
Spring Social Twitter Reference Manual

1.1.0.M2

Craig Walls , Keith Donald

Copyright © 2011-2013

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual ii

Table of Contents

1. Spring Social Twitter Overview ... 1
1.1. Introduction ... 1
1.2. How to get .. 1

2. Configuring Twitter Connectivity .. 2
3. Twitter API Binding .. 4

3.1. Retrieving a user's Twitter profile data .. 5
3.2. Tweeting ... 6
3.3. Reading Twitter timelines ... 7
3.4. Friends and Followers ... 8
3.5. Twitter User Lists .. 8
3.6. Searching Twitter .. 9
3.7. Advanced search ... 10
3.8. Sending and receiving direct messages .. 10

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 1

1. Spring Social Twitter Overview

1.1 Introduction

The Spring Social Twitter project is an extension to Spring Social that enables integration with Twitter.

Twitter is a popular micro-blogging and social networking service, enabling people to communicate with
each other 140 characters at a time.

Spring Social Twitter enables integration with Twitter with TwitterConnectionFactory, a
connection factory that can be plugged into Spring Social's service provider connection framework, and
with an API binding to Twitter's REST API.

1.2 How to get

The following Maven dependency will add Spring Social Twitter to your project:

<dependency>

 <groupId>org.springframework.social</groupId>

 <artifactId>spring-social-twitter</artifactId>

 <version>${org.springframework.social-twitter-version}</version>

</dependency>

As an extension to Spring Social, Spring Social Twitter depends on Spring Social. Spring Social's core
module will be transitively resolved from the Spring Social Twitter dependency. If you'll be using Spring
Social's web module, you'll need to add that dependency yourself:

<dependency>

 <groupId>org.springframework.social</groupId>

 <artifactId>spring-social-web</artifactId>

 <version>${org.springframework.social-version}</version>

</dependency>

Note that Spring Social Twitter may release on a different schedule than Spring Social. Consequently,
Spring Social's version may differ from that of Spring Social Twitter.

Consult Spring Social's reference documentation for more information on Spring Social dependencies.

http://www.springframework.org/spring-social
http://www.twitter.com
http://static.springsource.org/spring-social/docs/1.0.x/reference/html/overview.html#overview-howtoget

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 2

2. Configuring Twitter Connectivity

Spring Social's ConnectController works with one or more provider-specific
ConnectionFactorys to exchange authorization details with the provider and to create connections.
Spring Social Twitter provides TwitterConnectionFactory, a ConnectionFactory for creating
connections with Twitter.

So that ConnectController can find TwitterConnectionFactory, it must be registered with a
ConnectionFactoryRegistry. The following class constructs a ConnectionFactoryRegistry
containing a ConnectionFactory for Twitter using Spring's Java configuration style:

@Configuration

public class SocialConfig {

 @Inject

 private Environment environment;

 @Bean

 public ConnectionFactoryLocator connectionFactoryLocator() {

 ConnectionFactoryRegistry registry = new ConnectionFactoryRegistry();

 registry.addConnectionFactory(new TwitterConnectionFactory(

 environment.getProperty("twitter.consumerKey"),

 environment.getProperty("twitter.consumerSecret")));

 return registry;

 }

}

Here, a Twitter connection factory is registered with ConnectionFactoryRegistry via the
addConnectionFactory() method. If we wanted to add support for connecting to other
providers, we would simply register their connection factories here in the same way as
TwitterConnectionFactory.

Because consumer keys and secrets may be different across environments (e.g., test, production, etc)
it is recommended that these values be externalized. As shown here, Spring 3.1's Environment is
used to look up the application's consumer key and secret.

Optionally, you may also configure ConnectionFactoryRegistry and
TwitterConnectionFactory in XML:

<bean id="connectionFactoryLocator" class="org.springframework.social.connect.support.ConnectionFactoryRegistry">

 <property name="connectionFactories">

 <list>

 <bean class="org.springframework.social.twitter.connect.TwitterConnectionFactory">

 <constructor-arg value="${twitter.consumerKey}" />

 <constructor-arg value="${twitter.consumerSecret}" />

 </bean>

 </list>

 </property>

</bean>

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 3

This is functionally equivalent to the Java-based configuration of ConnectionFactoryRegistry
shown before. The only casual difference is that the connection factories are injected as a list into the
connectionFactories property rather than with the addConnectionFactory() method. As in the
Java-based configuration, the application's consumer key and secret are externalized (shown here as
property placeholders).

