Spring Shell Documentation

Mark Pollack
Costin Leau
Jarred Li

Spring Shell Documentation
by Mark Pollack, Costin Leau, and Jarred Li

1.0.0.M1

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies
and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Shell

Table of Contents

1= = oL RPN iv
[gL T [¥ o1 o o TSP PPTPPR 1
L REQUITEIMENES ..ottt e e e e e e e e e e e ettt e e e e e e e e s s et b baeeeeeeeeessnnrsaneeaaeeas 2

[1. Reference DOCUMENEALIONooiiiiiiiieieee e ettt e e e et e et e e e e et e e e e e e e s eannaebeeeeeeeeeeennenes 3
2. 50MNG SHEIL oo e e e aaeeas 4

2.1 PIUGIN MOGEL ... 4
COMMABNGSoooiiiiiiiiceee e 4

(00011 1 £ 5

2.2. BUIlT IN COMMANGAS ...t ee e ane 5

2.3. Customizing the ShElleeiiee e 5

2.4, Communicating between PIUJINSuuuruiuiiiiiieiiieieiirerrierrrer——————. 6

2.5. Command mMethod INTErCEPLIONvviiiiiiiiee et 6

2.6. ComMMANG 1iNE OPLIONSeeiiiiiiiiieeiiie ettt 6

2.7. SCIPLS @0 COMIMENTSeeiieiiiiiie ettt e e st e e e nnneeee s 7

I11. Developing Spring Shell APPlICAIONSooociiiiiiee e 8
3. Developing Spring Shell AppliCatioNSooccuviiiiiieec e 9

3.1 Marker INEEITACE ..o e e e e 9

I oo o oo [PPSR PPPPPPPPPPRP 9

3.3, CLI ANNOLBLIONS ...eeeiiiciiieier e e e e ettt e e e e e s et e e e e e e e s s snntaaeaeeeeesssnnneanneeeeaeeeannnes 9

3.4. Building and running the Shell ... 11

IV. Spring Shell Sample appliCationccuviiiiiiiee e 12
4. Simple sample application using the Spring Shell ..., 13

g R 1 1 oo 1o o o SRR 13

4.2, HelloOWOrTdCOMMENGScoeeeiiiieeee ettt e e e e e e e e s e 13

1.0.0M1 Spring Shell Documentation i

Spring Shell

Preface

The Spring Shell provides an interactive shell that allows you to plugin your own custom commands
using a Spring based programming model.

The shell has been extracted from the Spring Roo project, giving it astrong foundation and rich feature
set. One significant change from Spring Roo is that the plugin model is no longer based on OSGi but
instead uses Spring 10C container to discover commands through classpath scanning. Thereis currently
no classloader isolation between plugins, however that maybe added in future versions.

Spring Shell's features include
» A simple, annotation driven, programming model to contribute custom commands

» Use of Spring's classpath scanning functionality asthe basis for a command plugin strategy and
command develoment

* Inheritance of the Roo Shell features, most notably tab compl etion, colorization, and script execution.

» Customizatin of command prompt, banner, shell history file name.
This document assumes that the reader already has a basic familiarity with the Spring Framework.

While every effort has been made to ensure that this documentation is comprehensive and there are no
errors, nevertheless some topics might require more explanation and some typos might have crept in.
If you do spot any mistakes or even more serious errors and you can spare a few cycles during lunch,
please do bring the error to the attention of the Spring Shell team by raising an issue.

1.0.0M1 Spring Shell Documentation iv

http://www.springsource.org/spring-roo/
http://static.springsource.org/spring-roo/reference/html-single/index.html#usage-shell
https://jira.springsource.org/browse/SHL

Part I. Introduction

The Spring Shell provides an interactive shell that lets you contribute commands using a simple Spring
based programming model.

This document is the reference guide for the Spring Shell and covers the key classes that are part of
the Shell infrastructure, the plugin model, how to create commands for the shell as well as discussion
of the sample application.

Spring Shell

1. Requirements

The Spring Shell requires JDK level 6.0 and above as well as the Spring Framework 3.0 (3.1
recommended) and above.

