
Spring Social Yammer
Reference Manual

Morten Andersen-Gott

Spring Social Yammer Reference Manual
by Morten Andersen-Gott

1.0.0.M2

© SpringSource Inc., 2011

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual iii

Table of Contents

1. Spring Social Yammer Overview .. 1

1.1. Introduction ... 1

1.2. How to get .. 1

2. Configuring Yammer Connectivity .. 2

3. Yammer API Binding .. 4

3.1. Retrieving a user's Yammer profile data ... 5

3.2. Listing Yammer users in a network .. 5

3.3. Get messages posted to your network ... 6

3.4. Post an update to your network .. 6

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual 1

1. Spring Social Yammer Overview

1.1 Introduction

The Spring Social Yammer project is an extension to Spring Social that enables integration with

Yammer.

With 3 million users (and growing) from 80 percent of the Fortune 500 companies, Yammer is major

platform for enterprise social networks.

Spring Social Yammer enables integration with Yammer with YammerConnectionFactory, a

connection factory that can be plugged into Spring Social's service provider connection framework, and

with an API binding to Yammer's REST API.

1.2 How to get

The following Maven dependency will add Spring Social Yammer to your project:

<dependency>

 <groupId>org.springframework.social</groupId>

 <artifactId>spring-social-yammer</artifactId>

 <version>${org.springframework.social-yammer-version}</version>

</dependency>

As an extension to Spring Social, Spring Social Yammer depends on Spring Social. Spring Social's core

module will be transitively resolved from the Spring Social Yammer dependency. If you'll be using

Spring Social's web module, you'll need to add that dependency yourself:

<dependency>

 <groupId>org.springframework.social</groupId>

 <artifactId>spring-social-web</artifactId>

 <version>${org.springframework.social-version}</version>

</dependency>

Note that Spring Social Yammer may release on a different schedule than Spring Social. Consequently,

Spring Social's version may differ from that of Spring Social Yammer.

Consult Spring Social's reference documentation for more information on Spring Social dependencies.

http://www.springframework.org/spring-social
http://www.yammer.com
http://static.springsource.org/spring-social/docs/1.0.x/reference/html/overview.html#overview-howtoget

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual 2

2. Configuring Yammer Connectivity
Spring Social's ConnectController works with one or more provider-specific

ConnectionFactorys to exchange authorization details with the provider and to create connections.

Spring Social Yammer provides YammerConnectionFactory, a ConnectionFactory for

creating connections with Yammer.

So that ConnectController can find YammerConnectionFactory, it must be

registered with a ConnectionFactoryRegistry. The following class constructs a

ConnectionFactoryRegistry containing a ConnectionFactory for Yammer using

Spring's Java configuration style:

@Configuration

public class SocialConfig {

 @Bean

 public ConnectionFactoryLocator connectionFactoryLocator() {

 ConnectionFactoryRegistry registry = new ConnectionFactoryRegistry();

 registry.addConnectionFactory(new YammerConnectionFactory(

 environment.getProperty("yammer.clientId"),

 environment.getProperty("yammer.clientSecret")));

 return registry;

 }

}

Here, a Yammer connection factory is registered with ConnectionFactoryRegistry via

the addConnectionFactory() method. If we wanted to add support for connecting to

other providers, we would simply register their connection factories here in the same way as

YammerConnectionFactory.

Because client IDs and secrets may be different across environments (e.g., test, production, etc) it is

recommended that these values be externalized. As shown here, Spring 3.1's Environment is used

to look up the application's client ID and secret.

Optionally, you may also configure ConnectionFactoryRegistry and

YammerConnectionFactory in XML:

<bean id="connectionFactoryLocator" class="org.springframework.social.connect.support.ConnectionFactoryRegistry">

 <property name="connectionFactories">

 <list>

 <bean class="org.springframework.social.yammer.connect.YammerConnectionFactory">

 <constructor-arg value="${yammer.clientId}" />

 <constructor-arg value="${yammer.clientSecret}" />

 </bean>

 </list>

 </property>

</bean>

This is functionally equivalent to the Java-based configuration of ConnectionFactoryRegistry

shown before. The only casual difference is that the connection factories are injected as a list into the

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual 3

connectionFactories property rather than with the addConnectionFactory() method. As

in the Java-based configuration, the application's client ID and secret are externalized (shown here as

property placeholders).

Refer to Spring Social's reference documentation for complete details on configuring

ConnectController and its dependencies.

http://static.springsource.org/spring-social/docs/1.0.x/reference/html/connecting.html

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual 4

3. Yammer API Binding

Spring Social Yammer offers integration with Yammer's REST API with the Yammer interface and its

implementation, YammerTemplate.

Spring Social Yammer's Yammer interface and its implementation, YammerTemplate provide

the operations needed to interact with Yammer on behalf of a user. Creating an instance of

YammerTemplate is as simple as constructing it by passing in an authorized access token to the

constructor:

String accessToken = "f8FX29g..."; // access token received from Yammer after OAuth authorization

Yammer yammer = new YammerTemplate(accessToken);

If you are using Spring Social's service provider framework, you can get an instance of Yammer from

a Connection. For example, the following snippet calls getApi() on a connection to retrieve a

Yammer:

Connection<Yammer> connection = connectionRepository.findPrimaryConnection(Yammer.class);

if (connection != null) {

 Yammer yammer = connection.getApi();

 // ... use Yammer API binding

}

Here, ConnectionRepository is being asked for the primary connection that the current user has

with Yammer. If a connection to Yammer is found, it retrieves a Yammer instance that is configured

with the connection details received when the connection was first established.