Refer to Spring Social's reference documentation for complete details on configuring
ConnectController and its dependencies.

http://static.springsource.org/spring-social/docs/1.0.x/reference/html/connecting.html

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 4

3. Twitter API Binding

Spring Social Twitter offers integration with Twitter's REST API through the Twitter interface and its
implementation, TwitterTemplate.

Creating an instance of TwitterTemplate involves invoking its constructor, passing in the
application's OAuth credentials and an access token/secret pair authorizing the application to act on a
user's behalf. For example:

String consumerKey = "..."; // The application's consumer key

String consumerSecret = "..."; // The application's consumer secret

String accessToken = "..."; // The access token granted after OAuth authorization

String accessTokenSecret = "..."; // The access token secret granted after OAuth

 authorization

Twitter twitter = new TwitterTemplate(consumerKey, consumerSecret, accessToken,

 accessTokenSecret);

In addition, TwitterTemplate has a default constructor that creates an instance without any OAuth
credentials:

Twitter twitter = new TwitterTemplate();

When constructed with the default constructor, TwitterTemplate will allow a few simple operations
that do not require authorization, such as searching. Attempting other operations, such as tweeting will
fail with an MissingAuthorizationException being thrown.

If you are using Spring Social's service provider framework, you can get an instance of Twitter
from a Connection. For example, the following snippet calls getApi() on a connection to retrieve
a Twitter:

Connection<Twitter> connection =

 connectionRepository.findPrimaryConnection(Twitter.class);

Twitter twitter = connection != null ? connection.getApi() : new TwitterTemplate();

Here, ConnectionRepository is being asked for the primary connection that the current user has
with Twitter. If connection to Twitter is found, a call to getApi() retrieves a Twitter instance that is
configured with the connection details received when the connection was first established. If there is no
connection, a default instance of TwitterTemplate is created.

Once you have a Twitter, you can perform a several operations against Twitter. Twitter is defined
as follows:

http://static.springsource.org/spring-social/docs/1.0.x/reference/html/serviceprovider.html

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 5

public interface Twitter {

 boolean isAuthorizedForUser();

 DirectMessageOperations directMessageOperations();

 FriendOperations friendOperations();

 GeoOperations geoOperations();

 ListOperations listOperations();

 SearchOperations searchOperations();

 TimelineOperations timelineOperations();

 UserOperations userOperations();

}

The isAuthorizedForUser helps determine if the Twitter instance has been created with
credentials to perform on behalf of a user. It will return true if it is capable of performing operations
requiring authorization; false otherwise.

The remaining six methods return sub-APIs, partitioning the Twitter service API into divisions targeting
specific facets of Twitter functionality. These sub-APIs are defined by interfaces described in Table 3.1,
“Twitter's Sub-APIs”.

Table 3.1. Twitter's Sub-APIs

Sub-API Interface Description

DirectMessageOperations Reading and sending direct messages.

FriendOperations Retrieving a user's list of friends and followers and following/
unfollowing users.

GeoOperations Working with locations.

ListOperations Maintaining, subscribing to, and unsubscribing from user lists

SearchOperations Searching tweets and viewing search trends

TimelineOperations Reading timelines and posting tweets.

UserOperations Retrieving user profile data.

What follows is a survey of common tasks you may perform with Twitter and its sub-APIs. For
complete details on the Spring Social's entire Twitter API binding, refer to the JavaDoc.

3.1 Retrieving a user's Twitter profile data

To get a user's Twitter profile, call UserOperations' getUserProfile():

TwitterProfile profile = twitter.userOperations().getUserProfile();

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 6

This returns a TwitterProfile object containing profile data for the authenticated user. This profile
information includes the user's Twitter screen name, their name, location, description, and the date that
they created their Twitter account. Also included is a URL to their profile image.