1.0.0M1 Spring Shell Documentation 2

http://www.springsource.org/about

Part Il. Reference Documentation

Document structure

This part of the reference documentation explains the core components of the Spring Shell.

Spring Shell

2. Spring Shell

The core components of the shell are its plugin model, built-in commands, and converters

2.1 Plugin Model

The plugin model is based Spring. Each plugin jar is required to contain the file META-
I NF/ spring/spring-shell-plugin.xn . These files will be loaded to bootstrap a Spring
Appl i cat i onCont ext whentheshell isstarted. The essential boostrapping code that |ooksfor your
contributions looks like this

new Cl assPat hXm Appl i cati onCont ext ("cl asspat h*:/ META-| NF/ spri ng/ spring-shel | -plugin.xm");

In the spri ng-shel | - pl ugi n. xm file you should define the command classes and any other
collaborating objects that support the command's actions. The plugin model is depicted in the following
diagram

Note that the current plugin model loads all plugins under the same class loader. An open JIRA issus
isto provide a classloader per plugin to provide isolation.

Commands

An easy way to declare the commands is to use Spring's component scanning functionality. Hereisan
examplespri ng-shel | - pl ugi n. xm that from the sample application.

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://wmv springfranmewor k. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngf ranmewor k. or g/ schena/ beans http://ww. spri ngframewor k. or g/ schem
http://ww. springframework. org/ schema/ context http://wwm. springframewor k. or g/ schena/ cont ext/ spri ng- c

<cont ext : conponent - scan base- package="or g. spri ngf ramewor k. shel | . sanpl es. hel | owor | d. comrands" />

</ beans>

The commands are Spring components, demarcated as such using the @Conponent annotation. For
example, the shell of the Hel | oWbr | dCommands class from the sample application looks like this

@Conponent
public class Hell owrl dConmands i npl enents ConmandMar ker {

/1 use any Spring annotations for Dependency Injection or other Spring interfaces as required.

/1 methods with @i annotations go here

One the commands are registered and instantiated by the Spring container, they are registered with the
core shell parser so that the @Cl i annotations can be processed. The way the commands are identified
is through the use of the CommandMar ker interface.

1.0.0M1 Spring Shell Documentation 4

Spring Shell

Converters

The org. springfranmewor k. shel |l . core. Converter interface provides the contract to
convert the strings that are entered on the command line to rich Java types passed into the arguments
of @ i -annotated methods.

By default convertersfor common typesareregistered. These cover primitivetypes(boolean, int, float...)
aswell as Date, Character, and File.

If you need to register any additional Convert er instances, register them with the Spring container
inthespri ng-shel | - pl ugi n. xn file and they will be picked up automatically.

2.2 Built in commands

There are afew built in commands. Here isalisting of their class name and functionality
» Essenti al Commands -exit andquit -to exit the shell.
» Hel pConmands - hel p - list @l commands and their usage

» OsConmands - the keyword for this command is the exclamation point, ! . After the exclamation
point you can pass in a unix/windows command string to be executed.

There are also afew commands that are provided by the Abst r act Shel | class, these are
» dat e - Displaysthelocal date and time

e scri pt - Parsesthe specified resource file and executes its commands

e system properties - Showsthe shell's properties

e ver si on - Displays current CLI version

2.3 Customizing the shell

There are a few extension points that allow you to customize the shell. The extension points are the
interfaces

» Banner Provi der - Specifiesthe banner text, welcome message, and version number that will be
displayed when the shell is started

* Pronpt Provi der - Specifiesthe command prompt text, eg. "shel | >" or "#" or "$"
e Hi storyFi | eNanmePr ovi der - Specifiesthe name of the command history file

Thereis adefault implementation for these interfaces but you should create your own implementations
for your own shell application. Use Spring's @r der ed annotation to set the priority of the provider.
This alows your provider implementations to take precidence over any other implementations that
maybe present on the classpath from other plugins.

To make cool "ASCII art" banners the website http://patorjk.com/software/taag is quite neat!

