank.example.com or do you enter https://
mybank.example.com? If you omit the https protocol, you are potentially vulnerable to Man in the
Middle attacks. Even if the website performs a redirect to https://mybank.example.com a malicious
user could intercept the initial HTTP request and manipulate the response (i.e. redirect to https://
mibank.example.com and steal their credentials).

Many users omit the https protocol and this is why HTTP Strict Transport Security (HSTS) was created.
Once mybank.example.com is added as a HSTS host, a browser can know ahead of time that any
request to mybank.example.com should be interpreted as https://mybank.example.com. This greatly
reduces the possibility of a Man in the Middle attack occurring.

Note

In accordance with REC6797, the HSTS header is only injected into HTTPS responses. In order
for the browser to acknowledge the header, the browser must first trust the CA that signed the
SSL certificate used to make the connection (not just the SSL certificate).

One way for a site to be marked as a HSTS host is to have the host preloaded into the browser. Another
is to add the "Strict-Transport-Security" header to the response. For example the following would instruct
the browser to treat the domain as an HSTS host for a year (there are approximately 31536000 seconds
in a year):

Strict-Transport-Security: max-age=31536000 ; i ncludeSubDomai ns

The optional includeSubDomains directive instructs Spring Security that subdomains (i.e.
secure.mybank.example.com) should also be treated as an HSTS domain.

As with the other headers, Spring Security adds HSTS by default. You can customize HSTS headers
with the <hsts> element as shown below:

<htt p>
<l-- ... -->

<header s>
<hst s
i ncl ude- subdomai ns="true"
max- age- seconds="31536000" />
</ header s>
</ http>

4.1.0.RC1 Spring Security 109

https://mybank.example.com
https://mybank.example.com
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://mybank.example.com
https://mibank.example.com
https://mibank.example.com
http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/rfc6797#section-5.1
https://mybank.example.com
http://tools.ietf.org/html/rfc6797#section-7.2

Spring Security Reference

Similarly, you can enable only HSTS headers with Java Configuration:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecurityConfi gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
...
. header s()
.httpStrictTransport Security()
. i ncl udeSubdonai ns(true)
. maxAgeSeconds(31536000) ;

HTTP Public Key Pinning (HPKP)

HTTP Public Key Pinning (HPKP) is a security feature that tells a web client to associate a specific
cryptographic public key with a certain web server to prevent Man in the Middle (MITM) attacks with
forged certificates.

To ensure the authenticity of a server’s public key used in TLS sessions, this public key is wrapped into
a X.509 certificate which is usually signed by a certificate authority (CA). Web clients such as browsers
trust a lot of these CAs, which can all create certificates for arbitrary domain names. If an attacker is able
to compromise a single CA, they can perform MITM attacks on various TLS connections. HPKP can
circumvent this threat for the HTTPS protocol by telling the client which public key belongs to a certain
web server. HPKP is a Trust on First Use (TOFU) technique. The first time a web server tells a client
via a special HTTP header which public keys belong to it, the client stores this information for a given
period of time. When the client visits the server again, it expects a certificate containing a public key
whose fingerprint is already known via HPKP. If the server delivers an unknown public key, the client
should present a warning to the user.

Note

Because the UA needs to validate the pins against the SSL certificate chain, the HPKP header
is only injected into HTTPS responses.

Enabling this feature for your site is as simple as returning the Public-Key-Pins HTTP header when your
site is accessed over HTTPS. For example the following would instruct the browser to only report pin
validation failures to a given URI for 2 pins:

Publ i c- Key- Pi ns- Report-Only: nmax- age=5184000 ; pin-
sha256="d6qzRu9z CECb90Uez27xW t Nsj 0eIMi7GkYYKkVoZWrME" ; pi n- sha256="E9CZ9I NDbd
+2eRQuzYqqbQ@yXLVKB9+xcpr M-+44Ulg=" ; report-uri ="http://exanpl e. net/pkp-report" ; includeSubDomai ns

The optional includeSubDomains directive instructs the browser to also validate subdomains with the
given pins.

Opposed to the other headers, Spring Security does not add HPKP by default. You can customize HPKP
headers with the <hpkp> element as shown below:

4.1.0.RC1 Spring Security 110

Spring Security Reference

<htt p>
<l-- L. -->

<header s>
<hpkp
i ncl ude- subdomai ns="true"
report-uri="http://exanpl e. net/pkp-report">
<pi ns>
<pi n al gorithm"sha256" >d6qzRu9z0OECh90Uez27xW t Nsj 0e1MI7Ck YYkVoZWriVE=</ pi n>
<pin al gorithnF"sha256" >E9CZ9| NDbd+2eRQoz YqqbQRy XLVKB9+xcpr M-+44Ulg=</ pi n>
</ pi ns>
</ hpkp>
</ header s>
</ http>

Similarly, you can enable HPKP headers with Java Configuration:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecurityConfi gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
/1
. headers()
. htt pPubl i cKeyPi nni ng()
. i ncl udeSubdonmai ns(true)
.reportUri ("http://exanpl e.net/pkp-report")
. addSha256Pi ns(" d6qzRu9zCECh90Uez27xW t Nsj 0eIMI7Ck YYkVoZWriVE", " E9CZ91 NDbd
+2eRQuzYqgqbQy XLVKB9+xcpr MF+44Ulg=";
}
}

X-Frame-Options

Allowing your website to be added to a frame can be a security issue. For example, using clever CSS
styling users could be tricked into clicking on something that they were not intending (video demo). For
example, a user that is logged into their bank might click a button that grants access to other users.
This sort of attack is known as Clickjacking.

Note

Another modern approach to dealing with clickjacking is to use ???.

There are a number ways to mitigate clickjacking attacks. For example, to protect legacy browsers from
clickjacking attacks you can use frame breaking code. While not perfect, the frame breaking code is the
best you can do for the legacy browsers.

A more modern approach to address clickjacking is to use X-Frame-Options header:

X- Frame- Opti ons: DENY

The X-Frame-Options response header instructs the browser to prevent any site with this header in the
response from being rendered within a frame. By default, Spring Security disables rendering within an
iframe.

You can customize X-Frame-Options with the frame-options element. For example, the following will
instruct Spring Security to use "X-Frame-Options: SAMEORIGIN" which allows iframes within the same
domain:

4.1.0.RC1 Spring Security 111

http://www.youtube.com/watch?v=3mk0RySeNsU
http://en.wikipedia.org/wiki/Clickjacking
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet#Best-for-now_Legacy_Browser_Frame_Breaking_Script
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options

Spring Security Reference

<htt p>
=l ==

<header s>
<frane-options
pol i cy="SAMECRI G N' />
</ header s>
</ http>

Similarly, you can customize frame options to use the same origin within Java Configuration using the
following:

@nabl eWebSecurity
public class WebSecurityConfig extends
WebSecuri t yConf i gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
...
. header s()
.frameOptions()
.sameOrigin();

X-XSS-Protection

Some browsers have built in support for filtering out reflected XSS attacks. This is by no means full
proof, but does assist in XSS protection.

The filtering is typically enabled by default, so adding the header typically just ensures it is enabled and
instructs the browser what to do when a XSS attack is detected. For example, the filter might try to
change the content in the least invasive way to still render everything. At times, this type of replacement
can become a XSS vulnerability in itself. Instead, it is best to block the content rather than attempt to
fix it. To do this we can add the following header:

X- XSS- Prot ecti on: 1; node=bl ock

This header is included by default. However, we can customize it if we wanted. For example:

<htt p>
=l ==

<header s>
<xss-protection bl ock="fal se"/>
</ header s>
</ http>

Similarly, you can customize xss protection within Java Configuration with the following:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecurityConfi gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
...
. header s()
. XxssProtection()
. bl ock(fal se);

4.1.0.RC1 Spring Security 112

https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OWASP-DV-001)
http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities/

Spring Security Reference

Content Security Policy (CSP)

Content Security Policy (CSP) is a mechanism that web applications can leverage to mitigate content
injection vulnerabilities, such as cross-site scripting (XSS). CSP is a declarative policy that provides
a facility for web application authors to declare and ultimately inform the client (user-agent) about the
sources from which the web application expects to load resources.

Note

Content Security Policy is not intended to solve all content injection vulnerabilities. Instead, CSP
can be leveraged to help reduce the harm caused by content injection attacks. As a first line of
defense, web application authors should validate their input and encode their output.

A web application may employ the use of CSP by including one of the following HTTP headers in the
response:

« Content-Security-Policy
» Content-Security-Policy-Report-Only

Each of these headers are used as a mechanism to deliver a security policy to the client. A security
policy contains a set of security policy directives (for example, script-src and object-src), each
responsible for declaring the restrictions for a particular resource representation.

For example, a web application can declare that it expects to load scripts from specific, trusted sources,
by including the following header in the response:

Content-Security-Policy: script-src https://trustedscripts. exanple.com

An attempt to load a script from another source other than what is declared in the script-src directive will
be blocked by the user-agent. Additionally, if the report-uri directive is declared in the security policy,
then the violation will be reported by the user-agent to the declared URL.

For example, if a web application violates the declared security policy, the following response header will
instruct the user-agent to send violation reports to the URL specified in the policy’s report-uri directive.

Cont ent - Security-Policy: script-src https://trustedscripts.exanple.com report-uri /csp-report-endpoint/

The Content-Security-Policy-Report-Only header provides the capability for web application authors
and administrators to monitor security policies, rather than enforce them. This header is typically used
when experimenting and/or developing security policies for a site. When a policy is deemed effective, it
can be enforced by using the Content-Security-Policy header field instead.

Given the following response header, the policy declares that scripts may be loaded from one of two
possible sources.

Cont ent - Security-Policy-Report-Only: script-src 'self' https://trustedscripts.exanple.com report-uri /
csp-report -endpoi nt/

If the site violates this policy, by attempting to load a script from evil.com, the user-agent will send
a violation report to the declared URL specified by the report-uri directive, but still allow the violating
resource to load nevertheless.

4.1.0.RC1 Spring Security 113

https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP2/#directive-report-uri

Spring Security Reference

Configuring Content Security Policy

It's important to note that Spring Security does not add Content Security Policy by default. The
web application author must declare the security policy(s) to enforce and/or monitor for the protected
resources.

For example, given the following security policy:

script-src 'self' https://trustedscripts.exanple.com object-src https://trustedpl ugins. exanpl e.com
report-uri /csp-report-endpoint/

You can enable the CSP header using XML configuration with the <content-security-policy> element
as shown below:

<htt p>
<l-- ... -->

<header s>
<content -security-policy
policy-directives="script-src 'self' https://trustedscripts.exanple.com object-src https://
trust edpl ugi ns. exanpl e. comy report-uri /csp-report-endpoint/" />
</ header s>
</ http>

To enable the CSP 'report-only' header, configure the element as follows:

<htt p>
<l-- ... -->

<header s>
<content -security-policy
policy-directives="script-src 'self' https://trustedscripts.exanple.com object-src https://
trust edpl ugi ns. exanpl e. comy report-uri /csp-report-endpoint/"
report-only="true" />
</ header s>
</ http>

Similarly, you can enable the CSP header using Java configuration as shown below:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride
protected void configure(HtpSecurity http) throws Exception {

http

/1

. header s()

.content SecurityPolicy("script-src "self' https://trustedscripts.exanple.com object-src https://

trustedpl ugi ns. exanpl e.com report-uri /csp-report-endpoint/");
}
}

To enable the CSP 'report-only' header, provide the following Java configuration:

4.1.0.RC1 Spring Security 114

Spring Security Reference

@Enabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
...
. header s()
.content SecurityPolicy("script-src 'self' https://trustedscripts.exanple.com object-src https://
trust edpl ugi ns. exanpl e. com report-uri /csp-report-endpoint/")
.reportOnly();
}
}

Additional Resources

Applying Content Security Policy to a web application is often a non-trivial undertaking. The following
resources may provide further assistance in developing effective security policies for your site.

An Introduction to Content Security Policy

CSP Guide - Mozilla Developer Network

W3C Candidate Recommendation

17.2 Custom Headers

Spring Security has mechanisms to make it convenient to add the more common security headers to
your application. However, it also provides hooks to enable adding custom headers.

Static Headers

There may be times you wish to inject custom security headers into your application that are not
supported out of the box. For example, given the following custom security header:

X- Cust om Security-Header: header-val ue

When using the XML namespace, these headers can be added to the response using the <header>
element as shown below:

<htt p>
<l-- ... -->

<header s>
<header name="X- Custom Security-Header" val ue="header-val ue"/ >
</ header s>
</ http>

Similarly, the headers could be added to the response using Java Configuration as shown in the
following:

4.1.0.RC1 Spring Security 115

http://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://www.w3.org/TR/CSP2/

Spring Security Reference

@Enabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {

http

11

. header s()

.addHeader Wi ter(new StaticHeadersWiter("X-Custom Security-Header", "header-val ue"));

}
}

Headers Writer

When the namespace or Java configuration does not support the headers you want, you can create a
custom Header sWi t er instance or even provide a custom implementation of the Header sWiter.

Let's take a look at an example of using an custom instance of XFrameQOpti onsHeader Witer.
Perhaps you want to allow framing of content for the same origin. This is easily supported by setting the
policy attribute to "SAMEORIGIN", but let’s take a look at a more explicit example using the ref attribute.

<htt p>
<l-- ... -->

<header s>
<header ref="frameOpti onsWiter"/>

</ header s>
</ http>
<!-- Requires the c-nanmespace.
See http://docs.spring.iol/spring/docs/current/spring-framework-referencel/ htnl singl e/ #beans- c- nanespace
-->
<beans: bean id="frameOpti onsWiter"

cl ass="org. springframework. security.web. header.witers.franmeoptions. XFrameOpti onsHeader Witer"

c: frameOpti onsMbde=" SAMECRI G N'/ >

We could also restrict framing of content to the same origin with Java configuration:

@nabl eWebSecurity
public class WbSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride
protected void configure(HtpSecurity http) throws Exception {

http

11

. header s()

. addHeader Wi t er (new XFranmeQOpti onsHeader Wi t er (XFr ameOpt i onsMbde. SAMEORIG N)) ;

}
}

DelegatingRequestMatcherHeaderWriter

At times you may want to only write a header for certain requests. For example, perhaps
you want to only protect your log in page from being framed. You could use the
Del egati ngRequest Mat cher HeaderWiter to do so. When using the XML namespace
configuration, this can be done with the following:

4.1.0.RC1 Spring Security 116

Spring Security Reference

<ht t p>
<l-- .. -->

<header s>
<frame-options disabled="true"/>
<header ref="headerWiter"/>
</ header s>
</ http>

<beans: bean id="headerWiter"
cl ass="org. springframework. security.web. header.witers. Del egati ngRequest Mat cher Header Wi ter" >
<beans: const ruct or - ar g>
<bean cl ass="org. springfranmework. security.web. util.matcher. Ant Pat hRequest Mat cher"
c:pattern="/1ogin"/>
</ beans: const r uct or - ar g>
<beans: construct or - ar g>
<beans: bean
class="org. springframework. security.web. header.witers.franmeoptions. XFrameOpti onsHeader Witer"/>
</ beans: const ruct or - ar g>
</ beans: bean>

We could also prevent framing of content to the log in page using java configuration:

@Enabl eWebSecurity
public class WebSecurityConfig extends
WebSecurityConfi gur er Adapt er {

@verride
protected void configure(H tpSecurity http) throws Exception {

Request Mat cher mat cher = new Ant Pat hRequest Mat cher ("/1 ogi n");
Del egat i ngRequest Mat cher Header Wi ter headerWiter =
new Del egati ngRequest Mat cher Header Wi t er (mat cher, new XFrameOpti onsHeaderWiter());
http
/1
. header s()
.frameOptions(). di sabl ed()
.addHeader Wit er (header Wi ter);
}
}

4.1.0.RC1 Spring Security

117

Spring Security Reference

18. Session Management

HTTP session related functonality is handled by a combination of the Sessi onManagenent Fi | t er
and the Sessi onAut hent i cati onStr at egy interface, which the filter delegates to. Typical usage
includes session-fixation protection attack prevention, detection of session timeouts and restrictions on
how many sessions an authenticated user may have open concurrently.

18.1 SessionManagementFilter

The Sessi onManagenent Fi |l t er checks the contents of the SecurityCont ext Repository
against the current contents of the Securit yCont ext Hol der to determine whether a user has
been authenticated during the current request, typically by a non-interactive authentication mechanism,
such as pre-authentication or remember-me L if the repository contains a security context, the filter
does nothing. If it doesn’t, and the thread-local Securit yCont ext contains a (non-anonymous)
Aut hent i cat i on object, the filter assumes they have been authenticated by a previous filter in the
stack. It will then invoke the configured Sessi onAut hent i cati onStr at egy.

If the wuser is not currently authenticated, the filter will check whether an invalid
session ID has been requested (because of a timeout, for example) and will invoke
the configured | nval i dSessi onStrategy, if one is set. The most common behaviour is
just to redirect to a fixed URL and this is encapsulated in the standard implementation
Si npl eRedi rect | nval i dSessi onStr at egy. The latter is also used when configuring an invalid
session URL through the namespace,as described earlier.

18.2 SessionAuthenticationStrategy

Sessi onAut henticationStrategy is used by both SessionManagenentFilter and
Abst ract Aut henti cati onProcessi ngFi | t er, so if you are using a customized form-login class,
for example, you will need to inject it into both of these. In this case, a typical configuration, combining
the namespace and custom beans might look like this:

<htt p>

<customfilter position="FORM LOG N_FILTER' ref="nyAuthFilter" />
<sessi on- managenent sessi on-authenticati on-strategy-ref="sas"/>
</ http>

<beans: bean id="nmyAuthFilter" class=
"org. springframework. security.web. aut henti cati on. User nanePasswor dAut henti cati onFilter">
<beans: property name="sessi onAut henticati onStrategy" ref="sas" />

</ beans: bean>

<beans: bean id="sas" class=
"org. springframework. security.web. aut henti cati on. sessi on. Sessi onFi xati onProt ecti onStrategy" />

Note that the use of the default, Sessi onFi xat i onPr ot ecti onSt r at egy may cause issues if you
are storing beans in the session which implement Ht t pSessi onBi ndi ngLi st ener , including Spring
session-scoped beans. See the Javadoc for this class for more information.

Authentication by mechanisms which perform a redirect after authenticating (such as form-login) will not be detected by
Sessi onManagenent Fi | ter, as the filter will not be invoked during the authenticating request. Session-management
functionality has to be handled separately in these cases.

4.1.0.RC1 Spring Security 118

Spring Security Reference

18.3 Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same application
more than a specified number of times. Many ISVs take advantage of this to enforce licensing, whilst
network administrators like this feature because it helps prevent people from sharing login names. You
can, for example, stop user'Batman" from logging onto the web application from two different sessions.
You can either expire their previous login or you can report an error when they try to log in again,
preventing the second login. Note that if you are using the second approach, a user who has not explicitly
logged out (but who has just closed their browser, for example) will not be able to log in again until their
original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter
for the simplest configuration. Sometimes you need to customize things though.

The implementation uses a specialized version of Sessi onAut henti cati onStrat egy, called
Concur rent Sessi onCont r ol Aut henti cati onStrat egy.

Note

Previously the concurrent authentication check was made by the Provi der Manager , which
could be injected with a Concur r ent Sessi onCont r ol | er. The latter would check if the user
was attempting to exceed the number of permitted sessions. However, this approach required that
an HTTP session be created in advance, which is undesirable. In Spring Security 3, the user is first
authenticated by the Aut hent i cat i onManager and once they are successfully authenticated, a
session is created and the check is made whether they are allowed to have another session open.

To use concurrent session support, you'll need to add the following to web. xni :

<l|i stener>
<l i stener-class>
org. springframework. security.web. sessi on. Ht t pSessi onEvent Publ i sher
</listener-class>

</listener>

In addition, you will need to add the Concur r ent Sessi onFi | t er to your Fi | t er Chai nPr oxy. The
Concur rent Sessi onFi | t er requires two properties, sessi onRegi st ry, which generally points to
an instance of Sessi onRegi stryl npl , and expi redUr | , which points to the page to display when
a session has expired. A configuration using the namespace to create the Fi | t er Chai nPr oxy and
other default beans might look like this:

4.1.0.RC1 Spring Security 119

Spring Security Reference

<htt p>
<customfilter position="CONCURRENT_SESS|I ON FI LTER' ref="concurrencyFilter" />
<customfilter position="FORM LOG N_FILTER' ref="nyAuthFilter" />

<sessi on- managenent session-authentication-strategy-ref="sas"/>
</ http>

<beans: bean i d="concurrencyFilter"

cl ass="org. springframework. security.web. sessi on. Concurrent Sessi onFilter">
<beans: property name="sessionRegi stry" ref="sessionRegistry" />

<beans: property name="expiredUrl" val ue="/session-expired. htni />

</ beans: bean>

<beans: bean id="nmyAuthFilter" class=

"org. springframework. security.web. aut henti cati on. User namePasswor dAut henti cati onFilter">
<beans: property name="sessi onAut henticationStrategy" ref="sas" />

<beans: property name="aut henti cati onManager" ref="authenticati onManager" />

</ beans: bean>

<beans: bean id="sas" class="org.springfranmework. security.web. authentication. sessi on. ConpositeSessi onAut henti cati onStrategy"
<beans: constructor-arg>
<beans:|ist>
<beans: bean cl ass="org. springfranmework. security.web. aut henticati on. sessi on. Concurrent Sessi onCont r ol Aut henti cati onStrategy"
<beans: constructor-arg ref="sessionRegistry"/>
<beans: property name="maxi munSessi ons" val ue="1" />
<beans: property name="excepti onl f Maxi nunExceeded" val ue="true" />
</ beans: bean>
<beans: bean cl ass="org. springfranmework. security.web. authentication. sessi on. Sessi onFi xati onProtectionStrategy">
</ beans: bean>
<beans: bean cl ass="org. springfranmework. security.web. authenticati on. sessi on. Regi st er Sessi onAut henti cati onStrategy">
<beans: constructor-arg ref="sessi onRegistry"/>
</ beans: bean>
</ beans: |ist>
</ beans: construct or - ar g>
</ beans: bean>

<beans: bean i d="sessi onRegi stry"
cl ass="org. springframework. security.core.session. Sessi onRegi strylnmpl" />

Adding the listener to web. xnml causes an Applicati onEvent to be published to the Spring
Appl i cati onCont ext every time a Ht t pSessi on commences or terminates. This is critical, as it
allows the Sessi onRegi stryl npl to be notified when a session ends. Without it, a user will never
be able to log back in again once they have exceeded their session allowance, even if they log out of
another session or it times out.

Querying the SessionRegistry for currently authenticated users and their
sessions

Setting up concurrency-control, either through the namespace or using plain beans has the useful side
effect of providing you with a reference to the Sessi onRegi st ry which you can use directly within
your application, so even if you don’t want to restrict the number of sessions a user may have, it may
be worth setting up the infrastructure anyway. You can set the maxi nunSessi on property to -1 to
allow unlimited sessions. If you're using the namespace, you can set an alias for the internally-created
Sessi onRegi st ry using the sessi on-regi stry-al i as attribute, providing a reference which you
can inject into your own beans.

The get Al l Pri nci pal s() method supplies you with a list of the currently authenticated users.
You can list a user’'s sessions by calling the get Al | Sessi ons(Cbj ect principal, boolean
i ncl udeExpi r edSessi ons) method, which returns a list of Sessi onl nf or mat i on objects. You
can also expire a user’s session by calling expi r eNow() ona Sessi onl nf or mat i on instance. When
the user returns to the application, they will be prevented from proceeding. You may find these methods
useful in an administration application, for example. Have a look at the Javadoc for more information.

4.1.0.RC1 Spring Security 120

Spring Security Reference

19. Anonymous Authentication

19.1 Overview

It's generally considered good security practice to adopt a "deny-by-default” where you explicitly specify
what is allowed and disallow everything else. Defining what is accessible to unauthenticated users is a
similar situation, particularly for web applications. Many sites require that users must be authenticated
for anything other than a few URLs (for example the home and login pages). In this case it is easiest
to define access configuration attributes for these specific URLs rather than have for every secured
resource. Put differently, sometimes it is nice to say ROLE_SOVETHI NGis required by default and only
allow certain exceptions to this rule, such as for login, logout and home pages of an application. You
could also omit these pages from the filter chain entirely, thus bypassing the access control checks, but
this may be undesirable for other reasons, particularly if the pages behave differently for authenticated
users.

This is what we mean by anonymous authentication. Note that there is no real conceptual difference
between a user who is "anonymously authenticated" and an unauthenticated user. Spring Security’s
anonymous authentication just gives you a more convenient way to configure your access-control
attributes. Calls to servlet API calls such as get Cal | er Pri nci pal , for example, will still return null
even though there is actually an anonymous authentication object in the Secur i t yCont ext Hol der .

There are other situations where anonymous authentication is useful, such as when an auditing
interceptor queries the Securi t yCont ext Hol der to identify which principal was responsible for a
given operation. Classes can be authored more robustly if they know the Secur i t yCont ext Hol der
always contains an Aut hent i cat i on object, and never nul I .

19.2 Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration Spring
Security 3.0 and can be customized (or disabled) using the <anonynous> element. You don't need to
configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.
AnonynousAut henti cati onToken is an implementation of Aut henti cati on, and stores the
GrantedAuthority s which apply to the anonymous principal. There is a corresponding
AnonynousAut henti cati onProvi der, which is chained into the Provi derManager
so that AnonynousAut henticationToken s are accepted. Finally, there is an
AnonynousAut henti cati onFi | t er, which is chained after the normal authentication mechanisms
and automatically adds an AnonynousAut henti cati onToken to the Securi t yCont ext Hol der if
there is no existing Aut hent i cat i on held there. The definition of the filter and authentication provider
appears as follows:

<bean id="anonynmousAut hFi |l ter"

cl ass="org. springframework. security.web. aut henti cati on. AnonynousAut henti cati onFilter">
<property nanme="key" val ue="f oobar"/>

<property name="userAttribute" val ue="anonynmousUser, ROLE_ANONYMOUS"/ >

</ bean>

<bean i d="anonynousAut henti cati onProvi der"

cl ass="org. springframework. security. aut henticati on. AnonynousAut henti cati onProvi der">
<property name="key" val ue="f oobar"/>

</ bean>

4.1.0.RC1 Spring Security 121

Spring Security Reference

The key is shared between the filter and authentication provider, so that tokens created by
the former are accepted by the latter ! The userAttribute is expressed in the form of
user nanmel nTheAut henti cati onToken, grant edAut hority[, grantedAut hority]. This is
the same syntax as used after the equals sign for the user Map property of | nMenor yDaol npl .

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have security
applied to them. For example:

<bean id="filterSecuritylnterceptor"
class="org. springframework. security.web. access.intercept.FilterSecuritylnterceptor">
<property name="aut henti cati onManager" ref="authenticati onManager"/>
<property nanme="accessDeci si onManager" ref="httpRequest AccessDeci si onManager"/ >
<property name="securityMetadata">
<security:filter-security-netadata-source>
<security:intercept-url pattern='/index.jsp' access=' ROLE_ANONYMOUS, ROLE USER / >
<security:intercept-url pattern='/hello.htm access=' ROLE_ANONYMOUS, ROLE_USER / >
<security:intercept-url pattern='/|ogoff.jsp'" access=" ROLE_ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/login.jsp'" access=" ROLE_ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/**'" access=' ROLE_USER />
</security:filter-security-netadata-source>" +
</ property>
</ bean>

19.3 AuthenticationTrustResolver

Rounding out the anonymous authentication discussion is the Aut henti cati onTr ust Resol ver
interface, with its corresponding Aut henti cati onTrust Resol ver | npl implementation. This
interface provides an i sAnonynous(Aut henti cati on) method, which allows interested classes to
take into account this special type of authentication status. The Except i onTr ansl ati onFi | t er uses
this interface in processing AccessDeni edExcept i on s. If an AccessDeni edExcept i on is thrown,
and the authentication is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter
will instead commence the Aut hent i cat i onEnt r yPoi nt so the principal can authenticate properly.
This is a necessary distinction, otherwise principals would always be deemed "authenticated" and never
be given an opportunity to login via form, basic, digest or some other normal authentication mechanism.

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced
with | S_AUTHENTI CATED_ANONYMOUSLY, which is effectively the same thing when defining access
controls. This is an example of the use of the Aut henti cat edVot er which we will see in
the authorization chapter. It uses an Aut henti cati onTrust Resol ver to process this particular
configuration attribute and grant access to anonymous users. the Aut hent i cat edVot er approach
is more powerful, since it allows you to differentiate between anonymous, remember-me and
fully-authenticated users. If you don't need this functionality though, then you can stick with
RCOLE_ANONYMOUS, which will be processed by Spring Security’s standard Rol eVot er .

The use of the key property should not be regarded as providing any real security here. It is merely a book-keeping exercise.
If you are sharing a Pr ovi der Manager which contains an AnonynousAut hent i cati onPr ovi der in a scenario where it is
possible for an authenticating client to construct the Aut hent i cat i on object (such as with RMI invocations), then a malicious
client could submit an AnonynousAut hent i cat i onToken which it had created itself (with chosen username and authority list).
If the key is guessable or can be found out, then the token would be accepted by the anonymous provider. This isn’t a problem with
normal usage but if you are using RMI you would be best to use a customized Pr ovi der Manager which omits the anonymous
provider rather than sharing the one you use for your HTTP authentication mechanisms.

4.1.0.RC1 Spring Security 122

Spring Security Reference

20. WebSocket Security

Spring Security 4 added support for securing Spring’s WebSocket support. This section describes how
to use Spring Security’s WebSocket support.

Note

You can find a complete working sample of WebSocket security in samples/chat-jc.

Direct JSR-356 Support

Spring Security does not provide direct JSR-356 support because doing so would provide little
value. This is because the format is unknown, so there is little Spring can do to secure an unknown
format. Additionally, JSR-356 does not provide a way to intercept messages, so security would
be rather invasive.

20.1 WebSocket Configuration

Spring Security 4.0 has introduced authorization support for WebSockets through the
Spring Messaging abstraction. To configure authorization using Java Configuration, simply
extend the Abstract SecurityWbSocket MessageBr oker Configurer and configure the
MessageSecuri t yMet adat aSour ceRegi st ry. For example:

@onfiguration
public class WebSocket SecurityConfig

extends Abstract SecurityWbSocket MessageBr oker Configurer { O O

protected voi d confi gurel nbound(MessageSecuri t yMet adat aSour ceRegi stry nessages) {
nessages
. sinpDest Mat chers("/user/*").authenticated() O

This will ensure that:

O Anyinbound CONNECT message requires a valid CSRF token to enforce Same Origin Policy

0 The SecurityContextHolder is populated with the user within the simpUser header attribute for any
inbound request.

O Our messages require the proper authorization. Specifically, any inbound message that starts with
"luser/" will require ROLE_USER. Additional details on authorization can be found in Section 20.3,
“WebSocket Authorization”

Spring Security also provides XML Namespace support for securing WebSockets. A comparable XML
based configuration looks like the following:

<websocket - nessage- broker> 0O O

O

<i ntercept-nessage pattern="/user/**" access="hasRol e(' USER)" />
</ websocket - message- br oker >

This will ensure that:

0 Anyinbound CONNECT message requires a valid CSRF token to enforce Same Origin Policy

4.1.0.RC1 Spring Security 123

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-intro-sub-protocol
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-intro-sub-protocol

Spring Security Reference

0 The SecurityContextHolder is populated with the user within the simpUser header attribute for any
inbound request.

0 Our messages require the proper authorization. Specifically, any inbound message that starts with
"luser/" will require ROLE_USER. Additional details on authorization can be found in Section 20.3,
“WebSocket Authorization”

20.2 WebSocket Authentication

WebSockets reuse the same authentication information that is found in the HTTP request when the
WebSocket connection was made. This means that the Pri nci pal on the Htt pSer vl et Request
will be handed off to WebSockets. If you are using Spring Security, the Pri nci pal on the
Ht t pSer vl et Request is overridden automatically.

More concretely, to ensure a user has authenticated to your WebSocket application, all that is necessary
is to ensure that you setup Spring Security to authenticate your HTTP based web application.

20.3 WebSocket Authorization

Spring Security 4.0 has introduced authorization support for WebSockets through the
Spring Messaging abstraction. To configure authorization using Java Configuration, simply
extend the Abstract SecurityWbSocket MessageBr oker Configurer and configure the
MessageSecurit yMet adat aSour ceRegi st ry. For example:

@onfiguration
public class WebSocket SecurityConfig extends Abstract SecurityWbSocket MessageBr oker Confi gurer {

@verride
protected void configurel nbound(MessageSecurityMet adat aSourceRegi stry nmessages) {
nessages
.nul | Dest Mat cher (). aut henticated() O
. si npSubscri beDest Mat cher s("/user/ queue/errors").perm tA | () O
. si npDest Mat chers("/ app/**"). hasRol e("USER') O
. Si npSubscri beDest Mat chers("/user/**", "/topic/friends/*").hasRol e("USER') O
. si mpTypeMat cher s(MESSAGE, SUBSCRI BE) . denyAl | () O
.anyMessage().denyAl | (); O

This will ensure that:

O Any message without a destination (i.e. anything other that Message type of MESSAGE or
SUBSCRIBE) will require the user to be authenticated

O Anyone can subscribe to /user/queue/errors

0 Any message that has a destination starting with "/app/" will be require the user to have the role
ROLE_USER

O Any message that starts with "/user/" or "/topic/friends/" that is of type SUBSCRIBE will require
ROLE_USER

O Any other message of type MESSAGE or SUBSCRIBE is rejected. Due to 6 we do not need this
step, but it illustrates how one can match on specific message types.

O Any other Message is rejected. This is a good idea to ensure that you do not miss any messages.

Spring Security also provides XML Namespace support for securing WebSockets. A comparable XML
based configuration looks like the following:

4.1.0.RC1 Spring Security 124

Spring Security Reference

<websocket - nressage- br oker >
O
<intercept-nmessage type="CONNECT" access="permtAIl" />
<i ntercept - nessage type="UNSUBSCRI BE' access="permtAl" />
<i ntercept - message type="Dl SCONNECT" access="perm tAl" />

<intercept-nmessage pattern="/user/queue/errors" type="SUBSCRI BE' access="permtAIl" /> O
<i ntercept-nmessage pattern="/app/**" access="hasRol e(' USER)" />]

a
<intercept-nessage pattern="/user/**" access="hasRol e(' USER)" />
<intercept-nessage pattern="/topic/friends/*" access="hasRol e(' USER)" />

g
<i ntercept-nmessage type="MESSAGE" access="denyA |" />
<i ntercept-nmessage type="SUBSCRI BE" access="denyAl|l" />

<i ntercept-nmessage pattern="/**" access="denyAll" /> 0O
</ websocket - message- br oker >

This will ensure that:

O Any message of type CONNECT, UNSUBSCRIBE, or DISCONNECT will require the user to be
authenticated

O Anyone can subscribe to /user/queue/errors

0 Any message that has a destination starting with "/app/" will be require the user to have the role
ROLE_USER

O Any message that starts with "/user/" or "/topic/friends/" that is of type SUBSCRIBE will require
ROLE_USER

0 Any other message of type MESSAGE or SUBSCRIBE is rejected. Due to 6 we do not need this
step, but it illustrates how one can match on specific message types.

O Any other message with a destination is rejected. This is a good idea to ensure that you do not
miss any messages.

WebSocket Authorization Notes
In order to properly secure your application it is important to understand Spring’s WebSocket support.
WebSocket Authorization on Message Types

It is important to understand the distinction between SUBSCRIBE and MESSAGE types of messages
and how it works within Spring.

Consider a chat application.

» The system can send notifications MESSAGE to all users through a destination of "/topic/system/
notifications"

* Clients can receive notifications by SUBSCRIBE to the "/topic/system/notifications".

While we want clients to be able to SUBSCRIBE to "/topic/system/notifications”, we do not want to enable
them to send a MESSAGE to that destination. If we allowed sending a MESSAGE to "/topic/system/
notifications", then clients could send a message directly to that endpoint and impersonate the system.

In general, it is common for applications to deny any MESSAGE sent to a message that starts with the
broker prefix (i.e. "/topic/" or "/queue/").

4.1.0.RC1 Spring Security 125

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp

Spring Security Reference

WebSocket Authorization on Destinations

It is also is important to understand how destinations are transformed.

Consider a chat application.

» User’s can send messages to a specific user by sending a message to the destination of "/app/chat".

* The application sees the message, ensures that the "from" attribute is specified as the current user
(we cannot trust the client).

* The application then sends the message to the recipient using
Si npMessageSendi ngOper at i ons. convert AndSendToUser ("t oUser ", "/ queue/
messages"”, nessage).

» The message gets turned into the destination of "/queue/user/messages-<sessionid>"

With the application above, we want to allow our client to listen to "/user/queue” which is transformed
into "/queue/user/messages-<sessionid>". However, we do not want the client to be able to listen to "/
gueue/*" because that would allow the client to see messages for every user.

In general, it is common for applications to deny any SUBSCRIBE sent to a message that starts with the
broker prefix (i.e. "/topic/" or "/queue/"). Of course we may provide exceptions to account for things like

Outbound Messages

Spring contains a section titled Flow of Messages that describes how messages flow through the system.
It is important to note that Spring Security only secures the cl i ent | nboundChannel . Spring Security
does not attempt to secure the cl i ent Qut boundChannel .

The most important reason for this is performance. For every message that goes in, there are typically
many many more that go out. Instead of securing the outbound messages, we encourage securing the
subscription to the endpoints.

20.4 Enforcing Same Origin Policy

It is important to emphasize that the browser does not enforce the Same Origin Policy for WebSocket
connections. This is an extremely important consideration.

Why Same Origin?

Consider the following scenario. A user visits bank.com and authenticates to their account. The same
user opens another tab in their browser and visits evil.com. The Same Origin Policy ensures that evil.com
cannot read or write data to bank.com.

With WebSockets the Same Origin Policy does not apply. In fact, unless bank.com explicitly forbids it,
evil.com can read and write data on behalf of the user. This means that anything the user can do over
the websocket (i.e. transfer money), evil.com can do on that users behalf.

Since SockJS tries to emulate WebSockets it also bypasses the Same Origin Policy. This means
developers need to explicitly protect their applications from external domains when using SockJS.

Spring WebSocket Allowed Origin

Fortunately, since Spring 4.1.5 Spring’s WebSocket and SockJS support restricts access to the current
domain. Spring Security adds an additional layer of protection to provide defence in depth.

4.1.0.RC1 Spring Security 126

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp-message-flow
http://en.wikipedia.org/wiki/Same-origin_policy
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-server-allowed-origins
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-server-allowed-origins
http://en.wikipedia.org/wiki/Defense_in_depth_%28computing%29

Spring Security Reference

Adding CSRF to Stomp Headers

By default Spring Security requires the CSRF token in any CONNECT message type. This ensures that
only a site that has access to the CSRF token can connect. Since only the Same Origin can access
the CSRF token, external domains are not allowed to make a connection.