If you want to retrieve the user profile for a specific user other than the authenticated user, you can so
do by passing the user's screen name as a parameter to getUserProfile():

TwitterProfile profile = twitter.userOperations().getUserProfile("habuma");

If all you need is the screen name for the authenticating user, then call
UserOperations.getScreenName():

String profileId = twitter.userOperations().getScreenName();

3.2 Tweeting

To post a message to Twitter the simplest thing to do is to pass the message to the updateStatus()
method provided by TimelineOperations:

twitter.timelineOperations().updateStatus("Spring Social is awesome!")

Optionally, you may also include metadata about the tweet, such as the location (latitude and longitude)
you are tweeting from. For that, pass in a StatusDetails object, setting the location property:

StatusDetails statusDetails = new StatusDetails().setLocation(51.502f, -0.126f);

twitter.timelineOperations().updateStatus("I'm tweeting from London!", statusDetails)

To have Twitter display the location in a map (on the Twitter web site) then you should also set the
displayCoordinates property to true:

StatusDetails statusDetails = new StatusDetails().setLocation(51.502f,

 -0.126f).setDisplayCoordinates(true);

twitter.timelineOperations().updateStatus("I'm tweeting from London!", statusDetails)

If you'd like to retweet another tweet (perhaps one found while searching or reading the Twitter timeline),
call the retweet() method, passing in the ID of the tweet to be retweeted:

long tweetId = tweet.getId();

twitter.timelineOperations().retweet(tweetId);

Note that Twitter disallows repeated tweets. Attempting to tweet or retweet the same message multiple
times will result in a DuplicateTweetException being thrown.

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 7

3.3 Reading Twitter timelines

From a Twitter user's perspective, Twitter organizes tweets into four different timelines:

• User - Includes tweets posted by the user.

• Friends - Includes tweets from the user's timeline and the timeline of anyone that they follow, with
the exception of any retweets.

• Home - Includes tweets from the user's timeline and the timeline of anyone that they follow.

• Public - Includes tweets from all Twitter users.

To be clear, the only difference between the home timeline and the friends timeline is that the friends
timeline excludes retweets.

TimelineOperations also supports reading of tweets from one of the available Twitter timelines. To
retrieve the 20 most recent tweets from the public timeline, use the getPublicTimeline() method:

List<Tweet> tweets = twitter.timelineOperations().getPublicTimeline();

getHomeTimeline() retrieves the 20 most recent tweets from the user's home timeline:

List<Tweet> tweets = twitter.timelineOperations().getHomeTimeline();

Similarly, getFriendsTimeline() retrieves the 20 most recent tweets from the user's friends
timeline:

List<Tweet> tweets = twitter.timelineOperations().getFriendsTimeline();

To get tweets from the authenticating user's own timeline, call the getUserTimeline() method:

List<Tweet> tweets = twitter.timelineOperations().getUserTimeline();

If you'd like to retrieve the 20 most recent tweets from a specific user's timeline (not
necessarily the authenticating user's timeline), pass the user's screen name in as a parameter to
getUserTimeline():

List<Tweet> tweets = twitter.timelineOperations().getUserTimeline("rclarkson");

In addition to the four Twitter timelines, you may also want to get a list of tweets mentioning the user.
The getMentions() method returns the 20 most recent tweets that mention the authenticating user:

List<Tweet> tweets = twitter.timelineOperations().getMentions();

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 8

3.4 Friends and Followers

A key social concept in Twitter is the ability for one user to "follow" another user. The followed user's
tweets will appear in the following user's home and friends timelines. To follow a user on behalf of the
authenticating user, call the FriendOperations' follow() method:

twitter.friendOperations().follow("habuma");

Similarly, you may stop following a user using the unfollow() method:

twitter.friendOperations().unfollow("habuma");

If you want to see who a particular user is following, use the getFriends() method:

List<TwitterProfile> friends = twitter.friendOperations().getFriends("habuma");

On the other hand, you may be interested in seeing who is following a given user. In that case the
getFollowers() method may be useful:

List<TwitterProfile> followers = twitter.friendOperations().getFollowers("habuma");

3.5 Twitter User Lists

In addition to following other users, Twitter provides the ability for users to collect users in lists, regardless
of whether or not they are being followed. These lists may be private to the use who created them or
may be public for others to read and subscribe to.

