Spring Statemachine - Reference
Documentation

Version 3.0.0-RC1

Table of Contents

Preface
Introduction
Background
Usage Scenarios
Getting started
System Requirement
Modules
Using Gradle
Using Maven
Developing Your First Spring Statemachine Application
What’s New
In1.1
In1.2
In1.2.8
In 2.0
In 2.0.0
In 3.0
Using Spring Statemachine
Statemachine Configuration
Using enable Annotations
Configuring States
Configuring Hierarchical States
Configuring Regions
Configuring Transitions
Configuring Guards
Configuring Actions
Configuring Pseudo States
Configuring Common Settings
Configuring Model
Things to Remember
State Machine ID
Using @EnableStateMachine
Using @EnableStateMachineFactory
Using StateMachineModelFactory
State Machine Factories
Factory through an Adapter
State Machine through a Builder
Using Deferred Events

0 N o kW N

A Y O OO DY O U1 U0 W WD NN DNDDNDDNDDNDDNDNDNDNDDND NN R R e e
© 9 O O Ul s bk bk O 0O 00 O © 00 OO B WO NP, R, O 0O © 0 Ul

Using Scopes
Using Actions
SpEL Expressions with Actions
Reactive Actions
Using Guards
SpEL Expressions with Guards
Reactive Guards
Using Extended State
Using StateContext
Stages
Triggering Transitions
Using EventTrigger
Using TimerTrigger
Listening to State Machine Events
Application Context Events
Using StateMachinelistener
Limitations and Problems
Context Integration
Enabling Integration
Method Parameters
Transition Annotations
State Annotations
Event Annotation
State Machine Annotations
Extended State Annotation
Using StateMachineAccessor
Using StateMachineInterceptor
State Machine Security
Configuring Security
Securing Events
Securing Transitions

Securing Actions

Using Security Attributes and Expressions

Understanding Security
State Machine Error Handling
State Machine Services

Using StateMachineService
Persisting a State Machine

Using StateMachineContext

Using StateMachinePersister

Using Redis

73
77
79
79
80
81
81
83
85
85
86
86
87
90
90
91
93
95
96
97
98
100
102
102
103
104
106
109
109
110
110
111
114
116
118
122
122
123
123
123
126

Using StateMachineRuntimePersister
Spring Boot Support
Monitoring and Tracing
Repository Config
Monitoring a State Machine
Using Distributed States
Using ZookeeperStateMachineEnsemble
Testing Support
Eclipse Modeling Support
Using UmlStateMachineModelFactory
Creating a Model
Defining States
Defining Events
Defining Transitions
Defining Timers
Defining a Choice
Defining a Junction
Defining Entry and Exit Points
Defining History States
Defining Forks and Joins
Defining Actions
Defining Guards
Defining a Bean Reference
Defining a SpEL Reference
Using a Sub-Machine Reference
Using a Machine Import
Repository Support
Repository Configuration
Repository Persistence
Recipes
Persist
Tasks
State Machine Examples
Turnstile
Turnstile Reactive
Showcase
CD Player
Tasks
Washer
Persist

Zookeeper

126
127

127
127
128
130
132
133
135
136
139
140
142
144
146
148
149
149
150
153
154
154
154
155
155
158
160
160
171
174
175
176
181
183
186
189
198
210
219
223
228

Web 231

Scope 234
Security 235
Event Service 239
Deploy 248
Order Shipping 250
JPA Configuration 254
Data Persist 260
Data Multi Persist 267
Data Persist 273
Monitoring 280
FAQ 286
State Changes 287
Extended State 288
Appendices 289
Appendix A: Support Content 290
Classes Used in This Document 290
Appendix B: State Machine Concepts 291
Quick Example 291
Glossary 293

A State Machine Crash Course 295
Appendix C: Distributed State Machine Technical Paper 300
Abstract 300
Introduction 300
Generic Concepts 301
The Role of ZookeeperStateMachinePersist 301
The Role of ZookeeperStateMachineEnsemble 302
Distributed Tolerance 302
Developer Documentation 308
StateMachine Config Model 308
Appendix D: Reactor Migration Guide 309
Communicating with a Machine 309
TaskExecutor and TaskScheduler 310

Reactive Examples 310

Preface

The concept of a state machine is most likely older than any reader of this reference documentation
and definitely older than the Java language itself. Description of finite automata dates back to 1943
when gentlemen Warren McCulloch and Walter Pitts wrote a paper about it. Later George H. Mealy
presented a state machine concept (known as a “Mealy Machine”) in 1955. A year later, in 1956,
Edward F. Moore presented another paper, in which he described what is known as a “Moore
Machine”. If you have ever read anything about state machines, the names, Mealy and Moore,
should have popped up at some point.

This reference documentation contains the following parts:

Introduction contains introduction to this reference documentation.

Using Spring Statemachine describes the usage of Spring Statemachine(SSM).
State Machine Examples contains more detailed state machine examples.
FAQ contains frequently asked questions.

Appendices contains generic information about used material and state machines.

Introduction

Spring Statemachine (SSM) is a framework that lets application developers use traditional state
machine concepts with Spring applications. SSM provides the following features:

* Easy-to-use flat (one-level) state machine for simple use cases.

* Hierarchical state machine structure to ease complex state configuration.

State machine regions to provide even more complex state configurations.
» Usage of triggers, transitions, guards, and actions.

» Type-safe configuration adapter.

State machine event listeners.

Spring IoC integration to associate beans with a state machine.

Before you continue, we recommend going through the appendices [glossary] and A State Machine
Crash Course to get a generic idea of what state machines are. The rest of the documentation
expects you to be familiar with state machine concepts.

Background

State machines are powerful because their behavior is always guaranteed to be consistent and
relatively easily debugged due to how operational rules are written in stone when a machine is
started. The idea is that your application is now in and may exist in a finite number of states. Then
something happens that takes your application from one state to the next. A state machine is driven
by triggers, which are based on either events or timers.

It is much easier to design high-level logic outside of your application and then interact with a state
machine in various different ways. You can interact with a state machine by sending events,
listening to what a state machine does, or requesting the current state.

Traditionally, state machines are added to an existing project when developers realize that the code
base is starting to look like a plate full of spaghetti. Spaghetti code looks like a never ending,
hierarchical structure of IF, ELSE, and BREAK clauses, and compilers should probably ask
developers to go home when things are starting to look too complex.

Usage Scenarios

A project is a good candidate to use a state machine when:

* You can represent the application or part of its structure as states.

* You want to split complex logic into smaller manageable tasks.

* The application is already suffering concurrency issues with (for example) something
happening asynchronously.

You are already trying to implement a state machine when you:

* Use boolean flags or enums to model situations.
* Have variables that have meaning only for some part of your application lifecycle.

* Loop through an if-else structure (or, worse, multiple such structures), check whether a
particular flag or enum is set, and then make further exceptions about what to do when certain
combinations of your flags and enums exist or do not exist.

Getting started

If you are just getting started with Spring Statemachine, this is the section for you! Here, we answer
the basic “what?”, “how?” and “why?” questions. We start with a gentle introduction to Spring
Statemachine. We then build our first Spring Statemachine application and discuss some core

principles as we go.

System Requirement

Spring Statemachine 3.0.0-RC1 is built and tested with JDK 8 (all artifacts have JDK 7 compatibility)
and Spring Framework {spring-version}. It does not require any other dependencies outside of
Spring Framework within its core system.

Other optional parts (such as Using Distributed States) have dependencies on Zookeeper, while
State Machine Examples has dependencies on spring-shell and spring-boot, which pull other
dependencies beyond the framework itself. Also, the optional security and data access features
have dependencies to on Spring Security and Spring Data modules.

Modules

The following table describes the modules that are available for Spring Statemachine.

Module

spring-statemachine-core

spring-statemachine-recipes-common

spring-statemachine-kryo
spring-statemachine-data-common
spring-statemachine-data-jpa
spring-statemachine-data-redis
spring-statemachine-data-mongodb

spring-statemachine-zookeeper

spring-statemachine-test

spring-statemachine-cluster

spring-statemachine-uml

spring-statemachine-autoconfigure
spring-statemachine-bom

spring-statemachine-starter

Description
The core system of Spring Statemachine.

Common recipes that do not require
dependencies outside of the core framework.

Kryo serializers for Spring Statemachine.
Common support module for Spring Data.
Support module for Spring Data JPA.
Support module for Spring Data Redis.
Support module for Spring Data MongoDB.

Zookeeper integration for a distributed state
machine.

Support module for state machine testing.

Support module for Spring Cloud Cluster. Note
that Spring Cloud Cluster has been superseded
by Spring Integration.

Support module for UI UML modeling with
Eclipse Papyrus.

Support module for Spring Boot.
Bill of Materials pom.

Spring Boot starter.

Using Gradle

The following listing shows a typical build.gradle file created by choosing various settings at
https://start.spring.io:

https://start.spring.io

buildscript {
ext {
springBootVersion = '{spring-boot-version}'

}
repositories {
mavenCentral()
maven { url "https://repo.spring.io/snapshot" }
maven { url "https://repo.spring.io/milestone" }
}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:
${springBootVersion}")
}
¥

apply plugin: 'java'

apply plugin: ‘'eclipse’

apply plugin: 'org.springframework.boot’

apply plugin: 'io.spring.dependency-management'

group = 'com.example'
version = '0.0.7-SNAPSHOT'
sourceCompatibility = 1.8

repositories {
mavenCentral()
maven { url "https://repo.spring.io/snapshot" }
maven { url "https://repo.spring.io/milestone" }

}
ext {

springStatemachineVersion = '3.0.0-RC1'
}

dependencies {
compile('org.springframework.statemachine:spring-statemachine-starter')
testCompile('org.springframework.boot:spring-boot-starter-test')

}

dependencyManagement {
imports {
mavenBom "org.springframework.statemachine:spring-statemachine-bom:
${springStatemachineVersion}"
}
}

o Replace 0.0.1-SNAPSHOT with a version you want to use.

With a normal project structure, you can build this project with the following command:
./gradlew clean build

The expected Spring Boot-packaged fat jar would be build/1ibs/demo-0.0.17-SNAPSHOT. jar.

o You do not need the "libs-milestone ™ and 1ibs-snapshot repositories for production
development.

10

Using Maven

The following example shows a typical pom.xml file, which was created by choosing various options
at https://start.spring.io:

11

https://start.spring.io

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/PONM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupld>
<artifactId>demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>

<name>gs-statemachine</name>
<description>Demo project for Spring Statemachine</description>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{spring-boot-version}</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<java.version>1.8</java.version>
<spring-statemachine.version>3.0.0-RC1</spring-statemachine.version>
</properties>

<dependencies>
<dependency>
<groupld>org.springframework.statemachine</groupld>
<artifactId>spring-statemachine-starter</artifactId>
</dependency>

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.springframework.statemachine</groupld>
<artifactId>spring-statemachine-bom</artifactId>
<version>${spring-statemachine.version}</version>
<type>pom</type>

<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

<repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

</project>

o Replace 0.0.1-SNAPSHOT with a version you want to use.

With a normal project structure, you can build this project with the following command:
mvn clean package

The expected Spring Boot-packaged fat-jar would be target/demo-0.0.1-SNAPSHOT. jar.

o You do not need the libs-milestone and libs-snapshot repositories for production
development.

14

Developing Your First Spring Statemachine
Application

You can start by creating a simple Spring Boot Application class that implements CommandLineRunner.
The following example shows how to do so:

public class Application implements CommandLineRunner {
public static void main(String[] args) {

SpringApplication.run(Application.class, args);
}

Then you need to add states and events, as the following example shows:

public enum States {
SI, S1, S2
}

public enum Events {
E1, E2
+

Then you need to add state machine configuration, as the following example shows:

15

16

public class StateMachineConfig
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineConfigurationConfigurer<States, Events>
config)
throws Exception {
config
.withConfiquration()
.autoStartup(true)
.listener(listener());

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.SI)
.states(EnumSet.all0f(States.class));

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions

.withExternal()
.source(States.SI).target(States.S1).event(Events.E1)
.and()

.withExternal()
.source(States.S1).target(States.S2).event(Events.E2);

public StateMachinelistener<States, Events> listener() {
return new StateMachinelistenerAdapter<States, Events>() {

public void stateChanged(State<States, Events> from, State<States,
Events> to) {
System.out.println("State change to " + to.getId());
+
I

Then you need to implement CommandLineRunner and autowire StateMachine. The following example
shows how to do so:

private StateMachine<States, Events> stateMachine;

public void run(String... args) throws Exception {
stateMachine.sendEvent(Events.E1);
stateMachine.sendEvent(Events.E2);

Depending on whether you build your application with Gradle or Maven, you can run it by using java
-jar build/libs/gs-statemachine-0.1.0.jar or java -jar target/gs-statemachine-0.1.0.jar,
respectively.

The result of this command should be normal Spring Boot output. However, you should also find
the following lines:

State change to SI
State change to S1
State change to S2

These lines indicate that the machine you constructed is moving from one state to another, as it
should.

17

What’s New

18

In1.1

Spring Statemachine 1.1 focuses on security and better interoperability with web applications. It
includes the following:
» Comprehensive support for Spring Security has been added. See State Machine Security.

* Context integration with ~@WithStateMachine' has been greatly enhanced. See Context
Integration.

» StateContext is now a first class citizen, letting you interact with a State Machine. See Using
StateContext.

» Features around persistence have been enhanced with built-in support for redis. See Using
Redis.

* A new feature helps with persist operations. See Using StateMachinePersister.
* Configuration model classes are now in a public API.

* New features in timer-based events.

* New Junction pseudostate. See Junction State.

* New Exit Point and Entry Point pseudostates. See Exit and Entry Point States.
* Configuration model verifier.

* New samples. See Security and Event Service.

* UI modeling support using Eclipse Papyrus. See Eclipse Modeling Support.

19

In1.2

Spring Statemachine 1.2 focuses on generic enhancements, better UML support, and integrations
with external config repositories. It includes the following:
 Support for UML sub-machines. See Using a Sub-Machine Reference.

* A new repository abstraction that keeps machine configuration in an external repository. See
Repository Support.

* New support for state actions. See [state-actions].

* New transition error action concepts. See Transition Action Error Handling.
* New action error concepts. See State Action Error Handling.

* Initial work for Spring Boot support. See Spring Boot Support.

» Support for tracing and monitoring. See Monitoring a State Machine.

In1.2.8

Spring Statemachine 1.2.8 contains a bit more functionality than normally not seen in a point
release, but these changes did not merit a fork of Spring Statemachine 1.3. It includes the following:

JPA entity classes have changed table names. See JPA.

* A new sample. See Data Persist.

New entity classes for persistence. See Repository Persistence.

» Transition conflict policy. See Configuring Common Settings

20

In 2.0

Spring Statemachine 2.0 focuses on Spring Boot 2.x support.

In 2.0.0

Spring Statemachine 2.0.0 includes the following:

» The format of monitoring and tracing has been changed. See Monitoring and Tracing.

» The spring-statemachine-boot module has been renamed to spring-statemachine-autoconfigure.

21

In 3.0

Spring Statemachine 3.0.0 focuses on adding a Reactive support. Moving from 2.x to 3.x is
introducing some breaking changes which are detailed in Reactor Migration Guide.

With 3.0.x we have deprecated all blocking methods which will get removed at some point in a
future releases.

o Please read an appendix Reactor Migration Guide carefully as it will steer you
through a process of migrating into 3. x for cases we’re not handling internallyl.

At this point most of a documentation has been changed to showcase reactive interfaces while we
still keep some notes around to users still using old blocking methods.

22

Using Spring Statemachine

This part of the reference documentation explains the core functionality that Spring Statemachine
provides to any Spring based application.

It includes the following topics:

 Statemachine Configuration describes the generic configuration support.

» State Machine ID describes the use of machine id.

» State Machine Factories describes the generic state machine factory support.

» Using Deferred Events describes the deferred event support.

* Using Scopes describes the scope support.

* Using Actions describes the actions support.

* Using Guards describes the guard support.

» Using Extended State describes the extended state support.

» Using StateContext describes the state context support.

» Triggering Transitions describes the use of triggers.

 Listening to State Machine Events describes the use of state machine listeners.
» Context Integration describes the generic Spring application context support.

» Using StateMachineAccessor describes the state machine internal accessor support.
» Using StateMachineInterceptor describes the state machine error handling support.
» State Machine Security describes the state machine security support.

 State Machine Error Handling describes the state machine interceptor support.
» State Machine Services describes the state machine service support.

» Persisting a State Machine describes the state machine persisting support.

» Spring Boot Support describes the Spring Boot support.

* Monitoring a State Machine describes the monitoring and trancing support.

» Using Distributed States describes the distributed state machine support.

* Testing Support describes the state machine testing support.

» Eclipse Modeling Support describes the state machine UML modeling support.

* Repository Support describes the state machine repository config support.

23

Statemachine Configuration

One of the common tasks when using a state machine is to design its runtime configuration. This
chapter focuses on how Spring Statemachine is configured and how it leverages Spring’s
lightweight IoC containers to simplify the application internals to make it more manageable.

Configuration examples in this section are not feature complete. That is, you

o always need to have definitions of both states and transitions. Otherwise, state
machine configuration would be ill-formed. We have simply made code snippets
less verbose by leaving other needed parts out.

Using enable Annotations

We use two familiar Spring enabler annotations to ease configuration: @EnableStateMachine and
@EnableStateMachineFactory. These annotations, when placed in a @Configuration class, enable some
basic functionality needed by a state machine.

You can use @EnableStateMachine when you need a configuration to create an instance of
StateMachine. Usually, a @Configuration class extends adapters (EnumStateMachineConfigurerAdapter
or StateMachineConfigurerAdapter), which lets you override configuration callback methods. We
automatically detect whether you use these adapter classes and modify the runtime configuration
logic accordingly.

You can use @EnableStateMachineFactory when you need a configuration to create an instance of a
StateMachineFactory.

e Usage examples of these are shown in below sections.

Configuring States

We get into more complex configuration examples a bit later in this guide, but we first start with
something simple. For most simple state machine, you can use EnumStateMachineConfigurerAdapter
and define possible states and choose the initial and optional end states.

24

public class Config1Enums
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.S1)
.end(States.SF)
.states(EnumSet.all0f(States.class));

You can also use strings instead of enumerations as states and events by using
StateMachineConfigurerAdapter, as shown in the next example. Most of the configuration examples
ues enumerations, but, generally speaking, you can interchange strings and enumerations.

public class Config1Strings
extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {

states
.withStates()
.initial("S1")
.end("SF")

.states(new HashSet<String>(Arrays.asList("S1","S2","S3","S4")));

Using enumerations brings a safer set of states and event types but limits possible

o combinations to compile time. Strings do not have this limitation and let you use
more dynamic ways to build state machine configurations but do not allow same
level of safety.

25

Configuring Hierarchical States

You can define hierarchical states can by using multiple withStates() calls, where you can use
parent() to indicate that these particular states are sub-states of some other state. The following

example shows how to do so:

public class Config2
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()

.initial(States.S1)

.state(States.S1)

.and()

.withStates()
.parent(States.S1)
.initial(States.S2)
.state(States.S2);

Configuring Regions

There are no special configuration methods to mark a collection of states to be part of an
orthogonal state. To put it simply, orthogonal state is created when the same hierarchical state
machine has multiple sets of states, each of which has an initial state. Because an individual state
machine can only have one initial state, multiple initial states must mean that a specific state must
have multiple independent regions. The following example shows how to define regions:

26

public class Config10
extends EnumStateMachineConfigurerAdapter<States2, Events> {

public void configure(StateMachineStateConfigurer<States2, Events> states)
throws Exception {
states
.withStates()

.initial(States2.S1)

.state(States2.S2)

.and()

.withStates()
.parent(States2.52)
.initial(States2.S21)
.state(States2.521)
.end(States2.S2F)
.and()

.withStates()
.parent(States2.S2)
.initial(States2.S3I)
.state(States2.S31)
.end(States2.S3F);

When persisting machines with regions or generally relying on any functionalities to reset a
machine, you may need to have a dedicated ID for a region. By default, this ID is a generated UUID.
As the following example shows, StateConfigurer has a method called region(String id) that lets
you set the ID for a region:

27

public class Config1@RegionId
extends EnumStateMachineConfigurerAdapter<States2, Events> {

public void configure(StateMachineStateConfigurer<States2, Events> states)
throws Exception {
states
.withStates()

.initial(States2.S1)

.state(States2.S2)

.and()

.withStates()
.parent(States2.52)
.region("R1")
.initial(States2.S21)
.state(States2.521)
.end(States2.S2F)
.and()

.withStates()
.parent(States2.52)
.region("R2")
.initial(States2.S31)
.state(States2.S31)
.end(States2.S3F);

Configuring Transitions

We support three different types of transitions: external, internal, and local. Transitions are
triggered either by a signal (which is an event sent into a state machine) or by a timer. The
following example shows how to define all three kinds of transitions:

28

public class Config3
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.S1)
.states(EnumSet.all0f(States.class));

public void configure(StateMachineTransitionConfigurer<States, Events>

transitions)

throws Exception {

transitions

.withExternal()
.source(States.S1).target(States.S2)
.event(Events.E1)

.and()

.withInternal()
.source(States.S2)
.event(Events.E2)
.and()

.withLocal()
.source(States.S2).target(States.S3)
.event(Events.E3);

}
}

Configuring Guards

You can use guards to protect state transitions. You can use the Guard interface to do an evaluation
where a method has access to a StateContext. The following example shows how to do so:

29

public class Config4
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()
.source(States.S1).target(States.S2)
.event(Events.E1)

.quard(quard())
.and()

.withExternal()
.source(States.S2).target(States.S3)
.event(Events.E2)
.quardExpression("true");

public Guard<States, Events> guard() {
return new Guard<States, Events>() {

public boolean evaluate(StateContext<States, Events> context) {
return true;

}
};

In the preceding example, we used two different types of guard configurations. First, we created a
simple Guard as a bean and attached it to the transition between states S1 and S2.

Second, we used a SPeL expression as a guard to dicate that the expression must return a BOOLEAN
value. Behind the scenes, this expression-based guard is a SpelExpressionGuard. We attached it to the
transition between states S2 and S3. Both guards always evaluate to true.

Configuring Actions

You can define actions to be executed with transitions and states. An action is always run as a result
of a transition that originates from a trigger. The following example shows how to define an action:

30

public class Config51
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions

.withExternal()
.source(States.S1)
.target(States.S2)
.event(Events.E1)
.action(action());

public Action<States, Events> action() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
// do something

}
};

In the preceding example, a single Action is defined as a bean named action and associated with a
transition from S1 to S2. The following example shows how to use an action multiple times:

31

public class Config52
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states

.withStates()
.initial(States.S1, action())
.state(States.S1, action(), null)
.state(States.S2, null, action())
.state(States.S2, action())
.state(States.S3, action(), action());

public Action<States, Events> action() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
// do something

}
5
}
}
o Usually, you would not define the same Action instance for different stages, but we
did it here to not make too much noise in a code snippet.

In the preceding example, a single Action is defined by the bean named action and associated with
states S1, 52, and S3. We need to clarify what is going on here:

* We defined an action for the initial state, S1.

* We defined an entry action for state S1 and left the exit action empty.

* We defined an exit action for state S2 and left the entry action empty.

* We defined a single state action for state S2.

» We defined both entry and exit actions for state S3.

Note that state S1 is used twice with initial() and state() functions. You need to do this only if
you want to define entry or exit actions with initial state.

32

Defining action with initial() function only runs a particular action when a state

o machine or sub state is started. This action is an initializing action that is run only
once. An action defined with state() is then run if the state machine transitions
back and forward between initial and non-initial states.

State Actions

State actions are run differently compared to entry and exit actions, because execution happens
after state has been entered and can be cancelled if state exit happens before a particular action
has been completed.

State actions are executed using normal reactive flow by subscribing with a Reactor’s default
parallel scheduler. This means that, whatever you do in your action, you need to be able to catch
InterruptedException or, more generally, periodically check whether Thread is interrupted.

The following example shows typical configuration that uses default the IMMEDIATE_CANCEL, which
would immediately cancel a running task when its state is complete:

33

static class Configl extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineConfigurationConfigurer<String, String>
config) throws Exception {
config
.withConfiquration()
.stateDoActionPolicy(StateDoActionPolicy.IMMEDIATE_CANCEL);

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
Lnitial("s1")
.state("S2", context -> {})
.state("S3");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions) throws Exception {
transitions

WwithExternal()
.source("S1")
.target("S2")
.event("ET")
.and()

.withExternal()
.source("S2")
.target("S3")
.event("E2");

You can set a policy to TIMEOUT_CANCEL together with a global timeout for each machine. This
changes state behavior to await action completion before cancelation is requested. The following
example shows how to do so:

34

public void configure(StateMachineConfigurationConfigurer<String, String> config)
throws Exception {
config
.withConfiguration()
.stateDoActionPolicy(StateDoActionPolicy.TIMEOUT_CANCEL)
.stateDoActionPolicyTimeout(10, TimeUnit.SECONDS);

If Event directly takes a machine into a state so that event headers are available to a particular
action, you can also use a dedicated event header to set a specific timeout (defined in millis). You
can use the reserved header value StateMachineMessageHeaders.HEADER_DO_ACTION_TIMEOUT for this
purpose. The following example shows how to do so:

StateMachine<String, String> stateMachine;

void sendEventUsingTimeout() {
stateMachine
.sendEvent(Mono. just(MessageBuilder
.withPayload("E1")
.setHeader (StateMachineMessageHeaders.HEADER_DO_ACTION_TIMEQOUT, 5000)
.build()))
.subscribe();

Transition Action Error Handling

You can always catch exceptions manually. However, with actions defined for transitions, you can
define an error action that is called if an exception is raised. The exception is then available from a
StateContext passed to that action. The following example shows how to create a state that handles
an exception:

35

public class Config53
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions

.withExternal()
.source(States.S1)
.target(States.S2)
.event(Events.E1)
.action(action(), errorAction());

public Action<States, Events> action() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
throw new RuntimeException("MyError");

}
};

public Action<States, Events> errorAction() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
// RuntimeException("MyError") added to context
Exception exception = context.getException();
exception.getMessage();

};

If need be, you can manually create similar logic for every action. The following example shows
how to do so:

36

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions
.withExternal()
.source(States.S1)
.target(States.S2)
.event(Events.E1)
.action(Actions.errorCallingAction(action(), errorAction()));

State Action Error Handling

Logic similar to the logic that handles errors in state transitions is also available for entry to a state
and exit from a state.

For these situations, StateConfigurer has methods called stateEntry, stateDo, and stateExit. These
methods define an error action together with a normal (non-error) action. The following example
shows how to use all three methods:

37

public class Config5h
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states

.withStates()
.initial(States.S1)
.stateEntry(States.S2, action(), errorAction())
.stateDo(States.S2, action(), errorAction())
.stateExit(States.S2, action(), errorAction())
.state(States.S3);

public Action<States, Events> action() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
throw new RuntimeException("MyError");

}
};

public Action<States, Events> errorAction() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
// RuntimeException("MyError") added to context
Exception exception = context.getException();
exception.getMessage();

};

Configuring Pseudo States

Pseudo state configuration is usually done by configuring states and transitions. Pseudo states are
automatically added to state machine as states.

38

Initial State

You can mark a particular state as initial state by using the initial() method. This initial action is
good, for example, to initialize extended state variables. The following example shows how to use
the initial() method:

public class Configl1
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.S1, initialAction())
.end(States.SF)
.states(EnumSet.all0f(States.class));

public Action<States, Events> initialAction() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
// do something initially

}
};

Terminate State

You can mark a particular state as being an end state by using the end() method. You can do so at
most once for each individual sub-machine or region. The following example shows how to use the
end() method:

39

public class Config1Enums
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {

states
.withStates()

.initial(States.S1)

.end(States.SF)
.states(EnumSet.all0f(States.class));

}
}
State History

You can define state history once for each individual state machine. You need to choose its state
identifier and set either History.SHALLOW or History.DEEP. The following example wuses
History.SHALLOW:

40

public class Config12
extends EnumStateMachineConfigurerAdapter<States3, Events> {

public void configure(StateMachineStateConfigurer<States3, Events> states)
throws Exception {
states
.withStates()
.initial(States3.S1)
.state(States3.S2)
.and()
.withStates()
.parent(States3.52)
.initial(States3.S21I)
.state(States3.S21)
.state(States3.S22)
.history(States3.SH, History.SHALLOW);

public void configure(StateMachineTransitionConfigurer<States3, Events>

transitions)
throws Exception {
transitions
.withHistory()
.source(States3.SH)
.target(States3.522);
}
+

Also, as the preceding example shows, you can optionally define a default transition from a history
state into a state vertex in a same machine. This transition takes place as a default if, for example,
the machine has never been entered —thus, no history would be available. If a default state
transition is not defined, then normal entry into a region is done. This default transition is also used
if a machine’s history is a final state.

Choice State

Choice needs to be defined in both states and transitions to work properly. You can mark a
particular state as being a choice state by using the choice() method. This state needs to match
source state when a transition is configured for this choice.

You can configure a transition by using withChoice(), where you define source state and a
first/then/last structure, which is equivalent to a normal if/elseif/else. With first and then, you

41

can specify a guard just as you would use a condition with if/elseif clauses.

A transition needs to be able to exist, so you must make sure to use last. Otherwise, the
configuration is ill-formed. The following example shows how to define a choice state:

42

public class Config13
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states

.withStates()
.initial(States.SI)
.choice(States.S1)
.end(States.SF)
.states(EnumSet.all0f(States.class));

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions

.withChoice()
.source(States.S1)
.first(States.S2, s2Guard())
.then(States.S3, s3Guard())
.last(States.S4);

public Guard<States, Events> s2Guard() {
return new Guard<States, Events>() {

public boolean evaluate(StateContext<States, Events> context) {
return false;
}
b

public Guard<States, Events> s3Guard() {
return new Guard<States, Events>() {

public boolean evaluate(StateContext<States, Events> context) {
return true;
}
Irs

43

Actions can be run with both incoming and outgoing transitions of a choice pseudostate. As the
following example shows, one dummy lambda action is defined that leads into a choice state and

one similar dummy lambda action is defined for one outgoing transition (where it also defines an
error action):

44

public class Config23
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states

.withStates()
.initial(States.SI)
.choice(States.S1)
.end(States.SF)
.states(EnumSet.all0f(States.class));

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions
.WwithExternal()
.source(States.SI)
.action(c -> {
// action with SI-S1
1))
.target(States.S1)
.and()
.withChoice()
.source(States.S1)
.first(States.S2, ¢ -> {
return true;
1))
.last(States.S3, ¢ -> {
// action with S1-S3
Foe > Ao
// error callback for action S1-S3
1)

o Junction have same api format meaning actions can be defined similarly.

Junction State

You need to define a junction in both states and transitions for it to work properly. You can mark a
particular state as being a choice state by using the junction() method. This state needs to match

45

the source state when a transition is configured for this choice.

You can configure the transition by using withJunction() where you define source state and a
first/then/last structure (which is equivalent to a normal if/elseif/else). With first and then,
you can specify a guard as you would use a condition with if/elseif clauses.

A transition needs to be able to exist, so you must make sure to use last. Otherwise, the
configuration is ill-formed. The following example uses a junction:

46

public class Config20
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states

.withStates()
.initial(States.SI)
.junction(States.S1)
.end(States.SF)
.states(EnumSet.all0f(States.class));

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions

withJunction()
.source(States.S1)
.first(States.S2, s2Guard())
.then(States.S3, s3Guard())
.last(States.S4);

public Guard<States, Events> s2Guard() {
return new Guard<States, Events>() {

public boolean evaluate(StateContext<States, Events> context) {
return false;
}
b

public Guard<States, Events> s3Guard() {
return new Guard<States, Events>() {

public boolean evaluate(StateContext<States, Events> context) {
return true;
}
Irs

47

The difference between choice and junction is purely academic, as both are
implemented with first/then/last structures . However, in theory, based on UML

o modeling, choice allows only one incoming transition while junction allows
multiple incoming transitions. At a code level, the functionality is pretty much
identical.

Fork State

You must define a fork in both states and transitions for it to work properly. You can mark a
particular state as being a choice state by using the fork() method. This state needs to match source
state when a transition is configured for this fork.

The target state needs to be a super state or an immediate state in a regions. Using a super state as a
target takes all regions into initial states. Targeting individual state gives more controlled entry into
regions. The following example uses a fork:

48

public class Configl4
extends EnumStateMachineConfigurerAdapter<States2, Events> {

public void configure(StateMachineStateConfigurer<States2, Events> states)
throws Exception {
states
.withStates()

.initial(States2.S1)

.fork(States2.52)

.state(States2.S3)

.and()

.withStates()
.parent(States2.S3)
.initial(States2.S21)
.state(States2.521)
.state(States2.S522)
.end(States2.S2F)
.and()

.withStates()
.parent(States2.5S3)
.initial(States2.S31)
.state(States2.S31)
.state(States2.S32)
.end(States2.S3F);

public void configure(StateMachineTransitionConfigurer<States2, Events>
transitions)
throws Exception {
transitions

.withFork()
.source(States?2.S2)
.target(States2.522)
.target(States2.S32);

Join State

You must define a join in both states and transitions for it to work properly. You can mark
aparticular state as being a choice state by using the join() method. This state does not need to
match either source states or a target state in a transition configuration.

49

You can select a target state where a transition goes when all source states have been joined. If you
use state hosting regions as the source, the end states of a region are used as joins. Otherwise, you
can pick any states from a region. The following exmaple uses a join:

50

public class Config15
extends EnumStateMachineConfigurerAdapter<States2, Events> {

public void configure(StateMachineStateConfigurer<States2, Events> states)
throws Exception {
states
.withStates()

.initial(States2.S1)

.state(States2.S3)

.join(States2.54)

.state(States2.S5)

.and()

.withStates()
.parent(States2.S3)
.initial(States2.S21)
.state(States2.521)
.state(States2.522)
.end(States2.S2F)
.and()

.withStates()
.parent(States2.S3)
.initial(States2.S3I)
.state(States2.S31)
.state(States2.S32)
.end(States2.S3F);

public void configure(StateMachineTransitionConfigurer<States2, Events>
transitions)
throws Exception {
transitions

.withJoin()
.source(States2.S2F)
.source(States2.S3F)
.target(States2.54)
.and()

.withExternal()
.source(States2.54)
.target(States2.S5);

You can also have multiple transitions originate from a join state. It this case, we advise you to use
guards and define your guards such that only one guard evaluates to TRUE at any given time.

31

Otherwise, transition behavior is not predictable. This is shown in the following example, where
the guard checks whether the extended state has variables:

32

public class Config22
extends EnumStateMachineConfigurerAdapter<States2, Events> {

public void configure(StateMachineStateConfigurer<States2, Events> states)
throws Exception {
states
.withStates()

.initial(States2.S1)

.state(States2.S3)

.join(States2.54)

.state(States2.S5)

.end(States2.SF)

.and()

.withStates()
.parent(States2.53)
.initial(States2.S21)
.state(States2.521)
.state(States2.S522)
.end(States2.S2F)
.and()

.withStates()
.parent(States2.S3)
.initial(States2.S3I)
.state(States2.S31)
.state(States2.S32)
.end(States2.S3F);

public void configure(StateMachineTransitionConfigurer<States2, Events>
transitions)
throws Exception {
transitions

withJoin()
.source(States2.S2F)
.source(States2.S3F)
.target(States2.54)
.and()

.withExternal()
.source(States?2.54)
.target(States2.S5)
.quardExpression("!extendedState.variables.isEmpty()")
.and()

.withExternal()
.source(States?2.54)
.target(States2.SF)

33

.quardExpression("extendedState.variables.isEmpty()");

Exit and Entry Point States

You can use exit and entry points to do more controlled exit and entry from and into a submachine.
The following example uses the withEntry and withExit methods to define entry points:

54

static class Config21 extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {

states

.withStates()
Linitial("s1")
.state("S2")
.state("S3")
.and()
.withStates()

.parent("S2")
Linitial("S21")
.entry("S2ENTRY")
exit("S2EXIT")
.state("S22");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {

transitions

.withExternal()
.source("S1").target("S2")
.event("E1")

.and()

.withExternal()
.source("S1").target("S2ENTRY")
.event("ENTRY")

.and()

.withExternal()
.source("S22").target("S2EXIT")
.event("EXIT")

.and()

withEntry()
.source("S2ENTRY").target("S22")
.and()

WwithExit()
.source("S2EXIT").target("S3");

As shown in the preceding, you need to mark particular states as being exit and entry states. Then
you create a normal transitions into those states and also specify withExit() and withEntry(), where

55

those states exit and entry respectively.