Typically we need to include the CSRF token in an HTTP header or an HTTP parameter. However,
SockJS does not allow for these options. Instead, we must include the token in the Stomp headers

Applications can obtain a CSRF token by accessing the request attribute named _csrf. For example,
the following will allow accessing the Csr f Token in a JSP:

var header Name = "${_csrf.header Nane}";
var token = "${_csrf.token}";

If you are using static HTML, you can expose the Csr f Token on a REST endpoint. For example, the
following would expose the Csr f Token on the URL /csrf

@Rest Control | er
public class CsrfController {

@Request Mappi ng("/csrf")
public CsrfToken csrf(CsrfToken token) {
return token;

}

The javascript can make a REST call to the endpoint and use the response to populate the headerName
and the token.

We can now include the token in our Stomp client. For example:

var headers = {};
header s[header Nane] = token;
stonpC i ent. connect (headers, function(frame) {

Disable CSRF within WebSockets

If you want to allow other domains to access your site, you can disable Spring Security’s protection. For
example, in Java Configuration you can use the following:

@onfiguration
public class WebSocket SecurityConfig extends Abstract SecurityWbSocket MessageBr oker Confi gurer {

@verride
protected bool ean sameQOri gi nDi sabl ed() {
return true;

}

20.5 Working with SockJS

SockJS provides fallback transports to support older browsers. When using the fallback options we need
to relax a few security constraints to allow SockJS to work with Spring Security.

4.1.0.RC1 Spring Security 127

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-fallback

Spring Security Reference

SockJS & frame-options

SockJS may use an transport that leverages an iframe. By default Spring Security will deny the site
from being framed to prevent Clickjacking attacks. To allow SockJS frame based transports to work, we
need to configure Spring Security to allow the same origin to frame the content.

You can customize X-Frame-Options with the frame-options element. For example, the following will
instruct Spring Security to use "X-Frame-Options: SAMEORIGIN" which allows iframes within the same
domain:

<htt p>
<l-- ... -->

<header s>
<frame- opti ons
pol i cy="SAMEORI G N' />
</ header s>
</ http>

Similarly, you can customize frame options to use the same origin within Java Configuration using the
following:

@nabl eWebSecurity
public class WebSecurityConfig extends
WebSecuri t yConfi gur er Adapt er {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
...
. header s()
.franeOptions()
.sameOrigin();

SockJS & Relaxing CSRF

SockJS uses a POST on the CONNECT messages for any HTTP based transport. Typically we need
to include the CSRF token in an HTTP header or an HTTP parameter. However, SockJS does not allow
for these options. Instead, we must include the token in the Stomp headers as described in the section
called “Adding CSRF to Stomp Headers”.

It also means we need to relax our CSRF protection with the web layer. Specifically, we want to disable
CSRF protection for our connect URLs. We do NOT want to disable CSRF protection for every URL.
Otherwise our site will be vulnerable to CSRF attacks.

We can easily achieve this by providing a CSRF RequestMatcher. Our Java Configuration makes this
extremely easy. For example, if our stomp endpoint is "/chat" we can disable CSRF protection for only
URLSs that start with "/chat/" using the following configuration:

4.1.0.RC1 Spring Security 128

https://github.com/sockjs/sockjs-client/tree/v0.3.4

Spring Security Reference

@onfi guration
@Enabl eWebSecurity
public class WebSecurityConfig
extends WebSecurityConfi gurer Adapter {

@verride
protected void configure(H tpSecurity http) throws Exception {
http
.csrf()
/] ignore our stonp endpoints since they are protected using Stonp headers
.ignoringAnt Mat chers("/chat/**")
.and()
. header s()

/1 allow sane origin to frane our site to support ifranme SockJS
.frameOptions().sanmeOrigin()
.and()

. aut hori zeRequest s()

If we are using XML based configuration, we can use the csrf@request-matcher-ref. For example:

<http ...>
<csrf request-matcher-ref="csrfMtcher"/>

<header s>
<frame-options policy="SAMECRI G N'/ >
</ header s>

</ http>
<b: bean id="csrfMatcher"
cl ass="AndRequest Mat cher " >
<b: construct or -
arg val ue="#{T(org. springframework.security.web.csrf.CsrfFilter). DEFAULT_CSRF_MATCHER}"/ >
<b: constructor-arg>
<b: bean cl ass="org. springfranmework. security.web. util.nmatcher.Negat edRequest Mat cher">
<b: bean cl ass="org. springframework. security.web. util.matcher. Ant Pat hRequest Mat cher" >
<b: constructor-arg val ue="/chat/**"/>
</ b: bean>
</ b: bean>

</ b: constructor-arg>
</ b: bean>

4.1.0.RC1 Spring Security

129

Part VI. Authorization

The advanced authorization capabilities within Spring Security represent one of the most compelling
reasons for its popularity. Irrespective of how you choose to authenticate - whether using a Spring
Security-provided mechanism and provider, or integrating with a container or other non-Spring Security
authentication authority - you will find the authorization services can be used within your application in
a consistent and simple way.

In this part we’'ll explore the different Abst r act Securi t yl nt er cept or implementations, which were
introduced in Part I. We then move on to explore how to fine-tune authorization through use of domain
access control lists.

Spring Security Reference

21. Authorization Architecture

21.1 Authorities

As we saw in the technical overview, all Aut henti cati on implementations store a list of
Grant edAut hority objects. These represent the authorities that have been granted to the
principal. the Grant edAut hority objects are inserted into the Aut henti cati on object by the
Aut henti cati onManager and are later read by AccessDeci si onManager s when making
authorization decisions.

Grant edAut hori ty is an interface with only one method:

String getAuthority();

This method allows AccessDeci si onManager s to obtain a precise St ri ng representation of the
Grant edAut hori ty. By returning a representation as a Stri ng, a G ant edAut hority can be
easily "read" by most AccessDeci si onManager s. If a G ant edAut hority cannot be precisely
represented as a St ri ng, the G- ant edAut hori ty is considered "complex" and get Aut hority()
must return nul | .

An example of a "complex" Gr ant edAut hority would be an implementation that stores a list of
operations and authority thresholds that apply to different customer account humbers. Representing
this complex GrantedAuthority as a String would be quite difficult, and as a result the
get Aut hori ty() method should return nul | . This will indicate to any AccessDeci si onManager
that it will need to specifically support the Gr ant edAut hor i t y implementation in order to understand
its contents.

Spring Security includes one concrete Grant edAut hority implementation,
Grant edAut horityl npl. This allows any user-specified String to be converted into a
Grant edAut hori ty. All Aut henti cati onProvi der s included with the security architecture use
Grant edAut hori tyl npl to populate the Aut hent i cat i on object.

21.2 Pre-Invocation Handling

As we've also seen in the Technical Overview chapter, Spring Security provides interceptors which
control access to secure objects such as method invocations or web requests. A pre-invocation decision
on whether the invocation is allowed to proceed is made by the AccessDeci si onManager .

The AccessDecisionManager

The AccessDeci si onManager is called by the AbstractSecuritylnterceptor and is
responsible for making final access control decisions. the AccessDeci si onManager interface
contains three methods:

voi d deci de(Aut hentication authentication, Cbject secure(ject,
Col | ecti on<Confi gAttribute> attrs) throws AccessDeni edExcepti on;

bool ean supports(ConfigAttribute attribute);

bool ean supports(d ass cl azz);

The AccessDeci si onManager's deci de method is passed all the relevant information it needs
in order to make an authorization decision. In particular, passing the secure (bj ect enables

4.1.0.RC1 Spring Security 131

Spring Security Reference

those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a Met hodl nvocation. It would be easy to query the
Met hodl nvocat i on for any Cust omer argument, and then implement some sort of security logic
in the AccessDeci si onManager to ensure the principal is permitted to operate on that customer.
Implementations are expected to throw an AccessDeni edExcept i on if access is denied.

The supports(Confi gAttribute) method is called by the Abstract Securityl nterceptor
at startup time to determine if the AccessDeci si onManager can process the passed
Confi gAttri bute.Thesupports(d ass) methodis called by a security interceptor implementation
to ensure the configured AccessDeci si onManager supports the type of secure object that the security
interceptor will present.

Voting-Based AccessDecisionManager Implementations
Whilst users can implement their own AccessDeci si onManager to control all aspects of authorization,

Spring Security includes several AccessDeci si onManager implementations that are based on voting.
Figure 21.1, “Voting Decision Manager” illustrates the relevant classes.

AccessDecisionManager

AccessDecisionVoter

ConfigAttribute

AbstractAccessDecisionManager

‘ RoleVoter \',

i
L

‘ AuthenticatedVote

SecurityConfig

AffirmativeBased
I UnanimousBased

ConsensusBased

Figure 21.1. Voting Decision Manager

Using this approach, a series of AccessDeci si onVot er implementations are polled on an
authorization decision. The AccessDeci si onManager then decides whether or not to throw an
AccessDeni edExcept i on based on its assessment of the votes.

The AccessDeci si onVot er interface has three methods:

4.1.0.RC1 Spring Security 132

Spring Security Reference

int vote(Authentication authentication, Object object, Collection<ConfigAttribute> attrs);
bool ean supports(ConfigAttribute attribute);

bool ean supports(Cd ass cl azz);

Concrete implementations return an int, with possible values being reflected in the
AccessDeci si onVot er static fields ACCESS_ABSTAI N, ACCESS_DENI EDand ACCESS GRANTED. A
voting implementation will return ACCESS_ABSTAI Nif it has no opinion on an authorization decision. If
it does have an opinion, it must return either ACCESS_DENI ED or ACCESS_GRANTED.

There are three concrete AccessDeci si onManager s provided with Spring Security that tally the
votes. the ConsensusBased implementation will grant or deny access based on the consensus of
non-abstain votes. Properties are provided to control behavior in the event of an equality of votes
or if all votes are abstain. The Af firmati veBased implementation will grant access if one or more
ACCESS GRANTEDvotes were received (i.e. a deny vote will be ignored, provided there was at least one
grant vote). Like the ConsensusBased implementation, there is a parameter that controls the behavior
if all voters abstain. The Unani mousBased provider expects unanimous ACCESS GRANTED votes in
order to grant access, ignoring abstains. It will deny access if there is any ACCESS_DENI ED vote. Like
the other implementations, there is a parameter that controls the behaviour if all voters abstain.

It is possible to implement a custom AccessDeci si onManager that tallies votes differently. For
example, votes from a particular AccessDeci si onVot er might receive additional weighting, whilst a
deny vote from a particular voter may have a veto effect.

RoleVoter

The most commonly used AccessDeci si onVot er provided with Spring Security is the simple
Rol eVot er, which treats configuration attributes as simple role names and votes to grant access if the
user has been assigned that role.

It will vote if any Confi gAttri but e begins with the prefix ROLE_. It will vote to grant access if there
is a G ant edAut hori ty which returns a St ri ng representation (via the get Aut hori t y() method)
exactly equal to one or more Confi gAttri but es starting with the prefix ROLE . If there is no exact
match of any Conf i gAt t ri but e starting with ROLE_, the Rol eVot er will vote to deny access. If no
Confi gAttri but e begins with ROLE , the voter will abstain.

AuthenticatedVoter

Another voter which we've implicitly seen is the Aut henti cat edVot er, which can be used to
differentiate between anonymous, fully-authenticated and remember-me authenticated users. Many
sites allow certain limited access under remember-me authentication, but require a user to confirm their
identity by logging in for full access.

When we've used the attribute | S AUTHENTI CATED_ANONYMOUSLY to grant anonymous access, this
attribute was being processed by the Aut hent i cat edVot er . See the Javadoc for this class for more
information.

Custom Voters

Obviously, you can also implement a custom AccessDeci si onVot er and you can put just about any
access-control logic you want in it. It might be specific to your application (business-logic related) or it
might implement some security administration logic. For example, you'll find a blog article on the Spring
web site which describes how to use a voter to deny access in real-time to users whose accounts have
been suspended.

4.1.0.RC1 Spring Security 133

http://spring.io/blog/2009/01/03/spring-security-customization-part-2-adjusting-secured-session-in-real-time

Spring Security Reference

21.3 After Invocation Handling

Whilst the AccessDeci si onManager is called by the Abstract Securityl nterceptor before
proceeding with the secure object invocation, some applications need a way of modifying the object
actually returned by the secure object invocation. Whilst you could easily implement your own AOP
concern to achieve this, Spring Security provides a convenient hook that has several concrete
implementations that integrate with its ACL capabilities.

Figure 21.2, “After Invocation Implementation” illustrates Spring Security’s
Afterlnvocati onManager and its concrete implementations.

AfterinvocationManager AfterinvocationProvider

PostinvocationAdy
Provider

AfterinvocationProviderManager AbstractAciProvider

AclEntryAfterinvocationProvider

Figure 21.2. After Invocation Implementation

Like many other parts of Spring Security, Afterlnvocati onManager has a single
concrete implementation, Afterlnvocati onProvi der Manager, which polls a list of
Afterlnvocati onProvi der s. Each Aft erl nvocati onProvi der is allowed to modify the return
object or throw an AccessDeni edExcept i on. Indeed multiple providers can modify the object, as the
result of the previous provider is passed to the next in the list.

Please be aware that if you're using Aft er |l nvocat i onManager, you will still need configuration
attributes that allow the Met hodSecurityl nterceptor's AccessDeci si onManager to allow
an operation. If you're using the typical Spring Security included AccessDeci si onManager
implementations, having no configuration attributes defined for a particular secure method invocation will
cause each AccessDeci si onVot er to abstain from voting. In turn, if the AccessDeci si onManager
property “allowlfAllAbstainDecisions” is f al se, an AccessDeni edExcepti on will be thrown. You
may avoid this potential issue by either (i) setting “allowlfAllAbstainDecisions” to t r ue (although this is
generally not recommended) or (ii) simply ensure that there is at least one configuration attribute that an
AccessDeci si onVot er will vote to grant access for. This latter (recommended) approach is usually
achieved through a ROLE_USER or ROLE_AUTHENTI CATED configuration attribute.

21.4 Hierarchical Roles

It is a common requirement that a particular role in an application should automatically "include" other
roles. For example, in an application which has the concept of an "admin" and a "user" role, you may

4.1.0.RC1 Spring Security 134

Spring Security Reference

want an admin to be able to do everything a normal user can. To achieve this, you can either make
sure that all admin users are also assigned the "user" role. Alternatively, you can modify every access
constraint which requires the "user" role to also include the "admin" role. This can get quite complicated
if you have a lot of different roles in your application.

The use of a role-hierarchy allows you to configure which roles (or authorities) should include others.
An extended version of Spring Security’'s RoleVoter, Rol eHi er ar chyVot er, is configured with a
Rol eHi er ar chy, from which it obtains all the "reachable authorities" which the user is assigned. A
typical configuration might look like this:

<bean id="rol eVoter" class="org.springframework.security.access.vote. Rol eH erarchyVoter">
<constructor-arg ref="rol eHi erarchy" />
</ bean>
<bean id="rol eHi erarchy"
cl ass="org. springframework. security.access. hi erarchi cal rol es. Rol eHi erar chyl npl ">
<property name="hi erarchy">
<val ue>
ROLE_ADM N > ROLE_STAFF
ROLE_STAFF > ROLE USER
ROLE_USER > ROLE_GUEST
</ val ue>
</ property>
</ bean>

Here we have four roles in a hierarchy ROLE_ADM N # ROLE_STAFF # ROLE_USER # ROLE_GUEST.
A user who is authenticated with ROLE_ADM N, will behave as if they have all four roles when
security contraints are evaluated against an AccessDeci si onManager cconfigured with the above
Rol eHi er ar chyVot er . The > symbol can be thought of as meaning "includes".

Role hierarchies offer a convenient means of simplifying the access-control configuration data for your
application and/or reducing the number of authorities which you need to assign to a user. For more
complex requirements you may wish to define a logical mapping between the specific access-rights
your application requires and the roles that are assigned to users, translating between the two when
loading the user information.

4.1.0.RC1 Spring Security 135

Spring Security Reference

22. Secure Object Implementations

22.1 AOP Alliance (MethodInvocation) Security Interceptor

Prior to Spring Security 2.0, securing Met hodl nvocati on s needed quite a lot of boiler plate
configuration. Now the recommended approach for method security is to use hamespace configuration.
This way the method security infrastructure beans are configured automatically for you so you don't
really need to know about the implementation classes. We'll just provide a quick overview of the classes
that are involved here.

Method security in enforced using a MethodSecuritylnterceptor, which secures
Met hodl nvocati on s. Depending on the configuration approach, an interceptor may be
specific to a single bean or shared between multiple beans. The interceptor uses a
Met hodSecuri t yMet adat aSour ce instance to obtain the configuration attributes that apply to
a particular method invocation. MapBasedMet hodSecuri t yMet adat aSour ce is used to store
configuration attributes keyed by method names (which can be wildcarded) and will be used
internally when the attributes are defined in the application context using the <i nt er cept - net hods>
or <pr ot ect - poi nt > elements. Other implementations will be used to handle annotation-based
configuration.

Explicit MethodSecurityInterceptor Configuration

You can of course configure a Met hodSecuri tyl t er cept or directly in your application context for
use with one of Spring AOP’s proxying mechanisms:

<bean i d="bankManager Security" class=
"org.springframework. security.access.intercept.aopalliance. MethodSecuritylnterceptor">
<property name="aut henti cati onManager" ref="authenticati onManager"/>
<property name="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property name="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property name="securityMetadat aSource">
<sec: net hod- securi ty- nmet adat a- sour ce>
<sec: protect method="com nyconpany. BankManager . del et e*" access="ROLE_SUPERVI SOR'/ >
<sec: protect method="com nmyconpany. BankManager . get Bal ance" access="ROLE TELLER, ROLE_SUPERVI SOR'/ >
</ sec: nmet hod- securi t y- net adat a- sour ce>
</ property>
</ bean>

22.2 Aspectd (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the
previous section. Indeed we will only discuss the differences in this section.

The Aspect] interceptor is named Aspect JSecuri t yl nt er cept or . Unlike the AOP Alliance security
interceptor, which relies on the Spring application context to weave in the security interceptor
via proxying, the AspectJSecuritylnterceptor is weaved in via the Aspectd compiler. It
would not be uncommon to use both types of security interceptors in the same application, with
Aspect JSecurityl nterceptor being used for domain object instance security and the AOP
Alliance Met hodSecuri t yl nt er cept or being used for services layer security.

Let’s first consider how the Aspect JSecuri tyl nt er cept or is configured in the Spring application
context:

4.1.0.RC1 Spring Security 136

Spring Security Reference

<bean i d="bankManager Security" class=
"org.springframework. security.access.intercept.aspectj.AspectJMet hodSecuritylnterceptor">
<property name="aut henti cati onManager" ref="authenticati onManager"/>
<property name="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property name="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property name="securityMetadataSource">
<sec: net hod- securi ty- net adat a- sour ce>
<sec: protect method="com nyconpany. BankManager . del et e*" access="ROLE_SUPERVI SOR'/ >
<sec: protect method="com nmyconpany. BankManager . get Bal ance" access="ROLE TELLER, ROLE_SUPERVI SOR'/ >
</ sec: met hod- securi t y- met adat a- sour ce>
</ property>
</ bean>

As you can see, aside from the class name, the AspectJSecuritylnterceptor is
exactly the same as the AOP Alliance security interceptor. Indeed the two interceptors can
share the same securityMetadat aSource, as the SecurityMet adat aSource works with
java. l ang. refl ect. Met hod s rather than an AOP library-specific class. Of course, your access
decisions have access to the relevant AOP library-specific invocation (ie Met hodl nvocati on or
Joi nPoi nt) and as such can consider a range of addition criteria when making access decisions (such
as method arguments).

Next you'll need to define an Aspect] aspect . For example:

package org. springfranmework. security. sanpl es. aspectj ;

i nport org.springframework. security.access.intercept.aspectj.AspectJSecuritylnterceptor;
i nport org.springfranework. security.access.intercept.aspectj.AspectJCal | back;
i nport org.springfranework. beans. factory.InitializingBean;

publ i c aspect Domai nObj ect | nstanceSecurityAspect inplenents InitializingBean {
private AspectJSecuritylnterceptor securitylnterceptor;

poi nt cut domai nQbj ect | nst anceExecution(): target(Persistabl eEntity)
&& execution(public * *(..)) & !w thin(Domai nObj ect | nstanceSecurityAspect);

bj ect around(): domai nCbj ect | nst anceExecution() {
if (this.securitylnterceptor == null) {
return proceed();

}

Aspect JCal | back cal | back = new AspectJCal | back() {
public Object proceedWthObject() {
return proceed();
}
IE

return this.securitylnterceptor.invoke(thisJoinPoint, callback);

}

public AspectJSecuritylnterceptor getSecuritylnterceptor() {
return securitylnterceptor;

}

public void setSecuritylnterceptor(AspectJSecuritylnterceptor securitylnterceptor) {
this.securitylnterceptor = securitylnterceptor;

}

public void afterPropertiesSet() throws Exception {
if (this.securitylnterceptor == null)
throw new ||| egal Argurment Exception("securitylnterceptor required");
}
}

}

4.1.0.RC1 Spring Security 137

Spring Security Reference

In the above example, the security interceptor will be applied to every instance of
Per si st abl eEnt i t y, which is an abstract class not shown (you can use any other class or poi nt cut
expression you like). For those curious, Aspect JCal | back is needed because the proceed();
statement has special meaning only within an ar ound() body. The Aspect JSecuri tyl nt er cept or
calls this anonymous Aspect JCal | back class when it wants the target object to continue.

You will need to configure Spring to load the aspect and wire it with the
Aspect JSecuri tyl nt er cept or. A bean declaration which achieves this is shown below:

<bean i d="domai nObj ect | nst anceSecurityAspect"
class="security. sanpl es. aspectj . Domai nObj ect | nst anceSecurityAspect"
factory-met hod="aspect Of " >

<property name="securitylnterceptor" ref="bankManager Security"/>

</ bean>

That's it! Now you can create your beans from anywhere within your application, using whatever means
you think fit (eg new Per son() ;) and they will have the security interceptor applied.

4.1.0.RC1 Spring Security 138

Spring Security Reference

23. Expression-Based Access Control

Spring Security 3.0 introduced the ability to use Spring EL expressions as an authorization mechanism in
addition to the simple use of configuration attributes and access-decision voters which have seen before.
Expression-based access control is built on the same architecture but allows complicated boolean logic
to be encapsulated in a single expression.

23.1 Overview

Spring Security uses Spring EL for expression support and you should look at how that works if you are
interested in understanding the topic in more depth. Expressions are evaluated with a "root object" as
part of the evaluation context. Spring Security uses specific classes for web and method security as the
root object, in order to provide built-in expressions and access to values such as the current principal.

Common Built-In Expressions

The base class for expression root objects is Securit yExpr essi onRoot . This provides some
common expressions which are available in both web and method security.

Table 23.1. Common built-in expressions

Expression Description

hasRol e([rol e]) Returns t r ue if the current principal has
the specified role. By default if the supplied
role does not start with 'ROLE_" it will
be added. This can be customized by
modifying the def aul t Rol ePrefi x on
Def aul t WebSecuri t yExpr essi onHandl er.

hasAnyRol e([rol el, rol e2]) Returns t r ue if the current principal has any
of the supplied roles (given as a comma-
separated list of strings). By default if the
supplied role does not start with 'ROLE_" it
will be added. This can be customized by
modifying the def aul t Rol ePrefi x on
Def aul t WebSecuri t yExpr essi onHandl er.

hasAut hority([authority]) Returns t r ue if the current principal has the
specified authority.

hasAnyAut hority([authorityl, aut hority2Returnstr ue if the current principal has any of
the supplied roles (given as a comma-separated
list of strings)

princi pal Allows direct access to the principal object
representing the current user

aut henti cati on Allows direct access to the current
Aut hent i cat i on object obtained from the
Securi t yCont ext

permtAll Always evaluates to t r ue

4.1.0.RC1 Spring Security 139

Spring Security Reference

Expression Description
denyAl | Always evaluates to f al se
i sAnonynous() Returns t r ue if the current principal is an

anonymous user

i sRerrember Me() Returns t r ue if the current principal is a
remember-me user

i sAut hent i cat ed() Returns t r ue if the user is not anonymous

i sFul | yAut henti cat ed() Returns t r ue if the user is not an anonymous or
a remember-me user

hasPer m ssi on(Chj ect target, Object Returns t r ue if the user has access to the

per m ssi on) provided target for the given permission. For
example, hasPer m ssi on(donai nOhj ect
"read')

hasPer m ssi on(hj ect targetld, Returns t r ue if the user has access to the

String target Type, Object provided target for the given permission.

per m ssi on) For example, hasPer m ssi on(1,
' com exanpl e. domai n. Message’ ,
"read')

23.2 Web Security Expressions

To use expressions to secure individual URLs, you would first need to set the use- expr essi ons
attribute in the <ht t p> element to t r ue. Spring Security will then expect the access attributes of the
<i nt er cept - url > elements to contain Spring EL expressions. The expressions should evaluate to a
boolean, defining whether access should be allowed or not. For example:

<htt p>
<intercept-url pattern="/adm n*"
access="hasRol e(' adm n') and hasl pAddress(' 192.168.1.0/24"')"/>

</ http>

Here we have defined that the "admin" area of an application (defined by the URL pattern) should
only be available to users who have the granted authority "admin" and whose IP address matches
a local subnet. We've already seen the built-in hasRol e expression in the previous section. The
expression hasl pAddr ess is an additional built-in expression which is specific to web security.
It is defined by the WebSecuri t yExpr essi onRoot class, an instance of which is used as the
expression root object when evaluation web-access expressions. This object also directly exposed
the Ht t pSer vl et Request object under the name r equest so you can invoke the request directly
in an expression. If expressions are being used, a WebExpr essi onVot er will be added to the
AccessDeci si onManager which is used by the namespace. So if you aren't using the namespace
and want to use expressions, you will have to add one of these to your configuration.

Referring to Beans in Web Security Expressions

If you wish to extend the expressions that are available, you can easily refer to any Spring Bean you
expose. For example, assumming you have a Bean with the name of webSecuri t y that contains the
following method signature:

4.1.0.RC1 Spring Security 140

Spring Security Reference

public class WbSecurity {
publi c bool ean check(Aut hentication authentication, HttpServletRequest request) {

}
}

You could refer to the method using:

<ht t p>
<intercept-url pattern="/user/**"
access="@webSecurity.check(authentication,request)"/>

</ http>

or in Java configuration

http
.authorizeUrl s()
.ant Mat chers("/user/**") . access(" @webSecurity. check(authentication, request)")

Path Variables in Web Security Expressions

At times it is nice to be able to refer to path variables within a URL. For example, consider a RESTful
application that looks up a user by id from the URL path in the format / user/{user| d}.

You can easily refer to the path variable by placing it in the pattern. For example, if you had a Bean with
the name of webSecur i t y that contains the following method signature:

public class WbSecurity {
publ i c bool ean checkUser|d(Authentication authentication, int id) {

}
}

You could refer to the method using:

<htt p>
<intercept-url pattern="/user/{userld}/**"
access="@ebSecurity.checkUser|d(authentication,userld)"/>

</ http>

or in Java configuration

http
.authorizeUrl s()
.ant Mat chers("/user/{userld}/**").access(" @webSecurity.checkUserld(authentication,userld)")

In both configurations URLSs that match would pass in the path variable (and convert it) into checkUserld
method. For example, if the URL were / user/ 123/ r esour ce, then the id passed in would be 123.

23.3 Method Security Expressions

Method security is a bit more complicated than a simple allow or deny rule. Spring Security 3.0 introduced
some new annotations in order to allow comprehensive support for the use of expressions.

4.1.0.RC1 Spring Security 141

Spring Security Reference

@Pre and @Post Annotations

There are four annotations which support expression attributes to allow pre and post-invocation
authorization checks and also to support filtering of submitted collection arguments or return values.
They are @r eAut hori ze, @r eFi | t er, @ost Aut hori ze and @ost Fi | t er . Their use is enabled
through the gl obal - met hod- securi t y namespace element:

<gl obal - met hod- security pre-post-annotations="enabl ed"/>

Access Control using @PreAuthorize and @PostAuthorize

The most obviously useful annotation is @r eAut hor i ze which decides whether a method can actually
be invoked or not. For example (from the"Contacts" sample application)

@r eAut hori ze("hasRol e(' USER) ")
public void create(Contact contact);

which means that access will only be allowed for users with the role "ROLE_USER". Obviously the same
thing could easily be achieved using a traditional configuration and a simple configuration attribute for
the required role. But what about:

@r eAut hori ze("hasPer m ssi on(#contact, 'admn')")
public void del et ePerm ssi on(Contact contact, Sid recipient, Pernission perm ssion);

Here we’re actually using a method argument as part of the expression to decide whether the current
user has the "admin"permission for the given contact. The built-in hasPer i ssi on() expression is
linked into the Spring Security ACL module through the application context, as we’llsee below. You can
access any of the method arguments by nhame as expression variables.

There are a number of ways in which Spring Security can resolve the method arguments. Spring Security
uses Def aul t Securi t yPar anet er NameDi scover er to discover the parameter names. By default,
the following options are tried for a method as a whole.

« If Spring Security’s @ annotation is present on a single argument to the method, the value will be used.
This is useful for interfaces compiled with a JDK prior to JDK 8 which do not contain any information
about the parameter names. For example:

inport org.springfranmework. security. access. nethod. P;

@°r eAut hori ze("#c. name == aut henti cati on. nane")
public void doSonet hing(@("c") Contact contact);

Behind the scenes this use implemented using Annot at i onPar anet er NaneDi scover er which
can be customized to support the value attribute of any specified annotation.

* If Spring Data’s @ar amannotation is present on at least one parameter for the method, the value
will be used. This is useful for interfaces compiled with a JDK prior to JDK 8 which do not contain any
information about the parameter names. For example:

import org.springframework. data. reposi tory. query. Param

@r eAut hori ze("#n == aut henti cati on. nane")
Cont act findContactByName(@aran("n") String nane);

4.1.0.RC1 Spring Security 142

Spring Security Reference

Behind the scenes this use implemented using Annot at i onPar anmet er NaneDi scover er which
can be customized to support the value attribute of any specified annotation.

 If JDK 8 was used to compile the source with the -parameters argument and Spring 4+ is being used,
then the standard JDK reflection API is used to discover the parameter names. This works on both
classes and interfaces.

 Last, if the code was compiled with the debug symbols, the parameter names will be discovered using
the debug symbols. This will not work for interfaces since they do not have debug information about
the parameter names. For interfaces, annotations or the JDK 8 approach must be used.

Any Spring-EL functionality is available within the expression, so you can also access properties on
the arguments. For example, if you wanted a particular method to only allow access to a user whose
username matched that of the contact, you could write

@r eAut hori ze("#cont act . nane == aut henti cati on. nane")
public void doSonet hi ng(Cont act contact);

Here we are accessing another built-in expression, aut hent i cat i on, which is the Aut hent i cati on
stored in the security context. You can also access its "principal” property directly, using the expression
princi pal . The value will often be a User Det ai | s instance, so you might use an expression like
princi pal . usernane or pri nci pal . enabl ed.

Less commonly, you may wish to perform an access-control check after the method has been invoked.
This can be achieved using the @ost Aut hori ze annotation. To access the return value from a
method, use the built-in name r et ur nCbj ect in the expression.

Filtering using @PreFilter and @PostFilter

As you may already be aware, Spring Security supports filtering of collections and arrays and this can
now be achieved using expressions. This is most commonly performed on the return value of a method.
For example:

@r eAut hori ze("hasRol e(' USER) ")
@ostFilter("hasPerm ssion(filterCbject, 'read') or hasPermission(filterCbject, "admin')")
public List<Contact> getAll();

When using the @ost Fi | t er annotation, Spring Security iterates through the returned collection and
removes any elements for which the supplied expression is false. The name fil t er Cbj ect refers
to the current object in the collection. You can also filter before the method call, using @r eFi | t er,
though this is a less common requirement. The syntax is just the same, but if there is more than one
argument which is a collection type then you have to select one by name using the fi | t er Tar get
property of this annotation.

Note that filtering is obviously not a substitute for tuning your data retrieval queries. If you are filtering
large collections and removing many of the entries then this is likely to be inefficient.

Built-In Expressions
There are some built-in expressions which are specific to method security, which we have already seen

in use above. The filter Target and r et urnVal ue values are simple enough, but the use of the
hasPer m ssi on() expression warrants a closer look.

4.1.0.RC1 Spring Security 143

Spring Security Reference

The PermissionEvaluator interface

hasPer m ssi on() expressions are delegated to an instance of Perm ssi onEval uator. It is
intended to bridge between the expression system and Spring Security’s ACL system, allowing you to
specify authorization constraints on domain objects, based on abstract permissions. It has no explicit
dependencies on the ACL module, so you could swap that out for an alternative implementation if
required. The interface has two methods:

bool ean hasPer m ssi on(Aut henti cati on aut hentication, Object targetDonmai nCbject,
Qbj ect perm ssion);

bool ean hasPer m ssi on(Aut henti cati on authentication, Serializable targetld,
String target Type, Object pernission);

which map directly to the available versions of the expression, with the exception that the first argument
(the Aut hent i cat i on object) is not supplied. The first is used in situations where the domain object,
to which access is being controlled, is already loaded. Then expression will return true if the current
user has the given permission for that object. The second version is used in cases where the object is
not loaded, but its identifier is known. An abstract "type" specifier for the domain object is also required,
allowing the correct ACL permissions to be loaded. This has traditionally been the Java class of the
object, but does not have to be as long as it is consistent with how the permissions are loaded.

To use hasPer i ssi on() expressions, you have to explicitly configure a Per mi ssi onEval uat or
in your application context. This would look something like this:

<security: gl obal - met hod-security pre-post-annotations="enabl ed">
<security:expression-handl er ref="expressi onHandl er"/>
</ security: gl obal - ret hod- security>

<bean i d="expressi onHandl er" cl ass=

"org. springframework. security.access. expressi on. met hod. Def aul t Met hodSecuri t yExpr essi onHandl er " >
<property nanme="perm ssi onEval uator" ref="nyPernmni ssi onEval uator"/ >

</ bean>

Where nyPer mi ssi onEval uat or is the bean which implements Per ni ssi onEval uat or . Usually
this will be the implementation from the ACL module which is called Acl Per m ssi onEval uat or. See
the "Contacts" sample application configuration for more details.

Method Security Meta Annotations

You can make use of meta annotations for method security to make your code more readable. This is
especially convenient if you find that you are repeating the same complex expression throughout your
code base. For example, consider the following:

@r eAut hori ze("#cont act. nane == aut henti cati on. nane")

Instead of repeating this everywhere, we can create a meta annotation that can be used instead.

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
@r eAut hori ze("#cont act. nane == aut henti cati on. nane")
public @nterface ContactPerm ssion {}

Meta annotations can be used for any of the Spring Security method security annotations. In order to
remain compliant with the specification JSR-250 annotations do not support meta annotations.

4.1.0.RC1 Spring Security 144

Part VII. Additional Topics

In this part we cover features which require a knowledge of previous chapters as well as some of the
more advanced and less-commonly used features of the framework.

Spring Security Reference

24. Domain Object Security (ACLS)

24.1 Overview

Complex applications often will find the need to define access permissions not simply at a web request
or method invocation level. Instead, security decisions need to comprise both who (Aut hent i cati on),
where (Met hodl nvocat i on) and what (SomeDonmai nQhj ect). In other words, authorization decisions
also need to consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your
Spring-based application: staff of the pet clinic, as well as the pet clinic’'s customers. The staff will have
access to all of the data, whilst your customers will only be able to see their own customer records. To
make it a little more interesting, your customers can allow other users to see their customer records,
such as their "puppy preschool” mentor or president of their local "Pony Club”. Using Spring Security
as the foundation, you have several approaches that can be used:

e Write your business methods to enforce the security. You could consult a collection within
the Customer domain object instance to determine which users have access. By using the
Securi t yCont ext Hol der. get Cont ext (). get Aut henti cati on(), you'll be able to access
the Aut henti cati on object.

» Write an AccessDeci si onVot er to enforce the security from the G- ant edAut hori t y[] s stored
in the Aut henti cati on object. This would mean your Aut henti cat i onManager would need
to populate the Aut henti cat i on with custom Gr ant edAut hori t y[] s representing each of the
Cust onmer domain object instances the principal has access to.

» Write an AccessDeci si onVot er to enforce the security and open the target Cust oner domain
object directly. This would mean your voter needs access to a DAO that allows it to retrieve the
Cust omer object. It would then access the Cust oner object’s collection of approved users and make
the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization
checking to your business code. The main problems with this include the enhanced difficulty of unit
testing and the fact it would be more difficult to reuse the Cust oner authorization logic elsewhere.
Obtaining the Gr ant edAut hori ty[] s from the Aut henti cati on object is also fine, but will not
scale to large numbers of Cust oner s. If a user might be able to access 5,000 Cust omer s (unlikely in
this case, but imagine if it were a popular vet for a large Pony Club!) the amount of memory consumed
and time required to construct the Aut hent i cat i on object would be undesirable. The final method,
opening the Cust oner directly from external code, is probably the best of the three. It achieves
separation of concerns, and doesn’t misuse memory or CPU cycles, but it is still inefficient in that
both the AccessDeci si onVot er and the eventual business method itself will perform a call to the
DAO responsible for retrieving the Cust oner object. Two accesses per method invocation is clearly
undesirable. In addition, with every approach listed you'll need to write your own access control list
(ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we’'ll talk about below.
24.2 Key Concepts

Spring Security’s ACL services are shipped in the spri ng- securi ty-acl - xxx. j ar. You will need
to add this JAR to your classpath to use Spring Security’s domain object instance security capabilities.

4.1.0.RC1 Spring Security 146

Spring Security Reference

Spring Security’s domain object instance security capabilities centre on the concept of an access control
list (ACL). Every domain object instance in your system has its own ACL, and the ACL records details of
who can and can’t work with that domain object. With this in mind, Spring Security delivers three main
ACL-related capabilities to your application:

» A way of efficiently retrieving ACL entries for all of your domain objects (and modifying those ACLS)
» A way of ensuring a given principal is permitted to work with your objects, before methods are called

« A way of ensuring a given principal is permitted to work with your objects (or something they return),
after methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module
is providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely
important, because every domain object instance in your system might have several access control
entries, and each ACL might inherit from other ACLs in a tree-like structure (this is supported out-of-the-
box by Spring Security, and is very commonly used). Spring Security’s ACL capability has been carefully
designed to provide high performance retrieval of ACLs, together with pluggable caching, deadlock-
minimizing database updates, independence from ORM frameworks (we use JDBC directly), proper
encapsulation, and transparent database updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used
by default in the implementation. The tables are presented below in order of size in a typical Spring
Security ACL deployment, with the table with the most rows listed last:

* ACL_SID allows us to uniquely identify any principal or authority in the system ("SID" stands for
"security identity"). The only columns are the ID, a textual representation of the SID, and a flag to
indicate whether the textual representation refers to a principal name or a G ant edAut hority.
Thus, there is a single row for each unique principal or G- ant edAut hori ty. When used in the
context of receiving a permission, a SID is generally called a "recipient".

