Spring XD Guide

1.0.0

MarkFisher, MarkPollack, DavidTuranski, GunnarHillert, EricBottard, GaryRussell,
llayaperumalGopinathan, JenniferHickey, MichaelMinella, LukeTaylor, ThomasRisberg, WinstonKoh

Copyright © 2013

Spring XD

Table of Contents

T = 1= 1Y Tt T T o [1
I T Yo 11 Tt 1o) o ISP SUPPRTRPN 2
I @Y= V1 PP 2

2. GetliNG STAMEU ...oeuiiieiii et ettt eaaas 3
% T = (=T o [T (=10 0= g1 3

2.2. DOWNIOAA SPIING XD ..ot ettt et e aas 3

2.3, INStAll SPIING XD ..eeiiiieiiii e 3

2.4, Start the Runtime and the XD Shell ... 3

2.5, Creatl @ SIITBAIM ...iuuii ittt ettt e ettt e e e et e e e e e e e aas 4

2.6. EXPIOre SPriNg XD ..coouuiiiiiiieeiiii et eaaas 4

3. RUNNing in DIStributed MOOEccouiiiiiii e e 5
70 I [o1 o o [F{od 1T o PSP PTUPPTR PPN 5

3.2, USING REAIS ...t ettt e 5
T3 = 1T T T = To 1 PP 5
TroubleSNOOLINGuie e 6

L= To [o] VAT To [0 Y 6

RedIS IS NOL FUNMING .ovvniiii e e e e e 6

StArtiNg REAIS ... e 6

3.3. USiNg RADDIIMQ ...eeiiiiiiii e 6
Installing RabbitMQiiiiii e 6
Launching RabbitMQoouiiii e 7

3.4. Starting Spring XD in Distributed Modecciiiiiiiiiiii 7

(O gTo TS T To = NN I =10 3 o Lo 1 AP 7

CROOSING @ SEOIE ...ttt e et e e e e e e aees 8

OB OPLIONS .ottt e et e et e e e et e e e e et s e e eebt e e eeeae e eees 8

T T £ T o =T [T o J PN 8

Y (ol 11 (T ox (D TP 9
ot T 1 1 Yo [o 1 o] o TN 9
RUNEIME AFCIItECIUIE ..euiiieiii e 9

DIRT RUNTIME .ttt e et et e e e e e e eeeas 9

Support for other distributed runtimescooooieiiiiiiiiin e 10

Single NOAE RUNLIMEouuiii e e e s 10

Admin Server ArChiteCUIEcoouu i e e 11

Container Server ArChiteCIUIeiviiei i e 11

SHIBAIMNS .ot 12

Stream DePIOYMENT ... e 14

N T o1 16

O 1= 1 1 PP 16

TS (=T 11 0 L ST 17
S0 A o o 11 o2 1T o I 17

5.2. Creating a Simple Streamoiiiiiiiiii e 17

5.3. Deleting @ STIrEAIM ...t e et et e e e e e e eanaees 18

5.4. Deploying and Undeploying Stre@msoooeuviiiiiiiinieiiii e 18

5.5. Other Source and SINK TYPESciuiuiiiiieiii it e et e e e e e e e e e eaneeas 18

5.6. SIMple Stream ProCeSSINGuoiiuuiiii ittt e et e e eaans 18

5.7, DSL SYNTAX ..uietiieitieei ettt 19

LY, [Yo 11 = PP 20
1.0.0 Spring XD Guide ii

Spring XD

L o To [F T3 o] H PP 20
6.2. Creating @ MOAUIEc..iii e 20
MOAUIES AN SPIING ...t et 20
INtegration MOUIESoovuniiiii e e e e e eaa s 21

6.3. Registering @ MOTUIEii e 22
Modules with isolated ClassSpathoooiiiiiiiiiii 22

S To 18] (ol 3 PP TP PP PP PP PPPP 24
4% T [o o [Fod 1 o] o R PP PTRUPT 24
47 = 1 I PP 24
HTTP WIith OPtIONS ..oeniiiiie e e e e s 25

2 T I - V1 PSP 25
Tail With OPLIONS ... e 25

Tall StAtUS EVENES ..o 26

A LS SPPRR 26
File WIth OPUIONS ...t e e et e 26

7.5, MAIL SOUICES ..eeviiieeiiii ettt e e e et e e e ettt e e e e et e e e eeae e eeenes 26
7.6, TWILEEr SEAICH ... e 27
A A L= S == o U 28
7.8. GemFire Continuous QUETY (CQ) ..ivvuiiiiieii et e e e anas 29
Launching the XD GEMFIIre SEIVEIc.uiiiuiiiiiieii e 29

(O] 0] 1 o] o - ST UPPPTTRUPPPRTRUPPIN 29

285 SV o o P 30
485 TR I = PP 30
TCP With OPLIONS ..eeiiiit e e e e 31
AVAIIADIE DECOUEISciiiiii e e 31
EXAMPIES ..o e 32
Binary Data EXAMPIEiiiiiiiiiiiii e 33
A R = -1 o 1117 PP 33
RabbitMQ With OPLIONS ... couiiiiie e 34

A 2N |1V PP 34
JMS WIth OPLIONS ..eeieecc e e e e 35
45 TR T 1 TSP 35
45 S | @ I PP 36
L 11 1 1P 36

8. PrOCESSOIS ...ttt ettt et en e aaeas 37
S 0 I 1o o 11 od 1T o I PP 37
S 2 1= PP 37
Filter with SPEL @XPIreSSIONc.uiiiiiiiiieei et e e 37
Filter With GroOVY SCHIPEuiieiiii e 37

8.3. JSON Field Value Filteruiiiiiieii e 38
8.4, TrANSTOIM L.t ettt et e et e et e e eaa e 38
Transform with SPEL @XPreSSiONccoouiuiiiiiiiiiieiiii e 38
Transform with Groovy SCrIPLoiiiiii e e e 38

8.5. JSON Filltd EXIFACIOL .. cuuniiiieiitiee ettt e e e e e eaa s 39
S G S o 1 o | PSPPSR 39
S S o111 39
IR Yo [0 (=To I- (o] TP 39
LS TR 1] PP 41
LS o To [1T o o H PSPPSRI 41
1S I o Lo E PP 41

1.0.0

Spring XD Guide il

Spring XD

9.3. FlE SINK et e 42
File WIth OPLIONS ...cee et e e 42

9.4, HAdOOP (HDFS) ..ottt ettt ettt e e e 42
HDFS With OPLIONS ...iiiiii e e e e e e aeees 43

0.5, DB C ..t ettt e e et e e e e e aaeae 44
JIDBC WIth OPLIONS ...eeiiiiiiiii ettt e et e e 45

0.8, TP ittt eean 45
TCP WIth OPLIONS ..o et eanes 46

YN oY1= o] L= = g oo o =T 46

AN Additional EXamPIEvuiieiiii e 47

9.7, ML <. et 47
9.8. RABDIIMQ ... et 48
RabbitMQ With OPLIONScvviii e e 49

9.9, GEIMFIIE SEIVEI ...ttt ettt e et e et e e e e e e aeanns 49
Launching the XD GeMFIre SEIVETccouuuiiiiiiiiieii e 49
GEMIIFE SINKS ittt et e et e e e e 49
EXAMPIE ..o e 50
9.10. SPIUNK SEIVET ...ttt 50
SPIUNK SINKS 1 ouiiii i e e 50
Setup Splunk for TCP INPULoouti e 51

B XA e e 51
10 I Y [I TP 51
(0] 1[0] 1 1S ST UPTRUPR 51
9.12. DYNAMIC ROULET ...ttt e e e e e e 52
Sy o] = I o T= 1Y =T I o 11 1 o 52
Groovy-based ROULINGoieiiiii e 53

(O] 0] 1 o] o - ST UPPPTTRUPPPRTRUPPIN 53

0 1= o 55
00 I [g1 oo [U T i o] I PSPPI 55
10.2. TP LIfECYCIE ..eniieeii e et eees 55
SO = 7= 1 o] TN o o PP 56
3 R [11 0T [T i To] I PP PTRN 56
11.2. Setting up a simple Batch JOD ... 56
Creating the TaskKIBtui i 56
Setting Up the Application CONEXEccuuiiiiiiiiiieii e 56
11.3. Execute the BatCh JOD ... 57
Execute the Batch JOb ONCEoooiiiiiiii e 57
Execute job from @ SIrEAIMciiuiiiiii e 58
Retrieve notification from job upon completion ... 58
Execute the Batch using Cron-THQQErc.uviviiiiii i 58
Execute the Batch using a Fixed-Delay-Triggerooveei i 59
11.4. Removing Batch JObs and TrgOersoveiiiiiiiiiiiiieieei e 59
Stopping and Removing the Batch JObccoooiiiiiiiiii e 59
Removing the Cron THQQET ... e et e 59

L2, ANAIYHICS et e et e e 60
D I g1 (o To [1T o ISP 60
i Lo 11] ¢ | (=] ST PPTP 60
12.3. Field Value COUNLET ...ttt e e e e ean s 61
2 Ao To | (= To = (I O o 11]] (=] P 62
L2.5, GAUGE ettt ettt ettt e e e e e eaaas 62

1.0.0

Spring XD Guide iv

Spring XD

SIMple Tap EXAMPIE ... 63

12.6. RICN GAUQGE . .eniiiiee e e e 63
Simple Tap EXamMPIe ... 63

StOCK PriCe EXAMPIE .o 64

Improved Stock Price EXamPle ... 64

R B 1 I = =7 =T o = P 66
IR 700 O [o T [o 1T o T PP 66
13.2. PIpes @nd filtErS ... e 66
13.3. MOAUIE PAFBMELETSiiiiii ettt et e e et e et e et e eeeeba e eens 66
13.4. Named ChanNEISooiiiiiiii e e e e 66
L35, LADRIS e e 67

I 0 o] [T PP PP UPPPTN 68
It O g1 o To [o 1T o PP 68
Creating @ TUPIE e e 68

Getling TUPIE VAIUEScooriiiiie e 69

Using SpEL expressions to filter a tuplecceevveiiiiiiiiiii e 70

L5, SAMIPIES .ottt et et et e e e e 72
15.1. Syslog ingestion iNt0 HDFSo.uuiiiii e 72

A sample configuration USiNg SYSIOG-NQ ... covvuiiiiiiiiii e 72

1IN o] o 1T o [o ot T SO UU PP UPTRUPTRN 73
AL INSLAIlING HAOOP ...oeiiiiiii et eaans 74
AN I T 1S3 = 1Yo T =T (o o o P 74
(3017 o] (o= o [PP PP 74

JAVA SBUUP ot 74

SO UP SSOH ot e 75

Setting the Namenode POrt e 76

Further Configuration File Changescoooiiiiiiiiiin e 76

F N2 =¥ 11 o = =T [T o J 76

B. Creating @ SOUICe MOUUIEooun e e e e eaaeas 78
[0 I o1 o o {1 T3 1T o I 78

B.2. Create the module Application Context filecccoeiiiiiiiiiiii e 78
Make the module configurable ... 79

B.3. Test the Module 10CAIlYuiiiiiii e 79
(1= T- L (== W o] {0 =T o1 79

Create the Spring integration teSEociuui i 80

B.4. Deploy the MOTUIEiii e 81

B.5. Test the deployed mMOodUleooiiniiiiiii e 81

C. Creating a Processor MOUUIEc..iiiii e e e e 83
L I [110 o U144 o P 83

C.2. Write the Transformer COOEoouui i e 83

C.3. Create the module Application Context Fileccooiiiiiiiiiii e 83

C.4. DePloy the MOTUIEeuiiiiii e 84

C.5. Test the deployed MOAUIEccovuiiiiiiiiie e 84

D. Creating @ Sink MOAUIEouii e 85
[200 OO [1 o T [T o R 85

D.2. Create the module Application Context fileccooviiiiiiiii i, 85

D.3. Make the module configurableo 86

D.4. Test the module 10CaIlYoeiiiiiie e 86
(1= Y- (== W o] {0 = o1 86

Create the Spring integration teStciuui i 87

1.0.0 Spring XD Guide %

Spring XD

RUN the TEST ..eii e e e s 88

D.5. Deploy the MOAUIEeiiii e e 89
D.6. Test the deployed mModUIEcoouiiiiiiiii e 89
S S WL [Tg Vo IS o] 12T T I 90
| I [11 0 T 1o S PRSPPI 90
E.2. IDE SUPPOIT ...ttt ettt ettt e 90
F. XD Shell Command REfEIENCEiiiiiiiiiii e 91
F.1. BaS@ COMMANASuiitiiiiiieiie ettt e ettt e e e et a e e eaa e aeees 91
AdMIN CONTIG SEIVET ..ot 91
admin CONfIg INTO ..oouii e 91

F.2. Stream COMMANGS ...ttt et e e e ean s 91
SIMEAIM CrEATE ...ttt ettt ettt e e e e ene 91

LS (== T 10 1= 1 (0) 91
SIrEAM dEPIOY ... e 92
SErEAM UNAEPIOY ..ot e 92

LS L= Lo) PP 92

F.3. JOD COMMANAS ..ot e et e e e e eeaa s 92
JOD CIEALE ..ot 92

o o 0] 92

JOD AEPIOY et e 93

JOD UNAEPIOY ..o e 93

o 0 1= 10/ 93

F.4. MetricS COMMANASuiiiiiiiieei ettt e e e et e e ean s 93
(o0 18]] (= 1 PP 93
(oo 10 o1 1=] g0 (] [= PSP 94
COUNTET AISPIAY . eeneiit ittt e eaaae 94
fieldvalueCoUNLEr TSt oo e 94
fieldvaluecounter delete ... 94
fieldvaluecounter diSPIay ... 94
aggregateCOUNTEr lISTcouuiiiiii e 94
aggregatecoUNter AEIELEiiie i 95
aggregatecounter diSPIAYcc.u i 95
QAUGE ISt et 95
AUGE AEIETE ..o 95
QAUGE QISPIAY ..veneit et eaas 96
FICNQAUGE [IST ...t e 96

1ot To Fo T T T [T T (P 96
FCNQaUge dISPIAY ...ceniii i e 96

F.5. HEP COMMEANAS ..cooiiiiiii e e e et e eeaans 96
0T 010 1= 96

F.6. Hadoop Configuration COMMAaNGSoeiuiiiiiiiiia e 97
hadoop CONFIG PrOPS SEL ...oeeiii i 97

(gF=To [oo] o JKeTo] 01T I o] o] o 1N o = A 97
hadoop coNfig INFO ... e 97
hadoop CONFIG 108iiiiii e 97
hadoop config Props liStcoeu i 97
hadoop CONFIG S ...niie e e 97
NAdOOP CONFIG JU ..t e 98

F.7. Hadoop FileSystem COomMmMandSc..ovviiiiiiiiiiiiie e e e e 98
NAdOOP TS GOL ..t e e 98

1.0.0 Spring XD Guide Vi

Spring XD

hadOOp S PUL ..oeeeee e e 98
hadoop S COUNL ...eee e 98
hadoop S MKAIF ... e 99
hadOoop fS LAl ...eeeeeee e 99
NAdOOP TS CROIP e e 99
hadoop fS CROWN ..o e 99
hadoop fS ChMOdcoei e 100
hadoop fs COPYFromLOCAlooiiiiiiiii e 100
hadoop s MOVEFIOMLOCALoiiiiiiiei e 100
hadoop s COPYTOLOCAIuieeiii e 100
hadoop s COPYMEIrgETOLOCAIuiieiiiiieiii e 101
NAAOOP S CP et e 101
adOOP S MV e e 101
NAdOOP TS AU .o e 101
hadoop fS EXPUNGE ... 102
T T [Yo T £ 1 1 102
NAAOOP TS SEIIEP .uuiiii e e 102
NAAOOP S TEXL ..ot e 102
hadoop S tOUCNZcoee e e 102
NAAOOP TS CAL ...uiee e e 103
NAAOOP S IS e e 103

1.0.0

Spring XD Guide vii

Part |. Reference Guide

Spring XD

1. Introduction

1.1 Overview

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The Spring XD project is an open source Apache 2 License licenced
project whose goal is to tackle big data complexity. Much of the complexity in building real-world big
data applications is related to integrating many disparate systems into one cohesive solution across a
range of use-cases. Common use-cases encountered in creating a comprehensive big data solution are

» High throughput distributed data ingestion from a variety of input sources into big data store such as
HDFS or Splunk

» Real-time analytics at ingestion time, e.g. gathering metrics and counting values.

» Workflow management via batch jobs. The jobs combine interactions with standard enterprise
systems (e.g. RDBMS) as well as Hadoop operations (e.g. MapReduce, HDFS, Pig, Hive or
Cascading).

* High throughput data export, e.g. from HDFS to a RDBMS or NoSQL database.

The Spring XD project aims to provide a one stop shop solution for these use-cases.

1.0.0 Spring XD Guide 2

http://www.apache.org/licenses/LICENSE-2.0

Spring XD

2. Getting Started

2.1 Requirements

To get started, make sure your system has as a minimum Java JDK 6 or newer installed. Java JDK
7 is recommended.

2.2 Download Spring XD

Download spring-xd-1.0.0.M3-dist.zip

Unzip the distribution. This will yield the installation directory spring-xd-1.0.0.M3. All the commands
below are executed from this directory, so change into it before proceeding

$ cd spring-xd-1.0.0. M3

Set the environment variable XD_HOVE to the installation directory <r oot -i nstal | - di r >\ spri ng-
xd\ xd

2.3 Install Spring XD

Spring XD can be run in two different modes. There's a single-node runtime option for testing and
development, and there’s a distributed runtime which supports distribution of processing tasks across
multiple nodes. This document will get you up and running quickly with a single-node runtime. See
Running Distributed Mode for details on setting up a distributed runtime.

2.4 Start the Runtime and the XD Shell

The single node option is the easiest to get started with. It runs everything you need in a single process.
To start it, you just need to cd to the xd directory and run the following command

xd/ bi n>$./ xd-si ngl enode

In a separate terminal, cd into the shel | directory and start the XD shell, which you can use to issue
commands.

shel | / bi n>$./ xd- shel

N A
[N\

= [
IN_ D)1]
|| \IoN

___ /.
(I /
| | —
extreme Data
1.0.0.MB | Adnmin Server Target: http://local host: 8080
Wl come to the Spring XD shell. For assistance hit TAB or type "hel p"
xd: >

The shell is a more user-friendly front end to the REST API which Spring XD exposes to clients. The
URL of the currently targeted Spring XD server is shown at startup.

1.0.0 Spring XD Guide 3

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.springsource.org/download/community?project=Spring%20XD

Spring XD

© Note

If the server could not be reached, the prompt will read

server - unknown: >

You should now be able to start using Spring XD.

2.5 Create a Stream

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. You can create a new stream by issuing astream cr eat e
command from the XD shell. Stream defintions are built from a simple DSL. For example, execute:

xd: > streamcreate --definition "tine | log" --nane ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | o0g. The DSL uses
the "pipe" symbol | , to connect a source to a sink. The stream server finds the t i me and | og definitions
in the modules directory and uses them to setup the stream. In this simple example, the time source
simply sends the current time as a message each second, and the log sink outputs it using the logging
framework at the WARN logging level. In the shell where you started the server, you will see log output
similar to that listed below

13: 09: 53,812 | NFO htt p-bi 0- 8080-exec-1 nodul e. Si npl eMbdul e: 109 - started nodul e: Mdul e
[name=l og, type=si nk]

13: 09: 53,813 | NFO htt p- bi o- 8080-exec-1 nodul e. Modul eDepl oyer: 111 - | aunched si nk nodul e
ticktock:log:1

13: 09: 53,911 | NFO htt p- bi o- 8080-exec-1 nodul e. Si npl eModul e: 109 - started nodul e: Mdul e
[name=ti me, type=source]

13: 09: 53,912 | NFO htt p- bi o- 8080-exec-1 nodul e. Modul eDepl oyer: 111 - | aunched source
modul e: ticktock:tine:0

13: 09: 53,945 WARN task-schedul er-1 | ogger.ticktock: 141 - 2013-06-11 13:09: 53

13: 09: 54,948 WARN t ask-schedul er-1 | ogger.ticktock: 141 - 2013-06-11 13:09: 54

13: 09: 55,949 WARN t ask-schedul er-2 | ogger.ticktock: 141 - 2013-06-11 13:09: 55

To stop the stream, and remove the definition completely, you can use the st r eam dest r oy command:

xd: >stream destroy --nanme ticktock

It is also possibly to stop and restart the stream instead, using the undepl oy and depl oy commands.
The shell supports command completion so you can hitthe t ab key to see which commands and options
are available.

2.6 Explore Spring XD

Learn about the modules available in Spring XD in the Sources, Processors, and Sinks sections of the
documentation.

Don't see what you're looking for? Create a custom module: source, processor or sink (and then consider
contributing it back to Spring XD).

Want to add some analytics to your stream? Check out the Taps and Analytics sections.

1.0.0 Spring XD Guide 4

https://github.com/SpringSource/spring-xd/wiki/Contribute

Spring XD

3. Running in Distributed Mode

3.1 Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Getting Started for information on running Spring XD as a single node.

Spring XD can use several middlewares when running in distributed mode. At the time of writing, Redis
and RabbitMQ are available options.

Let's see how to install those first, before diving into the specifics of running Spring XD. Again, those are
alternatives when in comes to transport middleware used, so you need only one (although practically,
Redis may be required for other purposes, for example storage of definitions or Analytics).

