
Spring XD Guide

1.2.0.RC1

Mark Fisher , Mark Pollack , David Turanski , Gunnar Hillert , Eric Bottard , Patrick Peralta, Gary Russell ,
Ilayaperumal Gopinathan , Jennifer Hickey , Michael Minella , Luke Taylor , Thomas Risberg , Glenn

Renfro , Janne Valkealahti , Thomas Darimont , Dave Syer , Jon Brisbin , Andy Clement , Marius Bogoevici

Copyright © 2013-2015 Pivotal Software Inc.

Spring XD Guide

1.2.0.RC1 Spring XD iii

Table of Contents

I. Reference Guide ... 1
1. Introduction .. 2

1.1. Overview ... 2
2. Getting Started ... 3

2.1. Requirements .. 3
2.2. Download Spring XD ... 3
2.3. Install Spring XD ... 3
2.4. Start the Runtime and the XD Shell .. 3
2.5. Create a Stream ... 4
2.6. Explore Spring XD ... 5
2.7. OSX Homebrew installation .. 5
2.8. RedHat/CentOS Installation .. 5
2.9. Running in Distributed Mode .. 5

Introduction .. 5
XD CommandLine Options ... 6

Setting up a RDBMS .. 7
Setting up ZooKeeper .. 8
Setting up Redis .. 9

Installing Redis .. 9
Troubleshooting .. 9
Starting Redis .. 10

Using RabbitMQ ... 10
Installing RabbitMQ .. 10
Launching RabbitMQ .. 10

Starting Spring XD in Distributed Mode ... 11
Choosing a Transport ... 11
Choosing an Analytics provider ... 11
Other Options .. 12

Using Hadoop .. 12
XD-Shell in Distributed Mode .. 12

2.10. Running on YARN ... 13
Introduction .. 13
What do you need? .. 13
Download Spring XD on YARN binaries .. 13
Configure your deployment ... 13

XD options ... 14
Hadoop settings ... 14
Zookeeper settings ... 14
Transport options ... 15
JDBC datasource properties ... 15
XD Admin port ... 15

Adding custom modules ... 15
Customizing module configurations ... 16
Modify container logging ... 16
Control XD YARN application lifecycle ... 16

Push the Spring XD application binaries and config to HDFS 16
List installed application versions ... 16

Spring XD Guide

1.2.0.RC1 Spring XD iv

Submit the Spring XD YARN application .. 16
Check the status of YARN apps .. 16
Kill application .. 17
Using a built-in shell ... 17

Connect xd-shell to YARN runtime managed admins .. 17
Configuring YARN memory reservations .. 17
Working with container groups .. 19

List existing groups .. 19
Get status of a group ... 20
Control group state ... 20
Modify group configuration .. 20
Create a new group ... 21
Destroy a group ... 22
Built-in group configurations .. 22

Configuration examples .. 23
Run containers on a specific hosts .. 23
Run admins on a specific racks .. 23
Disable default admin and container groups ... 23

xd-yarn command synopsis .. 23
Introduction to YARN resource allocation ... 26

3. Application Configuration .. 27
3.1. Introduction ... 27
3.2. Server Configuration .. 27

Profile support .. 27
Database Configuration .. 28

HSQLDB .. 28
MySQL .. 29
PostgreSQL ... 29
Oracle database ... 29

Redis ... 29
RabbitMQ ... 30
Kafka ... 32
Management Port ... 33
Admin Server Security .. 34

Enabling HTTPS .. 34
Enabling authentication ... 34
Customizing authorization ... 37

Local transport ... 39
3.3. Module Configuration ... 39

Profiles .. 40
Batch Jobs or modules accessing JDBC ... 41

4. DSL Guide ... 42
4.1. Introduction ... 42
4.2. Pipes and filters .. 42
4.3. Module parameters .. 42
4.4. Named channels ... 42
4.5. Labels ... 43
4.6. Single quotes, Double quotes, Escaping ... 43

Spring Shell ... 44
XD Syntax ... 44

Spring XD Guide

1.2.0.RC1 Spring XD v

SpEL syntax and SpEL literals .. 45
Putting it all together .. 45

4.7. Introduction ... 46
Using the Shell .. 46
Tab completion for Job and Stream DSL definitions .. 48
Executing a script ... 48
Single quotes, Double quotes, Escaping .. 49

5. Admin UI ... 50
5.1. Introduction ... 50
5.2. Containers ... 50
5.3. Streams .. 51
5.4. Jobs .. 52

Modules ... 52
List available batch job modules .. 52
Create a Job Definition from a selected Job Module 53
View Job Module Details .. 54

List job definitions .. 54
List job deployments ... 55

Launching a batch Job ... 56
Schedule Batch Job Execution .. 58

Job Deployment Details .. 58
List job executions .. 59

Job execution details .. 61
Step execution details .. 62
Step execution history .. 64

6. Architecture .. 65
6.1. Introduction ... 65

Runtime Architecture .. 65
DIRT Runtime .. 65
Support for other distributed runtimes .. 66

Single Node Runtime .. 66
Admin Server Architecture .. 67
Container Server Architecture ... 67
Streams ... 68
Stream Deployment .. 70

6.2. Jobs .. 74
6.3. Taps ... 74

7. Distributed Runtime .. 75
7.1. Introduction ... 75
7.2. Configuring Spring XD for High Availabilty(HA) .. 75
7.3. ZooKeeper Overview ... 75
7.4. The Admin Server Internals .. 78

Example ... 79
7.5. Module Deployment ... 82

Example: Automatic Redeployment ... 83
8. Batch Jobs ... 85

8.1. Introduction ... 85
8.2. Workflow ... 85
8.3. Features .. 86
8.4. The Lifecycle of a Job in Spring XD ... 87

Spring XD Guide

1.2.0.RC1 Spring XD vi

Register a Job Module ... 87
Create a Job Definition ... 87
Deploy the Job ... 87
Launch a Job ... 87
Job Execution .. 87
Un-deploy a Job ... 87
Destroy a Job Definition ... 87
Creating Jobs - Additional Options .. 88

8.5. Deployment manifest support for job ... 88
8.6. Launching a job ... 89

Ad-hoc ... 89
Launch the Batch using Cron-Trigger .. 89
Launch the Batch using a Fixed-Delay-Trigger ... 90
Launch job as a part of event flow .. 90

8.7. Retrieve job notifications .. 90
To receive aggregated events ... 90
To receive job execution events .. 91
To receive step execution events .. 91
To receive item, skip and chunk events ... 92
To disable the default listeners ... 92
To select specific listeners .. 92

8.8. Removing Batch Jobs .. 92
8.9. Pre-Packaged Batch Jobs .. 92

Note regarding HDFS Configuration .. 92
Poll a Directory and Import CSV Files to HDFS (filepollhdfs) 93
Import CSV Files to JDBC (filejdbc) ... 93
HDFS to JDBC Export (hdfsjdbc) ... 96
JDBC to HDFS Import (jdbchdfs) ... 99
HDFS to MongoDB Export (hdfsmongodb) ... 103
FTP to HDFS Export (ftphdfs) ... 104
Running Spark Application as a batch job (sparkapp) 105
Running Sqoop as a batch job (sqoop) ... 106

Using Sqoop’s metastore .. 108
Options for Sqoop job ... 109

Running gpload as a batch job (gpload) ... 110
9. Streams ... 112

9.1. Introduction ... 112
9.2. Creating a Simple Stream .. 112
9.3. Deleting a Stream .. 113
9.4. Deploying and Undeploying Streams ... 113
9.5. Other Source and Sink Types .. 113
9.6. Simple Stream Processing ... 114
9.7. DSL Syntax ... 114
9.8. Advanced Features .. 114
9.9. Module Labels ... 115

10. Modules ... 116
10.1. Introduction .. 116
10.2. Creating a Module ... 116

Stream Modules ... 116
Module Packaging .. 117

Spring XD Guide

1.2.0.RC1 Spring XD vii

Creating a Module Project .. 118
Configuring your Maven build .. 118
Configuring your Gradle build .. 118

Testing a Module Project .. 120
10.3. Registering a Module ... 121

The Module Registry .. 121
Custom Module Registry ... 122
Replicating Module Registry .. 122

10.4. Module Class Loading .. 122
Dynamic Module ClassLoader ... 123

10.5. Module Options ... 123
Placeholders available to all modules .. 125
How module options are resolved ... 126

10.6. Composing Modules ... 127
Working with Composite Modules .. 127

10.7. Getting Information about Modules .. 129
11. Sources .. 131

11.1. Introduction .. 131
11.2. HTTP .. 132

HTTP with options .. 132
11.3. FTP ... 133

Options .. 133
11.4. SFTP .. 134

Options .. 134
11.5. Tail .. 136

Tail with options ... 136
Tail Status Events .. 137

11.6. File .. 137
File with options ... 137

11.7. Mail ... 138
11.8. Twitter Search ... 140
11.9. Twitter Stream ... 141
11.10. GemFire Source ... 142

Options .. 142
Example ... 142
Launching the XD GemFire Server .. 144

11.11. GemFire Continuous Query .. 144
Options .. 144

11.12. Syslog ... 145
11.13. TCP .. 146

TCP with options .. 146
Available Decoders ... 147
Examples ... 147
Binary Data Example .. 149

11.14. TCP Client ... 149
TCP Client options ... 149
Implementing a simple conversation .. 150

11.15. Reactor IP ... 151
11.16. RabbitMQ .. 151

RabbitMQ with Options ... 152

Spring XD Guide

1.2.0.RC1 Spring XD viii

A Note About Retry .. 153
11.17. JMS .. 153

JMS with Options ... 154
11.18. Time .. 155
11.19. MQTT .. 155

Options .. 155
11.20. Stdout Capture ... 156
11.21. Kafka ... 156
11.22. JDBC Source ... 159
11.23. MongoDB Source ... 161
11.24. Trigger Source ... 162

12. Processors ... 164
12.1. Introduction .. 164
12.2. Filter .. 164

Filter with SpEL expression ... 164
Filter using jsonPath evaluation ... 165
Filter with Groovy Script .. 165

12.3. Transform .. 166
Transform with SpEL expression ... 166
Transform with Groovy Script .. 167

12.4. Script .. 167
12.5. Splitter ... 168

Extract the value of a specific field .. 168
12.6. Aggregator ... 168
12.7. HTTP Client ... 170
12.8. Shell .. 171
12.9. JSON to Tuple ... 172
12.10. Object to JSON ... 173

13. Sinks .. 174
13.1. Introduction .. 174
13.2. Log ... 174
13.3. File Sink .. 175

File with Options .. 176
13.4. FTP Sink ... 177

FTP with Options .. 177
13.5. Hadoop (HDFS) ... 178

HDFS with Options ... 182
Partition Path Expression .. 183

Accessing Properties .. 183
Custom Methods .. 183

13.6. HDFS Dataset (Avro/Parquet) ... 185
HDFS Dataset with Options .. 186

About null values .. 187
About partitionPath ... 187

13.7. JDBC .. 188
JDBC with Options ... 189

13.8. GPFDIST ... 191
Example usage .. 191
Performance Notes ... 192
GPFDIST with Options .. 192

Spring XD Guide

1.2.0.RC1 Spring XD ix

13.9. TCP Sink ... 194
TCP with Options ... 194
Available Encoders ... 195
An Additional Example .. 195

13.10. Shell Sink .. 196
13.11. Mongo ... 197
13.12. Mail ... 198
13.13. RabbitMQ .. 199

RabbitMQ with Options ... 199
13.14. GemFire Server ... 200

Launching the XD GemFire Server .. 200
Gemfire sinks ... 201
Example ... 202

13.15. Splunk Server .. 202
Splunk sinks ... 202
How To Setup Splunk for TCP Input .. 203
Example ... 203

13.16. MQTT Sink .. 203
Options .. 203

13.17. Dynamic Router ... 204
SpEL-based Routing ... 204
Groovy-based Routing .. 205
Options .. 206

13.18. Null Sink .. 206
13.19. Redis ... 206

Options .. 207
13.20. Kafka Sink ... 208

14. Taps .. 210
14.1. Introduction .. 210

Example ... 210
Example - tap after a processor has been applied .. 210
Example - using a label .. 210

14.2. Tap Lifecycle ... 211
15. Analytics .. 212

15.1. Introduction .. 212
15.2. Predictive analytics .. 212
15.3. Analytical Models ... 213

Modeling and Evaluation ... 213
Modeling .. 213
Evaluation .. 216
Model Selection .. 217

15.4. Counters and Gauges .. 218
Counter .. 218
Field Value Counter .. 219
Aggregate Counter ... 220
Gauge .. 221

Simple Tap Example .. 221
Rich Gauge .. 222

Simple Tap Example .. 222
Stock Price Example .. 222

Spring XD Guide

1.2.0.RC1 Spring XD x

Improved Stock Price Example .. 223
Accessing Analytics Data over the RESTful API ... 224

16. Tuples .. 226
16.1. Introduction .. 226

Creating a Tuple .. 226
Getting Tuple values ... 227
Using SpEL expressions to filter a tuple ... 228
Gradle Dependencies ... 229

17. Type Conversion .. 230
17.1. Introduction .. 230
17.2. MIME types ... 230
17.3. Stream Definition Examples .. 230
17.4. POJO to JSON .. 230

JSON to Tuple ... 231
Java Serialization ... 231

17.5. MIME types and Java types ... 231
Caveats ... 232

II. Developing Modules and Extensions ... 233
18. Creating a Source Module .. 234

18.1. Introduction .. 234
18.2. Create the module Application Context file .. 234
18.3. Create a Module Project .. 235

Create a Spring Integration test ... 235
Create an in-container test .. 236

18.4. Install the Module .. 237
18.5. Test the source module .. 238

19. Creating a Data Stream Processor .. 239
19.1. Introduction .. 239
19.2. Reactor Streams .. 239
19.3. RxJava Streams .. 240

Scheduling ... 243
19.4. Spark streaming ... 243

Writing a spark streaming module ... 244
How this works ... 245
Data loss and recovery ... 246
Module Type Conversion .. 246
XD processor module examples .. 247

20. XD sink module example .. 249
21. Creating a Processor Module .. 252

21.1. Introduction .. 252
21.2. Write the Transformer Code ... 252
21.3. Create the module Application Context File ... 252
21.4. Write a Test .. 254
21.5. Register the Module ... 256
21.6. Test the custom module in the Spring XD runtime: ... 256

22. Creating a Sink Module .. 257
22.1. Introduction .. 257
22.2. Create the module Application Context .. 257
22.3. Create a module project ... 258

Create the Spring integration test .. 258

Spring XD Guide

1.2.0.RC1 Spring XD xi

Run the test ... 259
Test the Module Options ... 259

22.4. Install the module .. 260
22.5. Test the module ... 260

23. Creating a Job Module ... 262
23.1. Introduction .. 262
23.2. Developing your Job .. 262
23.3. Creating a Simple Job .. 262

Create a Module Project ... 262
Create the Spring Batch Job Definition .. 262
Write the Tasklet .. 263
Package and install the Module: .. 265
Run the job .. 265

23.4. Creating a read-write processing Job .. 265
23.5. Orchestrating Hadoop Jobs .. 266

24. Creating a Python Module ... 267
24.1. Introduction .. 267

25. Providing Module Options Metadata .. 269
25.1. Introduction .. 269
25.2. Using the "Simple" approach .. 269

Declaring and documenting an option .. 269
Advertising default values ... 270
Exposing the option type .. 270