» ACL_CLASS allows us to uniquely identify any domain object class in the system. The only columns
are the ID and the Java class name. Thus, there is a single row for each unique Class we wish to
store ACL permissions for.

* ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.
Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know which
ACL_CLASS instance we're providing information for, the parent, a foreign key to the ACL_SID table
to represent the owner of the domain object instance, and whether we allow ACL entries to inherit
from any parent ACL. We have a single row for every domain object instance we’re storing ACL
permissions for.

» Finally, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include
a foreign key to the ACL_OBJECT_IDENTITY, the recipient (ie a foreign key to ACL_SID), whether
we’ll be auditing or not, and the integer bit mask that represents the actual permission being granted
or denied. We have a single row for every recipient that receives a permission to work with a domain
object.

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don’t worry, you need
not be aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32
bits we can switch on or off. Each of these bits represents a permission, and by default the permissions
are read (bit 0), write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement
your own Per i ssi on instance if you wish to use other permissions, and the remainder of the ACL
framework will operate without knowledge of your extensions.

4.1.0.RC1 Spring Security 147

Spring Security Reference

It is important to understand that the number of domain objects in your system has absolutely no
bearing on the fact we've chosen to use integer bit masking. Whilst you have 32 bits available for
permissions, you could have billions of domain object instances (which will mean billions of rows in
ACL_OBJECT_IDENTITY and quite probably ACL_ENTRY). We make this point because we've found
sometimes people mistakenly believe they need a bit for each potential domain object, which is not
the case.

Now that we’ve provided a basic overview of what the ACL system does, and what it looks like at a table
structure, let's explore the key interfaces. The key interfaces are:

* Acl : Every domain object has one and only one Acl object, which internally holds the
AccessControl Entry s as well as knows the owner of the Acl. An Acl does not refer
directly to the domain object, but instead to an Cbj ectldentity. The Acl is stored in the
ACL_OBJECT_IDENTITY table.

e AccessControl Entry: An Acl holds multiple AccessControl Entry s, which are often
abbreviated as ACEs in the framework. Each ACE refers to a specific tuple of Per m ssi on, Si d and
Acl . An ACE can also be granting or non-granting and contain audit settings. The ACE is stored in
the ACL_ENTRY table.

» Perm ssi on: A permission represents a particular immutable bit mask, and offers convenience
functions for bit masking and outputting information. The basic permissions presented above (bits 0
through 4) are contained in the BasePer ni ssi on class.

e Sid: The ACL module needs to refer to principals and Grant edAut hority[] s. A level of
indirection is provided by the Si d interface, which is an abbreviation of "security identity”. Common
classes include Pri nci pal Si d (to represent the principal inside an Aut hent i cat i on object) and
G ant edAut hori t ySi d. The security identity information is stored in the ACL_SID table.

« (bjectldentity: Each domain object is represented internally within the ACL module by an
oj ect I dent i ty. The default implementation is called Obj ect | denti tyl npl .

» Acl Servi ce: Retrieves the Acl applicable for a given Obj ectldentity. In the included
implementation (JdbcAcl Ser vi ce), retrieval operations are delegated to a LookupSt r at egy.
The LookupStr at egy provides a highly optimized strategy for retrieving ACL information, using
batched retrievals (Basi cLookupSt r at egy) and supporting custom implementations that leverage
materialized views, hierarchical queries and similar performance-centric, non-ANSI SQL capabilities.

e Mut abl eAcl Servi ce: Allows a modified Acl to be presented for persistence. It is not essential to
use this interface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This
should therefore work with all major databases. At the time of writing, the system had been successfully
tested using Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts
Sample, and the other is the Document Management System (DMS) Sample. We suggest taking a look
over these for examples.

24.3 Getting Started

To get starting using Spring Security’s ACL capability, you will need to store your ACL information
somewhere. This necessitates the instantiation of a Dat aSour ce using Spring. The Dat aSour ce is

4.1.0.RC1 Spring Security 148

Spring Security Reference

then injected into a JdbcMut abl eAcl Servi ce and Basi cLookupSt rat egy instance. The latter
provides high-performance ACL retrieval capabilities, and the former provides mutator capabilities.
Refer to one of the samples that ship with Spring Security for an example configuration. You'll also need
to populate the database with the four ACL-specific tables listed in the last section (refer to the ACL
samples for the appropriate SQL statements).

Once you've created the required schema and instantiated JdbcMut abl eAcl Ser vi ce, you'll next
need to ensure your domain model supports interoperability with the Spring Security ACL package.
Hopefully Obj ect | denti t yl npl will prove sufficient, as it provides a large number of ways in which it
can be used. Most people will have domain objects that contain a publ i ¢ Seri al i zabl e get1d()
method. If the return type is long, or compatible with long (eg an int), you will find you need not give
further consideration to Cbj ect | dent i t y issues. Many parts of the ACL module rely on long identifiers.
If you're not using long (or an int, byte etc), there is a very good chance you’'ll need to reimplement a
number of classes. We do not intend to support non-long identifiers in Spring Security’s ACL module,
as longs are already compatible with all database sequences, the most common identifier data type,
and are of sufficient length to accommodate all common usage scenarios.

The following fragment of code shows how to create an Acl , or modify an existing Acl :

/| Prepare the information we'd like in our access control entry (ACE)
oj ectldentity oi = new Objectldentitylnpl (Foo.class, new Long(44));
Sid sid = new Principal Si d("Samantha");

Perm ssion p = BasePerni ssi on. ADM NI STRATI ON;

/| Create or update the relevant ACL

Mut abl eAcl acl = null;

try {

acl = (Mutabl eAcl) acl Service.readAcl Byl d(oi);
} catch (Not FoundException nfe) {

acl = acl Service. createAcl (0i);

}

/1 Now grant sone permissions via an access control entry (ACE)
acl .insertAce(acl.getEntries().length, p, sid, true);
acl Servi ce. updat eAcl (acl) ;

In the example above, we're retrieving the ACL associated with the "Foo" domain object with identifier
number 44. We're then adding an ACE so that a principal named "Samantha" can "administer" the
object. The code fragment is relatively self-explanatory, except the insertAce method. The first argument
to the insertAce method is determining at what position in the Acl the new entry will be inserted. In the
example above, we're just putting the new ACE at the end of the existing ACEs. The final argument is
a boolean indicating whether the ACE is granting or denying. Most of the time it will be granting (true),
but if it is denying (false), the permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACLs
as part of your DAO or repository operations. Instead, you will need to write code like shown above for
your individual domain objects. It's worth considering using AOP on your services layer to automatically
integrate the ACL information with your services layer operations. We've found this quite an effective
approach in the past.

Once you've used the above techniques to store some ACL information in the database, the next step
is to actually use the ACL information as part of authorization decision logic. You have a number of
choices here. You could write your own AccessDeci si onVot er or Afterl nvocati onProvi der
that respectively fires before or after a method invocation. Such classes would use Acl Servi ce
to retrieve the relevant ACL and then call Acl.isG anted(Permission[] perm ssion,
Sid[] sids, boolean admnistrativeMde) to decide whether permission is granted or

4.1.0.RC1 Spring Security 149

Spring Security Reference

denied. Alternately, you could use our Acl EntryVot er, Acl EntryAfterl nvocati onProvi der
or Acl EntryAfterlnvocationCol | ectionFilteringProvider classes. All of these classes
provide a declarative-based approach to evaluating ACL information at runtime, freeing you from
needing to write any code. Please refer to the sample applications to learn how to use these classes.

4.1.0.RC1 Spring Security 150

Spring Security Reference

25. Pre-Authentication Scenarios

There are situations where you want to use Spring Security for authorization, but the user has already
been reliably authenticated by some external system prior to accessing the application. We refer to these
situations as "pre-authenticated” scenarios. Examples include X.509, Siteminder and authentication
by the Java EE container in which the application is running. When using pre-authentication, Spring
Security has to

* lIdentify the user making the request.
» Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their
certificate information in the case of X.509, or by an HTTP request header in the case of Siteminder.
If relying on container authentication, the user will be identified by calling the get User Pri nci pal ()
method on the incoming HTTP request. In some cases, the external mechanism may supply role/
authority information for the user but in others the authorities must be obtained from a separate source,
such as a User Det ai | sSer vi ce.

25.1 Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set
of classes which provide an internal framework for implementing pre-authenticated authentication
providers. This removes duplication and allows new implementations to be added in a structured
fashion, without having to write everything from scratch. You don't need to know about these
classes if you want to use something like X.509 authentication, as it already has a namespace
configuration option which is simpler to use and get started with. If you need to use explicit
bean configuration or are planning on writing your own implementation then an understanding
of how the provided implementations work will be useful. You will find classes under the
org. springframework. security.web. aut henti cati on. preaut h. We just provide an outline
here so you should consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract
user information from the HTTP request and submit it to the Aut hent i cati onManager . Subclasses
override the following methods to obtain this information:

protected abstract Object getPreAuthenticatedPrincipal (HtpServl et Request request);

protected abstract Object getPreAuthenticatedCredential s(HttpServl et Request request);

After calling these, the filter will create a Pr eAut hent i cat edAut hent i cat i onToken containing the
returned data and submit it for authentication. By "authentication" here, we really just mean further
processing to perhaps load the user’'s authorities, but the standard Spring Security authentication
architecture is followed.

Like other Spring Security authentication filters, the pre-authentication filter has
an authenticationDetail sSource property which by default will create a
WebAut hent i cati onDet ai | s object to store additional information such as the session-identifier and
originating IP address in the det ai | s property of the Aut hent i cat i on object. In cases where user
role information can be obtained from the pre-authentication mechanism, the data is also stored in this

4.1.0.RC1 Spring Security 151

Spring Security Reference

property, with the details implementing the Gr ant edAut hori t i esCont ai ner interface. This enables
the authentication provider to read the authorities which were externally allocated to the user. We'll look
at a concrete example next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an aut henti cati onDet ai | sSour ce which is an instance of this
class, the authority information is obtained by calling the i sUser I nRol e(String role) method
for each of a pre-determined set of "mappable roles". The class gets these from a configured
Mappabl eAttri but esRetri ever. Possible implementations include hard-coding a list in the
application context and reading the role information from the <security-rol e> information in a
web. xm file. The pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security
Grant edAut hor i ty objects using a configured At t ri but es2Gr ant edAut hori ti esMapper. The
default will just add the usual ROLE_ prefix to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the User Det ai | s object for the user.
It does this by delegating to a Aut henti cati onUser Det ai | sSer vi ce. The latter is similar to the
standard User Det ai | sSer vi ce but takes an Aut hent i cat i on object rather than just user name:

public interface AuthenticationUserDetail sService {
User Det ai | s | oadUser Det ai | s(Aut henti cati on token) throws UsernameNot FoundExcepti on;

}

This interface may have also other uses but with pre-authentication it allows access to the authorities
which were packaged in the Aut henti cati on object, as we saw in the previous section. the
PreAut henti cat edG ant edAut hori ti esUser Det ai | sSer vi ce class does this. Alternatively, it
may delegate to a standard User Det ai | sSer vi ce viathe User Det ai | sByNaneSer vi ceW apper
implementation.

Http403ForbiddenEntryPoint

The Aut henti cati onEnt r yPoi nt was discussed in the technical overview chapter. Normally it is
responsible for kick-starting the authentication process for an unauthenticated user (when they try to
access a protected resource), but in the pre-authenticated case this doesn’t apply. You would only
configure the Except i onTr ansl ati onFi | t er with an instance of this class if you aren’t using pre-
authentication in combination with other authentication mechanisms. It will be called if the user is
rejected by the Abst r act Pr eAut hent i cat edPr ocessi ngFi | t er resulting in a null authentication.
It always returns a 403-forbidden response code if called.

25.2 Concrete Implementations

X.509 authentication is covered in its own chapter. Here we'll look at some classes which provide support
for other pre-authenticated scenarios.

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific
headers on the HTTP request. A well known example of this is Siteminder, which passes
the username in a header called SM USER. This mechanism is supported by the class

4.1.0.RC1 Spring Security 152

Spring Security Reference

Request Header Aut henti cati onFi | t er which simply extracts the username from the header. It
defaults to using the name SM_USER as the header name. See the Javadoc for more details.

Tip

Note that when using a system like this, the framework performs no authentication checks at all
and itis extremely important that the external system is configured properly and protects all access
to the application. If an attacker is able to forge the headers in their original request without this
being detected then they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using this filter would look like this:

<security: http>

<!-- Additional http configuration omtted -->

<security:customfilter position="PRE_AUTH FILTER' ref="sitem nderFilter" />
</security:http>

<bean id="sitem nderFilter" class="org.springframework.security.web. authentication. preauth. Request Header Aut henti cationFilte
<property name="princi pal Request Header" val ue="SM USER'/ >

<property name="aut henti cati onManager" ref="authenticati onManager" />

</ bean>

<bean id="preaut hAut hProvi der" cl ass="org. springfranmework. security.web. aut henti cation. preauth. PreAut henti cat edAut henti cati o
<property name="preAut henti cat edUser Det ai | sServi ce">

<bean i d="userDet ai | sServi ceW apper"

cl ass="org. springfranmework. security.core.userdetails. UserDetail sByNaneSer vi ceW apper ">

<property name="userDetail sService" ref="userDetailsService"/>

</ bean>
</ property>
</ bean>

<security:authentication-nmanager alias="authenticationManager">
<security:authentication-provider ref="preauthAuthProvider" />
</security: authentication- manager >

We've assumed here that the security namespace is being used for configuration. It's also assumed
that you have added a User Det ai | sSer vi ce (called "userDetailsService") to your configuration to
load the user’s roles.

Java EE Container Authentication

The class J2eePreAut henti cat edProcessi ngFilter will extract the username from the
user Princi pal property of the HtpServletRequest. Use of this filter would usually
be combined with the use of Java EE roles as described above in the section called
“J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource”.

There is a sample application in the codebase which uses this approach, so get hold of the code from
github and have a look at the application context file if you are interested. The code is in the sanpl es/
pr eaut h- xm directory.

4.1.0.RC1 Spring Security 153

Spring Security Reference

26. LDAP Authentication

26.1 Overview

LDAP is often used by organizations as a central repository for user information and as an authentication
service. It can also be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security’s
LDAP provider is fully configurable. It uses separate strategy interfaces for authentication and role
retrieval and provides default implementations which can be configured to handle a wide range of
situations.

You should be familiar with LDAP before trying to use it with Spring Security. The following link provides
a good introduction to the concepts involved and a guide to setting up a directory using the free LDAP
server OpenLDAP: http://www.zytrax.com/books/Idap/. Some familiarity with the JNDI APIs used to
access LDAP from Java may also be useful. We don’t use any third-party LDAP libraries (Mozilla, JLDAP
etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so some familiarity with that
project may be useful if you plan on adding your own customizations.

When using LDAP authentication, it is important to ensure that you configure LDAP connection pooling
properly. If you are unfamiliar with how to do this, you can refer to the Java LDAP documentation.

26.2 Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

» Obtaining the unique LDAP "Distinguished Name", or DN, from the login name. This will often mean
performing a search in the directory, unless the exact mapping of usernames to DNs is known
in advance. So a user might enter the name "joe" when logging in, but the actual name used to
authenticate to LDAP will be the full DN, such as ui d=j oe, ou=user s, dc=spri ng, dc=i o.

» Authenticating the user, either by "binding" as that user or by performing a remote "compare" operation
of the user’s password against the password attribute in the directory entry for the DN.

 Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and authenticate
against it locally. This may not be possible as directories are often set up with limited read access for
attributes such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration
options, please consult the security nhamespace schema (information from which should be available
in your XML editor).

26.3 Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place.
This is done using the <I dap- ser ver > element from the security namespace. This can be configured
to point at an external LDAP server, using the ur | attribute:

<l dap-server url="1dap://springfranework. org: 389/ dc=spri ngf ramewor k, dc=org" />

4.1.0.RC1 Spring Security 154

http://www.zytrax.com/books/ldap/
http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html

Spring Security Reference

Using an Embedded Test Server

The <I dap- server > element can also be used to create an embedded server, which can be very
useful for testing and demonstrations. In this case you use it without the ur | attribute:

<l dap- server root="dc=springfranmework, dc=org"/>

Here we've specified that the root DIT of the directory should be "dc=springframework,dc=org", which
is the default. Used this way, the namespace parser will create an embedded Apache Directory server
and scan the classpath for any LDIF files, which it will attempt to load into the server. You can customize
this behaviour using the | di f attribute, which defines an LDIF resource to be loaded:

<l dap-server |dif="classpath:users.ldif" />

This makes it a lot easier to get up and running with LDAP, since it can be inconvenient to work all the
time with an external server. It also insulates the user from the complex bean configuration needed to
wire up an Apache Directory server. Using plain Spring Beans the configuration would be much more
cluttered. You must have the necessary Apache Directory dependency jars available for your application
to use. These can be obtained from the LDAP sample application.

Using Bind Authentication

This is the most common LDAP authentication scenario.

<| dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"/ >

This simple example would obtain the DN for the user by substituting the user login name in the supplied
pattern and attempting to bind as that user with the login password. This is OK if all your users are
stored under a single node in the directory. If instead you wished to configure an LDAP search filter to
locate the user, you could use the following:

<l dap- aut henti cati on- provi der user-search-filter="(uid={0})"
user - sear ch- base="ou=peopl e"/ >

If used with the server definition above, this would perform a search under the DN
ou=peopl e, dc=spri ngf r anmewor k, dc=or g using the value of the user - sear ch-fi | t er attribute
as a filter. Again the user login name is substituted for the parameter in the filter name, so it will search
for an entry with the ui d attribute equal to the user name. If user - sear ch- base isn't supplied, the
search will be performed from the root.

Loading Authorities
How authorities are loaded from groups in the LDAP directory is controlled by the following attributes.

» group-sear ch- base. Defines the part of the directory tree under which group searches should be
performed.

e group-rol e-attribute. The attribute which contains the name of the authority defined by the
group entry. Defaults to cn

e group-search-filter. The filter which is used to search for group membership. The default is
uni queMember ={ 0}, corresponding to the gr oupCf Uni queNanes LDAP class 2 In this case, the
substituted parameter is the full distinguished name of the user. The parameter { 1} can be used if
you want to filter on the login name.

So if we used the following configuration

4.1.0.RC1 Spring Security 155

Spring Security Reference

<l dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"
gr oup- sear ch- base="ou=gr oups" />

and authenticated successfully as user "ben", the subsequent loading of authorities would
perform a search under the directory entry ou=groups, dc=spri ngframework, dc=org,
looking for entries which contain the attribute uni queMenber with value
ui d=ben, ou=peopl e, dc=spri ngf r amewor k, dc=or g. By default the authority names will have the
prefix ROLE_ prepended. You can change this using the r ol e- pr ef i x attribute. If you don’t want any
prefix, use r ol e- prefi x="none". For more information on loading authorities, see the Javadoc for
the Def aul t LdapAut hori ti esPopul at or class.

26.4 Implementation Classes

The namespace configuration options we’ve used above are simple to use and much more concise
than using Spring beans explicitly. There are situations when you may need to know how to configure
Spring Security LDAP directly in your application context. You may wish to customize the behaviour of
some of the classes, for example. If you're happy using hamespace configuration then you can skip
this section and the next one.

The main LDAP provider class, LdapAut henti cati onProvi der, doesn't actually do much
itself but delegates the work to two other beans, an LdapAuthenticator and an
LdapAut hori ti esPopul at or which are responsible for authenticating the user and retrieving the
user’s set of G ant edAut hori ty s respectively.

LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the
permissions on the attributes may depend on the type of authentication being used. For example, if
binding as the user, it may be necessary to read them with the user’'s own permissions.

There are currently two authentication strategies supplied with Spring Security:
 Authentication directly to the LDAP server ("bind" authentication).

» Password comparison, where the password supplied by the user is compared with the one stored in
the repository. This can either be done by retrieving the value of the password attribute and checking
it locally or by performing an LDAP "compare" operation, where the supplied password is passed to
the server for comparison and the real password value is never retrieved.

Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN)
has to be obtained from the login name supplied to the application. This can be done either by
simple pattern-matching (by setting the set User DnPatt er ns array property) or by setting the
user Sear ch property. For the DN pattern-matching approach, a standard Java pattern format is
used, and the login name will be substituted for the parameter { 0} . The pattern should be relative
to the DN that the configured Spri ngSecurityCont ext Source will bind to (see the section
on connecting to the LDAP server for more information on this). For example, if you are using
an LDAP server with the URL | dap: / / nonkeymachi ne. co. uk/ dc=spri ngf r amewor k, dc=or g,
and have a pattern ui d={ 0}, ou=gr eat apes, then a login name of "gorilla" will map to a DN
ui d=goril | a, ou=gr eat apes, dc=spri ngf ramewor k, dc=or g. Each configured DN pattern will
be tried in turn until a match is found. For information on using a search, see the section on search
objects below. A combination of the two approaches can also be used - the patterns will be checked
first and if no matching DN is found, the search will be used.

4.1.0.RC1 Spring Security 156

Spring Security Reference

BindAuthenticator

The class Bi ndAut hent i cat or in the package
org. springframework. security. | dap. authenti cati on implements the bind authentication
strategy. It simply attempts to bind as the user.

PasswordComparisonAuthenticator

The class PasswordConpari sonAut henti cator implements the password comparison
authentication strategy.

Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have
to be supplied with a SpringSecurityContext Source which is an extension of Spring
LDAP’s Cont ext Sour ce. Unless you have special requirements, you will usually configure a
Def aul t Spri ngSecurityCont ext Sour ce bean, which can be configured with the URL of your
LDAP server and optionally with the username and password of a "manager" user which will be used
by default when binding to the server (instead of binding anonymously). For more information read the
Javadoc for this class and for Spring LDAP’s Abst r act Cont ext Sour ce.

LDAP Search Objects

Often a more complicated strategy than simple DN-matching is required to locate a user entry in the
directory. This can be encapsulated in an LdapUser Sear ch instance which can be supplied to the
authenticator implementations, for example, to allow them to locate a user. The supplied implementation
isFi | t er BasedLdapUser Sear ch.

FilterBasedLdapUserSearch

This bean uses an LDAP filter to match the user object in the directory. The process is explained in
the Javadoc for the corresponding search method on the JDK DirContext class. As explained there, the
search filter can be supplied with parameters. For this class, the only valid parameter is { 0} which will
be replaced with the user’s login name.

LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAut hent i cat i onPr ovi der will attempt to load
a set of authorities for the user by calling the configured LdapAut horiti esPopul at or bean.
The Def aul t LdapAut hori ti esPopul at or is an implementation which will load the authorities by
searching the directory for groups of which the user is a member (typically these will be gr oupOf Nanes
or gr oupOf Uni queNanmes entries in the directory). Consult the Javadoc for this class for more details
on how it works.

If you want to use LDAP only for authentication, but load the authorities from a difference source (such
as a database) then you can provide your own implementation of this interface and inject that instead.

Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

4.1.0.RC1 Spring Security 157

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name%2C%2520java.lang.String%2C%2520java.lang.Object%5B%5D%2C%2520javax.naming.directory.SearchControls)

Spring Security Reference

<bean id="cont ext Sour ce"

cl ass="org. springframework. security.| dap. Def aul t Spri ngSecuri tyCont ext Sour ce">
<constructor-arg val ue="Idap: // nonkeymachi ne: 389/ dc=spri ngf r amewor k, dc=or g"/ >
<property name="user Dn" val ue="cn=manager, dc=spri ngframewor k, dc=or g"/ >
<property name="password" val ue="password"/>
</ bean>

<bean id="| dapAut hProvi der"
cl ass="org. springframework. security.| dap.authenti cati on. LdapAut henti cati onProvi der">
<constructor-arg>
<bean cl ass="org. springfranmework. security.|dap.authentication. Bi ndAut henti cator">
<constructor-arg ref="contextSource"/>
<property name="userDnPatterns">
<l i st ><val ue>ui d={ 0}, ou=peopl e</ val ue></11i st >
</ property>
</ bean>
</ constructor-arg>
<constructor-arg>
<bean
cl ass="org. springframework. security.| dap.userdetails. Defaul t LdapAut horiti esPopul at or">
<constructor-arg ref="context Source"/>
<constructor-arg val ue="ou=groups"/ >
<property nanme="groupRol eAttribute" value="ou"/>
</ bean>
</ constructor-arg>
</ bean>

This would set up the provider to access an LDAP server with URL | dap: / / nronkeynmachi ne: 389/
dc=spri ngf ranewor k, dc=or g. Authentication will be performed by attempting to bind
with the DN ui d=<user -1 ogi n- nane>, ou=peopl e, dc=spri ngf ramewor k, dc=or g. After
successful authentication, roles will be assigned to the user by searching under the DN
ou=gr oups, dc=spri ngf ranewor k, dc=or g with the default filter (menber =<user’ s- DN>) . The
role name will be taken from the "ou" attribute of each match.

To configure a user search object, which uses the filter (ui d=<user -1 ogi n- nanme>) for use instead
of the DN-pattern (or in addition to it), you would configure the following bean

<bean id="user Search"

class="org. springframework. security. | dap.search. FilterBasedLdapUser Search" >
<constructor-arg index="0" val ue=""/>

<constructor-arg index="1" val ue="(uid={0})"/>

<constructor-arg i ndex="2" ref="contextSource" />

</ bean>

and use it by setting the Bi ndAut hent i cat or bean’s user Sear ch property. The authenticator would
then call the search object to obtain the correct user’'s DN before attempting to bind as this user.

LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAut henti cati onProvi der is the same as a
normal Spring Security authentication using the standard User Det ai | sServi ce interface. A
User Det ai | s object is created and stored in the returned Aut hent i cat i on object. As with using a
User Det ai | sSer vi ce, acommon requirement is to be able to customize this implementation and add
extra properties. When using LDAP, these will normally be attributes from the user entry. The creation
of the User Det ai | s object is controlled by the provider's User Det ai | sCont ext Mapper strategy,
which is responsible for mapping user objects to and from LDAP context data:

4.1.0.RC1 Spring Security 158

Spring Security Reference

public interface UserDetail sCont ext Mapper {

User Det ai | s mapUser Fr onCont ext (Di r Cont ext Oper ations ctx, String usernang,
Col | ecti on<Grant edAut hority> authorities);

voi d mapUser ToCont ext (User Detai | s user, DirContextAdapter ctx);
}

Only the first method is relevant for authentication. If you provide an implementation of this interface and
inject it into the LdapAut hent i cati onPr ovi der, you have control over exactly how the UserDetails
object is created. The first parameter is an instance of Spring LDAP’s Di r Cont ext Oper at i ons which
gives you access to the LDAP attributes which were loaded during authentication. the user nane
parameter is the name used to authenticate and the final parameter is the collection of authorities loaded
for the user by the configured LdapAut hori ti esPopul at or.

The way the context data is loaded varies slightly depending on the type of authentication you are
using. With the Bi ndAut hent i cat or , the context returned from the bind operation will be used to read
the attributes, otherwise the data will be read using the standard context obtained from the configured
Cont ext Sour ce (when a search is configured to locate the user, this will be the data returned by the
search object).

26.5 Active Directory Authentication

Active Directory supports its own non-standard authentication options, and the normal usage pattern
doesn't fit too cleanly with the standard LdapAut henti cati onProvi der. Typically authentication
is performed using the domain username (in the form user @onuai n), rather than using an LDAP
distinguished name. To make this easier, Spring Security 3.1 has an authentication provider which is
customized for a typical Active Directory setup.

ActiveDirectoryLdapAuthenticationProvider

Configuring Act i veDi r ect or yLdapAut hent i cati onProvi der is quite straightforward. You just
need to supply the domain name and an LDAP URL supplying the address of the server 4 An example
configuration would then look like this:

<bean id="adAut henti cati onProvi der"

cl ass="org. springframework. security.| dap. authentication. ad. ActiveDirectorylLdapAut henti cati onProvider">
<constructor-arg val ue="nmydomai n. coni' />
<constructor-arg val ue="Idap://adserver. nydonai n.com " />

</ bean>

}

Note that there is no need to specify a separate Cont ext Sour ce in order to define the server
location - the bean is completely self-contained. A user named "Sharon", for example, would
then be able to authenticate by entering either the username shar on or the full Active Directory
user Pri nci pal Nane, namely shar on@wydomai n. com The user's directory entry will then be
located, and the attributes returned for possible use in customizing the created User Det ai | s object (a
User Det ai | sCont ext Mapper can be injected for this purpose, as described above). All interaction
with the directory takes place with the identity of the user themselves. There is no concept of a "manager"
user.

By default, the user authorities are obtained from the nenber O attribute values of the user entry. The
authorities allocated to the user can again be customized using a User Det ai | sCont ext Mapper . You

It is also possible to obtain the server's IP address using a DNS lookup. This is not currently supported, but hopefully will be
in a future version.

4.1.0.RC1 Spring Security 159

Spring Security Reference

can also inject a G ant edAut hori ti esMapper into the provider instance to control the authorities
which end up in the Aut henti cat i on object.

Active Directory Error Codes

By default, a failed result will cause a standard Spring Security BadCr edent i al sExcepti on. If you
set the property convert SubEr r or CodesToExcepti ons to t r ue, the exception messages will be
parsed to attempt to extract the Active Directory-specific error code and raise a more specific exception.
Check the class Javadoc for more information.

4.1.0.RC1 Spring Security 160

Spring Security Reference

27.JSP Tag Libraries

Spring Security has its own taglib which provides basic support for accessing security information and
applying security constraints in JSPs.

27.1 Declaring the Taglib

To use any of the tags, you must have the security taglib declared in your JSP:

<Y@taglib prefix="sec" uri="http://ww.springfranework.org/security/tags" %

27.2 The authorize Tag

This tag is used to determine whether its contents should be evaluated or not. In Spring
Security 3.0, it can be used in two ways ! The first approach uses a web-security expression,
specified in the access attribute of the tag. The expression evaluation will be delegated to
the Securi t yExpressi onHandl er <Fi | t er | nvocat i on> defined in the application context (you
should have web expressions enabled in your <ht t p> namespace configuration to make sure this
service is available). So, for example, you might have

<sec: aut hori ze access="hasRol e(' supervisor')">

This content will only be visible to users who have the "supervisor" authority in their list
of <tt>GantedAuthority</tt>s.

</ sec: aut hori ze>

When used in conjuction with Spring Security’s PermissionEvaluator, the tag can also be used to check
permissions. For example:

<sec: aut horize access="hasPerm ssi on(#domain, 'read') or hasPerm ssion(#domain, wite')">

This content will only be visible to users who have read or wite perm ssion to the Object found as a
request attribute nanmed "domai n".

</ sec: authori ze>

A common requirement is to only show a particular link, if the user is actually allowed to click it. How can
we determine in advance whether something will be allowed? This tag can also operate in an alternative
mode which allows you to define a particular URL as an attribute. If the user is allowed to invoke that
URL, then the tag body will be evaluated, otherwise it will be skipped. So you might have something like

<sec: aut hori ze url ="/adm n">
This content will only be visible to users who are authorized to send requests to the "/adm n" URL.

</ sec: aut hori ze>

To use this tag there must also be an instance of Wbl nvocat i onPri vi | egeEval uat or in your
application context. If you are using the namespace, one will automatically be registered. This is an
instance of Def aul t Wbl nvocati onPri vi | egeEval uat or, which creates a dummy web request
for the supplied URL and invokes the security interceptor to see whether the request would succeed
or fail. This allows you to delegate to the access-control setup you defined using i nt er cept - url
declarations within the <ht t p> namespace configuration and saves having to duplicate the information

YThe legacy options from Spring Security 2.0 are also supported, but discouraged.

4.1.0.RC1 Spring Security 161

Spring Security Reference

(such as the required roles) within your JSPs. This approach can also be combined with a net hod
attribute, supplying the HTTP method, for a more specific match.

The boolean result of evaluating the tag (whether it grants or denies access) can be stored in a page
context scope variable by setting the var attribute to the variable name, avoiding the need for duplicating
and re-evaluating the condition at other points in the page.

Disabling Tag Authorization for Testing

Hiding a link in a page for unauthorized users doesn't prevent them from accessing the URL. They
could just type it into their browser directly, for example. As part of your testing process, you may
want to reveal the hidden areas in order to check that links really are secured at the back end. If
you set the system property spring. security. di sabl eUl Security totrue, the aut hori ze
tag will still run but will not hide its contents. By default it will also surround the content with ..</ span> tags. This allows you to display "hidden" content with a
particular CSS style such as a different background colour. Try running the "tutorial" sample application
with this property enabled, for example.

You can also set the properties spring.security.securedU Prefix and
spring. security. securedU Suf fi x if youwantto change surrounding text from the default span
tags (or use empty strings to remove it completely).

27.3 The authentication Tag

This tag allows access to the current Aut henti cati on object stored in the security context. It
renders a property of the object directly in the JSP. So, for example, if the pri nci pal property
of the Aut hentication is an instance of Spring Security’'s User Detai | s object, then using
<sec:aut hentication property="principal.usernane” /> will render the name of the
current user.

Of course, it isn't necessary to use JSP tags for this kind of thing and some people prefer to keep as
little logic as possible in the view. You can access the Aut hent i cat i on object in your MVC controller
(by calling Secur i t yCont ext Hol der. get Cont ext (). get Aut henti cati on()) and add the data
directly to your model for rendering by the view.

27.4 The accesscontrollist Tag

This tag is only valid when used with Spring Security’s ACL module. It checks a comma-separated list
of required permissions for a specified domain object. If the current user has all of those permissions,
then the tag body will be evaluated. If they don't, it will be skipped. An example might be

Caution

In general this tag should be considered deprecated. Instead use the Section 27.2, “The authorize
Tag”.

<sec:accesscontrol | i st hasPerm ssion="1, 2" donai nObj ect ="${soneChj ect}">

This will be shown if the user has all of the permissions represented by the values "1" or "2" on the
gi ven obj ect.

</ sec: accesscontrol i st>

4.1.0.RC1 Spring Security 162

Spring Security Reference

The permissions are passed to the Per m ssi onFact or y defined in the application context, converting
them to ACL Per m ssi on instances, so they may be any format which is supported by the factory - they
don't have to be integers, they could be strings like READor WRI TE. If no Per mi ssi onFact ory is found,
an instance of Def aul t Per m ssi onFact ory will be used. The Acl Servi ce from the application
context will be used to load the Acl instance for the supplied object. The Acl will be invoked with the
required permissions to check if all of them are granted.

This tag also supports the var attribute, in the same way as the aut hori ze tag.

27.5 The csrflnput Tag

If CSRF protection is enabled, this tag inserts a hidden form field with the correct name and value for
the CSRF protection token. If CSRF protection is not enabled, this tag outputs nothing.

Normally Spring Security automatically inserts a CSRF form field for any <f or m f or > tags you use,
but if for some reason you cannot use <f or m f or >, csrf | nput is a handy replacement.

You should place this tag within an HTML <f or n»</ f or n> block, where you would normally place
other input fields. Do NOT place this tag within a Spring <f or m f or n»</ f or m f or m> block—Spring
Security handles Spring forms automatically.

<f orm met hod="post" acti on="/do/ sonet hi ng">
<sec: csrflnput />
Narme:

<input type="text" name="name" />

</ fornp

27.6 The csrfMetaTags Tag

If CSRF protection is enabled, this tag inserts meta tags containing the CSRF protection token form
field and header names and CSRF protection token value. These meta tags are useful for employing
CSREF protection within JavaScript in your applications.

You should place csr f Met aTags within an HTML <head></ head> block, where you would normally
place other meta tags. Once you use this tag, you can access the form field name, header name, and
token value easily using JavaScript. JQuery is used in this example to make the task easier.

4.1.0.RC1 Spring Security 163

Spring Security Reference

<! DOCTYPE htm >
<htm >
<head>
<title>CSRF Protected JavaScript Page</title>
<nmet a nanme="description" content="This is the description for this page" />
<sec: csrf MetaTags />
<script type="text/javascript" |anguage="javascript">

var csrfParaneter = $("neta[nane="'_csrf_parameter']").attr("content");
var csrfHeader = $("neta[nane="_csrf_header']").attr("content");
var csrfToken = $("neta[nane="_csrf']").attr("content");

/1 using XM.HttpRequest directly to send an x-ww«formurl encoded request
var ajax = new XM.Htt pRequest ();
aj ax. open("POST", "http://ww. exanpl e. or g/ do/ sonet hi ng", true);

aj ax. send(csrfParameter + "=" + csrfToken + "&nanme=John&. ..");

/1 using XMLHttpRequest directly to send a non-x-wwformurl encoded request
var ajax = new XM.Htt pRequest ();

aj ax. open("POST", "http://ww. exanpl e. or g/ do/ sonet hi ng", true);

aj ax. set Request Header (csrf Header, csrfToken);

aj ax.send("...");

/1 using JQuery to send an Xx-wwwformurl encoded request
var data = {};
dat a[csrf Parameter] = csrf Token;

dat a["nane"] = "John";

$. aj ax({
url: "http://ww. exanpl e. or g/ do/ sonet hi ng",
type: "POST",

data: data,
s
/1 using JQuery to send a non-Xx-wwwformurl encoded request

var headers = {};
header s[csrf Header] = csrfToken;

$. aj ax({
url: "http://ww. exanpl e. or g/ do/ sonet hi ng",
type: "POST",

headers: headers,
1)
<script>
</ head>
<body>
</ body>
</htm >

aj ax. set Request Header (" Cont ent - Type", "application/x-wwm«formurl encoded data");

If CSRF protection is not enabled, csr f Met aTags outputs nothing.

4.1.0.RC1 Spring Security

164

Spring Security Reference

28. Java Authentication and Authorization Service
(JAAS) Provider

28.1 Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication
and Authorization Service (JAAS). This package is discussed in detail below.

28.2 AbstractJaasAuthenticationProvider

The AbstractJaasAut henticationProvider is the basis for the provided JAAS
Aut hent i cat i onPr ovi der implementations. Subclasses must implement a method that creates the
Logi nCont ext. The Abst ract JaasAut henti cati onProvi der has a number of dependencies
that can be injected into it that are discussed below.