Redis is actually the default when it comes to running in distributed mode, so let’s start with that.

3.2 Using Redis

Installing Redis

If you already have a running instance of Redis it can be used for Spring XD. By default Spring XD
will try to use a Redis instance running on localhost using port 6379. You can change that in the
redi s. properti es file residing in the conf i g/ directory.

If you don’t have a pre-existing installation of Redis, you can use the Spring XD provided instance (For
Linux and Mac). Inside the Spring XD installation directory (spring-xd) do:

$ cd redis/bin
$./install-redis

This will compile the Redis source tar and add the Redis executables under redis/bin:
* redis-check-dump

» redis-sentinel

redis-benchmark
» redis-cli
» redis-server

You are now ready to start Redis by executing

‘$./ redi s-server

@ Tip

For further information on installing Redis in general, please checkout the Redis Quick Start
guide. If you are using Mac OS, you can also install Redis via Homebrew

1.0.0 Spring XD Guide 5

http://redis.io/
http://www.rabbitmq.com/
http://redis.io/topics/quickstart
http://mxcl.github.io/homebrew/

Spring XD

Troubleshooting
Redis on Windows

Presently, Spring XD does not ship Windows binaries for Redis (See XD-151). However, Microsoft is
actively working on supporting Redis on Windows. You can download Windows Redis binaries from:

https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Redis is not running
If you try to run Spring XD and Redis is NOT running, you will see the following exception:

11: 26: 37,830 ERROR nmi n | auncher. Redi sCont ai ner Launcher: 85 - Unable to connect to Redis

on | ocal host: 6379; nested exception is com | anbdaworks. redi s. Redi sExcepti on: Unable to
connect

Redi s does not seemto be running. Did you install and start Redis? Please see the Getting
Started section of the guide for instructions

Starting Redis

$ redi s-server

You should see something like this:

[35142] 01 May 14:36:28.939 # Warning: no config file specified, using the default config
In order to specify a config file use redis-server /path/to/redis.conf
[35142] 01 May 14:36:28.940 * Max nunmber of open files set to 10032

R .o -l Redi s 2.6.12 (00000000/0) 64 bit
(! , A) Runni ng i n stand al one nbde

R | Port: 6379
| Seu Sa_ | PID. 35142

| el - PR | http://redis.io

[35142] 01 May 14:36:28.941 # Server started, Redis version 2.6.12
[35142] 01 May 14:36:28.941 * The server is now ready to accept connections on port 6379

3.3 Using RabbitMQ

Installing RabbitMQ

If you already have a running instance of RabbitMQ it can be used for Spring XD. By default Spring XD
will try to use a Rabbit instance running on localhost using port 5674. The default account credentials
of guest/guest are assumed. You can change that in the r abbi t . properti es file residing in the
confi g/ directory.

1.0.0 Spring XD Guide 6

https://jira.springsource.org/browse/XD-151
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Spring XD

If you don’t have a RabbitMQ installation already, head over to http://www.rabbitmg.com and follow the
instructions. Packages are provided for Windows, Mac and various flavor of unix/linux.

Launching RabbitMQ

Start the RabbitMQ broker by running the rabbitmg-server script:

$ rabbit ng- server

You should see something similar to this:

Rabbi t MQ 3.1.1. Copyright (C) 2007-2013 VMware, |nc.

#H ## Li censed under the MPL. See http://ww. rabbitng. conl

H##t

#uppppp###t Logs: /usr/local /var/ | og/ rabbitng/rabbit@ ocal host. | og
#HHHE #H /usr/ 1 ocal /var/| og/rabbitnmg/rabbit@ ocal host-sasl .| og
HHHBHHBHHH

Starting broker... conpleted with 7 plugins.

3.4 Starting Spring XD in Distributed Mode

Spring XD consists of two servers

» XDAdmin - controls deployment of modules into containers

» XDContainer - executes modules

You can start the xd- cont ai ner and xd- adm n servers individually as follows:

xd/ bi n>$./xd-adnin
xd/ bi n>$./ xd-cont ai ner

Choosing a Transport

The --transport option drives the choice of middleware to use. As stated previously, Redis is currently
the default, so the above example is equivalent to

xd/ bin>$./xd-admin --transport redis
xd/ bi n>$./xd-container --transport redis

To run using RabbitMQ, simply issue the following commands:

xd/ bi n>$./xd-adnin --transport rabbit
xd/ bi n>$./xd-container --transport rabbit

o

Note

If you have multiple XD systems (i.e. an xd-admin server and 0+ containers) using different
Redis instances for storage but sharing a single RabbitMQ server for transport, you may
encounter issues if each system contains streams of the same name. We recommend using
a different RabbitMQ virtual host for each system. Update the rabbi t. vhost property in
rabbit. properti es to point XD at the correct virtual host.

1.0.0

Spring XD Guide 7

http://www.rabbitmq.com

Spring XD

Choosing a Store

By default, the xd-admin server stores stream definitions and other information in Redis, using the
connection parameters specified in redi s. properti es. Use the --store option to specify another
storage type. Currently, only "redis" and "memory" are available.

xd/ bi n>$./xd-adnin --store nmenory

Other Options

There are additional configuration options available for these scripts:

To specify the location of the Spring XD install,

xd/ bi n>$./xd-admi n --xdHormeDir <xd-install-directory>
xd/ bi n>$./xd-contai ner --xdHomeDir <xd-install-directory>

To specify the http port of the XDAdmin server,

xd/ bi n>$./xd-adm n --httpPort <httpPort>

3.5 Using Hadoop

Spring XD support the following Hadoop distributions:

* hadoop10 - Apache Hadoop 1.0.4 (default)

» hadoop1l - Apache Hadoop 1.1.2 and Hortonworks Data Platform 1.3
» hadoop20 - Apache Hadoop 2.0.5-alpha

* phdl - Pivotal HD 1.0

To specify the distribution to use for Hadoop client connections,

xd/ bi n>$./xd-adm n --hadoopDi stro <distribution>
xd/ bi n>$./xd-container --hadoopDistro <distribution>

Pass in the - - hel p option to see other configuration properties.

1.0.0 Spring XD Guide 8

Spring XD

4. Architecture

4.1 Introduction

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The foundations of XD’s architecture are based on the over 100+ man
years of work that have gone into the Spring Batch, Integration and Data projects. Building upon these
projects, Spring XD provides servers and a configuration DSL that you can immediately use to start
processing data. You do not need to build an application yourself from a collection of jars to start using
Spring XD.

Spring XD has two modes of operation - single and multi-node. The first is a single process that is
responsible for all processing and administration. This mode helps you get started easily and simplifies
the development and testing of your application. The second is a distributed mode, where processing
tasks can be spread across a cluster of machines and an administrative server sends commands to
control processing tasks executing on the cluster.

Runtime Architecture

The key components in Spring XD are the XD Admin and XD Container Servers. Using a high-level
DSL, you post the description of the required processing tasks to the Admin server over HTTP. The
Admin server then maps the processing tasks into processing modules. A module is a unit of execution
and is implemented as a Spring ApplicationContext. A simple distributed runtime is provided that will
assign modules to execute across multiple XD Container servers. A single XD Container server can run
multiple modules. When using the single node runtime, all modules are run in a single XD Container
and the XD Admin server is run in the same process.

DIRT Runtime

A simple distributed runtime, called Distributed Integration Runtime, aka DIRT, will distribute the
processing tasks across multiple XD Container instances. The XD Admin server breaks up a processing
task into individual module defintions and publishes them to a shared Redis queue. Each container
picks up a module definition off the queue, in a round-robin like manner, and creates a Spring
ApplicationContext to run that module. This is a very simple strategy and not optimal for many use-
cases, so support for defining grouping of modules will be introduced in later releases.

1.0.0 Spring XD Guide 9

Spring XD

HTTP POST
of

Data Processing DSL

XD Admin

Rabbit or Redis Message Queue

N)
XD Container \ (XD Container \

((
((

(-

Module Module

Q& 2 Q g

Figure 4.1. The XD Admin Server sending module definitions to each XD Container

How the processing task is broken down into modules is discussed in the section ???.
Support for other distributed runtimes

In the 1.0 release, you are responsible for starting up a single XD Admin server and one or more XD
Containers. The 1.1 release will support running XD on top of other distributed runtime environments
such as Hadoop’s YARN architecture and CloudFoundry.

Single Node Runtime

For testing and development purposes, a single node runtime is provided that runs the Admin and
Container servers in the same process. The communication to the XD Admin server is over HTTP and
the XD Admin server communicates to an in-process XD Container using an in-memaory queue.

1.0.0 Spring XD Guide 10

Spring XD

HTTP POST
of

Data Processing DSL

g N

e

XD Container
/s

XD Admin] In Memory Queue L
J Module

N > 7

Figure 4.2. Single Node Runtime

Admin Server Architecture

The Admin Server uses an embedded servlet container and exposes two endpoints for creating and
deleting the modules required to perform data processing tasks as declared in the DSL. The Admin
Server is implemented using Spring’s MVC framework and the Spring HATEOAS library to create REST
representations that follow the HATEOAS principle. The Admin Server communicates with the Container
Servers using a pluggable transport based, the default uses Redis queues.

Container Server Architecture

The key components of data processing in Spring XD are
» Streams

» Jobs

* Taps

Streams define how event driven data is collected, processed, and stored or forwarded. For example,
a stream might collect syslog data, filter, and store it in HDFS.

Jobs define how coarse grained and time consuming batch processing steps are orchestrated, for
example a job could be be defined to coordinate performing HDFS operations and the subsequent
execution of multiple MapReduce processing tasks.

Taps are used to process data in a non-invasive way as data is being processed by a Stream or a Job.
Much like wiretaps used on telephones, a Tap on a Stream lets you consume data at any point along
the Stream’s processing pipeline. The behavior of the original stream is unaffected by the presence of
the Tap.

1.0.0 Spring XD Guide 11

https://github.com/SpringSource/spring-hateoas
http://en.wikipedia.org/wiki/HATEOAS

Spring XD

eb / Mobile
pplications

Real-time
Analytics

Real-time Hadoop

Streams —_— 'f
l
l

Batch files | S —— -) S3 | HDFS
& ETL Stream Storage

y >

Databases

Enterprise
Applications

Figure 4.3. Taps, Jobs, and Streams
Streams
The programming model for processing event streams in Spring XD is based on the well known

Enterprise Integration Patterns as implemented by components in the Spring Integration project. The
programming model was designed to be easy to test components.

Streams consist of the following types of modules: * Input sources * Processing steps * Output sinks

Input sources produce messages from a variety of sources, e.g. syslog, tcp, http. A message contains a
payload of data and a collection of key-value headers. Messages flow through message channels from
the source, through optional processing steps, to the output sink. The output sink will often write the
message to a file system, such as HDFS, but may also forward the message over tcp, http, or another
type of middleware.

A stream that consists of a input source and a output sink is shown below

1.0.0 Spring XD Guide 12

http://www.eaipatterns.com/
http://www.springsource.org/spring-integration

Spring XD

Input
Source

Channel

Figure 4.4. Foundational components of the Stream processing model

A stream that incorporates processing steps is shown below

Input | | = = Processing | =
Source Step

@ Processmg_%- mé Output

Step Sink

Figure 4.5. Stream processing with multiple steps

For simple linear processing streams, an analogy can be made with the UNIX pipes and filters model.
Filters represent any component that produces, processes or consumes events. This corresponds to
sources, processing steps, and sinks in a stream. Pipes represent the way data is transported between
the Filters. This corresponds to the Message Channel that moves data through a stream.

A simple stream definition using UNIX pipes and filters syntax that takes data sent via a HTTP post and
writes it to a file (with no processing done in between) can be expressed as

http | file

The pipe symbol represents a message channel that passes data from the HTTP source to the File sink.
The message channel implementation can either be backed with a local in-memory transport, Redis
gueues, or RabbitMQ. Future releases will support backing the message channel with other transports
such as JMS.

Note that the UNIX pipes and filter syntax is the basis for the DSL that Spring XD uses to describe simple
linear flows, but we will significantly extend the syntax to cover non-linear flow in a subsequent release.

The programming model for processing steps in a stream comes from the Spring Integration project.
The central concept is one of a Message Handler class, which relies on simple coding conventions to
Map incoming messages to processing methods. For example, using an http source you can process
the body of an HTTP POST request using the following class

1.0.0 Spring XD Guide 13

Spring XD

public class SinpleProcessor {

public String process(String payl oad) {
return payl oad. t oUpper Case();

}

The payload of the incoming Message is passed as a string to the method process. The contents of the
payload is the body of the http request as we are using a http source. The non-void return value is used
as the payload of the Message passed to the next step. These programming conventions make it very
easy to test your Processor component in isolation. There are several processing components provided
in Spring XD that do not require you to write any code, such as a filter and transformer that use the
Spring Expression Language or Groovy. For example, adding a processing step, such as a transformer,
in a stream processing definition can be as simple as

http | transforner --expression=payload.toUpperCase() | file

For more information on processing modules, refer to the section Processors
Stream Deployment

The Container Server listens for module deployment requests sent from the Admin Server. In the htt p
| fil e example, a module deployment request sent for the http module and another request is sent
for the file module. The definition of a module is stored in a Module Registry, which is a Spring XML
configuration file. The module definition contains variable placeholders that allow you to customize the
behavior of the module. For example, setting the http listening port would be done by passing in the
option --port,e.g. http --port=8090 | fil e, whichisinturn used to substitute a placeholder
value in the module definition.

The Module Registry is backed by the filesystem and corresponds to the directory <xd-i nstal | -
di rect ory>/ nodul es. When a module deployment request is processed by the Container, the
module definition is loaded from the registry and a Spring ApplicationContext is created.

Using the DIRT runtime, the http | file example would map onto the following runtime architecture

1.0.0 Spring XD Guide 14

Spring XD

HTTP POST

/streams/streaml
“http | file”

[XD Admin]

4) 4

XD Container XD Container
HTTP File
Module Module

. J . J

Redis Queues

Figure 4.6. Distributed HTTP to File Stream

Data produced by the HTTP module is sent over a Redis Queue and is consumed by the File module. If
there was a filter processing module in the steam definition, e.ghttp | filter | fil e thatwould
map onto the following DIRT runtime architecture.

1.0.0 Spring XD Guide 15

Spring XD

HTTP POST

/streams/stream2
“http | filter | file”

XD Admin

4 N N)

XD Container XD Container XD Container

HTTP Filter File
Module Module Module

Redis Queues

Figure 4.7. Distributed HTTP to Filter to File Stream

4.2 Jobs

The creation and execution of Batch jobs builds upon the functionality available in the Spring Batch and
Spring for Apache Hadoop projects. See the Batch Jobs section for more information.

4.3 Taps

Taps provide a non-invasive way to consume the data that is being processed by either a Stream or
a Job, much like a real time telephone wire tap lets you eavesdrop on telephone conversations. Taps
are recommended as way to collect metrics and perform analytics on a Stream of data. See the section
Taps for more information.

1.0.0 Spring XD Guide 16

Spring XD

5. Streams

5.1 Introduction

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. Stream processing is performed inside the XD Containers
and the deployment of stream definitions to containers is done via the XD Admin Server. The Getting
Started section shows you how to start these servers and how to start and use the Spring XD shell

Sources, sinks and processors are predefined configurations of a module. Module definitions are found
in the xd/ nodul es directory. ! Modules definitions are standard Spring configuration files that use
existing Spring classes, such as Input/Output adapters and Transformers from Spring Integration that
support general Enterprise Integration Patterns.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

‘http| file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overriden using - - options, such as

‘http --port=8091 | file --dir=/tnp/httpdata/

To create these stream definitions you make an HTTP POST request to the XD Admin Server. More
details can be found in the sections below.

5.2 Creating a Simple Stream

The XD Admin server ° exposes a full RESTful API for managing the lifecycle of stream definitions, but
the easiest way to use the XD shell. Start the shell as described in the Getting Start ed section

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let's walk through what happens if we execute the following shell command

xd: > streamcreate --definition "time | |log" --nanme ticktock

This defines a stream named t i ckt ock based off the DSL expressiontinme | |og. The DSL uses
the "pipe" symbol | , to connect a source to a sink. The stream server finds the t i ne and | og definitions
in the modules directory and uses them to setup the stream. In this simple example, the time source
simply sends the current time as a message each second, and the log sink outputs it using the logging
framework.

processi ng nodul e ' Modul e [nanme=l og, type=sink]' fromgroup 'ticktock’ with index: 1

processi ng nodul e ' Modul e [nanme=ti me, type=source]' fromgroup 'ticktock' with index: O

17:26: 18, 774 WARN Thr eadPool TaskSchedul er-1 | ogger.ticktock: 141 - Thu May 23 17:26: 18 EDT
2013

1Using the filesystem is just one possible way of storing module defintions. Other backends will be supported in the future, e.g.
Redis.
5The server is implemented by the Admi nMai n class in the spri ng- xd- di rt subproject

1.0.0 Spring XD Guide 17

http://static.springsource.org/spring-integration/reference/htmlsingle/#spring-integration-adapters
http://static.springsource.org/spring-integration/reference/htmlsingle/#transformer
http://www.eaipatterns.com/

Spring XD

5.3 Deleting a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

xd: > stream destroy --name ticktock

5.4 Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by name and issue the depl oy command at a later time to restart it.

xd: > stream undepl oy --nane ticktock
xd: > stream depl oy --name ticktock

5.5 Other Source and Sink Types

Let's try something a bit more complicated and swap out the t i me source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port (default 9000) from the Admin Server (default 8080).

To create a stream using an htt p source, but still using the same | og sink, we would change the
original command above to

xd: > stream create --definition "http | |0g" --name nyhttpstream

which will produce the following output from the server

processi ng nodul e ' Mbdul e [nane=l og, type=sink]' fromgroup 'nyhttpstream with index: 1
processi ng nodul e ' Mbdul e [name=http, type=source]' fromgroup 'nyhttpstream wi th index
0

Note that we don’t see any other output this time until we actually post some data (using shell command)

xd: > http post --target http://|ocal host: 9000 --data "hell o"
xd: > http post --target http://local host: 9000 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

15: 08: 01, 676 WARN Thr eadPool TaskSchedul er-1 | ogger. nyhttpstream 141 - hello
15: 08: 12,520 WARN Thr eadPool TaskSchedul er-1 | ogger. nmyhttpstream 141 - goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (fi | e),
to hadoop (hdf s) or to any of the other sink modules which are provided. You can also define your
own modules.

5.6 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

1.0.0 Spring XD Guide 18

Spring XD

xd: > stream depl oy --definition "http | transform --expressi on=payl oad. t oUpper Case() |
| og" --nane nyprocstrem

Posting some data (using shell command)

xd: > http post --target http://|ocal host: 9000 --data "hell o"

Will result in an uppercased hello in the log

15:18: 21, 345 WARN Thr eadPool TaskSchedul er-1 | ogger. myprocstream 141 - HELLO

See the Processors section for more information.

5.7 DSL Syntax

In the examples above, we connected a source to a sink using the pipe symbol | . You can also pass
parameters to the source and sink configurations. The parameter names will depend on the individual
module implementations, but as an example, the ht t p source module exposes a port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

xd: > stream create --definition "http --port=8000 | |og" --name myhttpstream

If you know a bit about Spring configuration files, you can inspect the module definition to see which
properties it exposes. Alternatively, you can read more in the source and sink documentation.

A future Spring XD release will provide a DSL for non-linear flows, e.g. a directed graph.

1.0.0 Spring XD Guide 19

Spring XD

6. Modules

6.1 Introduction

The XD runtime environment supports data ingestion by allowing users to define streams. Streams are
composed of modules which encapsulate a unit of work into a reusable component.

Modules are categorized by type, typically representing the role or function of the module. Current XD
module types include source, sink, and processor which indicate how they modules may be composed
in a stream. Specifically, a source polls an external resource, or is triggered by an event and only
provides an output. The first module in a stream is always a source. A processor performs some type
of transformation or business logic and provides an input and one or more outputs. A sink provides only
an input and outputs data to an external resource to terminate the stream.

XD comes with a number of modules used for assembling streams which perform common input and/or
output operations with files, HDFS, http, twitter, syslog, GemFire, and more. Users can easily assemble
these into streams to build complex big data applications without having to know the underlying Spring
products on which XD is built.

However, if you are interested in extending XD with your own modules, some knowledge of Spring,
Spring Integration, and Spring Batch is essential. The remainder of this document assumes the reader
has some familiarity with these topics.

6.2 Creating a Module

This section provides details on how to write and register custom modules. For a quick start, dive into
the examples of creating source, processor, and sink modules.

A Module has the following required attributes:

* name - the name of the component, normally a single word representing the purpose of the module.
Examples are file, http, syslog.

* type - the module type, current XD module types include source, sink, and processor

* instanceid - This represents a named instance of a module with a given name and type, with a specific
configuration.

Modules and Spring

At the core, a module is any component that may be implemented using a Spring application context. In
this respect, the concept may be extended for purposes other than data ingestion. The types mentioned
above (source, processor,sink) are specific to XD and constructing streams. But other module types
are envisioned.

A module is typically configured using property placeholders which are bound to the module’s attributes.
Attributes may be required or optional and this coincides with whether a default value is provided for
the placeholder.