Configuring Common Settings

You can set part of a common state machine configuration by using ConfigurationConfigurer. With it
you can set BeanFactory and an autostart flag for a state machine. It also lets you register
StateMachineListener instances, configure transition conflict policy and region execution policy. The
following example shows how to use ConfigurationConfigurer:

public class Config17
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineConfigurationConfigurer<States, Events>
config)
throws Exception {
config

.withConfiguration()
.autoStartup(true)
.machineId("myMachineId")
.beanFactory(new StaticlListableBeanFactory())
.listener(new StateMachinelistenerAdapter<States, Events>())
.transitionConflictPolicy(TransitionConflictPolicy.CHILD)
.regionExecutionPolicy(RegionExecutionPolicy.PARALLEL);

By default, the state machine autoStartup flag is disabled, because all instances that handle sub-
states are controlled by the state machine itself and cannot be automatically started. Also, it is much
safer to leave whether a machine should be started automatically or not to the user. This flag
controls only the autostart of a top-level state machine.

Setting machineId within a configuration class is simply a convenience for those times when you
want or need to do it there.

Registering StateMachinelListener instances is also partly for convenience but is required if you
want to catch a callback during a state machine lifecycle, such as getting notified of a state
machine’s start and stop events. Note that you cannot listen a state machine’s start events if
autoStartup is enabled, unless you register a listener during a configuration phase.

You can use transitionConflictPolicy when multiple transition paths could be selected. One usual
use case for this is when a machine contains anonymous transitions that lead out from a sub-state
and a parent state and you want to define a policy in which one is selected. This is a global setting
within a machine instance and defaults to CHILD.

36

You can wuse withDistributed() to configure DistributedStateMachine. It lets you set a
StateMachineEnsemble, which (f it exists) automatically wraps any created StateMachine with
DistributedStateMachine and enables distributed mode. The following example shows how to use it:

@Configuration
@EnableStateMachine
public class Config18
extends EnumStateMachineConfigurerAdapter<States, Events> {

@0verride
public void configure(StateMachineConfigurationConfigurer<States, Events>
config)
throws Exception {
config
.withDistributed()
.ensemble(stateMachineEnsemble());

@Bean
public StateMachineEnsemble<States, Events> stateMachineEnsemble()
throws Exception {
// naturally not null but should return ensemble instance
return null;

For more about distributed states, see Using Distributed States.

The StateMachineModelVerifier interface is used internally to do some sanity checks for a state
machine’s structure. Its purpose is to fail fast early instead of letting common configuration errors
into a state machine. By default, a verifier is automatically enabled and the
DefaultStateMachineModelVerifier implementation is used.

With withVerifier(), you can disable verifier or set a custom one if needed. The following example
shows how to do so:

57

@Configuration
@EnableStateMachine
public class Config19
extends EnumStateMachineConfigurerAdapter<States, Events> {

@0verride
public void configure(StateMachineConfigurationConfigurer<States, Events>
config)
throws Exception {

config
withVerifier()
.enabled(true)
.verifier(verifier());
}
@Bean

public StateMachineModelVerifier<States, Events> verifier() {
return new StateMachineModelVerifier<States, Events>() {

@0verride
public void verify(StateMachineModel<States, Events> model) {
// throw exception indicating malformed model

}
};

For more about config model, see StateMachine Config Model.

The withSecurity, withMonitoring and withPersistence configuration methods are
documented in State Machine Security, Monitoring a State Machine, and Using
StateMachineRuntimePersister, respectively.

Configuring Model

StateMachineModelFactory is a hook that lets you configure a statemachine model without using a
manual configuration. Essentially, it is a third-party integration to integrate into a configuration
model. You can hook StateMachineModelFactory into a configuration model by using a
StateMachineModelConfigurer. The following example shows how to do so:

38

@Configuration
@EnableStateMachine

public static class Configl extends StateMachineConfigurerAdapter<String, String>
{

@0verride
public void configure(StateMachineModelConfigurer<String, String> model)
throws Exception {
model
.withModel()
.factory(modelFactory());
}

@Bean
public StateMachineModelFactory<String, String> modelFactory() {
return new CustomStateMachineModelFactory();

}

The follwoing example uses CustomStateMachineModelFactory to define two states (ST and S2) and an
event (E1) between those states:

39

public static class CustomStateMachineModelFactory implements
StateMachineModelFactory<String, String> {

public StateMachineModel<String, String> build() {

ConfigurationData<String, String> configurationData = new
ConfiqurationData<>();

Collection<StateData<String, String>> stateData = new ArraylList<>();

stateData.add(new StateData<String, String>("S1", true));

stateData.add(new StateData<String, String>("S2"));

StatesData<String, String> statesData = new StatesData<>(stateData);

Collection<TransitionData<String, String>> transitionData = new Arraylist

<>();

transitionData.add(new TransitionData<String, String>("S1", "S2", "E1"));

TransitionsData<String, String> transitionsData = new TransitionsData<>
(transitionData);

StateMachineModel<String, String> stateMachineModel = new
DefaultStateMachineModel<String, String>(configurationData,

statesData, transitionsData);
return stateMachineModel;

public StateMachineModel<String, String> build(String machineld) {
return build();

}

Defining a custom model is usually not what people are looking for, although it is
o possible. However, it is a central concept of allowing external access to this
configuration model.

You can find an example of using this model factory integration in Eclipse Modeling Support. You
can find more generic info about custom model integration in Developer Documentation.

Things to Remember

When defining actions, guards, or any other references from a configuration, it pays to remember
how Spring Framework works with beans. In the next example, we have defined a normal
configuration with states S1 and S2 and four transitions between those. All transitions are guarded
by either guardl or guard2. You must ensure that guardl is created as a real bean because it is
annotated with @Bean, while quard2 is not.

This means that event E3 would get the guard2 condition as TRUE, and E4 would get the guard2
condition as FALSE, because those are coming from plain method calls to those functions.

However, because guardl is defined as a @Bean, it is proxied by the Spring Framework. Thus,

60

additional calls to its method result in only one instantiation of that instance. Event E1 would first
get the proxied instance with condition TRUE, while event E2 would get the same instance with TRUE
condition when the method call was defined with FALSE. This is not a Spring State Machine-specific
behavior. Rather, it is how Spring Framework works with beans. The following example shows how
this arrangement works:

61

62

public class Configl
extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
Linitial("S1")
.state("S2");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {
transitions

.withExternal()
.source("S1").target("S2").event("E1").quard(quard1(true))
.and()

.withExternal()
.source("S1").target("S2").event("E2").quard(quard1(false))
.and()

.withExternal()
.source("S1").target("S2").event("E3").quard(quard2(true))
.and()

.withExternal()
.source("S1").target("S2").event("E4").quard(quard2(false));

public Guard<String, String> guard1(final boolean value) {
return new Guard<String, String>() {

public boolean evaluate(StateContext<String, String> context) {
return value;
+
I
}

public Guard<String, String> quard2(final boolean value) {
return new Guard<String, String>() {

public boolean evaluate(StateContext<String, String> context) {
return value;
}
b

State Machine ID

Various classes and interfaces use machineld either as a variable or as a parameter in methods. This
section takes a closer look at how machineld relates to normal machine operation and instantiation.

During runtime, a machineld really does not have any big operational role except to distinguish
machines from each other — for example, when following logs or doing deeper debugging. Having
a lot of different machine instances quickly gets developers lost in translation if there is no easy
way to identify these instances. As a result, we added the option to set the machineld.

Using @EnableStateMachine

Setting machineld in Java configuration as mymachine then exposes that value for logs. This same
machineld is also available from the StateMachine.getId() method. The following example uses the
machineId method:

public void configure(StateMachineConfigurationConfigurer<String, String> config)
throws Exception {
config
.withConfiguration()
.machineId("mymachine");

The following example of log output shows the mymachine ID:

11:23:54,509 1INFO main support.LifecycleObjectSupport [main] -
started S2 S1 / S1 / uuid=8fe53d34-8c85-49fd-abba-773da15fcaf1 / id=mymachine

o The manual builder (see [state-machine-via-builder]) uses the same configuration
interface, meaning that the behavior is equivalent.

Using @EnableStateMachineFactory

You can see the same machineld getting configured if you use a StateMachineFactory and request a
new machine by using that ID, as the following example shows:

64

StateMachineFactory<String, String> factory = context.getBean(StateMachineFactory
.class);
StateMachine<String, String> machine = factory.getStateMachine("mymachine");

Using StateMachineModelFactory

Behind the scenes, all machine configurations are first translated into a StateMachineModel so that
StateMachineFactory need not know from where the configuration originated, as a machine can be
built from Java configuration, UML, or a repository. If you want to go crazy, you can also use a
custom StateMachineModel, which is the lowest possible level at which to define configuration.

What do all of these have to do with a machineId? StateMachineModelFactory also has a method with
the following signature: StateMachineModel<S, E> build(String machineld) which a
StateMachineModelFactory implementation may choose to use.

RepositoryStateMachineModelFactory (see Repository Support) uses machineld to support different
configurations in a persistent store through Spring Data Repository interfaces. For example, both
StateRepository and TransitionRepository have a method (List<T> findByMachineId(String
machineld)), to build different states and transitions by a machineld. With
RepositoryStateMachineModelFactory, if machineld is used as empty or NULL, it defaults to repository
configuration (in a backing-persistent model) without a known machine id.

Currently, UmlStateMachineModelFactory does not distinguish between different

o machine IDs, as UML source is always coming from the same file. This may change
in future releases.

65

State Machine Factories

There are use cases when a state machine needs to be created dynamically instead of by defining
static configuration at compile time. For example, if there are custom components that use their
own state machines and these components are created dynamically, it is impossible to have a static
state machine that is built during the application start. Internally, state machines are always built
through factory interfaces. This then gives you an option to use this feature programmatically.
Configuration for a state machine factory is exactly the same as shown in various examples in this
document where state machine configuration is hard coded.

Factory through an Adapter

Actually creating a state machine by using @EnableStateMachine works through a factory, so
@EnableStateMachineFactory merely exposes that factory through its interface. The following
example uses @EnableStateMachineFactory:

public class Configb
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.S1)
.end(States.SF)
.states(EnumSet.all0f(States.class));

Now that you have used @EnableStateMachineFactory to create a factory instead of a state machine
bean, you can inject it and use it (as is) to request new state machines. The following example
shows how to do so:

66

public class Bean3 {

StateMachineFactory<States, Events> factory;

void method() {
StateMachine<States,Events> stateMachine = factory.getStateMachine();
stateMachine.startReactively().subscribe();

Adapter Factory Limitations

The current limitation of factory is that all the actions and guard with which it associates a state
machine share the same instance. This means that, from your actions and guard, you need to
specifically handle the case in which the same bean is called by different state machines. This
limitation is something that will be resolved in future releases.

State Machine through a Builder

Using adapters (as shown above) has a limitation imposed by its requirement to work through
Spring @Configuration classes and the application context. While this is a very clear model to
configure a state machine, it limits configuration at compile time, which is not always what a user
wants to do. If there is a requirement to build more dynamic state machines, you can use a simple
builder pattern to construct similar instances. By using strings as states and events, you can use this
builder pattern to build fully dynamic state machines outside of a Spring application context. The
following example shows how to do so:

StateMachine<String, String> buildMachine1() throws Exception {
Builder<String, String> builder = StateMachineBuilder.builder();
builder.configureStates()

.withStates()
Linitial("s1")
.end("SF")
.states(new HashSet<String>(Arrays.asList("S1","S2","S3","S4")));
return builder.build();

The builder uses the same configuration interfaces behind the scenes that the @Configuration model
uses for adapter classes. The same model goes to configuring transitions, states, and common
configuration through a builder’s methods. This means that whatever you can use with a normal
EnumStateMachineConfiqgurerAdapter or StateMachineConfigurerAdapter you can use dynamically
through a builder.

67

Currently, the builder.configureStates(), builder.configureTransitions(), and
o builder.configureConfiguration() interface methods cannot be chained together,
meaning that builder methods need to be called individually.

The following example sets a number of options with a builder:

StateMachine<String, String> buildMachine2() throws Exception {
Builder<String, String> builder = StateMachineBuilder.builder();
builder.configureConfiguration()

.withConfiguration()
.autoStartup(false)
.beanFactory(null)
.Llistener(null);

return builder.build();

You need to understand when common configuration needs to be used with machines instantiated
from a builder. You can use a configurer returned from a withConfiguration() to setup autoStart
and BeanFactory. You can also use one to register a StateMachineListener. If a StateMachine instance
returned from a builder is registered as a bean by using @Bean, BeanFactory is attached
automatically. If you use instances outside of a spring application context, you must use these
methods to set up the needed facilities.

68

Using Deferred Events

When an event is sent, it may fire an EventTrigger, which may then cause a transition to happen, if
a state machine is in a state where a trigger is evaluated successfully. Normally, this may lead to a
situation where an event is not accepted and is dropped. However, you may wish postpone this
event until a state machine enters another state. In that case, you can accept that event. In other
words, an event arrives at an inconvenient time.

Spring Statemachine provides a mechanism for deferring events for later processing. Every state
can have a list of deferred events. If an event in the current state’s deferred event list occurs, the
event is saved (deferred) for future processing until a state is entered that does not list the event in
its deferred event list. When such a state is entered, the state machine automatically recalls any
saved events that are no longer deferred and then either consumes or discards these events. It is
possible for a superstate to have a transition defined on an event that is deferred by a substate.
Following same hierarchical state machines concepts, the substate takes precedence over the
superstate, the event is deferred, and the transition for the superstate is not run. With orthogonal
regions, where one orthogonal region defers an event and another accepts the event, the accept
takes precedence and the event is consumed and not deferred.

The most obvious use case for event deferring is when an event causes a transition into a particular
state and the state machine is then returned back to its original state where a second event should
cause the same transition. The following example shows this situation:

69

static class Configb extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
.initial("READY")
.state("DEPLOYPREPARE", "DEPLOY")
.state("DEPLOYEXECUTE", "DEPLOY");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {
transitions

.withExternal()
.source("READY").target("DEPLOYPREPARE")
.event("DEPLOY")
.and()

.withExternal()
.source("DEPLOYPREPARE").target("DEPLOYEXECUTE")
.and()

WwithExternal()
.source("DEPLOYEXECUTE").target("READY");

In the preceding example, the state machine has a state of READY, which indicates that the machine
is ready to process events that would take it into a DEPLOY state, where the actual deployment would
happen. After a deploy action has been run, the machine is returned back to the READY state.
Sending multiple events in a READY state does not cause any trouble if the machine is using
synchronous executors, because event sending would block between event calls. However, if the
executor uses threads, other events may get lost, because the machine is no longer in a state where
events can be processed. Thus, deferring some of these events lets the machine preserve them. The
following example shows how to configure such an arrangement:

70

static class Configb extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
.initial("READY")
.state("DEPLOY", "DEPLOY")
.state("DONE")
.and()
.withStates()
.parent("DEPLOY")
.initial("DEPLOYPREPARE")
.state("DEPLOYPREPARE", "DONE")
.state("DEPLOYEXECUTE");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)

throws Exception {

transitions

.withExternal()
.source("READY").target("DEPLOY")
.event("DEPLOY")

.and()

.withExternal()
.source("DEPLOYPREPARE").target("DEPLOYEXECUTE")
.and()

.withExternal()
.source("DEPLOYEXECUTE").target("READY")
.and()

.withExternal()
.source("READY").target("DONE")
.event("DONE")

.and()

.withExternal()
.source("DEPLOY").target("DONE")
.event("DONE");

In the preceding example, the state machine uses nested states instead of a flat state model, so the
DEPLOY event can be deferred directly in a substate. It also shows the concept of deferring the DONE
event in a sub-state that would then override the anonymous transition between the DEPLOY and

71

DONE states if the state machine happens to be in a DEPLOYPREPARE state when the DONE event is
dispatched. In the DEPLOYEXECUTE state when the DONE event is not deferred, this event would be
handled in a super state.

72

Using Scopes

Support for scopes in a state machine is very limited, but you can enable session scope by using a
normal Spring @Scope annotation in one of two ways:

* If the state machine is built manually by using a builder and returned into the context as a
@Bean.

* Through a configuration adapter.

Both of these need @Scope to be present, with scopeName set to session and proxyMode set to
ScopedProxyMode . TARGET_CLASS. The following examples show both use cases:

73

74

public class Config3 {

(scopeName="session", proxyMode=ScopedProxyMode.TARGET_CLASS)
StateMachine<String, String> stateMachine() throws Exception {
Builder<String, String> builder = StateMachineBuilder.builder();
builder.configureConfiguration()
.withConfiquration()
.autoStartup(true);
builder.configureStates()
.withStates()
Linitial("s1")
.state("S2");
builder.configureTransitions()
.withExternal()
.source("S1")
.target("S2")
.event("E1");
StateMachine<String, String> stateMachine = builder.build();
return stateMachine;

(scopeName="session", proxyMode=ScopedProxyMode.TARGET_CLASS)
public static class Config4 extends StateMachineConfigurerAdapter<String, String>
{

public void configure(StateMachineConfigurationConfigurer<String, String>
config) throws Exception {
config
.withConfiquration()
.autoStartup(true);

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
Linitial("s1")
.state("S2");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions) throws Exception {
transitions
.withExternal()
.source("S1")
.target("S2")
.event("E1");

TIP:See Scope for how to use session scoping.

Once you have scoped a state machine into session, autowiring it into a @Controller gives a new
state machine instance per session. Each state machine is then destroyed when HttpSession is
invalidated. The following example shows how to use a state machine in a controller:

75

76

public class StateMachineController {

StateMachine<String, String> stateMachine;

public HttpEntity<Void> setState(

(path="/state", method=RequestMethod.POST)
("event") String event) {
stateMachine
.sendEvent (Mono. just(MessageBuilder
.withPayload(event).build()))
.subscribe();
return new ResponseEntity<Void>(HttpStatus.ACCEPTED);

(path="/state", method=RequestMethod.GET)

public String getState() {

}

return stateMachine.getState().getId();

Using state machines in a session scopes needs careful planning, mostly because it
is a relatively heavy component.

Spring Statemachine poms have no dependencies to Spring MVC classes, which
you will need to work with session scope. However, if you are working with a web
application, you have already pulled those dependencies directly from Spring MVC
or Spring Boot.

Using Actions

Actions are one of the most useful components that you can use to interact and collaborate with a
state machine. You can run actions in various places in a state machine and its states lifecycle — for
example, entering or exiting states or during transitions. The following example shows how to use
actions in a state machine:

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states

.withStates()
.initial(States.SI)
.state(States.S1, action1(), action2())
.state(States.S2, action1(), action2())
.state(States.S3, action1(), action3());

In the preceding example, the action1 and action2 beans are attached to the entry and exit states,
respectively. The following example defines those actions (and action3):

77

public Action<States, Events> action1() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
}
};

public BaseAction action2() {
return new BaseAction();

}

public SpelAction action3() {
ExpressionParser parser = new SpelExpressionParser();
return new SpelAction(
parser.parseExpression(

"stateMachine.sendEvent(T(org.springframework.statemachine.docs.Events).E1)"));

}

public class BaseAction implements Action<States, Events> {

public void execute(StateContext<States, Events> context) {
}
+

public class SpelAction extends SpelExpressionAction<States, Events> {
public SpelAction(Expression expression) {

super (expression);

}

You can directly implement Action as an anonymous function or create your own implementation
and define the appropriate implementation as a bean.

In the preceding example, action3 uses a SpEL expression to send the Events.E1 event into a state
machine.

e StateContext is described in Using StateContext.

78

SpEL Expressions with Actions

You can also use a SpEL expression as a replacement for a full Action implementation.

Reactive Actions

Normal Action interface is a simple functional method taking StateContext and returning void.
There’s nothing blocking here until you block in a method itself and this is a bit of a problem as
framework cannot know what’s exactly happening inside of it.

public interface Action<S, E> {
void execute(StateContext<S, E> context);

}

To overcome this issue we’ve internally changed Action handling to process a plain java’s Function
taking StateContext and returning Mono. This way we can call action and fully in a reactive way to
execute action only when it’s subscribed and in a non-blocking way to wait completion.

public interface ReactiveAction<S, E> extends Function<StateContext<S, E>, Mono

<Void>> {

}

o Internally old Action interface is wrapped with a Reactor Mono Runnable as it
shares same return type. We have no control what you do in that method!

79

Using Guards

As shown in Things to Remember, the quard1 and quard2 beans are attached to the entry and exit
states, respectively. The following example also uses guards on events:

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()
.source(States.SI).target(States.S1)
.event(Events.E1)

.quard(quard1())
.and()

.withExternal()
.source(States.S1).target(States.S2)
.event(Events.E1)

.quard(quard2())
.and()

.withExternal()
.source(States.S2).target(States.S3)
.event(Events.E2)

.quardExpression("extendedState.variables.qget('myvar')");

You can directly implement Guard as an anonymous function or create your own implementation
and define the appropriate implementation as a bean. In the preceding example, guardExpression

checkS whether the extended state variable named myvar evaluates to TRUE. The following example
implements some sample guards:

80

public Guard<States, Events> quard1() {
return new Guard<States, Events>() {

public boolean evaluate(StateContext<States, Events> context) {
return true;
}
Irs

public BaseGuard guard2() {
return new BaseGuard();

}

public class BaseGuard implements Guard<States, Events> {

public boolean evaluate(StateContext<States, Events> context) {
return false;

}

o StateContext is described in section Using StateContext.

SpEL Expressions with Guards

You can also use a SpEL expression as a replacement for a full Guard implementation. The only
requirement is that the expression needs to return a Boolean value to satisfy the Guard
implementation. This can be demonstrated with a gquardExpression() function that takes an
expression as an argument.

Reactive Guards

Normal Guard interface is a simple functional method taking StateContext and returning boolean.
There’s nothing blocking here until you block in a method itself and this is a bit of a problem as
framework cannot know what’s exactly happening inside of it.

public interface Guard<S, E> {
boolean evaluate(StateContext<S, E> context);

}

81

To overcome this issue we’ve internally changed Guard handling to process a plain java’s Function
taking StateContext and returning Mono<Boolean>. This way we can call guard and fully in a reactive
way to evaluate it only when it’s subscribed and in a non-blocking way to wait completion with a
return value.

public interface ReactiveGuard<S, E> extends Function<StateContext<S, E>, Mono
<Boolean>> {

}

o Internally old Guard interface is wrapped with a Reactor Mono Function. We have
no control what you do in that method!

82

Using Extended State

Assume that you need to create a state machine that tracks how many times a user is pressing a key
on a keyboard and then terminates when keys are pressed 1000 times. A possible but really naive
solution would be to create a new state for each 1000 key presses. You might suddenly have an
astronomical number of states, which, naturally, is not very practical.

This is where extended state variables come to the rescue by not needing to add more states to
drive state machine changes. Instead, you can do a simple variable change during a transition.

StateMachine has a method called getExtendedState(). It returns an interface called ExtendedState,
which gives access to extended state variables. You can access these variables directly through a
state machine or through StateContext during a callback from actions or transitions. The following
example shows how to do so:

public Action<String, String> myVariableAction() {
return new Action<String, String>() {

public void execute(StateContext<String, String> context) {
context.getExtendedState()
.getVariables().put("mykey", "myvalue");

If you need to get notified for extended state variable changes, you have two options: either use
StateMachinelListener or listen for extendedStateChanged(key, value) callbacks. The following
example uses the extendedStateChanged method:

public class ExtendedStateVariablelistener
extends StateMachinelistenerAdapter<String, String> {

public void extendedStateChanged(Object key, Object value) {
// do something with changed variable

}

Alternatively, you can implement a Spring Application context listener for OnExtendedStateChanged.
As mentioned in Listening to State Machine Events, you can also listen all StateMachineEvent events.
The following example uses onApplicationEvent to listen for state changes:

83

84

public class ExtendedStateVariableEventListener
implements ApplicationListener<OnExtendedStateChanged> {

@0verride

public void onApplicationEvent(OnExtendedStateChanged event) {
// do something with changed variable

}

Using StateContext

StateContext is one of the most important objects when working with a state machine, as it is
passed into various methods and callbacks to give the current state of a state machine and where it
is possibly going. You can think of it as a snapshot of the current state machine stage when is when
StateContext is retreived.

In Spring Statemachine 1.0.x, StateContext usage was relatively naive in terms of

o how it was used to pass stuff around as a simple “POJO”. Starting from Spring
Statemachine 1.1.x, its role has been greatly improved by making it a first class
citizen in a state machine.

You can use StateContext to get access to the following:

* The current Message or Event (or their MessageHeaders, if known).
* The state machine’s Extended State.

» The StateMachine itself.

* To possible state machine errors.

» To the current Transition, if applicable.

* The source state of the state machine.

» The target state of the state machine.

* The current Stage, as described in Stages.

StateContext is passed into various components, such as Action and Guard.

Stages

Stage is arepresentation of a stage on which a state machine is currently interacting with a user.
The currently available stages are EVENT_NOT_ACCEPTED, EXTENDED_STATE_CHANGED, STATE_CHANGED,
STATE_ENTRY, STATE_EXIT, STATEMACHINE_ERROR, STATEMACHINE_START, STATEMACHINE_STOP, TRANSITION,
TRANSITION_START, and TRANSITION_END. These states may look familiar, as they match how you can
interact with listeners (as described in Listening to State Machine Events).

85

https://docs.spring.io/spring-statemachine/docs/{spring-statemachine-version}/api/org/springframework/statemachine/StateContext.html
https://docs.spring.io/spring-statemachine/docs/{spring-statemachine-version}/api/org/springframework/statemachine/StateContext.Stage.html

Triggering Transitions

Driving a state machine is done by using transitions, which are triggered by triggers. The currently
supported triggers are EventTrigger and TimerTrigger.

Using EventTrigger

EventTrigger is the most useful trigger, because it lets you directly interact with a state machine by
sending events to it. These events are also called signals. You can add a trigger to a transition by
associating a state with it during configuration. The following example shows how to do so:

StateMachine<String, String> stateMachine;

void signalMachine() {
stateMachine
.sendEvent(Mono. just(MessageBuilder
.withPayload("E1").build()))
.subscribe();

Message<String> message = MessageBuilder
.withPayload("E2")
.setHeader ("foo", "bar")
.build();

stateMachine.sendEvent(Mono. just(message)).subscribe();

o Nothing happens until returned flux is subscribed. See more about it from

StateMachineEventResult.

The preceding example sends an events by constructing a Mono wrapping a Message and subscribing
into returned Flux of results. Message lets us add arbitrary extra information to an event, which is
then visible to StateContext when (for example) you implement actions.

Message headers are generally passed on until machine runs to completion for a

o specific event. For example if an event is causing transition into a state A which

have an anonymous transition into a state B, original event is available for actions
or guards in state B.

It is also possible to send a Flux of messages instead of sending just one with a Mono.

86

Message<String> messagel = MessageBuilder
.withPayload("E1")
.build();

Message<String> message?
.withPayload("E2")
.build();

MessageBuilder

Flux<StateMachineEventResult<String, String>> results =
stateMachine.sendEvents(Flux.just(messagel, message2));

results.subscribe();

StateMachineEventResult

StateMachineEventResult contains more detailed information about a result of a event sending.
From this you can get a Region which handled an event, Message itself and what was an actual
ResultType. From ResultType you can see if message was accepted, denied or deferred. Generally
speaking when subscribtion completes, events are passed into a machine.

Using TimerTrigger

TimerTrigger is useful when something needs to be triggered automatically without any user
interaction. Trigger is added to a transition by associating a timer with it during a configuration.

Currently, there are two types of supported timers, one that fires continuously and one that fires
once a source state is entered. The following example shows how to use the triggers:

87

88

@Configuration
@EnableStateMachine
public class Config2 extends StateMachineConfigurerAdapter<String, String> {

@Override
public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {

states
.withStates()
Linitial("sS1")
.state("S2")
.state("S3");
}
@0verride

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {
transitions

.withExternal()
.source("S1").target("S2").event("E1")
.and()

.withExternal()
.source("S1").target("S3").event("E2")
.and()

.withInternal()
.source("S2")
.action(timerAction())
Ltimer (1000)
.and()

.withInternal()
.source("S3")
.action(timerAction())
.timerOnce(1000);

}

@Bean
public TimerAction timerAction() {
return new TimerAction();
}
}

public class TimerAction implements Action<String, String> {

@0verride
public void execute(StateContext<String, String> context) {
// do something in every 1 sec

}

The preceding example has three states: S1, 52, and S3. We have a normal external transition from
S1to S2 and from S1 to S3 with events E1 and E2, respectively. The interesting parts for working with
TimerTrigger are when we define internal transitions for source states S2 and S3.

For both transitions, we invoke the Action bean (timerAction), where source state S2 uses timer and
S3 uses timerOnce. Values given are in milliseconds (1000 milliseconds, or one second, in both cases).

Once a state machine receives event E1, it does a transition from S1 to S2 and the timer kicks in.
When the state is S2, TimerTrigger runs and causes a transition associated with that state —in this
case, the internal transition that has the timerAction defined.

Once a state machine receives the E2, event it does a transition from S1 to S3 and the timer kicks in.
This timer is executed only once after the state is entered (after a delay defined in a timer).

Behind the scenes, timers are simple triggers that may cause a transition to
o happen. Defining a transition with a timer() keeps firing triggers and causes

transition only if the source state is active. Transition with timerOnce() is a little

different, as it triggers only after a delay when a source state is actually entered.

O Use timerOnce() if you want something to happen after a delay exactly once when
- state is entered.

89

Listening to State Machine Events

There are use cases where you want to know what is happening with a state machine, react to
something, or get logging details for debugging purposes. Spring Statemachine provides interfaces
for adding listeners. These listeners then give an option to get callbacks when various state
changes, actions, and so on happen.

You basically have two options: listen to Spring application context events or directly attach a
listener to a state machine. Both of these basically provide the same information. One produces
events as event classes, and the other produces callbacks via a listener interface. Both of these have
pros and cons, which we discuss later.

Application Context Events

Application context events classes are OnTransitionStartEvent, OnTransitionEvent,
OnTransitionEndEvent, OnStateExitEvent, OnStateEntryEvent, OnStateChangedEvent,
OnStateMachineStart, OnStateMachineStop, and others that extend the base event class,
StateMachineEvent. These can be used as is with a Spring ApplicationListener.

StateMachine sends context events through StateMachineEventPublisher. The default implementation
is automatically created if a @Configuration class is annotated with @EnableStateMachine. The
following example gets a StateMachineApplicationEventListener from a bean defined in a
@Configuration class:

public class StateMachineApplicationEventListener
implements ApplicationListener<StateMachineEvent> {

public void onApplicationEvent(StateMachineEvent event) {
}

public class ListenerConfig {

public StateMachineApplicationEventListener contextListener() {
return new StateMachineApplicationEventListener();

}

Context events are also automatically enabled by using @EnableStateMachine, with StateMachine used
to build a machine and registered as a bean, as the following example shows:

90

public class ManualBuilderConfig {

public StateMachine<String, String> stateMachine() throws Exception {

Builder<String, String> builder = StateMachineBuilder.builder();
builder.configureStates()
.withStates()
Linitial("s1")
.state("S2");
builder.configureTransitions()
.withExternal()
.source("S1")
.target("S2")
.event("E1");
return builder.build();

Using StateMachinelistener

By using StateMachinelistener, you can either extend it and implement all callback methods or use
the StateMachinelistenerAdapter class, which contains stub method implementations and choose

which ones to override. The following example uses the latter approach:

91

92

public class StateMachineEventListener
extends StateMachinelistenerAdapter<States, Events> {

public

}

public

public

public

public

public

public

public

public

public

void

void

void

void

void

void

void

void

void

void

stateChanged(State<States, Events> from, State<States, Events> to)

stateEntered(State<States, Events> state) {

stateExited(State<States, Events> state) {

transition(Transition<States, Events> transition) {

transitionStarted(Transition<States, Events> transition) {

transitionEnded(Transition<States, Events> transition) {

stateMachineStarted(StateMachine<States, Events> stateMachine) {

stateMachineStopped(StateMachine<States, Events> stateMachine) {

eventNotAccepted(Message<Events> event) {

extendedStateChanged(Object key, Object value) {

public void stateMachineError(StateMachine<States, Events> stateMachine,
Exception exception) {

}

public void stateContext(StateContext<States, Events> stateContext) {
}

In the preceding example, we created our own listener class (StateMachineEventListener) that
extends StateMachinelistenerAdapter.

The stateContext listener method gives access to various StateContext changes on a different stages.
You can find more about about it in Using StateContext.

Once you have defined your own listener, you can registered it in a state machine by using the
addStatelistener method. It is a matter of flavor whether to hook it up within a spring
configuration or do it manually at any time during the application life-cycle. The following example
shows how to attach a listener:

public class Config7 {

StateMachine<States, Events> stateMachine;

public StateMachineEventlListener stateMachineEventListener() {
StateMachineEventListener listener = new StateMachineEventListener();
stateMachine.addStatelistener(listener);
return listener;

Limitations and Problems

Spring application context is not the fastest event bus out there, so we advise giving some thought
to the rate of events the state machine sends. For better performance, it may be better to use the
StateMachinelistener interface. For this specific reason, you can use the contextEvents flag with
@EnableStateMachine and @EnableStateMachineFactory to disable Spring application context events, as
shown in the preceding section. The following example shows how to disable Spring application
context events:

93

94

@Configuration
@EnableStateMachine(contextEvents = false)
public class Config8
extends EnumStateMachineConfigurerAdapter<States, Events> {

}

@Configuration
@EnableStateMachineFactory(contextEvents = false)
public class Config9
extends EnumStateMachineConfigurerAdapter<States, Events> {

}

Context Integration

It is a little limited to do interaction with a state machine by either listening to its events or using
actions with states and transitions. From time to time, this approach is going be too limited and
verbose to create interaction with the application with which a state machine works. For this
specific use case, we have made a Spring-style context integration that easily inserts state machine
functionality into your beans.

The available annotations has been harmonized to enable access to the same state machine
execution points that are available from Listening to State Machine Events.

You can use the @WithStateMachine annotation to associate a state machine with an existing bean.
Then you can start adding supported annotations to the methods of that bean. The following
example shows how to do so:

public class Beanl {

public void anyTransition() {

}

You can also attach any other state machine from an application context by using the annotation
name field. The following example shows how to do so:

(name = "myMachineBeanName")
public class Bean2 {

public void anyTransition() {

}

Sometimes, it is more convenient to use machine id, which is something you can set to better
identify multiple instances. This ID maps to the getId() method in the StateMachine interface. The
following example shows how to use it:

95

(id = "myMachineId")
public class Bean16 {

public void anyTransition() {

}

You can also use @WithStateMachine as a meta-annotation, as shown in the preceding example. In
this case, you could annotate your bean with WithMyBean. The following example shows how to do
S0:

(ElementType.TYPE)
(RetentionPolicy.RUNTIME)
(name = "myMachineBeanName")

public WithMyBean {
}
0 The return type of these methods does not matter and is effectively discarded.

Enabling Integration

You can enable all the features of @WithStateMachine by using the @EnableWithStateMachine
annotation, which imports the needed configuration into the Spring Application Context. Both
@EnableStateMachine and @EnableStateMachineFactory are already annotated with this annotation, so
there is no need to add it again. However, if a machine is built and configured without
configuration adapters, you must use @EnableWithStateMachine to use these features with
@WithStateMachine. The following example shows how to do so:

96

public static StateMachine<String, String> buildMachine(BeanFactory beanFactory)
throws Exception {
Builder<String, String> builder = StateMachineBuilder.builder();

builder.configureConfiguration()
.withConfiguration()
.machineId("myMachineId")
.beanFactory(beanFactory);

builder.configureStates()
.withStates()
Linitial("s1")
.state("S2");

builder.configureTransitions()
.withExternal()
.source("S1")
.target("S2")
.event("E1");

return builder.build();

(id = "myMachineId")
static class Beanl17 {

public void onStateChanged() {

}
}
If a machine is not created as a bean, you need to set BeanFactory for a machine, as
shown in the prededing example. Otherwise, tge machine is unaware of handlers
that call your @WithStateMachine methods.
Method Parameters

Every annotation support exactly the same set of possible method parameters, but runtime
behavior differs, depending on the annotation itself and the stage in which the annotated method is
called. To better understand how context works, see Using StateContext.

o For differences between method parameters, see the sections that desdribe the
individual annotation, later in this document.

