Spring Social Reference Manual

Craig Walls
Keith Donald

Spring Social Reference Manual
by Craig Walls and Keith Donald

1.1.0M1

© SpringSource Inc., 2011

Spring Social

Table of Contents

1. SPriNg SOCIEl OVEIVIEIWeeeiiiiiiiiie ettt e e ettt e ettt e e et b e e e e abb e e e e e annnr e e e e nnnees 1
0 [11 o [F o 1 o o I OO TPPPP 1
1.2. SoCializing aPPliCALIONScceiiiiiiiiei e e e e e s e e e e s e e e e e e e e e s s eanrrereeaeeas 1
G TR o [0 (0 o . SR 2

CHENt MOAUIESooeeieeeeeee et e e e e e e e e e e e e e e e e e e aenneeees 3
1.4, DEPENUENCIESeeeeeeiieeee ettt e ettt e e ekt e e et e e e e ekt et e e e et e e e e e nbe e e e e nnrneeeaan 4
N - PP PSP PPPPPPTPRTRR 4
JAVA SEIVIEL AP oot a e e e aaeeeaaaa 4
SPriNG FramMeWOTIKveiiiiieii i e e e a e e e 4
SPriNG SECUNTY CrYPLO wuvveieiiee i it e e e e e e e e e s e et r e e e e e s s e sarareeeeeas 5
Apache HItPCOMPONENLES s naasasnsnrnnnnnnnnnnnnns 5
JACKSON JSON PrOCESSONeviveiiiiieeeiiiiiiiiieeeee e e s e et eeeeee e s s ssnseereraeeeeessannneraeeeeeaeeeaanns 5
1.5, SAMPIE COUE ...ttt et e s et e e et e e e e ant e e e e s eas 5

2. Service Provider "ConNeCt’ FrameWOrKvviieiiee i e e e re e e e e e e s 7
A T O o (N o PP PP PP PPPPPPRPPPP 7
2.2. Establishing CONMNECLIONSciiiiiiiiiiiiiiiiic e e et a e e e s nneees 9

(@ VAN 11 g A AV o= o0 V] o L= = 9
OAULNL SEIVICE PrOVITENS ..ottt e e 11
Registering ConnectionFaCtory INSEANCEScvvreiiiiiiieeiiiie e 13
2.3. PErSIStiNg CONMECTIONSeoiuiiiiieiiiieee e ettt et siae e et e e st e e e annneee s 13
JDBC-hased PEISISIENCEuuviieiieeiee e i ettt e e e e s e e e e e e e e e s s r e e e e e e s s e nr e aaaaeeanan 15

3. Adding Support for a New ServiCe ProVIdE!cooociiiiiieiie et 16
3.1, PrOCESS OVEIVIEW ..eeieiiiitiieeee e ettt e e e e e e ettt e e e e e e ettt e e e e e e e e eaannteneeeeeeeeeeannneens 16
3.2. Creating a source project for the provider client code............ccooveiiiiiiiiii e 16

Code StruCture QUIEIINESoeveiiiiiie et e e 16
3.3. Developing a Java binding to the provider's APloooiiiiiiiiiiee e 17
Designing a new Java APl BINAINGcooviiiiiiiiiece e 17
Implementing a new Java APl biNdiNgcooooiiiiiiiiiiec e 18
Testing a new Java APl DINAINGuuuiiiiii e 20
Integrating an existing Java APl DiNding ... 21
3.4. Creating a ServiceProvider MOUE!cooiiiiiiiiiiie e 21
L@ N 11 12O EP SRRSO 21
L@ N ¥ 11 PP RPN PPPRPRTPTRIN 22
3.5. Creating an APIAGAPRLESoeiiiieei e 24
3.6. Creating a ConNECIONFECIONYcccooeeie e 25
L@ N 11 1SRRI 25
L A 11 0 1 25

4. CONNECLING T0 SEIVICE PrOVIAEN'Sccoiiiiieiiiiiie ettt 27
g T 1 g (0o o 1 o o PRSPPI 27
4.2. Configuring CoNNECLCONLIONIENeiiieeeii i e s 27

Configuring connection support in XMLooovvviiiiiiiiiiieeeeeeeeeeeeeeeee e 30
4.3. Creating connections with Connect Control [ercccooiviii i, 31
Displaying @ CONNECHION PAOEeeeeiuerieeeaaiiiee e ettt e e s e e e e e e snreeeeanes 33

1.1.0M1 Spring Socia Reference Manual i

Spring Social

Initiating the CONNECLION FIOWccoiiiiiieee e 34
AULhOFIZALION SCOPEcooiiiiitiiee e e e e e e e e e e e e eas 35
Responding to the authorization callbackcccc 36
DISCONNECLING -...eteieiieee ettt e et e e e e e e e e ettt e e e e e e e e e et eeeeeeessaannennneeeaaaeeaanns 36

4.4. CONNECLION INEEICEPLOISveeeeeiiieeee ettt e e ettt e e ettt e e e e e et e e e e e i e e e e s asn e e e e e annneeeeans 37
5. Signing in with Service Provider ACCOUNLSccuuiieeiiiiiieeiiiee et 39
CoT0 I g1 (0o L8 ot o ORI 39
5.2. Enabling Provider SIQN QN ... e e e e e 39
ProviderSigninController's dependenCIeSuuuvuerririririririerrirerinrnerrrnrrrrnrrnr.. 41
Adding a provider Sign in BULEONcoooeiiiiiiiee e 43

5.3. Signing up after afailed SIgN N ... 43
Signing up With @ Sign UP TOMM ...eeiiiieee e 44
IMPHICIT SION UP ettt e e e e e s e e e e e e et et e e e e e e e e s s snnrraneeaaeeenans 45

1.1.0M1 Spring Socia Reference Manual iv

Spring Social

1. Spring Social Overview

1.1 Introduction

The Spring Social project enablesyour applicationsto establish Connectionswith Software-as-a-Service
(SaaS) Providers such as Facebook and Twitter to invoke APIs on behalf of Users.

1.2 Socializing applications

The phrase "socia networking” often refersto efforts aimed at bringing people together. In the software
world, those efforts take the form of online social networks such as Facebook, Twitter, and Linkedin.
Over half ahillion of thisworld's internet users have flocked to these services to keep frequent contact
with family, friends, and colleagues.

Under the surface, however, these services are just software applications that gather, store, and process
information. Just like so many applications written before, these social networks have users who sign
in and perform some activity offered by the service.

What makes these applications a little different than traditional applications is that the data that they
collect represent some facet of their users' lives. What's more, these applications are more than willing
to share that data with other applications, as long as the user gives permission to do so. This means
that although these social networks are great at bringing peopl e together, as software services they also
excel at bringing applications together.

To illustrate, imagine that Paul is a member of an online movie club. A function of the movie club
application is to recommend movies for its members to watch and to let its members maintain alist of
movies that they have seen and those that they plan to see. When Paul sees a movie, he signs into the
movie club site, checks the movie off of his viewing list, and indicates if he liked the movie or not.
Based on his responses, the movie club application can tailor future recommendations for Paul to see.

On its own, the movie club provides great value to Paul, as it helps him choose movies to watch. But
Paul is also a Facebook user. And many of Paul's Facebook friends also enjoy a good movie now and
then. If Paul were able to connect his movie club account with his Facebook profile, the movie club
application could offer him a richer experience. Perhaps when he sees a movie, the application could
post amessage on his Facebook wall indicating so. Or when offering suggestions, the movie club could
factor in the movies that his Facebook friends liked.

Social integration is a three-way conversation between a service provider, a service consumer, and a
user who holds an account on both the provider and consumer. All interactions between the consumer
and the service provider are scoped to the context of the user's profile on the service provider.

In the narrative above, Facebook is the service provider, the movie club application is the service
consumer, and Paul isthe user of both. The movie club application may interact with Facebook on behal f
of Paul, accessing whatever Facebook data and functionality that Paul permits, including retrieving
Paul's friends and posting messages to hiswall.

1.1.0M1 Spring Socia Reference Manual 1

Spring Social

From the user's perspective, both applications provide some valuable functionality. But by connecting
the user's account on the consumer application with his account on the provider application, the user
brings together two applications that can now offer the user more value than they could individually.

With Spring Social, your application can play the part of the service consumer, interacting with aservice
provider on behalf of its users. The key features of Spring Social are:

e A "Connect Framework" that handles the core authorization and connection flow with service
providers.

» A "Connect Controller" that handles the OA uth exchange between a service provider, consumer, and
user in aweb application environment.

» A "Signin Controller" that allows users to authenticate with your application by signing in with their
Provider accounts, such as their Twitter or Facebook accounts.

In addition, there are a handful of provider-specific modules that extend Spring Socia to enable
integration with popular SaaS providers, including Facebook and Twitter.

1.3 How to get

The core Spring Social project consists of the modulesdescribed in Table 1.1, “ Spring Social Modules”.

Table 1.1. Spring Social Modules

Name Description
spring-social-core Spring Social's Connect Framework and OAuth client support.
spring-social-web Spring Socia's Connect Cont r ol | er which uses the Connect
Framework to manage connections in a web application
environment.
spring-social-test Support for testing Connect implementations and API bindings.

Which of these modules your application needs will largely depend on what facets of Spring Social you
intend to use. At very minimum, you'll need the core module in your application's classpath:

<dependency>
<groupl d>or g. spri ngf ranewor k. soci al </ groupl d>
<artifactld>spring-social-core</artifactld>
<versi on>${spri ng-soci al . versi on} </ versi on>
</ dependency>

To let Spring Social handle the back-and-forth authorization handshake between your web application
and a service provider, you'll need the web module:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. soci al </ gr oupl d>

1.1.0M1 Spring Socia Reference Manual 2

Spring Social

<artifactld>spring-social -web</artifactld>
<versi on>${spri ng-soci al . ver si on} </ ver si on>
</ dependency>

If you are developing against a milestone or release candidate version, such as 1.0.0.M1 or 1.0.0.RC1,
you will need to add the following repository in order to resolve the artifact:

<reposi tory>
<i d>or g. spri ngf ramewor k. maven. i | est one</i d>
<name>Spring Maven M | est one Repository</name>
<url >http://repo.springsource.org/libs-mlestone-Ilocal </url>
</repository>

If you are testing out the latest nightly build version (e.g. 1.0.0.BUILD-SNAPSHOT), you will need
to add the following repository:

<r eposi tory>
<i d>or g. spri ngf ramewor k. maven. snapshot </ i d>
<nanme>Spri ng Maven Snapshot Repository</nane>
<url >http://repo.springsource.org/libs-snapshot-I|ocal </url >
</repository>

Client modules

In addition to modules that make up the core Spring Social project, there are a number of provider-
specific client modulesthat arerel eased separately that provide connectivity and API bindingsto popular
SaaS providers. These client modules are listed in Table 1.2, “ Spring Socia Client Modules’.

Table 1.2. Spring Social Client Modules

Name Maven group ID Maven artifact 1D

Spring Social org.springframework.social Spring-social-facebook
Facebook

Spring Social org.springframework.social Spring-social-twitter
Twitter

Spring Social org.springframework.social spring-social-linkedin
Linkedin

Spring Social org.springframework.social Spring-social-tripit

Triplt

Spring Social org.springframework.social spring-social-github
GitHub

All of these modules are optional, depending on the connectivity needs of your application. For instance,
if your application will connect with Facebook, you'll want to add the Facebook module to your project:

1.1.0M1 Spring Socia Reference Manual 3

http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/

Spring Social

<dependency>
<groupl d>or g. spri ngf ramewor k. soci al </ gr oupl d>
<artifactld>spring-social -facebook</artifactld>
<ver si on>${spri ng-soci al - f acebook. ver si on} </ ver si on>
</ dependency>

Note that each of the client moduleswill progressand release on adifferent schedule than Spring Social.
Consequently, the version numbers for any given client module may not align with Spring Social or
any other client module.

Refer to each client modul€'s reference documentation for details on connectivity and the API binding.

1.4 Dependencies

Spring Social depends on a few things to run. Most dependencies are optional and an effort has been
made to keep the required dependencies to a minimum. The project dependencies are described in this
section.

Java

Spring Socia requires Java 1.5 or greater.

Java Servlet API

The Spring Social web support requires Java Servlet 2.5 or greater (Tomcat 6+).
Spring Framework

Spring Socia depends on RestTemplate provided by the core Spring Framework in the spring-web
module. It requires Spring Framework version 3.0.5 or above. Spring Framework 3.1 is recommended
to take advantage of several RestTemplate improvements.