For example, here is part of Spring configuration for a counter sink that counts messages and stores
the result in Redis:

1.0.0 Spring XD Guide 20

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-module/src/main/java/org/springframework/xd/module/Module.java

Spring XD

<beans>

<bean i d="handl er"
cl ass="org. springframewor k. xd. anal ytics. metrics.integration. MessageCount er Handl er " >
<constructor-arg ref="service"/>
<constructor-arg val ue="${nane}"/ >

</ bean>

<bean i d="service"
cl ass="org. springframewor k. xd. anal ytics. metrics.redi s. Redi sCount er Servi ce">
<constructor-arg ref="repository"/>

</ bean>

<bean i d="repository"
cl ass="org. springframewor k. xd. anal ytics.netrics.redi s. Redi sCount er Reposi tory" >
<constructor-arg ref="connecti onFactory"/>

</ bean>

<bean i d="connecti onFactory"
cl ass="org. springfranmewor k. dat a. redi s. connection. | ettuce. LettuceConnecti onFactory">
<constructor-arg index="0" val ue="${redi s. host nane: | ocal host}"/>
<constructor-arg i ndex="1" val ue="${redi s. port: 6379}"/>

</ bean>

</ beans>

Note the property placeholders for name, redis.hostname and redis.port. The name property defines
no default value, so it is a required attribute for this module. redis.hostname and redis.port default to
localhost and 6379 respectively. So these are optional attributes. In either case, the XD server will
substitute values for these properties as configured for each module instance. For example, we can
create two streams each creating an instance of the counter module with a different configuration.

xd: > stream create --nanme counttest --definition "time | counter --name=test"

or

xd: > stream create --nane counttest2 --definition “"tinme | counter --nanme=test2 --
redi s. host =redi s. exanpl e. com --redi s. port=63710"

In addition to properties, modules may reference Spring beans which are defined externally such that
each module instance may inject a different implementation of a bean. The ability to configure each
module instance differently is only possible if each module is created in its own application context. The
module may be configured with a parent context, but this should be done with care. In the simplest case,
the module context is completely separate. This results in some very useful features, such as being
able to create multiple bean instances with the same id, possibly with different configurations. More
generally, this allows modules to adhere to the KISS principle.

Integration Modules
In Spring Integration terms,

» A source is a valid message flow that contains a direct channel named output which is fed by an
inbound adapter, either configured with a poller, or triggered by an event.

» A processor is a valid message flow that contains a direct channel named input and a subscribable
channel named output (direct or publish subscribe). It should perform some type of transformation on
the message. (TBD: Describe multiple outputs, routing, etc.)

» Asink is a valid message flow that contains a direct channel named input and an outbound adapter,
or service activator used to consume a message payload.

1.0.0 Spring XD Guide 21

Spring XD

Modules of type source, processor, and sink are built with Spring Integration and are typically very fine-
grained.

For example, take a look at the file source which simply polls a directory using a file inbound adapter
and file sink which appends incoming message payloads to a file using a file outbound adapter. One
the surface, there is nothing special about these components. They are plain old Spring XML bean
definition files.

Upon closer inspection, you will notice that modules adhere to some important conventions. For one
thing, the file name is the module name. Also note the channels named input and output, in keeping
with the KISS principle (let us know if you come up with some simpler names). These names are by
convention what XD uses to discover a module’s input and/or output channels which it wires together
to compose streams. Another thing you will observe is the use of property placeholders with sensible
defaults where possible. For example, the file source requires a directory. An appropriate strategy is
to define a common root path for XD input files (At the time of this writing it is /tmp/xd/input/. This is
subject to change, but illustrates the point). An instance of this module may specify the directory by
providing name property. If not provided, it will default to the stream name, which is contained in the
xd.stream.name property defined by the XD runtime. By convention, XD defined properties are prefixed
with xd

‘directory:"/tnp/xd/input/${nane:${xd.strean1nane}}"

6.3 Registering a Module

XD provides a strategy interface ModuleRegistry which it uses to find a module of a given name and type.
Currently XD provides RedisModuleRegistry and FileModuleRegistry, The ModuleRegistry is a required
component for the XD Server. By default the XD Server is configured with the FileModuleRegistry which
looks for modules in ${ xd. hone: . . }/ modul es. Where xd. hon® is a Java System Property or may
be passed as a command line argument to the container launcher. So out of the box, the modules
are contained in the XD modules directory. The modules directory organizes module types in sub-
directories. So you will see something like:

nmodul es/ processor
nmodul es/ si nk
nmodul es/ sour ce

Using the default server configuration, you simply drop your module file into the modules directory and
deploy a stream to the server.

Modules with isolated classpath

In addition to the simple format described above, where you would have a f oo source module
implemented as a nodul es/ sour ce/ f oo. xm file, there is also preliminary support for modules that
wish to bring their own library dependencies, in an isolated fashion.

This is accomplished by creating a folder named after your module name and moving the xml file to a
confi g subdirectory. As an example, the f 0oo. xnl file would then reside in

nmodul es/ sour ce/ f oo/ confi g/ f 0o. xni

Additional jar files can then be added to a sibling | i b directory, like so:

1.0.0 Spring XD Guide 22

https://github.com/SpringSource/spring-xd/blob/master/modules/source/file.xml
https://github.com/SpringSource/spring-xd/blob/master/modules/sink/file.xml
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/module/ModuleRegistry.java

Spring XD

nodul es/ sour ce/ f oo/
confi g/
f oo. xm
I'i b/
commons- f 0o. j ar
foo-ext.jar

Classes will first be loaded from any of the aforementioned jar files and, only if they’re not found will they
be loaded from the parent, global ClassLoader that Spring XD normally uses. Still, there are a couple
of caveats that one should be aware of:

1. refrain from putting into the | i b/ folder jar files that are also part of Spring XD, or you'll likely end
up with ClassCastExceptions

2. any class that is directly or indirectly referenced from the payload type of your messages (i.e. the
types that transit from module to module) must not belong to a particular module | i b/ folder but
should rather be loaded by the global Spring XD classloader

1.0.0 Spring XD Guide 23

Spring XD

7. Sources

7.1 Introduction

In this section we will show some variations on input sources. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sources covered are

« HTTP

» Twitter Search

» Twitter Stream

» Gemfire CQ

Future releases will provide support for other currently available Spring Integration Adapters. For
information on how to adapt an existing Spring Integration Adapter for use in Spring XD see the section
Creating a Source Module.

The following sections show a mix of Spring XD shell and plain Unix shell commands, so if you are trying
them out, you should open two separate terminal prompts, one running the XD shell and one to enter
the standard commands for sending HTTP data, creating directories, reading files and so on.

712HTTP

To create a stream definition in the server using the XD shell

xd: > stream create --nane httptest --definition "http | file"

Post some data to the http server on the default port of 9000

xd: > http post --target http://local host: 9000 --data "hello world"

See if the data ended up in the file

1.0.0 Spring XD Guide 24

Spring XD

$ cat /tnp/xd/output/httptest

HTTP with options
The http source has one option

port
The http port where data will be posted (default: 9000)

Here is an example

xd: > stream create --nanme httptest 9020 --definition "http --port=9020 | file"

Post some data to the new port

xd: > http post --target http://]ocal host: 9020 --data "hello world"

‘$ cat /tnp/xd/ out put/httptest9020

7.3 Tail

Make sure the default input directory exists
‘$ mkdir -p /tnp/xd/input

Create an empty file to tail (this is not needed on some platforms such as Linux)

‘touch /tnp/ xd/input/tailtest

To create a stream definition using the XD shell

xd: > streamcreate --nane tailtest --definition "tail | file"

Send some text into the file being monitored

‘$ echo blah >> /tnp/xd/input/tailtest

See if the data ended up in the file

‘$ cat /tnp/xd/output/tailtest

Tail with options
The tail source has 3 options:

name
the absolute path to the file to tail (default: / t np/ xd/ i nput / <st r eanmName>)

lines
the number of lines from the end of an existing file to tail (default: 0)

fixedDelay
on platforms that don’t wait for a missing file to appear, how often (ms) to look for the file (default:
5000)

1.0.0 Spring XD Guide 25

Spring XD

Here is an example

xd: > streamcreate --nane tailtest --definition "tail --name=/tnp/foo | file --name=bar"

$ echo blah >> /tnp/foo

$ cat /tnp/xd/output/bar

Tail Status Events

Some platforms, such as linux, send status messages to st der r . The tail module sends these events
to a logging adapter, at WARN level; for example...

[message=tail: cannot open “/tnp/xd/input/tailtest’ for reading: No such file or
directory, file=/tnp/xd/input/tailtest]
[message=tail: “/tnp/xd/input/tailtest’ has become accessible, file=/tnp/xd/input/
tailtest]
7.4 File

The file source takes the content of a File and converts it to a String.

To log the contents of a file create a stream definition using the XD shell

xd: > streamcreate --nane filetest --definition "file | |o0g"

The file source by default will look into a directory named after the stream, in this case /tmp/xd/input/
filetest

Copy a file into the directory / t mp/ xd/ i nput/fil et est and observe its contents being logged in
the XD Container.

File with options

The file source has 4 options
dir
The absolute path to the directory to monitor for files (default: / t np/ xd/ i nput / <st r eamrNane>)

preventDuplicates
Default value is t r ue to prevent the same file from being processed twice.

pattern
A filter expression (Ant style) that accepts only files that match the pattern.

fixedDelay
The fixed delay polling interval specified in seconds (default: 5)

7.5 Mail sources

Spring XD provides two modules for receiving emails. Both have very similar options so they’ll be
described together here. The first one is named i map and only supports the imap protocol, using the
| DLE command. As such, it does not use polling. Instead messages are pushed as soon as they arrive.
The other module is named nai | and supports all protocols (pop & imap), but it uses polling.

1.0.0 Spring XD Guide 26

Spring XD

Let's see an example:

xd: > stream create --nane mailstream--definition "mail --host=i map.gmil.com --
user nane=your . user @mai | . com - - passwor d=secret | file"

Then send an email to yourself and you should see it appear inside a file at /t np/ xd/ out put/
mai | stream

The full list of options for the mai | and i map sources is below (most of them can be configured once
and for all in the nai | . properti es file):

protocol
the protocol to use amongst pop3, pop3s, imap, imaps (only imap variants for the i map module).
(default: i maps)

username
the username to use to connect to the mail server (no default)

password
the password to use to connect to the mail server (no default)

host
the hostname of the mail server (default: | ocal host)

port
the port of the mail server (default: none, use the default port according to the protocol used)

folder
the folder to take emails from (default: | NBOX)

markAsRead
whether to mark emails as read once they’ve been fetched by the module (default: f al se)

delete
whether to delete the emails once they've been fetched by the module (default: t r ue)

fixedDelay
Does not apply to the i map source, the polling interval used for looking up messages, expressed
in seconds. (default: 60)

charset
the charset used to transform the body of the incoming emails to Strings. (default: UTF- 8)

© Warning

Of special attention are the mar kAsRead and del et e options, which by default will delete the
emails once they are consumed. It is hard to come up with a sensible default option for this
(please refer to the Spring Integration documentation section on mail handling for a discussion
about this), so just be aware that the default for XD is to delete incoming messages.

7.6 Twitter Search

The twittersearch source has four parameters

1.0.0 Spring XD Guide 27

Spring XD

query
The query that will be run against Twitter (required)

consumerKey
An application consumer key issued by twitter

consumerSecret
The secret corresponding to the consuner Key

fixedDelay
The fixed delay polling interval specified in miliseconds (default: 5000)

To get a consuner Key and consuner Secr et you need to register a twitter application. If you don't
already have one set up, you can create an app at the Twitter Developers site to get these credentials.

To create a stream definition in the server using the XD shell

xd: > stream create --nanme springone2gx --definition "twi ttersearch --
consuner Key=<your _key> --consuner Secr et =<your _secret > --query='#spri ngone2gx' | file"

Make sure the default output directory for the fi | e sink exists

$ nkdir -p /tnp/xd/ output/

Let the twittersearch run for a little while and then check to see if some data ended up in the file
$ cat /tnp/xd/ output/springone2gx
@ Tip

For both twittersearch and twitterstream you can fil in in the conf/
twitter. properti es file instead of using the DSL parameters to supply keys and secrets.

7.7 Twitter Stream

This source ingests data from Twitter's streaming API. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this
source, so it is easiest if you just add these to the conf/twi tter. properti es file. Stream creation
is then straightforward:

xd: > streamcreate --nane tweets --definition "twitterstream| file"

The parameters available are pretty much the same as those listed in the API docs and unless otherwise
stated, the accepted formats are the same.

» delimited - setto t r ue to get length delimiters in the stream data (defaults to f al se).
« stallWarnings - set to t r ue to enable stall warnings (defaults to f al se).

« filterLevel

» language

1.0.0 Spring XD Guide 28

https://dev.twitter.com/apps
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/parameters
https://dev.twitter.com/docs/streaming-apis/parameters#delimited
https://dev.twitter.com/docs/streaming-apis/parameters#stall_warnings
https://dev.twitter.com/docs/streaming-apis/parameters#filter_level
https://dev.twitter.com/docs/streaming-apis/parameters#language

Spring XD

» follow

* track

* locations

7.8 GemFire Continuous Query (CQ)

Continuous query allows client applications to create a GemFire query using Object Query
Language(OQL) and register a CQ listener which subscribes to the query and is notified every time the
query 's result set changes. The gemfire_cq source registers a CQ which will post CQEvent messages
to the stream.

Launching the XD GemFire Server

This source requires a cache server to be running in a separate process and its host and port must be
known (NOTE: GemFire locators are not supported yet). The XD distribution includes a GemFire server
executable suitable for development and test purposes. This is a Java main class that runs with a Spring
configured cache server. The configuration is passed as a command line argument to the server’'s main
method. The configuration includes a cache server port and one or more configured region. XD includes
a sample cache configuration called cg-demo. This starts a server on port 40404 and creates a region
named Stocks. A Logging cache listener is configured for the region to log region events.

Run Gemfire cache server by changing to the gemfire/bin directory and execute

$./genfire-server ../config/cqg-deno.xnl

Options
The gemfire-cq source has the following options

query
The query string in Object Query Language(OQL) (required, String)

gemfireHost
The host on which the GemFire server is running. (default: | ocal host)

gemfirePort
The port on which the GemFire server is running. (default: 40404)

Here is an example. Create two streams: One to write http messages to a Gemfire region named Stocks,
and another to execute the CQ.

xd: > stream create --nanme stocks --definition "http --port=9090 | genfire-json-server --

regi onNane=St ocks - - keyExpr essi on=payl oad. get Fi el d(' synbol ') "

xd: > streamcreate --nane cqtest --definition "genfire-cq --query="Select * from/ Stocks
where synbol =" "VMN/'" | file"

Now send some messages to the stocks stream.

xd: > http post --target http://local host: 9090 --data "{"synbol ":"VMN, "price": 73}"
xd: > http post --target http://|ocal host: 9090 --data "{"synbol ":"VMN, "price":78}"
xd: > http post --target http://local host: 9090 --data "{"synbol ":"VMN, “price": 80}"

Please do not put spaces when separating the JSON key-value pairs, only a comma.

1.0.0 Spring XD Guide 29

https://dev.twitter.com/docs/streaming-apis/parameters#follow
https://dev.twitter.com/docs/streaming-apis/parameters#track
https://dev.twitter.com/docs/streaming-apis/parameters#locations
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD

The cqtest stream is now listening for any stock quote updates for VMW. Presumably, another process is
updating the cache. You may create a separate stream to test this (see GemfireServer for instructions).

As updates are posted to the cache you should see them captured in the output file:

$cat /tnp/ xd/ out put/cqt est

{"synbol ":"VMN, "price": 73}
{"synbol ":"VMWN, "price": 78}
{"synbol ":"VMN, "price": 80}

7.9 Syslog

Two syslog sources are provided: sysl og- udp and sysl og-t cp. They both support the following
options:

port
the port on which the system will listen for syslog messages (default: 11111)

To create a stream definition (using shell command)

xd: > stream create --nanme syslogtest --definition "syslog-udp --port=1514 | file"

or

xd: > stream create --nanme syslogtest --definition "syslog-tcp --port=1514 | file"

Send a test message to the syslog

|l ogger -p local3.info -t TESTING "Test Syslog Message"

See if the data ended up in the file

$ cat /tnp/xd/ out put/sysl ogtest

Refer to your syslog documentation to configure the syslog daemon to forward syslog messages to the
stream; some examples are:

UDP - Mac OSX (syslog.conf) and Ubuntu (rsyslog.conf)

3 @ocal host: 11111

TCP - Ubuntu (rsyslog.conf)

$MbdLoad onf wd
k] & @ ocal host: 11111

Restart the syslog daemon after reconfiguring.

7.10 TCP

To create a stream definition in the server, use the following XD shell command

xd: > stream create --nane tcptest --definition "tcp | file"

1.0.0 Spring XD Guide 30

https://github.com/SpringSource/spring-xd/wiki/GemfireServer

Spring XD

This will create the default TCP source and send data read from it to the t cpt est file.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of decoders are available, the default being CRLF which is compatible with Telnet.

$ tel net |ocal host 1234
Trying ::1...

Connected to | ocal host.
Escape character is '~]"'.
f oo

"

tel net> quit
Connecti on cl osed.

See if the data ended up in the file

$ cat /tnp/xd/output/tcptest

TCP with options
The TCP source has the following options

port
the port on which to listen (default: 1234)

reverse-lookup
perform a reverse DNS lookup on the remote IP Address (default: f al se)

socket-timeout
the timeout (ms) before closing the socket when no data received (default: 120000)

nio
whether or not to use NIO. NIO is more efficient when there are many connections. (default: f al se)

decoder
how to decode the stream - see below. (default: CRLF)

binary
whether the data is binary (true) or text (false). (default: f al se)

charset
the charset used when converting text to St ri ng. (default: UTF- 8)

Available Decoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

1.0.0 Spring XD Guide 31

Spring XD

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)
Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 2161 bytes)

L4
data preceded by a four byte (signed) length field (up to 23t bytes)

Examples
The following examples all use echo to send data to net cat which sends the data to the source.
The echo options - en allows echo to interpret escape sequences and not send a newline.

CRLF Decoder.

xd: > streamcreate --nane tcptest --definition "tcp | file"

This uses the default (CRLF) decoder and port 1234; send some data

‘$ echo -en 'foobar\r\n' | netcat |ocal host 1234

See if the data ended up in the file

$ cat /tnp/xd/output/tcptest

LF Decoder.

xd: > stream create --nanme tcptest2 --definition "tcp --decoder=LF --port=1235 | file"

$ echo -en 'foobar\n' | netcat |ocal host 1235

$ cat /tnp/xd/output/tcptest2

NULL Decoder.

xd: > streamcreate --nane tcptest3 --definition "tcp --decoder=NULL --port=1236 | file"

$ echo -en 'foobar\x00' | netcat |ocal host 1236

$ cat /tnp/xd/output/tcptest3

STXETX Decoder.

xd: > stream create --nanme tcptest4 --definition "tcp --decoder=STXETX --port=1237 | file"

1.0.0 Spring XD Guide

32

Spring XD

‘$ echo -en '\x02f oobar\x03' | netcat |ocal host 1237
‘$ cat /tnp/xd/output/tcptest4

RAW Decoder.

xd: > stream create --nanme tcptest5 --definition "tcp --decoder=RAW --port=1238 | file"

$ echo -n 'foobar' | netcat |ocal host 1238

$ cat /tnp/xd/output/tcptests

L1 Decoder.

xd: > stream create --nanme tcptest6 --definition "tcp --decoder=L1 --port=1239 | file"

$ echo -en '\ x06foobar' | netcat |ocal host 1239

$ cat /tnp/xd/output/tcptest6

L2 Decoder.

xd: > stream create --nanme tcptest7 --definition "tcp --decoder=L2 --port=1240 | file"

$ echo -en '\ x00\x06f oobar' | netcat |ocal host 1240

$ cat /tnp/xd/output/tcptest?7

L4 Decoder.

xd: > stream create --nanme tcptest8 --definition "tcp --decoder=L4 --port=1241 | file"

$ echo -en '\x00\ x00\ x00\ x06f oobar' | netcat |ocal host 1241

$ cat /tnp/xd/output/tcptest8

Binary Data Example

xd: > streamcreate --nanme tcptest9 --definition "tcp --decoder=L1 --port=1242 | file --
bi nary=t r ue"

Note that we configure the fi | e sink with bi nar y=t r ue so that a newline is not appended.

$ echo -en '\x08foo\x00bar\x0b' | netcat |ocal host 1242

$ hexdunp -C /tnp/xd/output/tcptest9
00000000 66 6f 6f 00 62 61 72 Ob | f 0o. bar.
00000008

7.11 RabbitMQ

The "rabbit" source enables receiving messages from RabbitMQ.

1.0.0 Spring XD Guide

33

Spring XD

The following example shows the default settings.

Configure a stream:

xd: > stream create --nanme rabbittest --definition "rabbit | file --binary=true"

This receives messages from a queue named r abbi t t est and writes them to the default file sink (/
t np/ xd/ out put/ r abbi tt est. out). It uses the default RabbitMQ broker running on localhost, port
5672.

The queue(s) must exist before the stream is deployed. We do not create the queue(s) automatically.
However, you can easily create a Queue using the RabhitMQ web Ul. Then, using that same Ul, you
can navigate to the "rabbittest” Queue and publish test messages to it.

Notice that the fi | e sink has - - bi nar y=t r ue; this is because, by default, the data emitted by the
source will be bytes. This can be modified by setting the cont ent _t ype property on messages to
t ext/ pl ai n. In that case, the source will convert the message to a St ri ng; you can then omit the - -
bi nar y=t r ue and the file sink will then append a newline after each message.