25.3. Using the "POJO" approach ... 270
Declaring options to the module .. 271
Exposing values to the context .. 271
Providing defaults ... 271
Encapsulating options ... 271
Using profiles ... 272
Using validation .. 272

25.4. Metadata style remarks .. 272
26. Extending Spring XD .. 273

26.1. Introduction .. 273
26.2. Spring XD Application Contexts .. 273
26.3. Plugin Architecture ... 275
26.4. How to Add a Spring bean to the XD Container ... 275
26.5. Providing A new Type Converter .. 276
26.6. Adding a New Data Transport .. 278

27. Samples ... 279
27.1. Syslog ingestion into HDFS .. 279

A sample configuration using syslog-ng ... 279
III. Configuration Guidelines .. 281

28. Overview .. 282
29. Deployment .. 283

29.1. Introduction .. 283
29.2. Deployment Manifest .. 283

Deployment Properties .. 284
Spring XD Shell interaction ... 284
General Properties .. 285
Bus Properties .. 285

Spring XD Guide

1.2.0.RC1 Spring XD xii

Stream Partitioning ... 287
Direct Binding ... 288

29.3. Deployment States ... 290
Example ... 291

29.4. Container Attributes ... 291
Groups ... 291
IP Address ... 291
Hostname ... 292

29.5. Stream Deployment Examples .. 292
29.6. Partitioned Stream Deployment Examples ... 293

Using SpEL Expressions ... 293
29.7. Direct Binding Deployment Examples .. 294
29.8. Troubleshooting ... 295

ZooKeeper disconnects ... 295
Debugging Slowness .. 296
File Descriptors and limit violation ... 296

30. Message Bus Configuration ... 297
30.1. Introduction .. 297
30.2. Rabbit Message Bus High Availability (HA) Configuration 297

Introduction .. 297
Connection Management and HA Queues ... 297

30.3. Error Handling (Message Delivery Failures) ... 297
RabbitMQ Message Bus ... 297
Redis Message Bus .. 299

30.4. Rabbit Message Bus Secure Sockets Layer (SSL) ... 300
30.5. Rabbit Message Bus Batching and Compression ... 300
30.6. Removing RabbitMQ MessageBus Resources ... 300

IV. Administration ... 302
31. Monitoring and Management ... 303

31.1. Monitoring XD Admin, Container and Single-node servers 303
To enable boot provided management endpoints over HTTP 303
To enable the container shutdown operation in the UI 303
To disable boot endpoints over HTTP .. 303

31.2. Management over JMX .. 304
Monitoring deployed modules in XD container .. 304
Streams ... 304
Jobs ... 304

31.3. Using Jolokia to access JMX over http .. 304
32. REST API .. 306

32.1. Introduction .. 306
32.2. XD Resources ... 306
32.3. Stream Definitions .. 307
32.4. Stream Deployments .. 307
32.5. Job Definitions ... 308
32.6. Job Deployments ... 308
32.7. Batch Job Configurations ... 308
32.8. Batch Job Executions ... 309
32.9. Batch Job Instances ... 309
32.10. Module Definitions .. 310
32.11. Deployed Modules ... 310

Spring XD Guide

1.2.0.RC1 Spring XD xiii

32.12. Containers ... 310
32.13. Counters .. 311
32.14. Field Value Counters .. 311
32.15. Aggregate Counters ... 311
32.16. Gauges .. 312
32.17. Rich Gauges .. 312
32.18. Tab Completions .. 312

33. JAVA API ... 313
33.1. Introduction .. 313

Required Libraries .. 313
Sample Usage .. 313

V. Appendices .. 314
A. Installing Hadoop ... 315

A.1. Installing Hadoop ... 315
Download ... 315
Java Setup ... 315
Setup SSH ... 316
Setting the Namenode Port ... 316
Further Configuration File Changes ... 317

A.2. Running Hadoop ... 317
B. Building Spring XD ... 319

B.1. Instructions ... 319
B.2. IDE support ... 319

C. Using MQTT Modules .. 320
C.1. Introduction ... 320

Setting up MQTT on RabbitMQ ... 320
Rabbit MQTT Plugin settings .. 321
MQTT Source .. 321

Example 1: Using defaults .. 321
Example 2: Monitoring different topics. ... 322

MQTT Sink .. 322
Example 1: Using defaults .. 322

D. XD Shell Command Reference ... 324
D.1. Configuration Commands ... 324

admin config info .. 324
admin config server .. 324
admin config timezone list ... 324
admin config timezone set .. 324

D.2. Runtime Commands .. 324
runtime containers .. 324
runtime modules ... 325

D.3. Stream Commands ... 325
stream all destroy ... 325
stream all undeploy .. 325
stream create ... 325
stream deploy .. 325
stream destroy ... 326
stream list .. 326
stream undeploy ... 326

D.4. Job Commands ... 326

Spring XD Guide

1.2.0.RC1 Spring XD xiv

job all destroy .. 326
job all undeploy .. 326
job create ... 326
job deploy .. 327
job destroy ... 327
job execution all stop .. 327
job execution display .. 327
job execution list .. 327
job execution restart ... 328
job execution step display ... 328
job execution step list ... 328
job execution step progress .. 328
job execution stop .. 328
job instance display .. 328
job launch .. 329
job list .. 329
job undeploy .. 329

D.5. Module Commands ... 329
module compose .. 329
module delete .. 329
module info .. 330
module list ... 330
module upload .. 330

D.6. Metrics Commands ... 330
counter delete .. 330
counter display ... 331
counter list ... 331
field-value-counter delete .. 331
field-value-counter display ... 331
field-value-counter list ... 331
aggregate-counter delete .. 331
aggregate-counter display ... 332
aggregate-counter list ... 332
gauge delete .. 332
gauge display ... 332
gauge list ... 333
rich-gauge delete .. 333
rich-gauge display .. 333
rich-gauge list ... 333

D.7. Http Commands .. 333
http get .. 333
http post .. 333

D.8. Hadoop Configuration Commands .. 334
hadoop config fs ... 334
hadoop config info .. 334
hadoop config load ... 334
hadoop config props get ... 334
hadoop config props list .. 334
hadoop config props set ... 334

D.9. Hadoop FileSystem Commands ... 335

Spring XD Guide

1.2.0.RC1 Spring XD xv

hadoop fs cat ... 335
hadoop fs chgrp ... 335
hadoop fs chmod .. 335
hadoop fs chown .. 335
hadoop fs copyFromLocal ... 336
hadoop fs copyMergeToLocal ... 336
hadoop fs copyToLocal ... 336
hadoop fs count ... 336
hadoop fs cp .. 337
hadoop fs du .. 337
hadoop fs expunge ... 337
hadoop fs get ... 337
hadoop fs ls ... 338
hadoop fs mkdir ... 338
hadoop fs moveFromLocal .. 338
hadoop fs mv ... 338
hadoop fs put ... 338
hadoop fs rm .. 339
hadoop fs setrep .. 339
hadoop fs tail ... 339
hadoop fs text .. 339
hadoop fs touchz .. 340

E. Connecting to Kerberized Hadoop ... 341
E.1. Setting Principals ... 341
E.2. Automatic Login .. 341

F. Modules-Project-Migration ... 342
F.1. Introduction ... 342

Updating your Maven Project .. 342
Cleaning up .. 342
Updating your POM file ... 342

Updating your Gradle Project .. 344
Building the Module Project .. 346

Maven .. 346
Gradle .. 346

Updating Configurations .. 346
Registering the module ... 347

Part I. Reference Guide

Spring XD Guide

1.2.0.RC1 Spring XD 2

1. Introduction

1.1 Overview

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The Spring XD project is an open source Apache 2 License licenced
project whose goal is to tackle big data complexity. Much of the complexity in building real-world big
data applications is related to integrating many disparate systems into one cohesive solution across a
range of use-cases. Common use-cases encountered in creating a comprehensive big data solution are

• High throughput distributed data ingestion from a variety of input sources into big data store such as
HDFS or Splunk

• Real-time analytics at ingestion time, e.g. gathering metrics and counting values.

• Workflow management via batch jobs. The jobs combine interactions with standard enterprise
systems (e.g. RDBMS) as well as Hadoop operations (e.g. MapReduce, HDFS, Pig, Hive or HBase).

• High throughput data export, e.g. from HDFS to a RDBMS or NoSQL database.

The Spring XD project aims to provide a one stop shop solution for these use-cases.

http://www.apache.org/licenses/LICENSE-2.0

Spring XD Guide

1.2.0.RC1 Spring XD 3

2. Getting Started

2.1 Requirements

To get started, make sure your system has as a minimum Java JDK 7 or newer installed. Java JDK
7 is recommended.

2.2 Download Spring XD

To download the current GA release, you can download the distribution spring-xd-1.1.2.RELEASE-
dist.zip and its accompanying documentation.

If you want to try out the latest build of Spring XD, You can download the snapshot distribution from the
spring snapshots repository. You can also build the project from source if you wish. The wiki content
should also be kept up to date with the current snapshot so if you are reading this on the github website,
things may have changed since the last stable release.

Unzip the distribution which will unpack to a single installation directory. All the commands below are
executed from this directory, so change into it before proceeding.

$ cd spring-xd-1.2.0.RC1

2.3 Install Spring XD

Spring XD can be run in two different modes. There’s a single-node runtime option for testing and
development, and there’s a distributed runtime which supports distribution of processing tasks across
multiple nodes. This document will get you up and running quickly with a single-node runtime. See
Running Distributed Mode for details on setting up a distributed runtime.

You can also install Spring XD using homebrew on OSX and RPM on RedHat/CentOS.

2.4 Start the Runtime and the XD Shell

The single node option is the easiest to get started with. It runs everything you need in a single process.
To start it, you just need to cd to the xd directory and run the following command

xd/bin>$./xd-singlenode

In a separate terminal, cd into the shell directory and start the XD shell, which you can use to issue
commands.

shell/bin>$./xd-shell

 _____ __ _______

/ ___| (-) \ \ / / _ \

\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |

 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |

/__/ / |_) | | | | | | | (_| | / / \ \ |/ /

____/| .__/|_| |_|_| |_|__, | \/ \/___/

 | | __/ |

 |_| |___/

eXtreme Data

1.2.0.RC1 | Admin Server Target: http://localhost:9393

Welcome to the Spring XD shell. For assistance hit TAB or type "help".

xd:>

http://www.oracle.com/technetwork/java/javase/downloads/
http://repo.spring.io/libs-release/org/springframework/xd/spring-xd/1.1.2.RELEASE/spring-xd-1.1.2.RELEASE-dist.zip
http://repo.spring.io/libs-release/org/springframework/xd/spring-xd/1.1.2.RELEASE/spring-xd-1.1.2.RELEASE-dist.zip
http://repo.spring.io/libs-release/org/springframework/xd/spring-xd/1.1.2.RELEASE/spring-xd-1.1.2.RELEASE-docs.zip
http://repo.spring.io/libs-snapshot/org/springframework/xd/spring-xd/1.2.0.BUILD-SNAPSHOT
http://repo.spring.io/libs-snapshot/org/springframework/xd/spring-xd/1.2.0.BUILD-SNAPSHOT

Spring XD Guide

1.2.0.RC1 Spring XD 4

The shell is a more user-friendly front end to the REST API which Spring XD exposes to clients. The
URL of the currently targeted Spring XD server is shown at startup.

Note

If the server could not be reached, the prompt will read

server-unknown:>

You can then use the admin config server <url> to attempt to reconnect to the admin
REST endpoint once you’ve figured out what went wrong:

admin config server http://localhost:9393

You should now be able to start using Spring XD.

Tip

Spring XD uses ZooKeeper internally which typically runs as an external process. XD singlenode
runs with an embedded ZooKeeper server and assigns a random available port. This keeps things
very simple. However if you already have a ZooKeeper ensemble set up and want to connect to
it, you can edit xd/config/servers.yml:

#Zookeeper properties

client connect string: host1:port1,host2:port2,...,hostN:portN

zk:

 client:

 connect: localhost:2181

Also, sometimes it is useful in troubleshooting to connect the ZooKeeper CLI to the embedded
server. The assigned server port is listed in the console log, but you can also set the port directly by
setting the property zk.embedded.server.port in servers.yml or set JAVA_OPTS before
starting xd-singlenode.

$export JAVA_OPTS=-Dzk.embedded.server.port=<port>

2.5 Create a Stream

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. You can create a new stream by issuing a stream create
command from the XD shell. Stream definitions are built from a simple DSL. For example, execute:

xd:> stream create --name ticktock --definition "time | log" --deploy

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink. The stream server finds the time and log definitions
in the modules directory and uses them to setup the stream. In this simple example, the time source
simply sends the current time as a message each second, and the log sink outputs it using the logging
framework at the WARN logging level. Since the --deploy flag was provided, this stream will be
deployed immediately. In the console where you started the server, you will see log output similar to
that listed below

Spring XD Guide

1.2.0.RC1 Spring XD 5

13:09:53,812 INFO http-bio-8080-exec-1 module.SimpleModule:109 - started module: Module [name=log,

 type=sink]

13:09:53,813 INFO http-bio-8080-exec-1 module.ModuleDeployer:111 - launched sink module: ticktock:log:1

13:09:53,911 INFO http-bio-8080-exec-1 module.SimpleModule:109 - started module: Module [name=time,

 type=source]

13:09:53,912 INFO http-bio-8080-exec-1 module.ModuleDeployer:111 - launched source module:

 ticktock:time:0

13:09:53,945 WARN task-scheduler-1 logger.ticktock:141 - 2013-06-11 13:09:53

13:09:54,948 WARN task-scheduler-1 logger.ticktock:141 - 2013-06-11 13:09:54

13:09:55,949 WARN task-scheduler-2 logger.ticktock:141 - 2013-06-11 13:09:55

To stop the stream, and remove the definition completely, you can use the stream destroy command:

xd:>stream destroy --name ticktock

It is also possible to stop and restart the stream instead, using the undeploy and deploy commands.
The shell supports command completion so you can hit the tab key to see which commands and options
are available.

2.6 Explore Spring XD

Learn about the modules available in Spring XD in the Sources, Processors, and Sinks sections of the
documentation.

Don’t see what you’re looking for? Create a custom module: source, processor or sink (and then consider
contributing it back to Spring XD).

Want to add some analytics to your stream? Check out the Taps and Analytics sections.

2.7 OSX Homebrew installation

If you are on a Mac and using homebrew, all you need to do to install Spring XD is:

$ brew tap pivotal/tap

$ brew install springxd

Homebrew will install springxd to /usr/local/bin. Now you can jump straight into using Spring
XD:

$ xd-singlenode

Brew install also allows you to run Spring XD in distributed mode on you OSx. See Running Distributed
Mode for details on setting up a distributed runtime.

2.8 RedHat/CentOS Installation

If you are using RHEL or CentOS v. 6.x you can install Spring XD using our RPM package. See the
wiki page for instructions.

2.9 Running in Distributed Mode

Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Getting Started for information on running Spring XD as a single node.