JAAS CallbackHandler

Most JAAS Logi nModul e s require a callback of some sort. These callbacks are usually used to obtain
the username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the
authentication mechanism). Thus, by the time the authentication request is delegated through to JAAS,
Spring Security’s authentication mechanism will already have fully-populated an Aut henti cati on
object containing all the information required by the JAAS Logi nMbdul e.

Therefore, the JAAS package for Spring Security provides two default callback handlers,
JaasNaneCal | backHandl er and JaasPasswor dCal | backHandl er. Each of these callback
handlers implement JaasAut henti cati onCal | backHandl er. In most cases these callback
handlers can simply be used without understanding the internal mechanics.

For those needing full control over the callback behavior, internally
Abst ract JaasAut henti cati onProvi der wraps these
JaasAut henti cati onCal | backHandl er s with an |Internal Call backHandl er. The
I nt er nal Cal | backHandl er is the class that actually implements JAAS normal Cal | backHandl er
interface. Any time that the JAAS LoginMdule is wused, it is passed a list of
application context configured | nternal Cal | backHandl er s. If the Logi nMbdul e requests
a callback against the | nternal Cal | backHandl er s, the callback is in-turn passed to the
JaasAut henti cati onCal | backHandl er s being wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on the
other hand, works with Aut hent i cati on objects. Each Aut henti cati on object contains a single
principal, and multiple Gr ant edAut hor i t y s. To facilitate mapping between these different concepts,
Spring Security’s JAAS package includes an Aut hori t yGr ant er interface.

An AuthorityGranter is responsible for inspecting a JAAS principal and returning
a set of String s, representing the authorities assigned to the principal. For
each returned authority string, the AbstractJaasAuthenticationProvider creates a

4.1.0.RC1 Spring Security 165

Spring Security Reference

JaasG ant edAut hority (which implements Spring Security’'s Grant edAut hority interface)
containing the authority string and the JAAS principal that the Aut hori tyG ant er was passed.
The Abst ract JaasAut henti cati onProvi der obtains the JAAS principals by firstly successfully
authenticating the user's credentials using the JAAS Logi nMbdul e, and then accessing the
Logi nCont ext it returns. A call to Logi nCont ext. get Subj ect().getPrincipal s() is
made, with each resulting principal passed to each Aut horityG anter defined against the
Abst ract JaasAut henti cati onProvi der. set Aut horityG ant ers(Li st) property.

Spring Security does not include any production Aut hor i t yGr ant er s given that every JAAS principal
has an implementation-specific meaning. However, there is a Test Aut hori t yG ant er in the unit
tests that demonstrates a simple Aut hor i t yGr ant er implementation.

28.3 DefaultJaasAuthenticationProvider

The Def aul t JaasAut henti cati onProvi der allows a JAAS Configuration object to be
injected into it as a dependency. It then creates a Logi nCont ext using the injected JAAS
Confi guration. This means that Def aul t JaasAut henti cati onProvi der is not bound any
particular implementation of Conf i gur ati on as JaasAut henti cati onProvi der is.

InMemoryConfiguration

In order to make it easy to injecta Conf i gur at i oninto Def aul t JaasAut henti cati onProvi der,a
default in memory implementation named | nMenor yConf i gur at i on is provided. The implementation
constructor accepts a Map where each key represents a login configuration name and the value
represents an Array of AppConfi gurati onEntry s. | nMenoryConfi gurati on also supports a
default Ar r ay of AppConf i gur ati onEnt r y objects that will be used if no mapping is found within the
provided Map. For details, refer to the class level javadoc of | nMenor yConfi gur ati on.

DefaultJaasAuthenticationProvider Example Configuration

While the Spring configuration for | nMenor yConf i gur at i on can be more verbose than the standarad
JAAS configuration files, using it in conjuction with Def aul t JaasAut hent i cati onPr ovi der is more
flexible than JaasAut hent i cat i onPr ovi der since it not dependant on the default Conf i gur ati on
implementation.

An example configuration of Def aul t JaasAut henti cati onProvi der using
I nMenor yConfi gur at i on is provided below. Note that custom implementations of Conf i gur ati on
can easily be injected into Def aul t JaasAut henti cati onProvi der as well.

4.1.0.RC1 Spring Security 166

Spring Security Reference

<bean id="jaasAut hProvi der"
cl ass="org. springframework. security.authentication.]aas. Def aul t JaasAut henti cati onProvi der">
<property name="configuration">
<bean cl ass="org. springfranmework. security.authentication.jaas.nenory.|nMenoryConfiguration">
<const ructor-arg>
<map>
=l ==
SPRI NGSECURI TY i s the default | ogi nContextName
for AbstractJaasAut henti cati onProvider
-->
<entry key="SPRI NGSECURI TY" >
<array>
<bean cl ass="j avax. security. auth. | ogi n. AppConfi gurationEntry">
<constructor-arg val ue="sanpl e. Sanpl eLogi nModul e" />
<constructor-arg>
<util:constant static-field=
"javax. security.auth. | ogin. AppConfi gurati onEntry$Logi nMbdul eCont rol Fl ag. REQUI RED"/ >
</ constructor-arg>
<constructor-arg>
<map></ map>
</ constructor-ar g>
</ bean>
</ array>
</entry>
</ map>
</ constructor - arg>
</ bean>
</ property>
<property nanme="authorityG anters">
<list>
<l-- You will need to wite your own inplenentati on of AuthorityGanter -->
<bean cl ass="org. springfranmework. security.authentication.jaas. TestAuthorityGanter"/>
</list>
</ property>
</ bean>

28.4 JaasAuthenticationProvider

The JaasAut henti cati onProvi der assumes the default Configuration is an instance
of _ConfigFile. This assumption is made in order to attempt to update the Confi gurati on.
The JaasAut henti cati onProvi der then uses the default Confi guration to create the
Logi nCont ext .

Let's assume we have a JAAS login configuration file, / WEB- | NF/ | ogi n. conf , with the following
contents:

JAASTest {
sanpl e. Sanpl eLogi nMbdul e required;
B3

Like all Spring Security beans, the JaasAut hent i cat i onPr ovi der is configured via the application
context. The following definitions would correspond to the above JAAS login configuration file:

4.1.0.RC1 Spring Security 167

http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html

Spring Security Reference

<bean id="jaasAut henti cati onProvider"
cl ass="org. springframework. security.authentication.]aas.JaasAut henticati onProvi der">
<property name="|ogi nConfi g" val ue="/WEB-|NF/1| ogi n. conf"/>
<property name="| ogi nCont ext Name" val ue="JAASTest"/>
<property name="cal | backHandl ers" >
<list>
<bean
class="org. springframework. security. authentication.]jaas.JaasNaneCal | backHandl er"/ >
<bean
cl ass="org. springfranmework. security. authentication.jaas. JaasPasswordCal | backHandl er"/ >
</list>
</ property>
<property name="authorityG anters">
<list>
<bean cl ass="org. springfranmework. security.authentication.jaas. TestAuthorityGanter"/>
</list>
</ property>
</ bean>

28.5 Running as a Subject

If configured, the JaasApil ntegrationFilter will attempt to run as the Subject on the
JaasAut henti cat i onToken. This means that the Subj ect can be accessed using:

Subj ect subj ect = Subject. get Subj ect (AccessControl | er.getContext())

This integration can easily be configured using the jaas-api-provision attribute. This feature is useful
when integrating with legacy or external API's that rely on the JAAS Subject being populated.

4.1.0.RC1 Spring Security 168

Spring Security Reference

29. CAS Authentication

29.1 Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives,
JA-SIG’s Central Authentication Service is open source, widely used, simple to understand, platform
independent, and supports proxy capabilities. Spring Security fully supports CAS, and provides an easy
migration path from single-application deployments of Spring Security through to multiple-application
deployments secured by an enterprise-wide CAS server.

You can learn more about CAS at http://www.ja-sig.org/cas. You will also need to visit this site to
download the CAS Server files.

29.2 How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the general
overview again here within the context of Spring Security. Spring Security 3.x supports CAS 3. At the
time of writing, the CAS server was at version 3.4.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server is simply a standard
WAR file, so there isn’'t anything difficult about setting up your server. Inside the WAR file you will
customise the login and other single sign on pages displayed to users.

When deploying a CAS 3.4 server, you will also need to specify an Aut henti cati onHandl er
in the depl oyer Confi gCont ext.xm included with CAS. The Aut henti cati onHandl er has
a simple method that returns a boolean as to whether a given set of Credentials is valid.
Your Aut henti cati onHandl er implementation will need to link into some type of backend
authentication repository, such as an LDAP server or database. CAS itself includes numerous
Aut hent i cati onHandl er s out of the box to assist with this. When you download and deploy the
server war file, it is set up to successfully authenticate users who enter a password matching their
username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications
deployed throughout your enterprise. These web applications are known as "services". There are three
types of services. Those that authenticate service tickets, those that can obtain proxy tickets, and those
that authenticate proxy tickets. Authenticating a proxy ticket differs because the list of proxies must be
validated and often times a proxy ticket can be reused.

Spring Security and CAS Interaction Sequence

The basic interaction between a web browser, CAS server and a Spring Security-secured service is
as follows:

» The web user is browsing the service’s public pages. CAS or Spring Security is not involved.

» The user eventually requests a page that is either secure or one of the beans it uses is secure.
Spring Security’s Excepti onTr ansl ati onFi | t er will detect the AccessDeni edExcepti on or
Aut henti cati onExcepti on.

 Because the user's Authentication object (or lack thereof) caused an
Aut hent i cati onExcepti on, the ExceptionTransl ati onFilter will call the configured

4.1.0.RC1 Spring Security 169

http://www.ja-sig.org/cas

Spring Security Reference

Aut hent i cati onEnt r yPoi nt . If using CAS, this will be the CasAut henti cati onEnt r yPoi nt
class.

* The CasAuthenticationEntryPoint wil redirect the wusers browser to the CAS
server. It will also indicate a service parameter, which is the callback URL
for the Spring Security service (your application). For example, the URL to which
the browser is redirected might be https://my.company.com/cas/login?service=https%3A%2F
%2Fserver3.company.com%2Fwebapp%2Flogin/cas.

» After the user's browser redirects to CAS, they will be prompted for their username and password.
If the user presents a session cookie which indicates they’ve previously logged on, they will not be
prompted to login again (there is an exception to this procedure, which we’ll cover later). CAS will
use the Passwor dHandl er (or Aut henti cati onHandl er if using CAS 3.0) discussed above to
decide whether the username and password is valid.

» Upon successful login, CAS will redirect the user’s browser back to the original service. It will also
include ati cket parameter, which is an opaque string representing the "service ticket". Continuing
our earlier example, the URL the browser is redirected to might be https://server3.company.com/
webapp/login/cas?ticket=ST-0-ER94xMJmn6pha35CQRo0Z.

» Back in the service web application, the CasAuthenticationFilter is always
listening for requests to /login/cas (this is configurable, but we’ll use
the defaults in this introduction). The processing filter will construct a
User nanePasswor dAut hent i cati onToken representing the service ticket. The principal will be
equal to CasAut henti cationFilter. CAS STATEFUL | DENTI FI ER, whilst the credentials will
be the service ticket opaque value. This authentication request will then be handed to the configured
Aut hent i cat i onManager .

* The Aut henticati onManager implementation will be the Provi der Manager, which is in
turn configured with the CasAut henti cati onProvi der. The CasAut henti cati onProvi der
only responds to UsernanmePasswor dAut henticati onToken s containing the CAS-
specific principal (such as CasAut henti cationFilter. CAS STATEFUL | DENTI FI ER) and
CasAut henti cati onToken s (discussed later).

» CasAut henti cati onProvi der will validate the service ticket using a Ti cket Val i dat or
implementation. This will typically be a Cas20Ser vi ceTi cket Val i dat or which is one of the
classes included in the CAS client library. In the event the application needs to validate proxy tickets,
the Cas20Pr oxyTi cket Val i dat or isused. The Ti cket Val i dat or makes an HTTPS request to
the CAS server in order to validate the service ticket. It may also include a proxy callback URL, which
is included in this example: https://my.company.com/cas/proxyValidate?service=https%3A%2F
%2Fserver3.company.com%2Fwebapp%?2Flogin/cas&ticket=ST-0-
ER94xMJImn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor.

» Back onthe CAS server, the validation request will be received. If the presented service ticket matches
the service URL the ticket was issued to, CAS will provide an affirmative response in XML indicating
the username. If any proxy was involved in the authentication (discussed below), the list of proxies
is also included in the XML response.

» [OPTIONAL] If the request to the CAS validation service included the proxy callback URL (in the
pgt Ur | parameter), CAS will include a pgt | ou string in the XML response. This pgt | ou represents
a proxy-granting ticket IOU. The CAS server will then create its own HTTPS connection back to
the pgt Url . This is to mutually authenticate the CAS server and the claimed service URL. The

4.1.0.RC1 Spring Security 170

https://my.company.com/cas/login?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas
https://my.company.com/cas/login?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas
https://server3.company.com/webapp/login/cas?ticket=ST-0-ER94xMJmn6pha35CQRoZ
https://server3.company.com/webapp/login/cas?ticket=ST-0-ER94xMJmn6pha35CQRoZ
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor

Spring Security Reference

HTTPS connection will be used to send a proxy granting ticket to the original web application.
For example, https://server3.company.com/webapp/login/cas/proxyreceptor?pgtlou=PGTIOU-0-
ROzlgrl4pdAQwBvJIWO3vnNpevwqStbSGcq3vKB2SqSFFRNjPHt&pgtld=PGT-1-
Si9YKKHLtACB064rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH.

The Cas20Ti cket Val i dat or will parse the XML received from the CAS server. It will return to the
CasAut henti cati onProvi der a Ti cket Response, which includes the username (mandatory),
proxy list (if any were involved), and proxy-granting ticket IOU (if the proxy callback was requested).

Next CasAuthenticationProvider wil call a configured CasProxyDecider. The
CasProxyDeci der indicates whether the proxy list in the Ti cket Response is acceptable to
the service. Several implementations are provided with Spring Security: Rej ect Pr oxyTi cket s,
Accept AnyCasPr oxy and NamedCasPr oxyDeci der . These names are largely self-explanatory,
except NamedCasPr oxyDeci der which allows a Li st of trusted proxies to be provided.

CasAut henti cati onProvi der will next request a Aut henti cati onUser Det ai | sServi ce to
load the Gr ant edAut hor i t y objects that apply to the user contained in the Asserti on.

If there were no problems, CasAut henti cati onProvi der constructs a
CasAut henti cati onToken including the details contained in the Ti cket Response and the
G ant edAut hori tys.

Control then returns to CasAuthenticationFilter, which places the created
CasAut henti cati onToken in the security context.

The user’s browser is redirected to the original page that caused the Aut henti cat i onExcepti on
(or a custom destination depending on the configuration).

It's good that you're still here! Let’'s now look at how this is configured

29.3 Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already know
the basics of using Spring Security, so these are not covered again below. We'll assume a hamespace
based configuration is being used and add in the CAS beans as required. Each section builds upon the
previous section. A fullCAS sample application can be found in the Spring Security Samples.

Service Ticket Authentication

This section describes how to setup Spring Security to authenticate Service Tickets. Often times this is
all a web application requires. You will need to add a Ser vi cePr operti es bean to your application
context. This represents your CAS service:

<bean id="serviceProperties"

cl ass="org. springframework. security.cas. Servi ceProperties">
<property name="service"

val ue="https:/ /| ocal host: 8443/ cas-sanpl e/ | ogi n/ cas"/ >
<property name="sendRenew' val ue="fal se"/>
</ bean>

The servi ce must equal a URL that will be monitored by the CasAut henti cati onFilter. The
sendRenew defaults to false, but should be set to true if your application is particularly sensitive. What
this parameter does is tell the CAS login service that a single sign on login is unacceptable. Instead, the
user will need to re-enter their username and password in order to gain access to the service.

4.1.0.RC1 Spring Security 171

https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH
https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH
https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH

Spring Security Reference

The following beans should be configured to commence the CAS authentication process (assuming
you're using a namespace configuration):

<security:http entry-point-ref="casEntryPoint">

<security:customfilter position="CAS_FILTER' ref="casFilter" />
</security:http>

<bean id="casFilter"

cl ass="org. springframework. security.cas.web. CasAut henti cationFilter">
<property name="aut henti cati onManager" ref="authenticati onManager"/>
</ bean>

<bean id="casEntryPoi nt"

cl ass="org. springfranmework. security.cas.web. CasAut henti cati onEntryPoi nt">
<property name="logi nUl" value="https://| ocal host: 9443/ cas/| ogi n"/>
<property name="servi ceProperties" ref="serviceProperties"/>
</ bean>

For CAS to operate, the ExceptionTransl ationFilter must have its
aut henti cati onEntryPoi nt property set to the CasAuthenticati onEntryPoint bean.
This can easily be done using entry-point-ref as is done in the example above. The
CasAut henti cati onEnt r yPoi nt must refer to the Ser vi cePr opert i es bean (discussed above),
which provides the URL to the enterprise’s CAS login server. This is where the user’s browser will be
redirected.

The CasAut henti cationFilter has very similar properties to the
User namePasswor dAut henti cati onFil ter (used for form-based logins). You can use these
properties to customize things like behavior for authentication success and failure.

Next you need to add a CasAut henti cati onProvi der and its collaborators:

<security:authenticati on-manager alias="authenticati onManager">
<security:authentication-provi der ref="casAuthenticationProvider" />
</ security: aut henticati on-nanager >

<bean id="casAut henti cationProvider"
class="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">
<property name="aut henti cati onUser Det ai | sServi ce">
<bean cl ass="org. springfranmework. security.core.userdetails. UserDetail sByNaneServi ceW apper" >
<constructor-arg ref="userService" />
</ bean>
</ property>
<property name="servi ceProperties" ref="serviceProperties" />
<property name="ti cket Val i dat or">
<bean cl ass="org.jasig.cas.client.validation. Cas20Servi ceTi cket Val i dat or" >
<constructor-arg index="0" val ue="https://|ocal host: 9443/ cas" />
</ bean>
</ property>
<property name="key" val ue="an_id_for_this_auth_provider_only"/>
</ bean>

<security:user-service id="userService">
<security:user name="joe" password="joe" authorities="ROLE_USER' />

</security: user-service>

The CasAut henti cati onProvi der uses a User Det ai | sSer vi ce instance to load the authorities
for a user, once they have been authenticated by CAS. We've shown a simple in-memory setup here.
Note that the CasAut hent i cat i onPr ovi der does not actually use the password for authentication,
but it does use the authorities.

The beans are all reasonably self-explanatory if you refer back to the How CAS Works section.

4.1.0.RC1 Spring Security 172

Spring Security Reference

This completes the most basic configuration for CAS. If you haven't made any mistakes, your web
application should happily work within the framework of CAS single sign on. No other parts of Spring
Security need to be concerned about the fact CAS handled authentication. In the following sections we
will discuss some (optional) more advanced configurations.

Single Logout

The CAS protocol supports Single Logout and can be easily added to your Spring Security configuration.
Below are updates to the Spring Security configuration that handle Single Logout

<security:http entry-point-ref="casEntryPoint">

<security:|ogout |ogout-success-url="/cas-|ogout.jsp"/>

<security:customfilter ref="requestSingleLogoutFilter" before="LOGOUT_FILTER'/>
<security:customfilter ref="singleLogoutFilter" before="CAS FILTER'/>
</security: http>

<!-- This filter handles a Single Logout Request fromthe CAS Server -->
<bean id="singl eLogoutFilter" class="org.jasig.cas.client.session.SingleSignQutFilter"/>

<l-- This filter redirects to the CAS Server to signal Single Logout should be perforned -->
<bean id="request Si ngl eLogoutFilter"

cl ass="org. springfranmework. security.web. aut henti cation. | ogout.LogoutFilter">
<constructor-arg value="https://| ocal host: 9443/ cas/| ogout"/>
<constructor-arg>

<bean cl ass=

"org. springframework. security.web. aut henti cati on.| ogout. SecurityCont ext Logout Handl er"/ >

</ constructor-arg>
<property name="filterProcessesU|" val ue="/|ogout/cas"/>
</ bean>

The | ogout element logs the user out of the local application, but does not terminate the
session with the CAS server or any other applications that have been logged into. The
request Si ngl eLogout Fi | t er filter will allow the url of / spri ng_security_cas_| ogout to be
requested to redirect the application to the configured CAS Server logout url. Then the CAS Server will
send a Single Logout request to all the services that were signed into. The si ngl eLogout Fi |l ter
handles the Single Logout request by looking up the Ht t pSessi on in a static Map and then invalidating
it.

It might be confusing why both the | ogout element and the si ngl eLogout Fi | t er are needed. It
is considered best practice to logout locally first since the Si ngl eSi gnQut Fi | t er just stores the
Ht t pSessi on in a static Map in order to call invalidate on it. With the configuration above, the flow of
logout would be:

e The user requests / | ogout which would log the user out of the local application and send the user
to the logout success page.

» The logout success page, / cas- 1 ogout . j sp, should instruct the user to click a link pointing to /
| ogout / cas in order to logout out of all applications.

 When the user clicks the link, the user is redirected to the CAS single logout URL (https://
localhost:9443/cas/logout).

* On the CAS Server side, the CAS single logout URL then submits single logout requests to all the
CAS Services. On the CAS Service side, JASIG’s Si ngl eSi gnQut Fi | t er processes the logout
request by invaliditing the original session.

The next step is to add the following to your web.xml

4.1.0.RC1 Spring Security 173

https://localhost:9443/cas/logout
https://localhost:9443/cas/logout

Spring Security Reference

<filter>
<filter-nanme>characterEncodingFilter</filter-nane>
<filter-class>

org. springframework. web. filter. CharacterEncodi ngFilter
</filter-class>
<init-paranp

<par am nane>encodi ng</ par am nane>

<par am val ue>UTF- 8</ par am val ue>
</init-paranp
</[filter>
<filter-nappi ng>
<filter-name>characterEncodingFilter</filter-nanme>
<url -pattern>/*</url -pattern>
</filter-mappi ng>
<li stener>
<l i stener-cl ass>

org.jasig.cas.client.session.Singl eSi gnQut H t pSessi onLi st ener
</listener-class>
</listener>

When using the SingleSignOutFilter you might encounter some encoding issues. Therefore it is
recommended to add the Char act er Encodi ngFi | t er to ensure that the character encoding is
correctwhen using the Si ngl eSi gnCut Fi | t er . Again, refer to JASIG’s documentation for details. The
Si ngl eSi gnQut Ht t pSessi onLi st ener ensures that when an Ht t pSessi on expires, the mapping
used for single logout is removed.

Authenticating to a Stateless Service with CAS

This section describes how to authenticate to a service using CAS. In other words, this section discusses
how to setup a client that uses a service that authenticates with CAS. The next section describes how
to setup a stateless service to Authenticate using CAS.

Configuring CAS to Obtain Proxy Granting Tickets

In order to authenticate to a stateless service, the application needs to obtain a proxy granting ticket
(PGT). This section describes how to configure Spring Security to obtain a PGT building upon thencas-
st[Service Ticket Authentication] configuration.

The first step is to include a ProxyG-ant i ngTi cket St or age in your Spring Security configuration.
This is used to store PGT'’s that are obtained by the CasAut hent i cati onFi | t er so that they can be
used to obtain proxy tickets. An example configuration is shown below

I
NOTE: In a real application you should not use an in
menory inplenmentation. You will also want to ensure
to clean up expired tickets by calling ProxyG antingTi cket St orage. cl eanup()
-->
<bean id="pgtStorage" class="org.jasig.cas.client.proxy.ProxyG antingTi cket St oragel npl"/>

The next step is to update the CasAut henti cati onProvi der to be able to obtain proxy tickets.
To do this replace the Cas20Ser vi ceTi cket Val i dat or with a Cas20Pr oxyTi cket Val i dat or.
The proxyCal | backUr| should be set to a URL that the application will receive PGT’s at. Last, the
configuration should also reference the Pr oxyGr ant i ngTi cket St or age soitcan use a PGT to obtain
proxy tickets. You can find an example of the configuration changes that should be made below.

4.1.0.RC1 Spring Security 174

Spring Security Reference

<bean id="casAut henti cationProvider"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">

<property nanme="ti cket Val i dator">
<bean class="org.jasig.cas.client.validation. Cas20Pr oxyTi cket Val i dator" >
<constructor-arg value="https://Ilocal host: 9443/ cas"/ >
<property nanme="proxyCal | backUr|"
val ue="https://I ocal host: 8443/ cas- sanpl e/ | ogi n/ cas/ proxyreceptor"/>
<property name="proxyG antingTi cket St orage" ref="pgt St orage"/>
</ bean>
</ property>
</ bean>

The last step is to update the CasAut henticationFilter to accept PGT and to store them
in the ProxyG anti ngTi cket St or age. It is important the the pr oxyRecept or Url matches the
proxyCal | backUr| of the Cas20Pr oxyTi cket Val i dat or. An example configuration is shown
below.

<bean id="casFilter"
cl ass="org. springframework. security.cas.web. CasAut henti cationFilter">

<property nanme="proxyGrantingTi cket Storage" ref="pgtStorage"/>
<property nanme="proxyReceptorUrl" val ue="/1o0gi n/ cas/ proxyreceptor"/>
</ bean>

Calling a Stateless Service Using a Proxy Ticket

Now that Spring Security obtains PGTs, you can use them to create proxy tickets which can be used
to authenticate to a stateless service. The CAS sample application contains a working example in the
Pr oxyTi cket Sanpl eSer vl et . Example code can be found below:

protected void doGet (H tpServl et Request request, HttpServl et Response response)
throws Servl et Exception, | COException {
/1 NOTE: The CasAut henticationToken can al so be obtai ned using
/'l SecurityCont ext Hol der. get Cont ext (). get Aut henti cati on()
final CasAuthenticationToken token = (CasAuthenticationToken) request.getUserPrincipal();
/'l proxyTicket could be reused to nake calls to the CAS service even if the
/1 target url differs
final String proxyTicket = token.getAssertion().getPrincipal().getProxyTicketFor(targetUrl);

/1 Make a renote call using the proxy ticket

final String serviceUrl = targetUrl +"?ticket="+URLEncoder. encode(proxyTicket, "UTF-8");
String proxyResponse = CommonlUtils. get ResponseFronfServer (serviceUrl, "UTF-8");

}

Proxy Ticket Authentication

The CasAut henti cati onProvi der distinguishes between stateful and stateless clients. A stateful
client is considered any that submitstothefil t er ProcessUr| ofthe CasAut henti cationFilter.
A stateless client is any that presents an authentication request to CasAut henti cati onFil ter on
a URL other thanthe filterProcessUrl .

Because remoting protocols have no way of presenting themselves within the context of an
Ht t pSessi on, itisn't possible to rely on the default practice of storing the security context in the session
between requests. Furthermore, because the CAS server invalidates a ticket after it has been validated
by the Ti cket Val i dat or, presenting the same proxy ticket on subsequent requests will not work.

One obvious option is to not use CAS at all for remoting protocol clients. However, this would eliminate
many of the desirable features of CAS. As a middle-ground, the CasAut henti cati onPr ovi der

4.1.0.RC1 Spring Security 175

Spring Security Reference

uses a Statel essTicketCache. This is used solely for stateless clients which use a
principal equal to CasAut henti cati onFi |l ter. CAS _STATELESS | DENTI FI ER. What happens is
the CasAut henti cati onProvi der will store the resulting CasAut henti cati onToken in the
St at el essTi cket Cache, keyed on the proxy ticket. Accordingly, remoting protocol clients can
present the same proxy ticket and the CasAut henti cati onPr ovi der will not need to contact the
CAS server for validation (aside from the first request). Once authenticated, the proxy ticket could be
used for URLs other than the original target service.

This section builds upon the previous sections to accomodate proxy ticket authentication. The first step
is to specify to authenticate all artifacts as shown below.

<bean i d="servi ceProperties"
cl ass="org. springfranmework. security.cas. Servi ceProperties">

<property name="authenticateAl | Artifacts" val ue="true"/>
</ bean>

The next step is to specify servi ceProperties and the aut henticati onDet ai | sSource
for the CasAuthenticationFilter. The serviceProperties property instructs the
CasAut henticationFilter to attempt to authenticate all artifacts instead of only ones
present on the filterProcessUrl. The Servi ceAut henticationDetail sSource creates
a ServiceAuthenticationDetails that ensures the current URL, based upon the
Ht t pServl et Request, is used as the service URL when validating the ticket. The
method for generating the service URL can be customized by injecting a custom
Aut hent i cati onDet ai | sSour ce that returns a custom Ser vi ceAut henti cati onDet ai | s.

<bean id="casFilter"
cl ass="org. springfranmework. security.cas.web. CasAut henti cationFilter">

<property name="servi ceProperties" ref="serviceProperties"/>
<property nanme="aut henti cati onDet ai | sSour ce" >
<bean cl ass=
"org.springframework. security.cas.web. aut henti cation. Servi ceAut henti cati onDet ai | sSour ce" >
<constructor-arg ref="serviceProperties"/>
</ bean>
</ property>
</ bean>

You will also need to update the CasAut henti cati onProvi der to handle proxy tickets. To do
this replace the Cas20Ser vi ceTi cket Val i dat or with a Cas20Pr oxyTi cket Val i dat or . You will
need to configure the st at el essTi cket Cache and which proxies you want to accept. You can find
an example of the updates required to accept all proxies below.

4.1.0.RC1 Spring Security 176

Spring Security Reference

<bean id="casAut henti cationProvider"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">

<property name="ticket Val i dator">
<bean cl ass="org.jasig.cas.client.validation. Cas20ProxyTi cket Val i dator" >
<constructor-arg value="https://I|ocal host: 9443/ cas"/ >
<property nane="accept AnyProxy" val ue="true"/>
</ bean>
</ property>
<property name="st at el essTi cket Cache" >
<bean cl ass="org. spri ngfranmework. security.cas. authenti cati on. EhCacheBasedTi cket Cache" >
<property nanme="cache">
<bean cl ass="net. sf. ehcache. Cache"
init-method="initialise" destroy-nethod="di spose">
<constructor-arg val ue="casTi ckets"/>
<constructor-arg val ue="50"/>
<constructor-arg val ue="true"/>
<constructor-arg value="fal se"/>
<constructor-arg val ue="3600"/>
<constructor-arg val ue="900"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

4.1.0.RC1 Spring Security 177

Spring Security Reference

30. X.509 Authentication

30.1 Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when
using SSL, most commonly when using HTTPS from a browser. The browser will automatically check
that the certificate presented by a server has been issued (ie digitally signed) by one of a list of trusted
certificate authorities which it maintains.

You can also use SSL with "mutual authentication"; the server will then request a valid certificate from
the client as part of the SSL handshake. The server will authenticate the client by checking that its
certificate is signed by an acceptable authority. If a valid certificate has been provided, it can be obtained
through the servlet API in an application. Spring Security X.509 module extracts the certificate using a
filter. It maps the certificate to an application user and loads that user’s set of granted authorities for
use with the standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet
container before attempting to use it with Spring Security. Most of the work is in creating and installing
suitable certificates and keys. For example, if you're using Tomcat then read the instructions here http://
tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html. It's important that you get this working before trying
it out with Spring Security

30.2 Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/ > element to your http
security namespace configuration.

<htt p>

<x509 subj ect - princi pal -regex="CN=(.*?)," user-service-ref="userService"/>;
</ http>

The element has two optional attributes:

» subj ect-principal -regex. The regular expression used to extract a username from the
certificate’s subject name. The default value is shown above. This is the username which will be
passed to the User Det ai | sSer vi ce to load the authorities for the user.

* user-service-ref. This is the bean Id of the User Det ai | sSer vi ce to be used with X.509. It
isn't needed if there is only one defined in your application context.

The subj ect - pri nci pal - r egex should contain a single group. For example the default expression
"CN=(.*?)," matches the common name field. So if the subject name in the certificate is "CN=Jimi
Hendrix, OU=...", this will give a user name of "Jimi Hendrix". The matches are case insensitive.
So "emailAddress=(.?)," will match "EMAILADDRESS=jimi@hendrix.org,CN=..." giving a user name
"imi@hendrix.org". If the client presents a certificate and a valid username is successfully extracted,
then there should be a valid Aut hent i cat i on object in the security context. If no certificate is found,
or no corresponding user could be found then the security context will remain empty. This means that
you can easily use X.509 authentication with other options such as a form-based login.

30.3 Setting up SSL in Tomcat

There are some pre-generated certificates in the sanpl es/ certi fi cate directory in the Spring
Security project. You can use these to enable SSL for testing if you don’t want to generate your own.

4.1.0.RC1 Spring Security 178

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
mailto:jimi@hendrix.org
mailto:jimi@hendrix.org

Spring Security Reference

The file server . j ks contains the server certificate, private key and the issuing certificate authority
certificate. There are also some client certificate files for the users from the sample applications. You
can install these in your browser to enable SSL client authentication.

To run tomcat with SSL support, drop the ser ver . j ks file into the tomcat conf directory and add the
following connector to the server. xm file

<Connector port="8443" protocol ="HTTP/ 1. 1" SSLEnabl ed="true" scheme="https" secure="true"
client Auth="true" ssl Protocol ="TLS"
keyst oreFi | e="${cat al i na. hone}/ conf/server.jks"
keyst or eType="JKS" keyst or ePass="password"
truststoreFil e="${catalina. hone}/conf/server.jks"
truststoreType="JKS" truststorePass="password"
/>

cl i ent Aut h can also be set to want if you still want SSL connections to succeed even if the client
doesn’t provide a certificate. Clients which don’t present a certificate won’'t be able to access any
objects secured by Spring Security unless you use a non-X.509 authentication mechanism, such as
form authentication.

4.1.0.RC1 Spring Security 179

Spring Security Reference

31. Run-As Authentication Replacement

31.1 Overview

The Abstract Securityl nterceptor is able to temporarily replace the Aut henti cat i on object
in the SecurityContext and SecurityContextHol der during the secure object callback
phase. This only occurs if the original Aut henticati on object was successfully processed
by the Authenticati onManager and AccessDeci si onManager. The RunAsManager will
indicate the replacement Aut henti cati on object, if any, that should be used during the
Securityl nterceptorcCall back.

By temporarily replacing the Aut henti cati on object during the secure object callback phase,
the secured invocation will be able to call other objects which require different authentication and
authorization credentials. It will also be able to perform any internal security checks for specific
Grant edAut hori ty objects. Because Spring Security provides a number of helper classes that
automatically configure remoting protocols based on the contents of the Secur i t yCont ext Hol der,
these run-as replacements are particularly useful when calling remote web services

31.2 Configuration

A RunAsManager interface is provided by Spring Security:

Aut henti cati on bui | dRunAs(Aut henti cati on authenticati on, Cbject object,
Li st<Confi gAttribute> config);

bool ean supports(ConfigAttribute attribute);

bool ean supports(d ass clazz);

The first method returns the Authentication object that should replace the existing
Aut henti cati on object for the duration of the method invocation. If the method returns
nul I, it indicates no replacement should be made. The second method is used by the
Abst ract Securityl nterceptor as part of its startup validation of configuration attributes. The
support s(C ass) method is called by a security interceptor implementation to ensure the configured
RunAsManager supports the type of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The
RunAsManager | npl class returns a replacement RunAsUser Token if any Conf i gAt t ri but e starts
with RUN_AS_. If any such Confi gAttri bute is found, the replacement RunAsUser Token will
contain the same principal, credentials and granted authorities as the original Aut henti cati on
object, along with a new G- ant edAut hori t yl npl for each RUN_AS Confi gAttri but e. Each new
G ant edAut hori tyl npl will be prefixed with ROLE_, followed by the RUN_AS Confi gAttri bute.
For example, a RUN_AS SERVER will result in the replacement RunAsUser Token containing a
ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUser Token is just like any other Authentication object. It
needs to be authenticated by the Authenti cati onManager, probably via delegation to a
suitable Aut henti cati onProvi der. The RunAsl npl Aut henti cati onProvi der performs such
authentication. It simply accepts as valid any RunAsUser Token presented.

To ensure malicious code does not create a RunAsUser Token and present it for guaranteed
acceptance by the RunAsl npl Aut henti cati onProvi der, the hash of a key is stored in all

4.1.0.RC1 Spring Security 180

Spring Security Reference

generated tokens. The RunAsManager | npl and RunAsl npl Aut henti cati onProvi der is created
in the bean context with the same key:

<bean id="runAsManager"

cl ass="org. springframework. security.access.intercept. RunAsManager | npl ">
<property name="key" val ue="nmy_run_as_password"/>

</ bean>

<bean id="runAsAut henti cati onProvi der"

cl ass="org. springframework. security.access.intercept. RunAsl npl Aut henti cati onProvi der">
<property name="key" val ue="ny_run_as_password"/>
</ bean>

By using the same key, each RunAsUser Token can be validated it was created by an approved
RunAsManager | npl . The RunAsUser Token is immutable after creation for security reasons

4.1.0.RC1 Spring Security 181

Spring Security Reference

32. Spring Security Crypto Module

32.1 Introduction

The Spring Security Crypto module provides support for symmetric encryption, key generation, and
password encoding. The code is distributed as part of the core module but has no dependencies on
any other Spring Security (or Spring) code.

32.2 Encryptors
The Encryptors class provides factory methods for constructing symmetric encryptors. Using this class,

you can create ByteEncryptors to encrypt data in raw byte[] form. You can also construct TextEncryptors
to encrypt text strings. Encryptors are thread safe.

BytesEncryptor

Use the Encryptors.standard factory method to construct a "standard" BytesEncryptor:

Encryptors. standard("password", "salt")

The "standard" encryption method is 256-bit AES using PKCS #5’s PBKDF2 (Password-Based Key
Derivation Function #2). This method requires Java 6. The password used to generate the SecretKey
should be kept in a secure place and not be shared. The salt is used to prevent dictionary attacks against
the key in the event your encrypted data is compromised. A 16-byte random initialization vector is also
applied so each encrypted message is unique.

The provided salt should be in hex-encoded String form, be random, and be at least 8 bytes in length.
Such a salt may be generated using a KeyGenerator:

String salt = KeyGenerators.string().generateKey(); // generates a random 8-byte salt that is then hex-
encoded
TextEncryptor

Use the Encryptors.text factory method to construct a standard TextEncryptor:

Encryptors. text("password", "salt")

A TextEncryptor uses a standard BytesEncryptor to encrypt text data. Encrypted results are returned
as hex-encoded strings for easy storage on the filesystem or in the database.

Use the Encryptors.queryableText factory method to construct a "queryable" TextEncryptor:

Encrypt or s. quer yabl eText (" password", "salt");

The difference between a queryable TextEncryptor and a standard TextEncryptor has to do with
initialization vector (iv) handling. The iv used in a queryable TextEncryptor#encrypt operation is shared,
or constant, and is not randomly generated. This means the same text encrypted multiple times will
always produce the same encryption result. This is less secure, but necessary for encrypted data that
needs to be queried against. An example of queryable encrypted text would be an OAuth apiKey.