1.0.0M1 Spring Shell Documentation 5

http://en.wikipedia.org/wiki/ASCII_art
http://patorjk.com/software/taag

Spring Shell

2.4 Communicating between plugins

As thisis a standard Spring application you can use Spring's ApplicationContext event infrastructure
to communicate across plugins.

2.5 Command method interception

It has shown to be useful to provide a ssimple form of interception around the invocation of
a command method. This enables the command class to check for updates to state, such as
configuration information modified by other plugins, before the command method is executed. The
interface Execut i onPr ocess should be implemented instead of CormandMar ker to access this
functionality. The Execut i onPr ocess interface is shown below

public interface ExecutionProcessor extends CommandMarker {

/**

* Method call ed before invoking the target comand (described by {@ink ParseResult}).

* Additionally, for advanced cases, the parse result itself effectively changing the invocation
* calling site.

*

* @aram invocati onContext target comrand context

* @eturn the invocation target

*/

Par seResul t beforel nvocati on(ParseResult invocationContext);

/**
* Method call ed after successfully invoking the target command (described by {@ink ParseResult}).
*
* @aram i nvocati onContext target comrand cont ext
* @aramresult the invocation result
*/
voi d afterReturningl nvocation(ParseResult invocationContext, Object result);

/**

* Method called after invoking the target comand (described by {@ink ParseResult}) had thrown an excepti
*

* @aram invocationContext target conmand context

* @aramthrown the thrown object

*/

voi d afterThrow ngl nvocati on(ParseResul t invocationContext, Throwable thrown);

2.6 Command line options

There are afew command line options that can be specified when starting the shell. They are

o --profil es - Specifiesvaluesfor the system property spring.profiles.active so that Spring 3.1 and
greater profile support is enabled.

» --cndfil e - Specifiesafileto read that contains shell commands

» - - hi st si ze - Specifiesthe maximum number of linesto storein the command history file. Default
valueis 3000.

1.0.0M1 Spring Shell Documentation 6

http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/

Spring Shell

2.7 Scripts and comments

Scripts can be executed either by passing in the - - cndf i | e argument at startup or by executing the
scri pt command inside the shell. When using scripts it helps to add comments and this can be done
using block comments that start and end with / * and */ or an inline one line command using / / or
; Characters.

1.0.0M1 Spring Shell Documentation 7

Part Ill. Developing
Spring Shell Applications

This section provides some guidance on how one can create commands for the Spring Shell.

Spring Shell

3. Developing Spring Shell Applications

Contributing commands to the shell is very easy. There are only a few annotations you need to learn.
The implementation style of the command is the same as developing classes in for application that
uses dependency injection. You can leverage all the features of the Spring container to implement your
command classes.

3.1 Marker Interface

The first step to creating a command is to implement the marker interface CormandMar ker and to
annotate your class with Spring's @onponent annotation. (Note there is an open JIRA issue to
provide a @ i Conmand meta-annotation to avoid having to use a marker interface). Using the code
from the helloworld sample application, the shell of aHel | oWbr | dConmmands classis shown below

@Conponent
public class Hel |l owr| dConmands i npl enents ConmandMar ker {

/1 use any Spring annotations for Dependency Injection or other Spring interfaces as required.

/] methods with @i annotations go here

3.2 Logging

Logging is currently done using JDK logging. Due to the intrincacies of console, JLine and Ansi
handling, itisgenerally advised to display messages asreturn valuesto the method commands. However,
when logging is required, the typical JDK logger declaration should suffice.

@Conponent
public class Hell owrl| dConmands i npl enents ConmandMar ker {

protected final Logger LOG = Logger. get Logger (get d ass().getNane());

/] methods with @i annotations go here

}

. Warning
Note it's the packager/developer responsability to handle logging for third-party libraries.
Typically one wants to reduce the logging level so the console/shell does not get affected by
logging messages.