If you are using Spring Social with Spring Framework 3.0.x (3.0.5 or >), make sure you explicitly add
the spring-web dependency to your build:

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-web</artifactld>
<versi on>3. 0. 7. RELEASE</ ver si on>

</ dependency>

Maven's dependency management favors "nearest" dependencies, so your project's definition of the
spring-web dependency will override Spring Social's transitive dependency on the recommended 3.1
version.

Gradle, on the other hand, favors the newest dependency. If you're using Gradle to build your project,
you'll need to also set the dependency'sf or ce property tot r ue to force Gradleto resolve your chosen
version of Spring:

1.1.0M1 Spring Socia Reference Manual 4

http://www.springsource.org/documentation

Spring Social

dependenci es {
conpi l e ("org. springfranmework: spring-web: 3.0. 6. RELEASE") { force=true }
}

Spring Security Crypto

If you're not already using Spring Security to secure your application, you'll need to add the standalone
crypto module. Thisisrequired for OAuthl request signing and encrypting credentials when persisting
Connection data. If you're already using Spring Security, there is nothing for you to do because the
crypto library comes included.

<dependency>
<groupl d>or g. spri ngf ranewor k. securi t y</ gr oupl d>
<artifactld>spring-security-crypto</artifactld>
<versi on>3. 1. 0. RELEASE</ ver si on>

</ dependency>

Apache HttpComponents

Spring Social has an optional dependency on Apache HttpComponents. If the HttpComponents
HttpClient library is present, it will use it as the HTTP client (which is generally recommended).
Otherwise, it will fall back on standard J2SE facilities.

<dependency>
<gr oupl d>or g. apache. htt pconmponent s</ gr oupl d>
<artifactld>httpclient</artifactld>
<versi on>4. 1. 2</ versi on>

</ dependency>

Although shown here to depend on version 4.1.2 of the HitpClient library, Spring Social can also work
with 4.0.X versions of HttpClient.

Jackson JSON Processor

Spring Social's provider API bindings rely on the Jackson JSON Processor to map JSON responses
to Java objects. Each binding, such as Facebook or Twitter, transitively depends on Jackson 1.8.5, so
there's nothing special to do to add Jackson to your project's Maven or Gradle build.

1.5 Sample Code

We have created a few sample applications to illustrate the capabilities of Spring Social. To obtain the
https://github.com/SpringSource/spring-social -samples code, use the following git command:

git clone git://github.con SpringSource/spring-social -sanpl es. git

1.1.0M1 Spring Socia Reference Manual 5

http://hc.apache.org/httpcomponents-client-ga
http://jackson.codehaus.org/
https://github.com/SpringSource/spring-social-samples

Spring Social

The Spring Social Samples project includes the following samples:
* gpring-social-quickstart - Designed to get you up and running quickly.

* gpring-social-quickstart-30x - Designed to get you up and running quickly as well as using Spring
Socia with Spring 3.0.x.

* gpring-social-showcase - Illustrates most of Spring Social's features.

* gpring-social-movies - Shows how to extend Spring Social to implement anew ServiceProvider and
API binding.

* gpring-social-twitterdj - Shows how to extend Spring Social and re-use an existing API binding.

* spring-social-popup - Shows how to use Spring Social to drive a browser popup-based connection
flow.

* spring-social-canvas - Demonstrates how to use Spring Social within a Facebook Canvas application.

1.1.0M1 Spring Socia Reference Manual 6

Spring Social

2. Service Provider 'Connect' Framework

Thespri ng- soci al - cor e moduleincludesa Service Provider '‘Connect’ Framework for managing
connections to Software-as-a-Service (SaaS) providers such as Facebook and Twitter. This framework
allows your application to establish connections between local user accounts and accounts those users
have with external service providers. Once a connection is established, it can be be used to obtain a
strongly-typed Java binding to the ServiceProvider's AP, giving your application the ability to invoke
the APl on behalf of a user.

Toillustrate, consider Facebook as an example ServiceProvider. Suppose your application, AcmeApp,
allows users to share content with their Facebook friends. To support this, a connection needs to be
established between auser's AcmeA pp account and her Facebook account. Once established, a Facebook
instance can be obtained and used to post content to the user'swall. Spring Social's'Connect’ framework
provides a clean APl for managing service provider connections such as this.

2.1 Core API

TheConnect i on<A> interface modelsaconnection to an external service provider such as Facebook:

public interface Connection<A> {
Connect i onKey get Key();
String getDisplayName() ;
String getProfileUrl();
String getlnageUrl ();
voi d sync();
bool ean test();
bool ean hasExpired();
voi d refresh();
UserProfile fetchUserProfile();
voi d updat eStatus(String nmessage);
A get Api () ;

Connecti onData createData();

Each connection is uniquely identified by a composite key consisting of a providerld (e.g. ‘facebook’)
and connected providerUserld (e.g. '1255689239', for Keith Donald's Facebook ID). This key tells you
what provider user the connection is connected to.

1.1.0M1 Spring Socia Reference Manual 7

Spring Social

A connection has a number of meta-properties that can be used to render it on a screen, including a
displayName, profileUrl, and imageUrl. As an example, the following HTML template snippet could
be used to generate alink to the connected user's profile on the provider's site;

<inmg src="${connection.imageUrl}" /> $%{connection.di spl ayNane}

The value of these properties may depend on the state of the provider user's profile. In this case, sync()
can be called to synchronize these valuesif the user's profile is updated.

A connection can be tested to determine if its authorization credentials are valid. If invalid, the
connection may have expired or been revoked by the provider. If the connection has expired, a
connection may be refreshed to renew its authorization credentials.

A connection provides several operations that allow the client application to invoke the
ServiceProvider's APl in auniform way. This includes the ability to fetch a model of the user's profile
and update the user's status in the provider's system.

A connection's parameterized type <A> represents the Java binding to the ServiceProvider's native API.
An instance of this API binding can be obtained by caling get Api () . As an example, a Facebook
connection instance would be parameterized as Connection<Facebook>. get Api () would return a
Facebook instance that provides a Java binding to Facebook's graph API for a specific Facebook user.

Finally, theinternal state of a connection can be captured for transfer between layers of your application
by calling cr eat eDat a() . This could be used to persist the connection in a database, or seridize it
over the network.

To put thismodel into action, suppose we have areference to a Connection<Twitter> instance. Suppose
the connected user is the Twitter user with screen name 'kdonald'.

1. Connection#getKey() would return (‘twitter', '14718006") where '14718006' is @kdonald's Twitter-
assigned user id that never changes.

2. Connection#getDisplayName() would return '@kdonald'.
3. Connection#getProfileUrl () would return 'http://twitter.com/kdonald'.

4. Connection#getimageUrl() would return ‘http://a0.twimg.com/profile_images/105951287/
IMG_5863 2 normal.jpg'.

5. Connection#sync() would synchronize the state of the connection with @kdonald's profile.

6. Connection#test() would return true indicating the authorization credentials associated with the
Twitter connection are valid. This assumes Twitter has not revoked the AcmeApp client application,
and @kdonald has not reset his authorization credentials (Twitter connections do not expire).

7. Connection#hasExpired() would return false.

8. Connection#refresh() would not do anything since connections to Twitter do not expire.

1.1.0M1 Spring Socia Reference Manual 8

Spring Social

9. Connection#fetchUserProfile() would make a remote API call to Twitter to get @kdonald's profile
data and normalize it into a UserProfile model.

10.Connection#updateStatus(String) would post a status update to @kdonald's timeline.

11.Connection#getApi() would return a Twitter giving the client application access to the full
capabilities of Twitter's native API.

12.Connection#createData() would return ConnectionData that could be serialized and used to restore
the connection at alater time.

2.2 Establishing connections

So far we have discussed how existing connections are modeled, but we have not yet discussed how new
connections are established. The manner in which connections between local users and provider users
are established varies based on the authorization protocol used by the ServiceProvider. Some service
providers use OAuth, others use Basic Auth, others may use something else. Spring Socia currently
provides native support for OAuth-based service providers, including support for OAuth 1 and OAuth
2. This covers the leading socia networks, such as Facebook and Twitter, all of which use OAuth to
secure their APIs. Support for other authorization protocols can be added by extending the framework.

Each authorization protocol is treated as an implementation detail where protocol-specifics are kept
out of the core Connection API. A ConnectionFactory abstraction encapsulates the construction of
connections that use a specific authorization protocal. In the following sections, we will discuss the
major ConnectionFactory classes provided by the framework. Each section will aso describe the
protocol-specific flow required to establish a new connection.

OAuth2 service providers

OAuth 2 israpidly becoming a preferred authorization protocol, and is used by major service providers
such as Facebook, Github, Foursquare, and 37signals. In Spring Social, a OAuth2ConnectionFactory is
used to establish connections with a OA uth2-based service provider:

public class QAut h2Connecti onFact or y<A> ext ends Connect i onFact or y<A> {
publ i ¢ OAut h2COper ati ons get QAut hOper ati ons();
publ i ¢ Connecti on<A> creat eConnecti on(AccessG ant accessG ant);

publ i ¢ Connecti on<A> creat eConnecti on(Connecti onData data);

get QAut hQper ati ons() returns an APl to use to conduct the authorization flow, or "OAuth
Dance", withaservice provider. Theresult of thisflowisan AccessG ant that can be used to establish
a connection with a local user account by caling cr eat eConnect i on. The OAuth20perations
interface is shown below:

1.1.0M1 Spring Socia Reference Manual 9

Spring Social

public interface QAuth2Qperations {
String buil dAut hori zeUrl (G ant Type grant Type, QAut h2Par aneters paraneters);
String buil dAuthenticateUrl (G ant Type grant Type, QAut h2Paraneters paraneters);

AccessG ant exchangeFor Access(String authorizationCode, String redirectUri,
Ml ti Val ueMap<String, String> additional Paraneters);

AccessGrant refreshAccess(String refreshToken, String scope,
Ml ti Val ueMap<String, String> additional Paraneters);

Callers are first expected to call buildAuthorizeUrl(GrantType, OAuth2Parameters) to construct the
URL to redirect the user to for connection authorization. Upon user authorization, the authorizationCode
returned by the provider should be exchanged for an AccessGrant. The AccessGrant should then used
to create a connection. Thisflow isillustrated below:

As you can see, there is a back-and-forth conversation that takes place between the application and
the service provider to grant the application access to the provider account. This exchange, commonly
known as the "OAuth Dance", follows these steps:

1

The flow starts by the application redirecting the user to the provider's authorization URL. Here the
provider displays a web page asking the user if he or she wishes to grant the application access to
read and update their data.

The user agrees to grant the application access.

The service provider redirects the user back to the application (via the redirect URI), passing an
authorization code as a parameter.

The application exchanges the authorization code for an access grant.

The service provider issues the access grant to the application. The grant includes an access token
and arefresh token. One receipt of these tokens, the "OAuth dance" is compl ete.

The application uses the AccessGrant to establish a connection between the local user account and
the externa provider account. With the connection established, the application can now obtain a
reference to the Service APl and invoke the provider on behalf of the user.

Theexample code bel ow shows use of aFacebookConnectionFactory to create aconnection to Facebook
using the OAuth2 server-side flow illustrated above. Here, FacebookConnectionFactory is a subclass
of OAuth2ConnectionFactory:

FacebookConnect i onFact ory connectionFactory =
new FacebookConnecti onFactory("clientld", "clientSecret");
QAut h2QOper ati ons oaut hOperati ons = connecti onFact ory. get QAut hOper ati ons();
QAut h2Par anet ers parans = new QAut h2Par aneters();
parans. set Redi rect Uri ("https://ny-cal | back-url");
String authorizeU |l = oauthOperations. buil dAuthorizeUrl (G ant Type. AUTHORI ZATI ON_CCDE, par ans) ;

1

1.0.M1 Spring Socia Reference Manual 10

Spring Social

response. sendRedi rect (aut hori zeUrl);

/1 upon receiving the call back fromthe provider:

AccessGrant accessGant = oaut hOperati ons. exchangeFor Access(aut hori zati onCode, "https://my-callback-url"

Connect i on<Facebook> connecti on = connecti onFactory. creat eConnecti on(accessG ant);

The following example illustrates the client-side "implicit" authorization flow also supported by
OAuth2. The difference between this flow and the server-side "authorization code" flow above is the
provider callback directly contains the access grant (no additional exchange is necessary). Thisflow is
appropriate for clients incapable of keeping the access grant credentials confidential, such as a mobile
device or JavaScript-based user agent.