4.1.0.RC1 Spring Security 182

Spring Security Reference

32.3 Key Generators

The KeyGenerators class provides a number of convenience factory methods for constructing different
types of key generators. Using this class, you can create a BytesKeyGenerator to generate byte[] keys.
You can also construct a StringKeyGenerator to generate string keys. KeyGenerators are thread safe.

BytesKeyGenerator

Use the KeyGenerators.secureRandom factory methods to generate a BytesKeyGenerator backed by
a SecureRandom instance:

KeyGener at or generator = KeyGenerators. secur eRandomn();
byte[] key = generator.generateKey();

The default key length is 8 bytes. There is also a KeyGenerators.secureRandom variant that provides
control over the key length:

KeyGener at or s. secur eRandont(16) ;

Use the KeyGenerators.shared factory method to construct a BytesKeyGenerator that always returns
the same key on every invocation:

KeyGener at or s. shar ed(16) ;

StringKeyGenerator

Use the KeyGenerators.string factory method to construct a 8-byte, SecureRandom KeyGenerator that
hex-encodes each key as a String:

KeyGenerators. string();

32.4 Password Encoding

The password package of the spring-security-crypto module provides support for encoding passwords.
Passwor dEncoder is the central service interface and has the following signature:

public interface PasswordEncoder {
String encode(String rawPassword);

bool ean mat ches(String rawPassword, String encodedPassword);

}

The matches method returns true if the rawPassword, once encoded, equals the encodedPassword.
This method is designed to support password-based authentication schemes.

The BCr ypt Passwor dEncoder implementation uses the widely supported "bcrypt" algorithm to hash
the passwords. Berypt uses a random 16 byte salt value and is a deliberately slow algorithm, in order
to hinder password crackers. The amount of work it does can be tuned using the "strength" parameter
which takes values from 4 to 31. The higher the value, the more work has to be done to calculate the
hash. The default value is 10. You can change this value in your deployed system without affecting
existing passwords, as the value is also stored in the encoded hash.

/] Create an encoder with strength 16

BCr ypt Passwor dEncoder encoder = new BCrypt Passwor dEncoder (16) ;
String result = encoder.encode("nmyPassword");

assert True(encoder. mat ches(" myPassword", result));

4.1.0.RC1 Spring Security 183

Spring Security Reference

33. Concurrency Support

In most environments, Security is stored on a per Thr ead basis. This means that when work is done
on a new Thr ead, the Securi t yCont ext is lost. Spring Security provides some infrastructure to help
make this much easier for users. Spring Security provides low level abstractions for working with Spring
Security in multi threaded environments. In fact, this is what Spring Security builds on to integration with
the section called “AsyncContext.start(Runnable)” and Section 34.3, “Spring MVC Async Integration”.

33.1 DelegatingSecurityContextRunnable

One of the most fundamental building blocks within Spring Security’s concurrency support is the
Del egati ngSecuri t yCont ext Runnabl e. It wraps a delegate Runnabl e in order to initialize
the SecurityCont ext Hol der with a specified SecurityContext for the delegate. It then
invokes the delegate Runnable ensuring to clear the Securi t yCont ext Hol der afterwards. The
Del egati ngSecurit yCont ext Runnabl e looks something like this:

public void run() {
try {
Securi t yCont ext Hol der . set Cont ext (securityContext);
del egate.run();
} finally {
Securi t yCont ext Hol der. cl ear Cont ext () ;
}
}

While very simple, it makes it seamless to transfer the SecurityContext from one Thread to another. This
is important since, in most cases, the SecurityContextHolder acts on a per Thread basis. For example,
you might have used Spring Security’s the section called “<global-method-security>" support to secure
one of your services. You can now easily transfer the Secur i t yCont ext of the current Thr ead to the
Thr ead that invokes the secured service. An example of how you might do this can be found below:

Runnabl e ori gi nal Runnabl e = new Runnabl e() {
public void run() {

/'l invoke secured service
}
b
SecurityCont ext context = SecurityContextHol der. get Context();
Del egat i ngSecuri t yCont ext Runnabl e wr appedRunnabl e =

new Del egati ngSecurityCont ext Runnabl e(ori gi nal Runnabl e, context);

new Thr ead(w appedRunnabl e) . start ();

The code above performs the following steps:

» Creates a Runnabl e that will be invoking our secured service. Notice that it is not aware of Spring
Security

* Obtains the SecurityCont ext that we wish to use from the SecurityCont ext Hol der and
initializes the Del egat i ngSecuri t yCont ext Runnabl e

e Use the Del egat i ngSecuri t yCont ext Runnabl e to create a Thread
 Start the Thread we created

Since it is quite common to create a Del egati ngSecurityContext Runnabl e with the
Securi tyCont ext from the Securit yCont ext Hol der there is a shortcut constructor for it. The
following code is the same as the code above:

4.1.0.RC1 Spring Security 184

Spring Security Reference

Runnabl e ori gi nal Runnabl e = new Runnabl e() {
public void run() {

/'l invoke secured service

}
IE

Del egat i ngSecuri t yCont ext Runnabl e wr appedRunnabl e =
new Del egati ngSecurityCont ext Runnabl e(ori gi nal Runnabl e) ;

new Thr ead(w appedRunnabl e).start();

The code we have is simple to use, but it still requires knowledge that we are using Spring Security. In
the next section we will take a look at how we can utilize Del egat i ngSecuri t yCont ext Execut or
to hide the fact that we are using Spring Security.

33.2 DelegatingSecurityContextExecutor

In the previous section we found that it was easy to use the
Del egati ngSecuri t yCont ext Runnabl e, but it was not ideal since we had to be aware of Spring
Security in order to use it. Let’'s take a look at how Del egati ngSecuri t yCont ext Execut or can
shield our code from any knowledge that we are using Spring Security.

The design of Del egatingSecurityContextExecutor is very similar to that of
Del egati ngSecurit yCont ext Runnabl e except it accepts a delegate Execut or instead of a
delegate Runnabl e. You can see an example of how it might be used below:

Securi tyCont ext context = SecurityContextHol der. creat eEnptyContext();
Aut henti cati on authentication =

new User nanmePasswor dAut henti cati onToken("user", "doesnot matter",

Aut horityUtils. createAut horityList("ROLE_USER"));
cont ext. set Aut henti cati on(aut henti cation);

Si npl eAsyncTaskExecut or del egat eExecut or =
new Si npl eAsyncTaskExecutor();
Del egat i ngSecuri t yCont ext Execut or executor =
new Del egati ngSecurityCont ext Execut or (del egat eExecut or, context);

Runnabl e ori gi nal Runnabl e = new Runnabl e() {
public void run() {

/1 invoke secured service

}
b

execut or . execut e(ori gi nal Runnabl e) ;

The code performs the following steps:

e Creates the SecurityCont ext to be used for our Del egat i ngSecurit yCont ext Execut or.
Note that in this example we simply create the Securit yCont ext by hand. However, it does
not matter where or how we get the SecurityContext (i.e. we could obtain it from the
Securi t yCont ext Hol der if we wanted).

» Creates a delegateExecutor that is in charge of executing submitted Runnabl es

» Finally we create a Del egat i ngSecurit yCont ext Execut or which is in charge of wrapping any
Runnable that is passed into the execute method with a Del egat i ngSecur i t yCont ext Runnabl e.
It then passes the wrapped Runnable to the delegateExecutor. In this instance,
the same SecurityContext wil be used for every Runnable submitted to our
Del egati ngSecuri t yCont ext Execut or. This is nice if we are running background tasks that
need to be run by a user with elevated privileges.

4.1.0.RC1 Spring Security 185

Spring Security Reference

e At this point you may be asking yourself "How does this shield my code of any
knowledge of Spring Security?" Instead of creating the SecurityContext and the
Del egati ngSecurit yCont ext Execut or in our own code, we can inject an already initialized
instance of Del egat i ngSecuri t yCont ext Execut or.

@\ut owi r ed
private Executor executor; // beconmes an instance of our Del egatingSecurityContextExecutor

public void subm tRunnabl e() {

Runnabl e ori gi nal Runnabl e = new Runnabl e() {
public void run() {
/'l invoke secured service
}

IE

execut or. execut e(ori gi nal Runnabl e) ;

}

Now our code is unaware that the SecurityCont ext is being propagated to the Thr ead, then
the ori gi nal Runnabl e is executed, and then the Securi t yCont ext Hol der is cleared out. In
this example, the same user is being used to execute each Thread. What if we wanted to use the
user from Securi t yCont ext Hol der at the time we invoked execut or . execut e(Runnabl e) (i.e.
the currently logged in user) to process ori gi nal Runnabl e? This can be done by removing the
Securi t yCont ext argument from our Del egat i ngSecuri t yCont ext Execut or constructor. For
example:

Si npl eAsyncTaskExecut or del egat eExecut or = new Si npl eAsyncTaskExecutor () ;
Del egat i ngSecuri t yCont ext Execut or executor =
new Del egati ngSecuri t yCont ext Execut or (del egat eExecut or);

Now anytime execut or . execut e(Runnabl e) is executed the Securi t yCont ext is first obtained
by the SecurityCont extHol der and then that SecurityContext is used to create our
Del egat i ngSecurit yCont ext Runnabl e. This means that we are executing our Runnabl e with the
same user that was used to invoke the execut or . execut e(Runnabl e) code.

33.3 Spring Security Concurrency Classes

Refer to the Javadoc for additional integrations with both the Java concurrent APIs and the Spring Task
abstractions. They are quite self explanatory once you understand the previous code.

DelegatingSecurityContextCallable

» DelegatingSecurityContextExecutor

» DelegatingSecurityContextExecutorService

* DelegatingSecurityContextRunnable

» DelegatingSecurityContextScheduledExecutorService
» DelegatingSecurityContextSchedulingTaskExecutor
» DelegatingSecurityContextAsyncTaskExecutor

» DelegatingSecurityContextTaskExecutor

4.1.0.RC1 Spring Security 186

Spring Security Reference

34. Spring MVC Integration

Spring Security provides a number of optional integrations with Spring MVC. This section covers the
integration in further detail.

34.1 @EnableWebMvcSecurity

Note

As of Spring Security 4.0, @nabl eWwebMs/cSecurity is deprecated. The replacement is
@nabl eWebSecuri ty which will determine adding the Spring MVC features based upon the
classpath.

To enable Spring Security integration with Spring MVC add the @nabl eWebSecur i t y annotation to
your configuration.

Note

Spring Security provides the configuration using Spring MVC’s WebMvcConfigurerAdapter.
This means that if you are using more advanced options, like integrating with
WebM/cConfi gurati onSupport directly, then you will need to manually provide the Spring
Security configuration.

34.2 @AuthenticationPrincipal

Spring Security provides Aut hent i cat i onPri nci pal Ar gunent Resol ver which can automatically
resolve the current Aut henti cati on. get Princi pal () for Spring MVC arguments. By using
Section 34.1, “@EnableWebMvcSecurity” you will automatically have this added to your Spring MVC
configuration. If you use XML based configuraiton, you must add this yourself.

Once Aut henti cati onPri nci pal Argunment Resol ver is properly configured, you can be entirely
decoupled from Spring Security in your Spring MVC layer.

Consider a situation where a custom User Det ai | sSer vi ce that returns an Obj ect that implements
User Det ai | s and your own Cust omJser Cbj ect . The Cust omJser of the currently authenticated
user could be accessed using the following code:

i nport org.springframework. security.web. bi nd. annot ati on. Aut henti cati onPri nci pal ;
I

@Request Mappi ng("/ messages/ i nbox")
publ i c Mbdel AndVi ew fi ndMessagesFor User () {
Aut henti cation aut hentication =
Securi t yCont ext Hol der . get Cont ext (). get Aut henti cati on();
Cust omser custom = (CustonUser) authentication == null ? null : authentication.getPrincipal();

/1 .. find nessags for this user and return them...

}

As of Spring Security 3.2 we can resolve the argument more directly by adding an annotation. For
example:

4.1.0.RC1 Spring Security 187

http://docs.spring.io/spring-framework/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-config-customize

Spring Security Reference

@Request Mappi ng("/ nessages/ i nbox")
publ i ¢ Mbdel AndVi ew fi ndMessagesFor User (@\ut henti cationPrinci pal CustomJser custonser) {

/1l .. find nessags for this user and return them...

}

We can further remove our dependency on Spring Security by making @\ut hent i cati onPri nci pal
a meta annotation on our own annotation. Below we demonstrate how we could do this on an annotation
named @Cur r ent User .

Note

It is important to realize that in order to remove the dependency on Spring Security, it is the
consuming application that would create @cur r ent User . This step is not strictly required, but
assists in isolating your dependency to Spring Security to a more central location.

@rar get ({ El enent Type. PARAMETER, El enent Type. TYPE})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ocunent ed

@\ut henti cati onPri nci pal

public @nterface CurrentUser {}

Now that @ur r ent User has been specified, we can use it to signal to resolve our Cust omJser of the
currently authenticated user. We have also isolated our dependency on Spring Security to a single file.

@Request Mappi ng("/ nessages/ i nbox")
publ i c Mbdel AndVi ew fi ndMessagesFor User (@ur rent User Cust omUser custonmser) {

/1 .. find nessags for this user and return them...

}

34.3 Spring MVC Async Integration

Spring Web MVC 3.2+ has excellent support for Asynchronous Request Processing. With no additional
configuration, Spring Security will automatically setup the SecurityCont ext to the Thread that
executes a Cal | abl e returned by your controllers. For example, the following method will automatically
have its Cal | abl e executed with the Securi t yCont ext that was available when the Cal | abl e was
created:

@Request Mappi ng(net hod=Request Met hod. POST)
public Callabl e<String> processUpl oad(final MultipartFile file) {

return new Cal |l abl e<String>() {

public Object call () throws Exception {
...

return "soneVi ew';

}

ba

}

Associating SecurityContext to Callable’s

More technically speaking, Spring Security integrates with WebAsyncManager. The
Securi t yCont ext thatis used to process the Cal | abl e is the Securi t yCont ext that exists
on the Secur i t yCont ext Hol der at the time st art Cal | abl ePr ocessi ng is invoked.

There is no automatic integration with a Def erredResul t that is returned by controllers. This is
because Def erredResul t is processed by the users and thus there is no way of automatically

4.1.0.RC1 Spring Security 188

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-ann-async

Spring Security Reference

integrating with it. However, you can still use Concurrency Support to provide transparent integration
with Spring Security.

34.4 Spring MVC and CSRF Integration

Automatic Token Inclusion

Spring Security will automatically include the CSRF Token within forms that use the Spring MVC form
tag. For example, the following JSP:

<jsp:root xmns:jsp="http://java. sun. coml JSP/ Page"
xm ns: c="http://java.sun.conm jsp/jstl/core"
xm ns: forme"http://ww. springframework. org/tags/forn version="2.0">
<j sp:directive. page | anguage="java" content Type="text/htm" />
<htm xm ns="http://ww.w3. org/ 1999/ xhtm " | ang="en" xmnl :lang="en">
<l-- ... -->
<c:url var="logoutUl" val ue="/1ogout"/>
<form formaction="${l ogout Url }"
nmet hod="post " >
<i nput type="submt"
val ue="Log out" />
<i nput type="hi dden"
nane="${_csrf. par anet er Nane} "
val ue="${_csrf.token}"/>
</formform

<l-- ... -->
</htm >
</] sp:root>

Will output HTML that is similar to the following:

<l-- ... -->

<form acti on="/context/| ogout" method="post">

<input type="submt" val ue="Log out"/>

<input type="hidden" name="_csrf" val ue="f81d4f ae- 7dec- 11d0- a765- 00a0c91e6bf 6"/ >

</ form

<l-- ... -->

Resolving the CsrfToken

Spring Security provides Csrf TokenResol ver which can automatically resolve the current
Csr f Token for Spring MVC arguments. By using @EnableWebSecurity you will automatically have
this added to your Spring MVC configuration. If you use XML based configuraiton, you must add this
yourself.

Once Csrf TokenResol ver is properly configured, you can expose the Csrf Token to your static
HTML based application.

@rest Control | er
public class CsrfController {

@Request Mappi ng("/csrf™)
public CsrfToken csrf(CsrfToken token) {
return token;

}

}

It is important to keep the Csr f Token a secret from other domains. This means if you are using Cross
Origin Sharing (CORS), you should NOT expose the Csr f Token to any external domains.

4.1.0.RC1 Spring Security 189

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/view.html#view-jsp-formtaglib-formtag
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/view.html#view-jsp-formtaglib-formtag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Part VIII. Spring Data Integration

Spring Security provides Spring Data integration that allows referring to the current user within your
queries. It is not only useful but necessary to include the user in the queries to support paged results
since filtering the results afterwards would not scale.

Spring Security Reference

35. Spring Data & Spring Security Configuration

To use this support, provide a bean of type Securit yEval uati onCont ext Ext ensi on. In Java
Configuration, this would look like:

@Bean
publ i c SecurityEval uati onCont ext Ext ensi on securityEval uati onCont ext Ext ensi on() {
return new SecurityEval uati onCont ext Ext ensi on();

}

In XML Configuration, this would look like:

<bean cl ass="org. springframework. security. data.repository.query. SecurityEval uati onCont ext Ext ensi on"/ >

4.1.0.RC1 Spring Security 191

Spring Security Reference

36. Security Expressions within @Query

Now Spring Security can be used within your queries. For example:

@Reposi tory

public interface MessageRepository extends Pagi ngAndSorti ngRepository<Message, Long> {
@uery("select mfrom Message mwhere mto.id = ?#{ principal?.id }")
Page<Message> fi ndl nbox(Pageabl e pageabl e);

}

This checks to see if the Aut henti cati on. get Principal ().getld() is equal to the recipient
of the Message. Note that this example assumes you have customized the principal to be an Object
that has an id property. By exposing the Securi t yEval uat i onCont ext Ext ensi on bean, all of the
Common Security Expressions are available within the Query.

4.1.0.RC1 Spring Security 192

Part IX. Appendix

Spring Security Reference

37. Security Database Schema

There are various database schema used by the framework and this appendix provides a single
reference point to them all. You only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQLDB database. You can use these as a guideline for defining the
schema for the database you are using.

37.1 User Schema

The standard JDBC implementation of the User Det ai | sSer vi ce (JdbcDaol npl) requires tables to
load the password, account status (enabled or disabled) and a list of authorities (roles) for the user. You
will need to adjust this schema to match the database dialect you are using.

create table users(

user name var char _i gnorecase(50) not null primary key,
password var char _i gnorecase(50) not null,

enabl ed bool ean not nul |

)

create table authorities (

user name var char _i gnor ecase(50) not null,

aut hority varchar_i gnorecase(50) not null,

constraint fk_authorities_users foreign key(usernane) references users(usernane)
DE

create unique index ix_auth_username on authorities (usernane, authority);

Group Authorities

Spring Security 2.0 introduced support for group authorities in JdbcDaol npl . The table structure if
groups are enabled is as follows. You will need to adjust this schema to match the database dialect
you are using.

create table groups (
id bigint generated by default as identity(start with 0) primary key,
group_nane var char _i gnorecase(50) not nul |

)i

create table group_authorities (
group_id bigint not null,
authority varchar(50) not null,
constraint fk_group_authorities_group foreign key(group_id) references groups(id)

)i

create table group_nenbers (

id bigint generated by default as identity(start with 0) primary key,

user nanme varchar (50) not null,

group_id bigint not null,

constraint fk_group_nenbers_group foreign key(group_id) references groups(id)

)i

Remember that these tables are only required if you are using the provided JDBC
User Det ai | sServi ce implementation. If you write your own or choose to implement
Aut hent i cati onProvi der withouta User Det ai | sSer vi ce, then you have complete freedom over
how you store the data, as long as the interface contract is satisfied.

4.1.0.RC1 Spring Security 194

Spring Security Reference

37.2 Persistent Login (Remember-Me) Schema

This table is used to store data used by the more secure persistent token remember-me implementation.
If you are using JdbcTokenReposi t or yl npl either directly or through the namespace, then you will
need this table. Remember to adjust this schema to match the database dialect you are using.

create table persistent_logins (
user nane varchar(64) not null,

series varchar(64) primary key,
token varchar(64) not null,

| ast _used timestanp not null

)

37.3 ACL Schema

There are four tables used by the Spring Security ACL implementation.

1. acl _si d stores the security identities recognised by the ACL system. These can be unique principals
or authorities which may apply to multiple principals.

2. acl _cl ass defines the domain object types to which ACLs apply. The cl ass column stores the
Java class name of the object.

3. acl _obj ect _i dentity stores the object identity definitions of specific domai objects.
4. acl _ent ry stores the ACL permissions which apply to a specific object identity and security identity.

It is assumed that the database will auto-generate the primary keys for each of the identities. The
JdbcMut abl eAcl Servi ce has to be able to retrieve these when it has created a new row in the
acl _sidoracl_cl ass tables. It has two properties which define the SQL needed to retrieve these
valuescl assl denti tyQuery andsi dl denti t yQuery. Both ofthese defaulttocal | identity()

The ACL artifact JAR contains files for creating the ACL schema in HyperSQL (HSQLDB), PostgreSQL,
MySQL/MariaDB, Microsoft SQL Server, and Oracle Database. These schemas are also demonstrated
in the following sections.

HyperSQL

The default schema works with the embedded HSQLDB database that is used in unit tests within the
framework.

4.1.0.RC1 Spring Security 195

Spring Security Reference

create table acl_sid(
id bigint generated by default as identity(start with 100) not null primary key,
princi pal bool ean not null,
sid varchar_i gnorecase(100) not null,

constraint uni que_uk_1 unique(sid,principal)

)

create table acl_class(
id bigint generated by default as identity(start with 100) not null primary key,
class varchar_i gnorecase(100) not null,

constrai nt uni que_uk_2 uni que(cl ass)

)

create table acl_object_identity(
id bigint generated by default as identity(start with 100) not null primary key,
obj ect_id_class bigint not null,
object_id_identity bigint not null,
par ent _obj ect bigint,
owner _si d bigint,
entries_inheriting boolean not null,
constrai nt uni que_uk_3 uni que(obj ect_id_cl ass, obj ect_id_identity),
constraint foreign_fk_1 foreign key(parent_object)references acl _object_identity(id),
constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),
constraint foreign_fk_3 foreign key(owner_sid)references acl _sid(id)
DE

create table acl_entry(
id bigint generated by default as identity(start with 100) not null primry key,
acl _obj ect _identity bigint not null,
ace_order int not null,
sid bigint not null,
mask integer not null,
granting bool ean not null,
audi t _success bool ean not null,
audi t _failure boolean not null,
constrai nt uni que_uk_4 uni que(acl _object_identity, ace_order),

constraint foreign_fk_5 foreign key(sid) references acl_sid(id)

constraint foreign_fk_4 foreign key(acl _object_identity) references acl _object_identity(id),

4.1.0.RC1 Spring Security

196

Spring Security Reference

PostgreSQL

create table acl_sid(
id bigserial not null primary key,
princi pal bool ean not null,
sid varchar(100) not null,
constraint uni que_uk_1 unique(sid, principal)

)

create table acl_class(
id bigserial not null primary key,
class varchar (100) not null,
constraint uni que_uk_2 uni que(cl ass)

)

create table acl_object_identity(

id bigserial primry key,

obj ect _id_class bigint not null,

object_id_identity bigint not null,

par ent _obj ect bigint,

owner _si d bigint,

entries_inheriting boolean not null,

constrai nt uni que_uk_3 uni que(obj ect_id_cl ass, obj ect_id_identity),

constraint foreign_fk_1 foreign key(parent_object)references acl _object_identity(id),

constraint foreign_fk_2 foreign key(object_id_class)references acl _class(id),
constraint foreign_fk_3 foreign key(owner_sid)references acl _sid(id)

)

create table acl _entry(

id bigserial primry key,

acl _object_identity bigint not null,

ace_order int not null,

sid bigint not null,

mask integer not null,

granting bool ean not null,

audi t _success bool ean not null,

audit _failure boolean not null,

constrai nt uni que_uk_4 uni que(acl _object_identity, ace_order),

constraint foreign_fk_4 foreign key(acl _object_identity) references acl _object_identity(id),
constraint foreign_fk_5 foreign key(sid) references acl_sid(id)

)

You will have to set the classldentityQuery and sidldentityQuery properties of
JdbcMut abl eAcl Ser vi ce to the following values, respectively:

* sel ect currval (pg_get_serial _sequence('acl _class', 'id))

» select currval (pg_get_serial _sequence('acl _sid, '"id))

4.1.0.RC1 Spring Security 197

Spring Security Reference

MySQL and MariaDB

CREATE TABLE acl _sid (

id Bl G NT UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
princi pal BOOLEAN NOT NULL,

si d VARCHAR(100) NOT NULL,

UNI QUE KEY uni que_acl _sid (sid, principal)
) ENG NE=I nnoDB;

CREATE TABLE acl _cl ass (

id Bl G NT UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
cl ass VARCHAR(100) NOT NULL,

UNI QUE KEY uk_acl _class (class)
) ENG NE=I nnoDB;

CREATE TABLE acl _object_identity (
id Bl G NT UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
obj ect _id_class BI G NT UNSI GNED NOT NULL,
object_id_identity BIG NT NOT NULL,
parent _obj ect Bl G NT UNSI GNED,
owner _si d Bl G NT UNSI GNED,
entries_inheriting BOOLEAN NOT NULL,
UNI QUE KEY uk_acl _object_identity (object_id_class, object_id_identity),
CONSTRAI NT fk_acl _obj ect _identity_parent FOREIGN KEY (parent_object) REFERENCES acl _object_identity
(id),
CONSTRAI NT fk_acl _obj ect_identity_class FOREI GN KEY (object_id_class) REFERENCES acl _class (id),
CONSTRAI NT fk_acl _obj ect _identity_owner FOREI GN KEY (owner_si d) REFERENCES acl _sid (id)
) ENG NE=I nnoDB;

CREATE TABLE acl _entry (

id BIG NT UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,

acl _obj ect_identity BI G NT UNSI GNED NOT NULL,

ace_order | NTEGER NOT NULL,

si d BI G NT UNSI GNED NOT NULL,

mask | NTEGER UNSI GNED NOT NULL,

granting BOOLEAN NOT NULL,

audi t _success BOOLEAN NOT NULL,

audi t _failure BOOLEAN NOT NULL,

UNI QUE KEY uni que_acl _entry (acl _object_identity, ace_order),

CONSTRAI NT fk_acl _entry_obj ect FOREI GN KEY (acl _obj ect_identity) REFERENCES acl _object_identity (id),

CONSTRAI NT fk_acl _entry_acl FOREI GN KEY (sid) REFERENCES acl _sid (id)
) ENG NE=I nnoDB;

4.1.0.RC1 Spring Security 198

Spring Security Reference

Microsoft SQL Server

CREATE TABLE acl _sid (

id BIG NT NOT NULL | DENTITY PRI MARY KEY,

principal BIT NOT NULL,

si d VARCHAR(100) NOT NULL,
CONSTRAI NT uni que_acl _sid UNIQUE (sid, principal)
DE

CREATE TABLE acl _cl ass (

id BIG NT NOT NULL | DENTITY PRI MARY KEY,
cl ass VARCHAR(100) NOT NULL,
CONSTRAI NT uk_acl _cl ass UNI QUE (cl ass)
DE

CREATE TABLE acl _object_identity (
id BIG NT NOT NULL | DENTITY PRI MARY KEY,
obj ect _id_class BI G NT NOT NULL,
object_id_identity BIG NT NOT NULL,
parent _obj ect Bl G NT,
owner _si d Bl G NT,
entries_inheriting BIT NOT NULL,
CONSTRAI NT uk_acl _obj ect _identity UNI QUE (object_id_class, object_id_identity),
CONSTRAI NT fk_acl _obj ect _identity_parent FOREIGN KEY (parent_object) REFERENCES acl _object_identity
(id),
CONSTRAI NT fk_acl _object _identity_class FOREI GN KEY (object_id_class) REFERENCES acl _class (id),
CONSTRAI NT fk_acl _obj ect _identity_owner FOREI GN KEY (owner_si d) REFERENCES acl _sid (id)
DE

CREATE TABLE acl _entry (

id BIG NT NOT NULL I DENTITY PRI MARY KEY,

acl _obj ect _identity BI G NT NOT NULL,

ace_order | NTEGER NOT NULL,

sid BI G NT NOT NULL,

mask | NTEGER NOT NULL,

granting BI T NOT NULL,

audi t _success BI T NOT NULL,

audit _failure BIT NOT NULL,

CONSTRAI NT uni que_acl _entry UNI QUE (acl _object_identity, ace_order),
CONSTRAI NT fk_acl _entry_obj ect FOREI GN KEY (acl _obj ect_identity) REFERENCES acl _object_identity (id),
CONSTRAI NT fk_acl _entry_acl FOREI GN KEY (sid) REFERENCES acl _sid (id)

4.1.0.RC1 Spring Security 199

Spring Security Reference

Oracle Database

CREATE TABLE acl _sid (

id NUVBER(38) NOT NULL PRI MARY KEY,

princi pal NUVBER(1) NOT NULL CHECK (principal in (0, 1)),

si d NVARCHAR2(100) NOT NULL,

CONSTRAI NT uni que_acl _sid UNIQUE (sid, principal)
DE

CREATE SEQUENCE acl _si d_sequence START WTH 1 | NCREMENT BY 1 NOVAXVALUE;
CREATE OR REPLACE TRI GGER acl _sid_id_trigger

BEFORE | NSERT ON acl _sid

FOR EACH ROW
BEG N

SELECT acl _si d_sequence. nextval | NTO : new.id FROM dual ;
END;

CREATE TABLE acl _cl ass (

id NUMBER(38) NOT NULL PRI MARY KEY,

cl ass NVARCHAR2(100) NOT NULL,

CONSTRAI NT uk_acl _cl ass UNI QUE (cl ass)
DE

CREATE SEQUENCE acl _cl ass_sequence START WTH 1 | NCREMENT BY 1 NOVAXVALUE;
CREATE OR REPLACE TRI GGER acl _cl ass_id_trigger

BEFORE | NSERT ON acl _cl ass

FOR EACH ROW
BEG N

SELECT acl _cl ass_sequence. nextval | NTO : new.id FROM dual ;
END;

CREATE TABLE acl _obj ect _identity (
id NUMBER(38) NOT NULL PRI MARY KEY,
obj ect _id_class NUVBER(38) NOT NULL,
obj ect _id_identity NUVBER(38) NOT NULL,
par ent _obj ect NUMBER(38),
owner _si d NUMBER(38),
entries_inheriting NUMBER(1) NOT NULL CHECK (entries_inheriting in (0, 1)),
CONSTRAI NT uk_acl _obj ect _identity UNI QUE (object_id_class, object_id_identity),
CONSTRAI NT fk_acl _obj ect _identity_parent FOREIGN KEY (parent_object) REFERENCES acl _object_identity
(id),
CONSTRAI NT fk_acl _obj ect_identity_class FOREI GN KEY (object_id_class) REFERENCES acl _class (id),
CONSTRAI NT fk_acl _obj ect _i dentity_owner FOREI GN KEY (owner_si d) REFERENCES acl _sid (id)
DE
CREATE SEQUENCE acl _obj ect _identity_sequence START WTH 1 | NCREMENT BY 1 NOVAXVALUE;
CREATE OR REPLACE TRI GGER acl _object_identity_id_trigger
BEFORE | NSERT ON acl _obj ect_identity
FOR EACH ROW
BEG N
SELECT acl _obj ect_identity_sequence. nextval |INTO :new id FROM dual ;
END;

CREATE TABLE acl _entry (

id NUVBER(38) NOT NULL PRI MARY KEY,

acl _obj ect _identity NUVMBER(38) NOT NULL,

ace_order | NTEGER NOT NULL,

si d NUVMBER(38) NOT NULL,

mask | NTEGER NOT NULL,

granting NUMBER(1) NOT NULL CHECK (granting in (0, 1)),

audi t _success NUMBER(1) NOT NULL CHECK (audit_success in (0, 1)),

audit _failure NUMBER(1) NOT NULL CHECK (audit_failure in (0, 1)),
CONSTRAI NT uni que_acl _entry UNI QUE (acl _object_identity, ace_order),
CONSTRAI NT fk_acl _entry_obj ect FOREI GN KEY (acl _object_identity) REFERENCES acl _object_identity (id),
CONSTRAI NT fk_acl _entry_acl FOREIGN KEY (sid) REFERENCES acl _sid (id)
DE

CREATE SEQUENCE acl _entry_sequence START WTH 1 | NCREMENT BY 1 NOVAXVALUE;
CREATE OR REPLACE TRI GGER acl _entry_id_trigger

BEFORE | NSERT ON acl _entry

FOR EACH ROW
BEG N

SELECT acl _entry_sequence. nextval | NTO : new.id FROM dual ;
END;

4.1.0.RC1 Spring Security 200

Spring Security Reference

38. The Security Namespace

This appendix provides a reference to the elements available in the security namespace and information
on the underlying beans they create (a knowledge of the individual classes and how they work together is
assumed - you can find more information in the project Javadoc and elsewhere in this document). If you
haven’t used the namespace before, please read the introductory chapter on namespace configuration,
as this is intended as a supplement to the information there. Using a good quality XML editor while
editing a configuration based on the schema is recommended as this will provide contextual information
on which elements and attributes are available as well as comments explaining their purpose. The
namespace is written in RELAX NG Compact format and later converted into an XSD schema. If you
are familiar with this format, you may wish to examine the schema file directly.

38.1 Web Application Security

<debug>

Enables Spring Security debugging infrastructure. This will provide human-readable (multi-line)
debugging information to monitor requests coming into the security filters. This may include sensitive
information, such as request parameters or headers, and should only be used in a development
environment.

<http>

If you use an <http> element within your application, a Filter Chai nProxy bean named
"springSecurityFilterChain" is created and the configuration within the element is used to build a filter
chain within Fi | t er Chai nPr oxy. As of Spring Security 3.1, additional ht t p elements can be used to
add extra filter chains 3. Some core filters are always created in a filter chain and others will be added
to the stack depending on the attributes and child elements which are present. The positions of the
standard filters are fixed (see the filter order table in the namespace introduction), removing a common
source of errors with previous versions of the framework when users had to configure the filter chain
explicitly in the Fi | t er Chai nPr oxy bean. You can, of course, still do this if you need full control of
the configuration.

All filters which require a reference to the Aut hent i cat i onManager will be automatically injected with
the internal instance created by the namespace configuration (see the introductory chapter for more on
the Aut hent i cat i onManager).

Each <htt p> namespace block always creates an SecurityCont ext Persi stenceFilter, an
ExceptionTranslationFilter and a FilterSecuritylnterceptor. These are fixed and
cannot be replaced with alternatives.

<http> Attributes
The attributes on the <ht t p> element control some of the properties on the core filters.

e access-decision-manager-ref Optional attribute specifying the ID of the
AccessDeci si onManager implementation which should be used for authorizing HTTP requests.
By default an Affirmati veBased implementation is used for with a Rol eVoter and an
Aut hent i cat edVot er.

3see the introductory chapter for how to set up the mapping from your web. xm

4.1.0.RC1 Spring Security 201

http://www.relaxng.org/
https://raw.githubusercontent.com/spring-projects/spring-security/master/config/src/main/resources/org/springframework/security/config/spring-security-4.1.rnc

Spring Security Reference

« authentication-manager-ref A reference to the Authenticati onManager used for the
Fi | t er Chai n created by this http element.

» auto-config Automatically registers a login form, BASIC authentication, logout services. If set to
"true”, all of these capabilities are added (although you can still customize the configuration of each
by providing the respective element). If unspecified, defaults to "false". Use of this attribute is not
recommended. Use explicit configuration elements instead to avoid confusion.

» create-session Controls the eagerness with which an HTTP session is created by Spring Security
classes. Options include:

« al ways - Spring Security will proactively create a session if one does not exist.
« i f Requi r ed - Spring Security will only create a session only if one is required (default value).
* never - Spring Security will never create a session, but will make use of one if the application does.

« st at el ess - Spring Security will not create a session and ignore the session for obtaining a Spring
Aut henti cati on.

» disable-url-rewriting Prevents session IDs from being appended to URLs in the application. Clients
must use cookies if this attribute is setto t r ue. The defaultis t r ue.

» entry-point-ref Normally the Aut hent i cati onEnt r yPoi nt used will be set depending on which
authentication mechanisms have been configured. This attribute allows this behaviour to be
overridden by defining a customized Aut henti cati onEntryPoi nt bean which will start the
authentication process.

* jaas-api-provision If available, runs the request as the Subject acquired from the
JaasAut hent i cat i onToken which is implemented by adding a JaasApi | nt egrati onFil ter
bean to the stack. Defaults to f al se.

* name A bean identifier, used for referring to the bean elsewhere in the context.

* once-per-request Corresponds to the obser veOncePer Request property of
FilterSecurityl nterceptor.Defaultstotrue.

» pattern Defining a pattern for the http element controls the requests which will be filtered through the
list of filters which it defines. The interpretation is dependent on the configured request-matcher. If no
pattern is defined, all requests will be matched, so the most specific patterns should be declared first.

» realm Sets the realm name used for basic authentication (if enabled). Corresponds to the r eal mName
property on Basi cAut henti cati onEnt r yPoi nt .

» request-matcher Defines the Request Mat cher strategy used in the Fi | t er Chai nPr oxy and
the beans created by the i ntercept-url to match incoming requests. Options are currently
ant, regex and ci Regex, for ant, regular-expression and case-insensitive regular-expression
repsectively. A separate instance is created for eachintercept-url element using its pattern and method
attributes. Ant paths are matched using an Ant Pat hRequest Mat cher and regular expressions are
matched using a RegexRequest Mat cher . See the Javadoc for these classes for more details on
exactly how the matching is preformed. Ant paths are the default strategy.

» request-matcher-ref A referenece to a bean that implements Request Mat cher that will determine
if this Fi | t er Chai n should be used. This is a more powerful alternative to pattern.

4.1.0.RC1 Spring Security 202

Spring Security Reference

security A request pattern can be mapped to an empty filter chain, by setting this attribute to none.
No security will be applied and none of Spring Security’s features will be available.

security-context-repository-ref Allows injection of a custom Secur i t yCont ext Reposi t ory into
the Securi t yCont ext Per si stenceFilter.

servlet-api-provision Provides versions of Htt pServl et Request security methods such
as isUserlnRole() and getPrincipal() which are implemented by adding a
Securi t yCont ext Hol der Awar eRequest Fi | t er bean to the stack. Defaults to t r ue.

use-expressions Enables EL-expressions in the access attribute, as described in the chapter on
expression-based access-control. The default value is true.