Effectively, all annotated methods are called by using Spring SPel expressions, which are built
dynamically during the process. To make this work, these expressions needs to have a root object

97

(against which they evaluate). This root object is a StateContext. We have also made some tweaks
internally so that it is possible to access StateContext methods directly without going through the
context handle.

The simplest method parameter is a StateContext itself. The following example shows how to use it:

public class Bean3 {

public void anyTransition(StateContext<String, String> stateContext) {
}

You can access the rest of the StateContext content. The number and order of the parameters does
not matter. The following example shows how to access the various parts of the StateContext
content:

public class Beand {

public void anyTransition(
Map<String, Object> headers,

("myheader1") Object myheader1,

(name = "myheader2", required = false) String myheader?,
ExtendedState extendedState,
StateMachine<String, String> stateMachine,
Message<String> message,
Exception e) {

o Instead of getting all event headers with @EventHeaders, you can use @EventHeader,
which can bound to a single header.

Transition Annotations

The annotations for transitions are @0nTransition, @nTransitionStart, and @0nTransitionEnd.

These annotations behave exactly the same. To show how they work, we show how @0nTransition is
used. Within this annotation, a property’s you can use source and target to qualify a transition. If
source and target are left empty, any transition is matched. The following example shows how to
use the @0nTransition annotation (remember that @0nTransitionStart and @0OnTransitionEnd work

98

the same way):

public class Bean5 {

(source = "S1", target = "S2")
public void fromS1ToS2() {
}

public void anyTransition() {

}

By default, you cannot use the @0nTransition annotation with a state and event enumerations that
you have created, due to Java language limitations. For this reason, you need to use string
representations.

Additionally, you can access Event Headers and ExtendedState by adding the needed arguments to a
method. The method is then called automatically with these arguments. The following example
shows how to do so:

public class Bean6b {

(source = States.S1, target = States.S2)
public void fromS1ToS2(Map<String, Object> headers,
ExtendedState extendedState) {
}

However, if you want to have a type-safe annotation, you can create a new annotation and use
@0nTransition as a meta-annotation. This user-level annotation can make references to actual states
and events enumerations, and the framework tries to match these in the same way. The following
example shows how to do so:

99

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@0nTransition

public @interface StatesOnTransition {

States[] source() default {};

States[] target() default {};

In the preceding example, we created a @StatesOnTransition annotation that defines source and
target in a type-safe manner. The following example uses that annotation in a bean:

@WithStateMachine
public class Bean7 {

@StatesOnTransition(source = States.S1, target = States.S2)
public void fromS1ToS2() {

}

State Annotations

The following annotations for states are available: @0nStateChanged, @0nStateEntry, and @0nStateExit.
The following example shows how to use OnStateChanged annotation (the other two work the same
way):

@WithStateMachine
public class Bean8 {

@0nStateChanged
public void anyStateChange() {

}

As you can with Transition Annotations, you can define target and source states. The following
example shows how to do so:

100

@WithStateMachine
public class Bean9 {

@0nStateChanged(source = "S1", target = "S2")
public void stateChangeFromS1toS2() {
}

For type safety, new annotations need to be created for enumerations by using @0nStateChanged as a
meta-annotation. The following examples show how to do so:

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@0nStateChanged

public @interface StatesOnStates {
States[] source() default {};

States[] target() default {};

@WithStateMachine
public class Bean10 {

@StatesOnStates(source = States.S1, target = States.S2)
public void fromS1ToS2() {
}

The methods for state entry and exit behave in the same way, as the following example shows:

101

public class Bean11 {

public void anyStateEntry() {
}

public void anyStateExit() {
}

Event Annotation

There is one event-related annotation. It is named @0nEventNotAccepted. If you specify the event
property, you can listen for a specific event not being accepted. If you do not specify an event, you
can list for any event not being accepted. The following example shows both ways to use the
@0nEventNotAccepted annotation:

public class Bean12 {

public void anyEventNotAccepted() {

}

(event = "E1")
public void elEventNotAccepted() {
}

State Machine Annotations

The following annotations are available for a state machine: @0OnStateMachineStart,
@0nStateMachineStop, and @0nStateMachineError.

During a state machine’s start and stop, lifecycle methods are called. The following example shows
how to use @0nStateMachineStart and @0OnStateMachineStop to listen to these events:

102

@WithStateMachine
public class Beanl13 {

@0nStateMachineStart
public void onStateMachineStart() {
}

@0nStateMachineStop
public void onStateMachineStop() {
}

If a state machine goes into an error with exception, @0nStateMachineStop annotation is called. The
following example shows how to use it:

@WithStateMachine
public class Beanl14 {

@0OnStateMachineError
public void onStateMachineError() {

}

Extended State Annotation

There is one extended state-related annotation. It is named @0nExtendedStateChanged. You can also
listen to changes only for specific key changes. The following example shows how to use the
@0nExtendedStateChanged, both with and without a key property:

@WithStateMachine
public class Bean15 {

@0nExtendedStateChanged
public void anyStateChange() {

}

@0nExtendedStateChanged(key = "key1")
public void keyl1Changed() {
}

103

Using StateMachineAccessor

StateMachine is the main interface for communicating with a state machine. From time to time, you
may need to get more dynamic and programmatic access to internal structures of a state machine
and its nested machines and regions. For these use cases, StateMachine exposes a functional
interface called StateMachineAccessor, which provides an interface to get access to individual
StateMachine and Region instances.

StateMachineFunction is a simple functional interface that lets you apply the StateMachineAccess
interface to a state machine. With JDK 7, these create code that is a little verbose code. However,
with JDK 8 lambdas, the doce is relatively non-verbose.

The doWithAl1Regions method gives access to all Region instances in a state machine. The following
example shows how to use it:

stateMachine.getStateMachineAccessor().doWithAl1Regions(function -> function
.setRelay(stateMachine));

stateMachine.getStateMachineAccessor()
.doWithAllRegions(access -> access.setRelay(stateMachine));

The doWithRegion method gives access to single Region instance in a state machine. The following
example shows how to use it:

stateMachine.getStateMachineAccessor().doWithRegion(function -> function.setRelay
(stateMachine));

stateMachine.getStateMachineAccessor()
.doWithRegion(access -> access.setRelay(stateMachine));

The withAl1Regions method gives access to all of the Region instances in a state machine. The
following example shows how to use it:

for (StateMachineAccess<String, String> access : stateMachine
.getStateMachineAccessor().withAl1Regions()) {
access.setRelay(stateMachine);

}

stateMachine.getStateMachineAccessor().withA11Regions()
.stream().forEach(access -> access.setRelay(stateMachine));

104

The withRegion method gives access to single Region instance in a state machine. The following
example shows how to use it:

stateMachine.getStateMachineAccessor()
.withRegion().setRelay(stateMachine);

105

Using StateMachineInterceptor

Instead of using a StateMachinelListener interface, you can use a StateMachineInterceptor. One
conceptual difference is that you can use an interceptor to intercept and stop a current state change
or change its transition logic. Instead of implementing a full interface, you can use an adapter class
called StateMachineInterceptorAdapter to override the default no-op methods.

0 One recipe (Persist) and one sample (Persist) are related to using an interceptor.
You can register an interceptor through StateMachineAccessor. The concept of an interceptor is a

relatively deep internal feature and, thus, is not exposed directly through the StateMachine
interface.

The following example shows how to add a StateMachineInterceptor and override selected methods:

106

stateMachine.getStateMachineAccessor()
.withRegion().addStateMachineInterceptor(new StateMachineInterceptor<String,
String>() {

public Message<String> preEvent(Message<String> message, StateMachine
<String, String> stateMachine) {
return message;

}

public StateContext<String, String> preTransition(StateContext<String,
String> stateContext) {
return stateContext;

}

public void preStateChange(State<String, String> state, Message<String>
message,
Transition<String, String> transition, StateMachine<String,
String> stateMachine,
StateMachine<String, String> rootStateMachine) {
}

public StateContext<String, String> postTransition(StateContext<String,
String> stateContext) {
return stateContext;

}

public void postStateChange(State<String, String> state, Message<String>
message,
Transition<String, String> transition, StateMachine<String,
String> stateMachine,
StateMachine<String, String> rootStateMachine) {
}

public Exception stateMachineError(StateMachine<String, String>
stateMachine,
Exception exception) {
return exception;

;i

107

o For more about the error handling shown in preceding example, see State Machine
Error Handling.

108

State Machine Security

Security features are built atop of functionality from Spring Security. Security features are handy
when it is required to protect part of a state machine execution and interaction with it.

We expect you to be fairly familiar with Spring Security, meaning that we do not
o go into details of how the overall security framework works. For this information,
you should read the Spring Security reference documentation (available here).

The first level of defense with security is naturally protecting events, which really drive what is
going to happen in a state machine. You can then define more fine-grained security settings for
transitions and actions. This parallel to giving an employee access to a building and then giving
access to specific rooms within the building and even the ability to turn on and off the lights in
specific rooms. If you trust your users, event security may be all you need. If not, you need to apply
more detailed security.

You can find more detailed information in Understanding Security.

O For a complete example, see the Security sample.
w

Configuring Security

All generic configurations for security are done in SecurityConfigurer, which is obtained from
StateMachineConfigurationConfigurer. By default, security is disabled, even if Spring Security classes
are present. The following example shows how to enable security:

static class Config4 extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineConfigurationConfigurer<String, String>
config)
throws Exception {
config

.withSecurity()
.enabled(true)
.transitionAccessDecisionManager (null)
.eventAccessDecisionManager (null);

If you absolutely need to, you can customize AccessDecisionManager for both events and transitions.
If you do not define decision managers or set them to null, default managers are created internally.

109

https://projects.spring.io/spring-security
https://spring.io/projects/spring-security#learn

Securing Events

Event security is defined on a global level by a SecurityConfigurer. The following example shows
how to enable event security:

static class Configl extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineConfigurationConfigurer<String, String>
config)
throws Exception {
config

.withSecurity()
.enabled(true)
.event("true")
.event("ROLE_ANONYMOUS", ComparisonType.ANY);

In the preceding configuration example, we use an expression of true, which always evaluates to
TRUE. Using an expression that always evaluates to TRUE would not make sense in a real application
but shows the point that expression needs to return either TRUE or FALSE. We also defined an
attribute of ROLE_ANONYMOUS and a ComparisonType of ANY. For more about using attributes and
expressions, see Using Security Attributes and Expressions.

Securing Transitions

You can define transition security globally, as the following example shows.

110

static class Configb extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineConfigurationConfigurer<String, String>

config)
throws Exception {
config
.withSecurity()
.enabled(true)
.transition("true")
.transition("ROLE_ANONYMOUS", ComparisonType.ANY);
Iy
+

If security is defined in a transition itself, it override any globally set security. The following
example shows how to do so:

static class Config2 extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {
transitions

.withExternal()
.source("S0")
.target("S1")
.event("A")
.secured("ROLE_ANONYMOUS", ComparisonType.ANY)
.secured("hasTarget('S1")");

For more about using attributes and expressions, see Using Security Attributes and Expressions.

Securing Actions

There are no dedicated security definitions for actions in a state machine, but you can secure
actions by using a global method security from Spring Security. This requires that an Action be
defined as a proxied @Bean and its execute method be annotated with @Secured. The following

111

example shows how to do so:

112

static class Config3 extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineConfigurationConfigurer<String, String>
config)
throws Exception {
config
.withSecurity()
.enabled(true);

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
Linitial("S0")
.state("S1");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {
transitions

.withExternal()
.source("S0")
.target("S1")
.action(securedAction())
.event("A");

(proxyMode = ScopedProxyMode.TARGET_CLASS)

public Action<String, String> securedAction() {
return new Action<String, String>() {

("ROLE_ANONYMOUS")

public void execute(StateContext<String, String> context) {

}
};

113

Global method security needs to be enabled with Spring Security. The following example shows
how to do so:

(securedEnabled = true)
public static class Config5 extends WebSecurityConfigurerAdapter {

public void configureGlobal(AuthenticationManagerBuilder auth) throws
Exception {
auth
.inMemoryAuthentication()
.withUser("user").password("password").roles("USER");

See the Spring Security reference guide (available here) for more detail.

Using Security Attributes and Expressions

Generally, you can define security properties in either of two ways: by using security attributes and
by using security expressions. Attributes are easier to use but are relatively limited in terms of
functionality. Expressions provide more features but are a little bit harder to use.

Generic Attribute Usage

By default, AccessDecisionManager instances for events and transitions both use a RoleVoter,
meaning you can use role attributes from Spring Security.

For attributes, we have three different comparison types: ANY, ALL, and MAJORITY. These comparison
types map onto default access decision managers (AffirmativeBased, UnanimousBased, and
ConsensusBased, respectively). If you have defined a custom AccessDecisionManager, the comparison
type is effectively discarded, as it is used only to create a default manager.

Generic Expression Usage
Security expressions must return either TRUE or FALSE.

The base class for the expression root objects is SecurityExpressionRoot. It provides some common
expressions, which are available in both transition and event security. The following table describes
the most often used built-in expressions:

Table 1. Common built-in expressions

114

https://spring.io/projects/spring-security#learn

Expression
hasRole([role])

hasAnyRole([rolel,role2])

hasAuthority([authority])

hasAnyAuthority([authority1,authority2])

principal

authentication

permitAll

denyAll

isAnonymous()

isRememberMe()

isAuthenticated()

isFullyAuthenticated()

hasPermission(Object target, Object
permission)

hasPermission(Object targetId, String
targetType, Object permission)

Description

Returns true if the current principal has the
specified role. By default, if the supplied role
does not start with ROLE_, it is added. You can
customize this by modifying the
defaultRolePrefix on
DefaultWebSecurityExpressionHandler.

Returns true if the current principal has any of
the supplied roles (given as a comma-separated
list of strings). By default, if each supplied role
does not start with ROLE , it is added. You can
customize this by modifying the
defaultRolePrefix on
DefaultWebSecurityExpressionHandler.

Returns true if the current principal has the
specified authority.

Returns true if the current principal has any of
the supplied roles (given as a comma-separated
list of strings).

Allows direct access to the principal object that
represents the current user.

Allows direct access to the current
Authentication object obtained from the
SecurityContext.

Always evaluates to true.
Always evaluates to false.

Returns true if the current principal is an
anonymous user.

Returns true if the current principal is a
remember-me user.

Returns true if the user is not anonymous.

Returns true if the user is not an anonymous or
a remember-me user.

Returns true if the user has access to the
provided target for the given permission — for
example, hasPermission(domainObject, 'read').

Returns true if the user has access to the
provided target for the given permission — for
example, hasPermission(1,
"com.example.domain.Message', 'read"').

115

Event Attributes

You can match an event ID by using a prefix of EVENT_. For example, matching event A would match
an attribute of EVENT _A.

Event Expressions

The base class for the expression root object for events is EventSecurityExpressionRoot. It provides
access to a Message object, which is passed around with eventing. EventSecurityExpressionRoot has
only one method, which the following table describes:

Table 2. Event expressions

Expression Description

hasEvent(Object event) Returns true if the event matches given event.

Transition Attributes

When matching transition sources and targets, you can use the TRANSITION_SOURCE_ and
TRANSITION_TARGET_ prefixes respectively.

Transition Expressions

The base class for the expression root object for transitions is TransitionSecurityExpressionRoot. It
provides access to a Transition object, which is passed around for transition changes.
TransitionSecurityExpressionRoot has two methods, which the following table describes:

Table 3. Transition expressions

Expression Description

hasSource(Object source) Returns true if the transition source matches
given source.

hasTarget(Object target) Returns true if the transition target matches
given target.

Understanding Security

This section provides more detailed information about how security works within a state machine.
You may not really need to know, but it is always better to be transparent instead of hiding all the
magic what happens behind the scenes.

Security makes sense only if Spring Statemachine runs in a walled garden where

o user have no direct access to the application and could consequently modify
Spring Security’s SecurityContext hold in a local thread. If the user controls the
JVM, then effectively there is no security at all.

The integration point for security is created with a StateMachineInterceptor, which is then
automatically added into a state machine if security is enabled. The specific class is

116

StateMachineSecurityInterceptor, which intercepts events and transitions. This interceptor then
consults Spring Security’s AccessDecisionManager to determine whether an event can be sent or
whether a transition can be executed. Effectively, if a decision or a vote with a
AccessDecisionManager results in an exception, the event or transition is denied.

Due to how AccessDecisionManager from Spring Security works, we need one instance of it per
secured object. This is one reason why there are different managers for events and transitions. In
this case, events and transitions are different class objects that we secure.

By default, for events, voters (EventExpressionVoter, EventVoter, and RoleVoter) are added into an
AccessDecisionManager.

By default, for transitions, voters (TransitionExpressionVoter, TransitionVoter, and RoleVoter) are
added into an AccessDecisionManager.

117

State Machine Error Handling

If a state machine detects an internal error during a state transition logic, it may throw an
exception. Before this exception is processed internally, you are given a chance to intercept.

Normally, you can use StateMachineInterceptor to intercept errors and the following listing shows
an example of it:

StateMachine<String, String> stateMachine;

void addInterceptor() {
stateMachine.getStateMachineAccessor()
.doWithRegion(function ->
function.addStateMachineInterceptor(new
StateMachineInterceptorAdapter<String, String>() {

public Exception stateMachineError(StateMachine<String,
String> stateMachine,
Exception exception) {
return exception;

1))

When errors are detected, the normal event notify mechanism is executed. This lets you use either
a StateMachineListener or a Spring Application context event listener. For more about these, see
Listening to State Machine Events.

Having said that, the following example shows a simple listener:

public class ErrorStateMachinelistener
extends StateMachinelistenerAdapter<String, String> {

public void stateMachineError(StateMachine<String, String> stateMachine,
Exception exception) {
// do something with error

}

The following example shows a generic ApplicationListener checking StateMachineEvent:

118

public class GenericApplicationEventListener
implements ApplicationListener<StateMachineEvent> {

@0verride
public void onApplicationEvent(StateMachineEvent event) {
if (event instanceof OnStateMachineError) {
// do something with error

You can also directly define ApplicationListener to recognize only StateMachineEvent instances, as
the following example shows:

public class ErrorApplicationEventListener
implements ApplicationListener<OnStateMachineError> {

@0verride
public void onApplicationEvent(OnStateMachineError event) {
// do something with error

}
}
(r) Actions defined for transitions also have their own error handling logic. See
- Transition Action Error Handling.

With a reactive api’s it is possible to get Action execution error back from a
StateMachineEventResult. Having simple machine which errors within action transitioning into
state S1.

119

@Configuration
@EnableStateMachine
static class Configl extends StateMachineConfigurerAdapter<String, String> {

@Override
public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {

states
.withStates()
Linitial("SI")
.stateEntry("S1", (context) -> {
throw new RuntimeException("example error");
3
Iy
@0verride

public void configure(StateMachineTransitionConfiqgurer<String, String>
transitions) throws Exception {
transitions
.withExternal()
.source("SI")
.target("S1")
.event("E1");

Below test concept shows how possible error can be consumed from a StateMachineEventResult.

120

private StateMachine<String, String> machine;

public void testActionEntryErrorWithEvent() throws Exception {
StepVerifier.create(machine.startReactively()).verifyComplete();
assertThat(machine.getState().getIds()).containsExactlyInAnyOrder("SI");

StepVerifier.create(machine.sendEvent(Mono.just(MessageBuilder.withPayload("
E1").build())))
.consumeNextWith(result -> {
StepVerifier.create(result.complete()).consumeErrorWith(e -> {
assertThat(e).isInstanceOf(StateMachineException.class)
.hasMessageContaining("example error");
1) .verify();

1))
.verifyComplete();

assertThat(machine.getState().getIds()).containsExactlyInAnyOrder("S1");

o Error in entry/exit actions will not prevent transition to happen.

121

State Machine Services

StateMachine services are higher-level implementations meant to provide more user-level
functionalities to ease normal runtime operations. Currently, only one service interface
(StateMachineService) exists.

Using StateMachineService

StateMachineService is an interface that is meant to handle running machines and have simple
methods to “acquire” and “release” machines. It has one default implementation, named
DefaultStateMachineService.

122

Persisting a State Machine

Traditionally, an instance of a state machine is used as is within a running program. You can
achieve more dynamic behavior by using dynamic builders and factories, which allows state
machine instantiation on-demand. Building an instance of a state machine is a relatively heavy
operation. Consequently, if you need to (for example) handle an arbitrary state change in a
database by using a state machine, you need to find a better and faster way to do it.

The persist feature lets you save a state of a state machine into an external repository and later
reset a state machine based off the serialized state. For example, if you have a database table
keeping orders, it would be way too expensive to update an order state with a state machine if a
new instance would need to be built for every change. The persist feature lets you reset a state
machine state without instantiating a new state machine instance.

o There is one recipe (see Persist) and one sample (see Persist) that provide more
info about persisting states.

While you can build a custom persistence feature by using a StateMachinelListener, it has one
conceptual problem. When a listener notifies about a change of state, the state change has already
happened. If a custom persistent method within a listener fails to update the serialized state in an
external repository, the state in a state machine and the state in an external repository are then in
an inconsistent state.

You can instead use a state machine interceptor to try to save the serialized state into external
storage during the state change within a state machine. If this interceptor callback fails, you can
halt the state change attempt and, instead of ending in an inconsistent state, you can then handle
this error manually. See Using StateMachineInterceptor for how to use interceptors.

Using StateMachineContext

You cannot persist a StateMachine by using normal java serialization, as the object graph is too rich
and contains too many dependencies on other Spring context classes. StateMachineContext is a
runtime representation of a state machine that you can use to restore an existing machine into a
state represented by a particular StateMachineContext object.

StateMachineContext contains two different ways to include information for a child context. These
are generally used when a machine contains orthogonal regions. First, a context can have a list of
child contexts that can be used as is if they exist. Second, you can include a list of references that
are used if raw context children are not in place. These child references are really the only way to
persist a machine where multiple parallel regions are running independently.

(;) The Data Multi Persist sample shows how you can persist parallel regions.
-

Using StateMachinePersister

Building a StateMachineContext and then restoring a state machine from it has always been a little
bit of “black magic” if done manually. The StateMachinePersister interface aims to ease these

123

operations by providing persist and restore methods. The default implementation of this interface
is DefaultStateMachinePersister.

We can show how to use a StateMachinePersister by following a snippets from tests. We start by
creating two similar configurations (machinel and machine2) for a state machine. Note that we could
build different machines for this demonstration in other ways but this way works for this case. The
following example configures the two state machines:

(name = "machinel")
static class Configl extends Config {

}

(name = "machine2")
static class Config2 extends Config {

}

static class Config extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {

states
.withStates()
Linitial("S1")
.state("S1")

.state("S2");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions) throws Exception {
transitions
.withExternal()
.source("S1")
.target("S2")
.event("E1");

As we are using a StateMachinePersist object, we can create an in-memory implementation.

o This in-memory sample is only for demonstration purposes. For real applications,
you should use a real persistent storage implementation.

The following listing shows how to use the in-memory sample:

124

static class InMemoryStateMachinePersist implements StateMachinePersist<String,
String, String> {

private final HashMap<String, StateMachineContext<String, String>> contexts =
new HashMap<>();

public void write(StateMachineContext<String, String> context, String
contextObj) throws Exception {
contexts.put(contextObj, context);

}

public StateMachineContext<String, String> read(String contextObj) throws
Exception {
return contexts.get(contextObj);

}

After we have instantiated the two different machines, we can transfer machinel into state S2
through event E1. Then we can persist it and restore machine2. The following example shows how to
do so:

InMemoryStateMachinePersist stateMachinePersist = new InMemoryStateMachinePersist

0);
StateMachinePersister<String, String, String> persister = new
DefaultStateMachinePersister<>(stateMachinePersist);

StateMachine<String, String> stateMachinel
StateMachine.class);

StateMachine<String, String> stateMachine2
StateMachine.class);
stateMachinel.startReactively().block();

context.getBean("machine1",

context.getBean("machine2",

stateMachine1
.sendEvent(Mono. just(MessageBuilder
.withPayload("E1").build()))
.blockLast();
assertThat(stateMachinel.getState().getIds()).containsExactly("S2");

persister.persist(stateMachinel, "myid");

persister.restore(stateMachine2, "myid");
assertThat(stateMachine2.getState().getIds()).containsExactly("S2");

125

Using Redis

RepositoryStateMachinePersist (which implements StateMachinePersist) offers support for
persisting a state machine into Redis. The specific implementation is a
RedisStateMachineContextRepository, which uses kryo serialization to persist a StateMachineContext
into Redis.

For StateMachinePersister, we have a Redis-related RedisStateMachinePersister implementation,
which takes an instance of a StateMachinePersist and uses String as its context object.

(;) See the Event Service sample for detailed usage.
-

RedisStateMachineContextRepository needs a RedisConnectionFactory for it to work. We recommend
using a JedisConnectionFactory for it, as the preceding example shows.

Using StateMachineRuntimePersister

StateMachineRuntimePersister is a simple extension to StateMachinePersist that adds an interface-
level method to get StateMachineInterceptor associated with it. This interceptor is then required to
persist a machine during state changes without needing to stop and start a machine.

Currently, there are implementations for this interface for the supported Spring Data Repositories.
These implementations are JpaPersistingStateMachinelnterceptor,
MongoDbPersistingStateMachineInterceptor, and RedisPersistingStateMachineInterceptor.

(;) See the Data Persist sample for detailed usage.

126

Spring Boot Support

The auto-configuration module (spring-statemachine-autoconfigure) contains all the logic for
integrating with Spring Boot, which provides functionality for auto-configuration and actuators. All
you need is to have this Spring Statemachine library as part of a boot application.

Monitoring and Tracing

BootStateMachineMonitor is created automatically and associated with a state machine.
BootStateMachineMonitor is a custom StateMachineMonitor implementation that integrates with
Spring Boot’s MeterRegistry and endpoints through a custom StateMachineTraceRepository.
Optionally, you can disable this auto-configuration by setting the
spring.statemachine.monitor.enabled key to false. The Monitoring sample shows how to use this
auto-configuration.

Repository Config

If the required classes are found from the classpath, Spring Data Repositories and entity class
scanning is automatically auto-configured for Repository Support.

The currently supported configurations are JPA, Redis, and MongoDB. You can disable repository auto-
configuration by using the spring.statemachine.data.jpa.repositories.enabled,
spring.statemachine.data.redis.repositories.enabled and
spring.statemachine.data.mongo.repositories.enabled properties, respectively.

127

Monitoring a State Machine

You can use StateMachineMonitor to get more information about the durations of how long
transitions and actions take to execute. The following listing shows how this interface is
implemented.

public class TestStateMachineMonitor extends AbstractStateMachineMonitor<String,
String> {

public void transition(StateMachine<String, String> stateMachine, Transition
<String, String> transition,
long duration) {

}

public void action(StateMachine<String, String> stateMachine,
Function<StateContext<String, String>, Mono<Void>> action, long

duration) {
}
}

Once you have a StateMachineMonitor implementation, you can add it to a state machine through
configuration, as the following example shows:

128

public class Configl extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineConfigurationConfigurer<String, String>
config)
throws Exception {
config
.withMonitoring()
.monitor(stateMachineMonitor());

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
Linitial("S1")
.state("S2");

public void configure(StateMachineTransitionConfigurer<String, String>
transitions) throws Exception {
transitions
WwithExternal()
.source("S1")
.target("S2")
.event("E1");

public StateMachineMonitor<String, String> stateMachineMonitor() {
return new TestStateMachineMonitor();

}

O See the Monitoring sample for detailed usage.

129

Using Distributed States

Distributed state is probably one of a most complicated concepts of a Spring state machine. What
exactly is a distributed state? A state within a single state machine is naturally really simple to
understand, but, when there is a need to introduce a shared distributed state through a state
machine, things get a little complicated.

Distributed state functionality is still a preview feature and is not yet considered to
o be stable in this particular release. We expect this feature to mature towards its
first official release.

For information about generic configuration support, see Configuring Common Settings. For an
actual usage example, see the Zookeeper sample.

A distributed state machine is implemented through a DistributedStateMachine class that wraps an
actual instance of a StateMachine. DistributedStateMachine intercepts communication with a
StateMachine instance and works with distributed state abstractions handled through the
StateMachineEnsemble interface. Depending on the actual implementation, you can also use the
StateMachinePersist interface to serialize a StateMachineContext, which contains enough
information to reset a StateMachine.

While a distributed state machine is implemented through an abstraction, only one implementation
currently exists. It is based on Zookeeper.

The following example shows how to configure a Zookeeper-based distributed state machine ":

130

public class Config
extends StateMachineConfigurerAdapter<String, String> {

public void configure(StateMachineConfigurationConfigurer<String, String>
config)
throws Exception {
config

.withDistributed()
.ensemble(stateMachineEnsemble())
.and()

.withConfiquration()
.autoStartup(true);

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
// config states

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {
// config transitions

public StateMachineEnsemble<String, String> stateMachineEnsemble()
throws Exception {
return new ZookeeperStateMachineEnsemble<String, String>(curatorClient(),
"/zkpath");
}

public CuratorFramework curatorClient()
throws Exception {

CuratorFramework client = CuratorFrameworkFactory
.builder()
.defaultData(new byte[0])
.connectString("localhost:2181").build();

client.start();

return client;

131

You can find the current technical documentation for a Zookeeker-based distributed state machine
in the appendix.

Using ZookeeperStateMachineEnsemble

ZookeeperStateMachineEnsemble itself needs two mandatory settings, an instance of curator(Client
and a basePath. The client is a CuratorFramework, and the path is the root of a tree in a Zookeeper
instance.

Optionally, you can set cleanState, which defaults to TRUE and clears existing data if no members
exists in an ensemble. You can set it to FALSE if you want to preserve distributed state within
application restarts.

Optionally, you can set the size of a 1logSize (defaults to 32) to a keep history of state changes. The
value of this setting must be a power of two. 32 is generally a good default value. If a particular state
machine is left behind by more than the size of the log, it is put into an error state and disconnected
from the ensemble, indicating it has lost its history and its ability to fully reconstruct the
synchronized status.

132

Testing Support

We have also added a set of utility classes to ease testing of state machine instances. These are used
in the framework itself but are also very useful for end users.

StateMachineTestPlanBuilder builds a StateMachineTestPlan, which has one method (called test()).
That method runs a plan. StateMachineTestPlanBuilder contains a fluent builder API to let you add
steps to a plan. During these steps, you can send events and check various conditions, such as state
changes, transitions, and extended state variables.

The following example uses StateMachineBuilder to build a state machine:

private StateMachine<String, String> buildMachine() throws Exception {
StateMachineBuilder.Builder<String, String> builder = StateMachineBuilder
.builder();

builder.configureConfiguration()
.withConfiguration()
.autoStartup(true);

builder.configureStates()
.withStates()
Linitial("SI")
.state("S1");

builder.configureTransitions()
.WwithExternal()
.source("SI").target("S1")
.event("E1")
.action(c -> {
c.getExtendedState().getVariables().put("key1", "valuel");
3

return builder.build();

In the following test plan, we have two steps. First, we check that the initial state (SI) is indeed set.
Second, we send an event (E1) and expect one state change to happen and expect the machine to
end up in a state of S1. The following listing shows the test plan:

133

StateMachine<String, String> machine = buildMachine();
StateMachineTestPlan<String, String> plan =
StateMachineTestPlanBuilder.<String, String>builder()
.defaultAwaitTime(2)
.stateMachine(machine)
.step()
.expectStates("SI")
.and()
.step()
.sendEvent("E1")
.expectStateChanged(1)
.expectStates("S1")
.expectVariable("key1")
.expectVariable("key1", "valuel")
.expectVariableWith(hasKey("key1"))
.expectVariableWith(hasValue("valuel"))
.expectVariableWith(hasEntry("key1", "valuel"))
.expectVariableWith(not(hasKey("key2")))
.and()
.build();
plan.test();

These utilities are also used within a framework to test distributed state machine features. Note
that you can add multiple machines to a plan. If you add multiple machines, yuo can also choose to
send an event a particular machine, a random machine, or all machines.

The preceding testing example uses the following Hamcrest imports:

134

import static org.hamcrest.CoreMatchers.not;
import static org.hamcrest.collection.IsMapContaining.hasKey;
import static org.hamcrest.collection.IsMapContaining.hasValue;

import org.junit.jupiter.api.Test;

import static org.hamcrest.collection.IsMapContaining.hasEntry;

O All possible options for expected results are documented in the Javadoc for
- StateMachineTestPlanStepBuilder.

https://docs.spring.io/spring-statemachine/docs/{spring-statemachine-version}/api/org/springframework/statemachine/test/StateMachineTestPlanBuilder.StateMachineTestPlanStepBuilder.html

Eclipse Modeling Support

Defining a state machine configuration with Ul modeling is supported through the Eclipse Papyrus
framework.

From the Eclipse wizard, you can create a new Papyrus Model with the UML Diagram Language. In
this example, it is named simple-machine. Then you have an option to choose from various diagram
kinds, and you must choose a StateMachine Diagram.

We want to create a machine that has two states (51 and S2), where S1 is the initial state. Then, we
need to create event E1 to do a transition from S1 to S2. In Papyrus, a machine would then look like
something the following example:

i StateMachine

51 El 52

Behind the scenes, a raw UML file would look like the following example:

135

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001" xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML" xmi:id="_AMP3IP8fEeW45bORGB4c_A"
name="RootElement">
<packagedElement xmi:type="uml:StateMachine" xmi:id="_AMRFQP8fEeW45b0RGB4c_A"
name="StateMachine">
<region xmi:type="uml:Region" xmi:id="_AMRSUP8fEeW45b0RGB4c_A" name="Region1">
<transition xmi:type="uml:Transition" xmi:id="_chgcgP8fEeW45b0RGB4c_A"
source="_EZrqg4P8fEeW45b0RGB4c_A" target="_FAvg4P8fEeW45b0RGB4c_A">
<trigger xmi:type="uml:Trigger" xmi:id="_hs5jUP8fEeW45b0RGB4c_A" event=
"_NeH84P8fEeW45b0RGB4c_A"/>
</transition>
<transition xmi:type="uml:Transition" xmi:id="_eqglLIoP8fEeW45b0RGB4c_A"
source="_Fg@IEP8fEeW45b0RGB4c_A" target="_EZrqg4P8fEeW45b0RGB4c_A"/>
<subvertex xmi:type="uml:State" xmi:id="_EZrg4P8fEeW45b0RGB4c_A" name="S1"/>
<subvertex xmi:type="uml:State" xmi:id="_FAvg4P8fEeW45b0RGB4c_A" name="S2"/>
<subvertex xmi:type="uml:Pseudostate" xmi:id="_Fg@IEP8fEeW45bORGB4c_A"/>
</region>
</packagedElement>
<packagedElement xmi:type="uml:Signal" xmi:id="_L0@1DOP8fEeW45bORGB4c_A" name="
E1"/>
<packagedElement xmi:type="uml:SignalEvent" xmi:id="_NeH84P8fEeW45b0RGB4c_A"
name="SignalEventE1" signal="_L01DOP8fEeW45bORGB4c_A"/>
</uml:Model>

When opening an existing model that has been defined as UML, you have three
files: .di, .notation, and .uml. If a model was not created in your eclipse’s session,
it does not understand how to open an actual state chart. This is a known issue in

@ the Papyrus plugin, and there is an easy workaround. In a Papyrus perspective,

you can see a model explorer for your model. Double click Diagram StateMachine
Diagram, which instructs Eclipse to open this specific model in its proper Papyrus

modeling plugin.