To destroy the stream, enter the following at the shell prompt:

xd: > stream destroy --nane rabbittest

RabbitMQ with Options

The RabbitMQ Source has the following options

host
the host (or IP Address) to connect to (default: | ocal host unless r abbi t. host nane has been
overridden in rabbi t. properti es)

port
the port on the host (default: 5672 unless rabbit.port has been overridden in
rabbit. properties)

vhost
the virtual host (default: / unless rabbit.vhost has been overridden in
rabbit. properties)

queues
the queue(s) from which messages will be received; use a comma-delimited list to receive messages
from multiple queues (default: the stream name)

Note: ther abbi t. properti es file referred to above is located within the XD_HOVE/ conf i g directory.

7.12 JIMS

The "jms" source enables receiving messages from JMS.
The following example shows the default settings.
Configure a stream:

xd: > stream create --nane jnstest --definition "jnms | file"

1.0.0 Spring XD Guide 34

Spring XD

This receives messages from a queue named j nst est and writes them to the default file sink (/ t np/
xd/ out put /j nst est). It uses the default ActiveMQ broker running on localhost, port 61616.

To destroy the stream, enter the following at the shell prompt:

xd: > stream destroy --nanme jnstest

To test the above stream, you can use something like the following...

public class Broker {

public static void main(String[] args) throws Exception {
Br oker Servi ce broker = new Broker Service();
br oker . set Br oker Nane(" br oker");
String brokerURL = "tcp://local host: 61616";
br oker . addConnect or (br oker URL) ;
broker.start();
Connecti onFactory cf = new ActiveMXonnecti onFactory(brokerURL);
JnsTenpl ate tenplate = new JnsTenpl ate(cf);
while (Systemin.read() >= 0) {
tenpl at e. convert AndSend("j nstest", "testFoo");
}
}

}

andtail -f /tnp/xd/output/jnstest

Run this as a Java application; each time you hit <enter> in the console, it will send a message to queue
j mst est.

JMS with Options

The JMS Source has the following options

provider
the JMS provider (default: act i vent)

queue
the queue from which messages will be received; use a comma-delimited list to receive messages
from multiple queues

Note: the selected broker requires an infrastructure configuration file j ns-<provider>-
i nfrastructure-context.xm in nodul es/ conmon. This is used to declare any infrastructure
beans needed by the provider. See the default (j ns- acti veng-i nfrastructure-context.xnl)
for an example. Typically, all that is required is a Connect i onFact or y. The activemq provider uses a
properties filej ns- act i venyg. pr operti es which can be found inthe conf i g directory. This contains
the broker URL.

7.13 Time

The time source will simply emit a String with the current time every so often. It supports the following
options:

fixedDelay
how often to emit a message, expressed in seconds (default: 1 second)

1.0.0 Spring XD Guide 35

Spring XD

format
how to render the current time, using SimpleDateFormat (default: ' yyyy- Mt dd HH: mm ss')

7.14 MQTT

The mqtt source connects to an mqtt server and receives telemetry messages.
Options
The folllowing options are configured in mqtt.properties in XD_HOME/config
mgtt. url =tcp://1 ocal host: 1883
mytt.default.client.id=xd.mgtt.client.id
ngt t . user nane=guest

myt t . passwor d=guest
mytt. defaul t.topi c=xd. ngtt.test

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost.

Note that the client id must be no more than 19 characters; this is because . sr ¢ is added and the id
must be no more than 23 characters.

clientld
Identifies the client - overrides the default above.

topics
The topics to which the source will subscribe - overrides the default above.

1.0.0 Spring XD Guide 36

Spring XD

8. Processors

8.1 Introduction

This section will cover the processors available out-of-the-box with Spring XD. As a prerequisite, start
the XD Container as instructed in the Getting Started page.

The Processors covered are

» Filter

* JSON Field Value Filter

e Transform

* JSON Field Extractor

» Script
» Splitter

» Aggregator

See the section Creating a Processor Module for information on how to create custom processor
modules.

8.2 Filter

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream.
The expression should evaluate the message and return true or false. For example:

xd: > stream create --nanme filtertest --definition "http | filter --
expr essi on=payl oad=="good' | |o0g"

This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good"
to the HTTP endpoint and you should see it in the XD log:

xd: > http post --target http://|ocal host: 9000 --data "good"

Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.

Filter with Groovy Script

For more complex filtering, you can pass the location of a Groovy script using the script attribute. If you
want to pass variable values to your script, you can optionally pass the path to a properties file using the
properties-location attribute. All properties in the file will be made available to the script as variables.

xd: > stream create --nanme groovyfiltertest --definition "http --port=9001 | filter --
script=customfilter.groovy --properties-locati on=customfilter.properties | |og"

1.0.0 Spring XD Guide 37

Spring XD

By default, Spring XD will search the classpath for custom-filter.groovy and custom-filter.properties.
You can place the script in ${xd.home}/modules/processor/scripts and the properties file in ${xd.home}/
config to make them available on the classpath. Alternatively, you can prefix the script and properties-
location values with file: to load from the file system.

8.3 JSON Field Value Filter

Use this filter to only pass messages to the output channel if they contain a specific JSON field matching
a specific value.

xd: > stream create --nanme jsonfiltertest --definition "http --port=9002 | json-field-
value-filter --fiel dName=firstNanme --fieldVal ue=John | |o0g"

This filter will only pass Messages to the log sink if the JSON payload contains the firstName "John".
Try sending this payload to the HTTP endpoint and you should see it in the XD log:

xd: > http post --target http://local host:9002 --data "{\"firstNanme\":\"John\", \"I|astNane
\"i\"Smith\"}"

Alternatively, if you send a different firstName, you shouldn’t see the log entry.

8.4 Transform

Use the transform module in a stream to convert a Message’s content or structure.

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream.
The expression should return the modified message or payload. For example:

xd: > stream create --nanme transforntest --definition "http --port=9003 | transform --
expression=' FOO | |og"

This transform will convert all message payloads to the word "FOO". Try sending something to the HTTP
endpoint and you should see "FOO" in the XD log:

xd: > http post --target http://local host: 9003 --data "sone nessage"

Transform with Groovy Script

For more complex transformations, you can pass the location of a Groovy script using the script attribute.
If you want to pass variable values to your script, you can optionally pass the path to a properties file
using the properties-location attribute. All properties in the file will be made available to the script as
variables.

xd: > stream create --name groovytransforntest --definition "http --port=9004 | transform
--script=customtransformgroovy --properties-|locati on=customtransform properties | |og"

By default, Spring XD will search the classpath for custom-transform.groovy and custom-
transform.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the script and properties-location values with file: to load from the file system.

1.0.0 Spring XD Guide 38

Spring XD

8.5 JSON Field Extractor

This processor converts a JSON message payload to the value of a specific JSON field.

xd: > stream create --nane jsontransforntest --definition "http --port=9005 | json-field-
extractor --fieldName=firstName | |o0g"

Try sending this payload to the HTTP endpoint and you should see just the value "John" in the XD log:

xd: > http post --target http://l|ocal host: 9005 --data "{\"firstNane\":\"John\", \"I|astNanme
\"A"Smith\"}"

8.6 Script

The script processor contains a Service Activator that invokes a specified Groovy script. This is a slightly
more generic way to accomplish processing logic, as the provided script may simply terminate the stream
as well as transform or filter Messages.

To use the module, pass the location of a Groovy script using the location attribute. If you want to pass
variable values to your script, you can optionally pass the path to a properties file using the properties-
location attribute. All properties in the file will be made available to the script as variables.

xd: > stream create --nanme groovyprocessortest --definition "http --port=9006 | script --
| ocat i on=cust om processor. groovy --properties-|ocation=custom processor.properties | |og"

By default, Spring XD will search the classpath for custom-processor.groovy and custom-
processor.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the location and properties-location values with file: to load from the file system.

8.7 Splitter

The splitter module builds upon the concept of the same name in Spring Integration and allows the
splitting of a single message into several distinct messages.

The splitter module accepts the following options:

expression
a SpEL expression which should evaluate to an array or collection. Each element will then be emitted
as a separate message (default: payl oad, which actually does not split, unless the message
is already a collection)

8.8 Aggregator

The aggregator module does the opposite of the splitter, and builds upon the concept of the same name
found in Spring Integration. By default, it will consider all incoming messages from a stream to belong
to the same group:

xd: > stream create --name aggregates --definition "http | aggregator --count=3 --
aggregati on=T(org. springframework.util.StringUils).collectionToDelinitedString(#this.!

[payload]," ") | |og"

1.0.0 Spring XD Guide 39

Spring XD

This uses a SpEL expression that will basically concatenate all payloads together, inserting a space
character in between. As such,

xd: > http post --data Hello
xd: > http post --data World
xd: > http post --data !

would emit a single message whose contents is "Hello World !". This is because we set the aggregator
release strategy to accumulate 3 messages.

The aggregator modules comes with many more options, as shown below:

correlation
a SpEL expression to be evaluated against all incoming message and that should evaluate to
the "key" used to group messages together (default: <str eamane>, which means that all
messages from the same stream are actually considered correlated)

release
a SpEL expression to be evaluated against a group of messages accumulated so far (a collection)
and that should return true when such a group is ready to be released. Using this overrides the
count option. (default: use the' count' approach)

count
the number of messages to group together before emitting a group (default: 50)

aggregation
a SpEL expression, to be evaluated against the list of accumulated messages. This should return
what the new message will be made of. (default: #t hi s. ! [payl oad], which uses the list of
message payloads to form the new message)

timeout
the delay (in milliseconds) after which messages should be released and aggregated, even
though the completion criteria was not met. Due to the way this is implemented (see
MessageGroupStoreReaper in the Spring Integration documentation), the actual observed delay
may vary between ti neout and 2xt i meout . (default: 60000, i.e. one minute)

1.0.0 Spring XD Guide 40

Spring XD

9. Sinks

9.1 Introduction

In this section we will show some variations on output sinks. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sinks covered are

* RabbitMQ

* GemkFire Server

» Splunk Server

* MQTT

» Dynamic Router

See the section Creating a Sink Module for information on how to create sink modules using other
Spring Integration Adapters.

9.2 Log

Probably the simplest option for a sink is just to log the data. The | og sink uses the application logger
to output the data for inspection. The log level is set to WARN and the logger name is created from the
stream name. To create a stream using a | og sink you would use a command like

xd: > stream create --nanme nyl ogstream --definition "http --port=8000 | |og"

You can then try adding some data. We've used the ht t p source on port 8000 here, so run the following
command to send a message

xd: > http post --target http://|ocal host: 8000 --data "hell o"

and you should see the following output in the XD container console.

‘ 13/ 06/ 07 16:12: 18 WARN | ogger. nyl ogstream hello

The logger name is the sink name prefixed with the string "logger.". The sink name is the same as the
stream name by default, but you can set it by passing the - - name parameter

1.0.0 Spring XD Guide 41

Spring XD

xd: > stream create --nanme nyotherlogstream--definition "http --port=8001 | log --
nane=nyl ogger "

9.3 File Sink

Another simple option is to stream data to a file on the host OS. This can be done using the fi | e sink
module to create a stream.

xd: > stream create --nanme nyfilestream--definition "http --port=8000 | file"

We've used the ht t p source again, so run the following command to send a message

xd: > http post --target http://|ocal host:8000 --data "hell o"

The fi | e sink uses the stream name as the default name for the file it creates, and places the file in
the / t np/ xd/ out put/ directory.

$ less /tnp/xd/ output/nyfil estream
hel |l o

You can cutomize the behavior and specify the name and di r properties of the output file. For example

xd: > stream create --nanme otherfilestream--definition "http --port=8000 | file --
name=nyfile --dir=/sonme/customdirectory"

File with Options

The file sink, by default, will add a newline at the end of each line; the actual newline will depend on
the operating system.

This can be disabled by using - - bi nar y=t r ue.

9.4 Hadoop (HDFS)

If you do not have Hadoop installed, you can install Hadoop 1.1.2 as described in our separate guide.
Spring XD supports 4 Hadoop distributions, see using Hadoop for more information on how to start
Spring XD to target a specific distribution.

Once Hadoop is up and running, you can then use the hdf s sink when creating a stream

xd: > stream create --nanme nyhdfsstream--definition "http --port=8000 | hdfs --
rol | over=10"

Note that we've set the r ol | over parameter to a small value for this exercise. This is just to avoid
buffering, so that we can actually see the data has made it into HDFS.

As in the above examples, we’ve used the ht t p source on port 8000, so we can post some data using
the shell’s built int http post command

xd: > http post --target http://|ocal host: 8000 --data "hello"

Which is the equivalent to using curl

‘$ curl -d "hello" http://]ocal host: 8000

1.0.0 Spring XD Guide 42

Spring XD

Repeat the command a few times.

You can then list the contents of the hadoop filesystem using the shell’s built in hadoop fs commands.
You will first need to configure the shell to point to your name node using the hadoop config command

xd: >hadoop config fs --nanmenode hdfs://| ocal host: 8020
By default the hdfs protocol is used to access hadoop. then list the contents of the root directory

xd: >hadoop fs |s /
Found 1 itens
dr wxr - Xr - x - npol | ack supergroup 0 2013-07-30 02: 34 /xd

You should see that an xd directory has appeared in the root with a sub-directory named after our
stream. This is equivalent to using the hadoop command line utility

$ hadoop dfs -Is /xd
Found 1 itens
dr wxr - Xr - x - npol | ack supergroup 0 2013-07-30 02: 34 /xd

And there will be one or more log files in there depending how many times you ran the command to
post the data

xd: >hadoop fs |s /xd/ myhdfsstream
Found 3 itens

STWr--r-- 3 npol | ack supergroup 12 2013-07-30 02: 34 /xd/ nyhdf sstream
nmyhdf sstream 0. | og
SrTWr--f-- 3 npol | ack supergroup 12 2013-07-30 02: 39 /xd/ myhdf sstreamn
myhdf sstream 1. | og
STWr--T-- 3 npol | ack supergroup 0 2013-07-30 02: 39 /xd/ nyhdf sstream

nmyhdf sstream 2. | og

You can examine the file contents using the shell's hadoop fs cat command
xd: >hadoop fs cat /xd/ nyhdfsstream nyhdfsstream 0. og

hell o
hel | o

HDFS with Options
The HDFS Sink has the following options:

newline
whether to append a newline to the message payload (default: t r ue)

directory
where to output the files in the Hadoop FileSystem (default: / xd/ <st r eanmane>)

filename
the base filename to use for the created files (a counter will be appended before the file extension).
(default: <st r eammane>)

suffix
the file extension to use (default: | og)

rollover
when to roll files over, expressed in bytes (default: 2000000, roughly 1MB)

1.0.0 Spring XD Guide 43

Spring XD

9.5JDBC

The JDBC sink can be used to insert message payload data into a relational database table. By default it
inserts the entire payload into an in-memory HSQLDB database table named after the stream name. To
alter this behavior you should modify the config/jdbc.properties file with the connection parameters you
want to use. There is also a config/init_db.sql file that contains the SQL statements used to initialize the
database table. You can modify this file if you'd like to create the table when the sink starts or change
the initializeDatabase property to false if the table already exists.

The payload data will be inserted as-is if the columns option is set to payload. This is the default behavior.
If you specify any other column names the payload data will be assumed to be a JSON document that
will be converted to a hash map. This hash map will be used to populate the data values for the SQL
insert statement. A matching of column names with underscores like user_name will match onto camel
case style keys like userName in the hash map. There will be one insert statement executed for each
message.

To create a stream using a j dbc sink relying on all defaults you would use a command like

xd: > stream create --nane nyjdbc --definition "tine | jdbc"

This will insert the time messages into a payload column in a table named myjdbc. Since the default
is using an in-memory HSQLDB database we can'’t connect to this database instance from an external
tool. In order to do that we need to alter the connection properties. We can either modify the config/
jdbc.properties file or provide the url property when we create the stream. Here is an example of the
latter:

xd: > stream create --nanme nydata --definition "time | jdbc --url="jdbc: hsqldb:file:/tnp/
xd/test""

We let the stream run for a little while and then destroy it so we can look at the data stored in the
database.

xd: > stream destroy --name nydata

You can use the above database URL from your favorite SQL tool or we can use the HSQL provided
SQL Tool to run a quick query from the command line:

$ java -cp $XD_HOVE/ | i b/ hsql db-1.8.0.10.jar org. hsqgldb.util.Sql Tool --inlineRc
url =j dbc: hsql db: file:/tnp/xd/test, user=sa, password= --sql "sel ect payload from nydata;"

This should result in something similar to the following output:

2013-07-29 12:05: 48
2013-07-29 12:05: 49
2013-07-29 12: 05:50
2013-07-29 12:05:51
2013-07-29 12:05: 52
2013-07-29 12: 05:53
2013-07-29 12:05:54
2013-07-29 12:05: 55
2013-07-29 12: 05:56
2013-07-29 12:05:57

Fet ched 10 rows.

1.0.0 Spring XD Guide 44

Spring XD

JDBC with Options
The JDBC Sink has the following options:

configProperties
base name of properties file (in the config directory) containing configuration options for the sink.
This file should contain the usual JDBC properties - driverClass, url, username, password (default:
j dbc)

initializeDatabase
whether to initialize the database using the initializer script (the default property file jdbc.properties
has this set to true) (default: f al se)

initializerScript
the file name for the script containing SQL statements used to initialize the database when the sink

starts (will search config directory for this file) (default: i ni t _db. sql)

tablename
the name of the table to insert payload data into (default: <st r earmane>)

columns
comma separated list of column names to include in the insert statement. Use payload to include
the entire message payload into a payload column. (default: payl oad)

9.6 TCP

The TCP Sink provides for outbound messaging over TCP.
The following examples use net cat (linux) to receive the data; the equivalent on Mac OSX is nc.
First, start a netcat to receive the data, and background it

‘$ netcat -1 1234 &

Now, configure a stream

xd: > streamcreate --nanme tcptest --definition "time --interval =3 | tcp"

This sends the time, every 3 seconds to the default tcp Sink, which connects to port 1234 on
ocal host.

$ Thu May 30 10:28:21 EDT 2013
Thu May 30 10: 28:24 EDT 2013
Thu May 30 10: 28:27 EDT 2013
Thu May 30 10:28: 30 EDT 2013
Thu May 30 10: 28: 33 EDT 2013

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of encoders are available, the default being CRLF.

Destroy the stream; netcat will terminate when the TCP Sink disconnects.

http://1ocal host: 8080> stream destroy --name tcptest

1.0.0 Spring XD Guide 45

Spring XD

TCP with Options

The TCP Sink has the following options

host
the host (or IP Address) to connect to (default: | ocal host)

port
the port on the host (default 1234)

reverse-lookup
perform a reverse DNS lookup on IP Addresses (default: f al se)

nio
whether or not to use NIO (default: f al se)

encoder
how to encode the stream - see below (default: CRLF)

close
whether to close the socket after each message (default: f al se)

charset
the charset used when converting text from St ri ng to bytes (default: UTF- 8)

Retry Options

retry-max-attempts
the maximum number of attempts to send the data (default: 5 - original request and 4 retries)

retry-initial-interval
the time (ms) to wait for the first retry (default: 2000)

retry-multiplier
the multiplier for exponential back off of retries (default: 2)

With the default retry configuration, the attempts will be made after 0, 2, 4, 8, and 16 seconds.

Available Encoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)
Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

1.0.0 Spring XD Guide 46

Spring XD

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 2161 bytes)

L4
data preceded by a four byte (signed) length field (up to 23t bytes)

An Additional Example

Start netcat in the background and redirect the output to a file f 0o

‘$ netcat -1 1235 > foo &

Create the stream, using the L4 encoder

xd: > stream create --name tcptest --definition "time --interval=3 | tcp --encoder=L4 --
port=1235"

Destroy the stream

‘http:/llocalhost:8080> stream destroy --nane tcptest

Check the output

$ hexdunmp -C foo

00000000 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1
00000010 30 3a 34 37 3a 30 33 20 45 44 54 20 32 30 31 33 |0:47:03 EDT 2013
00000020 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1
00000030 30 3a 34 37 3a 30 36 20 45 44 54 20 32 30 31 33 |0:47:06 EDT 2013
00000040 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1
00000050 30 3a 34 37 3a 30 39 20 45 44 54 20 32 30 31 33 |0:47:09 EDT 2013

Note the 4 byte length field preceding the data generated by the L4 encoder.

9.7 Mail

The "mail" sink allows sending of messages as emails, leveraging Spring Integration mail-sending
channel adapter. Please refer to Spring Integration documentation for the details, but in a nutshell, the
sink is able to handle String, byte[] and MimeMessage messages out of the box.

Here is a simple example of how the mail module is used:

xd: > stream create nmystream--definition "http | mail --to=""your.enunil @nail.coni’
host =your . i map. server --subject=payl oad+ world""

Then,

xd:> http post --data Hello

You would then receive an email whose body contains "Hello" and whose subject is "Hellow world". Of
special attention here is the way you need to escape strings for most of the parameters, because they're
actually SpEL expressions (so here for example, we used a String literal for the t o parameter).