Child Elements of <http>

access-denied-handler

custom-filter

expression-handler

form-login
headers
http-basic

intercept-url

jee

logout
openid-login
port-mappings

remember-me

request-cache

session-management

x509
<access-denied-handler>

This element allows you to set the err or Page property for the default AccessDeni edHandl er
used by the ExceptionTransl ati onFilter, using the error-page attribute, or to supply your
own implementation using theref attribute. This is discussed in more detail in the section on the

ExceptionTranslationFilter.

Parent Elements of <access-denied-handler>

° mg

4.1.0.RC1 Spring Security 203

Spring Security Reference

<access-denied-handler> Attributes

» error-page The access denied page that an authenticated user will be redirected to if they request
a page which they don’t have the authority to access.

 ref Defines a reference to a Spring bean of type AccessDeni edHandl er.
<headers>

This element allows for configuring additional (security) headers to be send with the response. It enables
easy configuration for several headers and also allows for setting custom headers through the header
element. Additional information, can be found in the Security Headers section of the reference.

» Cache-Control ,Pragma, and Expi r es - Can be set using the cache-control element. This ensures
that the browser does not cache your secured pages.

e Strict-Transport-Security -Can be setusing the hsts element. This ensures that the browser
automatically requests HTTPS for future requests.

e X-Franme- Opti ons - Can be set using the frame-options element. The X-Frame-Options header
can be used to prevent clickjacking attacks.

e X- XSS- Prot ecti on - Can be set using the xss-protection element. The X-XSS-Protection header
can be used by browser to do basic control.

» X-Cont ent - Type- Opti ons - Can be set using the content-type-options element. The X-Content-
Type-Options header prevents Internet Explorer from MIME-sniffing a response away from the
declared content-type. This also applies to Google Chrome, when downloading extensions.

e Publ i c-Key- Pi nni ng or Publ i c- Key- Pi nni ng- Report-Only - Can be set using the hpkp
element. This allows HTTPS websites to resist impersonation by attackers using mis-issued or
otherwise fraudulent certificates.

» Content-Security-PolicyorContent-Security-Policy-Report-Only-Canbe setusing
the content-security-policy element. Content Security Policy (CSP) is a mechanism that web
applications can leverage to mitigate content injection vulnerabilities, such as cross-site scripting
(XSS).

<headers> Attributes
The attributes on the <header s> element control the headers element.

» defaults-disabled Optional attribute that specifies to disable the default Spring Security’s HTTP
response headers. The default is false (the default headers are included).

» disabled Optional attribute that specifies to disable Spring Security’s HTTP response headers. The
default is false (the headers are enabled).

Parent Elements of <headers>
* http

Child Elements of <headers>
 cache-control

» content-security-policy

4.1.0.RC1 Spring Security 204

http://en.wikipedia.org/wiki/Clickjacking#X-Frame-Options
http://en.wikipedia.org/wiki/Cross-site_scripting
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
https://www.w3.org/TR/CSP2/

Spring Security Reference

 content-type-options

» frame-options
* header

k

:

* hsts

» XSs-protection
<cache-control>

Adds Cache- Control , Pragma, and Expi r es headers to ensure that the browser does not cache
your secured pages.

<cache-control> Attributes
» disabled Specifies if Cache Control should be disabled. Default false.
Parent Elements of <cache-control>

» headers
<hsts>

When enabled adds the Strict-Transport-Security header to the response for any secure request. This
allows the server to instruct browsers to automatically use HTTPS for future requests.

<hsts> Attributes

disabled Specifies if Strict-Transport-Security should be disabled. Default false.
* include-sub-domains Specifies if subdomains should be included. Default true.

* max-age-seconds Specifies the maximum ammount of time the host should be considered a Known
HSTS Host. Default one year.

» request-matcher-ref The RequestMatcher instance to be used to determine if the header should be
set. Default is if HitpServletRequest.isSecure() is true.

Parent Elements of <hsts>

» headers

<hpkp>

When enabled adds the Public Key Pinning Extension for HTTP header to the response for any secure
request. This allows HTTPS websites to resist impersonation by attackers using mis-issued or otherwise
fraudulent certificates.

<hpkp> Attributes
» disabled Specifies if HTTP Public Key Pinning (HPKP) should be disabled. Default true.

 include-sub-domains Specifies if subdomains should be included. Default false.

4.1.0.RC1 Spring Security 205

http://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc7469

Spring Security Reference

* max-age-seconds Sets the value for the max-age directive of the Public-Key-Pins header. Default
60 days.

» report-only Specifies if the browser should only report pin validation failures. Default true.
* report-uri Specifies the URI to which the browser should report pin validation failures.
Parent Elements of <hpkp>

* headers

<pins>

The list of pins

Child Elements of <pins>

* pin

<pin>

A pin is specified using the base64-encoded SPKI fingerprint as value and the cryptographic hash
algorithm as attribute

<pin> Attributes
 algorithm The cryptographic hash algorithm. Default is SHA256.

Parent Elements of <pin>

° M

<content-security-policy>

When enabled adds the Content Security Policy (CSP) header to the response. CSP is a mechanism that
web applications can leverage to mitigate content injection vulnerabilities, such as cross-site scripting
(XSS).

<content-security-policy> Attributes

» policy-directives The security policy directive(s) for the Content-Security-Policy header or if report-
only is set to true, then the Content-Security-Policy-Report-Only header is used.

» report-only Setto true, to enable the Content-Security-Policy-Report-Only header for reporting policy
violations only. Defaults to false.

Parent Elements of <content-security-policy>
» headers
<frame-options>

When enabled adds the X-Frame-Options header to the response, this allows newer browsers to do
some security checks and prevent clickjacking attacks.

<frame-options> Attributes

» disabled If disabled, the X-Frame-Options header will not be included. Default false.

4.1.0.RC1 Spring Security 206

https://www.w3.org/TR/CSP2/
http://tools.ietf.org/html/draft-ietf-websec-x-frame-options
http://en.wikipedia.org/wiki/Clickjacking

Spring Security Reference

e policy

« DENY The page cannot be displayed in a frame, regardless of the site attempting to do so. This is
the default when frame-options-policy is specified.

*« SAMECORI A N The page can only be displayed in a frame on the same origin as the page itself
* ALLOW FROMorigin The page can only be displayed in a frame on the specified origin.

In other words, if you specify DENY, not only will attempts to load the page in a frame fail when loaded
from other sites, attempts to do so will fail when loaded from the same site. On the other hand, if you
specify SAMEORIGIN, you can still use the page in a frame as long as the site including it in a frame
it is the same as the one serving the page.

» strategy Select the Al | owFr onfst r at egy to use when using the ALLOW-FROM policy.
e static Use asingle static ALLOW-FROM value. The value can be set through the value attribute.

« regexp Use aregelur expression to validate incoming requests and if they are allowed. The regular
expression can be set through the value attribute. The request parameter used to retrieve the value
to validate can be specified using the from-parameter.

e whitelist Acomma-seperated list containing the allowed domains. The comma-seperated list
can be set through the value attribute. The request parameter used to retrieve the value to validate
can be specified using the from-parameter.

» ref Instead of using one of the predefined strategies it is also possible to use a custom
Al | owFr onfst r at egy. The reference to this bean can be specified through this ref attribute.

» value The value to use when ALLOW-FROM is used a strategy.

» from-parameter Specify the name of the request parameter to use when using regexp or whitelist
for the ALLOW-FROM strategy.

Parent Elements of <frame-options>
» headers
<XSss-protection>

Adds the X-XSS-Protection header to the response to assist in protecting against reflected / Type-1
Cross-Site Scripting (XSS) attacks. This is in no-way a full protection to XSS attacks!

<xss-protection> Attributes

» Xss-protection-disabled Do not include the header for reflected / Type-1 Cross-Site Scripting (XSS)
protection.

» XSs-protection-enabled Explicitly enable or eisable reflected / Type-1 Cross-Site Scripting (XSS)
protection.

» Xss-protection-block When true and xss-protection-enabled is true, adds mode=block to the header.
This indicates to the browser that the page should not be loaded at all. When false and xss-protection-
enabled is true, the page will still be rendered when an reflected attack is detected but the response
will be modified to protect against the attack. Note that there are sometimes ways of bypassing this
mode which can often times make blocking the page more desirable.

4.1.0.RC1 Spring Security 207

http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent

Spring Security Reference

Parent Elements of <xss-protection>

» headers

<content-type-options>

Add the X-Content-Type-Options header with the value of nosniff to the response. This disables MIME-

sniffing for IE8+ and Chrome extensions.

<content-type-options> Attributes

» disabled Specifies if Content Type Options should be disabled. Default false.
Parent Elements of <content-type-options>

» headers

<header>

Add additional headers to the response, both the name and value need to be specified.
<header-attributes> Attributes

» header-name The nane of the header.

» value The val ue of the header to add.

 ref Reference to a custom implementation of the Header Wi t er interface.

Parent Elements of <header>

» headers

<anonymous>

Adds an AnonynmousAut henti cationFilter to the stack and
AnonynousAut henti cat i onProvi der. Required if you are using

I S AUTHENTI CATED ANONYMOUSLY attribute.
Parent Elements of <anonymous>

. mp

<anonymous> Attributes

an
the

» enabled With the default namespace setup, the anonymous "authentication" facility is automatically

enabled. You can disable it using this property.

» granted-authority The granted authority that should be assigned to the anonymous request.
Commonly this is used to assign the anonymous request particular roles, which can subsequently be

used in authorization decisions. If unset, defaults to ROLE_ANONYMOUS.

» key The key shared between the provider and filter. This generally does not need to be set. If unset, it
will default to a secure randomly generated value. This means setting this value can improve startup
time when using the anonymous functionality since secure random values can take a while to be

generated.

4.1.0.RC1 Spring Security

208

http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx

Spring Security Reference

e username The username that should be assigned to the anonymous request. This allows the
principal to be identified, which may be important for logging and auditing. if unset, defaults to
anonynousUser .

<csrf>

This element will add Cross Site Request Forger (CSRF) protection to the application. It also updates
the default RequestCache to only replay "GET" requests upon successful authentication. Additional
information can be found in the Cross Site Request Forgery (CSRF) section of the reference.

Parent Elements of <csrf>
. mp
<csrf> Attributes

» disabled Optional attribute that specifies to disable Spring Security’s CSRF protection. The default
is false (CSRF protection is enabled). It is highly recommended to leave CSRF protection enabled.

» token-repository-ref The CsrfTokenRepository to use. The default is
Ht t pSessi onCsrf TokenReposi tory.

» request-matcher-ref The RequestMatcher instance to be used to determine if CSRF should be
applied. Default is any HTTP method except "GET", "TRACE", "HEAD", "OPTIONS".

<custom-filter>

This element is used to add a filter to the filter chain. It doesn't create any additional beans but is used
to select a bean of type j avax. servl et. Fi | t er which is already defined in the application context
and add that at a particular position in the filter chain maintained by Spring Security. Full details can
be found in the namespace chapter.

Parent Elements of <custom-filter>
. mp
<custom-filter> Attributes

« after The filter immediately after which the custom-filter should be placed in the chain. This feature
will only be needed by advanced users who wish to mix their own filters into the security filter chain
and have some knowledge of the standard Spring Security filters. The filter names map to specific
Spring Security implementation filters.

» before The filter immediately before which the custom-filter should be placed in the chain

» position The explicit position at which the custom-filter should be placed in the chain. Use if you are
replacing a standard filter.

 ref Defines a reference to a Spring bean that implements Fi | t er.
<expression-handler>

Defines the Secur i t yExpr essi onHandl er instance which will be used if expression-based access-
control is enabled. A default implementation (with no ACL support) will be used if not supplied.

4.1.0.RC1 Spring Security 209

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Spring Security Reference

Parent Elements of <expression-handler>

» global-method-security

. mp

» websocket-message-broker

<expression-handler> Attributes

* ref Defines a reference to a Spring bean that implements Securi t yExpr essi onHandl er.
<form-login>

Used to add an User nanmePasswor dAut henticationFilter to the filter stack and an
Logi nUrl Aut henti cati onEnt ryPoi nt to the application context to provide authentication on
demand. This will always take precedence over other namespace-created entry points. If no attributes
are supplied, a login page will be generated automatically at the URL "/login" 19 The behaviour can be
customized using the <f or m | ogi n> Attributes.

Parent Elements of <form-login>
. mp
<form-login> Attributes

« always-use-default-target If set to true, the user will always start at the value given
by default-target-url, regardless of how they arrived at the login page. Maps to the
al waysUseDef aul t Target Url property of User namePasswor dAut henticationFilter.
Default value is f al se.

* authentication-details-source-ref Reference to an Aut hent i cati onDet ai | sSour ce which will
be used by the authentication filter

» authentication-failure-handler-ref Can be used as an alternative to authentication-failure-url, giving
you full control over the navigation flow after an authentication failure. The value should be he name
of an Aut hent i cat i onFai | ur eHandl er bean in the application context.

» authentication-failure-url Maps to the authenticationFail ureUrl property of
User namePasswor dAut henti cati onFi | t er . Defines the URL the browser will be redirected to
on login failure. Defaults to / | ogi n?err or, which will be automatically handled by the automatic
login page generator, re-rendering the login page with an error message.

» authentication-success-handler-ref This can be used as an alternative to default-
target-url and always-use-default-target, giving you full control over the navigation
flow after a successful authentication. The value should be the name of an
Aut hent i cati onSuccessHandl er bean in the application context. By default, an implementation
of SavedRequest Awar eAut hent i cat i onSuccessHandl er is used and injected with the default-

target-url.

» default-target-url Maps to the def aul t Tar get Ur | property of
User nanmePasswor dAut henti cati onFi | t er. If not set, the default value is "/* (the application

This feature is really just provided for convenience and is not intended for production (where a view technology will have been
chosen and can be used to render a customized login page). The class Def aul t Logi nPageCGener ati ngFi | t er is responsible
for rendering the login page and will provide login forms for both normal form login and/or OpenlD if required.

4.1.0.RC1 Spring Security 210

Spring Security Reference

root). A user will be taken to this URL after logging in, provided they were not asked to login while
attempting to access a secured resource, when they will be taken to the originally requested URL.

» login-page The URL that should be used to render the login page. Maps to the | ogi nFor niJr |
property of the Logi nUr | Aut hent i cati onEnt r yPoi nt . Defaults to "/login".

* login-processing-url Maps to the filterProcessesUrl property of
User nanePasswor dAut henti cati onFi | t er. The default value is "/login".

e password-parameter The name of the request parameter which contains the password. Defaults
to "password".

» username-parameter The name of the request parameter which contains the username. Defaults
to "username".

» authentication-success-forward-url Maps a Forwar dAut henti cati onSuccessHandl er to
aut henti cati onSuccessHandl er property of User namePasswor dAut henti cati onFilter.

» authentication-failure-forward-url Maps a Forwar dAut henti cati onFail ureHandl er to
aut henti cati onFai | ur eHandl er property of User namePasswor dAut henti cati onFilter.

<http-basic>

Adds a BasicAuthenticationFilter and BasicAuthenticationEntryPoint to the
configuration. The latter will only be used as the configuration entry point if form-based login is not
enabled.

Parent Elements of <http-basic>
° mg
<http-basic> Attributes

» authentication-details-source-ref Reference to an Aut hent i cati onDet ai | sSour ce which will
be used by the authentication filter

* entry-point-ref Sets the AuthenticationEntryPoint which is wused by the
Basi cAut henti cationFilter.

<http-firewall> Element

This is a top-level element which can be used to inject a custom implementation of Ht t pFi r ewal | into
the Fi | t er Chai nPr oxy created by the namespace. The default implementation should be suitable
for most applications.

<http-firewall> Attributes

» ref Defines a reference to a Spring bean that implements Ht t pFi rewal | .
<intercept-url>

This element is used to define the set of URL patterns that the application is
interested in and to configure how they should be handled. It is used to construct the
FilterlnvocationSecurityMetadataSource used by the FilterSecuritylnterceptor. It
is also responsible for configuring a Channel Processi ngFi | t er if particular URLs need to be

4.1.0.RC1 Spring Security 211

Spring Security Reference

accessed by HTTPS, for example. When matching the specified patterns against an incoming request,
the matching is done in the order in which the elements are declared. So the most specific matches
patterns should come first and the most general should come last.

Parent Elements of <intercept-url>

filter-security-metadata-source

http

<intercept-url> Attributes

access Lists the access attributes which will be stored in the
FilterlnvocationSecurityMetadataSource for the defined URL pattern/method
combination. This should be a comma-separated list of the security configuration attributes (such as
role names).

filters Can only take the value "none". This will cause any matching request to bypass the Spring
Security filter chain entirely. None of the rest of the <ht t p> configuration will have any effect on the
request and there will be no security context available for its duration. Access to secured methods
during the request will fail.

Note

This property is invalid for filter-security-metadata-source

method The HTTP Method which will be used in combination with the pattern to match an incoming
request. If omitted, any method will match. If an identical pattern is specified with and without a method,
the method-specific match will take precedence.

pattern The pattern which defines the URL path. The content will depend on the r equest - mat cher
attribute from the containing http element, so will default to ant path syntax.

requires-channel Can be "http" or "https" depending on whether a particular URL pattern should
be accessed over HTTP or HTTPS respectively. Alternatively the value "any" can be used when
there is no preference. If this attribute is present on any <i nt er cept-url > element, then a
Channel Processi ngFi | t er will be added to the filter stack and its additional dependencies added
to the application context.

If a<port - mappi ngs> configuration is added, this will be used to by the Secur eChannel Processor
and | nsecur eChannel Pr ocessor beans to determine the ports used for redirectingto HTTP/HTTPS.

Note

This property is invalid for filter-security-metadata-source

<jee>

Adds a J2eePreAuthenticatedProcessingFilter to the filter chain to provide integration with container
authentication.

Parent Elements of <jee>

http

4.1.0.RC1 Spring Security 212

Spring Security Reference

<jee> Attributes
» mappable-roles A comma-separate list of roles to look for in the incoming HttpServietRequest.

» user-service-ref A reference to a user-service (or UserDetailsService bean) Id
<logout>

Adds a LogoutFilter to the filter stack. This is configured with a
Securi t yCont ext Logout Handl er .

Parent Elements of <logout>
° mg
<logout> Attributes

» delete-cookies A comma-separated list of the names of cookies which should be deleted when the
user logs out.

* invalidate-session Maps to the i nval i dat eHt t pSessi on of the
Securi t yCont ext Logout Handl er . Defaults to "true", so the session will be invalidated on logout.

» logout-success-url The destination URL which the user will be taken to after logging out. Defaults
to <form-login-login-page>/?logout (i.e. /login?logout)

Setting this attribute will inject the Sessi onManagenent Fi l ter with a
Si npl eRedi rect | nval i dSessi onSt r at egy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

» logout-url The URL which will cause a logout (i.e. which will be processed by the filter). Defaults
to "/logout".

» success-handler-ref May be used to supply an instance of Logout SuccessHandl er which will be
invoked to control the navigation after logging out.

<openid-login>

Similar to <f or m | ogi n>and has the same attributes. The default value for| ogi n- pr ocessi ng- ur|
is "/login/openid". An Openl DAut henti cati onFilter and Openl DAut henti cati onProvi der
will be registered. The latter requires a reference to a User Det ai | sSer vi ce. Again, this can be
specified by i d, using the user-service-ref attribute, or will be located automatically in the
application context.

Parent Elements of <openid-login>
. mp
<openid-login> Attributes

» always-use-default-target Whether the user should always be redirected to the default-target-url
after login.

* authentication-details-source-ref Reference to an AuthenticationDetailsSource which will be used
by the authentication filter

4.1.0.RC1 Spring Security 213

Spring Security Reference

authentication-failure-handler-ref Reference to an AuthenticationFailureHandler bean which
should be used to handle a failed authentication request. Should not be used in combination with
authentication-failure-url as the implementation should always deal with navigation to the subsequent
destination

authentication-failure-url The URL for the login failure page. If no login failure URL is specified,
Spring Security will automatically create a failure login URL at /login?login_error and a corresponding
filter to render that login failure URL when requested.

authentication-success-forward-url Maps a Forwar dAut henti cati onSuccessHandl er to
aut henti cati onSuccessHandl er property of User nanmePasswor dAut henti cati onFilter.

authentication-failure-forward-url Maps a Forwar dAut henti cati onFai | ureHandl er to
aut henti cati onFai | ur eHandl er property of User nanePasswor dAut henti cati onFilter.

authentication-success-handler-ref Reference to an AuthenticationSuccessHandler bean which
should be used to handle a successful authentication request. Should not be used in combination
with default-target-url (or always-use-default-target) as the implementation should always deal with
navigation to the subsequent destination

default-target-url The URL that will be redirected to after successful authentication, if the user’s
previous action could not be resumed. This generally happens if the user visits a login page without
having first requested a secured operation that triggers authentication. If unspecified, defaults to the
root of the application.

login-page The URL for the login page. If no login URL is specified, Spring Security will automatically
create a login URL at /login and a corresponding filter to render that login URL when requested.

login-processing-url The URL that the login form is posted to. If unspecified, it defaults to /login.

password-parameter The name of the request parameter which contains the password. Defaults
to "password".

user-service-ref A reference to a user-service (or UserDetailsService bean) Id

username-parameter The name of the request parameter which contains the username. Defaults
to "username”.

Child Elements of <openid-login>

 attribute-exchange

<attribute-exchange>

The attri but e- exchange element defines the list of attributes which should be requested from
the identity provider. An example can be found in the OpenlD Support section of the namespace
configuration chapter. More than one can be used, in which case each must have an i denti fi er-

mat ch attribute, containing a regular expression which is matched against the supplied OpenID
identifier. This allows different attribute lists to be fetched from different providers (Google, Yahoo etc).

Parent Elements of <attribute-exchange>

» openid-login

4.1.0.RC1 Spring Security 214

Spring Security Reference

<attribute-exchange> Attributes

identifier-match A regular expression which will be compared against the claimed identity, when
deciding which attribute-exchange configuration to use during authentication.

Child Elements of <attribute-exchange>

openid-attribute

<openid-attribute>

Attributes used when making an OpenlD AX Fetch Request

Parent Elements of <openid-attribute>

attribute-exchange

<openid-attribute> Attributes

count Specifies the number of attributes that you wish to get back. For example, return 3 emails.
The default value is 1.

name Specifies the name of the attribute that you wish to get back. For example, email.

required Specifies if this attribute is required to the OP, but does not error out if the OP does not
return the attribute. Default is false.

type Specifies the attribute type. For example, http://axschema.org/contact/email. See your OP’s
documentation for valid attribute types.

<port-mappings>

By default, an instance of Port Mapper | npl will be added to the configuration for use in redirecting
to secure and insecure URLs. This element can optionally be used to override the default mappings
which that class defines. Each child <por t - mappi ng> element defines a pair of HTTP:HTTPS ports.
The default mappings are 80:443 and 8080:8443. An example of overriding these can be found in the
namespace introduction.

Parent Elements of <port-mappings>

http

Child Elements of <port-mappings>

port-mapping

<port-mapping>

Provides a method to map http ports to https ports when forcing a redirect.

Parent Elements of <port-mapping>

port-mappings

<port-mapping> Attributes

http The http port to use.

4.1.0.RC1 Spring Security 215

http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request
http://axschema.org/contact/email

Spring Security Reference

» https The https port to use.

<remember-me>

Adds the Renenber MeAut henti cati onFi |l ter to the stack. This in turn will be configured with
either a TokenBasedRenmenber MeSer vi ces, a Per si st ent TokenBasedRenenber MeSer vi ces

or a user-specified bean implementing Remenber MeSer vi ces depending on the attribute settings.
Parent Elements of <remember-me>

. mg

<remember-me> Attributes

authentication-success-handler-ref Sets the aut henti cati onSuccessHandl er property on
the Remenber MeAut henti cati onFi | t er if custom navigation is required. The value should be
the name of a Aut hent i cat i onSuccessHandl er bean in the application context.

data-source-ref A reference to a DataSource bean. If this is set,
Per si st ent TokenBasedRenmenber MeServi ces will be wused and configured with a
JdbcTokenReposi t oryl npl instance.

remember-me-parameter The name of the request parameter which toggles remember-
me authentication. Defaults to "remember-me". Maps to the "parameter" property of
Abst r act Remenber MeSer vi ces.

remember-me-cookie The name of cookie which store the token for remember-
me authentication. Defaults to "remember-me". Maps to the "cookieName" property of
Abst ract Remenber MeSer vi ces.

key Maps to the "key" property of Abst r act Renenber MeSer vi ces. Should be set to a unique value
to ensure that remember-me cookies are only valid within the one application 2L |f this is not set a
secure random value will be generated. Since generating secure random values can take a while,
setting this value explicitly can help improve startup times when using the remember me functionality.

services-alias Exports the internally defined Renmenber MeSer vi ces as a bean alias, allowing it to
be used by other beans in the application context.

services-ref Allows complete control of the Rerrenrber MeSer vi ces implementation that will be used
by the filter. The value should be the i d of a bean in the application context which implements this
interface. Should also implement Logout Handl er if a logout filter is in use.

token-repository-ref Configures a Per si st ent TokenBasedRenenber MeSer vi ces but allows
the use of a custom Per si st ent TokenReposi t ory bean.

token-validity-seconds Maps to the t okenVval i di t ySeconds property of
Abst r act Rerenber MeSer vi ces. Specifies the period in seconds for which the remember-me
cookie should be valid. By default it will be valid for 14 days.

use-secure-cookie It is recommended that remember-me cookies are only submitted over HTTPS
and thus should be flagged as "secure". By default, a secure cookie will be used if the connection
over which the login request is made is secure (as it should be). If you set this property to f al se,
secure cookies will not be used. Setting it to t r ue will always set the secure flag on the cookie. This
attribute maps to the useSecur eCooki e property of Abst r act Renenber MeSer vi ces.

4.1.0.RC1 Spring Security 216

Spring Security Reference

e user-service-ref The remember-me services implementations require access to a
User Det ai | sSer vi ce, so there has to be one defined in the application context. If there is only
one, it will be selected and used automatically by the namespace configuration. If there are multiple
instances, you can specify a bean i d explicitly using this attribute.

<request-cache> Element

Sets the Request Cache instance which will be used by the Excepti onTr ansl ati onFi | t er to store
request information before invoking an Aut hent i cati onEnt r yPoi nt .

Parent Elements of <request-cache>

. mp
<request-cache> Attributes

 ref Defines a reference to a Spring bean that is a Request Cache.
<session-management>

Session-management related functionality is implemented by the addition of a
Sessi onManagenent Fi | t er to the filter stack.

Parent Elements of <session-management>

» http
<session-management> Attributes

 invalid-session-url Setting this attribute will inject the Sessi onManagement Filter with a
Si npl eRedi rect | nval i dSessi onSt r at egy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

» session-authentication-error-url Defines the URL of the error page which should be shown when
the SessionAuthenticationStrategy raises an exception. If not set, an unauthorized (401) error code
will be returned to the client. Note that this attribute doesn'’t apply if the error occurs during a form-
based login, where the URL for authentication failure will take precedence.

» session-authentication-strategy-ref Allows injection of the SessionAuthenticationStrategy instance
used by the SessionManagementFilter

» session-fixation-protection Indicates how session fixation protection will be applied when a user
authenticates. If set to "none", no protection will be applied. "newSession" will create a new
empty session, with only Spring Security-related attributes migrated. "migrateSession" will create
a new session and copy all session attributes to the new session. In Servlet 3.1 (Java EE 7)
and newer containers, specifying "changeSessionld" will keep the existing session and use the
container-supplied session fixation protection (HttpServletRequest#changeSessionld()). Defaults to
"changeSessionld" in Servlet 3.1 and newer containers, "migrateSession" in older containers. Throws
an exception if "changeSessionld"” is used in older containers.

If session fixation protection is enabled, the Sessi onManagenent Filter is injected with an
appropriately configured Def aul t Sessi onAut hent i cati onStrat egy. See the Javadoc for this
class for more details.

4.1.0.RC1 Spring Security 217

Spring Security Reference

Child Elements of <session-management>

e concurrency-control

<concurrency-control>

Adds support for concurrent session control, allowing limits to be placed on the number
of active sessions a user can have. A Concurrent SessionFilter wil be created,
and a Concurrent SessionControl Aut henticationStrategy wil be used with the
Sessi onManagenentFilter. If a form | ogi n element has been declared, the strategy object
will also be injected into the created authentication filter. An instance of Sessi onRegi stry (a
Sessi onRegi st ryl npl instance unless the user wishes to use a custom bean) will be created for
use by the strategy.

Parent Elements of <concurrency-control>

» session-management

<concurrency-control> Attributes

» error-if-maximum-exceeded If set to "true” a Sessi onAut hent i cat i onExcept i on will be raised
when a user attempts to exceed the maximum allowed number of sessions. The default behaviour
is to expire the original session.

» expired-url The URL a user will be redirected to if they attempt to use a session which has been
"expired" by the concurrent session controller because the user has exceeded the number of allowed
sessions and has logged in again elsewhere. Should be set unless excepti on-i f - maxi num
exceeded is set. If no value is supplied, an expiry message will just be written directly back to the
response.

* max-sessions Maps to the mexi mumsessi ons property of
Concurrent Sessi onCont r ol Aut henti cati onStr at egy.

» session-registry-alias It can also be useful to have a reference to the internal session registry for
use in your own beans or an admin interface. You can expose the internal bean using the sessi on-
regi stry-al i as attribute, giving it a name that you can use elsewhere in your configuration.

» session-registry-ref The user can supply their own Sessi onRegi st ry implementation using the
sessi on-regi stry-ref attribute. The other concurrent session control beans will be wired up to
use it.

<x509>

Adds support for X.509 authentication. An X509Aut henti cati onFi | t er will be added to the stack
and an Ht t p403For bi ddenEnt r yPoi nt bean will be created. The latter will only be used if no other
authentication mechanisms are in use (its only functionality is to return an HTTP 403 error code). A
Pr eAut hent i cat edAut henti cat i onProvi der will also be created which delegates the loading of
user authorities to a User Det ai | sSer vi ce.

Parent Elements of <x509>
. mp
<x509> Attributes

» authentication-details-source-ref A reference to an Aut hent i cati onDet ai | sSour ce

4.1.0.RC1 Spring Security 218

Spring Security Reference

» subject-principal-regex Defines a regular expression which will be used to extract the username
from the certificate (for use with the User Det ai | sSer vi ce).

» user-service-ref Allows a specific User Det ai | sSer vi ce to be used with X.509 in the case where
multiple instances are configured. If not set, an attempt will be made to locate a suitable instance
automatically and use that.

<filter-chain-map>
Used to explicitly configure a FilterChainProxy instance with a FilterChainMap
<filter-chain-map> Attributes

» request-matcher Defines the strategy use for matching incoming requests. Currently the options are
‘ant' (for ant path patterns), 'regex’ for regular expressions and 'ciRegex’ for case-insensitive regular
expressions.

Child Elements of <filter-chain-map>
* filter-chain
<filter-chain>

Used within to define a specific URL pattern and the list of filters which apply to the URLs matching
that pattern. When multiple filter-chain elements are assembled in a list in order to configure a
FilterChainProxy, the most specific patterns must be placed at the top of the list, with most general ones
at the bottom.

Parent Elements of <filter-chain>
« filter-chain-map
<filter-chain> Attributes

« filters A comma separated list of references to Spring beans that implement Fi | t er. The value
"none" means that no Fi | t er should be used for this Fi | t er Chai n.

e pattern A-pattern that creates RequestMatcher in combination with the request-matcher

» request-matcher-ref Areference toa Request Mat cher that will be used to determineifany Fi | t er
from the fi | t er s attribute should be invoked.

<filter-security-metadata-source>

Used to explicitly configure a FilterSecurityMetadataSource bean for use with a FilterSecuritylnterceptor.
Usually only needed if you are configuring a FilterChainProxy explicitly, rather than using the<http>
element. The intercept-url elements used should only contain pattern, method and access attributes.
Any others will result in a configuration error.

<filter-security-metadata-source> Attributes
 id A bean identifier, used for referring to the bean elsewhere in the context.

» lowercase-comparisons Compare after forcing to lower case

4.1.0.RC1 Spring Security 219

Spring Security Reference

» request-matcher Defines the strategy use for matching incoming requests. Currently the options are
‘ant' (for ant path patterns), 'regex’ for regular expressions and 'ciRegex’ for case-insensitive regular
expressions.

» use-expressions Enables the use of expressions in the ‘access’ attributes in <intercept-url> elements
rather than the traditional list of configuration attributes. Defaults to 'true’. If enabled, each attribute
should contain a single boolean expression. If the expression evaluates to 'true’, access will be
granted.

Child Elements of <filter-security-metadata-source>
* intercept-url

38.2 WebSocket Security

Spring Security 4.0+ provides support for authorizing messages. One concrete example of where this
is useful is to provide authorization in WebSocket based applications.

<websocket-message-broker>

The websocket-message-broker element has two different modes. If the websocket-message-
broker@id is not specified, then it will do the following things:

* Ensure that any SimpAnnotationMethodMessageHandler has the
AuthenticationPrincipalArgumentResolver registered as a custom argument resolver. This allows the
use of @wut henti cati onPri nci pal to resolve the principal of the current Aut henti cati on

* Ensures that the SecurityContextChannelinterceptor is automatically registered for the
clientinboundChannel. This populates the SecurityContextHolder with the user that is found in the
Message

» Ensures that a ChannelSecuritylnterceptor is registered with the clientinboundChannel. This allows
authorization rules to be specified for a message.

» Ensures that a CsrfChannelinterceptor is registered with the clientinboundChannel. This ensures that
only requests from the original domain are enabled.

» Ensures that a CsrfTokenHandshakelnterceptor is registered with WebSocketHttpRequestHandler,
TransportHandlingSockJsService, or DefaultSockJsService. This ensures that the expected
CsrfToken from the HttpServletRequest is copied into the WebSocket Session attributes.

If additional control is necessary, the id can be specified and a ChannelSecuritylnterceptor will be
assigned to the specified id. All the wiring with Spring’s messaging infrastructure can then be done
manually. This is more cumbersome, but provides greater control over the configuration.

<websocket-message-broker> Attributes

» id A bean identifier, used for referring to the ChannelSecuritylnterceptor bean elsewhere in the
context. If specified, Spring Security requires explicit configuration within Spring Messaging. If not
specified, Spring Security will automatically integrate with the messaging infrastructure as described
in the section called “<websocket-message-broker>"

» same-origin-disabled Disables the requirement for CSRF token to be present in the Stomp headers
(default false). Changing the default is useful if it is necessary to allow other origins to make SockJS
connections.

4.1.0.RC1 Spring Security 220

Spring Security Reference

Child Elements of <websocket-message-broker>

» expression-handler

 intercept-message

<intercept-message>
Defines an authorization rule for a message.
Parent Elements of <intercept-message>

» websocket-message-broker

<intercept-message> Attributes

» pattern An ant based pattern that matches on the Message destination. For example, "/ matches
any Message with a destination; "/admin/" matches any Message that has a destination that starts
with "fadmin/**".

e type The type of message to match on. Valid values are defined in SimpMessageType
(i.,e. CONNECT, CONNECT_ACK, HEARTBEAT, MESSAGE, SUBSCRIBE, UNSUBSCRIBE,
DISCONNECT, DISCONNECT_ACK, OTHER).

» access The expression used to secure the Message. For example, "denyAll" will deny access
to all of the matching Messages; "permitAll" will grant access to all of the matching Messages;
"hasRole('ADMIN") requires the current user to have the role 'ROLE_ADMIN' for the matching
Messages.

38.3 Authentication Services

Before Spring Security 3.0, an Aut hent i cat i onManager was automatically registered internally. Now
you must register one explicitly using the <aut henti cati on- manager > element. This creates an
instance of Spring Security’s Pr ovi der Manager class, which needs to be configured with a list of one
or more Aut henti cati onProvi der instances. These can either be created using syntax elements
provided by the namespace, or they can be standard bean definitions, marked for addition to the list
using the aut henti cat i on- provi der element.

<authentication-manager>

Every Spring Security application which uses the namespace must have include this element
somewhere. It is responsible for registering the Authenti cati onManager which provides
authentication services to the application. All elements which create Aut henti cati onProvi der
instances should be children of this element.

<authentication-manager> Attributes

« alias This attribute allows you to define an alias name for the internal instance for use in your own
configuration. Its use is described in thenamespace introduction.

» erase-credentials If set to true, the AuthenticationManger will attempt to clear any credentials
data in the returned Authentication object, once the user has been authenticated. Literally it maps
to the er aseCr edenti al sAft er Aut henti cati on property of the Provi der Manager . This is
discussed in the Core Services chapter.

4.1.0.RC1 Spring Security 221

Spring Security Reference

« id This attribute allows you to define an id for the internal instance for use in your own configuration.
It is the same a the alias element, but provides a more consistent experience with elements that use
the id attribute.

Child Elements of <authentication-manager>

» authentication-provider

» |dap-authentication-provider

<authentication-provider>

Unless used with ar ef attribute, this element is shorthand for configuring a DaoAuthenticationProvider.
DaoAut henti cati onProvi der loads user information from a UserDetail sService and
compares the username/password combination with the values supplied at login. The
User Det ai | sSer vi ce instance can be defined either by using an available namespace element
(j dbc-user-service or by using the user-servi ce-ref attribute to point to a bean defined
elsewhere in the application context). You can find examples of these variations in the nhamespace
introduction.

Parent Elements of <authentication-provider>

» authentication-manager

<authentication-provider> Attributes
 ref Defines a reference to a Spring bean that implements Aut hent i cati onPr ovi der.

If you have written your own Aut henti cati onPr ovi der implementation (or want to configure one
of Spring Security’s own implementations as a traditional bean for some reason, then you can use the
following syntax to add it to the internal list of Pr ovi der Manager :

<security:authenticati on- manager >

<security:authentication-provider ref="myAuthenticationProvider" />

</security: authentication-manager >

<bean id="myAut henticati onProvider" class="com sonethi ng. M/Aut henti cati onProvi der"/>

» user-service-ref A reference to a bean that implements UserDetailsService that may be created
using the standard bean element or the custom user-service element.

Child Elements of <authentication-provider>

» jdbc-user-service

» |dap-user-service

» password-encoder

* user-service

<jdbc-user-service>

Causes creation of a JDBC-based UserDetailsService.
<jdbc-user-service> Attributes

» authorities-by-username-query An SQL statement to query for a user’s granted authorities given
a username.

4.1.0.RC1 Spring Security 222

Spring Security Reference

The default is

sel ect usernane, authority fromauthorities where usernane = ?

» cache-ref Defines a reference to a cache for use with a UserDetailsService.
» data-source-ref The bean ID of the DataSource which provides the required tables.

» group-authorities-by-username-query An SQL statement to query user’s group authorities given
a username. The default is

sel ect

g.id, g.group_nanme, ga.authority

from

groups g, group_nenbers gm group_authorities ga
wher e

gmusernane = ? and g.id = ga.group_id and g.id = gmgroup_id

 id A bean identifier, used for referring to the bean elsewhere in the context.