The XD distributed runtime architecture consists of the following distributed components:

https://github.com/SpringSource/spring-xd/wiki/Contribute
http://brew.sh/
https://github.com/spring-projects/spring-xd/wiki/Installing-Spring-XD-using-RPM-on-RHEL-CentOS-v.-6.x

Spring XD Guide

1.2.0.RC1 Spring XD 6

• Admin - Manages Stream and Job deployments and other end user operations and provides REST
services to access runtime state, system metrics, and analytics

• Container - Hosts deployed Modules (stream processing tasks) and batch jobs

• ZooKeeper - Provides all runtime information for the XD cluster. Tracks running containers, in which
containers modules and jobs are deployed, stream definitions, deployment manifests, and the like,
see XD Distributed Runtime for an overview on how XD uses ZooKeeper.

• Spring Batch Job Repository Database - An RDBMS is required for jobs. The XD distribution comes
with HSQLDB, but this is not appropriate for a production installation. XD supports any JDBC
compliant database.

• A Message Broker - Used for data transport. XD data transport is designed to be pluggable. Currently
XD supports Rabbit MQ and Redis for messaging during stream and job processing, and Kafka for
messaging during stream processing only. Please note that support for job processing using Kafka
as transport is not currently available. A production installation must configure one of these transport
options.

• Analytics Repository - XD currently uses Redis to store the counters and gauges provided Analytics

In addition, XD provides a Command Line Interface (CLI), XD Shell as well as a web application, XD-
UI to interact with the XD runtime.

XD CommandLine Options

The XD distribution provides shell scripts to start its runtime components under the xd directory of the
XD installation:

Spring XD Guide

1.2.0.RC1 Spring XD 7

Whether you are running _xd-admin, xd-container or even xd-singlenode you can always get help by
typing the command followed by --help. For example:

xd/bin/xd-admin --help

 _____ __ _______

/ ___| (-) \ \ / / _ \

\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |

 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |

/__/ / |_) | | | | | | | (_| | / / \ \ |/ /

____/| .__/|_| |_|_| |_|__, | \/ \/___/

 | | __/ |

 |_| |___/

1.2.0.RC1 eXtreme Data

Started : AdminServerApplication

Documentation: https://github.com/spring-projects/spring-xd/wiki

Usage:

 --analytics [redis] : How to persist analytics such as counters and gauges

 --help (-?, -h) : Show this help screen

 --httpPort <httpPort> : Http port for the REST API server

 --mgmtPort <mgmtPort> : The port for the management server

xd-admin command line args:

• analytics - The data store that will be used to store the analytics data. The default is redis

• help - Displays help for the command args. Help information may be accessed with a -? or -h.

• httpPort - The http port for the REST API server. Defaults to 9393.

• mgmtPort - The port for the management server. Defaults to the admin server port.

Also, note that it is recommended to use fixed http port for XDAdmin(s). This makes it easy to know
the admin server addresses the REST clients (shell, webUI) can point to. If a random port is chosen
(with server.port or $PORT set to 0), then one needs to go through the log and find which port admin
server’s tomcat starts at.

xd-container command line args:

• analytics - How to persist analytics such as counters and gauges. The default is redis

• groups - The assigned group membership for this container as a comma delimited list

• hadoopDistro - The Hadoop distribution to be used for HDFS access. HDFS is not available if not set.

• help - Displays help for the command args. Help information may be accessed with a -? or -h.

• mgmtPort - The port for the management server. Defaults to the container server port.

Setting up a RDBMS

The distributed runtime requires an RDBMS. The XD distrubution comes with an HSQLDB in memory
database for testing purposes, but an alternate is expected. To start HSQLDB:

$ cd hsqldb/bin

$./hsqldb-server

Spring XD Guide

1.2.0.RC1 Spring XD 8

To configure XD to connect to a different RDBMS, have a look at xd/config/servers.yml in the
spring:datasource section for details. Note that spring.batch.initializer.enabled is set
to true by default which will initialize the Spring Batch schema if it is not already set up. However, if
those tables have already been created, they will be unaffected.

If the provided schemas are customized, other values may need to be customized. In the xd/config/
servers.yml the following block exposes database specific values for the batch job repository.

 spring:

 batch:

 isolationLevel: ISOLATION_SERIALIZABLE ❶

 clobType: ❷

 dbType: ❸

 maxVarcharLength: 2500 ❹

 tablePrefix: BATCH_ ❺

 validateTransactionState: true ❻

 initializer:

 enabled: false ❼

❶ Transaction isolation level for the job repository.

❷ A special handler for large objects. The default is usually fine, except for some (usually older)
versions of Oracle. The default is determined from the data base type.

❸ Used to determine what id incremented to use. The default is usually fine, except when the type
returned by the datasource should be overridden (GemfireXD for example).

❹ Configures how large the maximum message can be stored in a VARCHAR type field.

❺ Prefix for repository tables.

❻ Flag to determine whether to check for an existing transaction when a JobExecution is created.
Defaults to true because it is usually a mistake, and leads to problems with restartability and also
to deadlocks in multi-threaded steps.

❼ Flag that indicates if the database tables should be created on startup.

Setting up ZooKeeper

Currently XD does not ship with ZooKeeper. At the time of this writing, the compliant version is
3.4.6 and you can download it from here. Please refer to the ZooKeeper Getting Started Guide for
more information. A ZooKeeper ensemble consisting of at least three members is recommended for
production installations, but a single server is all that is needed to have XD up and running.

You can configure the root path in Zookeeper where an XD cluster’s top level nodes will be created.
This allows you to run multiple independent clusters of XD that share a single ZK instance. Add the
following to servers.yml to configure. You can also set as an environment variable, system property in
the standard manner.

Additionally, various time related settings may be optionally configured for ZooKeeper:

• sessionTimeout - session timeout in milliseconds

• connectionTimeout - connection timeout in milliseconds

• initialRetryWait - initial amount of time to wait between retries after a failed connection (uses the
Apache Curator ExponentialBackoffRetry)

• retryMaxAttempts - maximum number of times to retry after a failed connection (uses the Apache
Curator ExponentialBackoffRetry)

http://zookeeper.apache.org/releases.html
http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html
https://curator.apache.org/apidocs/org/apache/curator/retry/ExponentialBackoffRetry.html
https://curator.apache.org/apidocs/org/apache/curator/retry/ExponentialBackoffRetry.html
https://curator.apache.org/apidocs/org/apache/curator/retry/ExponentialBackoffRetry.html

Spring XD Guide

1.2.0.RC1 Spring XD 9

zk:

 namespace: xd

 client:

 connect: localhost:2181

 sessionTimeout: 60000

 connectionTimeout: 30000

 initialRetryWait: 1000

 retryMaxAttempts: 3

Setting up Redis

Redis is the default transport when running in distributed mode.

Installing Redis

If you already have a running instance of Redis it can be used for Spring XD. By default Spring XD
will try to use a Redis instance running on localhost using port 6379. You can change that in the
servers.yml file residing in the config/ directory.

If you don’t have a pre-existing installation of Redis, you can use the Spring XD provided instance (For
Linux and Mac) which is included in the .zip download. If you are installing using brew or rpm you should
install Redis using those installers or download the source tarball and compile Redis yourself. If you
used the .zip download then inside the Spring XD installation directory (spring-xd) do:

$ cd redis/bin

$./install-redis

This will compile the Redis source tar and add the Redis executables under redis/bin:

• redis-check-dump

• redis-sentinel

• redis-benchmark

• redis-cli

• redis-server

You are now ready to start Redis by executing

$./redis-server

Tip

For further information on installing Redis in general, please checkout the Redis Quick Start guide.
If you are using Mac OS, you can also install Redis via Homebrew

Troubleshooting

Redis on Windows

Presently, Spring XD does not ship Windows binaries for Redis (See XD-151). However, Microsoft is
actively working on supporting Redis on Windows. You can download Windows Redis binaries from:

https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Redis is not running

If you try to run Spring XD and Redis is NOT running, you will see the following exception:

http://redis.io/topics/quickstart
http://mxcl.github.io/homebrew/
https://jira.springsource.org/browse/XD-151
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Spring XD Guide

1.2.0.RC1 Spring XD 10

11:26:37,830 ERROR main launcher.RedisContainerLauncher:85 - Unable to connect to Redis on

 localhost:6379; nested exception is com.lambdaworks.redis.RedisException: Unable to connect

Redis does not seem to be running. Did you install and start Redis? Please see the Getting Started

 section of the guide for instructions.

Starting Redis

$ redis-server

You should see something like this:

[35142] 01 May 14:36:28.939 # Warning: no config file specified, using the default config. In order to

 specify a config file use redis-server /path/to/redis.conf

[35142] 01 May 14:36:28.940 * Max number of open files set to 10032

 .

 _.-``__ ''-._

 .-`` `. `. ''-._ Redis 2.6.12 (00000000/0) 64 bit

 .-`` .-```. ```\/ _.,_ ''-._

 (' , .-` | `,) Running in stand alone mode

 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379

 | `-._ `._ / _.-' | PID: 35142

 `-._ `-._ `-./ _.-' _.-'

 |`-._`-._ `-.__.-' _.-'_.-'|

 | `-._`-._ _.-'_.-' | http://redis.io

 `-._ `-._`-.__.-'_.-' _.-'

 |`-._`-._ `-.__.-' _.-'_.-'|

 | `-._`-._ _.-'_.-' |

 `-._ `-._`-.__.-'_.-' _.-'

 `-._ `-.__.-' _.-'

 `-._ _.-'

 `-.__.-'

[35142] 01 May 14:36:28.941 # Server started, Redis version 2.6.12

[35142] 01 May 14:36:28.941 * The server is now ready to accept connections on port 6379

Using RabbitMQ

Installing RabbitMQ

If you already have a running instance of RabbitMQ it can be used for Spring XD. By default Spring XD
will try to use a Rabbit instance running on localhost using port 5672. The default account credentials
of guest/guest are assumed. You can change that in the servers.yml file residing in the config/
directory.

If you don’t have a RabbitMQ installation already, head over to http://www.rabbitmq.com and follow the
instructions. Packages are provided for Windows, Mac and various flavor of unix/linux.

Launching RabbitMQ

Start the RabbitMQ broker by running the rabbitmq-server script:

$ rabbitmq-server

You should see something similar to this:

 RabbitMQ 3.3.0. Copyright (C) 2007-2013 GoPivotal, Inc.

 ## ## Licensed under the MPL. See http://www.rabbitmq.com/

 ## ##

 ########## Logs: /usr/local/var/log/rabbitmq/rabbit@localhost.log

 ###### ## /usr/local/var/log/rabbitmq/rabbit@localhost-sasl.log

 ##########

 Starting broker... completed with 10 plugins.

http://www.rabbitmq.com

Spring XD Guide

1.2.0.RC1 Spring XD 11

Starting Spring XD in Distributed Mode

Spring XD consists of two servers

• XDAdmin - controls deployment of modules into containers

• XDContainer - executes modules

You can start the xd-container and xd-admin servers individually as follows:

xd/bin>$./xd-admin

xd/bin>$./xd-container

Choosing a Transport

Spring XD uses data transport for sending data from the output of one module to the input of the next
module. In general, this requires remote transport between container nodes. The Admin server also
uses the data bus to launch batch jobs by sending a message to the job’s launch channel. Since the
same transport must be shared by the Admin and all Containers, the transport configuration is centrally
configured in xd/config/servers.yml. The default transport is redis. Open servers.yml with a text editor
and you will see the transport configuration near the top. To change the transport, you can uncomment
this section and change the transport to rabbit or any other supported transport. Any changes to the
transport configuration must be replicated to every XD node in the cluster.

Note

XD singlenode also supports a --transport command line argument, useful for testing streams
under alternate transports.

#xd:

transport: redis

Note

If you have multiple XD instances running share a single RabbitMQ server for transport,
you may encounter issues if each system contains streams of the same name.
We recommend using a different RabbitMQ virtual host for each system. Update the
spring.rabbitmq.virtual_host property in $XD_HOME/config/servers.yml to point
XD at the correct virtual host.

Choosing an Analytics provider

By default, the xd-container will store Analytics data in redis. At the time of writing, this is the only
supported option (when running in distributed mode). Use the --analytics option to specify another
backing store for Analytics data.

xd/bin>$./xd-container --analytics redis

You can configure the following settings for redis analytics

Spring XD Guide

1.2.0.RC1 Spring XD 12

xd:

 analytics:

 redis:

 backOffInitialInterval: 1000 ❶

 backOffMaxInterval: 10000 ❷

 backOffMultiplier: 2.0 ❸

 maxAttempts: 3 ❹

❶ The time in milliseconds before retrying a failed redis operation

❷ The maximum time (ms) to wait between retries

❸ The back off multiplier (previous interval x multiplier = next interval)

❹ The maximum number of retry attempts

Other Options

There are additional configuration options available for these scripts:

To specify the location of the Spring XD install other than the default configured in the script

export XD_HOME=<Specific XD install directory>

To specify the http port of the XDAdmin server,

xd/bin>$./xd-admin --httpPort <httpPort>

The XDContainer nodes by default start up with server.port 0 (which means they will scan for an available
HTTP port). You can disable the HTTP endpoints for the XDContainer by setting server.port=-1. Note
that in this case HTTP source support will not work in a PaaS environment because typically it would
require XD to bind to a specific port. Both the XDAdmin and XDContainer processes bind to server.port
$PORT (i.e. an environment variable if one is available, as is typical in a PaaS).

Using Hadoop

Spring XD supports the following Hadoop distributions:

• hadoop26 - Apache Hadoop 2.6.0 (default)

• phd21 - Pivotal HD 2.1 and 2.0

• phd30 - Pivotal HD 3.0

• cdh5 - Cloudera CDH 5.3.0

• hdp22 - Hortonworks Data Platform 2.2

To specify the distribution libraries to use for Hadoop client connections, use the option
--hadoopDistro for the xd-container and xd-shell commands:

xd/bin>$./xd-shell --hadoopDistro <distribution>

xd/bin>$./xd-admin

xd/bin>$./xd-container --hadoopDistro <distribution>

Pass in the --help option to see other configuration properties.

XD-Shell in Distributed Mode

If you wish to use a XD-Shell that is on a different machine than where you deployed your admin server.

1) Open your shell

Spring XD Guide

1.2.0.RC1 Spring XD 13

shell/bin>$./xd-shell

2) From the xd shell use the "admin config server" command i.e.

admin config server <yourhost>:9393

2.10 Running on YARN

Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Running Distributed Mode for information on running Spring XD in distributed mode. One
option is to run these nodes on a Hadoop YARN cluster rather than on VMs or physical servers managed
by you.

What do you need?

To begin with, you need to have access to a Hadoop cluster running a version based on Apache
Hadoop version 2. This includes Apache Hadoop 2.6.0, Pivotal HD 2.1 or 3.0, Hortonworks HDP 2.2
and Cloudera CDH5.

Important

Running YARN on some Ubuntu distributions and Mac OS X has shown to have issues when
YARN applications are killed. It seems that the kill command doesn’t always succesfully kill
the corresponding OS process and you end up with application processes still running. See
HADOOP-9752 for more details.

You need a supported transport, see Running Distributed Mode for installation of Redis or Rabbit MQ.
Spring XD on YARN currently uses Redis as the default data transport.

You also need Zookeeper running. If your Hadoop cluster doesn’t have Zookeeper installed you need
to install and run it specifically for Spring XD. See the Setting up ZooKeeper section of the "Running
Distributed Mode" chapter.