Using UnlStateMachineModelFactory

After a UML file is in place in your project, you can import it into your configuration by using
StateMachineModelConfigurer, where StateMachineModelFactory 1is associated with a model
UmlStateMachineModelFactory is a special factory that knows how to process a Eclipse
Papyrus_generated UML structure. The source UML file can either be given as a Spring Resource or
as a normal location string. The following example shows how to create an instance of

UmlStateMachineModelFactory:

136

public static class Configl extends StateMachineConfigurerAdapter<String, String>
{

public void configure(StateMachineModelConfigurer<String, String> model)
throws Exception {
model
.withModel()
.factory(modelFactory());

public StateMachineModelFactory<String, String> modelFactory() {
return new UmlStateMachineModelFactory(
"classpath:org/springframework/statemachine/uml/docs/simple-machine.uml");

}
}

As usual, Spring Statemachine works with guards and actions, which are defined as beans. Those
need to be hooked into UML by its internal modeling structure. The following sections show how
customized bean references are defined within UML definitions. Note that it is also possible to
register particular methods manually without defining those as beans.

If UnlStateMachineModelFactory is created as a bean, its Resourceloader is automatically wired to find
registered actions and guards. You can also manually define a StateMachineComponentResolver,
which is then used to find these components. The factory also has registerAction and registerGuard
methods, which you can use to register these components. For more about this, see Using
StateMachineComponentResolver.

A UML model is relatively loose when it comes to an implementation such as Spring Statemachine
itself. Spring Statemachine leaves how to implement a lot of features and functionalities up to the
actual implementation. The following sections go through how Spring Statemachine implements
UML models based on the Eclipse Papyrus plugin.

Using StateMachineComponentResolver

The next example shows how UmlStateMachineModelFactory is defined with a
StateMachineComponentResolver, which registers the myAction and myGuard functions, respectively.
Note that these components are not created as beans. The following listing shows the example:

137

138

public static class Config2 extends StateMachineConfigurerAdapter<String, String>
{

public void configure(StateMachineModelConfigurer<String, String> model)
throws Exception {
model
.withModel()
.factory(modelFactory());

public StateMachineModelFactory<String, String> modelFactory() {
UmlStateMachineModelFactory factory = new UmlStateMachineModelFactory(
"classpath:org/springframework/statemachine/uml/docs/simple-
machine.uml");
factory.setStateMachineComponentResolver (stateMachineComponentResolver());
return factory;

public StateMachineComponentResolver<String, String>
stateMachineComponentResolver() {
DefaultStateMachineComponentResolver<String, String> resolver = new
DefaultStateMachineComponentResolver<>();
resolver.registerAction("myAction”, myAction());
resolver.registerGuard("myGuard", myGuard());
return resolver;

}

public Action<String, String> myAction() {
return new Action<String, String>() {

public void execute(StateContext<String, String> context) {
}
I
}

public Guard<String, String> myGuard() {
return new Guard<String, String>() {

public boolean evaluate(StateContext<String, String> context) {
return false;
}
b

Creating a Model

We start by creating an empty state machine model, shown in the following image:

New Papyrus Model

Select the language of the new diagrams f’

Diagram Language:
UML core:

o N um
"t Profile

DSML:

"t SysML

@ < Back Next > Cancel Finish

You can start by creating a new model and giving it a name, as the following image shows:

New Papyrus Model
Initialization information f’

Select root element name and diagram kind

Root model element name:
RootElement

Select a Diagram Kind:

Diagram name Name

Quantit
e sy T
& StateMachine Diagrar 1

[~ B Timing Diagram

™ 2 UseCase Diagram

" FClassTreeTable

[~ M Generic Table

[™ I Generic Tree Table

[~ ™ StereotypeDisplayTre

You can load a template:

A UML model with basic primitive types

Choose a profile to apply

Browse Workspace Browse Registered Profiles

@ < Back Next > Cancel Finish

Then you need to choose StateMachine Diagram, as follows:

139

Papyrus - sample/model.di - Papyrus

m v i2im{? i

B 7 A v B v v

I Project Explorer = o

= sample

»~»model

% Model Explorer & = B
ET ®BREG ¥

+caRootElement

% Outline = = n

s[@ -

You end up with an empty state machine.

‘v BrA B rErWrHr e~ HB-B- H%~0~-Q~vi5 5~ - b e - v
Quick Access I Papyrus. & Java
- model.di = = o
i Palette 3
StateMachinel Sear m.
4 Nodes
® Region
< State
* Initial
® FinalState

%a StateMachine Diagram &
[Properties =
© StateMachine1

UML Name

_ Is abstract

Is leaF

Appearane |
_ Specification
_ Use case

StateMachine1

true © False Is active

true © False Is reentrant

:

<Undefined>

O true

® shallowHistory
® peepHistory

“ Transition
“ Link
7 ContextLink

true © false
False

+ (X

In the preceding images, you should have created a sample named model. You should have wound
up with three files: model.di, model.notation, and model.uml. You can then used these files in any
other Eclipse instance. Further, you can import model.uml into a Spring Statemachine.

Defining States

The state identifier comes from a component name in a diagram. You must have an initial state in
your machine, which you can do by adding a root element and then drawing a transition to your
own initial state, as the following image shows:

140

Papyrus - sample/model.di - Papyrus

-

‘B I Av&v S

BER w2 B 2~ -~ Bow v i Eov

W v~

M- B B -0~ i Fvilvi v O

QuickAccess g [» Papyrus' & Java

+ Palette

StateMachinel

.M.

4 Nodes
® Region
< State
* Initial
® FinalState
® shallowHistory
® peepHistory
& Fork

L. -
% Edges

I Project Explorer = B -*modeldi &
= sample
»~?model
% Model Explorer & = B
ET ®BREG ¥ \
- = RootElement

%a StateMachine Diagram &
I Properties &

@ Region1

UML Name

Is leaf

& Outline = Visibility

h]l]

Region1
true © False

bublid

“ Transition
“ Link
7 ContextLink

= 0

b

In the preceding image, we added a root element and an initial state (51). Then we drew a transition

between those two to indicate that S1is an initial state.

141

Papyrus - sample/model.di - Papyrus

OB R W2 BIPiP v R R AR rE VD .~ E-B-AB-%¥~0~-Q%~5 4 =

Quick Access g [» Papyrus' & Java

B I A v S J~

I Project Explorer = B -*modeldi & =

-

+ Palette 3
Rea: -
4 Nodes
® Region
[51 52
o l Sstate
* Initial
® FinalState
® shallowHistory
® peepHistory
& Fork
- . - n M ooz
% Model 3plorer . « Edges
= & a &, - \ c e
EREABYg < “ Transition

- = RootElement % Link

7 ContextLink

= sample StateMachinel

»~?model

%a StateMachine Diagram &

I Properties &

© StateMachine1

UML Name StateMachine1

_ Is abstract true © False Is active true © false

Is leaf true © False Isreentrant © true False

 Outline = T sl

Rpemnee — 7 -
_ Specification <Undefined> - (%] [#] [
_ Use case I

In the preceding image, we added a second state (S2) and added a transition between S1 and S2

(indicating that we have two states).

Defining Events

To associate an event with a transition, you need to create a Signal (E1, in this case). To do so, choose
RootElement — New Child — Signal. The following image shows the result:

142

Papyrus - sample/model.di - Papyrus

BB B % -0~ 7l ov O

-

E @: %2 @D~

B I A v S J~

S Bl E >

'-{.7'u'

QuickAccess g [» Papyrus' & Java

=]

I Project Explorer = B *modeldi &
5 9 7 i+ Palette b
= sample StateMachinel [@S-,
»~?model 4 Nodes
® Region
® < State
U * Initial
® FinalState
® shallowHistory
® peepHistory
& Fork
% Model Explorer £ = 0 -;A‘Edlg_:e_s . :
FESASS - b . “ Transition
% Link

+ *StateMachinel

7 ContextLink

=E1

) — ine Di]
téDiagram StateMachine Diagr te StateMachine Diagram

I Properties &

&= RootElement

UML Name RootElement
el < O D Visbilty public v
s (@)
. Location platform:/resource/sample/model.uml
M Package merge P

E3 1 item selected

Then you need to crate a SignalEvent with the new Signal, E1. To do so, choose RootElement » New
Child - SignalEvent. The following image shows the result:

143

Papyrus - sample/model.di - Papyrus

BrE @i 3 R R R R e BB -8 - %-0~Q~iG Fvitvi~m v~
B I Aow B - Quick Access ‘s (2 Papyrus. & Java
I Project Explorer = B *modeldi & = o
S - i Palette 4
~&sample StateMachinel TCER T
»~»model 4 Nodes
® Region
[51 52
o J Sstate
* Initial
® FinalState
® shallowHistory
® peepHistory
FFork
:2‘- 9 -] M naza
Model Qplorer 4 Edges
TEAEBS T - / “ Transition
~E2RootElement % Link
';;:?teMaChmﬂ / ContextLink
. i i]
& SignalEventE1 %a StateMachine Diagram
taDiagram StateMachine Diagr] Properties # J Model Validation Mt < = 0
% SignalEvent1
UML Name SignalEventE1
= Visibility public ~
& Outline = = 0o _ signal % E1 = (%] [#
&) -

Now that you have defined a SignalEvent, you can use it to associate a trigger with a transition. For
more about that, see Defining Transitions.

Deferring an Event

You can defer events to process them at a more appropriate time. In UML, this is done from a state
itself. Choose any state, create a new trigger under Deferrable trigger and choose the SignalEvent
which matches the Signal you want to defer.

Defining Transitions

You can create a transition by drawing a transition line between the source and target states. In the
preceding images, we have states S1 and S2 and an anonymous transition between the two. We
want to associate event E1 with that transition. We choose a transition, create a new trigger, and
define SignalEventE1 for that, as the following image shows:

144

‘s Projeck Explorer 2

~=sample

r~amodel
Name

&M Visibility
Event

“Ea

R~ Port

2 5

B

L]

UML Comments

G
@

= Outline &

BB vl v EvR D v oo

= 0 ~?modeldi®

L

T8 BB =t

B - e -

Filter:

(StateMachinel

~taRootElement

&2 SignalEventE1l

public v
<Undefined> L) [
w K|S
Cancel OK : Oralse
=B 'ﬁ King s excernal

& - _ Effect <Undefined=

_ Trigger

[Advanced

Recent selections

<«

—

]

! f-T-

‘ % SignalEventET -

— =

@ Cancel OK

T —-
~ Visibility public v
¥ Guard <Undefined=> | (| 2] 0
Lk s

This gives you something like the arrangement shown in the following image:

145

Papyrus - sample/model.di - Papyrus

MW@ YD HiDris v By E R D v . BB -8 - %0~ Q~ic Fvitvim v~
‘B Aow B - Quick Access ‘s (2 Papyrus.WJava
I Project Explorer = B *modeldi & = o
B & - i Palette b
~@sample StateMachinel he&&;-8-
»~?model 4 Nodes
El ® Region
[51) 52
o 1 Sstate
* Initial
® FinalState

® shallowHistory
® peepHistory

& Fork
B- = L. .
% Model Qplorer = . =] < Edges
EEE&EBS v - < “ Transition
%Link
+ *StateMachinel / ContextLink
=E1 - : -
% SignalEventE %a StateMachine Diagram
taDiagram StateMachine Diagr] Properties # J Model Validation M = = 0
@ <Transition>
UML Name
Is leaf true © False
2 outline =2 = Kind external v Visibility publid v
& [Effect <Undefined> + % Guard <Undefined> - [
__ Trigger ¢ %7
‘®<Trigger>
If you omit SignalEvent for a transition, it becomes an anonymous transition.
-

Defining Timers

Transitions can also happen based on timed events. Spring Statemachine support two types of
timers, ones which fires continuously on a background and ones which fires once with a delay
when state is entered.

To add a new TimeEvent child to Model Explorer, modify When as an expression defined as
Literallnteger. The value of it (in milliseconds) becomes the timer. Leave Is Relative false to make
the timer fire continuously.

146

Papyrus - sample/model.di - Papyrus

w2 HA S B — v LB r e ErR L e oo r B BrO~ 0 Qo v - - = -
‘B e = - Quick Access ® -2 Papyrus| & Java
I Project Explorer &2 “ B8 “?modeldi = n
5 & - i Palette b
~&sample hinel L& e -B-
« Nodes
~2di El © Region
. (1) 57 at 1000 3 g
notation [} 71 “State
& uml * Initial
after 2000 ® FinalState

@ shallowHistory

ﬂ ® DeepHistory

F Fork
i Join
% Model Explorer & = n " J 4 Choice
T R T & Junction
~taRootElement © EntryPoint
» C+StateMachine1 ® ExitPoint
=El X Terminate
% SignalEventE1 ConnectionPointRef...
- "wTimeEvent1 < Edges
-
J ®T|_meEvent2 o “% Transition
t&Diagram StateMachine Diagram % Link

7 ContextLink
ta StateMachine Diagram &

— [Properties & J/ Model] ™M ¥ =0
o i @ = = "
% Qutline = & [B | rsTimeEvent1
i UML Name TimeEvent1

.:(‘

_ Is relative true © false
J = Vil m =

When t-¢ 1000 + |7

"o 1 item selected

To define one timed based event that triggers when a state is entered, the process is exactly same as
described earlier, but leave Is Relative set to true. The following image shows the result:

147

Papyrus - sample/model.di - Papyrus

- “ D @B~ - - e v vETU L v oo~ B-B~-O~ $#~0~4L~ o 4~ - - v
e = - Quick Access 151 ')Papyrus' & Java
I Project Explorer &2 “ B8 “?modeldi = n
5 & - Palette b
~=sample hinel L& el -M.
' Nodes
~2di El © Region
) (1) 57 at 1000 3 g
notation [] = @s5tate
& uml * Initial
after 2000 # FinalState

@ shallowHistory

® DeepHistory

 Fork
i Join
% Model Explorer & = n " 4 Choice
E . & i
Y@ ARG v --Junctlor?
~caRootElement @ EntryPoint
» c+StateMachine1 @ ExitPoint
=E1 * Terminate
¥ SignalEventE1 © ConnectionPointRef...
+ "o TimeEvent1 < Edges
¥ Transition
taDiagram StateMachine Diagram % Link
7 ContextLink
ta StateMachine Diagram =
I Properties = M ov = n
& Outline = [*=n

'o TimeEvent2

UML Name TimeEvent2

“ [oo Otrue O false
= Vil m

When t-c 2000 & (£

"o 1 item selected

Then the user can pick one of these timed events instead of a signal event for a particular
transition.

Defining a Choice

A choice is defined by drawing one incoming transition into a CHOICE state and drawing multiple
outgoing transitions from it to target states. The configuration model in our StateConfigurer lets you
define an if/elseif/else structure. However, with UML, we need to work with individual Guards for
outgoing transitions.

You must ensure that the guards defined for transitions do not overlap so that, whatever happens,
only one guard evaluates to TRUE at any given time. This gives precise and predictable results for
choice branch evaluation. Also we recommend leaving one transition without a guard so that at
least one transition path is guaranteed. The following image shows the result of making a choice
with three branches:

148

Papyrus - sample/model.di - Papyrus

= DRI, v R~~~ E~VWhH v~ B0~~~ %~0~Q~35 #~ - - - -
B I - v - Quick Access [_'JPanyrus_ & Java
= Project Explorer = = o “Imodeldin -
= B = & Palette b
s sample StateMachine L ® & -0
— Nodes
[s2Guard] & Region
“State
* |nitial

51 CHOICE 53 ® FinalState
El = & shallowHistory

® DeepHistory

—
= “ Fork
[s4Guard] # Join
#: Choi
% Model Explorer & = i Choice
& Junction
P E R G <
P .
-t RootElement ® EnltryP.omt
» 3StateMachine ExltPomt_
= E1 < Edges
a3 SignalEventEl % Transition
téDiagram StateMachine Diagram 7 Link
ContextLink
ta StateMachine Diagram &
O Properties 2 ™ T =0
* StateMachine
= outline = p UML Name StateMachine
5 @ _ Is abstract true O false Is active true O false
_ Is leaf true © false Isreentrant © true false
L — T :
— - _ Specification <Undefined> | e x
_ Use case + X,

Junction works similarly same, except that it allows multiple incoming transitions.
o Thus, its behavior compared to Choice is purely academic. The actual logic to select
the outgoing transition is exactly the same.

Defining a Junction

See Defining a Choice.

Defining Entry and Exit Points

You can use EntryPoint and ExitPoint to create controlled entry and exit with states that have sub-
states. In the following state chart, events E1 and E2 have normal state behavior by entering and
exiting state S2, where normal state behavior happens by entering initial state S21.

Using event E3 takes the machine into the ENTRY EntryPoint, which then leads to S22 without
activating initial state S21 at any time. Similarly the EXIT ExitPoint with event E4 controls the
specific exit into state S4, while normal exit behavior from S2 would take the machine into state S3.
While on state S22, you can choose from events E4 and E2 to take the machine into states S3 or S4,
respectively. The following image shows the result:

149

Papyrus - sample/model.di - Papyrus

Q- BECH BRI AN i R~~~ E~VWhH v~ B0~~~ %~0~Q~35 #~ - - 5w .
B A Quick Access = [Papyrus| & Java
= Project Explorer = 0 “Imodeldi= = 0
- & Palette b
[=sample | StateMachine e
v 2 No
maodel s L de?
= Region
£l i,@ @state
* |nitial
© ® FinalState
E3 522 2 54 @ shallowHistory
®
En‘mrLJ - [i ’ DeepHistory
“Fork
% Join
5 # Choi
% Model Explorer & = n _Ch-OIC_e
& Junction
EE®AB R ¥
© EntryPoint
o
» 3StateMachine U"-' .0.”"_
“E < Edges
e 2 Transition
e £ Link

% SignalEventEl

% SignalEventE2
% SignalEventEs %o StateMachine Diagram =

ContextLink

= E4] Properties & " v =g
% SignalEventEd

" ES o StateMachine

o outline & a g YML Name StateMachine
s - _ Is abstract true © False Is active true O false
_ Is leaf true © false Isreentrant © true false
P e mppenee — T -
1',-._ o -.< 1)
' d — Specification <Undefined> =l x
_ Use case + X,

If state is defined as a sub-machine reference and you need to use entry and exit
points, you must externally define a ConnectionPointReference, with its entry and
exit reference set to point to a correct entry or exit point within a submachine

o reference. Only after that, is it possible to target a transition that correctly links
from the outside to the inside of a sub-machine reference. With
ConnectionPointReference, you may need to find these settings from Properties —
Advanced - UML - Entry/Exit. The UML specification lets you define multiple
entries and exits. However, with a state machine, only one is allowed.

Defining History States

When working with history states, three different concepts are in play. UML defines a Deep History
and a Shallow History. The Default History State comes into play when history state is not yet
known. These are represented in following sections.

Shallow History

In the following image, Shallow History is selected and a transition is defined into it:

150

Papyrus - sample/simple-history-shallow.di - Papyrus

HBrEB~-@~H~0~%~5 &~ - - Dw
B I Awhe - Quick Access | ® |79 Papyrus & Java
' Project Explorer = = o - y - simple-history-shallow.di & - ; y = 0
& & Palette [
~&sample StateMachine L ® & -0
»~»model 52 % Nodes
»~3simple-history-deep @ Region
»~»simple-history-default [3 s1)_El @ 2 W Sctate
- simple-history-shallow * nitial
E4 . ® FinalState
- it sH @ ShallowHistory
® DeepHistory
- % Fork
% Join
% Model Explorer & = o J # Choice
- . . - & Junction
= Hontr_le.mel-;(N © EntryPoint
+ C»StateMachine @ ExitPoint
® E1 % Edges
mE? a it
=E3 . .ra nsition
= E4 Link
% SignalEventEl # ContextLink
' SignalEventE2 ta StateMachine Diagram 2
s SignalEventE3
. OPr jes B J M | Validati m v =
% SignalEventEd operties odel Validation M o
Diagram StateMachine Diagra i 3-1g1
& Outline &= =g UM Hame BH
(@ ~ Kind shallowHistory v Visibility publid v
b= - = -.a =
I
E——

Deep History

Deep History is used for state that has other deep nested states, thus giving a chance to save whole
nested state structure. The following image shows a definition that uses Deep History:

151

Papyrus - sample/simple-history-deep.di - Papyrus

o . | 7P L I v~ ~E~V Do~ BB~~~ H~0~Q~ 5 4~ - - = -

B I L v - Quick Access | o -3 Papyrus| & Java

' Project Explorer = = o - y ” y ’ -3 simple-history-deep.di & = o
= B & Palette [

~= sample StateMachine L ® & -0

+Imodel % Nodes

- { simple-history-deep = 52 & Region

»~¥simple-history-default Sgtate

® DeepHistory

+¥simple-history-shallow 521) * Initial
® FinalState
5211) g :3212]
EL ._j:]_) j & shallowHistory

E3
% Fork
E4 yn # Joi
;1_,"2 SH) Join
#: Chei
% Model Explorer 2 = n Choice
& Junction
e E A .
- HOOCEIEment - © EntryPoint
+ C»StateMachine @ ExitPoint
E % Edges
= E2 .
HE "t Transition
= E4 “ Link
Y SignalEventEl # ContextLink
' SignalEventE2 ta StateMachine Diagram 2
s SignalEventE3
. OPr jes B J M | Validation T -
2 SignalEvented operties odel Validatio
Diagram StateMachine Diagra ik 23|
& Outline =2 = g UM Name BH
& [Kind deepHistory ~ Visibility bublid v

Default History

In cases where a Transition terminates on a history when the state has not been entered before it
had reached its final state, there is an option to force a transition to a specific substate, using the
default history mechanism. For this to happen, you must define a transition into this default state.
This is the transition from SH to S22.

In the following image, state S22 is entered if state S2 has never been active, as its history has never
been recorded. If state S2 has been active, then either S20 or S21 gets chosen.

152

Papyrus - sample/sim ple-history-default.di - Papyrus

M- . DEH:D P = v~ ~E~V Do~ FE~B~@~ H~0~Q~ 5 &~ - - = -
B I A~&=g~ Quick Access | ® |79 Papyrus & Java
' Project Explorer = = o -?simple-history-default.di @ -?simple-history-shallow.di ~? simple-history-deep.di = 0
g = & Palette b
~&sample StateMachine L ® & -0
»~»model 52 % Nodes
»~¥simple-history-deep @ Region
-/ simple-history-default ® sT_H W 2 W Sstate
+~3simple-history-shallow * nitial
=] el 53 ® FinalState
E3 e @ shallowHistory
® DeepHistory
% Fork
% Join
#: Chei
% Model Explorer & = o J Choice
EE W A & Junction
= Hontr_le.meﬁ(- © EntryPoint
+ C»StateMachine @ ExitPoint
Ve < Edges
= E2 .
=E3 "% Transition
] o
= E4 Link
% SignalEventEl # ContextLink
' SignalEventE2 ta StateMachine Diagram 2

s SignalEventE3
; O Properties 2 | v e o=
% SignalEventes RO

Diagram StateMachine Diagra il 23]

= autline & a g YML Name SH

u [Kind shallowHistory v Visibility bublid v
b | - * o =
e 1

Defining Forks and Joins

Both Fork and Join are represented as bars in Papyrus. As shown in the next image, you need to
draw one outgoing transition from FORK into state S2 to have orthogonal regions. JOIN is then the
reverse, where joined states are collected together from incoming transitions.

153

workspace-papyrus-201 - Papyrus - sample/model.di - Papyrus

- e B R R HE I Erd-RrEr WD =~ =~ 100% s | BT TR B -
- e AR~ A~ Quick Access ||| & [
= Project Explorer & = 0 | “»modeldia =0
= v i Palette b
=Esample StateMachine (T
% Modes
FORK 52 JOIN ¥ Region

5200 5201 SState
—
51 Initial
® FinalState

5210 5211 ®shallow...
® peepHis...

) & Fork
% Model Explorer & =8 & Join
EE#FABRR < % Choice
\ J
=taRootElement & Junction
v 'st_a:eMachine o @ EntryPoint
t&Diagram StateMachine Diagrar @ ExitPoint
¥ Terminate
! Edges
& Transition
Link
</ Context...
= outline st . 5 ® = = g ‘eStateMachine Diagram &
O Properties # 4 Model Validation % References M = =0
i) . = 3 StateMachine
UML Name StateMachine
Comments Is abstract true O False Is active true © false
Profile Is leaf true © False Is reentrant O true false
Style N -
Appearance Visibility public e
General Specification <Undefined> =] *
Defining Actions

You can assoiate swtate entry and exit actions by using a behavior. For more about this, see
Defining a Bean Reference.

Using an Initial Action

An initial action (as shown in Configuring Actions) is defined in UML by adding an action in the
transition that leads from the Initial State marker into the actual state. This Action is then run when
the state machine is started.

Defining Guards

You can define a guard by first adding a Constraint and then defining its Specification as
OpaqueExpression, which works in the same way as Defining a Bean Reference.

Defining a Bean Reference

When you need to make a bean reference in any UML effect, action, or guard, you can do so with
FunctionBehavior or OpaqueBehavior, where the defined language needs to be bean and the language
body msut have a bean reference id.

154

Defining a SpEL Reference

When you need to use a SpEL expression instead of a bean reference in any UML effect, action, or
guard, you can do so by using FunctionBehavior or OpaqueBehavior, where the defined language
needs to be spel and the language body must be a SpEL expression.

Using a Sub-Machine Reference

Normally, when you use sub-states, you draw those into the state chart itself. The chart may become
too complex and big to follow, so we also support defining a sub-state as a state machine reference.

To create a sub-machine reference, you must first create a new diagram and give it a name (for
example, SubStateMachine Diagram). The following image shows the menu choices to use:

workspace-papyrus-2 - Papyrus - sample/model.di - Papyrus

= w 0 Q~ v 2 BE~B~ 3 2~ s - e el e Er e o 3}-“-: -
' - - *+ P B - - g Quick Access =2 “3
‘= Project Explorer & = 8 “»modeldi & =0
SR = + Palette ¢
T | Sitaachie AXGEE
Nodes
= () e
JRegion
. S state
& Model Explorer 22 =0 P
Initial
® Finalstate
@ shallow...
® DeepHis...
HE ..
Edges
% Transition
4 Link
< Context...
B Rename
+ Undo _ - e T oo om
| 2 D am
_ StateMachine Diagram
s
-
- X

2 1 jtem selected

Give the new diagram the design you need. The following image shows a simple design as an
example:

155

workspace-papyrus-2 - Papyrus - sample/model.di - Papyrus

ek v O v Qv P EYRYE DS o D Bevde e EYR Lo | B -] 100% L= 2 g
chl v Gy a S BT Avar o Quick Access || = [A)
i ProjectExplorer @ = B “»modeldix s
TEE Palette ©
-\] LE@eil-¥-

e |l S
»~Imodel £2 % Nodes
B
Sstate

% Model Explorer = = * |nitial
EEHFRER * ® FinalState

®shallow...
® peepHis...

v 3StateMachine
+*SubStateMachine ra——
= E1 % Edges
mE2 “% Transition
B SignalEventEl # Link
< Context...

FaSignalEventE2
taDiagram StateMachine Diagr| o 'c oy chine Diagram %e SubStateMachine Diagram 2

téDiagram SubStateMachine D
O Properties & J Model Validation %' References M =D

% Outline -5 @ SubstateMachine
= uML Name SubStateMachine
- Comments Is abstract true O false Is active true © false

e Proll‘lle Is leaF true © fFalse Isreentrant @ true () false
Style o
Appearance Visibility public A
General Specification <Undefined=> % x
Rulers And Grid | .0 oco @ (%7
Advanced

From the state you want to link (in this case,m state S2), click the Submachine field and choose your

linked machine (in our example, SubStateMachine).

156

wae . e :

é:—sg- Wég';-o'ikvé'.'qiﬁvm-i tp - » [Hiw ol wis v Eov

cH e s DR

A v B S

i Project Explorer & = 8 “»*model.di

=1k-3 -

=
»“¥model

% Model Explorer = =g
- T ERBR v
“En
r3StateMachine
+ *SubStateMachine
mE1
mEZ
FaSignalEventEl
i SignalEventE2
téDiagram StateMachine Diagr
téDiagram SubStateMachine D

& Outline =2 =B

(StateMachine

—() o®

&~ 100%

- B F
Quick Access i B
=B
i Palette P
E&eaii 8-
< Nodes =
™ Region
S State
*® Inikial

s StateMachine Diagram 2 %sSubStateMachine Diagram

O Properties 2 | / Model Validation ¥ References

@52

UML Mame S2
Comments State invarianl |<Undefined=
Profile

Style Do activity <Undefined>
Appearance submachine <Undefined=
Rulers And Grid | peferrable trigger

Advanced

@

W

Filter:

~Ea RootElement
=5tateMachine

=SubStateMachine # Context...

Recent selections
SubStateMachine

Cancel

@shallow...
® DeepHis...

S
% Edges
“E Transition
Link

T

[=]

L] o
- i
+ | X

OK

Finally, in the following image, you can see that state S2 is linked to SubStateMachine as a sub-state.

workspace-papyrus-2
- HFrD-qQ ~ %
- - R - P

' Project Explorer & =0

!, -
= ¥

»*?model

% Model Explorer = =0

EE&ENLBESR -

+3StateMachine
»c¥SubStateMachine
mEq
m|m Ez
FaSignalEventEl
FaSignalEventE2
téDiagram StateMachine Diag

téDiagram SubStateMachine D

& Outline = =0

- Papyrus - sample/model.di - Papyrus

e B - = 2. =

“? model.di #

[StateMachine

—()=

" taStateMachine Diagram 2 taSubStateMachine Diagram
O Properties 2 | 4 Model Validation % References

=52

UML MName S2
Comments State invarianl |<Undefined>
Profile

Style Do activity <Undefined>
Appearance Submachine = SubStateMachine

RulersAnd Grid | pererrable trigger
Advanced

-
-

(E N IRVt

&~ 100%

Entry
Exit

i Palette b
L&aal-B-
< Modes
® Region
S State
* Initial
® FinalState
@ shallow...
® DeepHis...
HE ..
% Edges
% Transition
Link
< Context...

<Undefined> +*
<UUndefined> +
- || x|

157

Using a Machine Import

It’s also possible to use import functionality where uml files can reference to other models.

O BB o SR AR - -

£~ 100% v vOrhvigdvil v v OGvo v AED Avdv i~ Qi
K4 Project Explorer 82 | 15 § = B ~? importmain.di 2 "?impnrt—sub.di =g
¥ =import-main e Palette 3
» Z3import-main StateMachineMain (REQL] -8 -
> Zimport-sub & Nodes *
» ~3import-sub) Region
MAINT AN} @state
b @ Initial
@ Finalstate
B Model Explorer £3 =8 @ shallowHis...
=B EES § @ DeepHistory
Bk
F
» &% «EPackage, ModelLibrary» Primitive Typ 3 Join
¥ Bx «ModelLibrary» EcorePrimitiveTypes ¢1 Choice
w Ex import-sub & Junction
% State Machine Diagram = J © EntryPoint
» &%, <Package import> UML Primitive Tyf = Edge‘s) ®
rc i .
(3StateMachineSub 5% Transition
% Link

7 ContextLink

Aa | Yo State Machine Diagram X |

L O Properties % | J Model Validation %’ References € Documentation ME=n
&= Outline 2 I §=0
- h & MAIN2
) UML Name [mamz)
Comments r 1
| . Label [|
Profile
Style State invariant \<Undeﬁned> <) &) |# (X Entry |<Undeﬂned> |4 X
Appearance
BEX = Do activity ‘<Undeﬁned> +| (7 [¥ Exit |<Undeﬂned> + (<K
Rulers And Grid ‘*' —
Advanced Submachine @ stateMachineSub &)) (X

Deferrable trigger

|
x
Y

Within UmlStateMachineModelFactory it’s possible to use additional resources or locations to define
referenced model files.

158

@Configuration
@EnableStateMachine

public static class Config3 extends StateMachineConfiqgurerAdapter<String, String>
{

@0verride
public void configure(StateMachineModelConfigurer<String, String> model)
throws Exception {
model
.withModel()
.factory(modelFactory());

}

@Bean
public StateMachineModelFactory<String, String> modelFactory() {
return new UmlStateMachineModelFactory(
"classpath:org/springframework/statemachine/uml/import-main/import-
main.uml",

new String[] { "classpath:org/springframework/statemachine/uml/import-
sub/import-sub.uml" });

}
}

Links between files in uml models needs to be relative as otherwise things break
when model files are copied out from a classpath to a temporary directory so that
eclipse parsing classes can read those.

159

Repository Support

This section contains documentation related to using 'Spring Data Repositories' in Spring
Statemachine.

Repository Configuration

You can keep machine configuration in external storage, from which it can be loaded on demand,
instead of creating a static configuration by using either Java configuration or UML-based
configuration. This integration works through a Spring Data Repository abstraction.

We have created a special StateMachineModelFactory implementation called
RepositoryStateMachineModelFactory. It can use the base repository interfaces (StateRepository,
TransitionRepository, ActionRepository and GuardRepository) and base entity interfaces
(RepositoryState, RepositoryTransition, RepositoryAction, and RepositoryGuard).

Due to way how entities and repositories work in Spring Data, from a user perspective, read access
can be fully abstracted as it is done in RepositoryStateMachineModelFactory. There is no need to
know the actual mapped entity class with which a repository works. Writing into a repository is
always dependent on using a real repository-specific entity class. From a machine-configuration
point of view, we do not need to know these, meaning that we do not need to know whether the
actual implementation is JPA, Redis, or anything else that Spring Data supports. Using an actual
repository-related entity class comes into play when you manually try to write new states or
transitions into a backed repository.

Entity classes for RepositoryState and RepositoryTransition have a machineld field,
(r) which is at your disposal and can be wused to differentiate between
et configurations — for example, if machines are built via StateMachineFactory.

Actual implementations are documented in later sections. The following images are UML-
equivalent state charts of repository configurations.

(StateMachine)

o ;[51] El @ E2)@

M S

Figure 1. SimpleMachine

160

StateMachine

s21) E2 _(s22

p. y

Figure 2. SimpleSubMachine

StateMachine
S0
H[fooOGuard]/...
S1 S2
H H[foolGuard]/...
o c P
S 521
S11
] K
— ca11
5211 G
B - ®——
D
B G
4
F
E
B
- 4
|
S12
I 5212
A
| —
. A
vy

Figure 3. ShowcaseMachine

JPA

The actual repository implementations for JPA are JpaStateRepository, JpaTransitionRepository,
JpaActionRepository, and JpaGuardRepository, which are backed by the entity classes
JpaRepositoryState, JpaRepositoryTransition, JpaRepositoryAction, and JpaRepositoryGuard,
respectively.

161

Unfortunately, version '1.2.8"' had to make a change in JPA’s entity model regarding
used table names. Previously, generated table names always had a prefix of

o JPA_REPOSITORY_, derived from entity class names. As this caused breaking issues
with databases imposing restrictions on database object lengths, all entity classes
have spesific definitions to force table names. For example, JPA_REPOSITORY_STATE is
now 'STATE'— and so on with other ntity classes.

The generic way to update states and transitions manually for JPA is shown in the following
example (equivalent to the machine shown in SimpleMachine):

StateRepository<JpaRepositoryState> stateRepository;

TransitionRepository<JpaRepositoryTransition> transitionRepository;

void addConfig() {
JpaRepositoryState stateS1 = new JpaRepositoryState("S1", true);
JpaRepositoryState stateS2 = new JpaRepositoryState("S2");
JpaRepositoryState stateS3 = new JpaRepositoryState("S3");

stateRepository.save(stateS1);
stateRepository.save(stateS2);
stateRepository.save(stateS3);

JpaRepositoryTransition transitionS1ToS2
stateS1, stateS2, "E1");

JpaRepositoryTransition transitionS2ToS3
stateS2, stateS3, "E2");

new JpaRepositoryTransition(

new JpaRepositoryTransition(

transitionRepository.save(transitionS1ToS2);
transitionRepository.save(transitionS2ToS3);

The following example is also equivalent to the machine shown in SimpleSubMachine.