» role-prefix A non-empty string prefix that will be added to role strings loaded from persistent storage
(default is "ROLE_"). Use the value "none" for no prefix in cases where the default is non-empty.

» users-by-username-query An SQL statement to query a username, password, and enabled status
given a username. The default is

sel ect usernanme, password, enabled fromusers where username = ?

<password-encoder>

Authentication providers can optionally be configured to use a password encoder as described
in the namespace introduction. This will result in the bean being injected with the appropriate
Passwor dEncoder instance, potentially with an accompanying Sal t Sour ce bean to provide salt
values for hashing.

Parent Elements of <password-encoder>

« authentication-provider

e password-compare

<password-encoder> Attributes
» base64 Whether a string should be base64 encoded

» hash Defines the hashing algorithm used on user passwords. We recommend strongly against using
MD4, as it is a very weak hashing algorithm.

 ref Defines a reference to a Spring bean that implements Passwor dEncoder .
Child Elements of <password-encoder>

» salt-source
<salt-source>

Password salting strategy. A system-wide constant or a property from the UserDetails object can be
used.

4.1.0.RC1 Spring Security 223

Spring Security Reference

Parent Elements of <salt-source>

» password-encoder

<salt-source> Attributes
* ref Defines a reference to a Spring bean Id.
» system-wide A single value that will be used as the salt for a password encoder.

» user-property A property of the UserDetails object which will be used as salt by a password encoder.
Typically something like "username" might be used.

<user-service>

Creates an in-memory UserDetailsService from a properties file or a list of "user" child elements.
Usernames are converted to lower-case internally to allow for case-insensitive lookups, so this should
not be used if case-sensitivity is required.

<user-service> Attributes
 id A bean identifier, used for referring to the bean elsewhere in the context.

» properties The location of a Properties file where each line is in the format of

user name=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]

Child Elements of <user-service>
e user

<user>

Represents a user in the application.
Parent Elements of <user>

* user-service

<user> Attributes

» authorities One of more authorities granted to the user. Separate authorities with a comma (but no
space). For example, "ROLE_USER,ROLE_ADMINISTRATOR"

» disabled Can be set to "true" to mark an account as disabled and unusable.
* |locked Can be set to "true" to mark an account as locked and unusable.
* name The username assigned to the user.

» password The password assigned to the user. This may be hashed if the corresponding
authentication provider supports hashing (remember to set the "hash" attribute of the "user-service"
element). This attribute be omitted in the case where the data will not be used for authentication, but
only for accessing authorities. If omitted, the namespace will generate a random value, preventing its
accidental use for authentication. Cannot be empty.

4.1.0.RC1 Spring Security 224

Spring Security Reference

38.4 Method Security

<global-method-security>

This element is the primary means of adding support for securing methods on Spring Security beans.
Methods can be secured by the use of annotations (defined at the interface or class level) or by defining
a set of pointcuts as child elements, using AspectJ syntax.

<global-method-security> Attributes

» access-decision-manager-ref Method security uses the same AccessDeci si onManager
configuration as web security, but this can be overridden using this attribute. By default an
AffirmativeBased implementation is used for with a RoleVoter and an AuthenticatedVoter.

» authentication-manager-ref A reference to an Aut hent i cat i onManager that should be used for
method security.

» jsr250-annotations Specifies whether JSR-250 style attributes are to be used (for example
"RolesAllowed"). This will require the javax.annotation.security classes on the classpath. Setting this
to true also adds a Jsr 250Vot er to the AccessDeci si onManager , so you need to make sure you
do this if you are using a custom implementation and want to use these annotations.

* metadata-source-ref An external Met hodSecurit yMet adat aSour ce instance can be supplied
which will take priority over other sources (such as the default annotations).

* mode This attribute can be set to "aspectj" to specify that AspectJ should be used instead of the
default Spring AOP. Secured methods must be woven with the Annot at i onSecuri t yAspect from
the spri ng- security-aspects module.

It is important to note that AspectJ follows Java’s rule that annotations on interfaces are not inherited.
This means that methods that define the Security annotaitons on the interface will not be secured.
Instead, you must place the Security annotation on the class when using AspectJ.

« order Allows the advice "order" to be set for the method security interceptor.

» pre-post-annotations Specifies whether the use of Spring Security’s pre and post invocation
annotations (@PreFilter, @PreAuthorize, @PostFilter, @PostAuthorize) should be enabled for this
application context. Defaults to "disabled".

» proxy-target-class If true, class based proxying will be used instead of interface based proxying.

» run-as-manager-ref A reference to an optional RunAsManager implementation which will be used
by the configured Met hodSecuri tyl nt er cept or

» secured-annotations Specifies whether the use of Spring Security’s @Secured annotations should
be enabled for this application context. Defaults to "disabled".

Child Elements of <global-method-security>

 after-invocation-provider

» expression-handler

* pre-post-annotation-handling

4.1.0.RC1 Spring Security 225

Spring Security Reference

* protect-pointcut
<after-invocation-provider>

This element can be used to decorate an Afterlnvocati onProvi der for use by the security
interceptor maintained by the <gl obal - met hod- securi t y> namespace. You can define zero or
more of these within the gl obal - met hod- securi ty element, each with a r ef attribute pointing to
an After |l nvocati onProvi der bean instance within your application context.

Parent Elements of <after-invocation-provider>

» global-method-security

<after-invocation-provider> Attributes

 ref Defines a reference to a Spring bean that implements Af t er | nvocat i onPr ovi der.

<pre-post-annotation-handling>

Allows the default expression-based mechanism for handling Spring Security’s pre and post invocation
annotations (@PreFilter, @PreAuthorize, @PostFilter, @PostAuthorize) to be replace entirely. Only
applies if these annotations are enabled.

Parent Elements of <pre-post-annotation-handling>

» global-method-security

Child Elements of <pre-post-annotation-handling>

 invocation-attribute-factory

» post-invocation-advice

e pre-invocation-advice

<invocation-attribute-factory>

Defines the PrePostinvocationAttributeFactory instance which is used to generate pre and post
invocation metadata from the annotated methods.

Parent Elements of <invocation-attribute-factory>

» pre-post-annotation-handling

<invocation-attribute-factory> Attributes

 ref Defines a reference to a Spring bean Id.
<post-invocation-advice>

Customizes the Post | nvocat i onAdvi ceProvi der with the ref as the
Post | nvocat i onAut hori zat i onAdvi ce for the <pre-post-annotation-handling> element.

Parent Elements of <post-invocation-advice>

» pre-post-annotation-handling

4.1.0.RC1 Spring Security 226

Spring Security Reference

<post-invocation-advice> Attributes
 ref Defines a reference to a Spring bean Id.
<pre-invocation-advice>

Customizes the PrelnvocationAuthorizati onAdvi ceVoter with the ref as the
Prel nvocat i onAut hori zati onAdvi ceVot er for the <pre-post-annotation-handling> element.

Parent Elements of <pre-invocation-advice>

¢ pre-post-annotation-handling

<pre-invocation-advice> Attributes

+ ref Defines a reference to a Spring bean Id.
Securing Methods using

<pr ot ect - poi nt cut > Rather than defining security attributes on an individual method or class basis
using the @ecur ed annotation, you can define cross-cutting security constraints across whole sets of
methods and interfaces in your service layer using the <pr ot ect - poi nt cut > element. You can find
an example in the namespace introduction.

Parent Elements of <protect-pointcut>

» global-method-security

<protect-pointcut> Attributes

» access Access configuration attributes list that applies to all methods matching the pointcut, e.g.
"ROLE_A,ROLE_B"

» expression An AspectJ expression, including the 'execution' keyword. For example, ‘execution(int
com.foo.TargetObject.countLength(String))' (without the quotes).

<intercept-methods>

Can be used inside a bean definition to add a security interceptor to the bean and set up access
configuration attributes for the bean’s methods

<intercept-methods> Attributes

» access-decision-manager-ref Optional AccessDecisionManager bean ID to be used by the created
method security interceptor.

Child Elements of <intercept-methods>

* protect
<method-security-metadata-source>
Creates a MethodSecurityMetadataSource instance
<method-security-metadata-source> Attributes

 id A bean identifier, used for referring to the bean elsewhere in the context.

4.1.0.RC1 Spring Security 227

Spring Security Reference

e use-expressions Enables the use of expressions in the 'access' attributes in <intercept-url> elements
rather than the traditional list of configuration attributes. Defaults to 'false’. If enabled, each attribute
should contain a single boolean expression. If the expression evaluates to 'true’, access will be
granted.

Child Elements of <method-security-metadata-source>
 protect
<protect>

Defines a protected method and the access control configuration attributes that apply to it. We strongly
advise you NOT to mix "protect" declarations with any services provided "global-method-security".

Parent Elements of <protect>

 intercept-methods

» method-security-metadata-source

<protect> Attributes
» access Access configuration attributes list that applies to the method, e.g. "ROLE_A,ROLE_B".

* method A method name

38.5 LDAP Namespace Options

LDAP is covered in some details in its own chapter. We will expand on that here with some explanation
of how the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP
extensively, so some familiarity with that project’s APl may be useful.

Defining the LDAP Server using the

<l dap- ser ver > Element This element sets up a Spring LDAP Cont ext Sour ce for use by the other
LDAP beans, defining the location of the LDAP server and other information (such as a username and
password, if it doesn’t allow anonymous access) for connecting to it. It can also be used to create an
embedded server for testing. Details of the syntax for both options are covered in the LDAP chapter.
The actual Cont ext Sour ce implementation is Def aul t Spri ngSecuri t yCont ext Sour ce which
extends Spring LDAP’s LdapCont ext Sour ce class. The manager - dn and nmanager - password
attributes map to the latter's user Dn and passwor d properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined
beans will use it automatically. Otherwise, you can give the element an "id" attribute and refer to it
from other namespace beans using the server -ref attribute. This is actually the bean i d of the
Cont ext Sour ce instance, if you want to use it in other traditional Spring beans.

<ldap-server> Attributes
 id A bean identifier, used for referring to the bean elsewhere in the context.

* |dif Explicitly specifies an Idif file resource to load into an embedded LDAP server. The Idiff is should
be a Spring resource pattern (i.e. classpath:init.Idiff). The default is classpath*:*.Idiff

4.1.0.RC1 Spring Security 228

Spring Security Reference

manager-dn Username (DN) of the "manager" user identity which will be used to authenticate to a
(non-embedded) LDAP server. If omitted, anonymous access will be used.

manager-password The password for the manager DN. This is required if the manager-dn is
specified.

port Specifies an IP port number. Used to configure an embedded LDAP server, for example. The
default value is 33389.

root Optional root suffix for the embedded LDAP server. Default is "dc=springframework,dc=org"

url Specifies the Idap server URL when not using the embedded LDAP server.

<ldap-authentication-provider>

This element is shorthand for the creation of an LdapAuthenticationProvider

instance. By default this will be configured with a Bi ndAut henti cator instance and a
Def aul t Aut hori ti esPopul at or. As with all namespace authentication providers, it must be
included as a child of the aut hent i cat i on- provi der element.

Parent Elements of <ldap-authentication-provider>

» authentication-manager

<ldap-authentication-provider> Attributes

group-role-attribute The LDAP attribute name which contains the role name which will be used within
Spring Security. Maps to the Def aul t LdapAut hori ti esPopul at or's gr oupRol eAttri bute
property. Defaults to "cn".

group-search-base Search base for group membership searches. Maps to the
Def aul t LdapAut hori ti esPopul at or's gr oupSear chBase constructor argument. Defaults to
" (searching from the root).

group-search-filter Group search filter. Maps to the Def aul t LdapAut hori ti esPopul at or's
groupSear chFi | t er property. Defaults to (unigueMember={0}). The substituted parameter is the
DN of the user.

role-prefix A non-empty string prefix that will be added to role strings loaded from persistent. Maps
to the Def aul t LdapAut hori ti esPopul at or'srol ePrefi x property. Defaults to "ROLE_". Use
the value "none" for no prefix in cases where the default is non-empty.

server-ref The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-
server> with no Id), that server will be used.

user-context-mapper-ref Allows explicit customization of the loaded user object by specifying a
UserDetailsContextMapper bean which will be called with the context information from the user’s
directory entry

user-details-class Allows the objectClass of the user entry to be specified. If set, the framework will
attempt to load standard attributes for the defined class into the returned UserDetails object

user-dn-pattern If your users are at a fixed location in the directory (i.e. you can work out the DN
directly from the username without doing a directory search), you can use this attribute to map directly

4.1.0.RC1 Spring Security 229

Spring Security Reference

to the DN. It maps directly to the user DnPat t er ns property of Abst r act LdapAut henti cat or.
The value is a specific pattern used to build the user’s DN, for example "uid={0},ou=people". The key
"{0}" must be present and will be substituted with the username.

» user-search-base Search base for user searches. Defaults to "". Only used with a 'user-search-filter'.

If you need to perform a search to locate the user in the directory, then you can set
these attributes to control the search. The Bi ndAut henti cator will be configured with a
Fi | t er BasedLdapUser Sear ch and the attribute values map directly to the first two arguments of
that bean’s constructor. If these attributes aren’t set and no user - dn- pat t er n has been supplied as
an alternative, then the default search values of user-search-filter="(ui d={0})" anduser -
sear ch- base="" will be used.

» user-search-filter The LDAP filter used to search for users (optional). For example "(uid={0})". The
substituted parameter is the user’s login name.

If you need to perform a search to locate the user in the directory, then you can set
these attributes to control the search. The Bi ndAut henti cator will be configured with a
Fi | t er BasedLdapUser Sear ch and the attribute values map directly to the first two arguments of
that bean’s constructor. If these attributes aren’t set and no user - dn- pat t er n has been supplied as
an alternative, then the default search values of user-search-filter="(ui d={0})" anduser -
sear ch- base="" will be used.

Child Elements of <ldap-authentication-provider>

» password-compare

<password-compare>

This is used as child element to <I dap- provi der > and switches the authentication strategy from
Bi ndAut hent i cat or to Passwor dConpar i sonAut henti cat or.

Parent Elements of <password-compare>

» |dap-authentication-provider

<password-compare> Attributes

» hash Defines the hashing algorithm used on user passwords. We recommend strongly against using
MD4, as it is a very weak hashing algorithm.

e password-attribute The attribute in the directory which contains the user password. Defaults to
"userPassword".

Child Elements of <password-compare>

» password-encoder

<ldap-user-service>

This element configures an LDAP UserDetail sService. The class wused is
LdapUser Det ai | sSer vi ce which is a combination of a Fi | t er BasedLdapUser Search and a
Def aul t LdapAut horiti esPopul at or. The attributes it supports have the same usage as in
<l dap- provi der >,

4.1.0.RC1 Spring Security 230

Spring Security Reference

<ldap-user-service> Attributes
» cache-ref Defines a reference to a cache for use with a UserDetailsService.

e group-role-attribute The LDAP attribute name which contains the role name which will be used within
Spring Security. Defaults to "cn".

» group-search-base Search base for group membership searches. Defaults to
root).

(searching from the

» group-search-filter Group search filter. Defaults to (uniqueMember={0}). The substituted parameter
is the DN of the user.

 id A bean identifier, used for referring to the bean elsewhere in the context.

 role-prefix A non-empty string prefix that will be added to role strings loaded from persistent storage
(e.g. "ROLE_"). Use the value "none" for no prefix in cases where the default is non-empty.

» server-ref The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-
server> with no Id), that server will be used.

» user-context-mapper-ref Allows explicit customization of the loaded user object by specifying a
UserDetailsContextMapper bean which will be called with the context information from the user’s
directory entry

» user-details-class Allows the objectClass of the user entry to be specified. If set, the framework will
attempt to load standard attributes for the defined class into the returned UserDetails object

» user-search-base Search base for user searches. Defaults to ™. Only used with a 'user-search-filter'.

» user-search-filter The LDAP filter used to search for users (optional). For example "(uid={0})". The
substituted parameter is the user’s login name.

4.1.0.RC1 Spring Security 231

Spring Security Reference

39. Spring Security Dependencies

This appendix provides a reference of the modules in Spring Security and the additional dependencies
that they require in order to function in a running application. We don't include dependenices that are
only used when building or testing Spring Security itself. Nor do we include transitive dependencies
which are required by external dependencies.

The version of Spring required is listed on the project website, so the specific versions are omitted
for Spring dependencies below. Note that some of the dependencies listed as"optional" below may
still be required for other non-security functionality in a Spring application. Also dependencies listed as
"optional" may not actually be marked as such in the project's Maven pom files if they are used in most
applications. They are"optional" only in the sense that you don’t need them unless you are using the
specified functionality.

Where a module depends on another Spring Security module, the non-optional dependencies of the
module it depends on are also assumed to be required and are not listed separately.

39.1 spring-security-core

The core module must be included in any project using Spring Security.

Table 39.1. Core Depenendencies

Dependency Version Description

aopalliance 1.0 Required for method security
implementation.

ehcache 1.6.2 Required if the ehcache-based
user cache implementation is
used (optional).

spring-aop Method security is based on
Spring AOP

spring-beans Required for Spring
configuration

spring-expression Required for expression-based

method security (optional)

spring-jdbc Required if using a database to
store user data (optional).

spring-tx Required if using a database to
store user data (optional).

aspectjrt 1.6.10 Required if using AspectJ
support (optional).

jsr250-api 1.0 Required if you are using
JSR-250 method-security
annotations (optional).

4.1.0.RC1 Spring Security 232

Spring Security Reference

39.2 spring-security-remoting

This module is typically required in web applications which use the Servlet API.

Table 39.2. Remoting Dependencies

Dependency

Version

Description

spring-security-core

spring-web

39.3 spring-security-web

Required for clients which use
HTTP remoting support.

This module is typically required in web applications which use the Servlet API.

Table 39.3. Web Dependencies

Dependency

Version

Description

spring-security-core

spring-web

spring-jdbc

spring-tx

Spring web support classes are
used extensively.

Required for JDBC-based
persistent remember-me token
repository (optional).

Required by remember-me
persistent token repository
implementations (optional).

39.4 spring-security-ldap

This module is only required if you are using LDAP authentication.

Table 39.4. LDAP Dependencies

Dependency Version Description
spring-security-core
spring-ldap-core 1.3.0 LDAP support is based on
Spring LDAP.
spring-tx Data exception classes are
required.
apache-ds ! 155 Required if you are using
an embedded LDAP server
(optional).
4.1.0.RC1 Spring Security 233

Spring Security Reference

Dependency Version Description

shared-ldap 0.9.15 Required if you are using
an embedded LDAP server
(optional).

I[dapsdk 4.1 Mozilla LdapSDK. Used for

decoding LDAP password
policy controls if you are using
password-policy functionality
with OpenLDAP, for example.

1The modules apacheds- cor e,apacheds- cor e- entry, apacheds- pr ot ocol - shar ed, apacheds- pr ot ocol - | dap and
apacheds- server-j ndi are required.

39.5 spring-security-config
This module is required if you are using Spring Security namespace configuration.

Table 39.5. Config Dependencies

Dependency Version Description
spring-security-core

spring-security-web Required if you are using
any web-related namespace
configuration (optional).

spring-security-ldap Required if you are using the
LDAP namespace options
(optional).

spring-security-openid Required if you are using
OpenlID authentication
(optional).

aspectjweaver 1.6.10 Required if using the protect-
pointcut namespace syntax
(optional).

39.6 spring-security-acl
The ACL module.

Table 39.6. ACL Dependencies

Dependency Version Description

spring-security-core

ehcache 1.6.2 Required if the ehcache-based
ACL cache implementation is
used (optional if you are using
your own implementation).

4.1.0.RC1 Spring Security 234

Spring Security Reference

Dependency Version Description

spring-jdbc Required if you are using the
default JDBC-based AclService
(optional if you implement your
own).

spring-tx Required if you are using the

39.7 spring-security-cas

The CAS module provides integration with JA-SIG CAS.

Table 39.7. CAS Dependencies

default JDBC-based AclService
(optional if you implement your
own).

Dependency Version Description

spring-security-core

spring-security-web

cas-client-core 3.1.12 The JA-SIG CAS Client. This is
the basis of the Spring Security
integration.

ehcache 1.6.2 Required if you are using the

39.8 spring-security-openid

The OpenID module.

Table 39.8. OpenID Dependencies

ehcache-based ticket cache
(optional).

Dependency Version Description

spring-security-core

spring-security-web

openid4java-nodeps 0.9.6 Spring Security’s OpenlD
integration uses OpenlD4Java.

httpclient 41.1 openid4java-nodeps depends
on HttpClient 4.

guice 2.0 openid4java-nodeps depends

39.9 spring-security-taglibs

Provides Spring Security’s JSP tag implementations.

on Guice 2.

4.1.0.RC1

Spring Security

235

Spring Security Reference

Table 39.9. Taglib Dependencies

Dependency
spring-security-core
spring-security-web

spring-security-acl

Version

Description

Required if you are using
the accesscontrol | i st
tag or hasPer m ssi on()
expressions with ACLs
(optional).

spring-expression

Required if you are using SPEL
expressions in your tag access
constraints.

4.1.0.RC1

Spring Security

236

Spring Security Reference

40. Spring Security FAQ

Section 40.1, “General Questions”

Section 40.2, “Common Problems”

Section 40.3, “Spring Security Architecture Questions”

Section 40.4, “Common "Howto" Requests”

40.1 General Questions

1. the section called “Will Spring Security take care of all my application security requirements?”
2. the section called “Why not just use web.xml security?”
3. the section called “What Java and Spring Framework versions are required?”

4. the section called “I'm new to Spring Security and | need to build an application that supports
CAS single sign-on over HTTPS, while allowing Basic authentication locally for certain URLs,
authenticating against multiple back end user information sources (LDAP and JDBC). I've copied
some configuration files | found but it doesn’t work. What could be wrong?”

Will Spring Security take care of all my application security requirements?

Spring Security provides you with a very flexible framework for your authentication and authorization
requirements, but there are many other considerations for building a secure application that are outside
its scope. Web applications are vulnerable to all kinds of attacks which you should be familiar with,
preferably before you start development so you can design and code with them in mind from the
beginning. Check out thehttp://www.owasp.org/[OWASP web site] for information on the major issues
facing web application developers and the countermeasures you can use against them.

Why not just use web.xml security?

Let's assume you're developing an enterprise application based on Spring. There are four security
concerns you typically need to address: authentication, web request security, service layer security (i.e.
your methods that implement business logic), and domain object instance security (i.e. different domain
objects have different permissions). With these typical requirements in mind:

1. Authentication: The servlet specification provides an approach to authentication. However, you will
need to configure the container to perform authentication which typically requires editing of container-
specific "realm" settings. This makes a non-portable configuration, and if you need to write an actual
Java class to implement the container’s authentication interface, it becomes even more non-portable.
With Spring Security you achieve complete portability - right down to the WAR level. Also, Spring
Security offers a choice of production-proven authentication providers and mechanisms, meaning
you can switch your authentication approaches at deployment time. This is particularly valuable for
software vendors writing products that need to work in an unknown target environment.

2. Web request security: The servlet specification provides an approach to secure your request URIs.
However, these URIs can only be expressed in the servlet specification’s own limited URI path format.
Spring Security provides a far more comprehensive approach. For instance, you can use Ant paths

4.1.0.RC1 Spring Security 237

Spring Security Reference

or regular expressions, you can consider parts of the URI other than simply the requested page
(e.g. you can consider HTTP GET parameters) and you can implement your own runtime source of
configuration data. This means your web request security can be dynamically changed during the
actual execution of your webapp.

3. Service layer and domain object security: The absence of support in the servlet specification for
services layer security or domain object instance security represent serious limitations for multi-tiered
applications. Typically developers either ignore these requirements, or implement security logic within
their MVC controller code (or even worse, inside the views). There are serious disadvantages with
this approach:

a. Separation of concerns: Authorization is a crosscutting concern and should be implemented as
such. MVC controllers or views implementing authorization code makes it more difficult to test both
the controller and authorization logic, more difficult to debug, and will often lead to code duplication.

b. Support for rich clients and web services: If an additional client type must ultimately be supported,
any authorization code embedded within the web layer is non-reusable. It should be considered
that Spring remoting exporters only export service layer beans (not MVC controllers). As such
authorization logic needs to be located in the services layer to support a multitude of client types.

c. Layering issues: An MVC controller or view is simply the incorrect architectural layer to implement
authorization decisions concerning services layer methods or domain object instances. Whilst the
Principal may be passed to the services layer to enable it to make the authorization decision,
doing so would introduce an additional argument on every services layer method. A more elegant
approach is to use a ThreadLocal to hold the Principal, although this would likely increase
development time to a point where it would become more economical (on a cost-benefit basis) to
simply use a dedicated security framework.

d. Authorisation code quality: It is often said of web frameworks that they "make it easier to do the
right things, and harder to do the wrong things". Security frameworks are the same, because they
are designed in an abstract manner for a wide range of purposes. Writing your own authorization
code from scratch does not provide the "design check" a framework would offer, and in-house
authorization code will typically lack the improvements that emerge from widespread deployment,
peer review and new versions.

For simple applications, servlet specification security may just be enough. Although when considered
within the context of web container portability, configuration requirements, limited web request security
flexibility, and non-existent services layer and domain object instance security, it becomes clear why
developers often look to alternative solutions.

What Java and Spring Framework versions are required?

Spring Security 3.0 and 3.1 require at least JDK 1.5 and also require Spring 3.0.3 as a minimum. Ideally
you should be using the latest release versions to avoid problems.

Spring Security 2.0.x requires a minimum JDK version of 1.4 and is built against Spring 2.0.x. It should
also be compatible with applications using Spring 2.5.x.

4.1.0.RC1 Spring Security 238

Spring Security Reference

I’'m new to Spring Security and | need to build an application that supports

CAS single sign-on over HTTPS, while allowing Basic authentication locally
for certain URLS, authenticating against multiple back end user information
sources (LDAP and JDBC). I've copied some configuration files | found but
it doesn’t work. What could be wrong?

Or subsititute an alternative complex scenario...

Realistically, you need an understanding of the technolgies you are intending to use before you can
successfully build applications with them. Security is complicated. Setting up a simple configuration
using a login form and some hard-coded users using Spring Security’s namespace is reasonably
straightforward. Moving to using a backed JDBC database is also easy enough. But if you try and jump
straight to a complicated deployment scenario like this you will almost certainly be frustrated. There is a
big jump in the learning curve required to set up systems like CAS, configure LDAP servers and install
SSL certificates properly. So you need to take things one step at a time.

From a Spring Security perspective, the first thing you should do is follow the "Getting Started" guide
on the web site. This will take you through a series of steps to get up and running and get some idea
of how the framework operates. If you are using other technologies which you aren’t familiar with then
you should do some research and try to make sure you can use them in isolation before combining
them in a complex system.

40.2 Common Problems

1. Authentication

a. the section called “When | try to log in, | get an error message that says "Bad Credentials". What's
wrong?”

b. the section called “My application goes into an "endless loop" when I try to login, what's going on?”

c. the section called “I get an exception with the message "Access is denied (user is anonymous);".
What's wrong?”

d. the section called “Why can | still see a secured page even after I've logged out of my application?”

e. the section called “I get an exception with the message "An Authentication object was not found
in the SecurityContext". What's wrong?”

f. the section called “I can't get LDAP authentication to work. What's wrong with my configuration?”
2. Session Management

a. the section called “I'm using Spring Security’s concurrent session control to prevent users from
logging in more than once at a time. When | open another browser window after logging in, it
doesn’t stop me from logging in again. Why can | log in more than once?”

b. the section called “Why does the session Id change when | authenticate through Spring Security?”

c. the section called “I'm using Tomcat (or some other servlet container) and have enabled HTTPS
for my login page, switching back to HTTP afterwards. It doesn’t work - | just end up back at the
login page after authenticating.”

4.1.0.RC1 Spring Security 239

Spring Security Reference

d. the section called “I'm trying to use the concurrent session-control support but it won't let me log
back in, even if I'm sure I've logged out and haven't exceeded the allowed sessions.”

e. the section called “Spring Security is creating a session somewhere, even though I've configured
it not to, by setting the create-session attribute to never.”

3. Miscellaneous

a. ???

b. the section called “I'm forwarding a request to another URL using the RequestDispatcher, but my
security constraints aren’t being applied.”

c. the section called “I have added Spring Security’s <global-method-security> element to my
application context but if | add security annotations to my Spring MVC controller beans (Struts
actions etc.) then they don’t seem to have an effect.”

d. the section called “I have a user who has definitely been authenticated, but when | try to access
the SecurityContextHolder during some requests, the Authentication is null. Why can’t | see the
user information?”

When I try to log in, | get an error message that says "Bad Credentials".
What’'s wrong?

This means that authentication has failed. It doesn’t say why, as it is good practice to avoid giving details
which might help an attacker guess account names or passwords.

This also means that if you ask this question in the forum, you will not get an answer unless you provide
additional information. As with any issue you should check the output from the debug log, note any
exception stacktraces and related messages. Step through the code in a debugger to see where the
authentication fails and why. Write a test case which exercises your authentication configuration outside
of the application. More often than not, the failure is due to a difference in the password data stored in a
database and that entered by the user. If you are using hashed passwords, make sure the value stored
in your database is exactly the same as the value produced by the Passwor dEncoder configured in
your application.

My application goes into an "endless loop" when I try to login, what's going
on?

A common user problem with infinite loop and redirecting to the login page is caused by accidently
configuring the login page as a "secured" resource. Make sure your configuration allows anonymous
access to the login page, either by excluding it from the security filter chain or marking it as requiring
ROLE_ANONYMOUS.

If your AccessDecisionManager includes an AuthenticatedVoter, you can use the attribute
"IS_ AUTHENTICATED_ANONYMOUSLY". This is automatically available if you are using the standard
namespace configuration setup.

From Spring Security 2.0.1 onwards, when you are using namespace-based configuration, a check will
be made on loading the application context and a warning message logged if your login page appears
to be protected.

4.1.0.RC1 Spring Security 240

Spring Security Reference

| get an exception with the message "Access is denied (user is
anonymous);". What's wrong?

This is a debug level message which occurs the first time an anonymous user attempts to access a
protected resource.

DEBUG [ExceptionTransl ationFilter] - Access is denied (user is anonynous); redirecting to authentication
entry point
org. springfranmework. security. AccessDeni edExcepti on: Access is denied
at org.springframework. security.vote. Affirmati veBased. deci de(Affirmati veBased.] ava: 68)
at
org. springframework. security.intercept.AbstractSecuritylnterceptor.beforelnvocati on(AbstractSecuritylnterceptor.java:262)

It is normal and shouldn’t be anything to worry about.

Why can | still see a secured page even after I've logged out of my
application?

The most common reason for this is that your browser has cached the page and you are seeing a copy
which is being retrieved from the browsers cache. Verify this by checking whether the browser is actually
sending the request (check your server access logs, the debug log or use a suitable browser debugging
plugin such as "Tamper Data" for Firefox). This has nothing to do with Spring Security and you should
configure your application or server to set the appropriate Cache- Cont r ol response headers. Note
that SSL requests are never cached.

| get an exception with the message "An Authentication object was not
found in the SecurityContext". What’s wrong?

This is a another debug level message which occurs the first time an anonymous user attempts to
access a protected resource, but when you do not have an AnonynousAut henti cati onFilter in
your filter chain configuration.

DEBUG [ExceptionTransl ationFilter] - Authentication exception occurred; redirecting to authentication

entry point
org. springframework. security. Aut henti cati onCredenti al sNot FoundExcepti on:

An Aut hentication object was not found in the SecurityContext

at

org.springframework. security.intercept. AbstractSecuritylnterceptor.credential sNot Found(Abstract Securitylnterceptor.java: 34
at

org. springframework. security.intercept.AbstractSecuritylnterceptor.beforelnvocati on(AbstractSecuritylnterceptor.java: 254)

It is normal and shouldn’t be anything to worry about.

| can’t get LDAP authentication to work. What’s wrong with my
configuration?

Note that the permissions for an LDAP directory often do not allow you to read the password for a user.
Hence it is often not possible to use the the section called “What is a UserDetailsService and do | need
one?” where Spring Security compares the stored password with the one submitted by the user. The
most common approach is to use LDAP "bind", which is one of the operations supported by the LDAP
protocol. With this approach, Spring Security validates the password by attempting to authenticate to
the directory as the user.

The most common problem with LDAP authentication is a lack of knowledge of the directory server
tree structure and configuration. This will be different in different companies, so you have to find it out

4.1.0.RC1 Spring Security 241

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

Spring Security Reference

yourself. Before adding a Spring Security LDAP configuration to an application, it's a good idea to write
a simple test using standard Java LDAP code (without Spring Security involved), and make sure you
can get that to work first. For example, to authenticate a user, you could use the following code:

@est

public void | dapAut henticationl sSuccessful () throws Exception {
Hasht abl e<String, String> env = new Hasht abl e<String, String>();
env. put (Cont ext . SECURI TY_AUTHENTI CATI ON, "sinple");
env. put (Cont ext . SECURI TY_PRI NCl PAL, "cn=j oe, ou=users, dc=nyconpany, dc=com');
env. put (Cont ext . PROVI DER_URL, "I dap:// myconpany. com 389/ dc=nyconpany, dc=coni') ;
env. put (Cont ext . SECURI TY_CREDENTI ALS, "j oespassword");
env. put (Cont ext. | Nl TI AL_CONTEXT_FACTORY, "com sun.jndi.| dap. LdapCtxFactory");

Initial LdapContext ctx = new Initial LdapContext(env, null);

}

Session Management

Session management issues are a common source of forum questions. If you are developing Java web
applications, you should understand how the session is maintained between the servlet container and
the user’s browser. You should also understand the difference between secure and non-secure cookies
and the implications of using HTTP/HTTPS and switching between the two. Spring Security has nothing
to do with maintaining the session or providing session identifiers. This is entirely handled by the servlet
container.

I'm using Spring Security’s concurrent session control to prevent users
from logging in more than once at a time. When | open another browser
window after logging in, it doesn’t stop me from logging in again. Why can |
log in more than once?

Browsers generally maintain a single session per browser instance. You cannot have two separate
sessions at once. So if you log in again in another window or tab you are just reauthenticating in the
same session. The server doesn’t know anything about tabs, windows or browser instances. All it sees
are HTTP requests and it ties those to a particular session according to the value of the the JSESSIONID
cookie that they contain. When a user authenticates during a session, Spring Security’s concurrent
session control checks the number ofother authenticated sessions that they have. If they are already
authenticated with the same session, then re-authenticating will have no effect.

Why does the session Id change when | authenticate through Spring
Security?

With the default configuration, Spring Security changes the session ID when the user authenticates.
If you're using a Servlet 3.1 or newer container, the session ID is simply changed. If you're using an
older container, Spring Security invalidates the existing session, creates a new session, and transfers
the session data to the new session. Changing the session identifier in this manner prevents"session-
fixation" attacks. You can find more about this online and in the reference manual.

I'm using Tomcat (or some other servlet container) and have enabled
HTTPS for my login page, switching back to HTTP afterwards. It doesn’t
work - | just end up back at the login page after authenticating.

This happens because sessions created under HTTPS, for which the session cookie is marked as
"secure", cannot subsequently be used under HTTP. The browser will not send the cookie back to the

4.1.0.RC1 Spring Security 242

Spring Security Reference

server and any session state will be lost (including the security context information). Starting a session
in HTTP first should work as the session cookie won’t be marked as secure. However, Spring Security’s
Session Fixation Protection can interfere with this because it results in a new session ID cookie being
sent back to the user’s browser, usually with the secure flag. To get around this, you can disable session
fixation protection, but in newer Servlet containers you can also configure session cookies to never use
the secure flag. Note that switching between HTTP and HTTPS is not a good idea in general, as any
application which uses HTTP at all is vulnerable to man-in-the-middle attacks. To be truly secure, the
user should begin accessing your site in HTTPS and continue using it until they log out. Even clicking
on an HTTPS link from a page accessed over HTTP is potentially risky. If you need more convincing,
check out a tool like sslstrip.

I’'m not switching between HTTP and HTTPS but my session is still getting
lost

Sessions are maintained either by exchanging a session cookie or by adding the a j sessioni d
parameter to URLs (this happens automatically if you are using JSTL to output URLS, or if you call
Ht t pSer vl et Response. encodeUr| on URLs (before a redirect, for example). If clients have cookies
disabled, and you are not rewriting URLSs to include the j sessi oni d, then the session will be lost. Note
that the use of cookies is preferred for security reasons, as it does not expose the session information
in the URL.

I’'m trying to use the concurrent session-control support but it won’t let
me log back in, even if I'm sure I've logged out and haven’t exceeded the
allowed sessions.

Make sure you have added the listener to your web.xml file. It is essential to make sure that the Spring
Security session registry is notified when a session is destroyed. Without it, the session information will
not be removed from the registry.

<li stener>
<l i stener-class>org. springframework. security.web. sessi on. H t pSessi onEvent Publ i sher </ | i stener-cl ass>
</listener>

Spring Security is creating a session somewhere, even though I've
configured it not to, by setting the create-session attribute to never.

This usually means that the user’'s application is creating a session somewhere, but that they aren’t
aware of it. The most common culprit is a JSP. Many people aren’t aware that JSPs create sessions by
default. To prevent a JSP from creating a session, add the directive <%@ page sessi on="fal se"
% to the top of the page.

If you are having trouble working out where a session is being created, you can add
some debugging code to track down the location(s). One way to do this would be
to add a javax.servlet.http.HtpSessionListener to your application, which calls
Thr ead. dunpSt ack() inthe sessi onCr eat ed method.

| get a 403 Forbidden when performing a POST

If an HTTP 403 Forbidden is returned for HTTP POST, but works for HTTP GET then the issue is most
likely related to CSRF. Either provide the CSRF Token or disable CSRF protection (not recommended).

4.1.0.RC1 Spring Security 243

http://static.springsource.org/spring-security/site/docs/3.1.x/reference/springsecurity-single.html#ns-session-fixation
http://www.thoughtcrime.org/software/sslstrip/
http://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/#csrf

Spring Security Reference

I'm forwarding a request to another URL using the RequestDispatcher, but
my security constraints aren’t being applied.

Filters are not applied by default to forwards or includes. If you really want the security filters to be
applied to forwards and/or includes, then you have to configure these explicitly in your web.xml using
the <dispatcher> element, a child element of <filter-mapping>.

| have added Spring Security’s <global-method-security> element to my
application context but if | add security annotations to my Spring MVC
controller beans (Struts actions etc.) then they don’t seem to have an
effect.