1.0.0 Spring XD Guide a7

Spring XD

The full list of options available to the mail module is below (note that most of these options can be set
once and for all in the mai | . properti es file):

to
The primary recipient(s) of the email. (default: nul | , SpEL Expression)

from
The sender address of the email. (default: nul | , SpEL Expression)

subject
The email subject. (default: nul | , SpEL Expression)

cc
The recipient(s) that should receive a carbon copy. (default: nul | , SpEL Expression)

bcc
The recipient(s) that should receive a blind carbon copy. (default: nul | , SpEL Expression)

replyTo
The address that will become the recipient if the original recipient decides to "reply to" the email.
(default: nul | , SpEL Expression)

contentType
The content type to use when sending the email. (default: nul | , SpEL Expression)

host
The hostname of the sending server to use. (default: | ocal host)

port
The port of the sending server. (default: 25)

username
The username to use for authentication against the sending server. (default: none)

password
The password to use for authentication against the sending server. (default: none)

9.8 RabbitMQ

The "rabbit" sink enables outbound messaging over RabbitMQ.
The following example shows the default settings.

Configure a stream:
xd: > streamcreate --nanme rabbittest --definition "time --interval =3 | rabbit"

This sends the time, every 3 seconds to the default (no-name) Exchange for a RabbitMQ broker running
on localhost, port 5672.

The routing key will be the name of the stream by default; in this case: "rabbittest”. Since the default
Exchange is a direct-exchange to which all Queues are bound with the Queue name as the binding key,
all messages sent via this sink will be passed to a Queue named "rabbittest", if one exists. We do not
create that Queue automatically. However, you can easily create a Queue using the RabbitMQ web UI.
Then, using that same Ul, you can navigate to the "rabbittest” Queue and click the "Get Message(s)"
button to pop messages off of that Queue (you can choose whether to requeue those messages).

1.0.0 Spring XD Guide 48

Spring XD

To destroy the stream, enter the following at the shell prompt:

xd: > stream destroy --nane rabbittest

RabbitMQ with Options
The RabbitMQ Sink has the following options

host
the host (or IP Address) to connect to (default: | ocal host unless rabbi t. host nane has been
overridden in rabbi t. properti es)

port
the port on the host (default: 5672 unless rabbit.port has been overridden in
rabbit. properties)

vhost
the wvirtual host (default: / unless rabbit.vhost has been overridden in
rabbit. properties)

exchange
the Exchange on the RabbitMQ broker to which messages should be sent (default: = (empty:
therefore, the default no-name Exchange))

routingkey
the routing key to be passed with the message (default: <streamname>)

Note: ther abbi t . properti es file referred to above is located within the XD_HOVE/ conf i g directory.

9.9 GemFire Server

Currently XD supports GemFire's client-server topology. A sink that writes data to a GemFire cache
requires a cache server to be running in a separate process and its host and port must be known (NOTE:
GempFire locators are not supported yet). The XD distribution includes a GemFire server executable
suitable for development and test purposes. It is made available under GemFire’'s development license
and is limited to 3 nodes. Modules that write to GemFire create a client cache and client region. No
data is cached on the client.

Launching the XD GemFire Server

A GemFire Server is included in the Spring XD distribution. To start the server. Go to the XD install
directory:

$cd genfirel/ bin
$./genfire-server cqdeno. xnl

The command line argument is the location of a Spring file with a configured cache server. A sample
cache configuration is provided cg-demo.xml. This starts a server on port 40404 and creates a region
named Stocks. A Logging cache listener is configured for the region to log region events.

Gemfire sinks

There are 2 implementation of the gemfire sink: gemfire-server and gemfire-json-server. They are
identical except the latter converts JSON string payloads to a JSON document format proprietary to

1.0.0 Spring XD Guide 49

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD

GemFire and provides JSON field access and query capabilities. If you are not using JSON, the gemfire-
server module will write the payload using java serialization to the configured region. Either of these
modules accepts the following attributes:

regionName
the name of the GemFire region. This must be the name of a region configured for the cache server.
This module creates the corresponding client region. (default: <st r earmane>)

keyExpression
A SpEL expression which is evaluated to create a cache key. Typically, the key value is derived
from the payload. (default: <st r eamrmame>, which will overwrite the same entry for every message
received on the stream)

gemfireHost
The host name or IP address of the cache server (default: | ocal host)

gemfirePort
The TCP port number of the cache server (default: 40404)

Example

Suppose we have a JSON document containing a stock price:

‘ {"synmbol ":"VMN/, "price": 73}

We want this to be cached using the stock symbol as the key. The stream definition is:

‘ http | genfire-json-server --regi onNane=Stocks --keyExpressi on=payl oad. get Fi el d(' synbol ")

The keyExpression is a SpEL expression that depends on the payload type. In this case,
com.gemstone.org.json.JSONObject. JSONObject which provides the getField method. To run this
example:

xd: > stream create --nanme stocks --definition "http --port=9090 | genfire-json-server --
regi onNanme=St ocks --keyExpressi on=payl oad. get Fi el d(' synbol ')"

xd: > http post --target http://local host: 9090 --data "{"synbol ":"VMN, "“price": 73}"

This will write an entry to the GemFire Stocks region with the key VMW. Please do not put spaces when
separating the JSON key-value pairs, only a comma.

You should see a message on STDOUT for the process running the GemFire server like:

‘ I NFO [Loggi ngCachelLi stener] - updated entry VMW

9.10 Splunk Server

A Splunk sink that writes data to a TCP Data Input type for Splunk.

Splunk sinks

The Splunk sink converts an object payload to a string using the object’s toString method and then
converts this to a SplunkEvent that is sent via TCP to Splunk. The module accepts the following
attributes:

1.0.0 Spring XD Guide 50

http://www.splunk.com/

Spring XD

host
The host name or IP address of the Splunk server *(default: | ocal host)

port
The TCP port number of the Splunk Server (default: 8089)

username
The login name that has rights to send data to the tcp-port (default: admni n)

password
The password associated with the username (default: passwor d)

owner
The owner of the tcp-port (default: admi nl)

tcp-port
The TCP port number to where XD will send the data (default: 9500)

Setup Splunk for TCP Input

1. From the Manager page select Dat a i nput s link
2. Click the Add Dat a Button

3. Click the TCP link

4. Click the New Button

5. TCP Port enter the port you want Splunk to monitor
6. Set Source Type select manual

7. Source Type entertcp-raw

Example

An example stream would be to take data from a twitter search and push it through to a splunk instance.

xd: > stream create --nanme springone2gx --definition "twi ttersearch --consumerKey= --
consuner Secret = --query='"#LOTR | splunk"

9.11 MQTT
The mqtt sink connects to an mqtt server and publishes telemetry messages.
Options

The folllowing options are configured in mqtt.properties in XD_HOME/config

mytt. url =tcp://1 ocal host: 1883
mytt.default.client.id=xd.nmgtt.client.id
mgtt. user name=guest

myt t . passwor d=guest

mytt. defaul t.topic=xd. mtt.test

1.0.0 Spring XD Guide 51

Spring XD

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost.

Note that the client id must be no more than 19 characters; this is because . snk is added and the id
must be no more than 23 characters.

clientld
Identifies the client - overrides the default above.

topic
The topic to which the sink will publish - overrides the default above.

gos
The Quality of Service (default: 1)

retained
Whether the retained flag is set (default: false)

9.12 Dynamic Router

The Dynamic Router support allows for routing Spring XD messages to named channels based on the
evaluation of SpEL expressions or Groovy Scripts.

SpEL-based Routing

In the following example, 2 streams are created that listen for message on the foo and the bar channel.
Furthermore, we create a stream that receives messages via HTTP and then delegates the received
messages to a router:

xd: >stream create f --definition ":foo > transform --expressi on=payl oad+' -foo' | |o0g"
Created new stream ' f'

xd: >stream create b --definition ":bar > transform --expressi on=payl oad+' -bar' | |o0g"
Created new stream'Db’

xd: >stream create r --definition "http | router --
expr essi on=payl oad. contains('a')? :foo':':bar""
Created new stream'r'

Now we make 2 requests to the HTTP source:

xd: >http post --data "a"
> POST (text/plain; Charset =UTF-8) http://I|ocal host: 9000 a
> 200 X

xd: >http post --data "b"
> POST (text/plain; Charset=UTF-8) http://I|ocal host: 9000 b
> 200 X

In the server log you should see the following output:

11:54: 19, 868 WARN Thr eadPool TaskSchedul er-1 | ogger.f: 145 - a-foo
11: 54: 25,669 WARN Thr eadPool TaskSchedul er-1 | ogger. b: 145 - b-bar

For more information, please also consult the Spring Integration
Reference manual: http://static.springsource.org/spring-integration/reference/html/messaging-routing-

1.0.0 Spring XD Guide 52

http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace

Spring XD

chapter.html#router-namespace particularly the section "Routers and the Spring Expression Language
(SpEL)".

Groovy-based Routing

Instead of SpEL expressions, Groovy scripts can also be used. Let's create a Groovy script in the file
system at "/my/path/router.groovy”

println("Goovy processing payload '" + payload +"'");
if (payload.contains('a)) {

return ":foo"

}
el se {

return “:bar"

}

Now we create the following streams:

xd: >stream create f --definition ":foo > transform --expressi on=payl oad+' -foo' | |o0g"
Created new stream ' f'

xd: >stream create b --definition ":bar > transform --expressi on=payl oad+' -bar' | |o0g"
Created new stream'Db’

xd: >stream create g --definition "http | router --script="file:/my/path/router.groovy""

Now post some data to the HTTP source:

xd: >http post --data "a"
> POST (text/plain; Charset =UTF-8) http://I|ocal host: 9000 a
> 200 X

xd: >http post --data "b"
> POST (text/plain;Charset=UTF-8) http://|ocal host: 9000 b
> 200 K

In the server log you should see the following output:

Groovy processing payload 'a'
11: 29: 27,274 WARN Thr eadPool TaskSchedul er-1 | ogger.f: 145 - a-foo
Groovy processing payl oad 'b'
11: 34: 09, 797 WARN Thr eadPool TaskSchedul er-1 | ogger. b: 145 - b-bar

@ Note

You can also use Groovy scripts located on your classpath by specifying:

--script="org/ nyl/ package/ rout er. gr oovy'

For more information, please also consult the Spring Integration Reference manual:
"Groovy support" http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-
chapter.html#groovy

Options

expression
The SpEL expression to use for routing

1.0.0 Spring XD Guide 53

http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace
http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy
http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy

Spring XD

script
Indicates that Groovy Script based routing is used. If this property is set, then the "Expression”
attribute will be ignored. The groovy script is checked for updates every 60 seconds. The script can
be loaded from the classpath or from the file system e.g. "--script=org/springframework/springxd/
samples/batch/router.groovy" or "--script=file:/my/path/router.groovy"

properties-location
Will be made available as script variables for Groovy Script based routing. Will only be evaluated
once at initialization time. By default the following script variables will be made available: "payload"
and "headers".

1.0.0 Spring XD Guide 54

Spring XD

10. Taps

10.1 Introduction

A Tap allows you to "listen in" to data from another stream and process the data separately from the
original stream definition. The original stream is unaffected by the tap and isn't aware of its presence,
similar to a phone wiretap (WireTaps are part of the standard catalog of EAI patterns and are part of
the Spring Integration EAI framework used by Spring XD).

A tap acts like a source in that it occurs as the first module within a stream and can pipe its output
to a sink (and/or one or more processors added to a chain before the ultimate sink), but for a tap the
messages are actually those being processed by some other stream.

Taps are specified as named channels in a stream definition, where the channel name always begins
with t ap: .

To create a tap using the shell, use the following command (assuming you want to tap into the "fool"
stream, which we’ll create first):

xd: > stream create --nanme fool --definition "time | |o0g"
xd: > stream create --nane tapnanme --definition "tap:fool > | og"

A tap can consume data from any point along the target stream’s processing pipeline. For example, if
you have a stream called nyst r eam defined as

‘source | filter | transformer | sink

Then creating a tap using

‘tap:nystrean1<fi|ter nmodul e name> > si nk2

would tap into the stream’s data after the filter has been applied but before the transformer. So the
untransformed data would be sent to si nk2.

A primary use case is to perform realtime analytics at the same time as data is being ingested via its
primary stream. For example, consider a Stream of data that is consuming Twitter search results and
writing them to HDFS. A tap can be created before the data is written to HDFS, and the data piped
from the tap to a counter that correspond to the number of times specific hashtags were mentioned
in the tweets.

Creating a tap on a named channel, a stream whose source is a named channel, or a label is not yet
supported. This is planned for a future release.

You'll find specific examples of creating taps on existing streams in the Analytics section.
10.2 Tap Lifecycle
A side effect of a stream being unaware of any taps on its pipeline is that deleting the stream will not

automatically delete the taps. The taps have to be deleted separately. However if the tapped stream is
re-created, the existing tap will continue to function.

1.0.0 Spring XD Guide 55

http://www.enterpriseintegrationpatterns.com/WireTap.html
http://static.springsource.org/spring-integration/reference/htmlsingle/#channel-wiretap

Spring XD

11. Batch Jobs

11.1 Introduction

This chapter will show you how to execute Spring Batch Jobs using Spring XD.
11.2 Setting up a simple Batch Job

Creating the Tasklet

We will create a very simple Tasklet. The sole purpose of this Tasklet is to print out "Hello Spring XD!".
Note, you can find the the source code and the maven build files for this example in the Spring XD

Samples repository.

package org. springfranmework. spri ngxd. sanpl es. bat ch;

i mport org.springframework. batch. core. StepContri bution;

i nport org.springfranmework. bat ch. core. scope. cont ext . ChunkCont ext ;
i nport org.springfranmework. bat ch. core. step. taskl et. Taskl et;

i mport org.springframework. bat ch. repeat . Repeat St at us;

public class Hell oSpringXDTaskl et inplenents Taskl et {

publ i c Repeat St atus execut e(StepContri bution contribution,
ChunkCont ext chunkContext) throws Exception {

Systemout.println("Hello Spring XD'");

return Repeat St at us. FI NIl SHED;
}

}

Please ensure that you deploy this class as part of a Jar file to the Spring XD ${xd.home}/lib folder.
Once you restart the Spring XD container the class will be automatically added to the classpath and thus
made available. If you are bulding from the sample repository do the following in the directory spri ng-
xd- sanmpl es/ bat ch-si npl e

* nvn package
e cp ./target/springxd-batch-sinple-1.0.0.BU LD SNAPSHOT. j ar $XD HOVE/li b
Setting Up the Application Context

Under modules/job, in the Spring XD home directory, please create the following XML Application
context file named myjob.xml:

1.0.0 Spring XD Guide 56

http://www.springsource.org/spring-batch
http://static.springsource.org/spring-batch/reference/html/configureStep.html#taskletStep
https://github.com/SpringSource/spring-xd-samples
https://github.com/SpringSource/spring-xd-samples

Spring XD

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns:int="http://ww.springframework. org/schena/integration"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: bat ch="htt p: // ww. spri ngf ramewor k. or g/ schena/ bat ch"

xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://wwv. spri ngfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. spri ngfranewor k. or g/ schema/ bat ch
http://ww. springfranework. or g/ schema/ bat ch/ spri ng- bat ch. xsd" >

<bat ch:job id="job">

<bat ch: st ep i d="hel | oSpri ngXDSt ep" >
<bat ch: taskl et ref="hell oSpri ngXDTasklet" />
</ bat ch: st ep>

</ bat ch: j ob>

<bean i d="hel | oSpri ngXDTaskl et "
cl ass="org. spri ngframewor k. spri ngxd. sanpl es. bat ch. Hel | oSpri ngXDTaskl et" />

</ beans>

Please note that this context file must contain single batch job whose id is j ob.

<bat ch:job id="job">
<bat ch: step i d="hel | oSpri ngXDSt ep" >
<bat ch: taskl et ref="hell oSpri ngXDTasklet" />
</ bat ch: st ep>
</ bat ch: j ob>

If you are bulding from the sample repository do the following in the directory spri ng- xd- sanpl es/
bat ch-si npl e

e cp ./src/main/resources/nyjob.xm $XD HOVE/ nodul es/j ob/

11.3 Execute the Batch Job

In order to execute the Batch Job, several options exist:
» Execute the Batch Job Once
» Execute the Batch Job using an AdHoc Cron Expression

» Execute the Batch using a named Cron-Trigger
Execute the Batch Job Once

There are 2 steps executing any job:

1) Create the job

xd: > job create --nane hell oSpringXD --definition "myjob"

In the logging output of the XDContainer you should see the following:

1.0.0 Spring XD Guide 57

Spring XD

14:17: 46, 793 | NFO htt p- bi o- 8080- exec-5 j ob. JobPl ugi n: 87 - Configuring nodul e
with the foll owing properties: {nunberFornat=, dateFornmat=, nmakeUni que=true,
xd. st ream nane=hel | oSpri ngXD}
14:17: 46, 837 | NFO htt p- bi o- 8080-exec-5 nodul e. Si npl eModul e: 140 - initialized nodul e:
Si npl eModul e [nane=nyj ob, type=job, group=hell oSpringXD, index=0]
14:17: 46,840 | NFO htt p-bi o- 8080-exec-5 nodul e. Si npl eMbdul e: 154 - started nodul e:
Si mpl eMbdul e [nanme=j ob, type=j ob, group=helloSpringXD, index=0]
14:17: 46,840 | NFO htt p-bi o- 8080-exec-5 nodul e. Modul eDepl oyer: 152 - | aunched job nodul e:
hel | oSpri ngXD: nyj ob: 0

2) Triggering the job.

xd: > stream create --nanme nyTriggerStream--definition “trigger > job: hell oSpringXD"

In the logging output of the XDContainer you should see the following

14:21: 04, 719 | NFO htt p- bi 0o- 8080-exec-7 job.JobPl ugi n: 87 - Configuring nodul e
with the foll owing properties: {nunberFornat=, dateFornat=, nakeUni que=true,
xd. st ream name=nyTri gger St r eant

14:21: 04, 763 | NFO htt p- bi 0- 8080- exec-7 nodul e. Si npl eMbdul e: 140 - initialized nodul e:
Si npl eModul e [nane=trigger, type=source, group=nyTriggerStream index=0]

14:21: 04, 765 | NFO htt p- bi o- 8080- exec-7 nodul e. Si npl eModul e: 154 - started nodul e:
Si npl eModul e [nanme=trigger, type=source, group=nyTriggerStream index=0]

14:21: 04, 767 | NFO htt p- bi o- 8080- exec-7 nodul e. Modul eDepl oyer: 152 - | aunched source
modul e: nmyTriggerStreamtrigger:0

Hel l o Spring XD

Execute job from a stream
You can execute a batch job in the flow of a stream.

stream create --nanme jobStream--definition "http > job: myH t pJob"
Where "myHttpJob" is the name of the job.

Retrieve notification from job upon completion

stream create --nanme jobNotifications --definition ":myHttpJob-notifications >l og"

In this example, the job will send a notification to the log upon completion with its status. In the logging
output of the container you should see something like the following:

15: 26: 30, 029 WARN t ask-schedul er-5 | ogger.jobNotifications: 145 - JobExecuti on:
id=1, version=2, startTi ne=\Wed Aug 28 15:26:30 EDT 2013, endTi me=\Wd Aug 28
15: 26: 30 EDT 2013, | astUpdated=Wed Aug 28 15:26: 30 EDT 2013, stat us=COVPLETED,
exi t St at us=exi t Code=COVPLETED; exi t Descri pti on=, job=[Joblnstance: id=1, version=0,
Job=[myHt t pJob. job]], jobParaneters=[{random=0. 49881213192780494}]

Execute the Batch using Cron-Trigger

You can execute a batch job based on a cron scheduler by creating a stream using the cron-trigger
source.

xd: > stream create --nane cronStream --definition “cron-trigger --cron="0/5 * * * * *' >
j ob: nyCronJob"

You can also pass in parameters to the batch job by using the --payload expression.

1.0.0 Spring XD Guide 58

Spring XD

xd: > stream create --nanme cronStream --definition "cron-trigger --cron="0/5 * * * * *
payl oad=' {"par antl": " Kenny"}"' > job: nyCronJob"

© Note

The payload content must be in a JSON-based map representation.
Execute the Batch using a Fixed-Delay-Trigger

You can explicitly create a Fixed Delay Trigger by creating a stream that uses the trigger source:

xd: > stream create --nanme fdStream --definition "fixed-delay-trigger --
payl oad=' {"paraml": “fi xedDel ayKenny"}' --fixedDel ay=10 > j ob: myXDJob"

11.4 Removing Batch Jobs and Triggers

Stopping and Removing the Batch Job

Batch Jobs can be deleted by executing:

xd: > job destroy hell oSpringXD

Alternatively, one can just undeploy the job, keeping its definition around for a future redeployment:

xd: > j ob undepl oy hel | oSpri ngXD

Removing the Cron Trigger
Cron Triggers can be deleted by executing:

xd: > stream destroy cronStream

1.0.0 Spring XD Guide

59

Spring XD

12. Analytics

12.1 Introdution

Spring XD Analytics provides support for real-time analysis of data using metrics such as counters and
gauges. Spring XD intends to support a wide range of these metrics and analytical data structures as a
general purpose class library that works with several backend storage technologies.

We'll look at the following metrics

e Counter

Field Value Counter

* Aggregate Counter

* Gauge

» Rich Gauge

An in memory implementation and a Redis implementation are provided in Spring XD 1.0.0.M3. Other
metrics that will be provided in a future release are Rate Counters and Histograms.

Metrics can be used directly in place of a sink just as if you were creating any other stream, but you can
also analyze data from an existing stream using a tap. We’'ll look at some examples of using metrics
with taps in the following sections. As a prerequisite start the XD Container as instructed in the Getting
Started page.