FacebookConnect i onFact ory connectionFactory =
new FacebookConnecti onFactory("clientld", "clientSecret");
QAut h2Qper at i ons oaut hOper ati ons = connecti onFact ory. get OAut hOper ati ons();
QAut h2Par anet ers parans = new QAut h2Par anmet ers();
par ans. set Redi rect Uri ("https://ny-cal | back-url");
String authorizeU | = oauthQperations. buil dAuthorizeUr | (G ant Type. | MPLI Cl T_GRANT, parans);
response. sendRedi rect (aut hori zeUrl);

/1 upon receiving the call back fromthe provider:
AccessGrant accessGrant = new AccessG ant (accessToken);
Connect i on<Facebook> connecti on = connecti onFactory. creat eConnecti on(accessG ant);

OAuth1 service providers

OAuth 1 is the previous version of the OAuth protocol. It is more complex OAuth 2, and sufficiently
different that it is supported separately. Twitter, Linked In, and Triplt are some of the well-known
ServiceProvidersthat use OAuth 1. In Spring Social, the OAuth1ConnectionFactory allowsyouto create
connections to a OAuthl-based Service Provider:

public class OAut hlConnecti onFact or y<A> ext ends Connecti onFact or y<A> {
publ i ¢ OAut hlOperati ons get QAut hOperations();
publ i ¢ Connecti on<A> creat eConnecti on(QAut hToken accessToken);

publ i ¢ Connecti on<A> creat eConnecti on(Connecti onData data);

Like a OAuth2-based provider, get QAut hQper at i ons() returns an APl to use to conduct the
authorization flow, or "OAuth Dance". The result of the OAuth 1 flow is an QAut hToken that can
be used to establish a connection with a local user account by calling cr eat eConnecti on. The
OAuth1Operations interface is shown below:

public interface QAuthlQperations {

QAut hToken fet chRequest Token(String cal | backUrl ,
Mul ti Val ueMap<String, String> additional Paraneters);

1.1.0M1 Spring Socia Reference Manual 11

Spring Social

String buil dAuthorizeUrl (String request Token, QAuthlParaneters paraneters);
String buil dAut henticateUrl (String request Token, OAut hlParaneters paraneters);

QAut hToken exchangeFor AccessToken(Aut hori zedRequest Token request Token,
Mul ti Val ueMap<String, String> additional Paraneters);

Cdlers are first expected to call fetchNewReguestToken(String) to obtain a temporary token
from the ServiceProvider to use during the authorization session. Next, calers should cal
buildAuthorizeUrl (String, OAuthlParameters) to construct the URL to redirect the user to for
connection authorization. Upon user authorization, the authorized request token returned by the provider
should be exchanged for an access token. The access token should then used to create a connection.
Thisflow isillustrated below:

1. Theflow starts with the application asking for aregquest token. The purpose of the request token isto
obtain user approval and it can only be used to obtain an access token. In OAuth 1.0a, the consumer
callback URL is passed to the provider when asking for a request token.

2. The service provider issues areguest token to the consumer.

3. The application redirects the user to the provider's authorization page, passing the request token asa
parameter. In OAuth 1.0, the callback URL is aso passed as a parameter in this step.

4. The service provider prompts the user to authorize the consumer application and the user agrees.

5. The service provider redirects the user's browser back to the application (viathe callback URL). In
OAuth 1.0a, this redirect includes a verifier code as a parameter. At this point, the request token is
authorized.

6. The application exchanges the authorized request token (including the verifier in OAuth 1.0a) for
an access token.

7. The service provider issues an access token to the consumer. The "dance” is now complete.

8. The application uses the access token to establish a connection between the local user account and
the externa provider account. With the connection established, the application can now obtain a
reference to the Service API and invoke the provider on behalf of the user.

The exampl e code below shows use of a TwitterConnectionFactory to create a connection to Facebook
using the OAuthl server-side flow illustrated above. Here, TwitterConnectionFactory is a subclass of
OA uth1ConnectionFactory:

Twi tt er Connect i onFact ory connecti onFactory =
new Twi tt er Connecti onFact ory("consuner Key", "consunerSecret");
QAut hlQper ati ons oaut hOperati ons = connecti onFact ory. get QAut hOperati ons();
QAut hToken request Token = oaut hOperati ons. f et chRequest Token("htt ps://ny-cal | back-url", null);
String authorizeU |l = oauthOperations. buil dAuthorizeUrl (request Token, QAuthlParaneters. NONE);

1.1.0M1 Spring Socia Reference Manual 12

Spring Social

response. sendRedi rect (aut hori zeUrl);

/1 upon receiving the call back fromthe provider:
QAut hToken accessToken = oaut hOperati ons. exchangeFor AccessToken(

new Aut hori zedRequest Token(request Token, oauthVerifier), null);
Connection<Twi tter> connecti on = connectionFactory. createConnecti on(accessToken);

Registering ConnectionFactory instances

As you will seein subsequent sections of this reference guide, Spring Social provides infrastructure
for establishing connections to one or more providers in a dynamic, self-service manner. For example,
one client application may allow users to connect to Facebook, Twitter, and LinkedIn. Another might
integrate Github and Pivotal Tracker. To make the set of connectable providers easy to manage and
locate, Spring Socia provides aregistry for centralizing connection factory instances:

ConnectionFactoryRegi stry registry = new Connecti onFactoryRegi stry();

regi stry. addConnect i onFact or y(new FacebookConnecti onFactory(“clientld", "clientSecret"));
regi stry. addConnect i onFact ory(new Twi tt er Connecti onFact ory(" consuner Key", "consumerSecret"));
regi stry. addConnect i onFact ory(new Li nkedl nConnecti onFact ory("consuner Key", "consunerSecret"));

This registry implements a locator interface that other objects can use to lookup connection factories
dynamically:

public interface ConnectionFactorylLocator {
Connect i onFact or y<?> get Connecti onFactory(String providerld);
<A> Connecti onFact or y<A> get Connecti onFact ory(C ass<A> api Type) ;

Set <String> registeredProviderlds();

Example usage of a ConnectionFactoryL ocator is shown below:

/1 generic | ookup by providerld
Connect i onFact or y<?> connecti onFactory = | ocat or. get Connecti onFact ory("facebook");

/1 typed | ookup by service api type
Connect i onFact or y<Facebook> connecti onFactory = | ocat or. get Connecti onFact or y(Facebook. cl ass);

2.3 Persisting connections

After a connection has been established, you may wish to persist it for later use. This makes things
convenient for the user since a connection can simply be restored from its persistent form and does not
need to be established again. Spring Social provides a ConnectionRepository interface for managing
the persistence of a user's connections:

1.1.0M1 Spring Socia Reference Manual 13

Spring Social

public interface ConnectionRepository {
Mul ti Val ueMap<Stri ng, Connection<?>> findAl | Connections();
Li st <Connecti on<?>> findConnections(String providerld);
<A> Li st <Connecti on<A>> findConnecti ons(C ass<A> api Type);

Mul ti Val ueMap<String, Connection<?>> findConnecti onsToUser s(
Ml ti Val ueMap<String, String> providerUserlds);

Connect i on<?> get Connect i on(Connecti onKey connecti onKey);

<A> Connecti on<A> get Connecti on(C ass<A> api Type, String providerUserld);
<A> Connecti on<A> get Pri maryConnecti on(C ass<A> api Type);

<A> Connecti on<A> findPri maryConnection(C ass<A> api Type);

voi d addConnecti on(Connecti on<?> connection);

voi d updat eConnecti on(Connect i on<?> connecti on);

voi d renoveConnections(String providerld);

voi d renpveConnecti on(Connecti onKey connecti onKey);

As you can see, this interface provides a number of operations for adding, updating, removing,
and finding Connections. Consult the JavaDoc API of this interface for a full description of these
operations. Note that al operations on this repository are scoped relative to the "current user” that has
authenticated with your local application. For standalone, desktop, or mobile environments that only
have one user this distinction isn't important. In a multi-user web application environment, thisimplies
ConnectionRepository instances will be request-scoped.

For multi-user environments, Spring Social provides a UsersConnectionRepository that provides access
to the global store of connections across al users:

public interface UsersConnecti onRepository {
Li st<String> findUserl dsWthConnecti on(Connecti on<?> connecti on);
Set <String> findUserl dsConnectedTo(String providerld, Set<String> providerUserlds);

Connecti onRepository createConnecti onRepository(String userld);

Asyou can see, this repository acts as a factory for ConnectionRepository instances scoped to asingle
user, aswell asexposesanumber of multi-user operations. These operationsinclude the ability to lookup
the local userlds associated with connections to support provider user sign-in and "registered friends'
scenarios. Consult the JavaDoc API of thisinterface for afull description.

1.1.0M1 Spring Socia Reference Manual 14

Spring Social

JDBC-based persistence

Spring Social provides a JdbcUsersConnectionRepository implementation capable of persisting
connections to a RDBMS. The database schema designed to back this repository is defined as follows:

create tabl e UserConnection (userld varchar(255) not null,

providerld varchar(255) not null,

provi der User |l d varchar (255),

rank int not null,

di spl ayNane var char (255),

profileUl varchar(512),

i mageUr| varchar (512),

accessToken varchar (255) not null,

secret varchar(255),

refreshToken var char (255),

expi reTi nme bigint,

primary key (userld, providerld, providerUserld));
create uni que index UserConnecti onRank on User Connection(userld, providerld, rank);

For convenience is bootstrapping the schema from a running application, this schema definition is
available in the spri ng- soci al - cor e module as a resource at the path /org/springframework/
social/connect/jdbc/JdbcUsersConnectionRepository.sgl. Note that although this schema was designed
with compatibility in mind, it may not be compatible with all databases. Y ou may need to adapt this
schema definition to accommodate any peculiarities of your chosen database.

Theimplementation also provides support for encrypting authorization credential s so they are not stored
in plain-text.

The example code below demonstrates construction and usage of a JdbcUsersConnectionRepository:

/1 JDBC DataSource pointing to the DB where connection data is stored
Dat aSour ce dataSource = ...;

/'l locator for factories needed to construct Connections when restoring from persistent form
Connecti onFact oryLocat or connecti onFactorylLocator = ...;

/'l encryptor of connection authorization credentials
Text Encryptor encryptor = ...;

User sConnect i onReposi tory usersConnecti onRepository =
new JdbcUser sConnect i onReposi t ory(dat aSource, connectionFactorylLocator, encryptor);

/] create a connection repository for the single-user 'kdonald

// find kdonald's prinmary Facebook connection
Connect i on<Facebook> connection = repository.findPrimaryConnecti on(Facebook. cl ass);

1.1.0M1 Spring Socia Reference Manual 15

Connecti onRepository repository = usersConnecti onRepository.createConnecti onRepository("kdonald");

Spring Social

3. Adding Support for a New Service Provider

Spring Social makes it easy to add support for service providers that are not already supported by the
framework. If you review the existing client modules, such as spring-social-twitter and spring-social-
facebook, you will discover they are implemented in a consistent manner and they apply a set of well-
defined extension points. In this chapter, you will learn how to add support for new service providers
you wish to integrate into your applications.

3.1 Process overview

The process of adding support for a new service provider consists of several steps:
1. Create asource project for theclient codee.g. spri ng-soci al -twitter.
2. Develop or integrate a Java binding to the provider's APl e.g. Twi t t er .

3. Create a ServiceProvider model that allows users to authorize with the remote provider and obtain
authorized APl instancese.g. Twi tt er Ser vi cePr ovi der.

4. Create an ApiAdapter that maps the provider's native API onto the uniform Connection model e.g.
Twi tt er Adapter.

5. Finally, create a ConnectionFactory that wraps the other artifacts up and provides a simpleinterface
for establishing connectionse.g. Twi t t er Connect i onFact ory.

The following sections of this chapter walk you through each of the steps with examples.

3.2 Creating a source project for the provider client code

A Spring Social client moduleisastandard Javaproject that buildsasinglejar artifact e.g. spring-social-
twitter.jar. We recommend the code structure of aclient module follow the guidelines described below.