Lastly, you need an RDBMs to support batch jobs and JDBC operations.

Download Spring XD on YARN binaries

In addition to the regular spring-xd-<version>-dist.zip files we also distribute a zip file that
includes all you need to deploy on YARN. The name of this zip file is spring-xd-<version>-
yarn.zip. You can download the zip file for the current release from Spring release repo or a milestone
build from the Spring milestone repo. Unzip the downloaded file and you should see a spring-xd-
<version>-yarn directory.

Configure your deployment

Configuration options are contained in a config/servers.yml file in the Spring XD YARN install
directory. You need to configure the hadoop settings, the transport choice plus redis/rabbit settings, the
zookeeper settings and the JDBC datasource properties.

Depending on the distribution used you might need to change the siteYarnAppClasspath and
siteMapreduceAppClasspath. We have provided basic settings for the supported distros, you just
need to uncomment the ones for the distro you use.

http://www.us.apache.org/dist/hadoop/common/hadoop-2.6.0/
http://www.gopivotal.com/big-data/pivotal-hd
http://hortonworks.com/hdp/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
https://issues.apache.org/jira/browse/HADOOP-9752
http://repo.spring.io/release/org/springframework/xd/spring-xd/
http://repo.spring.io/milestone/org/springframework/xd/spring-xd/

Spring XD Guide

1.2.0.RC1 Spring XD 14

These are the settings used for Hadoop 2.6.0:

spring:

 yarn:

 siteYarnAppClasspath: "$HADOOP_CONF_DIR,$HADOOP_COMMON_HOME/share/hadoop/common/*,

$HADOOP_COMMON_HOME/share/hadoop/common/lib/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/*,$HADOOP_HDFS_HOME/

share/hadoop/hdfs/lib/*,$HADOOP_YARN_HOME/share/hadoop/yarn/*,$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*"

 siteMapreduceAppClasspath: "$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*,$HADOOP_MAPRED_HOME/

share/hadoop/mapreduce/lib/*"

XD options

For Spring XD you need to define how many admin servers and containers you need using properties
spring.xd.adminServers and spring.xd.containers respectively. You also need to define
the HDFS location using property spring.yarn.applicationDir where the Spring XD binary and
config files will be stored.

spring:

 xd:

 appmasterMemory: 512M

 adminServers: 1

 adminMemory: 512M

 adminLocality: false

 containers: 3

 containerMemory: 512M

 containerLocality: false

 container:

 groups: yarn

 yarn:

 applicationDir: /xd/app/

More about memory settings in above configuration, see section the section called “Configuring YARN
memory reservations”.

Hadoop settings

You need to specify the host where the YARN Resource Manager is running
using spring.hadoop.resourceManagerHost as well as the HDFS URL using
spring.hadoop.fsUri.

Hadoop properties

spring:

 hadoop:

 fsUri: hdfs://localhost:8020

 resourceManagerHost: localhost

 config:

 topology.script.file.name: /path/to/topology-script.sh

Note

Setting hadoop topology.script.file.name property is mandatory if more sophisticated
container placement is used to allocate XD admins or containers from a spesific hosts or racks.
If this property is not set to match a one used in a hadoop cluster, allocations using hosts and
racks will simply fail.

Zookeeper settings

You should specify the Zookeeper connection settings

Spring XD Guide

1.2.0.RC1 Spring XD 15

#Zookeeper properties

#client connect string: host1:port1,host2:port2,...,hostN:portN

zk:

 client:

 connect: localhost:2181

Transport options

You should choose either redis (default) or rabbit as the transport and include the host and port in
the properties for the choice you made.

Transport used

transport: redis

Redis properties

spring:

 redis:

 port: 6379

 host: localhost

JDBC datasource properties

You should specify the JDBC connection properties based on the RDBMs that you use for the batch
jobs and JDBC sink

#Config for use with MySQL - uncomment and edit with relevant values for your environment

spring:

 datasource:

 url: jdbc:mysql://yourDBhost:3306/yourDB

 username: yourUsername

 password: yourPassword

 driverClassName: com.mysql.jdbc.Driver

XD Admin port

On default the property server.port which defines the used port for embedded server is set to 9393
but it can be overridden by changing the value in servers.yml.

#Port that admin-ui is listening on

#server:

port: 9393

On YARN it is recommended that you simply set the port to 0 meaning that server will automatically
choose a random port. This is advisable simply because it will prevent port collission which are usually a
little difficult to track down from a cluster. See more instructions in the section the section called “Connect
xd-shell to YARN runtime managed admins” for how to connect xd-shell to admins managed by YARN.

#Port that admin-ui is listening on

server:

 port: 0

Adding custom modules

The recommended approach for custom modules is to define the module registry location as a directory
in HDFS. This will allow the most flexibility and the modules will automatically be available to all XD
containers running in the Hadoop cluster. The xd.customModule.home property is by default set
to the value ${spring.hadoop.fsUri}/xd/yarn/custom-modules for YARN deployments. This
can be modified, but we recommend keeping it to a location on HDFS within the same Hadoop cluster.

Spring XD Guide

1.2.0.RC1 Spring XD 16

xd:

 customModule:

 home: ${spring.hadoop.fsUri}/xd/yarn/custom-modules

See the Modules section for more on custom modules.

Customizing module configurations

The configurations for all standard XD modules can be customized by modifying the file modules.yml
in the config directory and then adding it to the modules-config.zip archive in the same directory.

You can run the following command from the config directory to achieve this:

jar -uf modules-config.zip modules.yml

Modify container logging

Logging configuration for XD admins and containers are defined in files config/xd-admin-
logger.properties and config/xd-container-logger.properties respectively. These two
files are copied over to hdfs during the deployment. If you want to modify logging configuration either
modify source files and do a deployment again or modify files in hdfs directly.

Control XD YARN application lifecycle

Change current directory to be the directory that was unzipped spring-xd-<version>-yarn. To
read about runtime configuration and more sophisticated features see section the section called
“Working with container groups”.

Push the Spring XD application binaries and config to HDFS

Run the command

$ bin/xd-yarn push

New version installed

List installed application versions

Run the command

$ bin/xd-yarn pushed

 NAME PATH

 ---- --------------------

 app hdfs://node1:8020/xd

Submit the Spring XD YARN application

Run the command

$ bin/xd-yarn submit

New instance submitted with id application_1420911708637_0001

Check the status of YARN apps

You can use the regular yarn command to check the status. Simply run:

Spring XD Guide

1.2.0.RC1 Spring XD 17

$ bin/xd-yarn submitted

 APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE

 FINALSTATUS ORIGINAL TRACKING URL

 ------------------------------ ------------ ------ ------- ---- -------------- ----------

 ------- ----------- ---------------------------

 application_1420911708637_0001 jvalkealahti xd-app default XD 09/01/15 14:25 N/A

 RUNNING UNDEFINED http://172.16.101.106:49792

You should see one application running named xd-app.

Note

Pay attention to APPLICATION ID listed in output because that is an id used in most of the
control commands to communicate to a specific application instance. For example you may have
multiple XD YARN runtime instances running.

Kill application

Application can be killed using a kill command.

$ bin/xd-yarn kill -a application_1420905836797_0001

Kill request for application_1420905836797_0001 sent

Using a built-in shell

To get a better and faster command usage a build-in shell can be used to run control commands:

$ bin/xd-yarn shell

Spring YARN Cli (v2.1.0.M3)

Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to quit.

$

clear clustercreate clusterdestroy clusterinfo clustermodify

clustersinfo clusterstart clusterstop exit help

kill prompt pushed submit submitted

$

Connect xd-shell to YARN runtime managed admins

XD admins will register its runtime information into zookeeper and you can use the admininfo
command to query this information:

$ bin/xd-yarn admininfo

Admins: [http://hadoop.localdomain:43740]

Then connect xd-shell to this instance:

server-unknown:>admin config server --uri http://hadoop.localdomain:43740

Successfully targeted http://hadoop.localdomain:43740

xd:>runtime containers

 Container Id Host IP Address PID Groups Custom

 Attributes

 ------------------------------------ ----------------- -------------- ----- ------

 --

 6324a9ae-205b-44b9-b851-f0edd7245286 node2.localdomain 172.16.101.102 12284 yarn

 {virtualCores=1, memory=512, managementPort=54694}

Configuring YARN memory reservations

YARN Nodemanager is continously tracking how much memory is used by individual YARN containers.
If containers are using more memory than what the configuration allows, containers are simply killed by

Spring XD Guide

1.2.0.RC1 Spring XD 18

a Nodemanager. Application master controlling the app lifecycle is given a little more freedom meaning
that Nodemanager is not that aggressive when making a desicion when a container should be killed.

Lets take a quick look of memory related settings in YARN cluster and in YARN applications. Below xml
config is what a default vanilla Apache Hadoop uses for memory related settings. Other distributions
may have different defaults.

yarn-site.xml.

<configuration>

 <property>

 <name>yarn.nodemanager.pmem-check-enabled</name>

 <value>true</value>

 </property>

 <property>

 <name>yarn.nodemanager.vmem-check-enabled</name>

 <value>true</value>

 </property>

 <property>

 <name>yarn.nodemanager.vmem-pmem-ratio</name>

 <value>2.1</value>

 </property>

 <property>

 <name>yarn.scheduler.minimum-allocation-mb</name>

 <value>1024</value>

 </property>

 <property>

 <name>yarn.scheduler.maximum-allocation-mb</name>

 <value>8192</value>

 </property>

 <property>

 <name>yarn.nodemanager.resource.memory-mb</name>

 <value>8192</value>

 </property>

</configuration>

yarn.nodemanager.pmem-check-enabled
Enables a check for physical memory of a process. This check if enabled is directly tracking amount
of memory requested for a YARN container.

yarn.nodemanager.vmem-check-enabled
Enables a check for virtual memory of a process. This setting is one which is usually causing
containers of a custom YARN applications to get killed by a node manager. Usually the actual ratio
between physical and virtual memory is higher than a default 2.1 or bugs in a OS is causing wrong
calculation of a used virtual memory.

yarn.nodemanager.vmem-pmem-ratio
Defines a ratio of allowed virtual memory compared to physical memory. This ratio simply defines
how much virtual memory a process can use but the actual tracked size is always calculated from
a physical memory limit.

yarn.scheduler.minimum-allocation-mb
Defines a minimum allocated memory for container.

Spring XD Guide

1.2.0.RC1 Spring XD 19

Note

This setting also indirectly defines what is the actual physical memory limit requested during a
container allocation. Actual physical memory limit is always going to be multiple of this setting
rounded to upper bound. For example if this setting is left to default 1024 and container is
requested with 512M, 1024M is going to be used. However if requested size is 1100M, actual
size is set to 2048M.

yarn.scheduler.maximum-allocation-mb
Defines a maximum allocated memory for container.

yarn.nodemanager.resource.memory-mb
Defines how much memory a node controlled by a node manager is allowed to allocate. This setting
should be set to amount of which OS is able give to YARN managed processes in a way which
doesn’t cause OS to swap, etc.

Tip

If testing XD YARN runtime on a single computer with a multiple VM based hadoop cluster a pro tip
is to set both yarn.nodemanager.pmem-check-enabled and yarn.nodemanager.vmem-
check-enabled to false, set yarn.scheduler.minimum-allocation-mb much lower to
either 256 or 512 and yarn.nodemanager.resource.memory-mb 15%-20% below a defined
VM memory.

We have three memory settings for components participating XD YARN runtime. You can
use configuration properties spring.xd.appmasterMemory, spring.xd.adminMemory and
spring.xd.containerMemory respectively.

spring:

 xd:

 appmasterMemory: 512M

 adminMemory: 512M

 containerMemory: 512M

Working with container groups

Container grouping and clustering is more sophisticated feature which allows better control of XD admins
and containers at runtime. Basic features are:

• Control members in a groups.

• Control lifecycle state for group as whole.

• Create groups dynamically.

• Re-start failed containers.

XD YARN Runtime has a few built-in groups to get you started. There are two groups admin and
container created by default which both are lauching exactly one container chosen randomly from
YARN cluster.

List existing groups

Run the command:

Spring XD Guide

1.2.0.RC1 Spring XD 20

$ bin/xd-yarn clustersinfo -a application_1420911708637_0001

 CLUSTER ID

 container

 admin

Get status of a group

Run the command:

bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c admin

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 1

Or to get verbose output:

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c admin -v

 CLUSTER STATE MEMBER COUNT ANY PROJECTION HOSTS PROJECTION RACKS PROJECTION ANY SATISFY HOSTS

 SATISFY RACKS SATISFY

 ------------- ------------ -------------- ---------------- ---------------- -----------

 ------------- -------------

 RUNNING 1 1 {} {} 0 {}

 {}

Control group state

Run the commands to stop group, list its status, start group and finally list status again:

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 1

$ bin/xd-yarn clusterstop -a application_1420911708637_0001 -c container

Cluster container stopped.

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 STOPPED 0

$ bin/xd-yarn clusterstart -a application_1420911708637_0001 -c container

Cluster container started.

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 1

Modify group configuration

In these commans we first ramp up container count and then ramp it down:

Spring XD Guide

1.2.0.RC1 Spring XD 21

18:19 $ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 1

$ bin/xd-yarn clustermodify -a application_1420911708637_0001 -c container -w 3

Cluster container modified.

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 3

$ bin/xd-yarn clustermodify -a application_1420911708637_0001 -c container -w 2

Cluster container modified.

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 2

Note

In above example we used option -w which is a shortcut for defining YARN allocation which uses
a wildcard requests allowing containers to be requested from any host.

Create a new group

When you want to create a new group that is because you need to add new XD admin or container nodes
to a current system with a different settings. These setting usually differ by a colocation of containers.
More about built-in group configuration refer to section the section called “Built-in group configurations”.

Run the command:

$ bin/xd-yarn clustercreate -a application_1420911708637_0001 -c custom -i container-nolocality-template

 -p default -w 2

Cluster custom created.

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c custom

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 INITIAL 0

$ bin/xd-yarn clusterstart -a application_1420911708637_0001 -c custom

Cluster custom started.

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c custom

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 2

To create group with two containers on node5 and one on node6 run command:

$ bin/xd-yarn clustercreate -a application_1420911708637_0001 -c custom -i container-locality-template -

p default -y "{hosts:{node6: 1,node5: 2}}"

Cluster custom created.

$ bin/xd-yarn -a application_1420911708637_0001 -c custom -v

 CLUSTER STATE MEMBER COUNT ANY PROJECTION HOSTS PROJECTION RACKS PROJECTION ANY SATISFY HOSTS

 SATISFY RACKS SATISFY

 ------------- ------------ -------------- ------------------ ---------------- -----------

 ------------------ -------------

 INITIAL 0 0 {node5=2, node6=1} {} 0

 {node5=2, node6=1} {}

Spring XD Guide

1.2.0.RC1 Spring XD 22

Destroy a group

Run the commands:

$ bin/xd-yarn clustersinfo -a application_1420911708637_0001

 CLUSTER ID

 container

 admin

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 1

$ bin/xd-yarn clusterstop -a application_1420911708637_0001 -c container

Cluster container stopped.

$ bin/xd-yarn clusterinfo -a application_1420911708637_0001 -c container

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 STOPPED 0

$ bin/xd-yarn clusterdestroy -a application_1420911708637_0001 -c container

Cluster container destroyed.