In a Spring web application, the application context which holds the Spring MVC beans for the dispatcher
servlet is often separate from the main application context. It is often defined in a file called myapp-
servl et. xm , where "myapp" is the name assigned to the Spring Di spat cher Servl et inweb. xm .
An application can have multiple Di spat cher Ser vl et s, each with its own isolated application context.
The beans in these "child" contexts are not visible to the rest of the application. The"parent" application
context is loaded by the Cont ext Loader Li st ener you define in your web. xm and is visible to all the
child contexts. This parent context is usually where you define your security configuration, including the
<gl obal - net hod- security> element). As a result any security constraints applied to methods in
these web beans will not be enforced, since the beans cannot be seen from the Di spat cher Ser vl et
context. You need to either move the <gl obal - met hod- securi t y> declaration to the web context
or moved the beans you want secured into the main application context.

Generally we would recommend applying method security at the service layer rather than on individual
web controllers.

| have a user who has definitely been authenticated, but when I try
to access the SecurityContextHolder during some requests, the
Authentication is null. Why can’t | see the user information?

If you have excluded the request from the security filter chain using the attribute fi | t er s=' none' in
the <i nt er cept - ur | > element that matches the URL pattern, then the Secur i t yCont ext Hol der
will not be populated for that request. Check the debug log to see whether the request is passing through
the filter chain. (You are reading the debug log, right?).

40.3 Spring Security Architecture Questions

1. the section called “How do | know which package class X is in?”
2. the section called “How do the namespace elements map to conventional bean configurations?”
3. the section called “What does "ROLE_" mean and why do | need it on my role names?”

4. the section called “How do | know which dependencies to add to my application to work with Spring
Security?”

5. the section called “What dependencies are needed to run an embedded ApacheDS LDAP server?”

6. the section called “What is a UserDetailsService and do | need one?”

4.1.0.RC1 Spring Security 244

Spring Security Reference

How do | know which package class X is in?

The best way of locating classes is by installing the Spring Security source in your IDE. The distribution
includes source jars for each of the modules the project is divided up into. Add these to your project
source path and you can navigate directly to Spring Security classes (Gt r | - Shi ft - T in Eclipse). This
also makes debugging easier and allows you to troubleshoot exceptions by looking directly at the code
where they occur to see what's going on there.

How do the namespace elements map to conventional bean
configurations?

There is a general overview of what beans are created by the namespace in the namespace appendix of
the reference guide. There is also a detailed blog article called "Behind the Spring Security Namespace"
on blog.springsource.com. If want to know the full details then the code is in the spri ng- security-
conf i g module within the Spring Security 3.0 distribution. You should probably read the chapters on
namespace parsing in the standard Spring Framework reference documentation first.

What does "ROLE_" mean and why do | need it on my role names?

Spring Security has a voter-based architecture which means that an access decision is made by a series
of AccessDeci si onVot er s. The voters act on the "configuration attributes" which are specified for a
secured resource (such as a method invocation). With this approach, not all attributes may be relevant to
all voters and a voter needs to know when it should ignore an attribute (abstain) and when it should vote
to grant or deny access based on the attribute value. The most common voter is the Rol eVot er which
by default votes whenever it finds an attribute with the "ROLE_" prefix. It makes a simple comparison of
the attribute (such as "ROLE_USER") with the names of the authorities which the current user has been
assigned. If it finds a match (they have an authority called "ROLE_USER"), it votes to grant access,
otherwise it votes to deny access.

The prefix can be changed by setting the r ol ePr ef i x property of Rol eVot er . If you only need to use
roles in your application and have no need for other custom voters, then you can set the prefix to a blank
string, in which case the Rol eVot er will treat all attributes as roles.

How do | know which dependencies to add to my application to work with
Spring Security?

It will depend on what features you are using and what type of application you are developing. With
Spring Security 3.0, the project jars are divided into clearly distinct areas of functionality, so it is
straightforward to work out which Spring Security jars you need from your application requirements. All
applications will need the spri ng-security-core jar. If you're developing a web application, you
need the spri ng-security-web jar. If you're using security namespace configuration you need the
spring-security-confi g jar, for LDAP support you need the spri ng- security-1|dap jar and
S0 on.

For third-party jars the situation isn’'t always quite so obvious. A good starting point is
to copy those from one of the pre-built sample applications WEB-INF/lib directories. For
a basic application, you can start with the tutorial sample. If you want to use LDAP,
with an embedded test server, then use the LDAP sample as a starting point. The
reference manual also includeshttp://static.springsource.org/spring-security/site/docs/3.1.x/reference/
springsecurity-single.html#appendix-dependencies[an appendix] listing the first-level dependencies for
each Spring Security module with some information on whether they are optional and what they are
required for.

4.1.0.RC1 Spring Security 245

http://blog.springsource.com/2010/03/06/behind-the-spring-security-namespace/

Spring Security Reference

If you are building your project with maven, then adding the appropriate Spring Security modules as
dependencies to your pom.xml will automatically pull in the core jars that the framework requires. Any
which are marked as "optional" in the Spring Security POM files will have to be added to your own
pom.xml file if you need them.

What dependencies are needed to run an embedded ApacheDS LDAP
server?

If you are using Maven, you need to add the folowing to your pom dependencies:

<dependency>
<gr oupl d>or g. apache. di rect ory. server </ gr oupl d>
<artifactld>apacheds-core</artifactld>
<versi on>1. 5. 5</ ver si on>
<scope>runti ne</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. apache. di rect ory. server </ gr oupl d>
<artifactld>apacheds-server-jndi</artifactld>
<versi on>1. 5. 5</ ver si on>
<scope>runti ne</ scope>

</ dependency>

The other required jars should be pulled in transitively.
What is a UserDetailsService and do | need one?

User Det ai | sServi ce is a DAO interface for loading data that is specific to a user account. It
has no other function other to load that data for use by other components within the framework.
It is not responsible for authenticating the user. Authenticating a user with a username/password
combination is most commonly performed by the DaoAut hent i cati onProvi der, which is injected
with a User Det ai | sSer vi ce to allow it to load the password (and other data) for a user in order to
compare it with the submitted value. Note that if you are using LDAP, this approach may not work.

If you want to customize the authentication process then you should implement
Aut hent i cati onProvi der yourself. See this blog article for an example integrating Spring Security
authentication with Google App Engine.

40.4 Common "Howto" Requests

1. the section called “I need to login in with more information than just the username. How do | add
support for extra login fields (e.g. a company name)?”

2. the section called “How do | apply different intercept-url constraints where only the fragment value of
the requested URLSs differs (e.g./foo#bar and /foo#blah?”

3. the section called “How do | access the user’'s IP Address (or other web-request data) in a
UserDetailsService?”

4. the section called “How do | access the HttpSession from a UserDetailsService?”
5. the section called “How do | access the user’s password in a UserDetailsService?”
6. the section called “How do | define the secured URLs within an application dynamically?”

7. the section called “How do | authenticate against LDAP but load user roles from a database?”

4.1.0.RC1 Spring Security 246

http://blog.springsource.com/2010/08/02/spring-security-in-google-app-engine/

Spring Security Reference

8. the section called “I want to modify the property of a bean that is created by the namespace, but there
is nothing in the schema to support it. What can | do short of abandoning namespace use?”

| need to login in with more information than just the username. How do |
add support for extra login fields (e.g. a company name)?

This question comes up repeatedly in the Spring Security forum so you will find more information there
by searching the archives (or through google).

The submitted login information is processed by an instance of
User namePasswor dAut henti cati onFi | t er. You will need to customize this class to handle the
extra data field(s). One option is to use your own customized authentication token class (rather than the
standard User namePasswor dAut hent i cat i onToken), another is simply to concatenate the extra
fields with the username (for example, using a ":" as the separator) and pass them in the username
property of User namePasswor dAut hent i cat i onToken.

You will also need to customize the actual authentication process. If you are using a custom
authentication token class, for example, you will have to write an Aut hent i cat i onPr ovi der to handle
it (or extend the standard DaoAut hent i cati onPr ovi der). If you have concatenated the fields, you
can implement your own User Det ai | sSer vi ce which splits them up and loads the appropriate user
data for authentication.

How do | apply different intercept-url constraints where only the fragment
value of the requested URLs differs (e.g./foo#bar and /foo#blah?

You can't do this, since the fragment is not transmitted from the browser to the server. The URLs above
are identical from the server’s perspective. This is a common question from GWT users.

How do | access the user’s IP Address (or other web-request data) in a
UserDetailsService?

Obviously you can't (without resorting to something like thread-local variables) since the only information
supplied to the interface is the username. Instead of implementing User Det ai | sSer vi ce, you
should implement Aut hent i cati onPr ovi der directly and extract the information from the supplied
Aut hent i cat i on token.

In a standard web setup, the get Det ai | s() method on the Aut henti cati on object will return
an instance of WebAut henti cati onDet ai | s. If you need additional information, you can inject a
custom Aut henti cati onDet ai | sSour ce into the authentication filter you are using. If you are
using the namespace, for example with the <f or m | ogi n> element, then you should remove this
element and replace it with a <custom fi |t er> declaration pointing to an explicitly configured
User namePasswor dAut henti cationFilter.

How do | access the HttpSession from a UserDetailsService?

You can't, since the User Det ai | sServi ce has no awareness of the servlet API. If you want to
store custom user data, then you should customize the User Det ai | s object which is returned.
This can then be accessed at any point, via the thread-local SecurityCont ext Hol der. A
call to SecurityCont ext Hol der. get Cont ext (). get Aut henti cation().getPrincipal ()
will return this custom object.

If you really need to access the session, then it must be done by customizing the web tier.

4.1.0.RC1 Spring Security 247

Spring Security Reference

How do | access the user’s password in a UserDetailsService?

You can't (and shouldn't). You are probably misunderstanding its purpose. See "What is a
UserDetailsService?" above.

How do | define the secured URLs within an application dynamically?

People often ask about how to store the mapping between secured URLs and security metadata
attributes in a database, rather than in the application context.

The first thing you should ask yourself is if you really need to do this. If an application requires securing,
then it also requires that the security be tested thoroughly based on a defined policy. It may require
auditing and acceptance testing before being rolled out into a production environment. A security-
conscious organization should be aware that the benefits of their diligent testing process could be
wiped out instantly by allowing the security settings to be modified at runtime by changing a row or
two in a configuration database. If you have taken this into account (perhaps using multiple layers of
security within your application) then Spring Security allows you to fully customize the source of security
metadata. You can make it fully dynamic if you choose.

Both method and web security are protected by subclasses of Abstract Securitylnterceptor
which is configured with a SecurityMetadataSource from which it obtains the
metadata for a particular method or filter invocation. For web security, the
interceptor class is FilterSecuritylnterceptor and it uses the marker interface
FilterlnvocationSecurityMetadataSource. The "secured object" type it operates on is a
Fi l terl nvocati on. The default implementation which is used (both in the namespace <ht t p> and
when configuring the interceptor explicitly, stores the list of URL patterns and their corresponding list of
"configuration attributes” (instances of Conf i gAttri but e) in an in-memory map.

To load the data from an alternative source, you must be using an explicitly declared
security filter chain (typically Spring Security’s Fi | t er Chai nProxy) in order to customize the
FilterSecuritylnterceptor bean. You can’'t use the namespace. You would then implement
Filterlnvocati onSecurityMetadat aSource to load the data as you please for a particular
Filterlnvocation’. A very basic outline would look something like this:

public class MyFilterSecurityMetadataSource i nplenents FilterlnvocationSecurityMtadataSource {

public List<ConfigAttribute> getAttributes(Cbject object) {
Filterlnvocation fi = (Filterlnvocation) object;

String url = fi.getRequestUrl();

String httpMethod = fi.getRequest().getMethod();

Li st<ConfigAttribute> attributes = new ArrayLi st<ConfigAttribute>();

/| Lookup your database (or other source) using this infornmation and popul ate the
/1 list of attributes

return attributes;

}

public Collection<ConfigAttribute> getAllConfigAttributes() {
return null;

}

publi c bool ean supports(d ass<?> clazz) {
return Filterlnvocation. class.isAssignabl eFron(clazz);
}
}

"The Fil terlnvocation object contains the Ht t pSer vl et Request, so you can obtain the URL or any other relevant
information on which to base your decision on what the list of returned attributes will contain.

4.1.0.RC1 Spring Security 248

Spring Security Reference

For more information, look at the code for
Defaul tFilterlnvocati onSecurityMet adat aSour ce.

How do | authenticate against LDAP but load user roles from a database?

The LdapAut henti cati onProvi der bean (which handles normal LDAP authentication in
Spring Security) is configured with two separate strategy interfaces, one which performs the
authentication and one which loads the user authorities, called LdapAut henticator and
LdapAut hori ti esPopul at or respectively. The Def aul t LdapAut hori ti esPopul at or loads the
user authorities from the LDAP directory and has various configuration parameters to allow you to
specify how these should be retrieved.

To use JDBC instead, you can implement the interface yourself, using whatever SQL is appropriate
for your schema:

public class M/AuthoritiesPopul ator inplenents LdapAuthoritiesPopul ator {
@\ut owi r ed
JdbcTenpl ate tenpl at e;

Li st <G ant edAut hori ty> get G ant edAut horiti es(Di r Cont ext Operations userData, String usernane) {
Li st<GrantedAuthority> = tenpl ate. query("select role fromroles where username = ?",
new String[] {usernane},
new RowMapper <G ant edAut hority>() {
/**
* \We're assuming here that you're using the standard convention of using the role
* prefix "ROLE_" to mark attributes which are supported by Spring Security's Rol eVoter.
*/
public G antedAuthority mapRow(ResultSet rs, int rowNum) throws SQLException {
return new GrantedAuthoritylnmpl ("ROLE_" + rs.getString(1);
}
}
}
}

You would then add a bean of this type to your application context and inject it into the
LdapAut henti cati onProvi der. This is covered in the section on configuring LDAP using explicit
Spring beans in the LDAP chapter of the reference manual. Note that you can’t use the namespace for
configuration in this case. You should also consult the Javadoc for the relevant classes and interfaces.

| want to modify the property of a bean that is created by the namespace,
but there is nothing in the schema to support it. What can | do short of
abandoning namespace use?

The namespace functionality is intentionally limited, so it doesn’t cover everything that you can do with
plain beans. If you want to do something simple, like modify a bean, or inject a different dependency,
you can do this by adding a BeanPost Pr ocessor to your configuration. More information can be found
in the Spring Reference Manual. In order to do this, you need to know a bit about which beans are
created, so you should also read the blog article in the above question on how the namespace maps

to Spring beans.

Normally, you would add the functionality you require to the post ProcessBeforelnitialization
method of BeanPostProcessor. Lets say that you want to customize the
Aut hent i cati onDet ai | sSource used by the User nanmePasswor dAut henticationFilter,
(created by the f or m | ogi n element). You want to extract a particular header called CUSTOM_HEADER
from the request and make use of it while authenticating the user. The processor class would look like
this:

4.1.0.RC1 Spring Security 249

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-factory-extension-bpp

Spring Security Reference

public class BeanPost Processor inplenents BeanPost Processor {

public Object postProcessAfterlnitialization(Object bean, String nane) {
i f (bean instanceof UsernanmePasswordAuthenticationFilter) {
System out. println("********* Pgst-processing " + nane);
((User nanePasswor dAut henti cati onFi |l t er)bean). set Aut henti cati onDet ai | sSour ce(
new Aut henti cati onDet ai | sSource() {
public Object buildDetail s(Object context) {
return ((HttpServl et Request)context). get Header (" CUSTOM HEADER") ;
}
55
}
return bean;

}

public Object postProcessBeforelnitialization(Object bean, String name) {
return bean;

}

You would then register this bean in your application context. Spring will automatically invoke it on the
beans defined in the application context.

4.1.0.RC1 Spring Security 250

Spring Security Reference

41. Migrating from 3.x to 4.x

Note

Upgrading from Spring Security 4.0.x is passive. These instructions are for users who are updating
from Spring Security 3.2.x to 4.1.x.

As exploits against applications evolve, so must Spring Security. As a major release version, the Spring
Security team took the opportunity to make some non-passive changes which focus on:

» Ensuring Spring Security is more secure by default

e Minimizing Information Leakage

* Removing deprecated APls

For complete details on migrating from Spring Security 3 to Spring Security 4 refer to one of the guides
below:

* Migrating from Spring Security 3.x to 4.x (XML Configuration)

» Migrating from Spring Security 3.x to 4.x (Java Configuration)

4.1.0.RC1 Spring Security 251

https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Information_Leakage
http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-3-to-4-xml.html
http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-3-to-4-jc.html

	Spring Security Reference
	Table of Contents
	
	Part I. Preface
	Part II. Getting Started
	1. Introduction
	1.1 What is Spring Security?
	1.2 History
	1.3 Release Numbering
	1.4 Getting Spring Security
	Usage with Maven
	Maven Repositories
	Spring Framework Bom

	Gradle
	Gradle Repositories
	Using Spring 4.0.x and Gradle

	Project Modules
	Core - spring-security-core.jar
	Remoting - spring-security-remoting.jar
	Web - spring-security-web.jar
	Config - spring-security-config.jar
	LDAP - spring-security-ldap.jar
	ACL - spring-security-acl.jar
	CAS - spring-security-cas.jar
	OpenID - spring-security-openid.jar

	Checking out the Source

	2. What’s New in Spring Security 4.1
	3. Java Configuration
	3.1 Hello Web Security Java Configuration
	AbstractSecurityWebApplicationInitializer
	AbstractSecurityWebApplicationInitializer without Existing Spring
	AbstractSecurityWebApplicationInitializer with Spring MVC

	3.2 HttpSecurity
	3.3 Java Configuration and Form Login
	3.4 Authorize Requests
	3.5 Handling Logouts
	LogoutHandler
	LogoutSuccessHandler
	Further Logout-Related References

	3.6 Authentication
	In Memory Authentication
	JDBC Authentication
	LDAP Authentication
	AuthenticationProvider
	UserDetailsService
	LDAP Authentication

	3.7 Multiple HttpSecurity
	3.8 Method Security
	EnableGlobalMethodSecurity
	GlobalMethodSecurityConfiguration

	3.9 Post Processing Configured Objects

	4. Security Namespace Configuration
	4.1 Introduction
	Design of the Namespace

	4.2 Getting Started with Security Namespace Configuration
	web.xml Configuration
	A Minimal <http> Configuration
	Form and Basic Login Options
	Setting a Default Post-Login Destination

	Logout Handling
	Using other Authentication Providers
	Adding a Password Encoder

	4.3 Advanced Web Features
	Remember-Me Authentication
	Adding HTTP/HTTPS Channel Security
	Session Management
	Detecting Timeouts
	Concurrent Session Control
	Session Fixation Attack Protection

	OpenID Support
	Attribute Exchange

	Response Headers
	Adding in Your Own Filters
	Setting a Custom AuthenticationEntryPoint

	4.4 Method Security
	The <global-method-security> Element
	Adding Security Pointcuts using protect-pointcut

	4.5 The Default AccessDecisionManager
	Customizing the AccessDecisionManager

	4.6 The Authentication Manager and the Namespace

	5. Sample Applications
	5.1 Tutorial Sample
	5.2 Contacts
	5.3 LDAP Sample
	5.4 OpenID Sample
	5.5 CAS Sample
	5.6 JAAS Sample
	5.7 Pre-Authentication Sample

	6. Spring Security Community
	6.1 Issue Tracking
	6.2 Becoming Involved
	6.3 Further Information

	Part III. Architecture and Implementation
	7. Technical Overview
	7.1 Runtime Environment
	7.2 Core Components
	SecurityContextHolder, SecurityContext and Authentication Objects
	Obtaining information about the current user

	The UserDetailsService
	GrantedAuthority
	Summary

	7.3 Authentication
	What is authentication in Spring Security?
	Setting the SecurityContextHolder Contents Directly

	7.4 Authentication in a Web Application
	ExceptionTranslationFilter
	AuthenticationEntryPoint
	Authentication Mechanism
	Storing the SecurityContext between requests

	7.5 Access-Control (Authorization) in Spring Security
	Security and AOP Advice
	Secure Objects and the AbstractSecurityInterceptor
	What are Configuration Attributes?
	RunAsManager
	AfterInvocationManager
	Extending the Secure Object Model

	7.6 Localization

	8. Core Services
	8.1 The AuthenticationManager, ProviderManager and AuthenticationProvider
	Erasing Credentials on Successful Authentication
	DaoAuthenticationProvider

	8.2 UserDetailsService Implementations
	In-Memory Authentication
	JdbcDaoImpl
	Authority Groups

	8.3 Password Encoding
	What is a hash?
	Adding Salt to a Hash
	Hashing and Authentication

	Part IV. Testing
	9. Testing Method Security
	9.1 Security Test Setup
	9.2 @WithMockUser
	9.3 @WithAnonymousUser
	9.4 @WithUserDetails
	9.5 @WithSecurityContext
	9.6 Test Meta Annotations

	10. Spring MVC Test Integration
	10.1 Setting Up MockMvc and Spring Security
	10.2 SecurityMockMvcRequestPostProcessors
	Testing with CSRF Protection
	Running a Test as a User in Spring MVC Test
	Running as a User in Spring MVC Test with RequestPostProcessor
	Running as a User in Spring MVC Test with Annotations

	Testing HTTP Basic Authentication

	10.3 SecurityMockMvcRequestBuilders
	Testing Form Based Authentication
	Testing Logout

	10.4 SecurityMockMvcResultMatchers
	Unauthenticated Assertion
	Authenticated Assertion

	Part V. Web Application Security
	11. The Security Filter Chain
	11.1 DelegatingFilterProxy
	11.2 FilterChainProxy
	Bypassing the Filter Chain

	11.3 Filter Ordering
	11.4 Request Matching and HttpFirewall
	11.5 Use with other Filter-Based Frameworks
	11.6 Advanced Namespace Configuration

	12. Core Security Filters
	12.1 FilterSecurityInterceptor
	12.2 ExceptionTranslationFilter
	AuthenticationEntryPoint
	AccessDeniedHandler
	SavedRequest s and the RequestCache Interface

	12.3 SecurityContextPersistenceFilter
	SecurityContextRepository

	12.4 UsernamePasswordAuthenticationFilter
	Application Flow on Authentication Success and Failure

	13. Servlet API integration
	13.1 Servlet 2.5+ Integration
	HttpServletRequest.getRemoteUser()
	HttpServletRequest.getUserPrincipal()
	HttpServletRequest.isUserInRole(String)

	13.2 Servlet 3+ Integration
	HttpServletRequest.authenticate(HttpServletRequest,HttpServletResponse)
	HttpServletRequest.login(String,String)
	HttpServletRequest.logout()
	AsyncContext.start(Runnable)
	Async Servlet Support

	13.3 Servlet 3.1+ Integration
	HttpServletRequest#changeSessionId()

	14. Basic and Digest Authentication
	14.1 BasicAuthenticationFilter
	Configuration

	14.2 DigestAuthenticationFilter
	Configuration

	15. Remember-Me Authentication
	15.1 Overview
	15.2 Simple Hash-Based Token Approach
	15.3 Persistent Token Approach
	15.4 Remember-Me Interfaces and Implementations
	TokenBasedRememberMeServices
	PersistentTokenBasedRememberMeServices

	16. Cross Site Request Forgery (CSRF)
	16.1 CSRF Attacks
	16.2 Synchronizer Token Pattern
	16.3 When to use CSRF protection
	CSRF protection and JSON
	CSRF and Stateless Browser Applications

	16.4 Using Spring Security CSRF Protection
	Use proper HTTP verbs
	Configure CSRF Protection
	Include the CSRF Token
	Form Submissions
	Ajax and JSON Requests

	16.5 CSRF Caveats
	Timeouts
	Logging In
	Logging Out
	Multipart (file upload)
	Placing MultipartFilter before Spring Security
	Include CSRF token in action

	HiddenHttpMethodFilter

	16.6 Overriding Defaults

	17. Security HTTP Response Headers
	17.1 Default Security Headers
	Cache Control
	Content Type Options
	HTTP Strict Transport Security (HSTS)
	HTTP Public Key Pinning (HPKP)
	X-Frame-Options
	X-XSS-Protection
	Content Security Policy (CSP)
	Configuring Content Security Policy
	Additional Resources

	17.2 Custom Headers
	Static Headers
	Headers Writer
	DelegatingRequestMatcherHeaderWriter

	18. Session Management
	18.1 SessionManagementFilter
	18.2 SessionAuthenticationStrategy
	18.3 Concurrency Control
	Querying the SessionRegistry for currently authenticated users and their sessions

	19. Anonymous Authentication
	19.1 Overview
	19.2 Configuration
	19.3 AuthenticationTrustResolver

	20. WebSocket Security
	20.1 WebSocket Configuration
	20.2 WebSocket Authentication
	20.3 WebSocket Authorization
	WebSocket Authorization Notes
	WebSocket Authorization on Message Types
	WebSocket Authorization on Destinations

	Outbound Messages

	20.4 Enforcing Same Origin Policy
	Why Same Origin?
	Spring WebSocket Allowed Origin
	Adding CSRF to Stomp Headers
	Disable CSRF within WebSockets

	20.5 Working with SockJS
	SockJS & frame-options
	SockJS & Relaxing CSRF

	Part VI. Authorization
	21. Authorization Architecture
	21.1 Authorities
	21.2 Pre-Invocation Handling
	The AccessDecisionManager
	Voting-Based AccessDecisionManager Implementations
	RoleVoter
	AuthenticatedVoter
	Custom Voters

	21.3 After Invocation Handling
	21.4 Hierarchical Roles

	22. Secure Object Implementations
	22.1 AOP Alliance (MethodInvocation) Security Interceptor
	Explicit MethodSecurityInterceptor Configuration

	22.2 AspectJ (JoinPoint) Security Interceptor

	23. Expression-Based Access Control
	23.1 Overview
	Common Built-In Expressions

	23.2 Web Security Expressions
	Referring to Beans in Web Security Expressions
	Path Variables in Web Security Expressions

	23.3 Method Security Expressions
	@Pre and @Post Annotations
	Access Control using @PreAuthorize and @PostAuthorize
	Filtering using @PreFilter and @PostFilter

	Built-In Expressions
	The PermissionEvaluator interface
	Method Security Meta Annotations

	Part VII. Additional Topics
	24. Domain Object Security (ACLs)
	24.1 Overview
	24.2 Key Concepts
	24.3 Getting Started

	25. Pre-Authentication Scenarios
	25.1 Pre-Authentication Framework Classes
	AbstractPreAuthenticatedProcessingFilter
	J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	PreAuthenticatedAuthenticationProvider
	Http403ForbiddenEntryPoint

	25.2 Concrete Implementations
	Request-Header Authentication (Siteminder)
	Siteminder Example Configuration

	Java EE Container Authentication

	26. LDAP Authentication
	26.1 Overview
	26.2 Using LDAP with Spring Security
	26.3 Configuring an LDAP Server
	Using an Embedded Test Server
	Using Bind Authentication
	Loading Authorities

	26.4 Implementation Classes
	LdapAuthenticator Implementations
	Common Functionality
	BindAuthenticator
	PasswordComparisonAuthenticator

	Connecting to the LDAP Server
	LDAP Search Objects
	FilterBasedLdapUserSearch

	LdapAuthoritiesPopulator
	Spring Bean Configuration
	LDAP Attributes and Customized UserDetails

	26.5 Active Directory Authentication
	ActiveDirectoryLdapAuthenticationProvider
	Active Directory Error Codes

	27. JSP Tag Libraries
	27.1 Declaring the Taglib
	27.2 The authorize Tag
	Disabling Tag Authorization for Testing

	27.3 The authentication Tag
	27.4 The accesscontrollist Tag
	27.5 The csrfInput Tag
	27.6 The csrfMetaTags Tag

	28. Java Authentication and Authorization Service (JAAS) Provider
	28.1 Overview
	28.2 AbstractJaasAuthenticationProvider
	JAAS CallbackHandler
	JAAS AuthorityGranter

	28.3 DefaultJaasAuthenticationProvider
	InMemoryConfiguration
	DefaultJaasAuthenticationProvider Example Configuration

	28.4 JaasAuthenticationProvider
	28.5 Running as a Subject

	29. CAS Authentication
	29.1 Overview
	29.2 How CAS Works
	Spring Security and CAS Interaction Sequence

	29.3 Configuration of CAS Client
	Service Ticket Authentication
	Single Logout
	Authenticating to a Stateless Service with CAS
	Configuring CAS to Obtain Proxy Granting Tickets
	Calling a Stateless Service Using a Proxy Ticket

	Proxy Ticket Authentication

	30. X.509 Authentication
	30.1 Overview
	30.2 Adding X.509 Authentication to Your Web Application
	30.3 Setting up SSL in Tomcat

	31. Run-As Authentication Replacement
	31.1 Overview
	31.2 Configuration

	32. Spring Security Crypto Module
	32.1 Introduction
	32.2 Encryptors
	BytesEncryptor
	TextEncryptor

	32.3 Key Generators
	BytesKeyGenerator
	StringKeyGenerator

	32.4 Password Encoding

	33. Concurrency Support
	33.1 DelegatingSecurityContextRunnable
	33.2 DelegatingSecurityContextExecutor
	33.3 Spring Security Concurrency Classes

	34. Spring MVC Integration
	34.1 @EnableWebMvcSecurity
	34.2 @AuthenticationPrincipal
	34.3 Spring MVC Async Integration
	34.4 Spring MVC and CSRF Integration
	Automatic Token Inclusion
	Resolving the CsrfToken

	Part VIII. Spring Data Integration
	35. Spring Data & Spring Security Configuration
	36. Security Expressions within @Query

	Part IX. Appendix
	37. Security Database Schema
	37.1 User Schema
	Group Authorities

	37.2 Persistent Login (Remember-Me) Schema
	37.3 ACL Schema
	HyperSQL
	PostgreSQL
	MySQL and MariaDB
	Microsoft SQL Server
	Oracle Database

	38. The Security Namespace
	38.1 Web Application Security
	<debug>
	<http>
	<http> Attributes
	Child Elements of <http>

	<access-denied-handler>
	Parent Elements of <access-denied-handler>
	<access-denied-handler> Attributes

	<headers>
	<headers> Attributes
	Parent Elements of <headers>
	Child Elements of <headers>

	<cache-control>
	<cache-control> Attributes
	Parent Elements of <cache-control>

	<hsts>
	<hsts> Attributes
	Parent Elements of <hsts>

	<hpkp>
	<hpkp> Attributes
	Parent Elements of <hpkp>

	<pins>
	Child Elements of <pins>

	<pin>
	<pin> Attributes
	Parent Elements of <pin>

	<content-security-policy>
	<content-security-policy> Attributes
	Parent Elements of <content-security-policy>

	<frame-options>
	<frame-options> Attributes
	Parent Elements of <frame-options>

	<xss-protection>
	<xss-protection> Attributes
	Parent Elements of <xss-protection>

	<content-type-options>
	<content-type-options> Attributes
	Parent Elements of <content-type-options>

	<header>
	<header-attributes> Attributes
	Parent Elements of <header>

	<anonymous>
	Parent Elements of <anonymous>
	<anonymous> Attributes

	<csrf>
	Parent Elements of <csrf>
	<csrf> Attributes

	<custom-filter>
	Parent Elements of <custom-filter>
	<custom-filter> Attributes

	<expression-handler>
	Parent Elements of <expression-handler>
	<expression-handler> Attributes

	<form-login>
	Parent Elements of <form-login>
	<form-login> Attributes

	<http-basic>
	Parent Elements of <http-basic>
	<http-basic> Attributes

	<http-firewall> Element
	<http-firewall> Attributes

	<intercept-url>
	Parent Elements of <intercept-url>
	<intercept-url> Attributes

	<jee>
	Parent Elements of <jee>
	<jee> Attributes

	<logout>
	Parent Elements of <logout>
	<logout> Attributes

	<openid-login>
	Parent Elements of <openid-login>
	<openid-login> Attributes
	Child Elements of <openid-login>

	<attribute-exchange>
	Parent Elements of <attribute-exchange>
	<attribute-exchange> Attributes
	Child Elements of <attribute-exchange>

	<openid-attribute>
	Parent Elements of <openid-attribute>
	<openid-attribute> Attributes

	<port-mappings>
	Parent Elements of <port-mappings>
	Child Elements of <port-mappings>

	<port-mapping>
	Parent Elements of <port-mapping>
	<port-mapping> Attributes

	<remember-me>
	Parent Elements of <remember-me>
	<remember-me> Attributes

	<request-cache> Element
	Parent Elements of <request-cache>
	<request-cache> Attributes

	<session-management>
	Parent Elements of <session-management>
	<session-management> Attributes
	Child Elements of <session-management>

	<concurrency-control>
	Parent Elements of <concurrency-control>
	<concurrency-control> Attributes

	<x509>
	Parent Elements of <x509>
	<x509> Attributes

	<filter-chain-map>
	<filter-chain-map> Attributes
	Child Elements of <filter-chain-map>

	<filter-chain>
	Parent Elements of <filter-chain>
	<filter-chain> Attributes

	<filter-security-metadata-source>
	<filter-security-metadata-source> Attributes
	Child Elements of <filter-security-metadata-source>

	38.2 WebSocket Security
	<websocket-message-broker>
	<websocket-message-broker> Attributes
	Child Elements of <websocket-message-broker>

	<intercept-message>
	Parent Elements of <intercept-message>
	<intercept-message> Attributes

	38.3 Authentication Services
	<authentication-manager>
	<authentication-manager> Attributes
	Child Elements of <authentication-manager>

	<authentication-provider>
	Parent Elements of <authentication-provider>
	<authentication-provider> Attributes
	Child Elements of <authentication-provider>

	<jdbc-user-service>
	<jdbc-user-service> Attributes

	<password-encoder>
	Parent Elements of <password-encoder>
	<password-encoder> Attributes
	Child Elements of <password-encoder>

	<salt-source>
	Parent Elements of <salt-source>
	<salt-source> Attributes

	<user-service>
	<user-service> Attributes
	Child Elements of <user-service>

	<user>
	Parent Elements of <user>
	<user> Attributes

	38.4 Method Security
	<global-method-security>
	<global-method-security> Attributes
	Child Elements of <global-method-security>

	<after-invocation-provider>
	Parent Elements of <after-invocation-provider>
	<after-invocation-provider> Attributes

	<pre-post-annotation-handling>
	Parent Elements of <pre-post-annotation-handling>
	Child Elements of <pre-post-annotation-handling>

	<invocation-attribute-factory>
	Parent Elements of <invocation-attribute-factory>
	<invocation-attribute-factory> Attributes

	<post-invocation-advice>
	Parent Elements of <post-invocation-advice>
	<post-invocation-advice> Attributes

	<pre-invocation-advice>
	Parent Elements of <pre-invocation-advice>
	<pre-invocation-advice> Attributes

	Securing Methods using
	Parent Elements of <protect-pointcut>
	<protect-pointcut> Attributes

	<intercept-methods>
	<intercept-methods> Attributes
	Child Elements of <intercept-methods>

	<method-security-metadata-source>
	<method-security-metadata-source> Attributes
	Child Elements of <method-security-metadata-source>

	<protect>
	Parent Elements of <protect>
	<protect> Attributes

	38.5 LDAP Namespace Options
	Defining the LDAP Server using the
	<ldap-server> Attributes

	<ldap-authentication-provider>
	Parent Elements of <ldap-authentication-provider>
	<ldap-authentication-provider> Attributes
	Child Elements of <ldap-authentication-provider>

	<password-compare>
	Parent Elements of <password-compare>
	<password-compare> Attributes
	Child Elements of <password-compare>

	<ldap-user-service>
	<ldap-user-service> Attributes

	39. Spring Security Dependencies
	39.1 spring-security-core
	39.2 spring-security-remoting
	39.3 spring-security-web
	39.4 spring-security-ldap
	39.5 spring-security-config
	39.6 spring-security-acl
	39.7 spring-security-cas
	39.8 spring-security-openid
	39.9 spring-security-taglibs

	40. Spring Security FAQ
	40.1 General Questions
	Will Spring Security take care of all my application security requirements?
	Why not just use web.xml security?
	What Java and Spring Framework versions are required?
	I’m new to Spring Security and I need to build an application that supports CAS single sign-on over HTTPS, while allowing Basic authentication locally for certain URLs, authenticating against multiple back end user information sources (LDAP and JDBC). I’ve copied some configuration files I found but it doesn’t work. What could be wrong?

	40.2 Common Problems
	When I try to log in, I get an error message that says "Bad Credentials". What’s wrong?
	My application goes into an "endless loop" when I try to login, what’s going on?
	I get an exception with the message "Access is denied (user is anonymous);". What’s wrong?
	Why can I still see a secured page even after I’ve logged out of my application?
	I get an exception with the message "An Authentication object was not found in the SecurityContext". What’s wrong?
	I can’t get LDAP authentication to work. What’s wrong with my configuration?
	Session Management
	I’m using Spring Security’s concurrent session control to prevent users from logging in more than once at a time. When I open another browser window after logging in, it doesn’t stop me from logging in again. Why can I log in more than once?
	Why does the session Id change when I authenticate through Spring Security?
	I’m using Tomcat (or some other servlet container) and have enabled HTTPS for my login page, switching back to HTTP afterwards. It doesn’t work - I just end up back at the login page after authenticating.
	I’m not switching between HTTP and HTTPS but my session is still getting lost
	I’m trying to use the concurrent session-control support but it won’t let me log back in, even if I’m sure I’ve logged out and haven’t exceeded the allowed sessions.
	Spring Security is creating a session somewhere, even though I’ve configured it not to, by setting the create-session attribute to never.
	I get a 403 Forbidden when performing a POST
	I’m forwarding a request to another URL using the RequestDispatcher, but my security constraints aren’t being applied.
	I have added Spring Security’s <global-method-security> element to my application context but if I add security annotations to my Spring MVC controller beans (Struts actions etc.) then they don’t seem to have an effect.
	I have a user who has definitely been authenticated, but when I try to access the SecurityContextHolder during some requests, the Authentication is null. Why can’t I see the user information?

	40.3 Spring Security Architecture Questions
	How do I know which package class X is in?
	How do the namespace elements map to conventional bean configurations?
	What does "ROLE_" mean and why do I need it on my role names?
	How do I know which dependencies to add to my application to work with Spring Security?
	What dependencies are needed to run an embedded ApacheDS LDAP server?
	What is a UserDetailsService and do I need one?

	40.4 Common "Howto" Requests
	I need to login in with more information than just the username. How do I add support for extra login fields (e.g. a company name)?
	How do I apply different intercept-url constraints where only the fragment value of the requested URLs differs (e.g./foo#bar and /foo#blah?
	How do I access the user’s IP Address (or other web-request data) in a UserDetailsService?
	How do I access the HttpSession from a UserDetailsService?
	How do I access the user’s password in a UserDetailsService?
	How do I define the secured URLs within an application dynamically?
	How do I authenticate against LDAP but load user roles from a database?
	I want to modify the property of a bean that is created by the namespace, but there is nothing in the schema to support it. What can I do short of abandoning namespace use?

	41. Migrating from 3.x to 4.x