12.2 Counter

A counter is a Metric that associates a uniqgue name with a long value. It is primarily used for counting
events triggered by incoming messages on a target stream. You create a counter with a unique
name and optionally an initial value then set its value in response to incoming messages. The most
straightforward use for counter is simply to count messages coming into the target stream. That is, its
value is incremented on every message. This is exactly what the counter module provided by Spring
XD does.

Here’'s an example:
Start by creating a data ingestion stream. Something like:
xd: > stream create --nane springtweets --definition "twittersearch --

consumner Key=<your _key> --consumner Secr et =<your _secret> --query=spring | file --dir=/
tweets/"

Next, create a tap on the springtweets stream that sets a message counter named tweetcount

xd: > stream create --nanme tweettap --definition "tap:springtweets > counter --
nane=t weet count "

$ redis-cl
redis 127.0.0.1: 6379> get counters.tweetcount

1.0.0 Spring XD Guide 60

Spring XD

12.3 Field Value Counter

A field value counter is a Metric used for counting occurrences of unique values for a named field in a
message payload. XD Supports the following payload types out of the box:

» POJO (Java bean)
* Tuple
» JSON String

For example suppose a message source produces a payload with a field named user :

class Foo {
String user;
public Foo(String user) {
this.user = user;

}

If the stream source produces messages with the following objects:

new Foo("fred")
new Foo("sue")
new Foo("dave")
new Foo("sue")

The field value counter on the field user will contain:

fred: 1, sue:2, dave:1l

Multi-value fields are also supported. For example, if a field contains a list, each value will be counted
once:

users:["dave","fred", "sue"]
users:["sue","jon"]

The field value counter on the field users will contain:

dave: 1, fred:1, sue:2, jon:1

field_value_counter has the following options:

fieldName
The name of the field for which values are counted (required)

counterName
A key used to access the counter values. (default: ${fieldName})

To try this out, create a stream to ingest twitter feeds containing the word spring and output to a file:

xd: > stream create --nane springtweets --definition "twittersearch --
consuner Key=<your _key> --consuner Secr et =<your _secret> --query=spring | file"

Now create a tap for a field value counter:

xd: > stream create --nanme tweettap --definition "tap:springtweets > field-val ue-counter --
fi el dName=f r omser "

1.0.0 Spring XD Guide 61

Spring XD

The twittersearch source produces JSON strings which contain the user id of the tweeter in the fromUser
field. The field_value_counter sink parses the tweet and updates a field value counter named fromUser
in Redis. To view the counts:

$ redis-cl
redis 127.0.0. 1: 6379>zrange fi el dval uecounters.fronmJser 0 -1 withscores

12.4 Aggregate Counter

The aggregate counter differs from a simple counter in that it not only keeps a total value for the count,
but also retains the total count values for each minute, hour day and month of the period for which it
is run. The data can then be queried by supplying a start and end date and the resolution at which the
data should be returned.

Creating an aggregate counter is very similar to a simple counter. For example, to obtain an aggregate
count for our spring tweets stream:

xd: > stream create --nanme springtweets --definition "twittersearch --query=spring | file"

you'd simply create a tap which pipes the input to aggr egat ecount er:

xd: > stream create --nanme tweettap --definition "tap:springtwets > aggregatecounter --
nane=t weet count "

The Redis back-end stores the aggregate counts in buckets prefixed with aggr egat ecount ers.
${ nane}. The rest of the string contains the date information. So for our t weet count counter you
might see something like the following keys appearing in Redis:

redis 127.0.0.1: 6379> keys aggregat ecount ers. t weet count *
1) "aggregat ecounters.tweetcount"

2) "aggregatecounters.tweetcount.years"

3) "aggregatecounters.tweetcount.2013"

4) "aggregat ecount ers.tweet count.201307"

5) "aggregatecounters.tweetcount.20130719"

6) "aggregatecounters.tweetcount.2013071914"

The general format is

1. One total value

2. One years hash with a field per year eg. { 2010: value, 2011: value }
3. One hash per year with a field per month { 01: value, ...}

4. One hash per month with a field per day

5. One hash per day with a field per hour

6. One hash per hour with a field per minute

12.5 Gauge

A gauge is a Metric, similar to a counter in that it holds a single long value associated with a unique
name. In this case the value can represent any numeric value defined by the application.

1.0.0 Spring XD Guide 62

Spring XD

The gauge sink provided with XD stores expects a numeric value as a payload, typically this would be
a decimal formatted string, and stores its values in Redis. The gauge includes the following attributes:

name
The name for the gauge (default: <st r eammane>)

Here is an example of creating a tap for a gauge:
Simple Tap Example

Create an ingest stream

xd: > stream create --nanme test --definition "http --port=9090 | file"

Next create the tap:

xd: > stream create --nanme sinpl egauge --definition "tap:test > gauge"

Now Post a message to the ingest stream:

xd:> http post --target http://local host: 9090 --data "10"

Check the gauge:

$ redis-cl
redis 127.0.0.1:6379> get gauges. si npl egauge
" 10"

12.6 Rich Gauge

A rich gauge is a Metric that holds a double value associated with a unique name. In addition to the
value, the rich gauge keeps a running average, along with the minimum and maximum values and the
sample count.

The richgauge sink provided with XD expects a numeric value as a payload, typically this would be a
decimal formatted string, and keeps its value in a store. The richgauge includes the following attributes:

name
The name for the gauge (default: <st r eammane>)

alpha
A smoothing factor between 0 and 1, that if set will compute an exponential moving average (default:
-1, sinple average)

When stored in Redis, the values are kept as a space delimited string, formatted as value alpha mean
max min count

Here are some examples of creating a tap for a rich gauge:
Simple Tap Example
Create an ingest stream

xd: > stream create --nanme test --definition "http --port=9090 | file"

1.0.0 Spring XD Guide 63

http://en.wikipedia.org/wiki/Exponential_smoothing

Spring XD

Next create the tap:

xd: > stream create --nane testgauge --definition "tap:test > richgauge"

Now Post some messages to the ingest stream:

xd: > http post --target http://local host: 9090 --data " 10"
xd: > http post --target http://local host:9090 --data "13"
xd: > http post --target http://|ocal host: 9090 --data "16"

Check the gauge:

$ redis-cl
redis 127.0.0.1: 6379> get richgauges.testgauge
"16.0 -1 13.0 16.0 10.0 3"

Stock Price Example

In this example, we will track stock prices, which is a more practical example. The data is ingested as
JSON strings like

‘{"synbol":"VNMV,"price":72.04}

Create an ingest stream

xd: > stream create --nanme stocks --definition "http --port=9090 | file"

Next create the tap, using the json-field-extractor to extract the stock price from the payload:

xd: > stream create --nanme stockprice --definition "tap:stocks > json-field-extractor --
fiel dNane=price | richgauge"

Now Post some messages to the ingest stream:

xd: > http post --target http://local host: 9090 --data "{\"synbol\":\"VMAN" \"price
\":72.04}"
xd: > http post --target http://l|ocal host: 9090 --data "{\"synbol\":\"VMAN" \"price
\":72.06}"
xd: > http post --target http://local host: 9090 --data "{\"synmbol\":\"VMN" 6 \"price
\":72.08}"

Check the gauge:

$ redis-cl
redis 127.0.0. 1: 6379> get richgauges. stockprice
"72.08 -1 72.04 72.08 72.02 3"

Improved Stock Price Example
In this example, we will track stock prices for selected stocks. The data is ingested as JSON strings like

{"synbol ":"VMN, "price":72. 04}
{"synbol ":"EMC", "price": 24. 92}

The previous example would feed these prices to a single gauge. What we really want is to create a
separate tap for each ticker symbol in which we are interested:

1.0.0 Spring XD Guide 64

Spring XD

Create an ingest stream

xd: > stream create --nanme stocks --definition "http --port=9090 | file"

Next create the taps, using the json-field-extractor to extract the stock price from the payload:

Check the gauge:

xd: > stream create --name vmwprice --definition "tap:stocks > json-field-value-filter --
fi el dName=synbol --fieldValue=VMN | json-field-extractor --fiel dName=price | richgauge"
xd: > stream create --name encprice --definition "tap:stocks > json-field-value-filter --
fi el dNane=synmbol --fieldValue=EMC | json-field-extractor --fieldNane=price | richgauge"
Now Post some messages to the ingest stream:

xd: > http post --target http://l|ocal host:9090 --data "{\"synbol\":\"VMN" \"price
\":72.04}"

xd: > http post --target http://local host: 9090 --data "{\"synmbol\":\"VMAN" 6 \"price
\":72.06}"

xd: > http post --target http://local host: 9090 --data "{\"synmbol\":\"VMAN(" \"price
\":72.08}"

xd: > http post --target http://local host:9090 --data "{\"synbol\":\"EMO\ ", \"price
\":24,92}"

xd: > http post --target http://l|ocal host: 9090 --data "{\"synbol\":\"EMO\",\"price
\":24.90}"

xd: > http post --target http://local host: 9090 --data "{\"synmbol\":\"EMO\", \"price
\":24.96}"

$r

edi s-cl

redis 127.0.0. 1: 6379> get
"24.96 -1 24.926666666666666 24.96 24.9 3"

ri chgauges. encprice

redis 127.0.0.1: 6379> get
"72.08 -1 72.04 72.08 72.02 3"

ri chgauges. vimapri ce

1.0.0

Spring XD Guide

65

Spring XD

13. DSL Reference

13.1 Introduction

Spring XD provides a DSL for defining a stream. Over time the DSL is likely to evolve significantly as it
gains the ability to define more and more sophisticated streams as well as the steps of a batch job.

13.2 Pipes and filters

A simple linear stream consists of a sequence of modules. Typically an Input Source, (optional)
Processing Steps, and an Output Sink. As a simple example consider the collection of data from an
HTTP Source writing to a File Sink. Using the DSL the stream description is:

‘http| file

A stream that involves some processing:

‘http| filter | transform| file

The modules in a stream definition are connected together using the pipe symbol | .

13.3 Module parameters

Each module may take parameters. The parameters supported by a module are defined by the module
implementation. As an example the ht t p source module exposes port setting which allows the data
ingestion port to be changed from the default value.

http --port=1337

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor module is being passed a SpEL expression that will be applied to any data it
encounters:

transform --expressi on=' new StringBuil der (payl oad).reverse()'

If the parameter value needs to embed a single quote, use two single quotes:

/1 Query is: Select * from/Custoners where nanme=' Smith'
scan --query='Select * from/Custoners where name=""'Smth' "'

13.4 Named channels

Instead of a source or sink it is possible to use a named channel. Normally the modules in a stream are
connected by anonymous internal channels (represented by the pipes), but by using explicitly named
channels it becomes possible to construct more sophisticated flows. In keeping with the unix theme,
sourcing/sinking data from/to a particular channel uses the > character. A channel name is prefixed
with a :

Here is an example that shows how you can use a named channel to share a data pipeline driven by
different input sources.

1.0.0 Spring XD Guide 66

Spring XD

:foo > file

http > :foo

time > :foo

Now if you post data to the http source, you will see that data intermingled with the time value in the file.

The opposite case, the fanout of a message to multiple streams, is planned for a future release. However,
taps are a specialization of named channels that do allow publishing data to multiple sinks. For example:

‘tap:nystream> file

‘tap: nmystream > | og

Once data is received on nyst r eam it will be written to both file and log. Note that, unlike other named
channels, references to a tap do not contain a leading : .

Support for routing messages to different streams based on message content is also planned for a
future release.

13.5 Labels

Labels provide a means to alias or group modules. Labels are simply a name followed by a : When
used as an alias a label can provide a more descriptive name for a particular configuration of a module
and possibly something easier to refer to in other streams.

mystream = http | obfuscator: transform --expression=payl oad. repl aceAll (' password',"*") |
file

A module may have multiple labels:

mystream = http | foo: bar: transform --expressi on=payl oad. repl aceAl | (' password','*") |
file

When used for grouping a series of modules might share the same label:

‘nystream: http | groupl: filter | groupl: transform| file

Referring to the label gr oup1 then effectively refers to all the labeled modules. This is not yet exploited
in XD but in future may be used for something like configuring deployment options:

/1 Ensure all nodules in groupl are on the sane machi ne
groupl. col ocation = true

1.0.0 Spring XD Guide 67

Taps

Spring XD

14. Tuples

14.1 Introduction

The Tuple class is a central data structure in Spring XD. It is an ordered list of values that can be
retrieved by name or by index. Tuples are created by a TupleBuilder and are immutable. The values
that are stored can be of any type and null values are allowed.

The underlying Message class that moves data from one processing step to the next can have an
arbitrary data type as its payload. Instead of creating a custom Java class that encapsulates the
properties of what is read or set in each processing step, the Tuple class can be used instead.
Processing steps can be developed that read data from specific named values and write data to specific
named values.

There are accessor methods that perform type conversion to the basic primitive types as well as
BigDecimal and Date. This avoids you from having to cast the values to specific types. Insteam you can
rely on the Tuple’s type conversion infastructure to perform the conversion.

The Tuple’s types conversion is performed by Spring’s Type Conversion Infrastructure which supports
commonly encountered type conversions and is extensible.

There are several overloads for getters that let you provide default values for primitive types should the
field you are looking for not be found. Date format patterns and Locale aware NumberFormat conversion
are also supported. A best effort has been made to preserve the functionality available in Spring Batch's
Fi el dSet class that has been extensively used for parsing String based data in files.

Creating a Tuple
The Tupl eBui | der class is how you create new Tupl e instances. The most basic case is

Tupl e tuple = Tupl eBuil der.tuple().of ("foo", "bar")

This creates a Tuple with a single entry, a key of foo with a value of bar. You can also use a static
import to shorten the syntax.

inport static org.springframework. xd.tuple. Tupl eBui |l der.tuple

Tupl e tuple = tuple().of ("foo", "bar");

You can use the of method to create a Tuple with up to 4 key-value pairs.

Tupl e tuple2 = tuple().of ("up", 1, "down", 2);
Tupl e tuple3 = tuple().of ("up", 1, "down", 2, "charnt, 3)
Tupl e tupled4 = tuple().of ("up", 1, "down", 2, "charnl', 3, "strange", 4);

To create a Tuple with more then 4 entries use the fluent API that strings together the put method and
terminates with the bui | d method

Tupl e tuple6 = tuple().put("up", 1)
. put ("down", 2)
.put ("charnt, 3)
. put ("strange", 4)
. put ("bottont, 5)
.put("top", 6)
. bui ld();

1.0.0 Spring XD Guide 68

http://static.springsource.org/spring/docs/3.0.x/reference/validation.html#core-convert
http://static.springsource.org/spring-batch/2.1.x/apidocs/org/springframework/batch/item/file/transform/FieldSet.html

Spring XD

To customize the underlying type conversion system you can specify the Dat eFor mat to use
for converting String to Dat e as well as the Nunber For mat to use based on a Local e. For
more advanced customization of the type conversion system you can register an instance of a
For mat t i ngConver si onSer vi ce. Use the appropriate setter methods on Tupl eBui | der to make
these customizations.

You can also create a Tuple from a list of St ri ng field names and a List of Obj ect values.

Obj ect[] tokens = new String[]

{ "TestString", "true", "C', "10", "-472", "354224", "543", "124.3", "424.3", "1, 3245",
nul |, "2007-10-12", "12-10-2007", "" };
String[] nameArray = new String[]
{ "String", "Boolean", "Char", "Byte", "Short", "Integer", "Long", "Float", "Double",
"BigDecimal ", "Null", "Date", "DatePattern", "Bl anklnput" };

Li st<String> names = Arrays. asLi st (naneArray);
Li st <Obj ect > val ues = Arrays. asLi st (tokens);
tuple = tupl e(). of NanesAndVal ues(nanes, val ues);

Getting Tuple values
There are getters for all the primitive types and also for BigDecimal and Date. The primitive types are
* Bool ean

* Byte

+ Char

* Doubl e

* Fl oat

* Int

* Long

» Short

e String

Each getter has an overload for providing a default value. You can access the values either by field
name or by index.

The overloaded methods for asking for a value to be converted into an integer are

int getlnt(int index)

eint getInt(String nane)

int getint(int index, int defaultValue)

int getint(String nane, int defaultValue)

There are similar methods for other primitive types. For Bool ean there is a special case of providing
the St ri ng value that represents a t r ueVal ue.

1.0.0 Spring XD Guide 69

Spring XD

* bool ean get Bool ean(int index, String trueVal ue)
* bool ean get Bool ean(String name, String trueVal ue)

If the value that is stored for a given field or index is null and you ask for a primitive type, the standard
Java defalt value for that type is returned.

The get St ri ng method will remove and leading and trailing whitespace. If you want to get the String
and preserve whitespace use the methods get RawSt ri ng

There is extra functionality for getting "Date’s. The are overloaded getters that take a String based date
format

» Date getDateWthPattern(int index, String pattern)

e Date getDateWthPattern(int index, String pattern, Date defaultVal ue)
 Date getDateWthPattern(String nane, String pattern)

» Date getDateWthPattern(String nanme, String pattern, Date defaultVal ue)

There are a few other more generic methods available. Their functionality should be obvious from their
names

* size()

get Fi el dCount ()

» get Fi el dNanes()

e getFiel dTypes()

e get Ti nest anp() - the time the tuple was created - milliseconds since epoch
e getld() -the UUID of the tuple

e Obj ect getVal ue(int index)

» Cbj ect getValue(String nane)

T getValue(int index, O ass<T> val ued ass)

e T getValue(String nane, O ass<T> val ueC ass)
e Li st<bj ect> get Val ues()

e List<String> getFiel dNanes()

* bool ean hasFi el dNane(Stri ng nane)
Using SpEL expressions to filter a tuple

SpEL provides support to transform a source collection into another by selecting from its entries. We
make use of this functionalty to select a elements of a the tuple into a new one.

1.0.0 Spring XD Guide 70

Spring XD

.put ("blue", "blau")
.put("yellow', "gelb")
. put (" bei ge", "beige")
Cbuild();

assert That (sel ect edTupl e. si ze(), equa

Tuple tuple = tuple().put("red", "rot"
. put ("brown", "braun")

)

Tupl e sel ectedTuple = tuple.select("?[key.startsWth('b')]");

To(3)):

To select the first match use the * operator

sel ectedTupl e = tuple.select ("~ key.startsWth('b")]");

assert That (sel ect edTupl e. si ze(), equa

To(1));

assert That (sel ect edTupl e. get Fi el dNanes() . get (0), equal To("brown"));

assert That (sel ect edTupl e. get Stri ng(0),

equal To("braun"));

1.0.0

Spring XD Guide

71

Spring XD

15. Samples

15.1 Syslog ingestion into HDFS

In this section we will show a simple example on how to setup syslog ingestion from multiple hosts
into HDFS.

Create the streams with syslog as source and HDFS as sink (Please refer to source and sink)

xd: > stream create --definition "syslog-udp --port=<udp-port> | hdfs" --name <stream name>

xd: > streamcreate --definition "syslog-tcp --port=<tcp-port> | hdfs" --nane <stream nane>

Please note for hdfs sink, setr ol | over parameter to a smaller value to avoid buffering and to see the
data has made to HDFS (incase of smaller volume of log).

Configure the external hosts’ syslog daemons forward their messages to the xd-container host's UDP/
TCP port (where the syslog-udp/syslog-tcp source module is deployed).

A sample configuration using syslog-ng

Edit /etc/syslog-ng/syslog-ng.conf :

1) Add destination

Add destinati on <destinati onName> {
t cp(" <xd- cont ai ner - host >" port("<tcp-port>"));

}s

or,

Add destinati on <destinati onName> {
udp(" <xd- cont ai ner - host >" port (" <udp-port>"));

}s

2) Add log rule to log message sources:

log {
sour ce(<nessage_source>); destination(<desti nati onName>);

b
We can use “s_all” as message source to try this example.
3) Make sure to restart the service after the change:

sudo service syslog-ng restart

Now, the syslog messages are written into HDFS /xd/<stream-name>/

1.0.0 Spring XD Guide 72

Part Il. Appendices

Spring XD

Appendix A. Installing Hadoop

A.l Installing Hadoop

If you don't have a local Hadoop cluster available already, you can do a local single node installation
(v1.1.2) and use that to try out Hadoop with Spring XD. The examples have been run with Hadoop
1. 1. 2 but should also work with the latest stable release Hadoop 1. 2. 1.

@ Tip

This guide is intended to serve as a quick guide to get you started in the context of Spring XD.
For more complete documentation please refer back to the documentation provided by your
respective Hadoop distribution.

Download

First, download an installation archive and unpack it locally. Linux users can also install Hadoop through
the system package manager and on Mac OS X, you can use Homebrew. However, the manual
installation is self-contained and it's easier to see what’s going on if you just unpack it to a known location.

If you have wget available on your system, you can also execute:

$ wget http://archive. apache. org/ di st/ hadoop/ common/ hadoop- 1. 1. 2/ hadoop-1. 1. 2. tar. gz

Unpack the distribution with:

$ tar xzf hadoop-1.1.2.tar.gz

Change into the directory and have a look around

$ cd hadoop-1.1.2

$1Is

$ bi n/ hadoop

Usage: hadoop [--config confdir] COMVAND
where COMVAND i s one of:

narmenode -for mat format the DFS fil esystem
secondar ynanenode run the DFS secondary nanenode
nanenode run the DFS nanenode

The bi n directory contains the start and stop scripts as well as the hadoop script which allows us to
interact with Hadoop from the command line. The next place to look at is the conf directory.