$ bin/xd-yarn clustersinfo -a application_1420911708637_0001

 CLUSTER ID

 admin

Note

Group can only destroyed if its status is STOPPED or INITIAL.

Built-in group configurations

Few groups are already defined where admin and container are enabled automatically. Other groups
are disabled and thus working as a blueprints which can be used to create groups manually.

admin
Default group definition for XD admins.

container
Default group definition for XD containers.

admin-nolocality-template
Blueprint with relax localization. Use this to create a groups if you plan to use any matching.

admin-locality-template
Blueprint with no relax localization. Use this to create a groups if you plan to use hosts or racks
matching.

container-nolocality-template
Blueprint with relax localization. Use this to create a groups if you plan to use any matching.

container-locality-template
Blueprint with no relax localization. Use this to create a groups if you plan to use hosts or racks
matching.

Spring XD Guide

1.2.0.RC1 Spring XD 23

Configuration examples

This section contains examples of usual use cases for custom configurations.

Run containers on a specific hosts

Below configuration sets default XD container to exist on node1 and node2.

xd:

 containerLocality: true

spring:

 yarn:

 appmaster:

 containercluster:

 clusters:

 container:

 projection:

 data: {any: 0, hosts: {node1: 1, node2: 1}}

Run admins on a specific racks

Below configuration sets default XD admins to exist on /rack1 and /rack2.

xd:

 adminLocality: true

spring:

 yarn:

 appmaster:

 containercluster:

 clusters:

 admin:

 projection:

 data: {any: 0, racks: {/rack1: 1, /rack2: 1}}

Disable default admin and container groups

Existing built-in groups admin and container can be disabled by setting their projection types to null.

spring:

 yarn:

 appmaster:

 containercluster:

 clusters:

 admin:

 projection:

 type: null

 container:

 projection:

 type: null

xd-yarn command synopsis

push

xd-yarn push - Push new application version

usage: xd-yarn push [options]

Option Description

------ -----------

-v, --application-version Application version (default: app)

Spring XD Guide

1.2.0.RC1 Spring XD 24

pushed

xd-yarn pushed - List pushed applications

usage: xd-yarn pushed [options]

No options specified

submit

xd-yarn submit - Submit application

usage: xd-yarn submit [options]

Option Description

------ -----------

-v, --application-version Application version (default: app)

submitted

xd-yarn submitted - List submitted applications

usage: xd-yarn submitted [options]

Option Description

------ -----------

-t, --application-type Application type (default: XD)

-v, --verbose [Boolean] Verbose output (default: true)

kill

xd-yarn kill - Kill application

usage: xd-yarn kill [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

clustersinfo

xd-yarn clustersinfo - List clusters

usage: xd-yarn clustersinfo [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

clusterinfo

xd-yarn clusterinfo - List cluster info

usage: xd-yarn clusterinfo [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

-v, --verbose [Boolean] Verbose output (default: true)

Spring XD Guide

1.2.0.RC1 Spring XD 25

clustercreate

xd-yarn clustercreate - Create cluster

usage: xd-yarn clustercreate [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

-g, --container-groups Container groups

-h, --projection-hosts Projection hosts counts

-i, --cluster-def Specify cluster def id

-p, --projection-type Projection type

-r, --projection-racks Projection racks counts

-w, --projection-any Projection any count

-y, --projection-data Raw projection data

clusterdestroy

xd-yarn clusterdestroy - Destroy cluster

usage: xd-yarn clusterdestroy [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

clustermodify

xd-yarn clustermodify - Modify cluster

usage: xd-yarn clustermodify [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

-h, --projection-hosts Projection hosts counts

-r, --projection-racks Projection racks counts

-w, --projection-any Projection any count

-y, --projection-data Raw projection data

clusterstart

xd-yarn clusterstart - Start cluster

usage: xd-yarn clusterstart [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

clusterstop

xd-yarn clusterstop - Stop cluster

usage: xd-yarn clusterstop [options]

Option Description

------ -----------

-a, --application-id Specify YARN application id

-c, --cluster-id Specify cluster id

Spring XD Guide

1.2.0.RC1 Spring XD 26

Introduction to YARN resource allocation

This section describes some background of how YARN resource allocation works, what are the
limitations of it and more importantly how it reflects into XD YARN runtime.

Note

More detailed info of resource allocation can be found from a Spring for Apache Hadoop
reference documentation.

YARN as having a strong roots from original MapReduce framework is imposing relatively strange
concepts of where containers are about to be executed. In a MapReduce world every map and reduce
tasks are executed in its own container where colocation is usually determined by a physical location
of a HDFS file block map or reduce tasks are accessing. This is introducing a concepts of allocating
containers on any hosts, specific hosts or specific racks. Usually YARN is trying to place container
as close as possible to a physical location to minimize network IO so i.e. if host cannot be chosen, rack
is chosen instead assuming a whole rack is connected together with a fast switch.

For custom YARN applications like XD YARN runtime this doesn’t necessarily make that much sense
because we’re not hard-tied to HDFS file blocks. What makes sense is that we can still place containers
on different racks to get better high availability in case whole rack goes down or if specific containers
needs to exist on specific hosts to access either custom physical or network resources. Good example
of having a need to execute something on a specific host is either a disk access or outbound internet
access if cluster is highly secured.

One other YARN resource allocation concept worth mentioning is relaxation of container locality. This
simply means that if resources are requested from hosts or racks, YARN will relax those requests if
resources cannot be allocated immediately. Turning relax flag off guarantees that containers will be
allocated from hosts or racks. Though these requests will then wait forever if allocation cannot be done.

Spring XD Guide

1.2.0.RC1 Spring XD 27

3. Application Configuration

3.1 Introduction

There are two main parts of Spring XD that can be configured, servers and modules.

The servers (xd-singlenode, xd-admin, xd-container) are Spring Boot applications and are
configured as described in the Spring Boot Reference documentation. In the most simple case
this means editing values in the YAML based configuration file servers.yml. The values in this
configuration file will overwrite the values in the default application.yml file that is embedded in the XD jar.

Note

The use of YAML is an alternative to using property files. YAML is a superset of JSON, and as
such is a very convenient format for specifying hierarchical configuration data.

For modules, each module has its own configuration file located in its own directory, for example
source/http/http.properties. Shared configuration values for modules can be placed in a
common modules.yml file.

For both server and module configuration, you can have environment specific settings through the use
of application profiles and the ability to override values in files by setting OS environment variables.

In this section we will walk though how to configure servers and modules.

3.2 Server Configuration

The startup scripts for xd-singlenode, xd-admin, and xd-container will by default look for the
file $XD_HOME\config\servers.yml as a source of externalized configuration information.

The location and name of this resourse can be changed by using the environment variables
XD_CONFIG_LOCATION and XD_CONFIG_NAME. The start up script takes the value of these
environment variables to set the Spring Boot properties spring.config.location and
spring.config.name. Note, that for XD_CONFIG_LOCATION you can reference any Spring
Resource implementation, most commonly denoted using the prefixes classpath:, file: and
http:.

It is common to keep your server configuration separate form the installation directory of XD itself. To
do this, here is an example environment variable setting

export XD_CONFIG_LOCATION=file:/xd/config/

export XD_CONFIG_NAME=region1-servers

Note: the file path separator ("/") at the end of XD_CONFIG_LOCATION is necessary.

Profile support

Profiles provide a way to segregate parts of your application configuration and change their availability
and/or values based on the environment. This lets you have different configuration settings for qa and
prod environments and to easily switch between them.

To activate a profile, set the OS environment variable SPRING_PROFILES_ACTIVE to a
comma delimited list of profile names. The server looks to load profile specific variants of the

http://projects.spring.io/spring-boot/
http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/resources/application.yml
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources

Spring XD Guide

1.2.0.RC1 Spring XD 28

servers.yml file based on the naming convention servers-{profile}.yml. For example, if
SPRING_PROFILES_ACTIVE=prod the following files would be searched for in the following order.

1. XD_CONFIG_LOCATION/servers-prod.yml

2. XD_CONFIG_LOCATION/servers.yml

You may also put multiple profile specific configuration in a single servers.yml file by using the key
spring.profiles in different sections of the configuration file. See Multi-profile YAML documents
for more information.

Database Configuration

Spring XD saves the state of the batch job workflows in a relational database. When running xd-
singlenode a embedded HSQLDB database is run. When running in distributed mode a standalone
HSQLDB instance can be used, the startup script hsqldb-server is in is provided the installation
directory under the folder hsqldb/bin. It is recommended to use HSQLDB only for development and
learning.

When deploying in a production environment, you will need to select another database. Spring XD is
actively tested on MySql (Version: 5.1.23) and Postgres (Version 9.2-1002). All batch workflow tables
are automatically created, if they do not exist, for HSQLDB, MySQL, Postgres and Oracle. The JDBC
driver jars for the HSQLDB and Postgres are already on the XD classpath. If you use Oracle DB, then
you would need to copy the JDBC jar into xd/lib.

The provided configuration file servers.yml located in $XD_HOME\config has commented out
configuration for some commonly used databases. You can use these as a basis to support your
database environment. XD also utilizes the Tomcat jdbc connection pool and these settings can be
configured in the servers.yml.

Note

Until full schema support is added for Sybase and other database, you will need to put a .jar file
in the xd/lib directory that contains the equivalent functionality as these DDL scripts.

Note

There was a schema change in version 1.0 RC1. Use or adapt the the sample migration class
to update your schema.

HSQLDB

When in distributed mode and you want to use HSQLDB, you need to change the value of
spring.datasource properties. As an example,

hsql:

 server:

 host: localhost

 port: 9102

 dbname: xdjob

spring:

 datasource:

 url: jdbc:hsqldb:hsql://${hsql.server.host:localhost}:${hsql.server.port:9101}/

${hsql.server.dbname:xdjob}

 username: sa

 password:

 driverClassName: org.hsqldb.jdbc.JDBCDriver

http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#boot-features-external-config-multi-profile-yaml
https://github.com/spring-projects/spring-xd/tree/master/spring-xd-batch/src/main/resources/org/springframework/xd/batch/schema
https://gist.github.com/ilayaperumalg/3f379eb7f4527f6f6da4

Spring XD Guide

1.2.0.RC1 Spring XD 29

The properties under hsql.server are substituted in the spring.datasource.url property
value. This lets you create short variants of existing Spring Boot properties. Using this style,
you can override the value of these configuration variables by setting an OS environment
variable, such as xd_server_host. Alternatively, you can not use any placeholders and set
spring.datasource.url directly to known values.

MySQL

When in distributed mode and you want to use MySQL, you need to change the value of
spring.datasource.* properties. As an example,

spring:

 datasource:

 url: jdbc:mysql://yourDBhost:3306/yourDB

 username: yourUsername

 password: yourPassword

 driverClassName: com.mysql.jdbc.Driver

To override these settings set an OS environment variable such as spring_datasource_url to the
value you require.

PostgreSQL

When in distributed mode and you want to use PostgreSQL, you need to change the value of
spring.datasource.* properties. As an example,

spring:

 datasource:

 url: jdbc:postgresql://yourDBhost:5432/yourDB

 username: yourUsername

 password: yourPassword

 driverClassName: org.postgresql.Driver

To override these settings set an OS environment variable such as spring_datasource_url to the
value you require.

Oracle database

When in distributed mode and you want to use Oracle database, you need to change the value of
spring.datasource.* properties. As an example,

spring:

 datasource:

 url: jdbc:oracle:thin:@//yourDBhost:1521/yourDB

 username: scott

 password: tiger

 driverClassName: oracle.jdbc.driver.OracleDriver

 validationQuery: select 1 from dual

To override these settings set an OS environment variable such as spring_datasource_url to the
value you require.

Redis

If you want to use Redis for analytics or data transport you should set the host and port of the Redis
server.

spring:

 redis:

 port: 6379

 host: localhost

Spring XD Guide

1.2.0.RC1 Spring XD 30

To override these settings set an OS environment variable such as spring_redis_port to the value
you require.

You can also configure redis to use Sentinel.

spring:

 redis:

 port: 6379

 host: host1

 sentinel:

 master: mymaster

 nodes: host2:26379,host3:26380,host4:26381

In addition, the following default settings for the rabbit message bus can be modified in servers.yml…

 redis:

 headers: ❶

 default:

 backOffInitialInterval: 1000 ❷

 backOffMaxInterval: 10000 ❸

 backOffMultiplier: 2.0 ❹

 concurrency: 1 ❺

 maxAttempts: 32 ❻

❶ comma-delimited list of additional (string-valued) header names to transport

❷ The time in milliseconds before retrying a failed message delivery

❸ The maximum time (ms) to wait between retries

❹ The back off multiplier (previous interval x multiplier = next interval)

❺ The minimum number of consumer threads receiving messages for a module

❻ The maximum number of delivery attempts

RabbitMQ

If you want to use RabbitMQ as a data transport use the following configuration settings

spring:

 rabbitmq:

 addresses: localhost:5672 ❶

 adminAddresses: http://localhost:15672 ❷

 nodes: rabbit@localhost ❸

 username: guest ❹

 password: guest ❺

 virtual_host: / ❻

 useSSL: false ❼

 sslProperties: ❽

❶ A comma-separated list of RabbitMQ server addresses (a single entry when not clustering).

❷ A comma-separated list of RabbitMQ management plugin URLs - only used when nodes contains
more than one entry. Entries in this list must correspond to the corresponding entry in addresses.

❸ A comma-separated list of RabbitMQ node names; when more than one entry, used to locate the
server address where a queue is located. Entries in this list must correspond to the corresponding
entry in addresses.

❹ The user name.

❺ The password.

❻ The virtual host.

❼ True to use SSL for the AMQP protocol.

Spring XD Guide

1.2.0.RC1 Spring XD 31

❽ The location of the SSL properties file, when certificate exchange is used.

To override these settings set an OS environment variable such as spring_rabbitmq_host to the
value you require.

See Message Bus regarding SSL configuration.

When configuring a clustered environment, with High Availability Queues, it is possible to configure
the bus so that it consumes from the node where the queue is located. This is facilitated by the
LocalizedQueueConnectionFactory which determines the node for a queue. To enable this
feature, add the list of nodes to the spring.rabbitmq.nodes property. These nodes correspond
to the broker addresses in the corresponding place in the spring.rabbitmq.addresses property.
The size of these lists must be identical (when the nodes property has more than one entry). The
spring.rabbitmq.adminAddresses property contains the corresponding URLs for the admins on
those same nodes. Again, the property list must be the same length.