Code structure guidelines

We recommend the code for a new Spring Socia client module reside within the
org. springframework. soci al . {provi derld} base package, where {providerld} is a
unique identifier you assign to the service provider you are adding support for. Consider some of the
providers aready supported by the framework as examples:

Table 3.1. Spring Social Client Modules

Provider 1D Artifact Name Base Package
facebook spring-social-facebook org.springframework.social .facebook
twitter spring-social-twitter org.springframework.social .twitter

Within the base package, we recommend the following subpackage structure:

1.1.0M1 Spring Socia Reference Manual 16

Spring Social

Table 3.2. Module Sructure

Subpackage Description
api The public interface that defines the API binding.
api.impl The implementation of the API binding.
connect Thetypes necessary to establish connectionsto the serviceprovider.

Y ou can see this recommended structure in action by reviewing one of the other client modules such
as spring-social-twitter:

Here, the central service API type, Twitter, is located in the api package along with its supporting
operations types and data transfer object types. The primary implementation of that interface,
TwitterTemplate, islocated in the api.impl package (along with other package-private impl types have
that been excluded from thisview). Finally, the connect package containstheimplementations of various
connect SPIsthat enable connections to Twitter to be established and persisted.

3.3 Developing a Java binding to the provider's API

Spring Social favorsthe development of strongly-typed Javabindingsto external service provider APIs.
This provides a simple, domain-oriented interface for Java applications to use to consume the API.
When adding support for a new service provider, if no suitable Java binding aready exists you'll need
to develop one. If one already exists, such as Twitterdj for example, it is possible to integrate it into
the framework.

Designing a new Java API binding

API developersretain full control over the design and implementation of their Javabindings. That said,
we offer several design guidelinesin an effort to improve overall consistency and quality:

» Favor separating the API binding interface from the implementation. This is illustrated in
the spring-social-twitter example in the previous section. There, "Twitter" is the central API
binding type and it is declared in the org.springframework.social .twitter.api package with other
public types. "TwitterTemplate" is the primary implementation of this interface and is located
in the org.springframework.social.twitter.api.impl subpackage along with other package-private
implementation types.

» Favor organizing the API binding hierarchically by RESTful resource. REST-based APIs typically
expose accessto anumber of resourcesin an hierarchical manner. For example, Twitter'sAPI provides
access to "status timelines’, "searches’, "lists', "direct messages', "friends’, "geo location", and
"users’. Rather than add all operations across these resourcesto asingle flat "Twitter" interface, the
Twitter interface is organized hierarchically:

public interface Twitter extends Api Bi nding {

Di rect MessageOper ati ons direct MessageOperati ons();

1.1.0M1 Spring Socia Reference Manual 17

Spring Social

Fri endOperations friendQperations();
GeoQper ati ons geoQperations();

Li st Operations |istOperations();

Sear chOper ati ons searchOperations();

Ti mel i neCperations tinelineCperations();
User Oper ati ons user Operations();

}

DirectMessageOperations, for example, contains APl bindings to Twitter's "direct_messages"
resource:

public interface Direct MessageQperations {
Li st <Di rect Message> get Di r ect MessagesRecei ved();
Li st <Di r ect Message> get Di r ect MessagesSent () ;
voi d sendDirect Message(String toScreenNane, String text);
voi d sendDi rect Message(l ong toUserld, String text);

voi d del eteDi rect Message(| ong nessagel d);

Implementing a new Java API binding

APl developers are free to implement their Java APl binding with whatever REST/HTTP client
they see fit. That said, Spring Socia's existing APl bindings such as spring-social-twitter al use
Spring Framework's RestTemplate in conjunction with the Jackson JSON ObjectMapper and Apache
HttpComponents HTTP client. RestTemplate is a popular REST client that provides a uniform object
mapping interface across a variety of data exchange formats (JSON, XML, etc). Jackson is the leading
Java-based JSON marshalling technology. Apache HitpComponents has proven to be the most robust
HTTPclient (if itisnot available on the classpath Spring Social will fallback to standard J2SE facilities,
however). To help promote consistency across Spring Social's supported bindings, we do recommend
you consider these implementation technol ogies (and please et usknow if they do not meet your needs).

Spring Social has adopted a convention where each APl implementation class is named
"{Providerld} Template" e.g. TwitterTemplate. We favor this convention unless there is a good reason
to deviate from it. As discussed in the previous section, we recommend keeping implementation types
separate from the public API types. We also recommend keeping internal implementation details
package-private.

The way in which an APl binding implementation is constructed will vary based on the
API's authorization protocol. For APIs secured with OAuthl, the consumerKey, consumerSecret,
accessToken, and accessTokenSecret will be required for construction:

1.1.0M1 Spring Socia Reference Manual 18

Spring Social

public TwitterTenpl ate(String consunerKey, String consunerSecret, String accessToken,
String accessTokenSecret) { ... }

For OAuth2, only the access token should be required:

publ i c FacebookTenpl ate(String accessToken) { ... }

Each request made to the APl server needs to be signed with the authorization credentials provided
during construction of the binding. This signing process consists of adding an "Authorization" header
to each client request beforeit is executed. For OAuthl, the processis quite complicated, and is used to
support an elaborate request signature verification algorithm between the client and server. For OAuth2,
itisalot simpler, but does still vary across the various drafts of the OAuth2 specification.

To encapsulate this complexity, for each authorization protocol Spring Social provides a ApiTemplate
base class you may extend from to construct a pre-configured RestTemplate instance that performs the
request signing for you. For OAuthl:

public class TwitterTenpl ate extends Abstract QAut h1Api Bi ndi ng {
public Twi tterTenpl ate(String consumerKey, String consunmerSecret, String accessToken,
String accessTokenSecret) {
super (consumner Key, consuner Secret, accessToken, accessTokenSecret);

An OAuth2 example:

public class FacebookTenpl at e ext ends Abstract QAut h2Api Bi ndi ng {
publ i ¢ FacebookTenpl ate(String accessToken) ({
super (accessToken) ;

}

Once configured as shown above, you simply implement call getRestTemplate() and implement the
various APl operations. The existing Spring Social client modules all invoke their RestTemplate
instances in a standard manner:

public TwitterProfile getUserProfile() {
return get Rest Tenpl at e() . get For Obj ect (bui | dUri ("account/verify_credentials.json"),
TwitterProfile.class);

A note on RestTemplate usage: we do favor the RestTemplate methods that accept a URI object instead
of auri String. This ensures we always properly encode client data submitted in URI query parameters,
such as screen_name below:

1.1.0M1 Spring Socia Reference Manual 19

Spring Social

public TwitterProfile getUserProfile(String screenNane) {
return get Rest Tenpl at e() . get For Obj ect (bui |l dUri ("users/show. j son",
Col I ecti ons. si ngl et onMap("screen_nane", screenNane)), TwitterProfile.class);

For complete implementation examples, consult the source of the existing APl bindings included
in Spring Social. The spring-soci al -twi tter and spri ng-soci al -facebook modules
provide particularly good references.

Testing a new Java API binding

As part of the spring-social-test module, Spring Social includes a framework for unit testing AP
bindings. Thisframework consists of a"MockRestServiceServer” that can be used to mock out API calls
to the remote service provider. Thisalowsfor the development of independent, performant, automated
unit tests that verify client API binding and object mapping behavior.

To use, first create a MockRestServiceServer against the RestTemplate instance used by your API
implementation:

TwitterTenplate twitter = new Twi tter Tenpl at e("consuner Key", "consunerSecret", "accessToken",
"accessTokenSecret");
MockRest Server nockServer = MockRest Servi ceServer.createServer(tw tter.getRest Tenplate());

Then, for each test case, record expectations about how the server should be invoked and answer what
it should respond with:

@est

public void getUserProfile() {
Ht t pHeader s responseHeaders = new Htt pHeaders();
responseHeader s. set Cont ent Type(Medi aType. APPLI CATI ON_JSON) ;

nmockSer ver . expect (request To("https://api.twi tter.com 1/ account/verify_credentials.json"))
. andExpect (met hod(GET))
. andRespond(wi t hResponse(j sonResource("verify-credential s"), responseHeaders));

TwitterProfile profile = twitter.userOperations().getUserProfile();
assert Equal s(161064614, profile.getld());
assert Equal s("kdonal d", profile.getScreenNane());

In the exampl e above the response body iswritten from averify-credentials.json filelocated in the same
package as the test class:

private Resource jsonResource(String filenanme) {
return new O assPat hResource(filename + ".json", getC ass());

}

1.1.0M1 Spring Socia Reference Manual 20

Spring Social

The content of the file should mirror the content the remote service provider would return, allowing the
client JSON deserialization behavior to be fully tested:

"id":161064614,
"screen_nane": "kdonal d"

For compl ete test examples, consult the source of the existing API bindings included in Spring Social.
Thespring-soci al -twi tter andspri ng-soci al - f acebook modulesprovide particularly
good references.

Integrating an existing Java API binding

If you are adding support for a popular service provider, chances are a Java binding to the provider's
APl may already exist. For example, the Twitter4j library has been around for awhile and provides a
complete binding to Twitter's API. Instead of developing your own binding, you may simply wish to
integrate what already exists. Spring Social's connect framework has been carefully designed to support
this scenario.

To integrate an existing APl binding, simply note the binding's primary APl interface and
implementation. For example, in Twitterdj the main APl interface is named "Twitter" and instances are
constructed by a TwitterFactory. Y ou can always construct such an APl instance directly, and you'll see
in the following sections how to expose an instance as part of a Connection.

3.4 Creating a ServiceProvider model

As described in the previous section, a client binding to a secure API such as Facebook or Twitter
requires valid user authorization credentialsto work. Such credentials are generally obtained by having
your application conduct an authorization "dance" or handshake with the service provider. Spring Social
provides the ServiceProvider<A> abstraction to handle this "authorization dance'. The abstraction also
acts as afactory for native APl (A) instances.

Since the authorization dance is protocol-specific, a ServiceProvider specialization exists for each
authorization protocol. For example, if you are connecting to a OAuth2-based provider, you would
implement OAuth2ServiceProvider. After you've donethis, your implementation can be used to conduct
the OAuth2 dance and obtain an authorized API instance. This is typically done in the context of a
ConnectionFactory as part of establishing a new connection to the provider. The following sections
describe the implementation steps for each ServiceProvider type.

OAuth2

To implement an OAuth2-based ServiceProvider, first creaste a subclass of
AbstractOAuth2ServiceProvider named {Providerld} ServiceProvider. Parameterize <A> to be the
Java binding to the ServiceProvider's's API. Define a single constructor that accepts an clientld and
clientSecret. Finally, implement getApi(String) to return anew API instance.

1.1.0M1 Spring Socia Reference Manual 21

Spring Social

See
org. springframewor k. soci al . facebook. connect . FacebookSer vi cePr ovi der
as an example OAuth2ServiceProvider:

public final class FacebookServiceProvider extends Abstract QAut h2Ser vi ceProvi der <Facebook> {

publ i ¢ FacebookServi ceProvider(String clientld, String clientSecret) ({
super (new QAut h2Tenpl ate(clientld, clientSecret,
"https://graph. facebook. conf oaut h/ aut hori ze",
"https://graph. facebook. com oaut h/ access_t oken"));

}

publ i ¢ Facebook get Api (String accessToken) ({
return new FacebookTenpl at e(accessToken) ;

}

In the constructor, you should call super, passing up the configured OAuth2Template that implements
OAuth20perations. The OAuth2Template will handle the "OAuth dance" with the provider, and should
be configured with the provided clientld and clientSecret, along with the provider-specific authorizeUrl
and accessTokenUrl.

Some providers support provider sign-in (see Chapter 5, Sgning in with Service Provider Accounts)
through an authentication URL that is distinct from the authorization URL . Using the OAuth2Template
constructor as shown above will assume that the authentication URL is the same as the authorization
URL. But you may specify a different authentication URL by using OAuth2Template's other
constructor. Facebook does not have a separate authentication URL, but for the sake of the example,
suppose that Facebook's authentication URL is "https://graph.facebook.com/oauth/authenticate”. The
following implementation of the FacebookServiceProvider constructor configuresthe OAuth2Template
for that case:

publ i ¢ FacebookServi ceProvider(String clientld, String clientSecret) ({
super (new QAut h2Tenpl ate(clientld, clientSecret,
"https://graph. facebook. conf oaut h/ aut hori ze",
"https://graph. facebook. com oaut h/ aut henti cate",
"https://graph. facebook. conf oaut h/ access_t oken"));

In getApi(String), you should construct your API implementation, passing it the access token needed
to make authorized requests for protected resources.