162

StateRepository<JpaRepositoryState> stateRepository;

TransitionRepository<JpaRepositoryTransition> transitionRepository;

void addConfig() {
JpaRepositoryState stateS1
JpaRepositoryState stateS2
JpaRepositoryState stateS3

new JpaRepositoryState("S1", true);
new JpaRepositoryState("S2");
new JpaRepositoryState("S3");

JpaRepositoryState stateS21 = new JpaRepositoryState("S21", true);
stateS21.setParentState(stateS2);

JpaRepositoryState stateS22 = new JpaRepositoryState("S22");
stateS22.setParentState(stateS2);

stateRepository.save(stateS1);
stateRepository.save(stateS2);
stateRepository.save(stateS3);
stateRepository.save(stateS21);
stateRepository.save(stateS22);

JpaRepositoryTransition transitionS1ToS2 = new JpaRepositoryTransition(
stateS1, stateS2, "E1");

JpaRepositoryTransition transitionS2ToS3
(stateS21, stateS22, "E2");

JpaRepositoryTransition transition$21T0S22
(stateS2, stateS3, "E3");

new JpaRepositoryTransition

new JpaRepositoryTransition

transitionRepository.save(transitionS1To0S2);
transitionRepository.save(transitionS2ToS3);
transitionRepository.save(transitionS21T0S22);

First, you must access all repositories. The following example shows how to do so:

163

StateRepository<JpaRepositoryState> stateRepository;

TransitionRepository<JpaRepositoryTransition> transitionRepository;

ActionRepository<JpaRepositoryAction> actionRepository;

GuardRepository<JpaRepositoryGuard> guardRepository;

Second, you mus create actions and guards. The following example shows how to do so:

JpaRepositoryGuard foo@Guard = new JpaRepositoryGuard();
foo@Guard.setName("foolGuard");

JpaRepositoryGuard foolGuard = new JpaRepositoryGuard();
foolGuard.setName("foolGuard");

JpaRepositoryAction fooAction = new JpaRepositoryAction();
fooAction.setName("fooAction");

guardRepository.save(foolGuard);
guardRepository.save(foolGuard);
actionRepository.save(fooAction);

Third, you must create states. The following example shows how to do so:

164

JpaRepositoryState stateS@ = new JpaRepositoryState("S0", true);
stateSO.setInitialAction(fooAction);

JpaRepositoryState stateS1 = new JpaRepositoryState("S1", true);
stateST1.setParentState(stateS0);

JpaRepositoryState stateS11 = new JpaRepositoryState("S11", true);
stateS11.setParentState(stateS1);

JpaRepositoryState stateS12 = new JpaRepositoryState("S12");
stateS12.setParentState(stateS1);

JpaRepositoryState stateS2 = new JpaRepositoryState("S2");
stateS2.setParentState(stateS0);

JpaRepositoryState stateS21 = new JpaRepositoryState("S21", true);
stateS21.setParentState(stateS2);

JpaRepositoryState stateS211 = new JpaRepositoryState("S211", true);
stateS211.setParentState(stateS21);

JpaRepositoryState stateS212 = new JpaRepositoryState("S212");
stateS212.setParentState(stateS21);

stateRepository.save(stateS0);
stateRepository.save(stateS1);
stateRepository.save(stateS11);
stateRepository.save(stateS12);

stateRepository.
stateRepository.
stateRepository.
stateRepository.

save(stateS2);
save(stateS21);
save(stateS211);
save(stateS212);

Fourth and finally, you must create transitions. The following example shows how to do so:

165

JpaRepositoryTransition transitionS1ToS1 = new JpaRepositoryTransition(stateST,
stateS1, "A");
transitionS1ToS1.setGuard(foolGuard);

JpaRepositoryTransition transitionS1ToS11 = new JpaRepositoryTransition(stateST,
stateS11, "B");

JpaRepositoryTransition transitionS21T0S211 = new JpaRepositoryTransition(
stateS21, stateS211, "B");
JpaRepositoryTransition transitionS1ToS2
stateS2, "C");

JpaRepositoryTransition transitionS1ToS@
stateS0O, "D");

JpaRepositoryTransition transitionS211ToS21 = new JpaRepositoryTransition
(stateS211, stateS21, "D");
JpaRepositoryTransition transitionS@ToS211
stateS211, "E");

JpaRepositoryTransition transitionS1T0S211
stateS211, "F");

JpaRepositoryTransition transitionS2ToS21 = new JpaRepositoryTransition(stateS2,
stateS21, "F");

JpaRepositoryTransition transitionS11T0S211 = new JpaRepositoryTransition(
stateS11, stateS211, "G");

new JpaRepositoryTransition(stateST,

new JpaRepositoryTransition(stateST,

new JpaRepositoryTransition(stateS@,

new JpaRepositoryTransition(stateST,

JpaRepositoryTransition transitionS@ = new JpaRepositoryTransition(stateSO,
stateS0, "H");

transitionS0.setKind(TransitionKind.INTERNAL);
transitionS@.setGuard(foodGuard);

transitionS@.setActions(new HashSet<>(Arrays.asList(fooAction)));

JpaRepositoryTransition transitionS1 = new JpaRepositoryTransition(stateS1,
stateS1, "H");
transitionS1.setKind(TransitionKind.INTERNAL);

JpaRepositoryTransition transitionS2 = new JpaRepositoryTransition(stateS2,
stateS2, "H");

transitionS2.setKind(TransitionKind.INTERNAL);
transitionS2.setGuard(foolGuard);

transitionS2.setActions(new HashSet<>(Arrays.asList(fooAction)));

JpaRepositoryTransition transitionS11ToS12 = new JpaRepositoryTransition(stateS11,
stateS12, "I");

JpaRepositoryTransition transitionS12T05212
stateS12, stateS212, "I");
JpaRepositoryTransition transitionS211ToS512
(stateS211, stateS12, "I");

new JpaRepositoryTransition(

new JpaRepositoryTransition

JpaRepositoryTransition transitionS11 = new JpaRepositoryTransition(stateS11,
stateS11, "1");
JpaRepositoryTransition transitionS2ToS1 = new JpaRepositoryTransition(stateS2,

166

stateS1, "K");

transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.
transitionRepository.

save(transitionS1ToS1);
save(transitionS1ToS11);
save(transitionS21ToS211);
save(transitionS1ToS2);
save(transitionS1ToS0);
save(transitionS211T0S21);
save(transitionS0ToS211);
save(transitionS1ToS211);
save(transitionS2ToS21);
save(transitionS11ToS211);
save(transitionSQ);
save(transitionS1);
save(transitionS2);
save(transitionS11T0S12);
save(transitionS12T0S212);
save(transitionS211ToS12);
save(transitionS11);
save(transitionS2ToS1);

You can find a complete example here. This example also shows how you can pre-populate a
repository from an existing JSON file that has definitions for entity classes.

Redis

The actual repository implementations for a Redis instance are RedisStateRepository,
RedisTransitionRepository, RedisActionRepository, and RedisGuardRepository, which are backed by
the entity classes RedisRepositoryState, RedisRepositoryTransition, RedisRepositoryAction, and
RedisRepositoryGuard, respectively.

The next example shows the generic way to manually update states and transitions for Redis. This
is equivalent to machine shown in SimpleMachine.

167

StateRepository<RedisRepositoryState> stateRepository;

TransitionRepository<RedisRepositoryTransition> transitionRepository;

void addConfig() {
RedisRepositoryState stateS1
RedisRepositoryState stateS2
RedisRepositoryState stateS3

new RedisRepositoryState("S1", true);
new RedisRepositoryState("S2");
new RedisRepositoryState("S3");

stateRepository.save(stateS1);
stateRepository.save(stateS2);
stateRepository.save(stateS3);

RedisRepositoryTransition transitionS1ToS2
(stateS1, stateS2, "E1");

RedisRepositoryTransition transitionS2ToS3
(stateS2, stateS3, "E2");

new RedisRepositoryTransition

new RedisRepositoryTransition

transitionRepository.save(transitionS1To0S2);
transitionRepository.save(transitionS2ToS3);

The following example is equivalent to machine shown in SimpleSubMachine:

168

StateRepository<RedisRepositoryState> stateRepository;

TransitionRepository<RedisRepositoryTransition> transitionRepository;

void addConfig() {
RedisRepositoryState stateS1
RedisRepositoryState stateS2
RedisRepositoryState stateS3

new RedisRepositoryState("S1", true);
new RedisRepositoryState("S2");
new RedisRepositoryState("S3");

stateRepository.save(stateS1);
stateRepository.save(stateS2);
stateRepository.save(stateS3);

RedisRepositoryTransition transitionS1ToS2
(stateS1, stateS2, "E1");

RedisRepositoryTransition transitionS2ToS3
(stateS2, stateS3, "E2");

new RedisRepositoryTransition

new RedisRepositoryTransition

transitionRepository.save(transitionS1To0S2);
transitionRepository.save(transitionS2ToS3);

MongoDB

The actual repository implementations for a MongoDB instance are MongoDbStateRepository,
MongoDbTransitionRepository, MongoDbActionRepository, and MongoDbGuardRepository, which are
backed by the entity classes MongoDbRepositoryState, MongoDbRepositoryTransition,
MongoDbRepositoryAction, and MongoDbRepositoryGuard, respectively.

The next example shows the generic way to manually update states and transitions for MongoDB.
This is equivalent to the machine shown in SimpleMachine.

169

StateRepository<MongoDbRepositoryState> stateRepository;

TransitionRepository<MongoDbRepositoryTransition> transitionRepository;

void addConfig() {
MongoDbRepositoryState stateS1
MongoDbRepositoryState stateS2
MongoDbRepositoryState stateS3

new MongoDbRepositoryState("S1", true);
new MongoDbRepositoryState("S2");
new MongoDbRepositoryState("S3");

stateRepository.save(stateS1);
stateRepository.save(stateS2);
stateRepository.save(stateS3);

MongoDbRepositoryTransition transitionS1ToS2 = new
MongoDbRepositoryTransition(stateS1, stateS2, "E1");

MongoDbRepositoryTransition transitionS2ToS3 = new
MongoDbRepositoryTransition(stateS2, stateS3, "E2");

transitionRepository.save(transitionS1ToS2);
transitionRepository.save(transitionS2ToS3);

The following example is equivalent to the machine shown in SimpleSubMachine.

170

StateRepository<MongoDbRepositoryState> stateRepository;

TransitionRepository<MongoDbRepositoryTransition> transitionRepository;

void addConfig() {
MongoDbRepositoryState stateS1
MongoDbRepositoryState stateS2
MongoDbRepositoryState stateS3

new MongoDbRepositoryState("S1", true);
new MongoDbRepositoryState("S2");
new MongoDbRepositoryState("S3");

MongoDbRepositoryState stateS21 = new MongoDbRepositoryState("S21", true);
stateS21.setParentState(stateS2);

MongoDbRepositoryState stateS22 = new MongoDbRepositoryState("S22");
stateS22.setParentState(stateS2);

stateRepository.save(stateS1);
stateRepository.save(stateS2);
stateRepository.save(stateS3);
stateRepository.save(stateS21);
stateRepository.save(stateS22);

MongoDbRepositoryTransition transitionS1ToS2 = new
MongoDbRepositoryTransition(stateS1, stateS2, "E1");

MongoDbRepositoryTransition transitionS2ToS3 = new
MongoDbRepositoryTransition(stateS21, stateS22, "E2");

MongoDbRepositoryTransition transitionS21ToS22 = new
MongoDbRepositoryTransition(stateS2, stateS3, "E3");

transitionRepository.save(transitionS1To0S2);

transitionRepository.save(transitionS2ToS3);
transitionRepository.save(transitionS21T0S22);

Repository Persistence

Apart from storing machine configuration (as shown in Repository Configuration), in an external
repository, you canx also persist machines into repositories.

The StateMachineRepository interface is a central access point that interacts with machine
persistence and is backed by the entity class RepositoryStateMachine.

JPA

The actual repository implementation for JPA is JpaStateMachineRepository, which is backed by the
entity class JpaRepositoryStateMachine.

171

The following example shows the generic way to persist a machine for JPA:

StateMachineRepository<JpaRepositoryStateMachine> stateMachineRepository;
void persist() {

JpaRepositoryStateMachine machine = new JpaRepositoryStateMachine();
machine.setMachineId("machine");

machine.setState("S1");

// raw byte[] representation of a context
machine.setStateMachineContext(new byte[] { 0 });

stateMachineRepository.save(machine);

Redis

The actual repository implementation for a Redis is RedisStateMachineRepository, which is backed
by the entity class RedisRepositoryStateMachine.

The following example shows the generic way to persist a machine for Redis:

StateMachineRepository<RedisRepositoryStateMachine> stateMachineRepository;
void persist() {
RedisRepositoryStateMachine machine = new RedisRepositoryStateMachine();
machine.setMachineId("machine");
machine.setState("S1");
// raw byte[] representation of a context

machine.setStateMachineContext(new byte[] { 0 });

stateMachineRepository.save(machine);

MongoDB

The actual repository implementation for MongoDB is MongoDbStateMachineRepository, which is
backed by the entity class MongoDbRepositoryStateMachine.

The following example shows the generic way to persist a machine for MongoDB:

172

@Autowired
StateMachineRepository<MongoDbRepositoryStateMachine> stateMachineRepository;

void persist() {

MongoDbRepositoryStateMachine machine = new MongoDbRepositoryStateMachine();
machine.setMachineId("machine");

machine.setState("S1");

// raw byte[] representation of a context
machine.setStateMachineContext(new byte[] { 0 });

stateMachineRepository.save(machine);

173

Recipes

This chapter contains documentation for existing built-in state machine recipes.

Spring Statemachine is a foundational framework. That is, it does not have much higher-level
functionality or many dependencies beyond Spring Framework. Consequently, correctly using a
state machine may be difficult. To help, we have created a set of recipe modules that address
common use cases.

What exactly is a recipe? A state machine recipe is a module that addresses a common use case. In
essence, a state machine recipe is both an example that we have tried to make it easy for you to
reuse and extend.

Recipes are a great way to make external contributions to the Spring Statemachine

o project. If you are not ready to contribute to the framework core itself, a custom
and common recipe is a great way to share functionality with other users.

174

Persist

The persist recipe is a simple utility that lets you use a single state machine instance to persist and
update the state of an arbitrary item in a repository.

The recipe’s main class is PersistStateMachineHandler, which makes three assumptions:

* An instance of a StateMachine<String, String> needs to be wused with a
PersistStateMachineHandler. Note that states and Events are required to be type of String.

» PersistStateChangelistener needs to be registered with handler to react to persist request.

* The handleEventWithState method is used to orchestrate state changes.

You can find a sample that shows how to use this recipe at Persist.

175

Tasks

The tasks recipe is a concept to run DAG (Directed Acrylic Graph) of Runnable instances that use a
state machine. This recipe has been developed from ideas introduced in Tasks sample.

The next image shows the generic concept of a state machine. In this state chart, everything under
TASKS shows a generic concept of how a single task is executed. Because this recipe lets you register
a deep hierarchical DAG of tasks (meaning a real state chart would be a deeply nested collection of
sub-states and regions), we have no need to be more precise.

For example, if you have only two registered tasks, the following state chart would be correct when
TASK_id is replaced with TASK_1 and TASK_2 (assuming the registered tasks IDs are 1 and 2).

FORK TASKS JOIN
RUN
o_p — | — o—b| TASK id_INITIAL | —| —
A A +
| TASK id |

o_p| TASK id_INITIAL |

v

| TASK id |

[OK]
CHOICE <4

¢ [ERROR]

ERROR

CONTINUE FALLBACK
L | o—Pp AUTOMATIC B NEEIEE & MANUAL

FIX

R

Executing a Runnable may result an error. Especially if a complex DAG of tasks is involved, you want
to have a way to handle task execution errors and then have a way to continue execution without
executing already successfully executed tasks. Also, it would be nice if some execution errors can
be handled automatically. As a last fallback, if an error cannot be handled automatically, the state
machine is put into a state where the user can handle errors manually.

TasksHandler contains a builder method to configure a handler instance and follows a simple
builder pattern. You can use this builder to register Runnable tasks and TasksListener instances and
define StateMachinePersist hook.

Now we can take a simple Runnable that runs a simple sleep as the following example shows:

176

private Runnable sleepRunnable() {
return new Runnable() {

public void run() {

try {
Thread.sleep(2000);
} catch (InterruptedException e) {

}

0 The preceding example is the base for all of the examples in this chapter.

To execute multiple sleepRunnable tasks, you can register tasks and execute runTasks() method from
TasksHandler, as the following example shows:

TasksHandler handler = TasksHandler.builder()
.task("1", sleepRunnable())
.task("2", sleepRunnable())
.task("3", sleepRunnable())

.build();

handler.runTasks();

To listen to what is happening with a task execution, you can register an instance of a TasksListener
with a TasksHandler. This recipe provides an adapter TasksListenerAdapter if you do not want to
implement a full interface. The listener provides a various hooks to listen tasks execution events.
The following example shows the definition of the MyTasksListener class:

177

private class MyTasksListener extends TasksListenerAdapter {

@Override
public void onTasksStarted() {
}

@0verride
public void onTasksContinue() {

}

@0verride
public void onTaskPreExecute(Object id) {
}

@0verride
public void onTaskPostExecute(Object id) {
}

@0verride
public void onTaskFailed(Object id, Exception exception) {
}

@0verride
public void onTaskSuccess(Object id) {
}

@Override
public void onTasksSuccess() {

}

@0verride
public void onTasksError() {

}

@0verride

public void onTasksAutomaticFix(TasksHandler handler, StateContext<String,
String> context) {

Iy
+

You can either register listeners by using a builder or register them directly with a TasksHandler as
the following example shows:

178

MyTasksListener listenerT
MyTasksListener listener2

new MyTasksListener();
new MyTasksListener();

TasksHandler handler = TasksHandler.builder()
.task("1", sleepRunnable())
.task("2", sleepRunnable())
.task("3", sleepRunnable())
.listener(listener?)

.build();

handler.addTasksListener(listener?);
handler.removeTasksListener(listener?2);

handler.runTasks();

Every task needs to have a unique identifier, and (optionally) a task can be defined to be a sub-task.
Effectively, this creates a DAG of tasks. The following example shows how to create a deep nested
DAG of tasks:

TasksHandler handler = TasksHandler.builder()
.task("1", sleepRunnable())
.task("1", "12", sleepRunnable())
.task("1", "13", sleepRunnable())
.task("2", sleepRunnable())
.task("2", "22", sleepRunnable())
.task("2", "23", sleepRunnable())
.task("3", sleepRunnable())
.task("3", "32", sleepRunnable())
.task("3", "33", sleepRunnable())
.build();

handler.runTasks();

When an error happens and the state machine running these tasks goes into an ERROR state, you can
call fixCurrentProblems handler method to reset the current state of the tasks kept in the state
machine’s extended state variables. You can then use the continueFromError handler method to
instruct the state machine to transition from the ERROR state back to the READY state, where you can
again run tasks. The following example shows how to do so:

179

180

TasksHandler handler = TasksHandler.builder()
.task("1", sleepRunnable())
.task("2", sleepRunnable())
.task("3", sleepRunnable())

.build();

handler.runTasks();
handler.fixCurrentProblems();
handler.continueFromError();

State Machine Examples

This part of the reference documentation explains the use of state machines together with sample
code and UML state charts. We use a few shortcuts when representing the relationship between a
state chart, Spring Statemachine configuration, and what an application does with a state machine.
For complete examples, you should study the samples repository.

Samples are built directly from a main source distribution during a normal build cycle. This
chapter includes the following samples:

Turnstile
Turnstile Reactive
Showrcase

CD Player

Tasks

Washer

Persist
Zookeeper

Web

Scope

Security

Event Service
Deploy

Order Shipping
JPA Configuration
Data Persist

Data Multi Persist
Monitoring

The following listing shows how to build the samples:

./gradlew clean build -x test

181

Every sample is located in its own directory under spring-statemachine-samples. The samples are
based on Spring Boot and Spring Shell, and you can find the usual Boot fat jars under every sample
project’s build/1ibs directory.

The filenames for the jars to which we refer in this section are populated during a

build of this document, meaning that, if you build samples from master, you have
files with a BUILD-SNAPSHOT postfix.

182

Turnstile

Turnstile is a simple device that gives you access if payment is made. It is a concept that is simple to
model using a state machine. In its simplest, form there are only two states: LOCKED and UNLOCKED.
Two events, COIN and PUSH can happen, depending on whether someone makes a payment or tries to
go through the turnstile. The following image shows the state machine:

| s |

{

LOCKED UNLOCKED

entry/ entry/
exit exit

PUSH — COIN —p COIN

4— PUSH —

The following listing shows the enumeration that defines the possible states:

States

public enum States {
LOCKED, UNLOCKED
}

The following listing shows the enumeration that defines the events:

Events

public enum Events {
COIN, PUSH
+

The following listing shows the code that configures the state machine:

183

Configuration

static class StateMachineConfig
extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.LOCKED)
.states(EnumSet.all0f(States.class));

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()
.source(States.LOCKED)
.target(States.UNLOCKED)
.event(Events.COIN)
.and()

.withExternal()
.source(States.UNLOCKED)
.target(States.LOCKED)
.event(Events.PUSH);

You can see how this sample state machine interacts with events by running the turnstile sample.
The following listing shows how to do so and shows the command’s output:

184

$ java -jar spring-statemachine-samples-turnstile-3.0.0-RC1.jar

sm>sm

print
tom +
*o>| LOCKED |
Fmmm - +
+---| entry/ |
| | exit/ |
| |
| I
| I
| |
| |
+-=>| |
| |
tom +
start
changed to LOCKED

machine started

event COIN
changed to UNLOCKED
COIN send

event PUSH
changed to LOCKED
PUSH send

SM
|
|
I
I

---COIN-->|
I
I

<--PUSH--- |
|
|

185

Turnstile Reactive

Turnstile reactive is an enhacement to Turnstile sample using same StateMachine concept and
adding a reactive web layer communicating reactively with a StateMachine reactive interfaces.

StateMachineController is a simple @RestController where we autowire our StateMachine.

private StateMachine<States, Events> stateMachine;

We create first mapping to return a machine state. As state doesn’t come out from a machine
reactively, we can defer it so that when a returned Mono is subscribed, actual state is requested.

("/state")
public Mono<States> state() {
return Mono.defer(() -> Mono.justOrEmpty(stateMachine.getState().qgetId()));
}

To send a single event or multiple events to a machine we can use a Flux in both incoming and
outgoing layers. EventResult here is just for this sample and simply wraps ResultType and event.

("/events")
public Flux<EventResult> events(Flux<EventData> eventData) {
return eventData
.filter(ed -> ed.getEvent() != null)
.map(ed -> MessageBuilder.withPayload(ed.getEvent()).build())
.flatMap(m -> stateMachine.sendEvent(Mono.just(m)))
.map(EventResult: :new);

You can use the following command to run the sample:
$ java -jar spring-statemachine-samples-turnstilereactive-3.0.0-RC1.jar

Example of getting a state:

186

GET http://localhost:8080/state

Would then response:

"LOCKED"

Example of sending an event:

POST http://localhost:8080/events
content-type: application/json

{
"event": "COIN"

}

Would then response:

[

{
"event": "COIN",

"resultType": "ACCEPTED"

}
]

You can post multiple events:

POST http://localhost:8080/events
content-type: application/json

[
{
"event": "COIN"
+
{
"event": "PUSH"
}
]

187

Response then contains results for both events:

"event": "COIN",
"resultType": "ACCEPTED"

"event": "PUSH",
"resultType": "ACCEPTED"

188

Showcase

Showecase is a complex state machine that shows all possible transition topologies up to four levels
of state nesting. The following image shows the state machine:

entry/
exit,
H/[foo.equals(0)];
o—Pp 51 52
entry/ C entry/
D exit —p | exit
¢ H/ H/[foo.equals(1)];
C
o—p s11 +—— | o 521
entry/ F entry/
exit, +— exit
B o—p 5211
— F G
» | entry/ _—F
I G | exit ‘ |
» E
B +—
D
| 512 —»
entry/
exit |
5212
entry/
I exit
»
. |
A[foo.equals(1)];

The following listing shows the enumeration that defines the possible states:

States

public enum States {
Se, S1, S11, S12, S2, S21, S211, S212

The following listing shows the enumeration that defines the events:

Events

public enum Events {
A, B, C,D, E, F, G, H, I

The following listing shows the code that configures the state machine:

189

Configuration - states

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states

.withStates()
.initial(States.S@, fooAction())
.state(States.S0)
.and()
.withStates()

.parent(States.S0)

.initial(States.S1)

.state(States.S1)

.and()

.withStates()
.parent(States.S1)
.initial(States.S11)
.state(States.S11)
.state(States.S12)
.and()

.withStates()

.parent(States.S0)

.state(States.S2)

.and()

.withStates()
.parent(States.S2)
.initial(States.S21)
.state(States.S21)
.and()

.withStates()
.parent(States.S21)
.initial(States.S211)
.state(States.S211)
.state(States.S212);

The following listing shows the code that configures the state machine’s transitions:

190

Configuration - transitions

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()
.source(States.S1).target(States.S1).event(Events.A)
.quard(foolGuard())

.and()

.withExternal()
.source(States.S1).target(States.S11).event(Events.B)
.and()

.withExternal()
.source(States.S21).target(States.S211).event(Events.B)
.and()

.withExternal()
.source(States.S1).target(States.S2).event(Events.()
.and()

.withExternal()
.source(States.S2).target(States.S1).event(Events.()
.and()

.withExternal()
.source(States.S1).target(States.S0).event(Events.D)
.and()

.withExternal()
.source(States.S211).target(States.S21).event(Events.D)
.and()

.withExternal()
.source(States.S0).target(States.S211).event(Events.E)
.and()

.withExternal()
.source(States.S1).target(States.S211).event(Events.F)
.and()

.withExternal()
.source(States.S2).target(States.S11).event(Events.F)
.and()

.withExternal()
.source(States.S11).target(States.S211).event(Events.G)
.and()

.withExternal()
.source(States.S211).target(States.S0).event(Events.G)
.and()

.withInternal()
.source(States.S0).event(Events.H)
.quard(foo@Guard())
.action(fooAction())
.and()

.withInternal()

191

.source(States.S2).event(Events.H)
.quard(foolGuard())
.action(fooAction())

.and()

withInternal()
.source(States.S1).event(Events.H)
.and()

.withExternal()
.source(States.S11).target(States.S12).event(Events.I)
.and()

.withExternal()
.source(States.S211).target(States.S212).event(Events.I)
.and()

.withExternal()
.source(States.S12).target(States.S212).event(Events.I);

The following listing shows the code that configures the state machine’s actions and guards:

Configuration - actions and guards

public FooGuard foo@Guard() {
return new FooGuard(9);

}

public FooGuard foolGuard() {
return new FooGuard(1);

}

public FooAction fooAction() {
return new FooAction();

}

The following listing shows how the single action is defined:

192

Action

private static class FooAction implements Action<States, Events> {

public void execute(StateContext<States, Events> context) {
Map<Object, Object> variables = context.getExtendedState().getVariables();
Integer foo = context.getExtendedState().get("foo", Integer.class);
if (foo == null) {
log.info("Init foo to 0");
variables.put("foo", 0);
} else if (foo == 0) {
log.info("Switch foo to 1");
variables.put("foo", 1);
} else if (foo == 1) {
log.info("Switch foo to 0");
variables.put("foo", 0);

The following listing shows how the single guard is defined:

Guard

private static class FooGuard implements Guard<States, Events> {
private final int match;

public FooGuard(int match) {
this.match = match;

}

public boolean evaluate(StateContext<States, Events> context) {
Object foo = context.getExtendedState().getVariables().get("foo");
return !(foo == null || !foo.equals(match));

The following listing shows the output that this state machine produces when it runs and various
events are sent to it:

193

sm>sm start

Init foo to 0

Entry state SO

Entry state S1

Entry state S11

State machine started

sm>sm event A
Event A send

sm>sm event (
Exit state S11
Exit state S1
Entry state S2
Entry state S21
Entry state S211
Event C send

sm>sm event H

Switch foo to 1

Internal transition source=S0
Event H send

sm>sm event C
Exit state S211
Exit state S21
Exit state S2
Entry state S1
Entry state S11
Event C send

sm>sm event A
Exit state S11
Exit state S1
Entry state S1
Entry state S11
Event A send

In the preceding output, we can see that:
* The state machine is started, which takes it to its initial state (S11) through superstates (S1) and
(S0). Also, the extended state variable, foo, is initialized to 0.

* We try to execute a self transition in state S1 with event A, but nothing happens because the
transition is guarded by variable foo to be 1.

* We send event C, which takes us to the other state machine, where the initial state (5211) and its
superstates are entered. In there, we can use event H, which does a simple internal transition to
flip the foo variable. Then we go back by using event C.

194

* Event A is sent again, and now S1 does a self transition because the guard evaluates to true.

The following example offers a closer look at how hierarchical states and their event handling
works:

195

sm>sm variables
No variables

sm>sm start

Init foo to 0

Entry state SO

Entry state S1

Entry state S11

State machine started

sm>sm variables
foo=0

sm>sm event H
Internal transition source=S1
Event H send

sm>sm variables
foo=0

sm>sm event C
Exit state S11
Exit state S1
Entry state S2
Entry state S21
Entry state S211
Event C send

sm>sm variables
fo0=0

sm>sm event H

Switch foo to 1

Internal transition source=S0
Event H send

sm>sm variables
foo=1

sm>sm event H

Switch foo to 0

Internal transition source=S2
Event H send

sm>sm variables
foo=0

In the preceding sample:

196

* We print extended state variables in various stages.
* With event H, we end up running an internal transition, which is logged with its source state.

* Note how event H is handled in different states (S0, S1, and S2). This is a good example of how
hierarchical states and their event handling works. If state S2 is unable to handle event H due to
a guard condition, its parent is checked next. This guarantees that, while the machine is on state
S2, the foo flag is always flipped around. However, in state S1, event H always matches to its
dummy transition without guard or action, so it never happens.

197

CD Player

CD Player is a sample which resembles a use case that many people have used in the real world. CD
Player itself is a really simple entity that allows a user to open a deck, insert or change a disk, and
then drive the player’s functionality by pressing various buttons (eject, play, stop, pause, rewind,
and backward).

How many of us have really given thought to what it will take to make code that interacts with
hardware to drive a CD Player. Yes, the concept of a player is simple, but, if you look behind the
scenes, things actually get a bit convoluted.

You have probably noticed that, if your deck is open and you press play, the deck closes and a song
starts to play (if a CD was inserted). In a sense, when the deck is open, you first need to close it and
then try to start playing (again, if a CD is actually inserted). Hopefully, you have now realized that a
simple CD Player is so simple. Sure, you can wrap all this with a simple class that has a few boolean
variables and probably a few nested if-else clauses. That will do the job, but what about if you need
to make all this behavior much more complex? Do you really want to keep adding more flags and if-
else clauses?

The following image shows the state machine for our simple CD player:

BUSY o—Pp IDLE
entry/ entry/
exit exit
o—p PLAYING o—Pp CLOSED
STOP
entry/ entry/
exit PLAY exit
—
timer/ls |;
PLAY
PAUSE 4+ — EJECT
PAUSE EJECT
PAUSED OPEN
entry/ entry/
exit exit
— LOAD|;

The rest of this section goes through how this sample and its state machine is designed and how
those two interacts with each other. The following three configuration sections are used within an
EnumStateMachineConfigurerAdapter.

198

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()

.initial(States.IDLE)

.state(States.IDLE)

.and()

.withStates()
.parent(States.IDLE)
.initial(States.CLOSED)
.state(States.CLOSED, closedEntryAction(), null)
.state(States.OPEN)
.and()

.withStates()

.state(States.BUSY)

.and()

.withStates()
.parent(States.BUSY)
.initial(States.PLAYING)
.state(States.PLAYING)
.state(States.PAUSED);

199

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()
.source(States.CLOSED).target(States.OPEN).event(Events.EJECT)
.and()

.withExternal()
.source(States.OPEN).target(States.CLOSED).event(Events.EJECT)
.and()

.withExternal()
.source(States.OPEN).target(States.CLOSED).event(Events.PLAY)
.and()

.withExternal()
.source(States.PLAYING).target(States.PAUSED).event(Events.PAUSE)
.and()

.withInternal()

.source(States.PLAYING)
.action(playingAction())
.timer(1000)

.and()

withInternal()

.source(States.PLAYING).event(Events.BACK)
.action(trackAction())
.and()

withInternal()

.source(States.PLAYING).event(Events.FORWARD)
.action(trackAction())
.and()

.withExternal()
.source(States.PAUSED).target(States.PLAYING).event(Events.PAUSE)
.and()

.withExternal()
.source(States.BUSY).target(States.IDLE).event(Events.STOP)
.and()

.withExternal()
.source(States.IDLE).target(States.BUSY).event(Events.PLAY)
.action(playAction())

.quard(playGuard())
.and()

.withInternal()

.source(States.OPEN).event(Events.LOAD).action(loadAction());

200

public ClosedEntryAction closedEntryAction() {
return new ClosedEntryAction();

}

public LoadAction loadAction() {
return new LoadAction();

}

public TrackAction trackAction() {
return new TrackAction();

}

public PlayAction playAction() {
return new PlayAction();

}

public PlayingAction playingAction() {
return new PlayingAction();

}

public PlayGuard playGuard() {
return new PlayGuard();

}

In the preceding configuration:

* We used EnumStateMachineConfigurerAdapter to configure states and transitions.

» The CLOSED and OPEN states are defined as substates of IDLE, and the PLAYING and PAUSED states are
defined as substates of BUSY.

» With the CLOSED state, we added an entry action as a bean called closedEntryAction.

* In the transitions we mostly map events to expected state transitions, such as EJECT closing and
opening a deck and PLAY, STOP, and PAUSE doing their natural transitions. For other transitions,
we did the following:

o For source state PLAYING, we added a timer trigger, which is needed to automatically track
elapsed time within a playing track and to have a facility for making the decision about
when to switch the to next track.

o For the PLAY event, if the source state is IDLE and the target state is BUSY, we defined an action
called playAction and a guard called playGuard.

o For the LOAD event and the OPEN state, we defined an internal transition with an action called
loadAction, which tracks inserting a disc with extended-state variables.

201

o The PLAYING state defines three internal transitions. One is triggered by a timer that runs an
action called playingAction, which updates the extended state variables. The other two
transitions use trackAction with different events (BACK and FORWARD, respectively) to handle
when the user wants to go back or forward in tracks.