In addition, the following default settings for the rabbit message bus can be modified in servers.yml…

 messagebus:

 rabbit:

 compressionLevel 1 ❶

 default:

 ackMode: AUTO ❷

 autoBindDLQ: false ❸

 backOffInitialInterval: 1000 ❹

 backOffMaxInterval: 10000 ❺

 backOffMultiplier: 2.0 ❻

 batchBufferLimit: 10000 ❼

 batchingEnabled: false ❽

 batchSize: 100 ❾

 batchTimeout: 5000 ❿

 compress: false 11

 concurrency: 1 12

 durableSubscription: false 13

 maxAttempts: 3 14

 maxConcurrency: 1 15

 prefix: xdbus. 16

 prefetch: 1 17

 replyHeaderPatterns: STANDARD_REPLY_HEADERS,* 18

 republishToDLQ false 19

 requestHeaderPatterns: STANDARD_REQUEST_HEADERS,* 20

 requeue: true 21

 transacted: false 22

 txSize: 1 23

❶ When the bus (or a stream module deployment) is configured to compress messages, specifies
the compression level. See java.uti.zip.Deflater for available values; defaults to 1 (BEST_SPEED)

❷ AUTO (container acks), NONE (broker acks), MANUAL (consumer acks). Upper case only. Note:
MANUAL requires specialized code in the consuming module and is unlikely to be used in an
XD application. For more information, see http://docs.spring.io/spring-integration/reference/html/
amqp.html#amqp-inbound-ack

❸ When true, the bus will automatically declare dead letter queues and binding for each bus queue.
The user is responsible for setting a policy on the broker to enable dead-lettering; see Message Bus
Configuration for more information. The bus will configure a dead-letter-exchange (<prefix>DLX)
and bind a queue with the name <original queue name>.dlq and route using the original
queue name

❹ The time in milliseconds before retrying a failed message delivery

❺ The maximum time (ms) to wait between retries

http://docs.spring.io/spring-integration/reference/html/amqp.html#amqp-inbound-ack
http://docs.spring.io/spring-integration/reference/html/amqp.html#amqp-inbound-ack

Spring XD Guide

1.2.0.RC1 Spring XD 32

❻ The back off multiplier (previous interval x multiplier = next interval)

❼ When batching is enabled, the size of the buffer that will cause a batch to be released (overrides
batchSize)

❽ True to enable message batching by producers

❾ The number of messages in a batch (may be preempted by batchBufferLimit or batchTimeout)

❿ The idle time to wait before sending a partial batch
11 True to enable message compression - also see (1. bus compressionLevel)
12 The minimum number of consumer threads receiving messages for a module
13 When true queues for subscriptions to publish/subscribe named channels (tap:, topic:) will be

declared as durable and are eligible for dead-letter configuration according to the autoBindDLQ
setting.

14 The maximum number of delivery attempts. Setting this to 1 disables the retry mechanism and
requeue must be set to false if you wish failed messages to be rejected or routed to a DLQ.
Otherwise deliveries will be attempted repeatedly, with no termination. Also see republishToDLQ

15 The maximum number of consumer threads receiving messages for a module
16 A prefix applied to all queues, exchanges so that policies (HA etc) can be applied
17 The number of messages to prefetch for each consumer
18 Determines which reply headers will be transported
19 By default, failed messages after retries are exhausted are rejected. If a dead-letter queue (DLQ) is

configured, rabbitmq will route the failed message (unchanged) to the DLQ. Setting this property to
true instructs the bus to republish failed messages to the DLQ, with additional headers, including
the exception message and stack trace from the cause of the final failure. Note that the republish
will occur even if maxAttempts is only set to 1. Also see autoBindDLQ

20 Determines which request headers will be transported
21 Whether rejected messages will be requeued by default
22 Whether the channel is to be transacted
23 The number of messages to process between acks (when ack mode is AUTO).

Kafka

If you want to use Kafka as a data transport, the following connection settings, as well as defaults for
the kafka message bus can be modified in servers.yml.

Note

To ensure the proper functioning of the Kafka Message Bus, you must eanble log cleaning in your
Kafka configuration. This is set using the configuration variable log.cleaner.enable=true.
See the Kafka documentation for additional configuration options for log cleaning.

Note

At this time, the Kafka message bus does not support job processing. This feature will be available
in a future release.

https://cwiki.apache.org/confluence/display/KAFKA/Log+Compaction

Spring XD Guide

1.2.0.RC1 Spring XD 33

 messagebus:

 kafka:

 brokers: localhost:9092 ❶

 zkAddress: localhost:2181 ❷

 default:

 batchingEnabled: false ❸

 batchSize: 200 ❹

 batchTimeout: 5000 ❺

 replicationFactor: 1 ❻

 concurrency: 1 ❼

 requiredAcks: 1 ❽

 compressionCodec: default ❾

 offsetStoreTopic: SpringXdOffsets ❿

❶ A list of Kafka broker addresses, for sending messages

❷ A list of ZooKeeper addresses, for receiving messages

❸ True to enable message batching by producers by default

❹ The number of messages in a batch (may be preempted by batchTimeout)

❺ The idle time to wait before sending a partial batch

❻ The replication factor of the topics created by the message bus. At least as many brokers must be
in the cluster when the topic is being created.

❼ The maximum number of consumer threads receiving messages for a module. The total number of
threads actively consuming partitions across all the instances of a specific module cannot be larger
than the partition count of a transport topic - therefore, if such a situation occurs, some modules
instances will, in fact, use less consumer threads.

❽ The number of required acks when producing messages, i.e. how many brokers have committed
data to the logs and acknowledged this to the leader. Special values are -1, meaning all in-sync
replicas, and 0 indicating that no acks are necessary.

❾ Enables compression for the bus and sets the compression codec.

❿ The name of the topic that will be used to store client offset values. ==== Admin Server HTTP Port

The default HTTP port of the xd-admin server is 9393. To change the value use the following
configuration setting

server:

 port: 9876

Management Port

The XD servers provide general health and JMX exported management endpoints via Jolokia.

By default the management and health endpoints are available on port 9393. To change the value of
the port use the following configuration setting to servers.yml.

management:

 port: 9876

You can also disable http management endpoints by setting the port value to -1.

By default JMX MBeans are exported. You can disable JMX by setting spring.jmx.enabled=false.

The section on Monitoring and management over HTTP provides details on how to configure these
endpoint.

http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#production-ready-endpoints
http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#production-ready-jolokia
http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#production-ready-monitoring

Spring XD Guide

1.2.0.RC1 Spring XD 34

Admin Server Security

By default, the Spring XD admin server is unsecured and runs on an unencrypted HTTP connection.
You can secure your administration REST endpoints, as well as the Admin UI by enabling HTTPS and
requiring clients to authenticate.

Enabling HTTPS

By default, the administration, management, and health endpoints, as well as the Admin UI use
HTTP as a transport. You can switch to HTTPS easily, by adding a certificate to your configuration in
servers.yml

spring:

 profiles: admin ❶

server:

 ssl:

 key-alias: yourKeyAlias ❷

 key-store: path/to/keystore ❸

 key-store-password: yourKeyStorePassword ❹

 key-password: yourKeyPassword ❺

 trust-store: path/to/trust-store ❻

 trust-store-password: yourTrustStorePassword ❼

❶ The settings are applicable only to the admin server (regardless whether it’s started in single-node
mode or as a separate instance).

❷ The alias (or name) under which the key is stored in the keystore.

❸ The path to the keystore file. Classpath resources may also be specified, by using the classpath
prefix: classpath:path/to/keystore

❹ The password of the keystore.

❺ The password of the key.

❻ The path to the truststore file. Classpath resources may also be specified, by using the classpath
prefix: classpath:path/to/trust-store

❼ The password of the trust store.

Note

If HTTPS is enabled, it will completely replace HTTP as the protocol over which the REST
endpoints and the Admin UI interact. Plain HTTP requests will fail - therefore, make sure that you
configure your Shell accordingly.

Enabling authentication

By default, the REST endpoints (administration, management and health), as well as the Admin UI do
not require authenticated access. By turning on authentication on the admin server:

• the REST endpoints will require Basic authentication for access;

• the Admin UI will be accessible after signing in through a web form.

Note

When authentication is set up, it is strongly recommended to enable HTTPS as well, especially
in production environments.

Spring XD Guide

1.2.0.RC1 Spring XD 35

You can turn on authentication by adding the following to the configuration in servers.yml:

spring:

 profiles: admin ❶

security:

 basic:

 enabled: true ❷

 realm: SpringXD ❸

 user:

 name: yourAdminUsername

 password: yourAdminPassword

 role: ADMIN, VIEW, CREATE ❹

❶ The settings are applicable only to the admin server (regardless whether it’s started in single node
mode or as a separate instance).

❷ Must be set to true for security to be enabled.

❸ (Optional) The realm for Basic authentication. Will default to SpringXD if not explicitly set.

❹ Must set with appropriate roles (ADMIN, VIEW and CREATE) to enable. Note: the prefix ROLE_
isn’t required here.

Additionally, you must specify an authentication method, out of the following that Spring XD supports:

• single user mode (the default made available by Spring Boot)

• integration with an existing LDAP server

• file based configuration

The options above are mutually exclusive, and they are described below.

Single user authentication

This option uses a single username/password pair is created for the server. This option is turned on by
default, if security is enabled and LDAP is not configured.

You can configure this option by adding the following to the configuration in servers.yml, once security
is enabled.

spring:

 profiles: admin

security:

 basic:

 enabled: true

 realm: SpringXD

 user:

 name: yourAdminUsername ❶

 password: yourAdminPassword ❷

❶ The username for authentication (must be used by REST clients and in the Admin UI). Will default
to user if not explicitly set.

❷ The password for authentication (must be used by REST clients and in the Admin UI). If not explicitly
set, it will be auto-generated, as described in the Spring Boot documentation.

LDAP authentication

Spring XD also supports authentication against an LDAP server, in both direct bind and "search and
bind" modes. When the LDAP authentication option is activated, the default single user mode is turned
off.

http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#boot-features-security

Spring XD Guide

1.2.0.RC1 Spring XD 36

In direct bind mode, a pattern is defined for the user’s distinguished name (DN), using a placeholder for
the username. The authentication process derive the distinguished name of the user by replacing the
placeholder and use it to authenticate a user against the LDAP server, along with the supplied password.
You can set up LDAP direct bind as follows:

spring:

 profiles: admin

security:

 basic:

 enabled: true

 realm: SpringXD

xd:

 security:

 authentication:

 ldap:

 enabled: true ❶

 url: ldap://ldap.example.com:3309 ❷

 userDnPattern: uid={0},ou=people,dc=example,dc=com ❸

❶ Enables LDAP integration

❷ The URL for the LDAP server

❸ The distinguished name (DN) pattern for authenticating against the server.

The "search and bind" mode involves connecting to an LDAP server, either anonymously or with a fixed
account, and searching for the distinguished name of the authenticating user based on its username,
and then using the resulting value and the supplied password for binding to the LDAP server. This option
is configured as follows:

spring:

 profiles: admin

security:

 basic:

 enabled: true

 realm: SpringXD

xd:

 security:

 authentication:

 ldap:

 enabled: true ❶

 url: ldap://ldap.example.com:3309 ❷

 managerDn: uid=bob,ou=managers,dc=example,dc=com ❸

 managerPassword: managerPassword ❹

 userSearchBase: ou=otherpeople,dc=example,dc=com ❺

 userSearchFilter: uid={0} ❻

❶ Enables LDAP integration

❷ The URL of the LDAP server

❸ A DN for to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with next option)

❹ A password to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with previous option)

❺ The base for searching the DN of the authenticating user (serves to restrict the scope of the search)

❻ The search filter for the DN of the authenticating user

File based authentication

Spring XD supports listing users in a configuration file, as described below. Each user must be assigned
a password and one or more roles:

Spring XD Guide

1.2.0.RC1 Spring XD 37

spring:

 profiles: admin

security:

 basic:

 enabled: true

 realm: SpringXD

xd:

 security:

 authentication:

 file:

 enabled: true ❶

 users: ❷

 bob: bobspassword, ROLE_VIEW ❸

 alice: alicepwd, ROLE_ADMIN

❶ Enables file based integration

❷ This is a yaml map of username to (password and roles)

❸ Each map "value" is made of a password and one or more roles, comma separated

Customizing authorization

All of the above deals with authentication, i.e. how to assess the identity of the user. Irrespective of the
option chosen, you can also customize authorization i.e. who can do what.

The default scheme uses three roles to protect the REST endpoints that Spring XD exposes:

• ROLE_VIEW for anything that relates to retrieving state

• ROLE_CREATE for anything that involves creating, deleting or mutating the state of the system

• ROLE_ADMIN for boot management endpoints.

All of those defaults are written out in application.yml, which you can choose to override via
servers.yml. This takes the form of a YAML list (as some rules may have precedence over others)
and so you’ll need to copy/paste the whole list and tailor it to your needs (as there is no way to merge
lists). Always refer to your version of application.yml, as the snippet reproduced below may be
outdated. The default rules are as such:

Spring XD Guide

1.2.0.RC1 Spring XD 38

 security:

 authorization:

 rules:

 # Streams

 - GET /streams/definitions => hasRole('ROLE_VIEW')

 - DELETE /streams/definitions => hasRole('ROLE_CREATE')

 - GET /streams/definitions/* => hasRole('ROLE_VIEW')

 - POST /streams/definitions => hasRole('ROLE_CREATE')

 - DELETE /streams/definitions/* => hasRole('ROLE_CREATE')

 # Stream Deployments

 - GET /streams/deployments/ => hasRole('ROLE_VIEW')

 - DELETE /streams/deployments/ => hasRole('ROLE_CREATE')

 - GET /streams/deployments/* => hasRole('ROLE_VIEW')

 - POST /streams/deployments/* => hasRole('ROLE_CREATE')

 - DELETE /streams/deployments/* => hasRole('ROLE_CREATE')

 # Job Definitions

 - GET /jobs/definitions => hasRole('ROLE_VIEW')

 - DELETE /jobs/definitions => hasRole('ROLE_CREATE')

 - GET /jobs/definitions/* => hasRole('ROLE_VIEW')

 - POST /jobs/definitions => hasRole('ROLE_CREATE')

 - DELETE /jobs/definitions/* => hasRole('ROLE_CREATE')

 # Job Deployments

 - GET /jobs/deployments/ => hasRole('ROLE_VIEW')

 - DELETE /jobs/deployments/ => hasRole('ROLE_CREATE')

 - GET /jobs/deployments/* => hasRole('ROLE_VIEW')

 - POST /jobs/deployments/* => hasRole('ROLE_CREATE')

 - DELETE /jobs/deployments/* => hasRole('ROLE_CREATE')

 # Batch Job Configurations

 - GET /jobs/configurations => hasRole('ROLE_VIEW')

 - GET /jobs/configurations/* => hasRole('ROLE_VIEW')

 # Batch Job Executions

 - GET /jobs/executions => hasRole('ROLE_VIEW')

 - PUT /jobs/executions?stop=true => hasRole('ROLE_CREATE')

 - GET /jobs/executions?jobname=* => hasRole('ROLE_VIEW')

 - POST /jobs/executions?jobname=* => hasRole('ROLE_CREATE')

 - GET /jobs/executions/* => hasRole('ROLE_VIEW')

 - PUT /jobs/executions/*?restart=true => hasRole('ROLE_CREATE')

 - PUT /jobs/executions/*?stop=true => hasRole('ROLE_CREATE')

 - GET /jobs/executions/*/steps => hasRole('ROLE_VIEW')

 - GET /jobs/executions/*/steps/* => hasRole('ROLE_VIEW')

 - GET /jobs/executions/*/steps/*/progress => hasRole('ROLE_VIEW')

 # Batch Job Instances

 - GET /jobs/instances?jobname=* => hasRole('ROLE_VIEW')

 - GET /jobs/instances/* => hasRole('ROLE_VIEW')

 # Module Definitions

 - GET /modules => hasRole('ROLE_VIEW')