OAuthl

To implement an OAuthl-based ServiceProvider, first create a subclass of
AbstractOAuth1ServiceProvider named { Providerl d} ServiceProvider. Parameterize <A> to bethe Java
binding to the ServiceProvider's API. Define a single constructor that accepts a consumerKey and
consumerSecret. Finally, implement getApi(String, String) to return anew API instance.

1.1.0M1 Spring Socia Reference Manual 22

Spring Social

See org. springframework. social.twi tter.connect. Twi tter Servi ceProvider
as an example OAuth1ServiceProvider:

public final class TwitterServiceProvider extends Abstract QAut hlServi ceProvider<Twitter> {

public TwitterServiceProvider(String consunerKey, String consunerSecret) {
super (consumer Key, consuner Secret, new QAut hlTenpl at e(consuner Key, consuner Secr et ,
"https://tw tter.conf oaut h/ request _t oken",
"https://tw tter.con oauth/aut hori ze",
"https://twi tter.conf oaut h/ aut henti cate",
"https://tw tter.conf oaut h/ access_t oken"));

}

public Twitter getApi (String accessToken, String secret) ({
return new Twi tter Tenpl at e(get Consuner Key(), get Consuner Secret (), accessToken, secret);

}

In the constructor, you should call super, passing up the the consumerKey, secret, and configured
OAuthlTemplate. The OAuthlTemplate will handle the "OAuth dance" with the provider. It should
be configured with the provided consumerKey and consumerSecret, along with the provider-specific
requestTokenUrl, authorizeUrl, authenticateUrl, and accessTokenUrl. The authenticateUrl parameter is
optional and may be left out if the provider doesn't have an authentication URL that is different than
the authorization URL.

As you can see here, OAuthlTemplate is constructed with Twitter's authentication URL (used for
provider sign-in; see Chapter 5, Sgning in with Service Provider Accounts), which isdistinct from their
authorization URL. Some providers don't have separate URLSs for authentication and authorization. In
those cases, you can use OAuth1Template's other constructor which doesn't take the authentication URL
as a parameter. For example, here's how the TwitterServiceProvider constructor would look without
configuring the authentication URL.:

public TwitterServiceProvider(String consunerKey, String consunerSecret) {
super (consumer Key, consumer Secret, new QAut hlTenpl at e(consuner Key, consumner Secr et ,
"https://twi tter.con oaut h/ request _token",
"https://tw tter.conf oauth/authorize",
"https://tw tter.conl oaut h/ access_t oken"));

In getApi(String, String), you should construct your APl implementation, passing it the four tokens
needed to make authorized requests for protected resources.

Consult the JavaDoc API of the various service provider types for more information and subclassing
options.

1.1.0M1 Spring Socia Reference Manual 23

Spring Social

3.5 Creating an ApiAdapter

Asdiscussed inthe previous chapter, one of theroles of aConnectionisto provide acommon abstraction
for alinked user account that is applied across all service providers. The role of the ApiAdapter isto
map aprovider's native API interface onto this uniform Connection model. A connection delegatestoits
adapter to perform operations such astesting the validity of its API credentials, setting metadata val ues,
fetching a user profile, and updating user status:

public interface Api Adapter<A> {
bool ean test (A api);
voi d set Connecti onVal ues(A api, ConnectionVal ues val ues);
UserProfile fetchUserProfil e(A api);

voi d updateStatus(A api, String nessage);

Consider org. spri ngframework. social .twitter.connect. Twitter Adapter as an
example implementation:

public class TwitterAdapter inplenents Api Adapter<Twitter> {

public boolean test(Twitter twitter) ({
try {
twitter.userQperations().getUserProfile();
return true;
} catch (Api Exception e) {
return fal se;
}
}

public void setConnectionValues(Twitter twitter, ConnectionVal ues val ues) {
TwitterProfile profile = twitter.userQOperations().getUserProfile();
val ues. set Provi der Userl d(Long. toString(profile.getld()));
val ues. set Di spl ayNane(" @ + profile.getScreenNane());
val ues. setProfileUrl (profile.getProfileUrl());
val ues. setl mageUr| (profile.getProfilelnageUrl());

}

public UserProfile fetchUserProfile(Twitter twitter) {
TwitterProfile profile = twitter.userQperations().getUserProfile();
return new User Profil eBuil der().set Nane(profile.getNane()).set User nang(
profile.getScreenName()). build();
}

public void updateStatus(Twitter twitter, String nessage) {
twitter.timelineQOperations().updateStatus(nmessage);

}

1.1.0M1 Spring Socia Reference Manual 24

Spring Social

As you can see, test(...) returns true if the API instance is functional and false if it is not.
setConnectionValues(...) sets the connection's providerUserld, displayName, profileUrl, and imageUrl
properties from TwitterProfile data. fetchUserProfile(...) maps a TwitterProfile onto the normalized
UserProfile model. updateStatus(...) update's the user's Twitter status. Consult the JavaDoc for
ApiAdapter and Connection for more information and implementation guidance. We also recommend
reviewing the other ApiAdapter implementations for additional examples.

3.6 Creating a ConnectionFactory

By now, you should have an API binding to the provider's API, a ServiceProvider<A> implementation
for conducting the "authorization dance”, and an ApiAdapter<A> implementation for mapping onto
the uniform Connection model. The last step in adding support for a new service provider isto create
a ConnectionFactory that wraps up these artifacts and provides a simple interface for establishing
Connections. After this is done, you may use your connection factory directly, or you may add it to
aregistry where it can be used by the framework to establish connections in a dynamic, self-service
manner.

Like a ServiceProvider<A>, a ConnectionFactory specialization exists for each authorization protocol.
For example, if you are adding support for a OAuth2-based provider, you would extend from
OA uth2ConnectionFactory. |mplementation guidelines for each type are provided below.

OAuth2

Create a subclass of OAuth2ConnectionFactory<A> named {Providerld} ConnectionFactory and
parameterize A to be the Java binding to the service provider's API. Define a single constructor
that accepts a clientld and clientSecret. Within the constructor call super, passing up the assigned
providerld, a new { Providerld} ServiceProvider instance configured with the clientld/clientSecret, and
anew { Provider} Adapter instance.

See
org. spri ngfranmewor k. soci al . f acebook. connect . FacebookConnecti onFactory
as an example OAuth2ConnectionFactory:

publ i c cl ass FacebookConnecti onFactory extends QAut h2Connecti onFact or y<Facebook> {
publ i ¢ FacebookConnecti onFactory(String clientld, String clientSecret) {
super ("facebook", new FacebookServi ceProvider(clientld, clientSecret), new FacebookAdapter());

}

OAuthl

Create a subclass of OAuthlConnectionFactory<A> named {Providerld} ConnectionFactory and
parameterize A to be the Java binding to the service provider's API. Define a single constructor
that accepts a consumerKey and consumerSecret. Within the constructor call super, passing up the
assigned providerld, a new { Providerld} ServiceProvider instance configured with the consumerKey/
consumerSecret, and a new { Provider} Adapter instance.

1.1.0M1 Spring Socia Reference Manual 25

Spring Social

See
org. springframework. social.twitter.connect. Twitter Connecti onFactory
as an example OAuth1ConnectionFactory:

public class Twi tterConnecti onFactory extends QAut hlConnecti onFact or y<Facebook> {
public TwitterConnectionFactory(String consunerKey, String consunerSecret) {
super ("twitter"”, new TwitterServi ceProvider(consunerKey, consunerSecret), new TwitterAdapter());

}

Consult the source and JavaDoc API for ConnectionFactory and its subclasses more information,
examples, and advanced customization options.

1.1.0M1 Spring Socia Reference Manual 26

Spring Social

4. Connecting to Service Providers

4.1 Introduction

In Chapter 2, Service Provider 'Connect’ Framework, you learned how Spring Social's Service Provider
'‘Connect’ Framework can be used to manage user connections that link your application's user accounts
with accounts on external service providers. In this chapter, you'll learn how to control the connect flow
in aweb application environment.

Spring Socia's spri ng- soci al - web module includes Connect Control | er, a Spring MVC
controller that coordinates the connection flow between an application and service providers.
Connect Cont r ol | er takes care of redirecting the user to the service provider for authorization and
responding to the callback after authorization.

4.2 Configuring ConnectController

As Connect Cont r ol | er directs the overall connection flow, it depends on several other objects
to do itsjob. Before getting into those, first we'll define a single Java @Configuration class where the
various Spring Socia objects, including ConnectController, will be configured:

@onfiguration
public class Social Config {

}

Now, Connect Cont r ol | er first delegatesto one or more ConnectionFactory instances to establish
connections to providers on behalf of users. Once a connection has been established, it delegates to a
Connect i onReposi t ory to persist user connection data.

Each of the Spring Social provider modulesincludesaConnect i onFact or y implementation:

e org.springframework. social.twitter.connect. Twi tterConnectionFactory

e org.springframework. soci al . facebook. connect . FacebookConnecti onFact ory
e org. springframework. soci al . | i nkedi n. connect. Li nkedl nConnecti onFact ory
e org.springframework. social.tripit.connect. TripltConnecti onFactory

e org. springframework. soci al . github. connect. G t HubConnecti onFact ory

To register one or more ConnectionFactories, smply define a ConnectionFactoryL ocator @Bean as
follows:

@onfiguration
public class Social Config {

1.1.0M1 Spring Socia Reference Manual 27

Spring Social

@ean
publ i ¢ Connecti onFactorylLocat or connecti onFactorylLocator () {
Connecti onFactoryRegi stry registry = new Connecti onFactoryRegi stry();

regi stry. addConnect i onFact or y(new FacebookConnect i onFact or y(
envi ronment . get Property("facebook.clientld"),
envi ronment . get Property("facebook. clientSecret")));

regi stry. addConnect i onFact ory(new Twi tt er Connecti onFact or y(
envi ronment . get Property("tw tter.consumnerKey"),
envi ronment . get Property("tw tter.consumerSecret")));

return registry;

}

@ nj ect
private Environnent environnent;

Above, two connection factories, one for Facebook and one for Twitter, have been registered. If you
would like to support other providers, simply register their connection factories here. Because client
ids and secrets may be different across environments (e.g., test, production, etc), we recommend you
externalize these values.

Asdiscussed in Section 2.3, “ Persisting connections’, Connect i onReposi t or y defines operations
for persisting and restoring connections for a specific user. Therefore, when configuring a
Connect i onReposi t or y bean for use by ConnectController, it must be scoped such that it can be
created on a per-user basis. The following Java-based configuration shows how to construct an proxy
to areguest-scoped Connect i onReposi t ory instance for the currently authenticated user:

@onfiguration
public class Social Config {

@ean
@cope(val ue="request", proxyMde=ScopedProxyMdde. | NTERFACES)
publ i ¢ Connecti onRepository connecti onRepository(
Aut henti cati on authentication = SecurityContextHol der. get Cont ext (). get Aut henti cation();
if (authentication == null) {
throw new ||| egal St at eException("Unable to get a Connecti onRepository: no user signed in");
}

return usersConnecti onRepository().createConnecti onRepository(authentication.getNane());

The @Bean method aboveisinjected withaPr i nci pal representing the current user'sidentity. This
is passed to UsersConnectionRepository to construct a ConnectionRepository instance for that user.

This means that we're also going to need to configureaUser sConnect i onReposi t ory @Bean:

@onfiguration
public class Social Config {

1.1.0M1 Spring Socia Reference Manual 28

Spring Social

@ean
publ i c UsersConnecti onRepository usersConnecti onRepository() {
return new JdbcUser sConnecti onReposi t ory(dat aSource, connecti onFactorylLocator (),
text Encryptor);

}

@ nj ect
private Dat aSource dataSour ce;

@ nj ect
private Text Encryptor textEncryptor;

UsersConnectionRepository is a singleton data store for connections across all users.
JdbcUser sConnecti onRepository is the RDMSbased implementation and needs a
Dat aSour ce, Connect i onFact or yLocat or, and Text Encr ypt or to do itsjob. It will use
the Dat aSour ce to access the RDBMS when persisting and restoring connections. When restoring
connections, it will usethe Connect i onFact or yLocat or to locate ConnectionFactory instances.