This machine has only have six states, which are defined by the following enumeration:

public enum States {
// super state of PLAYING and PAUSED
BUSY,
PLAYING,
PAUSED,
// super state of CLOSED and OPEN
IDLE,
CLOSED,
OPEN

Events represent the buttons the user can press and whether the user loads a disc into the player.
The following enumeration defines the events:

public enum Events {
PLAY, STOP, PAUSE, EJECT, LOAD, FORWARD, BACK
}

The cdPlayer and library beans are used to drive the application. The following listing shows the
definition of these two beans:

public CdPlayer cdPlayer() {
return new CdPlayer();

}

public Library library() {
return Library.buildSampleLibrary();
}

We define extended state variable keys as simple enumerations, as the following listing shows:

202

public enum Variables {
CD, TRACK, ELAPSEDTIME
}

public enum Headers {
TRACKSHIFT

}

We wanted to make this sample type safe, so we define our own annotation (@StatesOnTransition),
which has a mandatory meta annotation (@0nTransition). The following listing defines the
@StatesOnTransition annotation:

(ElementType.METHOD)
(RetentionPolicy.RUNTIME)

public StatesOnTransition {
States[] source() default {};

States[] target() default {};

ClosedEntryAction is an entry action for the CLOSED state, to send a PLAY event to the state machine if
a disc is present. The following listing defines ClosedEntryAction:

public static class ClosedEntryAction implements Action<States, Events> {

public void execute(StateContext<States, Events> context) {
if (context.getTransition() != null
&& context.getEvent() == Events.PLAY
&& context.getTransition().getTarget().getId() == States.CLOSED
&& context.getExtendedState().getVariables().get(Variables.CD) !=

null) {
context.getStateMachine()
.sendEvent(Mono. just(MessageBuilder
.withPayload(Events.PLAY).build()))
.subscribe();
}
}
¥

203

LoadAction update an extended state variable if event headers contain information about a disc to
load. The following listing defines LoadAction:

public static class LoadAction implements Action<States, Events> {

public void execute(StateContext<States, Events> context) {
Object cd = context.getMessageHeader(Variables.(CD);
context.getExtendedState().getVariables().put(Variables.CD, cd);

PlayAction resets the player’s elapsed time, which is kept as an extended state variable. The
following listing defines PlayAction:

public static class PlayAction implements Action<States, Events> {

public void execute(StateContext<States, Events> context) {
context.getExtendedState().getVariables().put(Variables.ELAPSEDTIME, 01);
context.getExtendedState().getVariables().put(Variables.TRACK, 0);

PlayGuard guards the transition from IDLE to BUSY with the PLAY event if the (D extended state
variable does not indicate that a disc has been loaded. The following listing defines PlayGuard:

public static class PlayGuard implements Guard<States, Events> {

public boolean evaluate(StateContext<States, Events> context) {
ExtendedState extendedState = context.getExtendedState();
return extendedState.getVariables().get(Variables.CD) != null;

PlayingAction updates an extended state variable called ELAPSEDTIME, which the player can use to
read and update its LCD status display. PlayingAction also handles track shifting when the user goe
back or forward in tracks. The following example defines PlayingAction:

204

public static class PlayingAction implements Action<States, Events> {

public void execute(StateContext<States, Events> context) {
Map<Object, Object> variables = context.getExtendedState().getVariables();
Object elapsed = variables.get(Variables.ELAPSEDTIME);
Object cd = variables.get(Variables.(D);
Object track = variables.get(Variables.TRACK);
if (elapsed instanceof Long) {
long e = ((Long)elapsed) + 10001;
if (e > ((Cd) cd).getTracks()[((Integer) track)].getLength()*1000) {
context.getStateMachine()
.sendEvent(Mono. just(MessageBuilder
.withPayload(Events.FORWARD)
.setHeader (Headers.TRACKSHIFT.toString(), 1).build()))
.subscribe();
} else {
variables.put(Variables.ELAPSEDTIME, e);

}

TrackAction handles track shift actions when the user goes back or forward in tracks. If a track is
the last on a disc, playing is stopped and the STOP event is sent to a state machine. The following
example defines TrackAction:

205

public static class TrackAction implements Action<States, Events> {

public void execute(StateContext<States, Events> context) {
Map<Object, Object> variables = context.getExtendedState().getVariables();
Object trackshift = context.getMessageHeader(Headers.TRACKSHIFT.toString(
));
Object track = variables.get(Variables.TRACK);
Object cd = variables.get(Variables.(D);
if (trackshift instanceof Integer && track instanceof Integer && cd
instanceof Cd) {
int next = ((Integer)track) + ((Integer)trackshift);
if (next >= 0 & ((Cd)cd).getTracks().length > next) {
variables.put(Variables.ELAPSEDTIME, 01);
variables.put(Variables.TRACK, next);
} else if (((Cd)cd).getTracks().length <= next) {
context.getStateMachine()
.sendEvent(Mono. just(MessageBuilder
.withPayload(Events.STOP).build()))
.subscribe();

One other important aspect of state machines is that they have their own responsibilities (mostly
around handling states) and that all application level logic should be kept outside. This means that
applications need to have a ways to interact with a state machine. Also, note that we annotated
CdPlayer with @WithStateMachine, which instructs a state machine to find methods from your POJO,
which are then called with various transitions. The following example shows how it updates its LCD
status display:

(target = "BUSY")
public void busy(ExtendedState extendedState) {
Object cd = extendedState.getVariables().get(Variables.(CD);
if (ed !'= null) {
cdStatus = ((Cd)cd).getName();
}

In the preceding example, we use the @0nTransition annotation to hook a callback when a transition
happens with a target state of BUSY.

The following listing shows how our state machine handles whether the player is closed:

206

(target = {States.CLOSED, States.IDLE})
public void closed(ExtendedState extendedState) {

Object cd = extendedState.getVariables().get(Variables.(CD);
if (cd !'= null) {

cdStatus = ((Cd)cd).getName();
} else {

cdStatus = "No CD";
}

trackStatus = "";

@0nTransition (which we used in the preceding examples) can only be used with strings that are
matched from enumerations. @StatesOnTransition lets you create your own type-safe annotations
that use real enumerations.

The following example shows how this state machine actually works.

207

sm>sm start

Entry state IDLE
Entry state CLOSED
State machine started

sm>cd lcd
No CD

sm>cd library
0: Greatest Hits

0: Bohemian Rhapsody ©5:56

1: Another One Bites the Dust 03:36
1: Greatest Hits II

0: A Kind of Magic 04:22

1: Under Pressure 04:08

sm>cd eject
Exit state CLOSED
Entry state OPEN

sm>cd load 0
Loading cd Greatest Hits

sm>cd play

Exit state OPEN
Entry state CLOSED
Exit state CLOSED
Exit state IDLE
Entry state BUSY
Entry state PLAYING

sm>cd lcd
Greatest Hits Bohemian Rhapsody 00:03

sm>cd forward

sm>cd lcd
Greatest Hits Another One Bites the Dust 00:04

sm>cd stop

Exit state PLAYING
Exit state BUSY
Entry state IDLE
Entry state CLOSED

sm>cd lcd
Greatest Hits

208

In the preceding run:

e The state machine is started, which causes the machine to be initialized.

* The CD player’s LCD screen status is printed.

* The CD library is printed.

* The CD player’s deck is opened.

* The CD with index 0 is loaded into a deck.

 Play causes the deck to get closed and immediate play, because a disc was inserted.
* We print the LCD status and request the next track.

* We stop playing.

209

Tasks

The Tasks sample demonstrates parallel task handling within regions and adds error handling to
either automatically or manually fix task problems before continuing back to a state where the
tasks can be run again. The following image shows the Tasks state machine:

5M |

FORK TASKS JOIN

RUN
I e N N e T s

A A e

[OK]
e]

¢ [ERROR]

ERROR

CONTINUE FALLBACK
L | P AUTOMATIC R — MANUAL

FIX

R

On

a high level, in this state machine:

We always try to get into the READY state so that we can use the RUN event to execute tasks.

Tkhe TASKS state, which is composed of three independent regions, has been put in the middle of
FORK and JOIN states, which will cause the regions to go into their initial states and to be joined
by their end states.

From the JOIN state, we automatically go into a CHOICE state, which checks for the existence of
error flags in extended state variables. Tasks can set these flags, and doing so gives the CHOICE
state the ability to go into the ERROR state, where errors can be handled either automatically or
manually.

The AUTOMATIC state in ERROR can try to automatically fix an error and goes back to READY if it
succeeds. If the error is something what cannot be handled automatically, user intervention is
needed and the machine is put into the MANUAL state by the FALLBACK event.

The following listing shows the enumeration that defines the possible states:

210

States
public enum States {
READY,
FORK, JOIN, CHOICE,

TASKS, T1, T1E, T2, T2E, T3, T3E,
ERROR, AUTOMATIC, MANUAL

The following listing shows the enumeration that defines the events:

Events

public enum Events {
RUN, FALLBACK, CONTINUE, FIX;
+

The following listing configures the possible states:

211

Configuration - states

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()

.initial(States.READY)

.fork(States.FORK)

.state(States.TASKS)

.join(States.JOIN)

.choice(States.CHOICE)

.state(States.ERROR)

.and()

.withStates()
.parent(States.TASKS)
.initial(States.T1)
.end(States.T1E)
.and()

.withStates()
.parent(States.TASKS)
.initial(States.T2)
.end(States.T2E)
.and()

.withStates()
.parent(States.TASKS)
.initial(States.T3)
.end(States.T3E)
.and()

.withStates()
.parent(States.ERROR)
.initial(States.AUTOMATIC)
.state(States.AUTOMATIC, automaticAction(), null)
.state(States.MANUAL);

The following listing configures the possible transitions:

212

Configuration - transitions

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()
.source(States.READY).target(States.FORK)
.event(Events.RUN)

.and()

withFork()
.source(States.FORK).target(States.TASKS)
.and()

.withExternal()
.source(States.T1).target(States.T1E)
.and()

.withExternal()
.source(States.T2).target(States.T2E)
.and()

.withExternal()
.source(States.T3).target(States.T3E)
.and()

withJoin()
.source(States.TASKS).target(States.JOIN)
.and()

.withExternal()
.source(States.JOIN).target(States.CHOICE)
.and()

.withChoice()

.source(States.CHOICE)
.first(States.ERROR, tasksChoiceGuard())
.last(States.READY)

.and()

.withExternal()
.source(States.ERROR).target(States.READY)
.event(Events.CONTINUE)

.and()

.withExternal()
.source(States.AUTOMATIC).target(States.MANUAL)
.event(Events.FALLBACK)

.and()

withInternal()

.source(States.MANUAL)
.action(fixAction())
.event(Events.FIX);

The following guard sends a choice entry into the ERROR state and needs to return TRUE if an error

213

has happened. This guard checks that all extended state variables(T1, T2, and T3) are TRUE.

public Guard<States, Events> tasksChoiceGuard() {
return new Guard<States, Events>() {

public boolean evaluate(StateContext<States, Events> context) {
Map<Object, Object> variables = context.getExtendedState()
.getVariables();
return !(ObjectUtils.nullSafeEquals(variables.get("T1"), true)
&& ObjectUtils.nullSafeEquals(variables.get("T2"), true)
&& ObjectUtils.nullSafeEquals(variables.get("T3"), true));

The following actions below send events to the state machine to request the next step, which is
either to fall back or to continue back to ready.

214

public Action<States, Events> automaticAction() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
Map<Object, Object> variables = context.getExtendedState()
.getVariables();
if (ObjectUtils.nullSafeEquals(variables.get("T1"), true)
&& ObjectUtils.nullSafeEquals(variables.get("T2"), true)
&& ObjectUtils.nullSafeEquals(variables.get("T3"), true)) {
context.getStateMachine()
.sendEvent(Mono. just(MessageBuilder
.withPayload(Events.CONTINUE).build()))
.subscribe();
} else {
context.getStateMachine()
.sendEvent(Mono. just(MessageBuilder
.withPayload(Events.FALLBACK).build()))
.subscribe();

public Action<States, Events> fixAction() {
return new Action<States, Events>() {

public void execute(StateContext<States, Events> context) {
Map<Object, Object> variables = context.getExtendedState()
.getVariables();

variables.put("T1", true);

variables.put("T2", true);

variables.put("T3", true);

context.getStateMachine()
.sendEvent(Mono. just(MessageBuilder

.withPayload(Events.CONTINUE).build()))

.subscribe();

Default region execution is synchronous meaning a regions would be processed sequentially. In this
sample we simply want all task regions to get processed parallel. This can be accomplished by
defining RegionExecutionPolicy:

215

public void configure(StateMachineConfigurationConfigurer<States, Events> config)
throws Exception {
config
.withConfiguration()
.regionExecutionPolicy(RegionExecutionPolicy.PARALLEL);

The following example shows how this state machine actually works:

sm>sm start
State machine started
Entry state READY

sm>tasks run

Exit state READY
Entry state TASKS
run task on T2

run task on T1

run task on T3

run task on T2 done
run task on T1 done
run task on T3 done
Entry state T2
Entry state T1
Entry state T3

Exit state T2

Exit state T1

Exit state T3

Entry state T3E
Entry state T1E
Entry state T2E
Exit state TASKS
Entry state READY

In the preceding listing, we can see that tasks run multiple times. In the next listing, we introduce
errors:

216

sm>tasks list
Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T1

sm>tasks list
Tasks {T1=false, T3=true, T2=true}

sm>tasks run

Entry state TASKS
run task on T1

run task on T3

run task on T2

run task on T1 done
run task on T3 done
run task on T2 done
Entry state T1
Entry state T3
Entry state T2
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JOIN
Exit state JOIN
Entry state ERROR
Entry state AUTOMATIC
Exit state AUTOMATIC
Exit state ERROR
Entry state READY

In the preceding listing, if we simulate a failure for task T1, it is fixed automatically. In the next
listing, we introduce more errors:

217

sm>tasks list
Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T2

sm>tasks run

Entry state TASKS
run task on T2

run task on T1

run task on T3

run task on T2 done
run task on T1 done
run task on T3 done
Entry state T2
Entry state T1
Entry state T3
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JOIN
Exit state JOIN
Entry state ERROR
Entry state AUTOMATIC
Exit state AUTOMATIC
Entry state MANUAL

sm>tasks fix

Exit state MANUAL
Exit state ERROR
Entry state READY

In the precding example, if we simulate failure for either task T2 or T3, the state machine goes to the
MANUAL state, where problem needs to be fixed manually before it can go back to the READY state.

218

Washer

The washer sample demonstrates how to use a history state to recover a running state
configuration with a simulated power-off situation.

Anyone who has ever used a washing machine knows that if you somehow pause the program, it
continue from the same state when unpaused. You can implement this kind of behavior in a state
machine by using a history pseudo state. The following image shows our state machine for a
washer:

STOP

o—Pp RUNNING
o—p WASHING RINSE RINSING DRY DRYING

TRESTOREPOWER CUTPOWER
POWEROFF

The following listing shows the enumeration that defines the possible states:

States
public enum States {
RUNNING, HISTORY, END,

WASHING, RINSING, DRYING,
POWEROFF

The following listing shows the enumeration that defines the events:

Events

public enum Events {
RINSE, DRY, STOP,
RESTOREPOWER, CUTPOWER

The following listing configures the possible states:

219

Configuration - states

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.RUNNING)
.state(States.POWEROFF)
.end(States.END)
.and()
.withStates()
.parent(States.RUNNING)
.initial(States.WASHING)
.state(States.RINSING)
.state(States.DRYING)
.history(States.HISTORY, History.SHALLOW);

The following listing configures the possible transitions:

220

Configuration - transitions

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()

.source(States.WASHING) .target(States.RINSING)
.event(Events.RINSE)
.and()

.withExternal()
.source(States.RINSING).target(States.DRYING)
.event(Events.DRY)

.and()

.withExternal()
.source(States.RUNNING).target(States.POWEROFF)
.event(Events.CUTPOWER)

.and()

.withExternal()
.source(States.POWEROFF).target(States.HISTORY)
.event(Events.RESTOREPOWER)

.and()

.withExternal()
.source(States.RUNNING).target(States.END)
.event(Events.STOP);

The following example shows how this state machine actually works:

221

sm>sm start

Entry state RUNNING
Entry state WASHING
State machine started

sm>sm event RINSE
Exit state WASHING
Entry state RINSING
Event RINSE send

sm>sm event DRY
Exit state RINSING
Entry state DRYING
Event DRY send

sm>sm event CUTPOWER
Exit state DRYING
Exit state RUNNING
Entry state POWEROFF
Event CUTPOWER send

sm>sm event RESTOREPOWER
Exit state POWEROFF
Entry state RUNNING
Entry state WASHING
Entry state DRYING

Event RESTOREPOWER send

In the preceding run:

* The state machine is started, which causes machine to get initialized.
* The state machine goes to RINSING state.

* The state machine goes to DRYING state.

* The state machine cuts power and goes to POWEROFF state.

* The state is restored from the HISTORY state, which takes state machine back to its previous
known state.

222

Persist

Persist is a sample that uses the Persist recipe to demonstrate how database entry update logic can
be controlled by a state machine.

The following image shows the state machine logic and configuration:

S5M

o—Pp PLACED

SENT

PROCESS

DELIVER

PROCESSING

DELIVERED

SEND

The following listing shows the state machine configuration:

223

StateMachine Config

@Configuration
@EnableStateMachine
static class StateMachineConfig
extends StateMachineConfigurerAdapter<String, String> {

@0verride
public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
.initial("PLACED")
.state("PROCESSING")
.state("SENT")
.state("DELIVERED");

}

@0verride
public void configure(StateMachineTransitionConfigurer<String, String>
transitions)

throws Exception {

transitions

.withExternal()
.source("PLACED").target("PROCESSING")
.event("PROCESS")

.and()

.withExternal()
.source("PROCESSING").target("SENT")
.event("SEND")

.and()

.withExternal()
.source("SENT").target("DELIVERED")
.event("DELIVER");

The following configuration creates PersistStateMachineHandler:

224

Handler Config

@Configuration
static class PersistHandlerConfig {

@Autowired
private StateMachine<String, String> stateMachine;

@Bean
public Persist persist() {
return new Persist(persistStateMachineHandler());

}

@Bean

public PersistStateMachineHandler persistStateMachineHandler() {

return new PersistStateMachineHandler(stateMachine);

}

The following listing shows the Order class used with this sample:

Order Class

public static class Order {
int id;
String state;

public Order(int id, String state) {
this.id = id;
this.state = state;

}

@0verride
public String toString() {
return "Order [id=" + id +

, state=" + state + "]";

}

The following example shows the state machine’s output:

225

sm>persist db

Order [id=1, state=PLACED]
Order [id=2, state=PROCESSING]
Order [id=3, state=SENT]

Order [id=4, state=DELIVERED]

sm>persist process 1
Exit state PLACED
Entry state PROCESSING

sm>persist db

Order [id=2, state=PROCESSING]
Order [id=3, state=SENT]

Order [id=4, state=DELIVERED]
Order [id=1, state=PROCESSING]

sm>persist deliver 3
Exit state SENT
Entry state DELIVERED

sm>persist db

Order [id=2, state=PROCESSING]
Order [id=4, state=DELIVERED]
Order [id=1, state=PROCESSING]
Order [id=3, state=DELIVERED]

In the preceding run, the state machine:

 Listed rows from an existing embedded database, which is already populated with sample data.
* Requested to update order 1 into the PROCESSING state.

* List database entries again and see that the state has been changed from PLACED to PROCESSING.

» Update order 3 to update its state from SENT to DELIVERED.

You may wonder where the database is, because there are literally no signs of it in
the sample code. The sample is based on Spring Boot and, because the necessary
classes are in a classpath, an embedded HSQL instance is created automatically.

Spring Boot even creates an instance of JdbcTemplate, which you can autowire, as
o we did in Persist.java, shown in the following listing:

private JdbcTemplate jdbcTemplate;

226

Next, we need to handle state changes. The following listing shows how we do so:

public void change(int order, String event) {
Order o = jdbcTemplate.queryForObject("select id, state from orders where id =

?n,
new RowMapper<Order>() {
public Order mapRow(ResultSet rs, int rowNum) throws SQLException
{
return new Order(rs.getInt("id"), rs.getString("state"));
}
}, new Object[] { order });
handler.handleEventWithStateReactively(MessageBuilder
.withPayload(event).setHeader ("order", order).build(), o.state)
.subscribe();
}

Finally, we use a PersistStateChangelistener to update the database, as the following listing shows:

private class LocalPersistStateChangelListener implements
PersistStateChangelListener {

public void onPersist(State<String, String> state, Message<String> message,
Transition<String, String> transition, StateMachine<String, String>
stateMachine) {
if (message != null &% message.getHeaders().containsKey("order")) {
Integer order = message.getHeaders().get("order", Integer.class);
jdbcTemplate.update("update orders set state = 7 where id = ?", state
.getId(), order);
}
}

227

Zookeeper

Zookeeper is a distributed version from the Turnstile sample.

o This sample needs an external Zookeeper instance that is accessible from localhost
and has the default port and settings.

Configuration of this sample is almost the same as the turnstile sample. We add only the
configuration for the distributed state machine where we configure StateMachineEnsemble, as the
following listing shows:

public void configure(StateMachineConfigurationConfigurer<String, String> config)
throws Exception {
config
.withDistributed()
.ensemble(stateMachineEnsemble());

The actual StateMachineEnsemble needs to be created as a bean, together with the CuratorFramework
client, as the following example shows:

public StateMachineEnsemble<String, String> stateMachineEnsemble() throws
Exception {

return new ZookeeperStateMachineEnsemble<String, String>(curatorClient(),
"/foo");
}

public CuratorFramework curatorClient() throws Exception {
CuratorFramework client = CuratorFrameworkFactory.builder().defaultData(new
byte[0])
.retryPolicy(new ExponentialBackoffRetry(1000, 3))
.connectString("localhost:2181").build();
client.start();
return client;

For the next example, we need to create two different shell instances. We need to create one
instance, see what happens, and then create the second instance. The following command starts the
shell instances (remember to start only one instance for now):

228

@n1:~# java -jar spring-statemachine-samples-zookeeper-3.0.0-RC1.jar

When state machine is started, its initial state is LOCKED. Then it sends a COIN event to transition into
UNLOCKED state. The following example shows what happens:

Shelll

sm>sm start
Entry state LOCKED
State machine started

sm>sm event COIN
Exit state LOCKED
Entry state UNLOCKED
Event COIN send

sm>sm state
UNLOCKED

Now you can open a second shell instance and start a state machine, by using the same command
that you used to start the first state machine. You should see that the distributed state (UNLOCKED) is
entered instead of the default initial state (LOCKED).

The following example shows the state machine and its output:

Shell2

sm>sm start
State machine started

sm>sm state
UNLOCKED

Then from either shell (we use second instance in the next example), send a PUSH event to transit
from the UNLOCKED into the LOCKED state. The following example shows the state machine command
and its output:

229

Shell2

sm>sm event PUSH
Exit state UNLOCKED
Entry state LOCKED
Event PUSH send

In the other shell (the first shell if you ran the preceding command in the second shell), you should
see the state be changed automatically, based on distributed state kept in Zookeeper. The following
example shows the state machine command and its output:

Shelll

sm>Exit state UNLOCKED
Entry state LOCKED

230

Web

Web is a distributed state machine example that uses a zookeeper state machine to handle
distributed state. See Zookeeper.

o This example is meant to be run on multiple browser sessions against multiple
different hosts.

This sample uses a modified state machine structure from Showcase to work with a distributed
state machine. The following image shows the state machine logic:

| s0

entry/
exit
H/[foo.equals(0)];

o—Pp 51 52
entry/ C entry/
D exit —p| exit
4+« | H H/[foo.equals(1)];
K
o—p S11 +“— o—Pp 521
entry/ F entry/
exit +“— exit
B o—p 5211
—»] F 4 G
» | entry/ R
’—¢ | G | exit | |
> E
B “—
D
| 512 —
entry/
exit, |
s212
entry/
| exit
»
. |

Alfoo.equals{1)];

o Due to the nature of this sample, an instance of a Zookeeper state machine is
expected to be available from a localhost for every individual sample instance.

This demonstration uses an example that starts three different sample instances. If you run
different instances on the same host, you need to distinguish the port each one uses by adding
--server.port=<myport> to the command. Otherwise the default port for each host is 8080.

In this sample run, we have three hosts: n1, n2, and n3. Each one has a local zookeeper instance
running and a state machine sample running on a port 8080.

In there different terminals, start the three different state machines by running the following
command:

java -jar spring-statemachine-samples-web-3.0.0-RC1.jar

When all instances are running, you should see that all show similar information when you access
them with a browser. The states should be S0, S1, and S11. The extended state variable named foo

231

should have a value of 0. The main state is S11.

Spring Statemachine Zookeeper Demo - Google Chrome
ﬁ @/ Spring Statemachin: x Yy
< ¢ | [5 n1:8080 O

Spring Statemachine Zookeeper Demo

eventA eventB eventC IfntD eventE | eventF eventG| eventH‘ eventl‘ eventl(‘
eventJ| es le valu
States Variables Messages

S0 foo=0

=l

S11

When you press the Event C button in any of the browser windows, the distributed state is changed
to S211, which is the target state denoted by the transition associated with an event of type C. The
following image shows the change:

Spring Statemachine Zookeeper Demo - Google Chrome

@/ Spring Statemachir

[4 [n2:8080 QA @ B =

Spring Statemachine Zookeeper Demo

eventA eventB eventC | eventD | eventE | eventF | eventG | event H ‘ event | ‘ event K
S | S |

event J | Ne tVariable valt
States Variables Messages
S0 foo=0 Enterstate 211
Enter state 521
52 Enter state 52

Exit state S1
521
Exit state 511

5211

Now we can press the Event H button and see that the internal transition runs on all state machines
to change the the value of the extended state variable named foo from 0 to 1. This change is first
done on the state machine that receives the event and is then propagated to the other state
machines. You should see only the variable named foo change from 0 to 1.

232

Spring Statemachine Zookeeper Demo - Google Chrome

&/ Spring Statemachin: x Y Janne

{ € | [n3:8080 O A@ B =

Spring Statemachine Zookeeper Demo

event A \ eventB | eventC eventD I eventE | event F I event G event| eventK

event J |[New test\) |
States Variables Messages

S0 foo=1 Enter state 5211
Enter state 521

S2 Enter state 52
Exit state 51

521
Exit state 511

5211

Finally, we can send Event K, which takes the state machine state back to state S11. You should see
this happen in all of the browsers. The following image shows the result in one browser:

Spring Statemachine Zookeeper Demo - Google Chrome
ﬁ @/ Spring Statemachin: x Y
< € | [n1:8080 O =

Spring Statemachine Zookeeper Demo

eventA eventB eventC || eventD eventE eventF eventG| event H | event| ‘

event J | es le valu
.
States Variables Messages
] foo=1 Enter state 511
Enter state S1
=L Exit state 52
Exit state 521
S11
Exit state 5211
Enter state 5211
Enter state 521

Enter state 52

233

Scope

Scope is a state machine example that uses session scope to provide an individual instance for
every user. The following image shows the states and events within the Scope state machine:

5M |

This simple state machine has three states: S0, S1, and S2. Transitions between those are controlled
by three events: A, B, and C.

To start the state machine, run the following command in a terminal:

java -jar spring-statemachine-samples-scope-3.0.0-RC1.jar

When the instance is running, you can open a browser and play with the state machine. If you open
the same page in a different browser, (for example, one in Chrome and one in Firefox), you should
get a new state machine instance for each user session. The following image shows the state
machine in a browser:

Spring Statemachine Scope Demo - Google Chrome

@/ Spring Statemachin: x Y

€ [localhost:8080/states O =

States: [SO]

| Send A || SendB || Send C |

B e +
| SM |
B T +
| |
Fommmm - + A Fommmm - + B AR R +
¥ S0 |------ >| S1 |------ >| S2 |
| tmmmmmm + Fomemae + Fomm e +
| " | |
| | c I |
| e + |
| |
B +

234

Security

Security is a state machine example that uses most of the possible combinations of securing a state
machine. It secures sending events, transitions, and actions. The following image shows the state
machine’s states and events:

| 5M

To start the state machine, run the following command:

java -jar spring-statemachine-samples-secure-3.0.0-RC1.jar

We secure event sending by requiring that users have a role of USER. Spring Security ensures that no
other users can send events to this state machine. The following listing secures event sending:

public void configure(StateMachineConfigurationConfigurer<States, Events> config)
throws Exception {
config

.withConfiguration()
.autoStartup(true)
.and()

.withSecurity()
.enabled(true)
.event("hasRole('USER")");

In this sample we define two users:

e A user named user who has a role of USER

e A user named admin who has two roles: USER and ADMIN

The password for both users is password. The following listing configures the two users:

235

@EnableWebSecurity
@EnableGlobalMethodSecurity(securedEnabled = true)
static class SecurityConfig extends WebSecurityConfigurerAdapter {

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth) throws
Exception {
auth
.inMemoryAuthentication()
.withUser("user")
.password("password")
.roles("USER")
.and()
withUser("admin")
.password("password")
.roles("USER", "ADMIN");

We define various transitions between states according to the state chart shown at the beginning of
the example. Only a user with an active ADMIN role can run the external transitions between S2 and
S3. Similarly only an ADMIN can run the internal transition the S1 state. The following listing defines
the transitions, including their security:

236

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)

throws Exception {

transitions

.withExternal()
.source(States.S0).target(States.S1).event(Events.A)
.and()

.withExternal()
.source(States.S1).target(States.S2).event(Events.B)
.and()

.withExternal()
.source(States.S2).target(States.S0).event(Events.()
.and()

.withExternal()
.source(States.S2).target(States.S3).event(Events.E)
.secured("ROLE_ADMIN", ComparisonType.ANY)

.and()

.withExternal()
.source(States.S3).target(States.S0).event(Events.()
.and()

withInternal()

.source(States.S0).event(Events.D)
.action(adminAction())
.and()

.withInternal()

.source(States.S1).event(Events.F)
.action(transitionAction())
.secured("ROLE_ADMIN", ComparisonType.ANY);

The following listing uses a method called adminAction whose return type is Action to specify that
the action is secured with a role of ADMIN:

237

@Scope(proxyMode = ScopedProxyMode.TARGET_CLASS)
@Bean

public Action<States, Events> adminAction() {
return new Action<States, Events>() {

@Secured("ROLE_ADMIN")

@0verride

public void execute(StateContext<States, Events> context) {
log.info("Executed only for admin role");

}
+;

The following Action runs an internal transition in state S when event F is sent.

@Bean
public Action<States, Events> transitionAction() {
return new Action<States, Events>() {

@Override

public void execute(StateContext<States, Events> context) {
log.info("Executed only for admin role");

}
};

The transition itself is secured with a role of ADMIN, so this transition does not run if the current user
does not hate that role.

238

Event Service

The event service example shows how you can use state machine concepts as a processing engine
for events. This sample evolved from a question:

Can I use Spring Statemachine as a microservice to feed events to different state machine
instances? In fact, Spring Statemachine can feed events to potentially millions of different state
machine instances.

This example uses a Redis instance to persist state machine instances.

Obviously, a million state machine instances in a JVM would be a bad idea, due to memory
constraints. This leads to other features of Spring Statemachine that let you persist a
StateMachineContext and re-use existing instances.

For this example, we assume that a shopping application sends different types of PageView events to
a separate microservice which then tracks user behavior by using a state machine. The following
image shows the state model, which has a few states that represent a user navigating a product
items list, adding and removing items from a cart, going to a payment page, and initiating a
payment operation:

sM
VIEW I VIEW_C VIEW_P
b LANDING —_— ITEMS — CART — PAYMENT
ADD DEL PAY
RESET VIEW_I VIEW_C
— — +—
? RESET * |
| VIEW_I
RESET

An actual shopping application would send these events into this service by (for example) using a
rest call. More about this later.

Remember that the focus here is to have an application that exposes a REST API
o that the user can use to send events that can be processed by a state machine for
each request.

The following state machine configuration models what we have in a state chart. Various actions
update the state machine’s Extended State to track the number of entries into various states and
also how many times the internal transitions for ADD and DEL are called and whether PAY has been
executed:

239

(name = "stateMachineTarget")
(scopeName="prototype")
public StateMachine<States, Events> stateMachineTarget() throws Exception {
Builder<States, Events> builder = StateMachineBuilder.<States, Events>builder

0);

builder.configureConfiguration()
.withConfiguration()
.autoStartup(true);

builder.configureStates()
.withStates()
.initial(States.HOME)
.states(EnumSet.all0f(States.class));

builder.configureTransitions()

.withInternal()
.source(States.ITEMS).event(Events.ADD)
.action(addAction())

.and()

.withInternal()
.source(States.CART).event(Events.DEL)
.action(delAction())

.and()

.withInternal()
.source(States.PAYMENT).event(Events.PAY)
.action(payAction())

.and()

.withExternal()
.source(States.HOME).target(States.ITEMS)
.action(pageviewAction())
.event(Events.VIEW I)

.and()

.withExternal()
.source(States.CART).target(States.ITEMS)
.action(pageviewAction())
.event(Events.VIEW_I)

.and()

.withExternal()
.source(States.ITEMS).target(States.CART)
.action(pageviewAction())
.event(Events.VIEW C)

.and()

.withExternal()
.source(States.PAYMENT).target(States.CART)
.action(pageviewAction())
.event(Events.VIEW C)

.and()

.withExternal()

240

.source(States.CART).target(States.PAYMENT)
.action(pageviewAction())
.event(Events.VIEW_P)

.and()

.withExternal()
.source(States.ITEMS).target(States.HOME)
.action(resetAction())

.event(Events.RESET)
.and()

.withExternal()
.source(States.CART).target(States.HOME)
.action(resetAction())

.event(Events.RESET)
.and()

.withExternal()
.source(States.PAYMENT).target(States.HOME)
.action(resetAction())
.event(Events.RESET);

return builder.build();

Do not focus on stateMachineTarget or @Scope for now, as we explain those later in this section.

We set up a RedisConnectionFactory that defaults to localhost and default port. We use
StateMachinePersist with a RepositoryStateMachinePersist implementation. Finally, we create a
RedisStateMachinePersister that uses a previously created StateMachinePersist bean.

These are then used in a Controller that handles REST calls, as the following listing shows:

241

public RedisConnectionFactory redisConnectionFactory() {
return new JedisConnectionFactory();

}

public StateMachinePersist<States, Events, String> stateMachinePersist
(RedisConnectionFactory connectionFactory) {
RedisStateMachineContextRepository<States, Events> repository =
new RedisStateMachineContextRepository<States, Events>
(connectionFactory);
return new RepositoryStateMachinePersist<States, Events>(repository);

}

public RedisStateMachinePersister<States, Events> redisStateMachinePersister(
StateMachinePersist<States, Events, String> stateMachinePersist) {
return new RedisStateMachinePersister<States, Events>(stateMachinePersist);

We create a bean named stateMachineTarget. State machine instantiation is a relatively expensive
operation, so it is better to try to pool instances instead of instantiating a new instance for every
request. To do so, we first create a poolTargetSource that wraps stateMachineTarget and pools it with
a max size of three. When then proxy this poolTargetSource with ProxyFactoryBean by using a
request scope. Effectively, this means that every REST request gets a pooled state machine instance
from a bean factory. Later, we show how these instances are used. The following listing shows how
we create the ProxyFactoryBean and set the target source:

(value = "request”, proxyMode = ScopedProxyMode.TARGET_CLASS)
public ProxyFactoryBean stateMachine() {
ProxyFactoryBean pfb = new ProxyFactoryBean();
pfb.setTargetSource(poolTargetSource());
return pfb;

The following listing shows we set the maximum size and set the target bean name:

242

public CommonsPool2TargetSource poolTargetSource() {
CommonsPool2TargetSource pool = new CommonsPool2TargetSource();
pool.setMaxSize(3);
pool.setTargetBeanName("stateMachineTarget");
return pool;

Now we can get into actual demo. You need to have a Redis server running on localhost with
default settings. Then you need to run the Boot-based sample application by running the following
command:

java -jar spring-statemachine-samples-eventservice-3.0.0-RC1.jar

In a browser, you see something like the following:

Spring Statemachine Event Service Demo - Google Chrome

: ==& = Spring Statemac’ x Y
4 @ [localhost:8080/state Q% =

VIEW_I
VIEW_C
VIEW_P
RESET
ADD
DEL
PAY
joe || bob || dave
B e e e e T T +
| SM |
B e e e e +
Hoem e + VIEW I #-----cmmcemmeonoon + VIEW € #-=--esmmmmcmmconos + VIEW P 4-e--ommeoomoooooon +
* > HOME |------=- > ITEMS |-------- >| CART |- >| PAYMENT |
| | | | | | | |
| | | ADD | | DEL | | PAY |
I | | + | 4o | |4 +
| | RESET | | | | viewI | | | | viewc | | [
I R L Vol I Vo I v
R R LR LR R L e + L L e LR L + o ———e + Frrrrrer e +
- ~ - | | |
| RESET | | | |
I e + | I
| | VIEW T | |
| RESET o + |
B e R e T R PR +
B e R et T +

In this U, you can use three users: joe, bob, and dave. Clicking a button shows the current state and
the extended state. Enabling a radio button before clicking a button sends a particular event for
that user. This arrangement lets you play with the UL

In our StateMachineController, we autowire StateMachine and StateMachinePersister. StateMachine is
request scoped, so you get a new instance for each request, while StateMachinePersist is a normal
singleton bean. The following listing autowires StateMachine and StateMachinePersist:

243

private StateMachine<States, Events> stateMachine;

private StateMachinePersister<States, Events, String> stateMachinePersister;

In the following listing, feedAndGetState is used with a Ul to do same things that an actual REST api
might do:

("/state")
public String feedAndGetState((value = "user", required = false)
String user,
(value = "id", required = false) Events id, Model model)
throws Exception {
model.addAttribute("user", user);
model.addAttribute("allTypes", Events.values());
model.addAttribute("stateChartModel", stateChartModel);
// we may get into this page without a user so
// do nothing with a state machine
if (StringUtils.hasText(user)) {
resetStateMachineFromStore(user);
if (id = null) {
feedMachine(user, id);
}
model.addAttribute("states", stateMachine.getState().getIds());
model.addAttribute("extendedState", stateMachine.getExtendedState()
.getVariables());
}

return "states";

In the following listing, feedPageview is a REST method that accepts a post with JSON content.