To create a new list, use ListOperations' createList() method:

UserList familyList = twitter.listOperations().createList(

 "My Family", "Tweets from my immediate family members", false);

createList() takes three parameters and returns a UserList object representing the newly created
list. The first parameter is the name of the list. The second parameter is a brief description of the list.
The final parameter is a boolean indicating whether or not the list is public. Here, false indicates that
the list should be private.

Once the list is created, you may add members to the list by calling the addToList() method:

twitter.listOperations().addToList(familyList.getSlug(), "artnames");

The first parameter given to addToList() is the list slug (which is readily available from the UserList
object). The second parameter is the screen name of a user to add to the list.

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 9

To remove a member from a list, pass the same parameters to removedFromList():

twitter.listOperations().removeFromList(familyList.getSlug(), "artnames");

You can also subscribe to a list on behalf of the authenticating user. Subscribing to a list has the effect
of including tweets from the list's members in the user's home timeline. The subscribe() method is
used to subscribe to a list:

twitter.listOperations().subscribe("habuma", "music");

Here, subscribe() is given the list owner's screen name ("habuma") and the list slug ("music").

Similarly, you may unsubscribe from a list with the unsubscribe() method:

twitter.listOperations().unsubscribe("habuma", "music");

3.6 Searching Twitter

SearchOperations enables you to search the public timeline for tweets containing some text through
its search() method.

For example, to search for tweets containing "#spring":

SearchResults results = twitter.searchOperations().search("#spring");

The search() method will return a SearchResults object that includes a list of 50 most recent
matching tweets as well as some metadata concerning the result set. The metadata includes the
maximum tweet ID in the search results list as well as the ID of a tweet that precedes the resulting tweets.
The sinceId and maxId properties effectively define the boundaries of the result set. Additionally,
there's a boolean lastPage property that, if true, indicates that this result set is the page of results.

To gain better control over the paging of results, you may choose to pass in the page and results per
page to search():

SearchResults results = twitter.searchOperations().search("#spring", 2, 10);

Here, we're asking for the 2nd page of results where the pages have 10 tweets per page.

Finally, if you'd like to confine the bounds of the search results to fit between two tweet IDs, you may
pass in the since and maximum tweet ID values to search():

SearchResults results = twitter.searchOperations().search("#spring", 2, 10, 145962,

 210112);

Spring Social Twitter

1.1.0.M2
Spring Social Twitter
Reference Manual 10

This ensures that the result set will not contain any tweets posted before the tweet whose ID is 146962
nor any tweets posted after the tweet whose ID is 210112.

3.7 Advanced search

For more enhanced search you can also use SearchParameters object and pass it to search()
method. It allows you to specify more search keys.

For example, searching tweets containing "#spring" keyword in Dutch language:

SearchParameters params = new SearchParameters("#spring");

params.setLang("nl");

SearchResults results = twitter.searchOperations().search(params);

There are some more search parameters available:

SearchParameters params = new SearchParameters("#spring");

params.setGeoCode(new GeoCode(52.379241, 4.900846, 100, GeoCode.Unit.MILE));

params.setLang("nl");

params.setResultType(SearchParameters.ResultType.RECENT);

params.setCount(25);

params.setIncludeEntities(false);

SearchResults results = twitter.searchOperations().search(params);

3.8 Sending and receiving direct messages

In addition to posting tweets to the public timelines, Twitter also supports sending of private messages
directly to a given user. DirectMessageOperations' sendDirectMessage() method can be used
to send a direct message to another user:

twitter.directMessageOperations().sendDirectMessage("kdonald", "You going to the Dolphins

 game?")

DirectMessageOperations can also be used to read direct messages received by the authenticating
user through its getDirectMessagesReceived() method:

List<DirectMessage> twitter.directMessageOperations().getDirectMessagesReceived();

getDirectMessagesReceived() will return the 20 most recently received direct messages.

	Spring Social Twitter Reference Manual
	Table of Contents
	1. Spring Social Twitter Overview
	1.1 Introduction
	1.2 How to get

	2. Configuring Twitter Connectivity
	3. Twitter API Binding
	3.1 Retrieving a user's Twitter profile data
	3.2 Tweeting
	3.3 Reading Twitter timelines
	3.4 Friends and Followers
	3.5 Twitter User Lists
	3.6 Searching Twitter
	3.7 Advanced search
	3.8 Sending and receiving direct messages