Java Setup

Make sure that you set JAVA HOVE in the conf / hadoop- env. sh script, or you will get an error when
you start Hadoop. For example:

The java inplenentation to use. Required.
export JAVA HOVE=/usr/lib/j2sdkl. 5-sun

export JAVA HOME=/ Li brary/ Javal Horre

1.0.0 Spring XD Guide 74

http://hadoop.apache.org/docs/r1.1.2/single_node_setup.html
http://hadoop.apache.org/docs/r1.1.2/single_node_setup.html
http://archive.apache.org/dist/hadoop/common/
http://brew.sh/

Spring XD

© Important

You should use Java 6. Currently you cannot use Java 7. If you do accidentally point to a Java
7 directory you may encounter an error such as Unable to load realm info from
SCDynami ¢St or e when starting the Hadoop node.

@ Tip

When using Mac OS X you can determine the Java 6 home directory by executing $ /usr/
i bexec/java_hone -v 1.6

© Important

When using MAC OS X (Other systems possible also) you may still encounter Unabl e t o | oad
real minfo from SCDynam cSt or e (For details see Hadoop Jira HADOOP-7489). In that
case, please also add to conf / hadoop- env. sh the following line: export HADOOP_OPTS=" -
Dj ava. security. krb5. real n= - Dj ava. security. kr b5. kdc=".

Setup SSH

As described in the installation guide, you also need to set up SSH login to | ocal host without a
passphrase. On Linux, you may need to install the ssh package and ensure the sshd daemon is
running. On Mac OS X, ssh is already installed but the sshd daemon isn’'t usually running. To start it,
you need to enable "Remote Login" in the "Sharing" section of the control panel. Then you can carry on
and setup SSH keys as described in the installation guide:

$ ssh-keygen -t dsa -P'' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Make sure you can log in at the command line using ssh | ocal host before trying to start Hadoop:

$ ssh | ocal host
Last login: Thu May 30 12:52:47 2013

You also need to decide where in your local filesystem you want Hadoop to store its data. Let's say
you decide to use / dat a.

First create the directory and make sure it is writeable:

$ nkdir /data
$ chnod 777 /data

Now edit conf / cor e-si t e. xm and add the following property:
<property>
<nanme>hadoop. t np. di r </ name>

<val ue>/ dat a</ val ue>
</ property>

You're then ready to format the filesystem for use by HDFS

$ bi n/ hadoop namenode -fornat

1.0.0 Spring XD Guide 75

https://issues.apache.org/jira/browse/HADOOP-7489
http://en.wikipedia.org/wiki/Secure_Shell

Spring XD

Setting the Namenode Port

By default Spring XD will use a Namenode setting of hdfs:/ /| ocal host: 8020 which is defined
in ${xd. hone}/ confi g/ hadoop. properti es, depending on the used Hadoop distribution and
version the by-default-defined port 8020 may be different, e.g. port 9000. Therefore, please ensure you
have the following setting in conf / core-site. xm :

<confi gurati on>
<property>
<nane>f s. def aul t . name</ nane>
<val ue>hdfs:/ /| ocal host: 8020</ val ue>
</ property>
</ configuration>

Further Configuration File Changes

Inconf/ hdfs-site. xnl add:

<configuration>
<property>
<nane>dfs. replicati on</ name>
<val ue>1</val ue>
</ property>
</ confi guration>

In conf/ mapred-site. xnl add:

<confi guration>
<property>
<nanme>napr ed. j ob. t racker </ nane>
<val ue>| ocal host: 9001</ val ue>
</ property>
</configuration>

A.2 Running Hadoop

You should now finally be ready to run Hadoop. Run the st art-al | . sh script

$ bin/start-all.sh

You should see five Hadoop Java processes running:

$ jps

4039 TaskTracker

3713 NanmeNode

3802 Dat aNode

3954 JobTracker

3889 Secondar yNaneNode
4061 Jps

Try a few commands with hadoop df s to make sure the basic system works

$ bin/hadoop dfs -Is /
Found 1 itens
dr wxr - Xr - x - | uke supergroup 0 2013-05-30 17:28 /data

1.0.0 Spring XD Guide 76

Spring XD

$ bin/ hadoop dfs -nkdir /test

$ bi n/ hadoop dfs -1s /

Found 2 items

dr wxr - xr - x - |l uke supergroup 0 2013-05-30 17:28 /data
dr wxr - Xr - x - luke supergroup 0 2013-05-30 17:31 /test

$ bin/hadoop dfs -rnr /test
Del eted hdfs://1 ocal host: 9000/t est

Lastly, you can also browse the web interface for NameNode and JobTracker at:

» NameNode: http://localhost:50070/

» JobTracker: http://localhost:50030/

At this point you should be good to create a Spring XD stream using a Hadoop sink.

1.0.0 Spring XD Guide

77

http://localhost:50070/
http://localhost:50030/

Spring XD

Appendix B. Creating a Source
Module

B.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom source module.

The first module in a stream is always a source. Source modules are built with Spring Integration and are
typically very fine-grained. A module of type source is responsible for placing a message on a channel
named output. This message can then be consumed by the other processor and sink modules in the
stream. A source module is typically fed data by an inbound channel adapter, configured with a poller.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a source module that uses
these inbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a source module using the Spring Integration
Feed Inbound Channel Adapter.

B.2 Create the module Application Context file

Create the Inbound Channel Adapter in a file called feed.xml:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww. springfranmework. org/ schema/integration"
xm ns:int-feed="http://ww. springfranmework. org/schema/integration/feed"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. spri ngfranewor k. org/ schenma/ i ntegration/feed
http://ww. springfranework. org/ schema/ i ntegration/feed/ spring-integration-feed. xsd">

<i nt-f eed: i nbound- channel - adapter channel ="output" url="http://feeds. bbci. co. uk/ news/
rss.xm">

<int:poller fixed-rate="5000" nmax-nmessages-per-poll="100" />
</int-feed:inbound-channel - adapt er >

<i nt:channel id="output"/>
</ beans>

The adapter is configured to poll the BBC News Feed every 5 seconds. Once an item is found, it will
create a message with a SyndEntrylmpl domain object payload and write it to a message channel
called output. The name output should be used by convention so that your source module can easily
be combined with any processor and sink module in a stream.

1.0.0 Spring XD Guide 78

Spring XD

Make the module configurable

Users may want to pull data from feeds other than BBC News. Spring XD will automatically make a
PropertyPlaceholderConfigurer available to your application context. You can simply reference property
names and users can then pass in values when creating a stream using the DSL.

<i nt - f eed: i nbound- channel - adapter channel ="output" url="${url:http://feeds. bbci.co. uk/
news/rss. xm}">

<int:poller fixed-rate="5000" max-nmessages-per-poll="100" />
</int-feed:inbound-channel - adapt er >

Now users can optionally pass a url property value on stream creation. If not present, the specified
default will be used.

B.3 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
news items are received. In order to write the test, you will need to create a project in an IDE such as
STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a feed directory and add feed.xml to src/main/resources. Add the following build.gradle (or an
equivalent pom.xml) to the root directory:

description = 'Feed Source Mdul e
group = 'org.springfranework. xd. sanpl es

repositories {
maven { url "http://repo.springsource.org/libs-snapshot” }
maven { url "http://repo.springsource. org/plugins-rel ease" }

}

apply plugin: 'java
apply plugin: 'eclipse
apply plugin: 'idea

ext {
junitVersion = '4.11'
springVersion = '3.2. 2. RELEASE
springlntegrationVersion = '3.0.0. M2

}

dependenci es {
conpi | e("org. springfranmewor k: spring-core: $spri ngVer si on")
conpi l e "org. springfranmewor k: spring-cont ext -support: $spri ngVersi on"
conpil e "org. springframework.integration:spring-integration-feed
$springl nt egrati onVersi on"

/1 Testing
test Conpi l e "j unit:junit:$junitVersion"
test Conpi |l e "org. springframework: spri ng-test: $spri ngVersi on"

}

def aul t Tasks ' buil d'

1.0.0 Spring XD Guide 79

Spring XD

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that news items are received once the module’s Application
Context is loaded. This can be tested by adding an Outbound Channel Adapter that will direct items to

a POJO that can store them for validation.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns:int="http://ww.springframework. org/schema/integration”

xm ns: cont ext ="http://wwmv. springfranmewor k. or g/ schema/ cont ext "

xsi : schemalLocat i on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://wwv spri ngfranmewor k. or g/ schema/ cont ext
http://ww. springfranmework. or g/ schema/ cont ext/spri ng-cont ext. xsd
http://ww. springframework. org/ schema/ i nt egration
http://ww. spri ngfranewor k. org/ schema/ i ntegration/spring-integration.xsd">

<cont ext : property- pl acehol der/ >
<i nt : out bound- channel - adapt er channel ="out put" ref="target" method="add" />
<bean id="target" class="org.springfranework.xd. sanpl es. FeedCache" />

</ beans>

This context creates an Outbound Channel Adapter that will subscribe to all messages on the output
channel and pass the message payload to the add method of a FeedCache object. The context also
creates the PropertyPlaceholderConfigurer that is ordinarily provided by the XD container.

Create the src/test/java/org/springframework/xd/samples/FeedCache class:

package org. springfranmewor k. xd. sanpl es
i mport

public class FeedCache {
final Bl ocki ngDeque<SyndEntry> entries = new Li nkedBl ocki ngDeque<SyndEntry>(99);

public void add(SyndEntry entry) {
entries.add(entry);

}

}

The FeedCache places all received SyndEntry objects on a BlockingDeque that our test can use to
validate successful routing of messages.

Lastly, create and run the src/test/java/org/springframework/xd/samples/FeedSourceModuleTest:

1.0.0 Spring XD Guide 80

Spring XD

package org. springfranmework. xd. sanpl es
import ...

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@Cont ext Confi guration(locations={"classpath: feed.xm", "test-context.xm "})
public class FeedSourceMdul eTest {

@\ut owi r ed
FeedCache feedCache

@est
public void testFeedPolling() throws Exception {
assert Not Nul | (f eedCache. entries. poll (5, TineUnit.SECONDS));

}

The test will load an Application Context using our feed and test context files. It will fail if a item is not
placed into the FeedCache within 5 seconds.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

B.4 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

nmodul es/ processor
nodul es/ si nk
nmodul es/ sour ce

Simply drop feed.xml into the modules/source directory and add the dependencies to the lib directory.
For now, all module dependencies need to be added to ${xd.home}/lib. Future versions of Spring XD
will provide a more elegant module packaging approach. Copy the following jars from your gradle cache
to ${xd.home}/lib:

spring-integration-feed-3.0.0.M.jar
jdom 1.0.j ar

rome-1.0.0.jar
rone-fetcher-1.0.0.jar

Now fire up the server. See Getting Started to learn how to start the Spring XD server.

B.5 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write SyndEntry objects
to the XD log:

xd: > stream create --nanme feedtest --definition "feed | |og"

You should start seeing messages like the following in the container console window:

1.0.0 Spring XD Guide 81

Spring XD

WARN | ogger . feedtest: SyndEntrylnpl.contributors=[]
SyndEnt ryl npl . cont ent s=[]
SyndEnt ryl npl . updat edDat e=nul |
SyndEnt ryl npl . | i nk=http://ww. bbc. co. uk/ news/ uk- 22850006#sa-
ns_nthannel =r ss&ns_sour ce=Publ i cRSS20- sa
SyndEntryl npl . titl eEx. val ue=VIDEO Queen visits Prince Philip in hospital

As you can see, the SyndEntrylmpl toString is fairly verbose. To make the output more concise, create
a processor module to further transform the SyndEntry or consider converting the entry to JSON and
using the JSON Field Extractor to send a single attribute value to the output channel.

1.0.0 Spring XD Guide 82

Spring XD

Appendix C. Creating a Processor
Module

C.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom processor module.

One or more processors can be included in a stream definition to modifythe data as it passes between
the inital source and the destination sink. The architecture section covers the basics of processors
modules provided out of the box are covered in the processors section.

Here we’ll look at how to create and deploy a custom processor module to transform the input from
an incoming t wi tt er sear ch. The steps are essentially the same for any source though. Rather than
using built-in functionality, we’ll write a custom processor implementation class and wire it up using
Spring Integration.

C.2 Write the Transformer Code

The tweet messages fromt wi t t er sear ch contain quite a lot of data (id, author, time and so on). The
transformer we’ll write will discard everything but the text content and output this as a string. The output
messages from the t wi t t er sear ch source are also strings, containing the tweet data as JSON. We
first parse this into a map using Jackson library code, then extract the "text" field from the map.

package custom

i mport java.io.| COException;
import java.util.Mp;

i mport org.codehaus. jackson. map. Obj ect Mapper ;
i mport org.codehaus. jackson. type. TypeRef erence;
i nport org.springfranework.integration.transforner. MessageTransfor mati onExcepti on;

public class Tweet Transformer {
private Object Mapper mapper = new Obj ect Mapper ();

public String transform(String payl oad) {
try {
Map<String, Object> tweet = mapper.readVal ue(payl oad, new TypeRef erence<Map<Stri ng,
Qoj ect>>() {});
return tweet.get("text").toString();
} catch (1 OException e) {
t hrow new MessageTransformati onExcepti on("Unable to transformtweet: " +
e. get Message(), e);
}
}
}

C.3 Create the module Application Context File

Create the following file as tweettransformer.xmil:

1.0.0 Spring XD Guide 83

Spring XD

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans: beans xm ns="http://ww. spri ngfranework. org/ schena/i nt egration"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //wwm. spri ngf ramewor k. or g/ schema/ beans"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http: // ww. spri ngfranewor k. or g/ schema/ i ntegration
http://ww. springfranework. org/ schema/ i ntegration/spring-integration.xsd">
<channel id="input"/>

<transformer input-channel ="input" output-channel ="out put">
<beans: bean cl ass="cust om Tweet Transforner" />
</ transf or mer >

<channel id="output"/>
</ beans: beans>

C.4 Deploy the Module

To deploy the module, you need to copy the tweettransformer.xml file to the ${ xd. hone} / nodul es/
processor s directory. We also need to make the custom module code available. Currently Spring
XD looks for code in the jars it finds in the ${xd. hormre}/ | i b directory. So create a jar with the
Tweet Tr ansf or mer class in it (and the correct package structure) and drop itinto | i b.

C.5 Test the deployed module

Start the XD server and try creating a stream to test your processor:

xd: > stream create --nanme javatweets --definition "twittersearch --query=java --
consuner Key=<your _key> --consuner Secr et =<your_secret> | tweettransformer | file"

If you haven't already used twi ttersearch, read the sources section for more details. This
command should stream tweets to the file / t np/ xd/ out put / j avat weet s but, unlike the normal
twi tt ersear ch output, you should just see the plain tweet text there, rather than the full JSON data.

1.0.0 Spring XD Guide 84

Spring XD

Appendix D. Creating a Sink Module

D.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom sink module.

The last module in a stream is always a sink. Sink modules are built with Spring Integration and are
typically very fine-grained. A module of type sink listens on a channel named input and is responsible
for outputting received messages to an external resource to terminate the stream.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a sink module that uses these
outbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a sink module using the Spring Integration
RedisStore Outbound Channel Adapter.

D.2 Create the module Application Context file

Create the Outbound Channel Adapter in a file called redis-store.xmil:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance" xm ns:int="http://
www. spri ngframewor k. or g/ schema/ i nt egrati on"
xm ns:int-redi s="http://ww.springframework. org/ schena/integration/redis"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. springfranmework. org/ schema/integration/redis
http://ww. springframework. org/ schema/integration/redis/spring-integration-redis.xsd">

<i nt:channel id="input" />

<i nt-redis: store-out bound-channel - adapt er
i d="redi sLi st Adapter" collection-type="LIST" channel ="i nput" key="nyCol | ection" />

<bean i d="redi sConnecti onFact ory"

class="org. springframework. data. redi s. connection. | ettuce. LettuceConnecti onFactory">
<constructor-arg i ndex="0" val ue="${l ocal host}" />

<constructor-arg i ndex="1" val ue="${6379}" />

</ bean>

</ beans>

The adapter is configured to listen on a channel named input. The name input should be used by
convention so that your sink module will receive all messages sent in the stream. Once a message
is received, it will write the payload to a Redis list with key myCollection. By default, the RedisStore
Outbound Channel Adapter uses a bean named redisConnectionFactory to connect to the Redis server.

1.0.0 Spring XD Guide 85

Spring XD

© Note

By default, the adapter uses a StringRedisTemplate. Therefore, this module will store all payloads
directly as Strings. Create a custom RedisTemplate with different value Serializers to serialize
other forms of data like Java objects to the Redis collection.

D.3 Make the module configurable

Users may want to specify a different Redis server or key to use for storing data. Spring XD will
automatically make a PropertyPlaceholderConfigurer available to your application context. You can
simply reference property names and users can then pass in values when creating a stream using the
DSL

<i nt-redi s: st ore-out bound- channel - adapt er
i d="redi sLi st Adapter" collection-type="LIST" channel ="i nput" key="${key: myCol | ection}" /
>

<bean i d="redi sConnecti onFact ory"
class="org. springframework. dat a. redi s. connection. | ettuce. LettuceConnecti onFactory">
<constructor-arg i ndex="0" val ue="${host nane: | ocal host}" />

<constructor-arg i ndex="1" val ue="${port:6379}" />
</ bean>

Now users can optionally pass key, hostname, and port property values on stream creation. If not
present, the specified defaults will be used.

D.4 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
messages are stored in Redis. In order to write the test, you will need to create a project in an IDE such
as STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a redis-store directory and add redis-store.xml to src/main/resources. Add the following
build.gradle (or an equivalent pom.xml) to the root directory:

1.0.0 Spring XD Guide 86

Spring XD

description = 'Redis Store Sink Mdule
group = 'org.springframework. xd. sanpl es

repositories {
maven { url "http://repo.springsource.org/libs-snapshot" }
maven { url "http://repo.springsource.org/plugins-rel ease" }

}

apply plugin: 'java
apply plugin: "eclipse
apply plugin: 'idea

ext {
junitVersion = '4.11'
| ettuceVersion = '2.3.2
springVersion = '3.2.2. RELEASE
springlntegrationVersion = '3.0.0. M2
springSoci al Version = '1.0.1. RELEASE
spri ngDat aRedi sVersi on = '1.0. 4. RELEASE
}

dependenci es {

conpi | e("org. springfranmewor k: spring-core: $spri ngVer si on")

conpi | e "org. springfranmework: spring-cont ext-support: $spri ngVersi on"

conpi l e "org. springfranework. integration:spring-integration-core
$springl nt egrati onVersi on"

conpil e "org.springframework.integration:spring-integration-redis
$springl nt egrati onVersi on"

conpi l e "org. springfranmewor k. dat a: spri ng-dat a-redi s: $spri ngDat aRedi sVer si on"

/] Testing

testConpile "junit:junit:$junitVersion"

test Conpi |l e "org. spri ngframework: spri ng-test: $spri ngVersi on"
t est Conpi | e "com | ambdawor ks: | et t uce: $l et t uceVersi on"

}

def aul t Tasks ' build'

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that messages are stored in a Redis list once the module’s
Application Context is loaded. This can be tested by adding an Inbound Channel Adapter that will direct

test messages to the input channel.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

1.0.0 Spring XD Guide 87

Spring XD

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" xm ns:int="http://
www. spri ngf ranewor k. or g/ schema/ i nt egrati on"
xm ns: cont ext ="http://wwmv springfranmewor k. or g/ schema/ cont ext "
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwv. spri ngfranmewor k. or g/ schema/ cont ext
http://ww. springfranewor k. or g/ schenma/ cont ext/ spri ng-cont ext. xsd
http://ww. springframewor k. org/ schema/ i nt egrati on
http: //ww. spri ngfranewor k. or g/ schenma/ i ntegration/spring-integration.xsd">

<cont ext: property-pl acehol der />

<i nt:inbound- channel - adapt er channel ="i nput" expressi on=""'TESTI NG ">

<int:poller fixed-rate="1000" />

</int:inbound- channel - adapt er >

<bean i d="redi sTenpl ate" cl ass="org. spri ngframework. data.redi s. core. Stri ngRedi sTenpl at e">
<property nane="connectionFactory" ref="redi sConnecti onFactory" />

</ bean>

</ beans>

This context creates an Inbound Channel Adapter that will generate messages with the payload
"TESTING". The context also creates the PropertyPlaceholderConfigurer that is ordinarily provided by
the XD container. The redisTemplate is configured for use by the test to verify that data is placed in
Redis.

Lastly, create and run the src/test/java/org/springframework/xd/samples/RedisStoreSinkModuleTest:

package org. springfranmewor k. xd. sanpl es;
i mport

@RunW t h(Spri ngJdUni t 4Cl assRunner . cl ass)
@ont ext Confi gurati on(l ocati ons={"cl asspat h: redi s-store.xm ", "test-context.xm"})
public class Redi sStoreSi nkMdul eTest {

@\ut owi r ed
Redi sTenpl at e<String, String> redi sTenpl at e;

@est
public void testTweet Search() throws Exception {
assert Not Nul | (redi sTenpl at e. boundLi st Ops(" nyCol | ecti on") .| eftPop(5,
Ti meUni t . SECONDS)) ;
}

}

The test will load an Application Context using our redis-store and test context files. It will fail if an item
is not placed in the Redis list within 5 seconds.

Run the test

The test requires a running Redis server. See Getting Started for information on installing and starting
Redis.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

1.0.0 Spring XD Guide 88

Spring XD

D.5 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

nmodul es/ processor
nmodul es/ si nk
nmodul es/ sour ce

Simply drop redis-store.xml into the modules/sink directory and fire up the server. See Getting Started
to learn how to start the Spring XD server.