(value = "/feed",method= RequestMethod.POST)
(HttpStatus.0K)
public void feedPageview((required = true) Pageview event) throws
Exception {
Assert.notNull(event.getUser(), "User must be set");
Assert.notNull(event.getId(), "Id must be set");
resetStateMachineFromStore(event.getUser());
feedMachine(event.getUser(), event.getId());

244

In the following listing, feedMachine sends an event into a StateMachine and persists its state by using
a StateMachinePersister

private void feedMachine(String user, Events id) throws Exception {
stateMachine
.sendEvent(Mono. just(MessageBuilder
.withPayload(id).build()))
.blockLast();
stateMachinePersister.persist(stateMachine, "testprefix:'

+ user);

The following listing shows a resetStateMachineFromStore that is used to restore a state machine for
a particular user:

private StateMachine<States, Events> resetStateMachineFromStore(String user)
throws Exception {
return stateMachinePersister.restore(stateMachine, "testprefix:" + user);

}

As you would usually send an event by using a Ul, you can do the same by using REST calls, as the
following curl command shows:

curl http://localhost:8080/feed -H "Content-Type: application/json" --data
l{lluserll:Iljoell’"_idll:IIVIEW_III}I

At this point, you should have content in Redis with a key of testprefix:joe, as the following
example shows:

$./redis-cli
127.0.0.1:6379> KEYS *
1) "testprefix:joe"

The next three images show when state for joe has been changed from HOME to ITEMS and when the
ADD action has been executed.

The following image the ADD event being sent:

245

Spring Statemachine Event Service Demo - Google Chrome
=% = Spring Statemac’ < _}

{ €@ | [localhost:8080/state Q% =
User: joe
States: [ITEMS]
Extended State: {ITEMS=1}
. VIEW_I
VIEW_C
VIEW_P
. RESET
ADD
. DEL
. PAY
joe || bob || dave
B e e e R e e T T +
| SM |
B e e e e +
B R EEEEEEEEEEEE + VIEW I #reemm-eommmmeomens + VIEW € 4---memmmeommms + VIEW P 4----emmomeemooeees +
*oom| HOME [ITEMS [EEEE——— > CART | EEE—— >| PAYMENT |
| | | | | | | |
| | | ADD | | DEL | | PAY |
| | | memoooeee] | ememeeseoor | | eememeeoeee +
| | RESET | | | | VIEWI | | | | viEwc | | [
| [<s e Vo Jeeeeeetoa I T R | v
oo + Fo s + e + R it +
- - - | | |
| RESET | | | |
| ettt e + | |
| | VIEW I | |
| RESET Lk + |
B R e R et e R T +
B e e R e e e L L LR LT +

Now your are still on the ITEMS state, and the internal transition caused the COUNT extended state
variable to increase to 1, as the following image shows:

Spring Statemachine Event Service Demo - Google Chrome
F— % = Spring Statemac/ x Y
{ € | [localhost:8080/state

User: joe
States: [ITEMS]
Extended State: {COUNT=1, ITEMS=1}

. VIEW_I
VIEW_C
VIEW_P

. RESET
ADD
DEL

. PAY

Lice | bob [dave |

B R + VIEW I #------eceoooomes + VIEW C #--eememcomooooooes 4 VIEW P 4----mmmmoososoooee +
R ITEMS [EE— | CART [EEEE—— > PAYMENT

Now you can run the following curl rest call a few times (or do it through the UI) and see the COUNT
variable increase with every call:

curl http://localhost:8080/feed -H "Content-Type: application/json" # --data
l{lluser":Iljoell’"_idll:"ADD"}l

246

The following image shows the result of these operations:

Spring Statemachine Event Service Demo - Google Chrome

-9 < Spring Statemac! x
L4 € [localhost:8080/state O =

User: joe
States: [ITEMS]

Extended State: {COUNT=5, ITEMS=1}

. VIEW_I
. VIEW_C
. VIEW_P
. RESET
. ADD
. DEL
. PAY
joe || bob | dave
B e e e T e L TR LT R T +
| SM |
B e R Rt et L L L LR LR TR LT +
R R + VIEW I 4------e-moomomeos + VIEW G 4---e-emmmcooooeon + VIEW P 4--oooomomoaoaoe +
*oox| HOME R | ITEMS [EREEEEEE >| CART [EEEEEEEES >| PAYMENT |
| | | | | | | |
| | | ADD | | DEL | | PAY |
| | | Ao +o [| |4 +
| | RESET | | | | VIEWI | | | | vIEWC | | 1|
| [<--mmmmee]] VoS- I Vo[| vl
B et + R T + R T + R e T T +
° - - | | |
RESET			
HT o sosossssssssosssssssiossssssoooososoooes			
	VIEW_I		
RESET L Rt AR R L b +			
B e e +
B e e e +

247

Deploy

The deploy example shows how you can use state machine concepts with UML modeling to provide
a generic error handling state. This state machine is a relatively complex example of how you can
use various features to provide a centralized error handling concept. The following image shows
the deploy state machine:

StateMachine

READY DEPLOY

PREPAREDEPLOY
fentry OpagueBehavior preparedeployEntryAction

INSTALL

DEPLOY

Jentry OpagueBehavior
readyEntryction

fexit OpagueBehavior
exitErrorAction

ISINSTALLED é lisinstalledGuard] fentry OpaqueBehavior

installEntryAction

ERROR UNDEPLOY

lentry

OpaqueBehavior
errorEntryAction

START
Jentry OpagueBehavior
startEntryAction

[installedOkGuard]

s

[hasErrorGuard] EXITDEPLOY INSTALLOK
HASERROR

UNDEPLOY

PREPAREUNDEPLOY

ISRUNNING

[iIsRunningGuard] STOP

R

fentry OpaqueBehavior

EXITUNDEPLOY stopEntryAction

The preceding state chart was designed by using the Eclipse Papyrus Plugin

o (seeEclipse Modeling Support) and imported into Spring StateMachine through the
resulting UML model file. Actions and guards defined in a model are resolved from
a Spring Application Context.

In this state machine scenario, we have two different behaviors (DEPLOY and UNDEPLOY) that user tries
to execute.

In the preceding state chart:
* In the DEPLOY state, the INSTALL and START states are entered conditionally. We enter START
directly if a product is already installed and have no need to try to START if install fails.
* In the UNDEPLOQY state, we enter STOP conditionally if the application is already running.

* Conditional choices for DEPLOY and UNDEPLOY are done through a choice pseudostate within those
states, and the choices are selected by guards.

* We use exit point pseudostates to have a more controlled exit from the DEPLOY and UNDEPLOY
states.

* After exiting from DEPLOY and UNDEPLOY, we go through a junction pseudostate to choose whether
to go through an ERROR state (if an error was added into an extended state).

248

» Finally, we go back to the READY state to process new requests.

Now we can get to the actual demo. Run the boot based sample application by running the
following command:

java -jar spring-statemachine-samples-deploy-3.0.0-RC1.jar

In a browser, you can see something like the following image:

Spring Statemachine Deploy Demo - Google Chrome

-4 = Spring Statemac x Y\
{ € | [localhost:8080/

Dt
o
n

States: [READY]
Choose event

. DEPLOY
. UNDEPLOY

Choose event header(s)

isInstalled
installedOk
isRunning
hasError

Send Event

Messages:

Enter READY

o As we do not have real install, start, or stop functionality, we simulate failures by
checking the existence of particular message headers.

Now you can start to send events to a machine and choose various message headers to drive
functionality.

249

Order Shipping

The order shipping example shows how you can use state machine concepts to build a simple order
processing system.

The following image shows a state chart that drives this order shipping sample.

StateMacl hine

WAIT_NEW_ORDER. r HANDLE_CRDER
jentry OpagqueBehavior entntandieOrder
MAKE_PRODUCTION_PLAN l PRODUCE JUNCTION_ORDER

Ipraduce]

PLACE_ORDER

RECENE_ORDER
Jentry OpagqueBehavior
entryfiecenveOrder
ImakeProdPlan]

CHECK_STOCK

FILL_ORDER

JUNCTION_STOCK

CHOME_PRODUCTION

WAIT_PRODUCT

CHOICE_HANDLE ORDER . o

——rT ¢
*—> SEND_BILL WOTIFY_CUSTOMER CHOICE_PAYMENT_OK WAT_ORDER
. Lpayment Ok

WAIT_PAYMENT HANDLE_PAYMENT

SEND_REMINDER

RECENE_PAYMENT

(®) cusToMER EAROR

fentry OpagqueBenaviar
entrySendReminder

In the preceding state chart:

¢ The state machine enters the WAIT _NEW_ORDER (default) state.

* The event PLACE_ORDER transitions into the RECEIVE_ORDER state and the entry action
(entryReceiveOrder) is executed.

« If the order is 0K, the state machine goes into two regions, one handling order production and
one handling user-level payment. Otherwise, the state machine goes into CUSTOMER_ERROR, which
is a final state.

* The state machine loops in a lower region to remind the user to pay until RECEIVE_PAYMENT is sent
successfully to indicate correct payment.

* Both regions go into waiting states (WAIT_PRODUCT and WAIT_ORDER), where they are joined before
the parent orthogonal state (HANDLE_ORDER) is exited.

* Finally, the state machine goes through SHIP_ORDER to its final state (ORDER_SHIPPED).

The following command runs the sample:

java -jar spring-statemachine-samples-ordershipping-3.0.0-RC1.jar

In a browser, you can see something similar to the following image. You can start by choosing a

250

customer and an order to create a state machine.

Spring Statemachine Ordershipping Demo - Google Chrome

@ Spring Statemac x Y

@ [localhost:8080/state

Choose customer

® customerl

customer2
customer3

Choose order

® orderl

order2
order3

2r

Create Machine

Choose event

. PLACE_ORDER
. RECEIVE_PAYMENT

. makeProdPlan
. produce
. payment

Send Event

Machines:

1d States

Refresh

The state machine for a particular order is now created and you can start to play with placing an
order and sending a payment. Other settings (such as makeProdPlan, produce, and payment) let you
control how the state machine works. The following image shows the state machine waiting for an
order:

251

Spring Statemachine Ordershipping Demo - Google Chrome

o/ Spring Statemac x §\
4 €@ [localhost:8080/state

g
o
m

Choose customer

« ® customerl
. customer2
. customer3

Choose order

o ® prderl
. order2
. order3

Create Machine

Choose event

» & PLACE_ORDER
. RECEIVE_PAYMENT

. makeProdPlan
. produce
. payment

Send Event

Machines:

Id States
customerl:orderl [WAIT_NEW_ORDER]

Refresh

customerl:orderl enter WAIT NEW ORDER

Finally, you can see what machine does by refreshing a page, as the following image shows:

252

Spring Statemachine Ordershipping Demo - Google Chrome

@ Spring Statemac x Y
¢ @ [localhost:8080/state?

g
o
m

Choose customer

. customerl
. customer2
. customer3

Choose order

. order1
. order2
. order3

Create Machine

Choose event

. PLACE_ORDER
. RECEIVE_PAYMENT

. makeProdPlan
. produce
. payment

Send Event

Machines:

Id States
customerl:orderl [HANDLE_ORDER, WAIT_PRODUCT, WAIT_PAYMENT]

Refresh

customerl:orderl enter WALT PAYMENT
customerl:orderl exit SEND REMINDER
customerl:orderl enter SEND REMINDER
customerl:orderl exit WAIT PAYMENT
customerl:orderl enter WALT PRODUCT
customerl:orderl exit FILL_ORDER
customerl:orderl enter FILL ORDER
customerl:orderl enter WAIT PAYMENT
customerl:orderl exit SEND BILL
customerl:orderl enter SEND BILL
customerl:orderl enter CHECK STOCK
customerl:orderl enter HANDLE ORDER
customerl:orderl exit RECEIVE ORDER
customerl:orderl enter RECEIVE_ORDER
customerl:orderl exit WAIT NEW ORDER
customerl:orderl enter WAIT NEW ORDER

253

JPA Configuration

The JPA configuration example shows how you can use state machine concepts with a machine
configuration kept in a database. This sample uses an embedded H2 database with an H2 Console

(to ease playing with the database).
This sample uses spring-statemachine-autoconfigure (which, by default, auto-configures the

repositories and entity classes needed for JPA). Thus, you need only @SpringBootApplication. The
following example shows the Application class with the @SpringBootApplication annotation:

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

The following example shows how to create a RepositoryStateMachineModelFactory:

254

public static class Config extends StateMachineConfiqurerAdapter<String, String> {

private StateRepository<? extends RepositoryState> stateRepository;

private TransitionRepository<? extends RepositoryTransition>
transitionRepository;

public void configure(StateMachineModelConfigurer<String, String> model)
throws Exception {
model
.withModel()
.factory(modelFactory());

public StateMachineModelFactory<String, String> modelFactory() {
return new RepositoryStateMachineModelFactory(stateRepository,
transitionRepository);

}
}

You can use the following command to run the sample:

java -jar spring-statemachine-samples-datajpa-3.0.0-RC1.jar

Accessing the application at http://localhost:8080 brings up a newly constructed machine for each
request. You can then choose to send events to a machine. The possible events and machine
configuration are updated from a database with every request. The following image shows the Ul
and the initial events that are created when this state machine starts:

255

http://localhost:8080

Spring Statemachine Demo - Google Chrome

@ Spring Statema: x

& (& | [localhost:8080/state ‘ii%| (]

h2 console
Choose events

e [1FE1
e [1E2

Send Events
Machine stopped
Enter S1
Machine started

To access the embedded console, you can use the JDBC URL (which is jdbc:h2:mem:testdb, if it is not
already set). The following image shows the H2 console:

H2 Console - Google Chrome

& H2 Console

< (& | [localhost:8080/h2-console/login jsp?jsessionid=e1ff563c576ebde16d8372a762be1203 h* e | (]
Preferences Tools Help

Login

Saved Settings: | Generic H2 (Embedded) v

Setting Name: |Generic H2 (Embedded) ||E|| Remcwe|

Driver Class: |org_h2. Driver |

JDBC URL: |jdbc:h2:mem:testdh |

User Name: |sa |

Password: | |

|Connec1| |Tes1 Connecu‘on|

From the console, you can see the database tables and modify them as you wish. The following
image shows the result of a simple query in the UI:

256

H2 Console - Google Chrome

& H2 Console

& C' | ® localhost:8080/h2-console/login.do?jsessionid=954fFd7003c91 a28a3d8b7aa7b... & ¢ | ¢
M| & | @ Auto commit “0 7 | Maxrows:[1000 v | [| | | Auto complete [Off v | (@
| | jdbeih2:mem:testdb Run || Run Selected || Auto complete | | Clear | SQL statement:
& [ACTION SELECT * FROM STATE
= E DEFERRED_EVENTS
[GUARD
= [STATE
= § ID
[INITIAL_STATE
[KIND
[MACHINE_ID
= 0 REGION p
8 [STATE SELECT * FROM STATE;
® [SUBMACHINE_ID ID |[INITIAL_STATE |KIND |MACHINE_ID |REGION |STATE |SUBMACHINE_ID |INITIAL_ACTION_ID |PARENT_STATE_ID
[INITIAL_ACTION_ID = = = = = = =
E [PARENT STATE ID 1 |TRUE null null 51 nuil null null
[+ lﬂz Indexes 2 |FALSE null null 52 null nuil null
[] STATE_ENTRY_ACTIONS 3 |FALSE null null 53 null null null
= £ STATE_EXIT_ACTIONS (3 rows, 4ms)

[STATE_MACHINE

[# [STATE_STATE_ACTIONS Edit
[TRANSITION

= = TRANSITION_ACTIONS

] INFORMATION_SCHEMA

[3 Sequences

=) Users

(i) H2 1.4.190 (2015-10-11)

Now that you have gotten this far, you have probably wondered how those default states and
transitions got populated into the database. Spring Data has a nice trick to auto-populate
repositories, and we used this feature through Jackson2RepositoryPopulatorFactoryBean. The
following example shows how we create such a bean:

public StateMachineJackson2RepositoryPopulatorFactoryBean

jackson2RepositoryPopulatorFactoryBean() {
StateMachineJackson2RepositoryPopulatorFactoryBean factoryBean = new

StateMachineJackson2RepositoryPopulatorFactoryBean();
factoryBean.setResources(new Resource[]{new ClassPathResource("data.json")});
return factoryBean;

The following listing shows the source of the data with which we populate the database:

257

258

}I
{

ll@_idll: II1@II,
"_class": "org.springframework.statemachine

.data.jpa.

"spel": "T(System).out.println('hello exit S1')"

ll@_idll: |I11ll'
"_class": "org.springframework.statemachine
"spel": "T(System).out.println('hello entry

ll@_idll: II12I|'
"_class": "org.springframework.statemachine
"spel": "T(System).out.println('hello state

ll@_idll: II13II'
"_class": "org.springframework.statemachine
"spel": "T(System).out.println('hello')"

"eid": "1",

"_class": "org.springframework.statemachine
"initial": true,

"state": "S1",

"exitActions": ["10"]

"@id": "2",

"_class": "org.springframework.statemachine
"initial": false,

"state": "S2",

"entryActions": ["11"]

"@id": "3",

"_class": "org.springframework.statemachine
"initial": false,

"state": "S3",

"stateActions": ["12"]

_class":

.data.jpa.

S2')"

.data.jpa.

S3l)"

.data.jpa

.data.jpa.

.data.jpa.

.data.jpa.

JpaRepositoryAction”,

JpaRepositoryAction”,

JpaRepositoryAction”,

.JpaRepositoryAction”,

JpaRepositoryState",

JpaRepositoryState",

JpaRepositoryState”,

"org.springframework.statemachine.data.jpa.JpaRepositoryTransition",

"source": "1",
"target": "2",
"event": "E1",
"kind": "EXTERNAL"

b
{

class":
"org.springframework.statemachine.data.jpa.JpaRepositoryTransition",
"source": "2",
"target": "3",
"event": "E2",
"actions": ["13"]

259

Data Persist

The data persist sample shows how you can state machine concepts with a persisting machine in an
external repository. This sample uses an embedded H2 database with an H2 Console (to ease
playing with the database). Optionally, you can also enable Redis or MongoDB.

This sample uses spring-statemachine-autoconfigure (which, by default, auto-configures the
repositories and entity classes needed for JPA). Thus, you need only @SpringBootApplication. The
following example shows the Application class with the @SpringBootApplication annotation:

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

The StateMachineRuntimePersister interface works on the runtime level of a StateMachine. Its
implementation, JpaPersistingStateMachineInterceptor, is meant to be used with a JPA. The
following listing creates a StateMachineRuntimePersister bean:

(njpan)
public static class JpaPersisterConfig {

public StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister(
JpaStateMachineRepository jpaStateMachineRepository) {
return new JpaPersistingStateMachineInterceptor<>
(jpaStateMachineRepository);
}
}

The following example shows how you can use a very similar configuration to create a bean for
MongoDB:

260

(nmongou)
public static class MongoPersisterConfig {

public StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister(
MongoDbStateMachineRepository jpaStateMachineRepository) {
return new MongoDbPersistingStateMachineInterceptor<>
(jpaStateMachineRepository);
}
}

The following example shows how you can use a very similar configuration to create a bean for
Redis:

("redis")
public static class RedisPersisterConfig {

public StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister(
RedisStateMachineRepository jpaStateMachineRepository) {
return new RedisPersistingStateMachinelnterceptor<>
(jpaStateMachineRepository);
}
}

You can configure StateMachine to use runtime persistence by using the withPersistence
configuration method. The following listing shows how to do so:

261

private StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister;

public void configure(StateMachineConfigurationConfigurer<States, Events> config)
throws Exception {
config
.withPersistence()
.runtimePersister(stateMachineRuntimePersister);

This sample also uses DefaultStateMachineService, which makes it easier to work with multiple
machines. The following listing shows how to create an instance of DefaultStateMachineService:

public StateMachineService<States, Events> stateMachineService(
StateMachineFactory<States, Events> stateMachineFactory,
StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister) {
return new DefaultStateMachineService<States, Events>(stateMachineFactory,
stateMachineRuntimePersister);

}

The following listing shows the logic that drives the StateMachineService in this sample:

262

private synchronized StateMachine<States, Events> getStateMachine(String
machineId) throws Exception {
listener.resetMessages();
if (currentStateMachine == null) {
currentStateMachine = stateMachineService.acquireStateMachine(machineld);
currentStateMachine.addStatelistener(listener);
currentStateMachine.startReactively().block();
} else if (!0bjectUtils.nullSafeEquals(currentStateMachine.getId(), machineld
)) A

stateMachineService.releaseStateMachine(currentStateMachine.getId());
currentStateMachine.stopReactively().block();
currentStateMachine = stateMachineService.acquireStateMachine(machineld);
currentStateMachine.addStatelistener(listener);
currentStateMachine.startReactively().block();

}

return currentStateMachine;

You can use the following command to run the sample:

java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar

By default, the jpa profile is enabled in application.yml. If you want to try other
backends, enable either the mongo profile or the redis profile. The following
commands specify which profile to use (jpa is the default, but we included it for
the sake of completeness):

o # java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar
--spring.profiles.active=jpa
java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar
--spring.profiles.active=mongo
java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar
--spring.profiles.active=redis

Accessing the application at http://localhost:8080 brings up a newly constructed state machine for
each request, and you can choose to send events to a machine. The possible events and machine
configuration are updated from a database with every request.

The state machines in this sample have a simple configuration with states 'S1' to 'S6' and events 'E1’
to 'E6' to transition the state machine between those states. You can use two state machine
identifiers (datajpapersist1 and datajpapersist2) to request a particular state machine. The

263

http://localhost:8080

following image shows the UI that lets you pick a machine and an event and that shows what
happens when you do:

Spring Statemachine Demo - Google Chrome

&/ Spring Statemach

< C' | @ localhost:8080/state Q | ¢

h2 console

Choose machine

e ® datajpapersistl
. datajpapersist2

Choose events

. E1l
. E2
. E3
. E4
. ES
. E6
Send Events
Events
i
StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=51, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}1]

The sample defaults to using machine 'datajpapersist1' and goes to its initial state 'S1'. The following
image shows the result of using those defaults:

264

Spring Statemachine Demo - Google Chrome

&/ Spring Statemach

&« C' | @ localhost:8080/state Q %
h2 console

Choose machine

« ® datajpapersistl
. datajpapersist2

Choose events

. El
. E2
. E3
. E4
. E5
. E6

Send Events
Events

Enter S3
Exit 52
Enter S2
Exit S1

StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=53, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}1]

If you send events E1 and E2 to the datajpapersisti state machine, its state is persisted as 'S3'. The
following image shows the result of doing so:

265

Spring Statemachine Demo - Google Chrome

&/ Spring Statemach

&< C' | ® localhost:8080/state Q | :

h2 console
Choose machine

« ® datajpapersistl
. datajpapersist2

Choose events

. E1
. E2
. E3
. E4
. E5
. E6
Send Events
Events
Es
StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=53, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}1]

If you then request state machine datajpapersist1 but send no events, the state machine is restored
back to its persisted state, S3.

266

Data Multi Persist

The data multi ersist sample is an extension of two other samples: JPA Configuration and Data
Persist. We still keep machine configuration in a database and persist into a database. However,
this time, we also have a machine that contains two orthogonal regions, to show how those are
persisted independently. This sample also uses an embedded H2 database with an H2 Console (to
ease playing with the database).

This sample uses spring-statemachine-autoconfigure (which, by default, auto-configures the
repositories and entity classes needed for JPA). Thus, you need only @SpringBootApplication. The
following example shows the Application class with the @SpringBootApplication annotation:

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

As in the other data-driven samples, we again create a StateMachineRuntimePersister, as the
following listing shows:

public StateMachineRuntimePersister<String, String, String>
stateMachineRuntimePersister(
JpaStateMachineRepository jpaStateMachineRepository) {
return new JpaPersistingStateMachineInterceptor<>(jpaStateMachineRepository);

A StateMachineService bean makes it easier to work with a machines. The following listing shows
how to create such a bean:

public StateMachineService<String, String> stateMachineService(
StateMachineFactory<String, String> stateMachineFactory,
StateMachineRuntimePersister<String, String, String>
stateMachineRuntimePersister) {
return new DefaultStateMachineService<String, String>(stateMachineFactory,
stateMachineRuntimePersister);

}

267

We use JSON data to import the configuration. The following example creates a bean to do so:

public StateMachineJackson2RepositoryPopulatorFactoryBean
jackson2RepositoryPopulatorFactoryBean() {
StateMachineJackson2RepositoryPopulatorFactoryBean factoryBean = new
StateMachineJackson2RepositoryPopulatorFactoryBean();
factoryBean.setResources(new Resource[] { new ClassPathResource(
"datajpamultipersist.json”) });
return factoryBean;

}

The following listing shows how we get a RepositoryStateMachineModelFactory:

268

public static class Config extends StateMachineConfiqurerAdapter<String, String> {

private StateRepository<? extends RepositoryState> stateRepository;

private TransitionRepository<? extends RepositoryTransition>
transitionRepository;

private StateMachineRuntimePersister<String, String, String>
stateMachineRuntimePersister;

public void configure(StateMachineConfigurationConfiqgurer<String, String>
config)
throws Exception {
config
.withPersistence()
.runtimePersister(stateMachineRuntimePersister);

public void configure(StateMachineModelConfigurer<String, String> model)
throws Exception {
model
.withModel()
.factory(modelFactory());

public StateMachineModelFactory<String, String> modelFactory() {
return new RepositoryStateMachineModelFactory(stateRepository,
transitionRepository);

}
}

You can run the sample by using the following command:

java -jar spring-statemachine-samples-datajpamultipersist-3.0.0-RC1.jar

Accessing the application at http://localhost:8080 brings up a newly constructed machine for each
request and lets you send events to a machine. The possible events and the state machine

269

http://localhost:8080

configuration are updated from a database for each request. We also print out all state machine
contexts and the current root machine, as the following image shows:

Spring Statemachine Demo - Google Chrome

@/ Spring Statemachir x

&« C | @ localhost:2080/state Q W

Choose machine

datajpamultipersist1
® datajpamultipersist2

Choose events

El
E2
E3
E10
Ell
E12
E20
E21
E22

Send Events

Events

Enter 520
Enter 510
Enter null
Machine stopped
Machine started
Machine started
Machine started

StateMachineContext

DefaultStateMachineContext [id=datajpamultipersist2, childs=[DefaultStateMachineContext
[id=datajpamultipersist2#R1l, childs=[], childRefs=[], state=510, historyStates={}, ewvent=null,
eventHeaders=null, extendedState=DefaultExtendedState [variables={}]], DefaultStateMachineContext
[id=datajpamultipersist2#R2, childs=[], childRefs=[], state=520, historyStates={}, ewvent=null,
eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]], childRefs=null, state=null,
historyStates={}, event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

DefaultStateMachineContext [id=datajpamultipersist2#R1, childs=[], childRefs=null, state=518,
historyStates={}, event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

DefaultStateMachineContext [id=datajpamultipersist2#R2, childs=[], childRefs=null, state=520,
historyStates={}, event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

Current Machine

null 512 511 518 S22 521 528 [/ 510,520 / uuid=eB7c7a6f-93el-4df6-8211-ebf9292862a7 /
id=datajpamultipersist2

The state machine named datajpamultipersist1is a simple “flat” machine where states S1, S2 and S3
are transitioned by events E1, E2, and E3 (respectively). However, the state machine named
datajpamultipersist2 contains two regions (R1 and R2) directly under the root level. That is why this
root level machine really does not have a state. We need that root level machine to host those
regions.

Regions R1 and R2 in the datajpamultipersist2 state machine contains states S10, S11, and S12 and
$20, S21, and S22 (respectively). Events E10, E11, and E12 are used for region R1 and events E20, E21,
and event E22 is used for region R2. The following images shows what happens when we send

270

events E10 and E20 to the datajpamultipersist2 state machine:

Spring Statemachine Demo - Google Chrome

@ Spring Statemach
&« C | @ localhost:2080/state Q ¥
Choose events

. El
. E2
. E3
. E10
Ell
E12
. E20
. E21
. E22

Send Events

Events

Enter 521
Exit S20
Enter 511
Exit 516

StateMachineContext

DefaultStateMachineContext [id=datajpamultipersist2, childs=[DefaultStateMachineContext
[id=datajpamultipersist2#R1l, childs=[], childRefs=[], state=511, historyStates={}, ewvent=null,
eventHeaders=null, extendedState=DefaultExtendedState [variables={}]], DefaultStateMachineContext
[id=datajpamultipersist2#R2, childs=[], childRefs=[], state=521, historyStates={}, ewvent=null,
eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]], childRefs=null, state=null,
historyStates={}, event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

DefaultStateMachineContext [id=datajpamultipersist2#R1, childs=[], childRefs=null, state=511,
historystates={}, event=null, eventHeaders=null, extended5tate=DefaultExtendedState [variables={}]]

DefaultStateMachineContext [id=datajpamultipersist2#R2, childs=[], childRefs=null, state=521,
historyStates={}, event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

Current Machine

null 512 S11 518 S22 521 528 [/ S11,521 / uuid=eB7c7a6f-93el-4df6-8211-ebf9292862a7 /
id=datajpamultipersist2

Regions have their own contexts with their own IDs, and the actual ID is postfixed with # and the
region ID. As the following image shows, different regions in a database have different contexts:

271

@/ H2 Console

“ C | @ localhost:z080

H2 Console - Google Chrome

&t & | @ Auto commit “0 7D | Maxrows: (1000 Y] (3 o8 = |Auto complete [Off ¥ Auto select [On Y| (7

jdbc-h2:mem:testdb

1 ACTION

=] DEFERRED_EVENTS

=1 GUARD

O STATE

=] STATE_ENTRY_ACTIONS
=] STATE_EXIT_ACTIONS
] STATE_MACHINE

] STATE_STATE_ACTIONS
£ TRANSITION

] TRANSITION_ACTIONS
[INFORMATIOMN_SCHEMA
£83 Sequences

i Users

(i) H2 1.4.197 (2018-03-18)

B HFE EHE B EE E

FEF

272

Run | |Run Selected | | Auto complete | | Clear | SQL statement:

SELECT * FROM STATE_MACHINE |

SELECT * FROM STATE_MACHINE;
MACHINE_ID STATE |STATE_MACHINE_CONTEXT

datajpamultipersistl 51

datajpamultipersist2 il
datajpamultipersist2#R1 | 511
datajpamultipersistz#R2 | 521
(4 rows, 7 ms)

Edit

01000301530 10001006f7267 2273707 2696267667 2616d65776iT 26022737461 746560616368696e652e 7375 TOTO6IT2T42¢
010000000 100617267 2273707 2696267667 2616d6577 6726022737461 746560616368696e652eT3T5TOTOGIT2742e4i6273
010003015331b10001006f7267 2e737072696e676672616d65TT6IT26b2e7 37461 746560616368696e652e T3TSTOTOGIT2T:
010003015332b10001006f7 267 2e737072696e676672616d65TT6IT26b2e7 37461 746560616366696e652e T3TSTOTOGIT2T:

Data Persist

The data persist sample shows how you can state machine concepts with a persisting machine in an
external repository. This sample uses an embedded H2 database with an H2 Console (to ease
playing with the database). Optionally, you can also enable Redis or MongoDB.

This sample uses spring-statemachine-autoconfigure (which, by default, auto-configures the
repositories and entity classes needed for JPA). Thus, you need only @SpringBootApplication. The
following example shows the Application class with the @SpringBootApplication annotation:

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

The StateMachineRuntimePersister interface works on the runtime level of a StateMachine. Its
implementation, JpaPersistingStateMachineInterceptor, is meant to be used with a JPA. The
following listing creates a StateMachineRuntimePersister bean:

(njpan)
public static class JpaPersisterConfig {

public StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister(
JpaStateMachineRepository jpaStateMachineRepository) {
return new JpaPersistingStateMachineInterceptor<>
(jpaStateMachineRepository);
}
}

The following example shows how you can use a very similar configuration to create a bean for
MongoDB:

273

(nmongou)
public static class MongoPersisterConfig {

public StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister(
MongoDbStateMachineRepository jpaStateMachineRepository) {
return new MongoDbPersistingStateMachineInterceptor<>
(jpaStateMachineRepository);
}
}

The following example shows how you can use a very similar configuration to create a bean for
Redis:

("redis")
public static class RedisPersisterConfig {

public StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister(
RedisStateMachineRepository jpaStateMachineRepository) {
return new RedisPersistingStateMachinelnterceptor<>
(jpaStateMachineRepository);
}
}

You can configure StateMachine to use runtime persistence by using the withPersistence
configuration method. The following listing shows how to do so:

274

private StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister;

public void configure(StateMachineConfigurationConfigurer<States, Events> config)
throws Exception {
config
.withPersistence()
.runtimePersister(stateMachineRuntimePersister);

This sample also uses DefaultStateMachineService, which makes it easier to work with multiple
machines. The following listing shows how to create an instance of DefaultStateMachineService:

public StateMachineService<States, Events> stateMachineService(
StateMachineFactory<States, Events> stateMachineFactory,
StateMachineRuntimePersister<States, Events, String>
stateMachineRuntimePersister) {
return new DefaultStateMachineService<States, Events>(stateMachineFactory,
stateMachineRuntimePersister);

}

The following listing shows the logic that drives the StateMachineService in this sample:

275

private synchronized StateMachine<States, Events> getStateMachine(String
machineId) throws Exception {
listener.resetMessages();
if (currentStateMachine

) A

currentStateMachine
currentStateMachine.
currentStateMachine.

} else if (!0bjectUtils.

}

stateMachineService.
currentStateMachine.
currentStateMachine

currentStateMachine.
currentStateMachine.

== null) {
stateMachineService.acquireStateMachine(machineld);
addStatelistener(listener);
startReactively().block();
nullSafeEquals(currentStateMachine.getId(), machineld

releaseStateMachine(currentStateMachine.getId());
stopReactively().block();

= stateMachineService.acquireStateMachine(machineld);
addStatelistener(listener);
startReactively().block();

return currentStateMachine;

You can use the following command to run the sample:

java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar

Accessing the application at http://localhost:8080 brings up a newly constructed state machine for

By default, the jpa profile is enabled in application.yml. If you want to try other
backends, enable either the mongo profile or the redis profile. The following
commands specify which profile to use (jpa is the default, but we included it for
the sake of completeness):

java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar
--spring.profiles.active=jpa

java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar
--spring.profiles.active=mongo

java -jar spring-statemachine-samples-datapersist-3.0.0-RC1.jar
--spring.profiles.active=redis

each request, and you can choose to send events to a machine. The possible events and machine
configuration are updated from a database with every request.

The state machines in this sample have a simple configuration with states 'S1' to 'S6' and events 'E1’

to 'E6' to transition the state machine between those states. You can use two state machine

identifiers (datajpapersist1 and datajpapersist2) to request a particular state machine. The

276

http://localhost:8080

following image shows the UI that lets you pick a machine and an event and that shows what
happens when you do:

Spring Statemachine Demo - Google Chrome

&/ Spring Statemach

< C' | @ localhost:8080/state Q | ¢

h2 console

Choose machine

e ® datajpapersistl
. datajpapersist2

Choose events

. E1l
. E2
. E3
. E4
. ES
. E6
Send Events
Events
i
StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=51, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}1]

The sample defaults to using machine 'datajpapersist1' and goes to its initial state 'S1'. The following
image shows the result of using those defaults:

277

Spring Statemachine Demo - Google Chrome

&/ Spring Statemach

&« C' | @ localhost:8080/state Q %
h2 console

Choose machine

« ® datajpapersistl
. datajpapersist2

Choose events

. El
. E2
. E3
. E4
. E5
. E6

Send Events
Events

Enter S3
Exit 52
Enter S2
Exit S1

StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=53, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}1]

If you send events E1 and E2 to the datajpapersisti state machine, its state is persisted as 'S3'. The
following image shows the result of doing so:

278

Spring Statemachine Demo - Google Chrome

&/ Spring Statemach

&< C' | ® localhost:8080/state Q | :

h2 console
Choose machine

« ® datajpapersistl
. datajpapersist2

Choose events

. E1
. E2
. E3
. E4
. E5
. E6
Send Events
Events
Es
StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=53, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}1]

If you then request state machine datajpapersist1 but send no events, the state machine is restored
back to its persisted state, S3.