JdbcUser sConnect i onReposi t ory uses the Text Encr ypt or to encrypt credentials when
persisting connections. Spring Security 3.1 makesafew useful text encryptorsavailableviastatic factory
methodsin its Encr ypt or s class. For example, a no-op text encryptor is useful at development time
and can be configured like this:

@onfiguration
public class SecurityConfig {

@onfi guration
@rofile("dev")
static class Dev {

@ean
publ i c Text Encryptor textEncryptor() {
return Encryptors. noCpText ();

}

Noticethat theinner configuration classisannotated with @r of i | e(" dev") . Spring 3.1 introduced
the profile concept where certain beans will only be created when certain profiles are active. Here, the
@°r of i | e annotation ensuresthat thisText Encr ypt or will only be created when "dev" isan active
profile. For production-time purposes, a stronger text encryptor is recommended and can be created
when the "production” profileis active:

@onfiguration
public class SecurityConfig {

@onfiguration
@rofile("prod")
static class Prod {

1.1.0M1 Spring Socia Reference Manual 29

Spring Social

@Bean
publ i c Text Encryptor textEncryptor() {
return Encryptors. queryabl eText (envi ronnment. get Property("security.encryptPassword"),
envi ronnment . get Property("security.encryptSalt"))

@ nj ect
private Environnment environnent;

Configuring connection support in XML

Up to this point, the connection support configuration has been done using Spring's Java-based
configuration style. But you can configure it in either Java configuration or XML. Here's the XML
equivalent of the Connect i onFact or yRegi st ry configuration:

<bean i d="connecti onFact oryLocat or"
cl ass="org. spri ngframewor k. soci al . connect. support. Connecti onFact oryRegi stry">
<property nanme="connectionFactories">
<list>

<bean cl ass="org. springframework. soci al .twi tter.connect. Twi tter Connecti onFactory">
<constructor-arg val ue="${twitter.consunerKey}" />
<constructor-arg val ue="${twi tter.consunerSecret}" />

</ bean>

<bean cl ass="org. spri ngframewor k. soci al . f acebook. connect . FacebookConnect i onFact ory" >
<constructor-arg val ue="${facebook.clientld}" />
<constructor-arg val ue="${facebook. clientSecret}" />

</ bean>
</list>
</ property>

</ bean>

Thisisfunctionally equivalent to the Java-based configuration of Connect i onFact or yRegi stry
shown before.

Heres an XML equivdent of the JdbcUsersConnectionRepository and
Connect i onReposi t ory configurations shown before:

<bean i d="usersConnecti onRepository"
cl ass="org. spri ngframewor k. soci al . connect . j dbc. JdbcUser sConnect i onReposi t ory" >
<constructor-arg ref="dataSource" />
<constructor-arg ref="connectionFactorylLocator" />
<constructor-arg ref="textEncryptor" />
</ bean>

<bean i d="connecti onRepository" factory-method="createConnecti onRepository"
factory-bean="user sConnecti onReposi tory" scope="request">
<constructor-arg val ue="#{request. userPrinci pal . name}" />
<aop: scoped- proxy proxy-target-class="fal se" />
</ bean>

1.1.0M1 Spring Socia Reference Manual 30

Spring Social

Likewise, hereis the equivalent configuration of the Text Encr ypt or beans:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http: //ww. spri ngframewor k. or g/ schenma/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 3. 1. xsd" >

<beans profil e="dev">
<bean id="textEncryptor" class="org.springfranmework.security.crypto.encrypt.Encryptors"
factory-net hod="noOpText" />
</ beans>

<beans profile="prod">
<bean id="textEncryptor" class="org.springfranmework. security.crypto.encrypt.Encryptors"
factory-nethod="text">
<constructor-arg val ue="${security. encryptPassword}" />
<constructor-arg val ue="${security.encryptSalt}" />
</ bean>
</ beans>

</ beans>

Just like the Java-based configuration, profiles are used to select which of the text encryptors will be
created.

4.3 Creating connections with Connect Control | er

With its dependencies configured, Connect Control | er now has what it needs to alow users
to establish connections with registered service providers. Now, simply add it to your Social
@Configuration:

@onfiguration
public class Social Config {

@Bean
publ i ¢ Connect Controller connectController() {
return new Connect Control | er(connecti onFactorylLocator (),
connecti onRepository());

Or, if you prefer Spring's XM L-based configuration, then you can configure Connect Control | er
likethis:

<bean cl ass="org. spri ngfranmewor k. soci al . connect . web. Connect Control |l er">
<!-- relies on by-type autowiring for the constructor-args -->
</ bean>

1.1.0M1 Spring Socia Reference Manual 31

Spring Social

Connect Cont rol | er supports authorization flows for OAuth 1 and OAuth 2, relying on
QAut hlQperati ons or QAut h2Operations to handle the specifics for each protocol.
Connect Control | er will obtain the appropriate OAuth operations interface from one of the
provider connection factories registered with Connecti onFact or yRegi stry. It will select a
specific Connecti onFact ory to use by matching the connection factory's ID with the URL
path. The path pattern that Connect Cont r ol | er handlesis"/connect/{ providerld}". Therefore, if
Connect Cont r ol | er ishandling aregquest for "/connect/twitter", thenthe Connect i onFact ory
whose get Pr ovi der | d() returns "twitter" will be used. (As configured in the previous section,
Twi tt er Connect i onFact or y will be chosen.)

When coordinating a connection with a service provider, Connect Contr ol | er constructs a
callback URL for the provider to redirect to after the user grants authorization. By default
Connect Cont r ol | er usesinformation from the request to determine the protocol, host name, and
port number to use when creating the callback URL. Thisisfine in many cases, but if your application
is hosted behind a proxy those details may point to an internal server and will not be suitable for
constructing a public callback URL.

If you have this problem, you can set the appl i cati onUr | property to the base externa URL of
your application. Connect Cont r ol | er will usethat URL to construct the callback URL instead of
using information from the request. For example:

@Configuration
public class Social Config {

@ean
publ i ¢ Connect Control |l er connectController() {
Connect Control l er controller = new Connect Controller(
connecti onFact oryLocator (), connectionRepository());
control |l er.setApplicationUrl (environnment. getProperty("application.url")
return controller

Or if you prefer XML configuration:

<bean cl ass="org. spri ngfranmewor k. soci al . connect . web. Connect Control |l er">

<I-- relies on by-type autowiring for the constructor-args -->
<property nanme="applicationU|" val ue="${application.url}" />
</ bean>

Just aswith the authorization keys and secrets, we recommend that you externalize the application URL
because it will likely vary across different deployment environments.

Theflow that Connect Cont r ol | er followsisdlightly different, depending on which authorization
protocol is supported by the service provider. For OAuth 2-based providers, the flow is as follows:

e GET /connect - Displaysaweb page showing connection status for all providers.

1.1.0M1 Spring Socia Reference Manual 32

Spring Social

e GET /connect/{providerld} - Displays a web page showing connection status to the
provider.

e POST /connect/{providerld} - Initiates the connection flow with the provider.

e GET /connect/{providerld}?code={code} - Receives the authorization callback from
the provider, accepting an authorization code. Uses the code to request an access token and compl ete
the connection.

e DELETE /connect/{providerl d} - Seversall of the user's connection with the provider.

e DELETE /connect/{providerld}/{providerUserld} - Severs a specific connection
with the provider, based on the user's provider user ID.

For an OAuth 1 provider, the flow is very similar, with only a subtle difference in how the callback
is handled:

e CGET /connect - Displaysaweb page showing connection status for all providers.

e GET /connect/{providerld} - Displays a web page showing connection status to the
provider.

» POST /connect/{providerld} - Initiates the connection flow with the provider.

o GET / connect/ {provi derl d} ?oaut h_t oken={r equest
token} &aut h_verifier={verifier} - Receives the authorization calback from the
provider, accepting a verification code. Exchanges this verification code along with the request token
for an access token and completes the connection. The oaut h_veri fi er parameter is optional
and is only used for providers implementing OAuth 1.0a.

« DELETE /connect/ {provi derl d} - Seversall of the user's connection with the provider.

e DELETE /connect/{providerld}/{providerUserld} - Severs a specific connection
with the provider, based on the user's provider user ID.

Displaying a connection page

Before the connection flow starts in earnest, a web application may choose to show a page that offers
the user information on their connection status. This page would offer them the opportunity to create a
connection between their account and their social profile. Connect Cont r ol | er candisplay such a
page if the browser navigatesto/ connect / { pr ovi der}.

For example, to display a connection status page for Twitter, where the provider nameis "twitter", your
application should provide alink similar to this:

<a href="<c:url value="/connect/twitter" />">Connect to Twitter

Connect Cont r ol | er will respond to this request by first checking to see if a connection aready
exists between the user's account and Twitter. If not, then it will with aview that should offer the user

1.1.0M1 Spring Socia Reference Manual 33

Spring Social

an opportunity to create the connection. Otherwise, it will respond with aview to inform the user that
aconnection already exists.

The view names that Connect Cont r ol | er responds with are based on the provider's name. In this
case, since the provider name is "twitter", the view names are " connect/twitterConnect” and "connect/
twitterConnected".

Optionally, you may choose to display a page that shows connection status for al providers. In that
case, the link might look like this:

<a href="<c:url val ue="/connect" />">Your connections

The view namethat Connect Cont r ol | er respondswith for this URL is"connect/status’.

Initiating the connection flow

To kick off the connection flow, the application should POST to / connect/ {provi der | d}.
Continuing with the Twitter example, aJSP view resolved from " connect/twitterConnect” might include
the following form:

<form action="<c:url value="/connect/twitter" />" method="POST">
<p>You haven't created any connections with Twitter yet. Cick the button to create

a connection between your account and your Twitter profile.

(You'll be redirected to Twitter where you'll be asked to authorize the connection.)</p>
<p><button type="subm t"><ing src="<c:url value="/resources/social/twtter/signin.png" />"/>
</ but t on></ p>

</ form

When Connect Cont rol | er handles the request, it will redirect the browser to the provider's
authorization page. In the case of an OAuth 1 provider, it will first fetch a request token from the
provider and pass it dong as a parameter to the authorization page. Request tokens aren't used in
OAuth 2, however, so instead it passes the application's client 1D and redirect URI as parameters to the
authorization page.

For example, Twitter's authorization URL has the following pattern:

https://tw tter.conl oaut h/ aut hori ze?oaut h_t oken={t oken}

If the application's request token were "vaVSe"l, then the browser would be redirected to https://
twitter.com/oauth/authorize?oauth_token=vPyVSe and a page similar to the following would be
displayed to the user (from Twitter)%:

In contrast, Facebook isan OAuth 2 provider, so its authorization URL takesadlightly different pattern:

This isjust an example. Actua request tokens are typically much longer.
2| the user hasnot yet signed into Twitter, the authorization pagewill asoincludeausername and password field for authentication
into Twitter.

1.1.0M1 Spring Socia Reference Manual 34

Spring Social

https://graph. facebook. conf oaut h/ aut hori ze?client _id={clientld}&edirect_uri={redirectUri}

Thus, if the application's Facebook client ID is "Ob754" and it's redirect
URI is "http://lwww.mycoolapp.com/connect/facebook”, then the browser would
be redirected to https://graph.facebook.com/oauth/authorize?client_id=0b754& redirect_uri=http://
www.mycool app.com/connect/facebook and Facebook would display the following authorization page
to the user:

If theuser clicksthe"Allow" button to authorize access, the provider will redirect the browser back tothe
authorization callback URL whereConnect Cont r ol | er will bewaiting to complete the connection.

The behavior varies from provider to provider when the user denies the authorization. For instance,
Twitter will simply show a page telling the user that they denied the application access and does not
redirect back to the application's callback URL. Facebook, on the other hand, will redirect back to the
callback URL with error information as request parameters.

Authorization scope

In the previous example of authorizing an application to interact with a user's Facebook profile, you
notice that the application is only requesting access to the user's basic profile information. But there's
much more that an application can do on behalf of auser with Facebook than simply harvest their profile
data. For example, how can an application gain authorization to post to a user's Facebook wall?

OAuth 2 authorization may optionally include ascope parameter that indicates the type of authorization
being requested. On the provider, the "scope" parameter should be passed along to the authorization
URL. In the case of Facebook, that means that the Facebook authorization URL pattern should be as
follows:

https://graph. facebook. conf oaut h/ aut hori ze?client _id={clientld}&edirect _uri={redirectUi}&scope={scope}

Connect Cont r ol | er acceptsa'scope" parameter at authorization and passesits value along to the
provider's authorization URL. For example, to request permission to post to a user's Facebook wall, the
connect form might look like this:

<form action="<c:url value="/connect/tw tter" />" nethod="POST">
<i nput type="hidden" name="scope" val ue="publish_stream of fline_access" />
<p>You haven't created any connections with Twitter yet. Cick the button to create

a connection between your account and your Twitter profile.