D.6 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write tweets containing
the word "java" to Redis as a JSON string:

xd: > stream create --name javasearch --definition "twittersearch --consunerKey=<your_key>
--consuner Secr et =<your _secret> --query=java | redis-store --key=javatweets"

Note that you need to have a consumer key and secret to use the t wi t t er sear ch module. See the
description in the streams section for more information.

Fire up the redis-cli and verify that tweets are being stored:

$ redis-cli

redis 127.0.0.1:6379> Irange javatweets 0 -1

1) {\"id\":342386150738120704,\"text\":\"Now Hiring: Senior Java Devel oper\",\"creat edAt
\":1370466194000, \ "fromJser\":\"j enconmpgeek\", ... \"}"

1.0.0 Spring XD Guide 89

Spring XD

Appendix E. Building Spring XD

E.1 Instructions

Here are some useful steps to build and run Spring XD.

To build all sub-projects and run tests for Spring XD:

‘./gradl ew buil d

To build and bundle the distribution of Spring XD

‘./gradl ew di st

The above gradle task creates spring-xd-<version>.zip binary distribution archive and spring-xd-
<version>-docs.zip documentation archive files under build/distributions. This will also create a build/
dist/spring-xd directory which is the expanded version of the binary distribution archive.

To just create the Spring XD expanded binary distribution directory

./ gradl ew copyl nstal |

The above gradle task creates the distribution directory under build/dist/spring-xd.

Once the binary distribution directory is created, please refer to Getting Started on how to run Spring XD.

E.2 IDE support

If you would like to work with the Spring XD code in your IDE, please use the following project generation
depending on the IDE you use:

For Eclipse/Spring Tool Suite

‘ ./ gradl ew eclipse

For IntelliJ IDEA

‘./gradl ew i dea

Then just import the project as an existing project.

1.0.0 Spring XD Guide 90

https://github.com/SpringSource/spring-xd/wiki/Getting-Started

Spring XD

Appendix F. XD Shell Command
Reference

F.1 Base Commands

admin config server

Configure the XD admin server to use.

adm n config server [[--uri] <uri>]

uri
the location of the XD Admin REST endpoint. (default: htt p: / /| ocal host : 8080/)

admin config info

Show the XD admin server being used.

admin config info

F.2 Stream Commands

stream create

Create a new stream definition.

stream create [--nanme] <name> --definition <definition> [--deploy <depl oy>]

name
the name to give to the stream. (required)

definition
a stream definition, using XD DSL (e.g. "http --port=9000 | hdfs"). (required)

deploy
whether to deploy the stream immediately. (default: t r ue)

stream destroy

Destroy existing stream(s).

stream destroy [[--nane] <nane>] [--all [<all>]]

name
the name of the stream to destroy.

all
destroy all the existing streams. (default: f al se, ortrue if --al | is specified without a value)

1.0.0 Spring XD Guide 91

Spring XD

stream deploy

Deploy previously created stream(s).

stream deploy [[--nanme] <name>] [--all [<all>]]

name
the name of the stream to deploy.

all
deploy all un-deployed streams. (default: f al se, ortrueif--all is specified without a value)

stream undeploy
Un-deploy previously deployed stream(s).

stream undepl oy [[--nanme] <name>] [--all [<all>]]

name
the name of the stream to un-deploy.

all
undeploy all the deployed streams. (default: f al se, or true if --al |l is specified without a
value)

stream list

List created streams.

stream | i st

F.3Job Commands

job create
Create a job.

job create [--nanme] <nanme> --definition <definition> [--deploy <depl oy>]

name
the name to give to the job. (required)

definition
job definition using xd dsl . (required)

deploy
whether to deploy the stream immediately. (default: t r ue)

job list
List all jobs.

job list

1.0.0 Spring XD Guide 92

Spring XD

job deploy
Deploy previously created job(s).

job deploy [[--nane] <nane>] [--all [<all>]] [--dateFormat <dateFormat>] [--nunber For mat
<nunber For mat >] [-- makeUni que <makeUni que>]

name
the name of the job to deploy.

all
deploy all the existing jobs. (default: f al se, ortrueif --al | is specified without a value)

dateFormat
the optional date format for job parameters.

numberFormat
the optional number format for job parameters.

makeUnique
shall job parameters be made unique?.

job undeploy

Un-deploy existing job(s).

job undeploy [[--nane] <name>] [--all [<all>]]

name
the name of the job to un-deploy.

all
undeploy all the existing jobs. (default: f al se, ortrueif --all is specified without a value)

job destroy

Destroy existing job(s).

job destroy [[--nane] <nane>] [--all [<all>]]

name
the name of the job to destroy.

all
destroy all the existing jobs. (default: f al se, ortrueif --all is specified without a value)

F.4 Metrics Commands

counter list

List all available counter names.

counter |ist

1.0.0 Spring XD Guide 93

Spring XD

counter delete
Delete the counter with the given name.

counter delete [--nanme] <name>

name
the name of the counter to delete. (required)

counter display

Display the value of a counter.

counter display [--nanme] <name> [--pattern <pattern>]

name
the name of the counter to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use pl atform | ocal e>)

fieldvaluecounter list
List all available field-value-counter names.

fi el dval uecounter 1|ist

fieldvaluecounter delete

Delete the field-value-counter with the given name.

fieldval uecounter delete [--nanme] <name>

name
the name of the field-value-counter to delete. (required)

fieldvaluecounter display

Display the value of a field-value-counter.

fieldval uecounter display [--name] <name> [--pattern <pattern>] [--size <size>]

name
the name of the field-value-counter to display. (required)

pattern
the pattern used to format the field-value-counter’s field count (see DecimalFormat). (default: <use
pl atform | ocal e>)

size
the number of values to display. (default: 25)

aggregatecounter list

List all available aggregate counter names.

1.0.0 Spring XD Guide 94

Spring XD

aggregat ecounter |ist

aggregatecounter delete

Delete an aggregate counter.

aggr egat ecounter del ete [--nane] <name>

name
the name of the aggregate counter to delete. (required)

aggregatecounter display

Display aggregate counter values by chosen interval and resolution(minute, hour).

aggregat ecounter display [--nanme] <name> [--from<fronmp] [--to <to>] [--]|astHours
<l ast Hours>] [--lastDays <lastDays>] [--resolution <resolution>] [--pattern <pattern>]
name

the name of the aggregate counter to display. (required)

from
start-time for the interval. format: yyyy-MM-dd HH:mm:ss.

to
end-time for the interval. format: yyyy-MM-dd HH:mm:ss. defaults to now.

lastHours
set the interval to last n hours.

lastDays
set the interval to last n days.

resolution
the size of the bucket to aggregate (minute, hour). (default: hour)

pattern
the pattern used to format the count values (see DecimalFormat). (default: <use
| ocal e>)

gauge list

List all available gauge names.

pl at f orm

gauge |i st

gauge delete

Delete a gauge.

gauge del ete [--nanme] <nanme>

name
the name of the gauge to delete. (required)

1.0.0 Spring XD Guide

95

Spring XD

gauge display
Display the value of a gauge.

gauge di splay [--nanme] <name> [--pattern <pattern>]

name
the name of the gauge to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use pl atform | ocal e>)

richgauge list
List all available richgauge names.

ri chgauge |i st

richgauge delete
Delete the richgauge.

ri chgauge del ete [--nanme] <nanme>

name
the name of the richgauge to delete. (required)

richgauge display

Display Rich Gauge value.

ri chgauge display [--nane] <nane> [--pattern <pattern>]

name
the name of the richgauge to display value. (required)

pattern
the pattern used to format the richgauge value (see DecimalFormat). (default: <use pl atform
| ocal e>)

F.5 Http Commands

http post

POST data to http endpoint.

http post [[--target] <target>] [--data <data>] [--file <file>] [--contentType
<cont ent Type>]

target
the location to post to. (default: htt p://1 ocal host : 9000)

data
the text payload to post. exclusive with file. embedded double quotes are not supported if next to
a space character.

1.0.0 Spring XD Guide 96

Spring XD

file
filename to read data from. exclusive with data.

contentType

the content-type to use. file is also read using the specified charset. (default: t ext/ pl ai n;

Char set =UTF- 8)

F.6 Hadoop Configuration Commands

hadoop config props set
Sets the value for the given Hadoop property.

hadoop config props set [--property] <property>

property
what to set, in the form <name=value>. (required)

hadoop config props get
Returns the value of the given Hadoop property.

hadoop config props get [--key] <key>

key
property name. (required)

hadoop config info

Returns basic info about the Hadoop configuration.

hadoop config info

hadoop config load

Loads the Hadoop configuration from the given resource.

hadoop config load [--1ocation] <location>

location
configuration location (can be a URL). (required)

hadoop config props list

Returns (all) the Hadoop properties.

hadoop config props |ist

hadoop config fs
Sets the Hadoop namenode.

hadoop config fs [--namenode] <namenode>

1.0.0 Spring XD Guide

97

Spring XD

namenode
namenode address - can be local|<namenode:port>. (required)

hadoop config jt

Sets the Hadoop job tracker.

‘ hadoop config jt [--jobtracker] <jobtracker>

jobtracker
job tracker address - can be local|<jobtracker:port>. (required)

F.7 Hadoop FileSystem Commands

hadoop fs get

Copy files to the local file system.

hadoop fs get --from<fronk --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to

destination path name. (required)
ignoreCrc

whether ignore CRC. (default: f al se, or true if - -i gnor eCr c is specified without a value)
crc

whether copy CRC. (default: f al se, or true if - - cr c is specified without a value)

hadoop fs put

Copy single src, or multiple srcs from local file system to the destination file system.

hadoop fs put --from<fronr --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs count

Count the number of directories, files, bytes, quota, and remaining quota.

hadoop fs count [--quota [<quota>]] --path <path>

quota
whether with quta information. (default: f al se, ortrue if - - quot a is specified without a value)

1.0.0 Spring XD Guide 98

Spring XD

path
path name. (required)

hadoop fs mkdir

Create a new directory.

hadoop fs nkdir [--dir] <dir>

dir
directory name. (required)

hadoop fs tail
Display last kilobyte of the file to stdout.

hadoop fs tail [--file] <file> [--follow [<follow]]

file
file to be tailed. (required)

follow
whether show content while file grow. (default: f al se,ortrueif--fol | owis specified without
avalue)

hadoop fs chgrp

Change group association of files.

hadoop fs chgrp [--recursive [<recursive>]] --group <group> [--path] <path>

recursive
whether with recursion. (default: f al se, ortrue if - -recur si ve is specified without a value)

group
group name. (required)

path
path of the file whose group will be changed. (required)

hadoop fs chown

Change the owner of files.

hadoop fs chown [--recursive [<recursive>]] --owner <owner> [--path] <path>

recursive
whether with recursion. (default: f al se, ortrue if - -recursi ve is specified without a value)

owner
owner name. (required)

path
path of the file whose ownership will be changed. (required)

1.0.0 Spring XD Guide 99

Spring XD

hadoop fs chmod

Change the permissions of files.

hadoop fs chnod [--recursive [<recursive>]] --nmpbde <nbde> [--path] <path>

recursive
whether with recursion. (default: f al se, ortrue if - -recursi ve is specified without a value)

mode
permission mode. (required)

path
path of the file whose permissions will be changed. (required)

hadoop fs copyFromLocal
Copy single src, or multiple srcs from local file system to the destination file system. Same as put.

hadoop fs copyFroniocal --from<from --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs moveFromLocal
Similar to put command, except that the source localsrc is deleted after it's copied.

hadoop fs noveFromiocal --from<from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs copyToLocal

Copy files to the local file system. Same as get.

hadoop fs copyToLocal --from<from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to

destination path name. (required)
ignoreCrc

whether ignore CRC. (default: f al se, ortrue if - -i gnor eCr c is specified without a value)
crc

whether copy CRC. (default: f al se, ortrueif --crc is specified without a value)

1.0.0 Spring XD Guide 100

Spring XD

hadoop fs copyMergeToLocal

Takes a source directory and a destination file as input and concatenates files in src into the destination
local file.

hadoop fs copyMergeToLocal --from<fronk --to <to> [--endline [<endline>]]

from
source file names. (required)

to
destination path name. (required)

endline
whether add a newline character at the end of each file. (default: f al se, or true if - - endl i ne
is specified without a value)

hadoop fs cp

Copy files from source to destination. This command allows multiple sources as well in which case the
destination must be a directory.

hadoop fs cp --from<fronmr --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs mv
Move source files to destination in the HDFS.

hadoop fs mv --from<fronr --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs du

Displays sizes of files and directories contained in the given directory or the length of a file in case its
just a file.

hadoop fs du [[--dir] <dir>] [--summary [<summary>]]
dir
directory to be listed. (default: .)

summary
whether with summary. (default: f al se, or true if - - sunmary is specified without a value)

1.0.0 Spring XD Guide 101

Spring XD

hadoop fs expunge

Empty the trash.

hadoop fs expunge

hadoop fs rm
Remove files in the HDFS.

hadoop fs rm[[--path] <path>] [--skipTrash [<skipTrash>]] [--recursive [<recursive>]]

path
path to be deleted. (default: .)

skipTrash
whether to skip trash. (default: f al se, or t rue if - - ski pTrash is specified without a value)

recursive
whether to recurse. (default: f al se, or true if - -recur si ve is specified without a value)

hadoop fs setrep
Change the replication factor of a file.

hadoop fs setrep --path <path> --replica <replica> [--recursive [<recursive>]] [--waiting
[<waiting>]]

path
path name. (required)

replica
source file names. (required)

recursive
whether with recursion. (default: f al se, ortrue if - -recur si ve is specified without a value)

waiting
whether wait for the replic number is eqal to the number. (default: f al se, ortrue if - -wai ti ng
is specified without a value)

hadoop fs text

Take a source file and output the file in text format.

hadoop fs text [--file] <file>

file
file to be shown. (required)

hadoop fs touchz
Create a file of zero length.

hadoop fs touchz [--file] <file>

1.0.0 Spring XD Guide 102

Spring XD

file
file to be touched. (required)

hadoop fs cat

Copy source paths to stdout.

hadoop fs cat [--path] <path>

path
file name to be shown. (required)

hadoop fs Is

List files in the directory.

hadoop fs Is [[--dir] <dir>] [--recursive [<recursive>]]
dir
directory to be listed. (default: .)

recursive
whether with recursion. (default: f al se, or true if - -recur si ve is specified without a value)

1.0.0 Spring XD Guide 103

	Spring XD Guide
	Table of Contents
	Part I. Reference Guide
	1. Introduction
	1.1 Overview

	2. Getting Started
	2.1 Requirements
	2.2 Download Spring XD
	2.3 Install Spring XD
	2.4 Start the Runtime and the XD Shell
	2.5 Create a Stream
	2.6 Explore Spring XD

	3. Running in Distributed Mode
	3.1 Introduction
	3.2 Using Redis
	Installing Redis
	Troubleshooting
	Redis on Windows
	Redis is not running

	Starting Redis

	3.3 Using RabbitMQ
	Installing RabbitMQ
	Launching RabbitMQ

	3.4 Starting Spring XD in Distributed Mode
	Choosing a Transport
	Choosing a Store
	Other Options

	3.5 Using Hadoop

	4. Architecture
	4.1 Introduction
	Runtime Architecture
	DIRT Runtime
	Support for other distributed runtimes

	Single Node Runtime
	Admin Server Architecture
	Container Server Architecture
	Streams
	Stream Deployment

	4.2 Jobs
	4.3 Taps

	5. Streams
	5.1 Introduction
	5.2 Creating a Simple Stream
	5.3 Deleting a Stream
	5.4 Deploying and Undeploying Streams
	5.5 Other Source and Sink Types
	5.6 Simple Stream Processing
	5.7 DSL Syntax

	6. Modules
	6.1 Introduction
	6.2 Creating a Module
	Modules and Spring
	Integration Modules

	6.3 Registering a Module
	Modules with isolated classpath

	7. Sources
	7.1 Introduction
	7.2 HTTP
	HTTP with options

	7.3 Tail
	Tail with options
	Tail Status Events

	7.4 File
	File with options

	7.5 Mail sources
	7.6 Twitter Search
	7.7 Twitter Stream
	7.8 GemFire Continuous Query (CQ)
	Launching the XD GemFire Server
	Options

	7.9 Syslog
	7.10 TCP
	TCP with options
	Available Decoders
	Examples
	Binary Data Example

	7.11 RabbitMQ
	RabbitMQ with Options

	7.12 JMS
	JMS with Options

	7.13 Time
	7.14 MQTT
	Options

	8. Processors
	8.1 Introduction
	8.2 Filter
	Filter with SpEL expression
	Filter with Groovy Script

	8.3 JSON Field Value Filter
	8.4 Transform
	Transform with SpEL expression
	Transform with Groovy Script

	8.5 JSON Field Extractor
	8.6 Script
	8.7 Splitter
	8.8 Aggregator

	9. Sinks
	9.1 Introduction
	9.2 Log
	9.3 File Sink
	File with Options

	9.4 Hadoop (HDFS)
	HDFS with Options

	9.5 JDBC
	JDBC with Options

	9.6 TCP
	TCP with Options
	Available Encoders
	An Additional Example

	9.7 Mail
	9.8 RabbitMQ
	RabbitMQ with Options

	9.9 GemFire Server
	Launching the XD GemFire Server
	Gemfire sinks
	Example

	9.10 Splunk Server
	Splunk sinks
	Setup Splunk for TCP Input
	Example

	9.11 MQTT
	Options

	9.12 Dynamic Router
	SpEL-based Routing
	Groovy-based Routing
	Options

	10. Taps
	10.1 Introduction
	10.2 Tap Lifecycle

	11. Batch Jobs
	11.1 Introduction
	11.2 Setting up a simple Batch Job
	Creating the Tasklet
	Setting Up the Application Context

	11.3 Execute the Batch Job
	Execute the Batch Job Once
	Execute job from a stream
	Retrieve notification from job upon completion
	Execute the Batch using Cron-Trigger
	Execute the Batch using a Fixed-Delay-Trigger

	11.4 Removing Batch Jobs and Triggers
	Stopping and Removing the Batch Job
	Removing the Cron Trigger

	12. Analytics
	12.1 Introdution
	12.2 Counter
	12.3 Field Value Counter
	12.4 Aggregate Counter
	12.5 Gauge
	Simple Tap Example

	12.6 Rich Gauge
	Simple Tap Example
	Stock Price Example
	Improved Stock Price Example

	13. DSL Reference
	13.1 Introduction
	13.2 Pipes and filters
	13.3 Module parameters
	13.4 Named channels
	13.5 Labels

	14. Tuples
	14.1 Introduction
	Creating a Tuple
	Getting Tuple values
	Using SpEL expressions to filter a tuple

	15. Samples
	15.1 Syslog ingestion into HDFS
	A sample configuration using syslog-ng

	Part II. Appendices
	Appendix A. Installing Hadoop
	A.1 Installing Hadoop
	Download
	Java Setup
	Setup SSH
	Setting the Namenode Port
	Further Configuration File Changes

	A.2 Running Hadoop

	Appendix B. Creating a Source Module
	B.1 Introduction
	B.2 Create the module Application Context file
	Make the module configurable

	B.3 Test the module locally
	Create a project
	Create the Spring integration test

	B.4 Deploy the module
	B.5 Test the deployed module

	Appendix C. Creating a Processor Module
	C.1 Introduction
	C.2 Write the Transformer Code
	C.3 Create the module Application Context File
	C.4 Deploy the Module
	C.5 Test the deployed module

	Appendix D. Creating a Sink Module
	D.1 Introduction
	D.2 Create the module Application Context file
	D.3 Make the module configurable
	D.4 Test the module locally
	Create a project
	Create the Spring integration test
	Run the test

	D.5 Deploy the module
	D.6 Test the deployed module

	Appendix E. Building Spring XD
	E.1 Instructions
	E.2 IDE support

	Appendix F. XD Shell Command Reference
	F.1 Base Commands
	admin config server
	admin config info

	F.2 Stream Commands
	stream create
	stream destroy
	stream deploy
	stream undeploy
	stream list

	F.3 Job Commands
	job create
	job list
	job deploy
	job undeploy
	job destroy

	F.4 Metrics Commands
	counter list
	counter delete
	counter display
	fieldvaluecounter list
	fieldvaluecounter delete
	fieldvaluecounter display
	aggregatecounter list
	aggregatecounter delete
	aggregatecounter display
	gauge list
	gauge delete
	gauge display
	richgauge list
	richgauge delete
	richgauge display

	F.5 Http Commands
	http post

	F.6 Hadoop Configuration Commands
	hadoop config props set
	hadoop config props get
	hadoop config info
	hadoop config load
	hadoop config props list
	hadoop config fs
	hadoop config jt

	F.7 Hadoop FileSystem Commands
	hadoop fs get
	hadoop fs put
	hadoop fs count
	hadoop fs mkdir
	hadoop fs tail
	hadoop fs chgrp
	hadoop fs chown
	hadoop fs chmod
	hadoop fs copyFromLocal
	hadoop fs moveFromLocal
	hadoop fs copyToLocal
	hadoop fs copyMergeToLocal
	hadoop fs cp
	hadoop fs mv
	hadoop fs du
	hadoop fs expunge
	hadoop fs rm
	hadoop fs setrep
	hadoop fs text
	hadoop fs touchz
	hadoop fs cat
	hadoop fs ls