 - POST /modules => hasRole('ROLE_CREATE')

 - GET /modules/*/* => hasRole('ROLE_VIEW')

 - DELETE /modules/*/* => hasRole('ROLE_CREATE')

 # Deployed Modules

 - GET /runtime/modules => hasRole('ROLE_VIEW')

 # Containers

 - GET /runtime/containers => hasRole('ROLE_VIEW')

 # Counters

 - GET /metrics/counters => hasRole('ROLE_VIEW')

 - GET /metrics/counters/* => hasRole('ROLE_VIEW')

 - DELETE /metrics/counters/* => hasRole('ROLE_CREATE')

 # Field Value Counters

 - GET /metrics/field-value-counters => hasRole('ROLE_VIEW')

 - GET /metrics/field-value-counters/* => hasRole('ROLE_VIEW')

 - DELETE /metrics/field-value-counters/* => hasRole('ROLE_CREATE')

 # Aggregate Counters

 - GET /metrics/aggregate-counters => hasRole('ROLE_VIEW')

 - GET /metrics/aggregate-counters/* => hasRole('ROLE_VIEW')

 - DELETE /metrics/aggregate-counters/* => hasRole('ROLE_CREATE')

 # Gauges

 - GET /metrics/gauges => hasRole('ROLE_VIEW')

 - GET /metrics/gauges/* => hasRole('ROLE_VIEW')

 - DELETE /metrics/gauges/* => hasRole('ROLE_CREATE')

 # Rich Gauges

 - GET /metrics/rich-gauges => hasRole('ROLE_VIEW')

 - GET /metrics/rich-gauges/* => hasRole('ROLE_VIEW')

 - DELETE /metrics/rich-gauges/* => hasRole('ROLE_CREATE')

 # Tab Completions

 - GET /completions/stream?start=* => hasRole('ROLE_VIEW')

 - GET /completions/job?start=* => hasRole('ROLE_VIEW')

 - GET /completions/module?start=* => hasRole('ROLE_VIEW')

 # Boot Endpoints

 - GET /management/** => hasRole('ROLE_ADMIN')

Spring XD Guide

1.2.0.RC1 Spring XD 39

The format of each line is the following:

HTTP_METHOD URL_PATTERN '=>' SECURITY_ATTRIBUTE

where

• HTTP_METHOD is one http method, capital case

• URL_PATTERN is an Ant style URL pattern

• SECURITY_ATTRIBUTE is a SpEL expression (see http://docs.spring.io/spring-security/site/
docs/4.0.0.M2/reference/htmlsingle/#el-access)

• each of those separated by one or several blank characters (spaces, tabs, etc.)

Be mindful that the above is indeed a YAML list, not a map (thus the use of - dashes at the start of each
line) that lives under the security.authorization.rules key.

Local transport

Local transport uses a QueueChannel to pass data between modules. There are a few properties you
can configure on the QueueChannel

• xd.local.transport.named.queueSize - The capacity of the queue, the default value is
Integer.MAX_VALUE

• xd.local.transport.named.polling - Messages that are buffered in a QueueChannel need
to be polled to be consumed. This property controls the fixed rate at which polling occurs. The default
value is 1000 ms.

3.3 Module Configuration

Modules are configured by placing property files in a nested directory structure based on their type
and name. The root of the nested directory structure is by default XD_HOME/config/modules. This
location can be customized by setting the OS environment variable XD_MODULE_CONFIG_LOCATION,
similar to how the environment variable XD_CONFIG_LOCATION is used for configuring the server. If
XD_MODULE_CONFIG_LOCATION is set explicitly, then it is necessary to add the file path separator
("/") at the end of the path.

Note

If XD_MODULE_CONFIG_LOCATION is set to use explicit location, make sure to copy entire
directory structure from the default module config location xd/config/modules into the
new module config location. The XD_MODULE_CONFIG_LOCATION can reference any Spring
Resource implementation, most commonly denoted using the prefixes classpath:, file: and
http:.

As an example, if you wanted to configure the twittersearch module, you would create a file

XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch.properties

and the contents of that file would be property names such as consumerKey and consumerSecret.

http://docs.spring.io/spring-security/site/docs/4.0.0.M2/reference/htmlsingle/#el-access
http://docs.spring.io/spring-security/site/docs/4.0.0.M2/reference/htmlsingle/#el-access
http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/channel/QueueChannel.html
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources

Spring XD Guide

1.2.0.RC1 Spring XD 40

Note

You do not need to prefix these property names with a source.twittersearch prefix.

You can override the values in the module property file in various ways. The following sources of
properties are considered in the following order.

1. Properties specified in the stream or job DSL definition

2. Java System Properties (e.g. source.http.port=9454)

3. OS environment variables. (e.g. source_http_port=9454)

4. XD_MODULE_CONFIG_LOCATION\<type>\<name>\<name>.properties (including profile
variants)

5. Default values specified in module metadata (if available).

Values in XD_MODULE_CONFIG_LOCATION\<type>\<name>\<name>.properties can be
property placeholder references to keys defined in another resource location. By default the resource is
the file XD_MODULE_CONFIG_LOCATION\modules.yml. You can customize the name of the resource
by using setting the OS environment variable XD_MODULE_CONFIG_NAME before running a server
startup script.

The modules.yml file can be used to specify the values of keys that should be shared across
different modules. For example, it is common to use the same twitter developer credentials in both the
twittersearch and twitterstream modules. To avoid repeating the same credentials in two property files,
you can use the following setup.

modules.yml contains

sharedConsumerKey: alsdjfqwopieur

sharedConsumerSecret: pqwieouralsdjkqwpo

sharedAccessToken: llixzchvpiawued

sharedAccessTokenSecret: ewoqirudhdsldke

and XD_MODULE_CONFIG_LOCATION\source\twitterstream\twitterstream.properties

contains

consumerKey=${sharedConsumerKey}

consumerSecret=${sharedConsumerSecret}

accessToken=${sharedAccessToken}

accessTokenSecret=${sharedAccessTokenSecret}

and XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch.properties

contains

consumerKey=${sharedConsumerKey}

consumerSecret=${sharedConsumerSecret}

Profiles

When resolving property file names, the server will look to load profile specific variants based on the
naming convention <name>-{profile}.properties. For example, if given the OS environment
variable spring_profiles_active=default,qa the following configuration file names for the
twittersearch module would be searched in this order

Spring XD Guide

1.2.0.RC1 Spring XD 41

1. XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch.properties

2. XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch-
default.properties

3. XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch-
qa.properties

Also, the shared module configuration file is refernced using profile variants, so given the
OS environment variable spring_profiles_active=default,qa the following shared module
configuration files would be searched for in this order

1. XD_MODULE_CONFIG_LOCATION\modules.yml

2. XD_MODULE_CONFIG_LOCATION\modules-default.yml

3. XD_MODULE_CONFIG_LOCATION\modules-qa.yml

Batch Jobs or modules accessing JDBC

Another common case is access to a relational database from a job or the JDBC Sink module.

As an example, to provide the properties for the batch job jdbchdfs the file
XD_MODULE_CONFIG_LOCATION\job\jdbchdfs\jdbchdfs.properites should contain

driverClass=org.hsqldb.jdbc.JDBCDriver

url=jdbc:hsqldb:mem:xd

username=sa

password=

A property file with the same keys, but likely different values would be located in
XD_MODULE_CONFIG_LOCATION\sink\jdbc\jdbc.properites.

Spring XD Guide

1.2.0.RC1 Spring XD 42

4. DSL Guide

4.1 Introduction

Spring XD provides a DSL for defining a stream. Over time the DSL is likely to evolve significantly as it
gains the ability to define more and more sophisticated streams as well as the steps of a batch job.

4.2 Pipes and filters

A simple linear stream consists of a sequence of modules. Typically an Input Source, (optional)
Processing Steps, and an Output Sink. As a simple example consider the collection of data from an
HTTP Source writing to a File Sink. Using the DSL the stream description is:

http | file

A stream that involves some processing:

http | filter | transform | file

The modules in a stream definition are connected together using the pipe symbol |.

4.3 Module parameters

Each module may take parameters. The parameters supported by a module are defined by the module
implementation. As an example the http source module exposes port setting which allows the data
ingestion port to be changed from the default value.

http --port=1337

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor module is being passed a SpEL expression that will be applied to any data it
encounters:

transform --expression='new StringBuilder(payload).reverse()'

If the parameter value needs to embed a single quote, use two single quotes:

// Query is: Select * from /Customers where name='Smith'

scan --query='Select * from /Customers where name=''Smith'''

4.4 Named channels

Instead of a source or sink it is possible to use a named channel. Normally the modules in a stream are
connected by anonymous internal channels (represented by the pipes), but by using explicitly named
channels it becomes possible to construct more sophisticated flows. In keeping with the unix theme,
sourcing/sinking data from/to a particular channel uses the > character. A named channel is specified
by using a channel type, followed by a : followed by a name. The channel types available are:

queue - this type of channel has point-to-point (p2p) semantics

topic - this type of channel has pub/sub semantics

Here is an example that shows how you can use a named channel to share a data pipeline driven by
different input sources.

Spring XD Guide

1.2.0.RC1 Spring XD 43

queue:foo > file

http > queue:foo

time > queue:foo

Now if you post data to the http source, you will see that data intermingled with the time value in the file.

The opposite case, the fanout of a message to multiple streams, is planned for a future release. However,
taps are a specialization of named channels that do allow publishing data to multiple sinks. For example:

tap:stream:mystream > file

tap:stream:mystream > log

Once data is received on mystream, it will be written to both file and log.

Support for routing messages to different streams based on message content is also planned for a
future release.

4.5 Labels

Labels provide a means to alias or group modules. Labels are simply a name followed by a : When
used as an alias a label can provide a more descriptive name for a particular configuration of a module
and possibly something easier to refer to in other streams.

mystream = http | obfuscator: transform --expression=payload.replaceAll('password','*') | file

Labels are especially useful (and required) for disambiguating when multiple modules of the same name
are used:

mystream = http | uppercaser: transform --expression=payload.toUpperCase() | exclaimer: transform --

expression=payload+'!' | file

Refer to this section of the Taps chapter to see how labels facilitate the creation of taps in these cases
where a stream contains ambiguous modules.

4.6 Single quotes, Double quotes, Escaping

Spring XD is a complex runtime that involves a lot of systems when you look at the complete picture.
There is a Spring Shell based client that talks to the admin that is responsible for parsing. In turn,
modules may themselves rely on embedded languages (like the Spring Expression Language) to
accomplish their behavior.

Those three components (shell, XD parser and SpEL) have rules about how they handle quotes and how
syntax escaping works, and when stacked with each other, confusion may arise. This section explains
the rules that apply and provides examples to the most common situations.

It’s not always that complicated

This section focuses on the most complicated cases, when all 3 layers are involved. Of course, if
you don’t use the XD shell (for example if you’re using the REST API directly) or if module option
values are not SpEL expressions, then escaping rules can be much simpler

Spring XD Guide

1.2.0.RC1 Spring XD 44

Spring Shell

Arguably, the most complex component when it comes to quotes is the shell. The rules can be laid out
quite simply, though:

• a shell command is made of keys (--foo) and corresponding values. There is a special, key-less
mapping though, see below

• a value can not normally contain spaces, as space is the default delimiter for commands

• spaces can be added though, by surrounding the value with quotes (either single ['] or double ["]
quotes)

• if surrounded with quotes, a value can embed a literal quote of the same kind by prefixing it with a
backslash (\)

• Other escapes are available, such as \t, \n, \r, \f and unicode escapes of the form \uxxxx

• Lastly, the key-less mapping is handled in a special way in the sense that if does not need quoting
to contain spaces

For example, the XD shell supports the ! command to execute native shell commands. The ! accepts
a single, key-less argument. This is why the following works:

xd:>! rm foo

The argument here is the whole rm foo string, which is passed as is to the underlying shell.

As another example, the following commands are strictly equivalent, and the argument value is foo
(without the quotes):

xd:>stream destroy foo

xd:>stream destroy --name foo

xd:>stream destroy "foo"

xd:>stream destroy --name "foo"

XD Syntax

At the XD parser level (that is, inside the body of a stream or job definition) the rules are the following:

• option values are normally parsed until the first space character

• they can be made of literal strings though, surrounded by single or double quotes

• To embed such a quote, use two consecutive quotes of the desired kind

As such, the values of the --expression option to the filter module are semantically equivalent in
the following examples:

filter --expression=payload>5

filter --expression="payload>5"

filter --expression='payload>5'

filter --expression='payload > 5'

Arguably, the last one is more readable. It is made possible thanks to the surrounding quotes. The actual
expression is payload > 5 (without quotes).

Now, let’s imagine we want to test against string messages. If we’d like to compare the payload to the
SpEL literal string, "foo", this is how we could do:

Spring XD Guide

1.2.0.RC1 Spring XD 45

filter --expression=payload=='foo' ❶

filter --expression='payload == ''foo''' ❷

filter --expression='payload == "foo"' ❸

❶ This works because there are no spaces. Not very legible though

❷ This uses single quotes to protect the whole argument, hence actual single quotes need to be
doubled

❸ But SpEL recognizes String literals with either single or double quotes, so this last method is
arguably the best

Please note that the examples above are to be considered outside of the Spring XD shell. When entered
inside the shell, chances are that the whole stream definition will itself be inside double quotes, which
would need escaping. The whole example then becomes:

xd:>stream create foo --definition "http | filter --expression=payload='foo' | log"

xd:>stream create foo --definition "htpp | filter --expression='payload == ''foo''' | log"

xd:>stream create foo --definition "http | filter --expression='payload == \"foo\"' | log"

SpEL syntax and SpEL literals

The last piece of the puzzle is about SpEL expressions. Many modules accept options that are to be
interpreted as SpEL expressions, and as seen above, String literals are handled in a special way there
too. Basically,

• literals can be enclosed in either single or double quotes

• quotes need to be doubled to embed a literal quote. Single quotes inside double quotes need no
special treatment, and vice versa

As a last example, assume you want to use the transform module. That module accepts an expression
option which is a SpEL expression. It is to be evaluated against the incoming message, with a default
of payload (which forwards the message payload untouched).

It is important to understand that the following are equivalent:

transform --expression=payload

transform --expression='payload'

but very different from the following:

transform --expression="'payload'"

transform --expression='''payload'''

and other variations.

The first series will simply evaluate to the message payload, while the latter examples will evaluate to
the actual literal string payload (again, without quotes).

Putting it all together

As a last, complete example, let’s review how one could force the transformation of all messages to the
string literal hello world, by creating a stream in the context of the XD shell:

stream create foo --definition "http | transform --expression='''hello world''' | log" ❶

stream create foo --definition "http | transform --expression='\"hello world\"' | log" ❷

stream create foo --definition "http | transform --expression=\"'hello world'\" | log" ❸

Spring XD Guide

1.2.0.RC1 Spring XD 46

❶ This uses single quotes around the string (at the XD parser level), but they need to be doubled
because we’re inside a string literal (very first single quote after the equals sign)

❷❸ use single and double quotes respectively to encompass the whole string at the XD parser level.
Hence, the other kind of quote can be used inside the string. The whole thing is inside the --
definition argument to the shell though, which uses double quotes. So double quotes are
escaped (at the shell level) == Interactive Shell

4.7 Introduction

Spring XD includes an interactive shell that you can use create, deploy, destroy and query streams and
jobs. There are also commands to help with common tasks such as interacting with HDFS, the UNIX
shell, and sending HTTP requests. In this section we will introduce the main commands and features
of the shell.