279

Monitoring

The monitoring sample shows how you can use state machine concepts to monitor state machine
transitions and actions. The following listing configures the state machine that we use for this

sample:

public static class Config extends StateMachineConfiqgurerAdapter<String, String> {

public void configure(StateMachineStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
Linitial("S1")
.state("S2", null, (c) -> {System.out.println("hello");})
.state("S3", (c) -> {System.out.println("hello");}, null);

public void configure(StateMachineTransitionConfigurer<String, String>
transitions)
throws Exception {
transitions

WwithExternal()
.source("S1").target("S2").event("E1")
.action((c) -> {System.out.println("hello");})
.and()

.withExternal()
.source("S2").target("S3").event("E2");

You can use the following command to run the sample:
java -jar spring-statemachine-samples-monitoring-3.0.0-RC1.jar

The following image shows the state machine’s initial state:

280

Spring Statemachine Demo - Google Chrome

@ Spring Statema x
&« C | 0 localhost

Choose events

. El
. E2
Send Events |
Machine stopped

Enter S1
Machine started

4
Refresh |

The following image shows the state of the state machine after we have performed some actions:

Spring Statemachine Demo - Google Chrome

& Spring Statema x
&« C | [localhost

Choose events

. El
. E2

Send Events |
Machine stopped
Enter 53

Exit s2

Enter S2

Exit 51

Enter 51
Machine started

p
Refresh |

You can view metrics from Spring Boot by running the following two curl commands (shown with

281

their output):

282

curl http://localhost:8080/actuator/metrics/ssm.transition.duration

{
"name":"ssm.transition.duration",
"measurements":[
{
"statistic":"COUNT",
"value":3.0
Iy
{
"statistic":"TOTAL _TIME",
"value":0.007
b
{
"statistic":"MAX",
"value":0.004
}
]

vailableTags":[
{
"tag":"transitionName",
"values":[
"INITIAL_S1",
"EXTERNAL_S1_S2"
]
Iy
]

283

curl http://localhost:8080/actuator/metrics/ssm.transition.transit

{

"name":"ssm.transition.transit",
"measurements":[

{
"statistic":"COUNT",
"value":3.0
}
1,
"availableTags":[

{
"tag":"transitionName",
"values":[

"EXTERNAL_S1_S2",
"INITIAL S1"
]
}

]
}

You can also view tracing from Spring Boot by running the following curl command (shown with its
output):

284

curl http://localhost:8080/actuator/statemachinetrace

[
{
"timestamp":"2018-02-11T06:44:12.723+0000",
"info":{
"duration":2,
"machine":null,
"transition":"EXTERNAL_S1_S2"
}
Jrs
{
"timestamp":"2018-02-11T06:44:12.720+0000",
"info":{

"duration":0,
"machine":null,
"action":
"demo.monitoring.StateMachineConfig$Config$$Lambda$576/1499688007@22b47b2f"
}

o
{
"timestamp":"2018-02-11T06:44:12.714+0000",
"info":{
"duration":1,
"machine":null,
"transition":"INITIAL S1"
}
I
{
"timestamp":"2018-02-11T06:44:09.689+0000",
"info":{
"duration":4,
"machine":null,
"transition":"INITIAL S1"
}
}

]

285

FAQ

This chapter answers the questions that Spring Statemachine users most often ask.

286

State Changes

How can I automatically transit to the next state?

You can choose from three approaches:
* Implement an action and send an appropriate event to a state machine to trigger a transition
into the proper target state.

* Define a deferred event within a state and, before sending an event, send another event that is
deferred. Doing so causes the next appropriate state transition when it is more convenient to
handle that event.

* Implement a triggerless transition, which automatically causes a state transition into the next
state when state is entered and its actions has been completed.

287

Extended State

How I can initialize variables on state machine start?

An important concept in a state machine is that nothing really happens unless a trigger causes a
state transition that then can fire actions. However, having said that, Spring Statemachine always
has an initial transition when a state machine is started. With this initial transition, you can run a
simple action that, within a StateContext, can do whatever it likes with extended state variables.

288

Appendices

289

Appendix A: Support Content

This appendix provides generic information about the classes and material that are used in this
reference documentation.

Classes Used in This Document

The following listings show the classes used throughout this reference guide:

public enum States {
SI,S1,S2,S3,54,SF
}

public enum States2 {
$1,S2,S3,54,S5,SF,
§21,521,522,S2F,
$31,S31,532,S3F

public enum States3 {
S1,S2,SH,
$21,521,522,S2F

public enum Events {
E1,E2,E3,E4,EF
}

290

Appendix B: State Machine Concepts

This appendix provides generial information about state machines.

Quick Example

Assuming we have states named STATE1 and STATE2 and events named EVENT1 and EVENT2, you can
define the logic of the state machine as the following image shows:

5M
o—Pp STATE1L STATE2
entry/ entry/
exit exit
— EVENT1-p
4-EVENT2 —

The following listings define the state machine in the preceding image:

291

292

public enum States {
STATE1, STATE2
}

public enum Events {
EVENT1, EVENT2

}

public class Configl extends EnumStateMachineConfigurerAdapter<States, Events> {

public void configure(StateMachineStateConfigurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States.STATE1)
.states(EnumSet.all0f(States.class));

public void configure(StateMachineTransitionConfigurer<States, Events>
transitions)
throws Exception {
transitions

.withExternal()
.source(States.STATET).target(States.STATE2)
.event(Events.EVENT1)
.and()

.withExternal()
.source(States.STATE2).target(States.STATE1)
.event(Events.EVENT2);

public class MyBean {

(target = "STATET")
void toState1() {
}

(target = "STATE2")
void toState2() {
}

public class MyApp {

StateMachine<States, Events> stateMachine;

void doSignals() {
stateMachine
.sendEvent(Mono. just(MessageBuilder
.withPayload(Events.EVENT1).build()))
.subscribe();
stateMachine
.sendEvent(Mono. just(MessageBuilder
.withPayload(Events.EVENT2).build()))
.subscribe();

Glossary

State Machine

The main entity that drives a collection of states, together with regions, transitions, and events.

State

A state models a situation during which some invariant condition holds. The state is the main
entity of a state machine where state changes are driven by events.

Extended State
An extended state is a special set of variables kept in a state machine to reduce the number of
needed states.

Transition

A transition is a relationship between a source state and a target state. It may be part of a
compound transition, which takes the state machine from one state configuration to another,
representing the complete response of the state machine to an occurrence of an event of a

293

particular type.

Event

An entity that is sent to a state machine and then drives a various state changes.

Initial State

A special state in which the state machine starts. The initial state is always bound to a particular
state machine or a region. A state machine with multiple regions may have a multiple initial
states.

End State

(Also called as a final state.) A special kind of state signifying that the enclosing region is
completed. If the enclosing region is directly contained in a state machine and all other regions
in the state machine are also completed, the entire state machine is completed.

History State

A pseudo state that lets a state machine remember its last active state. Two types of history state
exists: shallow (which remembers only top level state) and deep (which remembers active states
in sub-machines).

Choice State

A pseudo state that allows for making a transition choice based on (for example) event headers
or extended state variables.

Junction State

A pseudo state that is relatively similar to choice state but allows multiple incoming transitions,
while choice allows only one incoming transition.

Fork State

A pseudo state that gives controlled entry into a region.

Join State

A pseudo state that gives controlled exit from a region.

Entry Point

A pseudo state that allows controlled entry into a submachine.

Exit Point

A pseudo state that allows controlled exit from a submachine.

Region
A region is an orthogonal part of either a composite state or a state machine. It contains states
and transitions.

Guard

A boolean expression evaluated dynamically based on the value of extended state variables and
event parameters. Guard conditions affect the behavior of a state machine by enabling actions
or transitions only when they evaluate to TRUE and disabling them when they evaluate to FALSE.

294

Action

A action is a behavior run during the triggering of the transition.

A State Machine Crash Course

This appendix provides a generic crash course to state machine concepts.

States

A state is a model in which a state machine can be. It is always easier to describe state as a real
world example rather than trying to use abstract concepts ingeneric documentation. To that end,
consider a simple example of a keyboard — most of us use one every single day. If you have a full
keyboard that has normal keys on the left side and the numeric keypad on the right side, you may
have noticed that the numeric keypad may be in a two different states, depending on whether
numlock is activated. If it is not active, pressing the number pad keys result in navigation by using
arrows and so on. If the number pad is active, pressing those keys results in numbers being typed.
Essentially, the number pad part of a keyboard can be in two different states.

To relate state concept to programming, it means that instead of using flags, nested if/else/break
clauses, or other impractical (and sometimes tortuous) logic, you can rely on state, state variables,
or another interaction with a state machine.

Pseudo States

Pseudostate is a special type of state that usually introduces more higher-level logic into a state
machine by either giving a state a special meaning (such as initial state). A state machine can then
internally react to these states by doing various actions that are available in UML state machine
concepts.

Initial

The Initial pseudostate state is always needed for every single state machine, whether you have a
simple one-level state machine or a more complex state machine composed of submachines or
regions. The initial state defines where a state machine should go when it starts. Without it, a state
machine is ill-formed.

End

The Terminate pseudostate (which is also called “end state”) indicates that a particular state
machine has reached its final state. Effectively, this mean that a state machine no longer processes
any events and does not transit to any other state. However, in the case where submachines are
regions, a state machine can restart from its terminal state.

Choice

You can use the Choice pseudostate choose a dynamic conditional branch of a transition from this
state. The dynamic condition is evaluated by guards so that one branch is selected. Usually a simple
if/elseif/else structure is used to make sure that one branch is selected. Otherwise, the state machine
might end up in a deadlock, and the configuration is ill-formed.

295

Junction

The Junction pseudostate is functionally similar to choice, as both are implemented with
if/elseif/else structures. The only real difference is that junction allows multiple incoming
transitions, while choice allows only one. Thus difference is largely academic but does have some
differences, such as when a state machine is designed is used with a real UI modeling framework.

History

You can use the History pseudostate to remember the last active state configuration. After a state
machine has exited, you can use a history state to restore a previously known configuration. There
are two types of history states available: SHALLOW (which remembers only the active state of a state
machine itself) and DEEP (which also remembers nested states).

A history state could be implemented externally by listening state machine events, but this would
soon make for very difficult logic, especially if a state machine contains complex nested structures.
Letting the state machine itself handle the recording of history states makes things much simpler.
The user need only create a transition into a history state, and the state machine handles the
needed logic to go back to its last known recorded state.

In cases where a Transition terminates on a history state when the state has not been previously
entered (in other words, no prior history exists) or it had reached its end state, a transition can
force the state machine to a specific substate, by using the default history mechanism. This
transition originates in the history state and terminates on a specific vertex (the default history
state) of the region that contains the history state. This transition is taken only if its execution leads
to the history state and the state had never before been active. Otherwise, the normal history entry
into the region is executed. If no default history transition is defined, the standard default entry of
the region is performed.

Fork

You can use the Fork pseudostate to do an explicit entry into one or more regions. The following
image shows how a fork works:

The target state can be a parent state that hosts regions, which simply means that regions are
activated by entering their initial states. You can also add targets directly to any state in a region,
which allows more controlled entry into a state.

Join

The Join pseudostate merges together several transitions that originate from different regions. It is
generally used to wait and block for participating regions to get into its join target states. The

296

following image shows how a join works:

The source state can be a parent state that hosts regions, which means that join states are the
terminal states of the participating regions. You can also define source states to be any state in a
region, which allows controlled exit from regions.

Entry Point

An Entry Point pseudostate represents an entry point for a state machine or a composite state that
provides encapsulation of the insides of the state or state machine. In each region of the state
machine or composite state that owns the entry point, there is at most a single transition from the
entry point to a vertex within that region.

Exit Point

An Exit Point pseudostate is an exit point of a state machine or composite state that provides
encapsulation of the insides of the state or state machine. Transitions that terminate on an exit
point within any region of the composite state (or a state machine referenced by a submachine
state) imply exiting of this composite state or submachine state (with execution of its associated exit
behavior).

Guard Conditions

Guard conditions are expressions which evaluates to either TRUE or FALSE, based on extended state
variables and event parameters. Guards are used with actions and transitions to dynamically
choose whether a particular action or transition should be run. The various spects of guards, event
parameters, and extended state variables exist to make state machine design much more simple.

Events

Event is the most-used trigger behavior to drive a state machine. There are other ways to trigger
behavior in a state machine (such as a timer), but events are the ones that really let users interact
with a state machine. Events are also called “signals”. They basically indicate something that can
possibly alter a state machine state.

Transitions

A transition is a relationship between a source state and a target state. A switch from one state to
another is a state transition caused by a trigger.

297

Internal Transition

Internal transition is used when an action needs to be run without causing a state transition. In an
internal transition, the source state and the target state is always the same, and it is identical with a
self-transition in the absence of state entry and exit actions.

External versus Local Transitions

In most cases, external and local transitions are functionally equivalent, except in cases where the
transition happens between super and sub states. Local transitions do not cause exit and entry to a
source state if the target state is a substate of a source state. Conversely, local transitions do not
cause exit and entry to a target state if the target is a superstate of a source state. The following
image shows the difference between local and external transitions with very simplistic super and
sub states:

LOCAL EXTERNAL

|
o

Triggers

A trigger begins a transition. Triggers can be driven by either events or timers.

Actions

Actions really glue state machine state changes to a user’s own code. A state machine can run an
action on various changes and on the steps in a state machine (such as entering or exiting a state)
or doing a state transition.

Actions usually have access to a state context, which gives running code a choice to interact with a
state machine in various ways. State context exposes a whole state machine so that a user can
access extended state variables, event headers (if a transition is based on an event), or an actual
transition (where it is possible to see more detailed about where this state change is coming from
and where it is going).

Hierarchical State Machines

The concept of a hierarchical state machine is used to simplify state design when particular states
must exist together.

298

Hierarchical states are really an innovation in UML state machines over traditional state machines,
such as Mealy or Moore machines. Hierarchical states lets you define some level of abstraction
(parallel to how a Java developer might define a class structure with abstract classes). For example,
with a nested state machine, you can define transition on a multiple level of states (possibly with
different conditions). A state machine always tries to see if the current state is able to handle an
event, together with transition guard conditions. If these conditions do not evaluate to TRUE, the
state machine merely see what the super state can handle.

Regions

Regions (which are also called as orthogonal regions) are usually viewed as exclusive OR (XOR)
operations applied to states. The concept of a region in terms of a state machine is usually a little
difficult to understand, but things gets a little simpler with a simple example.

Some of us have a full size keyboard with the main keys on the left side and numeric keys on the
right side. You have probably noticed that both sides really have their own state, which you see if
you press a “numlock” key (which alters only the behaviour of the number pad itself). If you do not
have a full-size keyboard, you can buy an external USB number pad. Given that the left and right
side of a keyboard can each exist without the other, they must have totally different states, which
means they are operating on different state machines. In state machine terms, the main part of a
keyboard is one region and the number pad is another region.

It would be a little inconvenient to handle two different state machines as totally separate entities,
because they still work together in some fashion. This independence lets orthogonal regions
combine together in multiple simultaneous states within a single state in a state machine.

299

Appendix C: Distributed State Machine
Technical Paper

This appendix provides more detailed technical documentation about using a Zookeeper instance
with Spring Statemachine.

Abstract

Introducing a “distributed state” on top of a single state machine instance running on a single JVM
is a difficult and a complex topic. The concept of a “Distributed State Machine” introduces a few
relatively complex problems on top of a simple state machine, due to its run-to-completion model
and, more generally, because of its single-thread execution model, though orthogonal regions can
be run in parallel. One other natural problem is that state machine transition execution is driven by
triggers, which are either event or timer based.

Spring State Machine tries to solve the problem of spanning a generic “State Machine” through a
JVM boundary by supporting distributed state machines. Here we show that you can use generic
“State Machine” concepts across multiple JVMs and Spring Application Contexts.

We found that, if Distributed State Machine abstraction is carefully chosen and backing distributed
state repository guarantees (P readiness, it is possible to create a consistent state machine that can
share distributed state among other state machines in an ensemble.

Our results demonstrate that distributed state changes are consistent if the backing repository is
“CP” (discussed later). We anticipate our distributed state machine can provide a foundation to
applications that need to work with shared distributed states. This model aims to provide good
methods for cloud applications to have much easier ways to communicate with each other without
having to explicitly build these distributed state concepts.

Introduction

Spring State Machine is not forced to use a single threaded execution model, because, once multiple
regions are used, regions can be executed in parallel if the necessary configuration is applied. This
is an important topic, because, once a user wants to have parallel state machine execution, it makes
state changes faster for independent regions.

When state changes are no longer driven by a trigger in a local JVM or a local state machine
instance, transition logic needs to be controlled externally in an arbitrary persistent storage. This
storage needs to have a way to notify participating state machines when distributed state is
changed.

CAP Theorem states that it is impossible for a distributed computer system to simultaneously
provide all three of the following guarantees: consistency, availability, and partition tolerance.

This means that, whatever is chosen for a backing persistence storage, it is advisable to be “CP”. In
this context, “CP” means “consistency” and “partition tolerance”. Naturally, a distributed Spring
Statemachine does not care about its “CAP” level but, in reality, “consistency” and “partition

300

https://en.wikipedia.org/wiki/CAP_theorem

tolerance” are more important than “availability”. This is an exact reason why (for example)
Zookeeper uses “CP” storage.

All tests presented in this article are accomplished by running custom Jepsen tests in the following
environment:

* A cluster having nodes n1, n2, n3, n4 and n5.
» Each node has a Zookeeper instance that constructs an ensemble with all other nodes.
* Each node has a Web sample installed, to connect to a local Zookeeper node.

* Every state machine instance communicates only with a local Zookeeper instance. While
connecting a machine to multiple instances is possible, it is not used here.

» All state machine instances, when started, create a StateMachineEnsemble by using a Zookeeper
ensemble.

* Each sample contains a custom rest API, which Jepsen uses to send events and check particular
state machine statuses.

All Jepsen tests for Spring Distributed Statemachine are available from Jepsen Tests.

Generic Concepts

One design decision of a Distributed State Machine was not to make each individual state machine
instance be aware that it is part of a “distributed ensemble”. Because the main functions and
features of a StateMachine can be accessed through its interface, it makes sense to wrap this
instance in a DistributedStateMachine, which intercepts all state machine communication and
collaborates with an ensemble to orchestrate distributed state changes.

One other important concept is to be able to persist enough information from a state machine to
reset a state machine state from an arbitrary state into a new deserialized state. This is naturally
needed when a new state machine instance joins with an ensemble and needs to synchronize its
own internal state with a distributed state. Together with using concepts of distributed states and
state persisting, it is possible to create a distributed state machine. Currently, the only backing
repository of a Distributed State Machine is implemented by using Zookeeper.

As mentioned in Using Distributed States, distributed states are enabled by wrapping an instance of
a StateMachine in a DistributedStateMachine. The specific StateMachineEnsemble implementation is
ZookeeperStateMachineEnsemble provides integration with Zookeeper.

The Role of 7ookeeperStateMachinePersist

We wanted to have a generic interface (StateMachinePersist) that Can persist StateMachineContext
into arbitrary storage and ZookeeperStateMachinePersist implements this interface for Zookeeper.

301

https://github.com/spring-projects/spring-statemachine/tree/master/jepsen/spring-statemachine-jepsen

The Role of ZookeeperStateMachineEnsemble

While a distributed state machine uses one set of serialized contexts to update its own state, with
zookeeper, we have a conceptual problem around how to listen to these context changes. We can
serialize context into a zookeeper znode and eventually listen when the znode data is modified.
However, Zookeeper does not guarantee that you get a notification for every data change, because a
registered watcher for a znode is disabled once it fires and the user need to re-register that watcher.
During this short time, a znode data can be changed, thus resulting in missing events. It is actually
very easy to miss these events by changing data from multiple threads in a concurrent manner.

To overcome this issue, we keep individual context changes in multiple znodes and we use a simple
integer counter to mark which znode is the current active one. Doing so lets us replay missed events.
We do not want to create more and more znodes and then later delete old ones. Instead, we use the
simple concept of a circular set of znodes. This lets us use a predefined set of znodes where the
current node can be determined with a simple integer counter. We already have this counter by
tracking the main znode data version (which, in Zookeeper, is an integer).

The size of a circular buffer is mandated to be a power of two, to avoid trouble when the integer
goes to overflow. For this reason, we need not handle any specific cases.

Distributed Tolerance

To show how a various distributed actions against a state machine work in real life, we use a set of
Jepsen tests to simulate various conditions that might happen in a real distributed cluster. These
include a “brain split” on a network level, parallel events with multiple “distributed state
machines”, and changes in “extended state variables”. Jepsen tests are based on a sample Web,
where this sample instance runs on multiple hosts together with a Zookeeper instance on every
node where the state machine is run. Essentially, every state machine sample connects to a local
Zookeeper instance, which lets us, by using Jepsen, to simulate network conditions.

The plotted graphs shown later in this chapter contain states and events that directly map to a state
chart, which you can be find in Web.

Isolated Events

Sending an isolated single event into exactly one state machine in an ensemble is the simplest
testing scenario and demonstrates that a state change in one state machine is properly propagated
into other state machines in an ensemble.

In this test, we demonstrate that a state change in one machine eventually causes a consistent state
change in other machines. The following image shows the events and state changes for a test state
machine:

302

! states N1 ———

] states n2
ns states n3
— states n4

states n5
né events

5212 - m

il
il

states in nodes
(<]
=
1
=
w
events via nodes

w

~
anl
=1

s21 -ﬁ g E 1{n1

0 5x10% 1x10101.5x10102x10102.5%x10103x10103.5%10104x10104.5x10105x1010
ns ns ns ns ns ns ns ns ns ns ns

elapsed time
In the preceding image:

* All machines report state S21.

Event I is sent to node n1 and all nodes report state change from S21 to S22.

Event C is sent to node n2 and all nodes report state change from S22 to S211.

Event I is sent to node n5 and all nodes report state change from 5211 to 5212.

Event K is sent to node n3 and all nodes report state change from S212 to S21.

We cycle events I, (, I, and K one more time, through random nodes.

Parallel Events

One logical problem with multiple distributed state machines is that, if the same event is sent into
multiple state machines at exactly the same time, only one of those events causes a distributed state
transitions. This is a somewhat expected scenario, because the first state machine (for this event)
that is able to change a distributed state controls the distributed transition logic. Effectively, all
other machines that receive this same event silently discard the event, because the distributed state
is no longer in a state where a particular event can be processed.

In the test shown in the following image, we demonstrate that a state change caused by a parallel
event throughout an ensemble eventually causes a consistent state change in all machines:

T T T T T T T T T states Nl e——

$212 | ﬂ| lﬂ ﬂl ﬂl 103 :E:E: 2%

]) EEZEEEL:Q

C K C K 4 na events
211 ! gm ! gm n%
S 1 @1 K i @0 H” e
S osnf :I — §
i— i i—d 12
W=H 0 | K=H 9

0 5x109 1x10101.5x10102x10102.5x10103x10103.5x10104x10104.5x10105x1010
ns ns ns ns ns ns ns ns ns ns ns

elapsed time

303

In the preceding image, we use the same event flow that we used in the previous sample (Isolated
Events), with the difference that events are always sent to all nodes.

Concurrent Extended State Variable Changes

Extended state machine variables are not guaranteed to be atomic at any given time, but, after a
distributed state change, all state machines in an ensemble should have a synchronized extended
state.

In this test, we demonstrate that a change in extended state variables in one distributed state
machine eventually becomes consistent in all the distributed state machines. The following image
shows this test:

T T T T T T T T variable Nl s—
v _—] variable n2
Eil ns variable n3
vk variable n4
— variable n5
variables
0 v6 |- 4 nd @
g g
SV — =
e 4 n3 ;
g var — 3
© ©
> —
il v3=v4 1n2 ~
v2 - —
4nl
Y=
1 1 1 1 1 1 1 1
5x109 1x1010 1.5x1010 2x1010 2.5x1010 3x1012 3.5x1010 4x1010 4.5x1012 5x1010
ns ns ns ns ns ns ns ns ns ns
elapsed time

In the preceding image:

* Event] is send to node n5 with event variable testVariable having value v1. All nodes then
report having a variable named testVariable with a value of v1.

* Event] is repeated from variable v2 to v8, doing the same checks.

Partition Tolerance

We need to always assume that, sooner or later, things in a cluster go bad, whether it is a crash of a
Zookeeper instance, a state machine crash, or a network problem such as a “brain split”. (A brain
split is a situation where existing cluster members are isolated so that only parts of hosts are able to
see each other). The usual scenario is that a brain split creates minority and majority partitions of
an ensemble such that hosts in the minority cannot participate in an ensemble until the network
status has been healed.

In the following tests, we demonstrate that various types of brain split in an ensemble eventually
cause a fully synchronized state of all the distributed state machines.

There are two scenarios that have a straight brain split in a network where where Zookeeper and
Statemachine instances are split in half (assuming each Statemachine connects to a local Zookeeper
instance):

* If the current zookeeper leader is kept in a majority, all clients connected to the majority keep

304

functioning properly.

o If the current zookeeper leader is left in the minority, all clients disconnect from it and try to
connect back till previous minority members have successfully joined back to existing majority
ensemble.

In our current Jepsen tests, we cannot separate Zookeeper split-brain scenarios
o between the leader being left in the majority or in the minority, so we need to run
the tests multiple times to accomplish this situation.

In the following plots, we have mapped a state machine error state into an error to
o indicate that the state machine is in an error state instead of a normal state. Please
remember this when interpreting chart states.

In this first test, we show that, when an existing Zookeeper leader was kept in the majority, three
out of five machines continue as is. The following image shows this test:

T states Nl e—

states n2
error - ns states n3
states n4
states n5

5212 | 1na events
son b [Cleee] | :|(| 1n3
| {n
1 {m

0 2x1010 4x1010 6x1010 8x1010 1x1011 1.2x1011 1.4x1011 1.6x1011
ns ns ns ns ns ns ns ns ns

states in nodes
events via nodes

elapsed time
In the preceding image:

» The first event, C, is sent to all machines, leading a state change to S211.

* Jepsen nemesis causes a brain split, which causes partitions of n1/n2/n5 and n3/n4. Nodes n3/n4
are left in the minority, and nodes n1/n2/n5 construct a new healthy majority. Nodes in the
majority keep functioning without problems, but nodes in the minority go into error states.

* Jepsen heals the network and, after some time, nodes n3/n4 join back into the ensemble and
synchronize its distributed status.

* Finally, event K1 is sent to all state machines to ensure that the ensemble is working properly.
This state change leads back to state S21.

In the second test, we show that, when the existing zookeeper leader was kept in the minority, all
machines error out. The following image shows the second test:

305

T T T T T T T states Nl e——
error - 1ns EEZEEE 2% —_—
states nd
states n5
| | events
, 5212 n4 3
g Qo
< sa1} == Kl 1n3 §
8 | g
s22 | 1 n2
s21 10l
L L L L L L L

0 2x1010 4x1010 6x1010 8x1010 1x1011 1.2x101! 1.4x1011 1.6x101L
ns ns ns ns ns ns ns ns ns

elapsed time
In the preceding image:

» The first event, C, is sent to all machines leading to a state change to 5211.

* Jepsen nemesis causes a brain split, which causes partitions such that the existing Zookeeper
leader is kept in the minority and all instances are disconnected from the ensemble.

* Jepsen heals the network and, after some time, all nodes join back into the ensemble and
synchronize its distributed status.

* Finally, event K1 is sent to all state machines to ensure that ensemble workS properly. This state
change leads back to state S21.

Crash and Join Tolerance

In this test, we demonstrate that killing an existing state machine and then joining a new instance
back into an ensemble keeps the distributed state healthy and the newly joined state machines
synchronize their states properly. The following image shows the crash and join tolerance test:

states nl

s212 | s otee na

states n4
states n5

1 na crash

w
)
=
=
T

u

[

¥}
T

states in nodes
B3
[X]
1
)
crash/start in nodes

s21 g E - n1

0 2x1010 4x1010 6x1010 8x1010 1x1011 1.2x1011 1.4x1011
ns ns ns ns ns ns ns ns

elapsed time

In this test, states are not checked between first the X and last the X. Thus, the
o graph shows a flat line in between. The states are checked exactly where the state
change happens between S21 and S211.

In the preceding image:

306

All state machines are transitioned from the initial state (521) into state S211 so that we can test
proper state synchronize during the join.

X marks when a specific node has been crashed and started.
At the same time, we request states from all machines and plot the result.

Finally, we do a simple transition back to 521 from S211 to make sure that all state machines still
function properly.

307

Developer Documentation

This appendix provides generic information for adevelopers who may want to contribute or other
people who want to understand how state machine works or understand its internal concepts.

StateMachine Config Model

StateMachineModel and other related SPI classes are an abstraction between various configuration
and factory classes. This also allows easier integration for others to build state machines.

As the following listing shows, you can instantiate a state machine by building a model with
configuration data classes and then asking a factory to build a state machine:

308

// setup confiquration data
ConfiqurationData<String, String> configurationData = new ConfigurationData<>();

// setup states data

Collection<StateData<String, String>> stateData = new ArraylList<>();
stateData.add(new StateData<String, String>("S1", true));
stateData.add(new StateData<String, String>("S2"));
StatesData<String, String> statesData = new StatesData<>(stateData);

// setup transitions data

Collection<TransitionData<String, String>> transitionData = new ArraylList<>();
transitionData.add(new TransitionData<String, String>("S1", "S2", "E1"));
TransitionsData<String, String> transitionsData = new TransitionsData<>
(transitionData);

// setup model

StateMachineModel<String, String> stateMachineModel = new

DefaultStateMachineModel<>(configurationData, statesData,
transitionsData);

// instantiate machine via factory

ObjectStateMachineFactory<String, String> factory = new ObjectStateMachineFactory
<>(stateMachineModel);

StateMachine<String, String> stateMachine = factory.getStateMachine();

Appendix D: Reactor Migration Guide

Main task for a work for 3.x has been to both internally and externally to move and change as
much as we can from imperative code into a reactive world. This means that some of a main
interfaces has added a new reative methods and most of a internal execution locig (where
applicable) has been moved over to handled by a reactor. Essentially what this means is that thread
handling model is considerably different compared to 2.x. Following chapters go throught all these
changes.

Communicating with a Machine

We’ve added new reactive methods to StateMachine while still keeping old blocking event methods
in place.

Flux<StateMachineEventResult<S, E>> sendEvent(Mono<Message<E>> event);

Flux<StateMachineEventResult<S, E>> sendEvents(Flux<Message<E>> events);

We’re now solely working on a spring Message and reactor Mono and Flux classes. You can send a Mono
of a Message and receive back a Flux of StateMachineEventResult. Remember that nothing happens
until you subscribe to this Flux. More about this returned value, see StateMachineEventResult.

Message<String> message = MessageBuilder.withPayload("EVENT").build();
machine.sendEvent(Mono. just(message)).subscribe();

You can also send a Flux of messages instead of a single Mono message.
machine.sendEvents(Flux.just(message)).subscribe();

All of the reactor methods are on your disposal and for example not to block and do something
when event handling is completed, you could do something like.

309

Mono<Message<String>> mono = Mono.just(MessageBuilder.withPayload("EVENT").build(
));

machine.sendEvent(mono)
.doOnComplete(() -> {
System.out.println("Event handling complete");

1))

.subscribe();

Old API methods returning a boolean for accepted status are still in place but are deprecated to get
removed in future releases.

boolean accepted = machine.sendEvent("EVENT");

TaskExecutor and TaskScheduler

StateMachine execution with TaskExecutor and state action scheduling with TaskScheduler has been
fully replaced in favour or Reactor execution and scheduling.

Essentially execution outside of a main thread is needed in two places, firstly with State Actions
which needs to be cancellable and secondly with Regions which should be always be executed
independently. Currently we’ve chosen to just use Reactor Schedulers.parallel() for these which
should give relatively good results as it tries to automatically use available number of cpu cores
from a system.

Reactive Examples

While most of an examples are still same, we’ve overhauled some of them and created some new:

¢ Tunrstile Reactive Turnstile Reactive

310

	Spring Statemachine - Reference Documentation
	Table of Contents
	Preface
	Introduction
	Background
	Usage Scenarios

	Getting started
	System Requirement
	Modules
	Using Gradle
	Using Maven
	Developing Your First Spring Statemachine Application

	What’s New
	In 1.1
	In 1.2
	In 1.2.8

	In 2.0
	In 2.0.0

	In 3.0

	Using Spring Statemachine
	Statemachine Configuration
	Using enable Annotations
	Configuring States
	Configuring Hierarchical States
	Configuring Regions
	Configuring Transitions
	Configuring Guards
	Configuring Actions
	Configuring Pseudo States
	Configuring Common Settings
	Configuring Model
	Things to Remember

	State Machine ID
	Using @EnableStateMachine
	Using @EnableStateMachineFactory
	Using StateMachineModelFactory

	State Machine Factories
	Factory through an Adapter
	State Machine through a Builder

	Using Deferred Events
	Using Scopes
	Using Actions
	SpEL Expressions with Actions
	Reactive Actions

	Using Guards
	SpEL Expressions with Guards
	Reactive Guards

	Using Extended State
	Using StateContext
	Stages

	Triggering Transitions
	Using EventTrigger
	Using TimerTrigger

	Listening to State Machine Events
	Application Context Events
	Using StateMachineListener
	Limitations and Problems

	Context Integration
	Enabling Integration
	Method Parameters
	Transition Annotations
	State Annotations
	Event Annotation
	State Machine Annotations
	Extended State Annotation

	Using StateMachineAccessor
	Using StateMachineInterceptor
	State Machine Security
	Configuring Security
	Securing Events
	Securing Transitions
	Securing Actions
	Using Security Attributes and Expressions
	Understanding Security

	State Machine Error Handling
	State Machine Services
	Using StateMachineService

	Persisting a State Machine
	Using StateMachineContext
	Using StateMachinePersister
	Using Redis
	Using StateMachineRuntimePersister

	Spring Boot Support
	Monitoring and Tracing
	Repository Config

	Monitoring a State Machine
	Using Distributed States
	Using ZookeeperStateMachineEnsemble

	Testing Support
	Eclipse Modeling Support
	Using UmlStateMachineModelFactory
	Creating a Model
	Defining States
	Defining Events
	Defining Transitions
	Defining Timers
	Defining a Choice
	Defining a Junction
	Defining Entry and Exit Points
	Defining History States
	Defining Forks and Joins
	Defining Actions
	Defining Guards
	Defining a Bean Reference
	Defining a SpEL Reference
	Using a Sub-Machine Reference
	Using a Machine Import

	Repository Support
	Repository Configuration
	Repository Persistence

	Recipes
	Persist
	Tasks

	State Machine Examples
	Turnstile
	Turnstile Reactive
	Showcase
	CD Player
	Tasks
	Washer
	Persist
	Zookeeper
	Web
	Scope
	Security
	Event Service
	Deploy
	Order Shipping
	JPA Configuration
	Data Persist
	Data Multi Persist
	Data Persist
	Monitoring

	FAQ
	State Changes
	Extended State

	Appendices
	Appendix A: Support Content
	Classes Used in This Document

	Appendix B: State Machine Concepts
	Quick Example
	Glossary
	A State Machine Crash Course

	Appendix C: Distributed State Machine Technical Paper
	Abstract
	Introduction
	Generic Concepts
	The Role of ZookeeperStateMachinePersist
	The Role of ZookeeperStateMachineEnsemble
	Distributed Tolerance

	Developer Documentation
	StateMachine Config Model

	Appendix D: Reactor Migration Guide
	Communicating with a Machine
	TaskExecutor and TaskScheduler
	Reactive Examples