3.3 CLI Annotations

There are three annotations used on methods and method arguments that define main contract for
interacting with the shell. These are

e CliAvailabilitylndi cator - Placed on amethod that returns a boolean value and indicates
if a particular command can be presented in the shell. This decision is usually based on the history

1.0.0M1 Spring Shell Documentation 9

Spring Shell

of commands that have been executed previously. It prevents extraneous commands being presented
until some preconditions are met, for example the execution of a'configuration' command.

e Cli Command - Placed on a method that provides a command to the shell. Its value provides one or
more strings that serve as the start of a particular command name. These must be unique within the
entire application, across al plugins.

e Cli Opti ons - Placed on the arguments of acommand methods, allowing it to declare the argument
value as mandatory or optional with a default value.

Here is asimple use of these annotations in acommand class

@Conponent
public class Hell owrl dConmands i npl enents ConmandMar ker {

@ i Avai l abi lityl ndicator({"hw sinple"})
publ i c bool ean i sConmandAvai | abl e() {
return true;

}

@ i Conmand(val ue = "hw sinple", help = "Print a sinple hello world nessage")
public String sinple(
@l i Option(key = { "nessage" }, nandatory = true, help = "The hello world nessage") final String messag

@l iOption(key = { "location" }, nandatory = false, help = "Were you are saying hello", specifiedDefaul
final String |ocation) {

return "Message = [" + nessage + "] Location = [" + location + "]";

}
}

The method annotated with @l i Avai | abi | i tyl ndi cat or isreturning true so that the one and
only command in this class is exposed to the shell to be invoked. If there were more commands in the
class, you would list them as comma separated value.

The @ i Comrand annotation is creating the command 'hw si npl e'inthe shell. The help message
iswhat will be printed if you use the build in hel p command. The method name is'si npl e' but it
could just have well been any other name.

The@ i Opt i on annotation on each of the command argumentsiswhere you will spend most of your
time authoring commands. Y ou need to decide which arguments are required, which are optional, and if
they are optional is there a default value. In this case there are two arguments or keys to the command,
message and location. The key message is required and a help message is provided to give guidanceto
the user when tabbing to get completion for the command.

The implementation of the'si npl e' method istrivial, just alog statement, but this is where you would
typically call other collaborating objects that were injected into the class via Spring.

The method argument types in this example are String, which doesn't present any issue
with type conversion. You can specify methods with any rich object type as well as basic
primitive types such as int, float etc. For al types other than those handled by the shell by
default (basic types, Dat e, Fil e) you will need to register your own implementation of the
org. springframewor k. shel | . core. Convert er interface with the container inyour plugin.

1.0.0M1 Spring Shell Documentation 10

Spring Shell

Note that the the method return argument can be non-void - in our example, it is the actual message we
want to display. Whenever an object is returned, the shell will display its toString() representation.

3.4 Building and running the shell

In our opinion, the easiest way to build an execute the shell is to cut-n-paste the gradle script in the
example application. This uses the application plugin from gradle to create abin directory with a startup
script for windows and Unix and places al dependent jarsin alib directory. Maven hasasimilar plugin

- the AppAssembler plugin.

Themainclassof theshell isor g. spri ngf ramewor k. shel | . Boot st r ap. Aslong asyou place
other plugins, perhaps devel oped independently, on the classpath, the Bootstrap class will incorporate
them into the shell.

1.0.0M1 Spring Shell Documentation 11

http://mojo.codehaus.org/appassembler/appassembler-maven-plugin/

Part IV. Spring Shell
Sample application

Document structure

This part of the reference documentation covers the sampl e applications included with Spring Shell that
demonstrate the features in a code centric manner.

Chapter 4, Smple sample application using the Spring Shell Describes asimple Spring Shell application
that echo's the command parameters to the console

Spring Shell

4. Simple sample application using the Spring
Shell

4.1 Introduction

The sample application named 'helloworld' contains three 'nw commands, they are 'hw si npl e', 'hw
conpl ex'and 'hw enum and demonstrate simple to intermediate level usage of the @l i annotation
classes for creating commands.

The example code is located in the distribution directory <spri ng-shell -install-dir>/
sanpl es/ hel | owor | d.