Once you have a Yammer you can use it to interact with Yammer on behalf of the user who the access

token was granted for.

With a Yammer in hand, there are several ways you can use it to interact with Yammer on behalf of

the user. Spring Social's Yammer API binding is divided into 7 sub-APIs exposed through the methods

of Yammer:

public interface Yammer {

 ThreadOperations threadOperations();

 SubscriptionOperations subscriptionOperations();

 TopicOperations topicOperations();

 SearchOperations searchOperations();

 GroupOperations groupOperations();

 MessageOperations messageOperations();

http://static.springsource.org/spring-social/docs/1.0.x/reference/html/serviceprovider.html

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual 5

 UserOperations userOperations();

}

The sub-API interfaces returned from Yammer's methods are described in Table 3.1, “Yammer's Sub-

APIs”.

Table 3.1. Yammer's Sub-APIs

Sub-API Interface Description

ThreadOperations Get information about Yammer threads

SubscriptionOperations Follow, unfollow and check whether you are following topics

(tags), users or threads

TopicOperations Get information about a single Topic (tag)

SearchOperations Search for messages, users, tags and groups in your Yammer

network

GroupOperations List, get, create, join and leave groups

MessageOperations Get, post and delete messages

UserOperations List users, get, and update user.

The following sections will give an overview of common tasks that can be performed via Yammer and

its sub-APIs. For complete details on all of the operations available, refer to the JavaDoc.

3.1 Retrieving a user's Yammer profile data

To retrieve the authenticated user's profile data, call the getUserProfile() method method

provided by the UserOperations::

YammerProfile profile = yammer.userOperations().getUserProfile();

The data returned in the YammerProfile includes the user's Yammer ID, first and last names, contact

information, education and work experience as well as stats such as number of posts, followers and

number of people the user is following

3.2 Listing Yammer users in a network

To retrieve a list of users (members) of a Yammer network, call the getUsers() method provided

by the UserOperations:

YammerProfile profile = yammer.userOperations().getUsers(1);

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual 6

The single parameter is the page number. User lists are retrieved per page, with Yammer returning a

maximum of 50 users per page. The method returns a List of YammerProfiles.

You may also the overloaded getUsers() method that in addition to the page number lets you specify

the sorting key (followers or messages), wether you want results in reversed order (true or false, false

is default) and the letter you want the users to start with:

YammerProfile profile = yammer.userOperations().getUsers(1, UserOperations.SORT_BY_MESSAGES, false, 'A')

3.3 Get messages posted to your network

To get messages posted to your network call the getMessages() method method provided by the

MessageOperations:

YammerProfile profile = yammer.messageOperations().getMessages(0, 0, MessageOperations.NO_THREADING, 0);

The parameters to the getMessages() are: older than id (returns only messages older than the

message ID specified, 0 if you want the latest), newer than id, threading option (NO_THREADING,

THREADED or THREADED_EXTENDED), limit (the number of posts per poll, 0 for defaulting to

yammer default of 50) The data returned is MessageInfo which contains meta data about the poll

and a List of YammerMessage

Additional operations to get messages exists in MessageOperations, they all take the

same parameters as getMessages(). getMessagesFollowing() to get messages from

people you are following. getMessagesFromUser() to get messages posted by a specified

user. getMessagesPrivate() to private messages. getMessagesReceived() to get

messages received. getMessagesLikedByUser() to get messages liked by a specified user.

getMessagesAboutTopic() to get messages on a specified topic (topic id).

3.4 Post an update to your network

To post an update to your followers, call the postUpdate() method method provided by the

MessageOperations:

YammerProfile profile = yammer.messageOperations().postUpdate("Hello all Yammerites!");

The data returned is MessageInfo which is the same type of object returned when you fetch messages.

This allows you to immediately display the newly-posted message without doing a poll.

Optionally, you may provide additional information to your update such as attachments. You may

also include a group id if you are posting to a group or a replied to id if you are replying to an

existing post. This is done by calling the overloaded postUpdate() method method provided by the

MessageOperations:

Spring Social Yammer

1.0.0.M2

Spring Social Yammer

Reference Manual 7

 Resource resource = new FileSystemResource("file:///test.txt");

 YammerPostDetails details = new YammerPostDetails();

 details.addAttachment(resource);

YammerProfile profile = yammer.messageOperations().postUpdate("Hello all Yammerites!", details);

	Spring Social Yammer Reference Manual
	Table of Contents
	1. Spring Social Yammer Overview
	1.1 Introduction
	1.2 How to get

	2. Configuring Yammer Connectivity
	3. Yammer API Binding
	3.1 Retrieving a user's Yammer profile data
	3.2 Listing Yammer users in a network
	3.3 Get messages posted to your network
	3.4 Post an update to your network