(You'll be redirected to Twitter where you'll be asked to authorize the connection.)</p>
<p><button type="submit"><inmg src="<c:url value="/resources/social/twtter/signin.png" />"/>
</ but t on></ p>

</ form

The hidden "scope" field contains the scope values to be passed along in the scope> parameter to
Facebook's authorization URL. In this case, "publish_stream” requests permission to post to a user's
wall. Inaddition, "offline_access" requests permission to access Facebook on behalf of auser even when
the user isn't using the application.

1.1.0M1 Spring Socia Reference Manual 35

Spring Social

Note

OAuth 2 access tokens typically expire after some period of time. Per the OAuth 2
specification, an application may continue accessing a provider after atoken expires by using
a refresh token to either renew an expired access token or receive a new access token (all
without troubling the user to re-authorize the application).

Facebook does not currently support refresh tokens. Moreover, Facebook accesstokens expire
after about 2 hours. So, to avoid having to ask your usersto re-authorize ever 2 hours, the best
way to keep along-lived access token isto request "offline_access".

When asking for "publish_stream,offline_access' authorization, the user will be prompted with the
following authorization page from Facebook:

Scope values are provider-specific, so check with the service provider's documentation for the available
scopes. Facebook scopes are documented at http://devel opers.facebook.com/docs/authentication/

permissions.

Responding to the authorization callback

After the user agrees to allow the application have access to their profile on the provider, the provider
will redirect their browser back to the application's authorization URL with acode that can be exchanged
for an accesstoken. For OAuth 1.0a providers, the callback URL is expected to receive the code (known
as a verifier in OAuth 1 terms) in an oaut h_veri fi er parameter. For OAuth 2, the code will be
inacode parameter.

Connect Cont r ol | er will handle the callback request and trade in the verifier/code for an access
token. Once the access token has been received, the OAuth dance is complete and the application
may use the access token to interact with the provider on behaf of the user. The last thing
that Connect Control | er does is to hand off the access token to the Ser vi cePr ovi der
implementation to be stored for future use.

Disconnecting

To delete a connection via Connect Control | er, submit a DELETE request to "/connect/
{provider}".

In order to support this through a form in a web browser, you'll need to have Spring's
H ddenHt t pMet hodFi | t er configured in your application's web.xml. Then you can provide a
disconnect button viaaform like this:

<form action="<c:url value="/connect/twitter" />" method="post">
<div class="form nfo">
<p>
Spring Social Showcase is connected to your Twitter account.
Cick the button if you wish to disconnect.
</ p>
</ di v>

1.1.0M1 Spring Socia Reference Manual 36

http://developers.facebook.com/docs/authentication/permissions
http://developers.facebook.com/docs/authentication/permissions
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html

Spring Social

<button type="submnit">Di sconnect </ button>
<i nput type="hi dden" name="_nethod" val ue="del ete" />
</ form

When this form is submitted, Connect Cont r ol | er will disconnect the user's account from the
provider. It does this by calling the di sconnect () method on each of the Connect i onsreturned
by the provider'sget Connect i ons() method.

4.4 Connection interceptors

In the course of creating a connection with a service provider, you may want to inject additional
functionality into the connection flow. For instance, perhaps you'd like to automatically post a tweet to
auser's Twitter timeline immediately upon creating the connection.

Connect Cont rol | er may be configured with one or more connection interceptors that it will
call at pointsin the connection flow. These interceptors are defined by the Connect | nt er cept or
interface:

public interface Connectlnterceptor<A> {
voi d preConnect (Connecti onFact or y<A> connecti onFactory, MiltiVal ueMap<String, String> paraneters, \WbRe

voi d post Connect (Connecti on<A> connecti on, WbRequest request);

The pr eConnect () method will be called by Connect Control | er just before redirecting the
browser to the provider's authorization page. Custom authorization parameters may be added to the
provided parameter map. post Connect () will be called immediately after a connection has been
persisted linking the user's local account with the provider profile.

For example, suppose that after connecting a user account with their Twitter profile you want to
immediately post atweet about that connection to the user's Twitter timeline. To accomplish that, you
might write the following connection interceptor:

public class Tweet After Connect | nterceptor inplenents Connectlnterceptor<Twitter> {

public void preConnect (Connecti onFact ory<Twi tter Api > provider, MiltiVal ueMap<String, String> paraneters,
/1 nothing to do

}

public voi d post Connect (Connection<Twi tterApi > connecti on, WebRequest request) {
connection. updateStatus("l've connected with the Spring Social Showcase!");

}

Thisinterceptor can then beinjected into Connect Cont r ol | er whenit is created:

1.1.0M1 Spring Socia Reference Manual 37

Spring Social

@ean
publ i ¢ Connect Control |l er connectController() {
Connect Control l er controller = new Connect Control | er(connecti onFactorylLocator(),
connecti onRepository());
control | er. addl nt ercept or (new Tweet Aft er Connect I nterceptor());
return controller

Or, as configured in XML.:

<bean cl ass="org. spri ngfranmewor k. soci al . connect . web. Connect Control |l er">
<property nanme="interceptors">
<list>
<bean cl ass="org. spri ngframewor k. soci al . showcase. tw tter. Tweet Aft er Connect I nterceptor” />
</list>
</ property>
</ bean>

Note that the i nt er cept or s property is alist and can take as many interceptors as you'd like to
wire into it. When it comes time for Connect Cont r ol | er to call into the interceptors, it will only
invoke the interceptor methods for those i nterceptors whose service operations type matches the service
provider's operationstype. In the example given here, only connections made through a service provider
whose operation typeis Twi t t er Api will trigger the interceptor's methods.

1.1.0M1 Spring Socia Reference Manual 38

Spring Social

5. Signing in with Service Provider Accounts

5.1 Introduction

In order to ease sign in for their users, many applications allow sign in with a service provider such as
Twitter or Facebook. With this authentication technique, the user signsinto (or may already be signed
into) his or her provider account. The application then tries to match that provider account to a local
user account. If amatch isfound, the user is automatically signed into the application.

Spring Social supports such service provider-based authentication with
Provi der Si gnl nControl | er from the spring-soci al -web module.
Provi der Si gnl nCont r ol | er works very much like Connect Control | er in that it goes
through the OAuth flow (either OAuth 1 or OAuth 2, depending on the provider). Instead of creating
a connection at the end of process, however, Pr ovi der Si gnl nCont rol | er attempts to find a
previously established connection and uses the connected account to authenticate the user with the
application. If no previous connection matches, the flow will be sent to the application's sign up page
so that the user may register with the application.

5.2 Enabling provider sign in

To add provider sign in capability to your Spring application, configure
Pr ovi der Si gnl nCont r ol | er asabean in your Spring MV C application:

@Bean
publ i c ProviderSignlnController providerSignlnController() {
return new ProviderSi gnl nControl | er(connectionFactorylLocator(),
user sConnecti onRepository(), new Sinpl eSi gnl nAdapter());

Or in XML, if you prefer:

<bean cl ass="org. spri ngframewor k. soci al . connect . web. Provi der Si gnl nControl | er">
<I-- relies on by-type autowiring for the constructor-args -->
</ bean>

As with Connect Control | er, Provi der Si gnl nControl | er uses information from the
reguest to determine the protocal, host name, and port number to use when creating a callback URL . But
youmay settheappl i cati onUr | property tothe base external URL of your application to overcome
any problems where the request refers to an internal server. For example:

@ean
publ i c ProviderSignlnController providerSignlnController() {
Provi der Si gnl nControl |l er controller = new ProviderSignlnController(connectionFactorylLocator(),
user sConnecti onRepository(), new Sinpl eSi gnl nAdapter());
controller.setApplicationUl (environnent.getProperty("application.url"));
return controller;

1.1.0M1 Spring Socia Reference Manual 39

Spring Social

Or when configured in XML.:

<bean cl ass="org. spri ngfranmewor k. soci al . connect . web. Provi der Si gnl nControl | er">

<!-- relies on by-type autowiring for the constructor-args -->
<property nanme="applicationU|" val ue="${application.url}" />
</ bean>

Once again, we recommend that you externalize the value of the application URL since it will vary
between deployment environments.

When authenticating via an OAuth 2 provider, Provi der Si gnl nControl | er supports the
following flow:

* POST /signin/{providerld} - Initiates the sign in flow by redirecting to the provider's
authentication endpoint.

e GET /signin/{providerld}?code={verifier} - Receves the authentication callback
from the provider, accepting a code. Exchanges this code for an access token. Using this access
token, it retrieves the user's provider user 1D and uses that to lookup a connected account and then
authenticates to the application through the sign in service.

* If the provider user ID doesn't match any existing connection, Pr ovi der Si gnl nContr ol | er
will redirect to a sign up URL. The default sign up URL is "/signup” (relative to the application
root), but can be customized by setting the si gnUpUr | property.

e« If the provider user ID maiches more than one existing connection,
Provi der Si gnl nCont r ol | er will redirect to the application'ssignin URL to offer theuser a
chanceto sign in through another provider or with their username and password. The request to the
signin URL will have an "error" query parameter set to "multiple_users' to indicate the problem
so that the page can communicate it to the user. The default sign in URL is"/signin” (relative to
the application root), but can be customized by setting the si gnl nUr | property.

« If any error occurs while fetching the access token or while fetching the user's profile data,
Provi der Si gnl nControl | er will redirect to the application's sign in URL. The request
to the sign in URL will have an "error" query parameter set to "provider” to indicate an error
occurred while communicating with the provider. The default signin URL is"/signin” (relative to
the application root), but can be customized by setting the si gnl nUr | property.

For OAuth 1 providers, the flow isonly dightly different:

e POST /signin/{providerld} - Initiates the sign in flow. This involves fetching a request
token from the provider and then redirecting to Provider's authentication endpoint.

 If any error occurs while fetching the regquest token, Pr ovi der Si gnl nControl | er will
redirect to the application'ssignin URL. Therequest to thesignin URL will have an "error" query
parameter set to "provider” to indicate an error occurred while communicating with the provider.

1.1.0M1 Spring Socia Reference Manual 40

Spring Social

The default sign in URL is "/signin" (relative to the application root), but can be customized by
setting the si gnl nUr | property.

o CGET / si gni n/{providerld}?oaut h_token={request
token} &aut h_verifier={verifier} - Receves the authentication callback from the
provider, accepting averification code. Exchangesthis verification code along with the request token
for an access token. Using this access token, it retrieves the user's provider user ID and uses that to
lookup a connected account and then authenticates to the application through the sign in service.

* |If the provider user ID doesn't match any existing connection, Pr ovi der Si gnl nContr ol | er
will redirect to a sign up URL. The default sign up URL is"/signup” (relative to the application
root), but can be customized by setting the si gnUpUr | property.

o If the provider wuser ID maiches more than one existing connection,
Provi der Si gnl nCont r ol | er will redirect to the application'ssignin URL to offer theuser a
chanceto sign in through another provider or with their username and password. The request to the
signin URL will have an "error" query parameter set to "multiple_users' to indicate the problem
so that the page can communicate it to the user. The default sign in URL is"/signin” (relative to
the application root), but can be customized by setting the si gnl nUr | property.

« |If any error occurs when exchanging the request token for an access token or while fetching the
user's profile data, Pr ovi der Si gnl nCont rol | er will redirect to the application's sign in
URL. The request to the sign in URL will have an "error" query parameter set to "provider” to
indicate an error occurred while communicating with the provider. The default sign in URL is
"/signin" (relative to the application root), but can be customized by setting the si gnl nUr |

property.
ProviderSigninController's dependencies

As shown in the Java-based configuration above, Pr ovi der Si gnl nContr ol | er depends on a
handful of other objectsto do itsjob.

« A ConnectionFactorylLocator to lookup the ConnectionFactory used to create the
Connection to the provider.

* A UsersConnecti onReposi t ory to find the user that has the connection to the provider user
attemptingto signiin.

» A Si gnl nAdapt er to sign auser into the application when a matching connection is found.