Tobuild theexample cd to the helloworld directory and execute. . \ . . \ gradl ew i nst al | App.To
run the application cdto bui | d\i nst al I \ hel | owor | d\ bi n and execute the helloworld script.

4.2 HelloWorldCommands

The Hel | oWwor | dCommands classis show below

package org. springframework. shel |l . sanpl es. hel | owor | d. commands;

i mport org. springframework. shell. core. CommandMar ker ;

i mport org.springframework. shell.core.annotation.d i Availabilitylndicator;
i nport org.springfranework. shell.core. annotation.C i Conmand;

i mport org.springframework. shell.core.annotation.d i Option;

i mport org. springframework. stereotype. Conponent ;

@Conponent
public class Hell owr| dConmands i nmpl enents ConmandMar ker {

private bool ean si npl eConmandExecuted = fal se;

@ i Avai l abi lityl ndicator({"hw sinple"})
publ i c bool ean isSinpl eAvai l abl e() {
/] al ways avail abl e
return true;

}

@ i Avai l abi i tyl ndi cator ({"hw conpl ex", "hw enuni})
publ i c bool ean i sConpl exAvail abl e() {
i f (sinpl eConmandExecut ed) {
return true;

} else {
return fal se;
}
}
@ i Conmand(val ue = "hw sinple", help = "Print a sinple hello world nessage")
public String sinple(
@l i Option(key = { "nessage" }, nandatory = true, help = "The hello world message") final String nessage,

@l iOption(key = { "location" }, mandatory = fal se, help = "Were you are saying hello", specifiedDefault'
si mpl eCommandExecut ed = true;
return "Message = [" + nessage + "] Location = [" + location + "]";

}

1.0.0M1 Spring Shell Documentation 13

Spring Shell

@ i Command(val ue = "hw conpl ex", help = "Print a conplex hello world nessage")

public String hell o(

@l i Option(key = { "nessage" }, nandatory = true, help = "The hello world message") final String nessage,
@l i Option(key = { "nanel"}, nandatory = true, help = "Say hello to the first nane") final String nanel,
@liOption(key = { "nane2" }, nandatory = true, help = "Say hello to a second nane") final String nane2,
@l iOption(key = { "time" }, mandatory = fal se, specifiedDefaultVal ue="now', help = "Wen you are saying |
@l i Option(key = { "location" }, nandatory = false, help = "Were you are saying hello") final String | oc
return "Hello " + nanel + " and " + nanme2 + ". Your special message is " + message + ". time=[" + time +
}

@ i Command(val ue = "hw enuni, help = "Print a sinple hello world nessage from an enunerated val ue")

public String eenun(

@l i Option(key = { "nessage" }, nandatory = true, help = "The hello world nessage") final MessageType mes:
return "Hello. Your special enunerated nessage is " + nessage;

}

enum MessageType {
Typel("typel"),
Type2("type2"),
Type3("type3");

private String type;

private MessageType(String type){
this.type = type;
}

public String get Type()({
return type;
}
}
}

The use of the @i Availabilitylndicator annotaion on two methods,
i sSi npl eAvai | abl e and i sConpl exAvai | abl e shows how you can enable the presence of
the'hw conpl ex'and 'hw enum commands only if the'hw si npl e' command was executed.

Here is an example session showing the behavior.

The'hw enuni command shows how the shell supports the use of Enumeration as command method
arguments.

1.0.0M1 Spring Shell Documentation 14

	Spring Shell Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements

	Part II. Reference Documentation
	2. Spring Shell
	2.1 Plugin Model
	Commands
	Converters

	2.2 Built in commands
	2.3 Customizing the shell
	2.4 Communicating between plugins
	2.5 Command method interception
	2.6 Command line options
	2.7 Scripts and comments

	Part III. Developing Spring Shell Applications
	3. Developing Spring Shell Applications
	3.1 Marker Interface
	3.2 Logging
	3.3 CLI Annotations
	3.4 Building and running the shell

	Part IV. Spring Shell Sample application
	4. Simple sample application using the Spring Shell
	4.1 Introduction
	4.2 HelloWorldCommands