When using XML configuration, it isn't necessary to explicitly configure these constructor
arguments because Pr ovi der Si gnl nCont r ol | er's constructor is annotated with @ nj ect .
Those dependencies will be given to Pr ovi der Si gnl nCont r ol | er via autowiring. You'll still
need to make sure they're available as beans in the Spring application context so that they can be
autowired.

Y ou should have already configured most of these dependencieswhen setting up connection support (in
the previous chapter). But when used with Pr ovi der Si gnl nCont r ol | er, you should configure
them to be created as scoped proxies:

1.1.0M1 Spring Socia Reference Manual 41

Spring Social

@ean
@cope(val ue="si ngl eton", proxyMde=ScopedProxyMde. | NTERFACES)
publ i ¢ Connecti onFact oryLocat or connecti onFactorylLocator() {
Connecti onFactoryRegi stry registry = new Connecti onFactoryRegi stry();

regi stry. addConnect i onFact or y(new FacebookConnect i onFact or y(
envi ronnment . get Property("facebook.clientld"),
envi ronment . get Property("facebook. clientSecret")));

regi stry. addConnect i onFact ory(new Twi t t er Connect i onFact or y(
envi ronment . get Property("tw tter.consunerKey"),
envi ronment . get Property(“tw tter.consumerSecret")));

return registry;

}

@Bean
@cope(val ue="si ngl et on", proxyMbde=ScopedProxyNMbde. | NTERFACES)
publ i ¢ UsersConnecti onRepository usersConnecti onRepository() {
return new JdbcUser sConnecti onReposi t ory(dat aSource, connectionFactorylLocator(), textEncryptor);

}

In the event that the sign in attempt fails, the sign in attempt will be stored in the session to be used to
present a sign-up page to the user (see Section 5.3, “Signing up after afailed signin”). By configuring
ConnectionFactoryL ocator and UsersConnectionRepository as scoped proxies, it enables the proxiesto
be carried along with the sign in attempt in the session rather than the actual objects themselves.

The Si gnl nAdapt er is exclusively used for provider sign in and so a Si gnl nAdapt er bean
will need to be added to the configuration. But first, you'll need to write an implementation of the
Si gnl nAdapt er interface.

The Si gnl nAdapt er interface is defined as follows:

public interface SignlnAdapter {
String signln(String userld, Connection<?> connection, NativeWbRequest request);

}

The si gnl n() method takes the local application user's user ID normalized asa St ri ng. No other
credentials are necessary here because by the time this method is called the user will have signed
into the provider and their connection with that provider has been used to prove the user's identity.
Implementations of this interface should use this user ID to authenticate the user to the application.

Different applications will implement security differently, so each application must implement
Si gnl nAdapt er in a way that fits its unique security scheme. For example, suppose that an
application's security is based on Spring Security and simply uses a user's account 1D as their principal.
In that case, asimple implementation of Si gnl nAdapt er might look like this:

@ervi ce
public class SpringSecuritySignlnAdapter inplements SignlnAdapter {
public String signin(String |ocal Userld, Connection<?> connection, NativeWbRequest request) {

1.1.0M1 Spring Socia Reference Manual 42

Spring Social

Securi t yCont ext Hol der. get Cont ext (). set Aut henti cati on(
new User nanePasswor dAut hent i cati onToken(| ocal Userld, null, null));
return null;

Adding a provider sign in button

With Pr ovi der Si gnl nCont rol | er and a Si gnl nAdapt er configured, the backend support
for provider sign inisin place. The last thing to do is to add a sign in button to your application that
will kick off the authentication flow with Pr ovi der Si gnl nControl | er.

For example, the following HTML snippet adds a " Signin with Twitter" button to a page:

<formid="tw_ signin" action="<c:url value="/signin/twitter"/>" method="POST">
<button type="submt">
<ing src="<c:url value="/resources/social/twitter/sign-in-with-twitter-d.png"/>" />
</ but t on>
</form

Notice that the path used in the form's action attribute maps to the first step in
Pr ovi der Si gnl nCont r ol | er 'sflow. In this case, the provider isidentified as "twitter".

Note

Some providers offer client-side sign in widgets, such as Twitter @Anywhere's
"Connect with Twitter" button and Facebook's <f b: | ogi n- but t on>. Although these
widgets offer a sign in experience similar to that of Provi der Si gnl nControl | er,
they cannot be used to drive Provi der Si gnl nController's sign in flow. The
Provi der Si gnl nControl | er signin flow should be initiated by submitting a POST
reguest as described above.

Clicking thisbutton will trigger aPOST request to "/signin/twitter”, kicking off the Twitter signin flow.
If the user has not yet signed into Twitter, the user will be presented with the following page from
Twitter:

After signing in, the flow will redirect back to the application to complete the sign in process.

5.3 Signing up after a failed sign in

If Provi der Si gnl nControl | er can't findalocal user associated with a provider user attempting
to sign in, there may be an opportunity to have the user sign up with the application. Leveraging the
information about the user received from the provider, the user may be presented with a pre-filled sign
up form to explicitly sign up with the application. It's also possible to use the user's provider data to
implicitly create anew local application user without presenting a sign up form.

1.1.0M1 Spring Socia Reference Manual 43

Spring Social

Signing up with a sign up form

By default, the sign up URL is"/signup”, relative to the application root. Y ou can override that default
by setting the si gnUpUr | property on the controller. For example, the following configuration of
Provi der Si gnl nCont r ol | er setsthe sign up URL to "/register":

@Bean
publ i c ProviderSignlnController providerSignlnController() {
Provi der Si gnl nController controller = new ProviderSignlnControl | er(connecti onFactorylLocator (),
user sConnect i onRepository(), new Sinpl eSi gnl nAdapter());
control |l er.setSignUpUrl ("/register");
return controller;

Or to set the sign up URL using XML configuration:

<bean cl ass="org. spri ngframewor k. soci al . connect . web. Provi der Si gnl nControl | er">
<property nanme="signUpUrl" value="/register" />
</ bean>

Before redirecting to the sign up page, Pr ovi der Si gnl nCont r ol | er collects some information
about the authentication attempt. Thisinformation can be used to prepopulate the sign up form and then,
after successful sign up, to establish a connection between the new account and the provider account.

To prepopulate the sign up form, you can fetch the user profile data from a connection retrieved
from Provi der Si gnl nUti |l s. get Connecti on(). For example, consider this Spring MVC
controller method that setups up the sign up form with aSi gnupFor mto bind to the sign up form:

@request Mappi ng(val ue="/si gnup", nethod=Request Met hod. GET)
publ i ¢ Si gnupFor m si gnupFor m{ WebRequest request) {
Connecti on<?> connection = ProviderSignlnUtils.getConnection(request);

if (connection != null) {
return Si gnupForm fronProvi derUser (connection. fetchUserProfile());
} else {

return new Si gnupForn();

}

If ProviderSignlnUtils.getConnection() returns a connection, that means there was a
failed provider sign in attempt that can be completed if the user registers to the application. In that
case, a Si gnupFor m object is created from the user profile data obtained from the connection's
fetchUser Profil e() method. Within f r onPr ovi der User () , the Si gnupFor mproperties
may be set like this:

public static SignupForm fronProviderUser(UserProfile providerUser) {
Si gnupForm form = new Si gnupFor () ;
form set Fi rst Name(provi der User. get Fi rst Nane()) ;
f orm set Last Nane(pr ovi der User . get Last Nane()) ;

1.1.0M1 Spring Socia Reference Manual 44

Spring Social

form set User nane(provi der User . get User nane()) ;
form set Emai | (provi derUser. getEnail ());
return form

Here, the Si gnupFor mis created with the user's first name, last name, username, and email from the
User Profil e. In addition, User Prof i | e adso has aget Nanme() method which will return the
user's full name as given by the provider.

Theavailability of User Pr of i | e'spropertieswill depend on the provider. Twitter, for example, does
not provide a user's email address, so theget Enai | () method will always return null after asignin
attempt with Twitter.

After the user has successfully signed up in your application a connection can be
created between the new local user account and their provider account. To complete
the connection cal Provider Signl nUtils. handl ePost Si gnUp(). For example, the
following method handles the sign up form submission, creates an account and then calls
Provi der Si gnl nUt i | s. handl ePost Si gnUp() to complete the connection:

@request Mappi ng(val ue="/si gnup", mnet hod=Request Met hod. POST)
public String signup(@alid SignupForm form BindingResult fornBinding, WebRequest request) {
i f (fornBinding.hasErrors()) {
return null;
}
Account account = createAccount (form fornBinding);
if (account != null) {
Signl nWils. signin(account. getUsernane());
Provi der Si gnl nUti | s. handl ePost Si gnUp(account . get User nane(), request);
return “redirect:/";
}

return null;

Implicit sign up

To enable implicit sign up, you must create an implementation of the Connecti onSi gnUp
interface and inject an instance of that Connecti onSi gnUp to the connection repository. The
Connect i onSi gnUp interfaceis simple, with only a single method to implement:

public interface ConnectionSi gnUp {
String execut e(Connection<?> connection);

}

The execut e() method is given a Connect i on that it can use to retrieve information about the
user. It can then use that information to create a new loca application user and return the new local
user I1D. For example, the following implementation fetches the user's provider profile and uses it to
create a new account:

1.1.0M1 Spring Socia Reference Manual 45

Spring Social

publ i c class Account Connecti onSi gnUp inpl ements Connecti onSi gnUp {
private final AccountRepository account Repository;

publ i ¢ Account Connect i onSi gnUp(Account Reposi tory account Repository) {
t hi s. account Repository = account Repository;

}

public String execute(Connection<?> connection) {
UserProfile profile = connection.fetchUserProfile();
Account account = new Account(profile.getUsernanme(), profile.getFirstName(), profile.getLastName())
account Reposi tory. creat eAccount (account) ;
return account. get User nane();

If thereisany problemin creating the new user implicitly (for example, if theimplicitly chosen username
isalready taken) execut e() may return null to indicate that the user could not be created implicitly.
Thiswill ultimately resultin Pr ovi der Si gnl nCont r ol | er redirecting the user to the signup page.

Once you've written a Connect i onSi gnUp for your application, you'll need to inject it into the
User sConnect i onReposi t ory. In Java-based configuration:

@ean
@cope(val ue="si ngl eton", proxyMyde=ScopedProxyMde. | NTERFACES)
publ i ¢ UsersConnecti onRepository usersConnecti onRepository(Account Repository account Repository) {
JdbcUser sConnect i onRepository repository = new JdbcUser sConnecti onRepository(
dat aSour ce, connectionFactorylLocator(), Encryptors.noQpText());
reposi tory. set Connecti onSi gnUp(new Account Connecti onSi gnUp(account Repository));
return repository;

1.1.0M1 Spring Socia Reference Manual 46

	Spring Social Reference Manual
	Table of Contents
	1. Spring Social Overview
	1.1 Introduction
	1.2 Socializing applications
	1.3 How to get
	Client modules

	1.4 Dependencies
	Java
	Java Servlet API
	Spring Framework
	Spring Security Crypto
	Apache HttpComponents
	Jackson JSON Processor

	1.5 Sample Code

	2. Service Provider 'Connect' Framework
	2.1 Core API
	2.2 Establishing connections
	OAuth2 service providers
	OAuth1 service providers
	Registering ConnectionFactory instances

	2.3 Persisting connections
	JDBC-based persistence

	3. Adding Support for a New Service Provider
	3.1 Process overview
	3.2 Creating a source project for the provider client code
	Code structure guidelines

	3.3 Developing a Java binding to the provider's API
	Designing a new Java API binding
	Implementing a new Java API binding
	Testing a new Java API binding
	Integrating an existing Java API binding

	3.4 Creating a ServiceProvider model
	OAuth2
	OAuth1

	3.5 Creating an ApiAdapter
	3.6 Creating a ConnectionFactory
	OAuth2
	OAuth1

	4. Connecting to Service Providers
	4.1 Introduction
	4.2 Configuring ConnectController
	Configuring connection support in XML

	4.3 Creating connections with ConnectController
	Displaying a connection page
	Initiating the connection flow
	Authorization scope

	Responding to the authorization callback
	Disconnecting

	4.4 Connection interceptors

	5. Signing in with Service Provider Accounts
	5.1 Introduction
	5.2 Enabling provider sign in
	ProviderSignInController's dependencies
	Adding a provider sign in button

	5.3 Signing up after a failed sign in
	Signing up with a sign up form
	Implicit sign up