Using the Shell

When you start the shell you can type help to show all the commands that are available. Note, that since
the XD shell is based on Spring Shell you can contribute you own commands into the shell. The general
groups of commands are related to the management of

• Modules

• Streams

• Jobs

• Analytics (Counters, Aggregate Counters, Gauges, etc.)

• HDFS

For example to see what modules are available issue the command

xd:>module list

Tip

The list of all Spring XD specific commands can be found in the Shell Reference

The shell also provides extensive command completion capabilities. For example, if you type mod and
hit TAB, you will be presented with all the matching commands.

xd:>module

module compose module delete module display module info

module list

Note

Tab completion works for module options as well as for the DSL used within the --definition
option for stream and module commands.

The command module list shows all the modules available

https://github.com/spring-projects/spring-shell

Spring XD Guide

1.2.0.RC1 Spring XD 47

xd:>module list

 Source Processor Sink Job

 ------------------ ------------------ ----------------------- ----------------

 gemfire-cq aggregator counter hdfsjdbc

 post http-client log jdbchdfs

 twitterstream splitter field-value-counter hdfsmongodb

 http filter rich-gauge filejdbc

 reactor-syslog json-to-tuple mqtt ftphdfs

 reactor-ip transform file filepollhdfs

 jms bridge splunk

 tcp-client object-to-json mail

 mqtt script tcp

 file hdfs

 twittersearch gauge

 gemfire jdbc

 mail gemfire-server

 trigger throughput-sampler

 tcp gemfire-json-server

 tail router

 syslog-tcp aggregate-counter

 syslog-udp rabbit

 rabbit hdfs-dataset

 time

Suppose we want to create a stream that uses the http source and file sink. How do we know what
options are available to use? There are two ways to find out. The first is to use the command module
info. Pressing TAB after typiing moudle info will complete the command with the --name option
and then present all the modules prefixed by their type.

xd:>module info --name

job:filejdbc job:filepollhdfs job:ftphdfs

job:hdfsjdbc job:hdfsmongodb job:jdbchdfs

processor:aggregator processor:bridge processor:filter

processor:http-client processor:json-to-tuple processor:object-to-json

processor:script processor:splitter processor:transform

sink:aggregate-counter sink:counter sink:field-value-counter

sink:file sink:gauge sink:gemfire-json-server

sink:gemfire-server sink:hdfs sink:hdfs-dataset

sink:jdbc sink:log sink:mail

sink:mqtt sink:rabbit sink:rich-gauge

sink:router sink:splunk sink:tcp

sink:throughput-sampler source:file source:gemfire

source:gemfire-cq source:http source:jms

source:mail source:mqtt source:post

source:rabbit source:reactor-ip source:reactor-syslog

source:syslog-tcp source:syslog-udp source:tail

source:tcp source:tcp-client source:time

source:trigger source:twittersearch source:twitterstream

xd:>module info --name

The module info command for the http source shows the option names, a brief description, and
default values.

xd:>module info --name source:http

Information about source module 'http':

 Option Name Description Default Type

 ----------- -- ------- --------

 port the port to listen to 9000 int

 outputType how this module should emit messages it produces <none> MimeType

For the file sink the options are

Spring XD Guide

1.2.0.RC1 Spring XD 48

xd:>module info --name sink:file

Information about sink module 'file':

 Option Name Description Default

 Type

 ----------- --- -----------------

 binary if false, will append a newline character at the end of each line false

 boolean

 charset the charset to use when writing a String payload UTF-8

 String

 dir the directory in which files will be created /tmp/xd/output/

 String

 mode what to do if the file already exists APPEND

 Mode

 name filename pattern to use ${xd.stream.name}

 String

 suffix filename extension to use <none>

 String

 inputType how this module should interpret messages it consumes <none>

 MimeType

Note that the default value ${xd.stream.name} will be resolved to the name of the stream that
contains the module.

Tab completion for Job and Stream DSL definitions

When creating a stream defintion tab completion after --definition will enable you to see all the
options that are available for a given module as well as a list of candidate modules for the subsequent
module in the stream. For example, hitting TAB after http as shown below

xd:>stream create --name test --definition "http

http --outputType= http --port= http | aggregate-counter http | aggregator

http | bridge http | counter http | field-value-counter http | file

http | filter http | gauge http | gemfire-json-server http | gemfire-

server

http | hdfs http | hdfs-dataset http | http-client http | jdbc

http | json-to-tuple http | log http | mail http | mqtt

http | object-to-json http | rabbit http | rich-gauge http | router

http | script http | splitter http | splunk http | tcp

http | throughput-sampler http | transform

shows the options outputType and port in addition to any processors and sinks. Hitting TAB after
entering -- after the http module will provide a list of only the http options

xd:>stream create --name test --definition "http --

http --outputType= http --port=

Entering the port number and also the pipel | symbol and hitting tab will show completions for candidate
processor and sink modules. The same process of tab completion for module options applies to each
module in the chain.

Executing a script

You can execute a script by either passing in the --cmdfile argument when starting the shell or by
executing the script command inside the shell. When using scripts it is common to add comments
using either // or ; characters at the start of the line for one line comments or use /* and */ for
multiline comments

Spring XD Guide

1.2.0.RC1 Spring XD 49

Single quotes, Double quotes, Escaping

There are often three layers of parsing when passing entering commands to the shell. The shell
parses the command to recognize -- options, inside the body of a stream/job definition the values are
parsed until the first space character, and inside some command options SpEL is used (e.g. router).
Understanding the interaction between these layers can cause some confusion. The DSL Guide section
on quotes and escaping will help you if you run into any issues.

Spring XD Guide

1.2.0.RC1 Spring XD 50

5. Admin UI

5.1 Introduction

Spring XD provides a browser-based GUI which currently has 2 sections allowing you to

• perform Batch Job related tasks

• deploy/undeploy Stream Definitions

Upon starting Spring XD, the Admin UI is available at:

"http://<adminHost>:<adminPort>/admin-ui"

For example: http://localhost:9393/admin-ui

If you have enabled https, then it will be located at https://localhost:9393/admin-ui

If you have enabled security, a login form is available at http://localhost:9393/admin-ui/login

Note: Default admin server port is 9393

Figure 5.1. The Spring XD Admin UI

5.2 Containers

The Containers section of the admin UI shows the containers that are in the XD cluster. For each
container the group properties and deployed modules are shown. More information on the container
(hostname, pid, ip address) and for the module (module options and deployment properties) is available

http://localhost:9393/admin-ui
https://localhost:9393/admin-ui
http://localhost:9393/admin-ui/login

Spring XD Guide

1.2.0.RC1 Spring XD 51

by clicking on the respective links. You can also shutdown a container (in distributed mode) by clicking
on the shutdown button. You will be asked for confirmation if you select to shutdown.

Figure 5.2. List of Containers

5.3 Streams

The Streams section of the admin UI provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those streams. Additionally you can
remove the definition by clicking on destroy.

Figure 5.3. List of Stream Definitions

Spring XD Guide

1.2.0.RC1 Spring XD 52

5.4 Jobs

The Jobs section of the admin UI currently has four tabs specific for Batch Jobs

• Modules

• Definitions

• Deployments

• Executions

Modules

Modules encapsulate a unit of work into a reusable component. Within the XD runtime environment
Modules allow users to create definitions for Streams as well as Batch Jobs. Consequently, the Modules
tab within the Jobs section allows users to create Batch Job definitions. In order to learn more about
Modules, please see the chapter on Modules.

List available batch job modules

This page lists the available batch job modules.

Figure 5.4. List Job Modules

On this screen you can perform the following actions:

Spring XD Guide

1.2.0.RC1 Spring XD 53

View details such as the job module options.

Create a Job Definition from the respective Module.

Create a Job Definition from a selected Job Module

On this screen you can create a new Job Definition. As a minimum you must provide a name for the
new definition. Optionally you can select wether the new definition shall be automatically deployed.
Depending on the selected module, you will also have the option to specify various parameters that are
used during the deployment of the definition.

Figure 5.5. Create a Job Definition

Spring XD Guide

1.2.0.RC1 Spring XD 54

View Job Module Details

Figure 5.6. View Job Module Details

On this page you can view the details of a selected job module. The pages lists the available options
(properties) of the modules.

List job definitions

This page lists the XD batch job definitions and provides actions to deploy, un-deploy or destroy those
jobs.

Spring XD Guide

1.2.0.RC1 Spring XD 55

Figure 5.7. List Job Definitions

List job deployments

This page lists all the deployed jobs and provides option to launch or schedule the deployed job.

Spring XD Guide

1.2.0.RC1 Spring XD 56

Figure 5.8. List Job Deployments

Launching a batch Job

Once the job is deployed, they can be launched through the Admin UI as well. Navigate to the
Deployments tab. Select the job you want to launch and press Launch. The following modal dialog
should appear:

Spring XD Guide

1.2.0.RC1 Spring XD 57

Figure 5.9. Launch a Batch Job with parameters

Using this screen, you can define one or more job parameters. Job parameters can be typed and the
following data types are available:

• String (The default)

• Date (The default date format is: yyyy/MM/dd)

• Long

• Double

Spring XD Guide

1.2.0.RC1 Spring XD 58

Schedule Batch Job Execution

Figure 5.10. Schedule a Batch Job

When clicking on Schedule, you have the option to run the job:

• using a fixed delay interval (specified in seconds)

• on a specific data/time

• using a valid CRON expression

Job Deployment Details

On this screen, you can view additional deployment details. Besides viewing the stream definition, the
available Module Metadata is shown as well, e.g. on which Container the definition has been deployed
to.

Spring XD Guide

1.2.0.RC1 Spring XD 59

Figure 5.11. Job Deployment Details

List job executions

This page lists the batch job executions and provides option to restart specific job executions, provided
the batch job is restartable and stopped/failed.

Spring XD Guide

1.2.0.RC1 Spring XD 60

Figure 5.12. List Job Executions

Furthermore, you have the option to view the Job execution details.

Spring XD Guide

1.2.0.RC1 Spring XD 61

Job execution details

Figure 5.13. Job Execution Details

The same screen also contains a list of the executed steps:

Figure 5.14. Job Execution Details - Steps

Spring XD Guide

1.2.0.RC1 Spring XD 62

From there you can drill deeper into the Step Execution Details.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

Figure 5.15. Step Execution Details

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.
For example, the Spring for Apache Hadoop steps provides exhaustive detail information.

Spring XD Guide

1.2.0.RC1 Spring XD 63

Figure 5.16. Step Execution Context

This includes a link back to the Job History UI of the Hadoop Cluster.

Figure 5.17. Job History UI

Spring XD Guide

1.2.0.RC1 Spring XD 64

Important

In case of exceptions, the Exit Description field will contain additional error information. Please be
aware, though, that this field can only have a maximum of 2500 characters. Therefore, in case
of long exception stacktraces, trimming of error messages may occur. In that case, please refer
to the server log files for further details.

Step execution history

Figure 5.18. Step Execution History

On this screen, you can view various metrics associated with the selected step such as duration, read
counts, write counts etc.

Spring XD Guide

1.2.0.RC1 Spring XD 65

6. Architecture

6.1 Introduction

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The foundations of XD’s architecture are based on the over 100+ man
years of work that have gone into the Spring Batch, Integration and Data projects. Building upon these
projects, Spring XD provides servers and a configuration DSL that you can immediately use to start
processing data. You do not need to build an application yourself from a collection of jars to start using
Spring XD.

Spring XD has two modes of operation - single and multi-node. The first is a single process that is
responsible for all processing and administration. This mode helps you get started easily and simplifies
the development and testing of your application. The second is a distributed mode, where processing
tasks can be spread across a cluster of machines and an administrative server reacts to user commands
and runtime events managed within a shared runtime state to coordinate processing tasks executing
on the cluster.

Runtime Architecture

The key components in Spring XD are the XD Admin and XD Container Servers. Using a high-level
DSL, you post the description of the required processing tasks to the Admin server over HTTP. The
Admin server then maps the processing tasks into processing modules. A module is a unit of execution
and is implemented as a Spring ApplicationContext. A distributed runtime is provided that will assign
modules to execute across multiple XD Container servers. A single XD Container server can run multiple
modules. When using the single node runtime, all modules are run in a single XD Container and the
XD Admin server is run in the same process.

DIRT Runtime

A distributed runtime, called Distributed Integration Runtime, aka DIRT, will distribute the processing
tasks across multiple XD Container instances. The XD Admin server breaks up a processing task into
individual module definitions and assigns each module to a container instance using ZooKeeper (see
XD Distributed Runtime). Each container listens for module definitions to which it has been assigned
and deploys the module, creating a Spring ApplicationContext to run it.

Modules share data by passing messages using a configured messaging middleware (Rabbit, Redis,
or Local for single node). To reduce the number of hops across messaging middleware between them,
multiple modules may be composed into larger deployment units that act as a single module. To learn
more about that feature, refer to the Composing Modules section.

Spring XD Guide

1.2.0.RC1 Spring XD 66

Figure 6.1. The XD Admin Server sending module definitions to each XD Container

How the processing task is broken down into modules is discussed in the section Container Server
Architecture.

Support for other distributed runtimes

In the 1.0 release, You can run Spring XD natively, in which case you are responsible for starting up
the XD Admin and XD Container instances. Alternately you can run Spring XD on Hadoop’s YARN, see
Running XD on YARN. Pivotal Cloud Foundry support is planned for a future release. If you are feeling
a adventurous, you can also take a look at our scripts for deploying Spring XD to EC2. These are used
as part of our system integration tests.

Single Node Runtime

A single node runtime is provided that runs the Admin and Container servers, ZooKeeper, and HSQLDB
in the same process. the single node runtime is primarily intended for testing and development purposes
but it may also appropriate to use in small production use-cases. The communication to the XD Admin

https://github.com/spring-projects/spring-xd-ec2
https://build.spring.io/browse/XD-ATEC2

Spring XD Guide

1.2.0.RC1 Spring XD 67

server is over HTTP and the XD Admin server communicates to an in-process XD Container using an
embedded ZooKeeper server.

Figure 6.2. Single Node Runtime

Admin Server Architecture

The Admin Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and jobs, querying runtime state, analytics, and the
like. The Admin Server is implemented using Spring’s MVC framework and the Spring HATEOAS library
to create REST representations that follow the HATEOAS principle. The Admin Server and Container
Servers monitor and update runtime state using ZooKeeper (see XD Distributed Runtime).

Container Server Architecture

The key components of data processing in Spring XD are

• Streams

• Jobs

• Taps

Streams define how event driven data is collected, processed, and stored or forwarded. For example,
a stream might collect syslog data, filter, and store it in HDFS.

Jobs define how coarse grained and time consuming batch processing steps are orchestrated, for
example a job could be be defined to coordinate performing HDFS operations and the subsequent
execution of multiple MapReduce processing tasks.

Taps are used to process data in a non-invasive way as data is being processed by a Stream or a Job.
Much like wiretaps used on telephones, a Tap on a Stream lets you consume data at any point along

https://github.com/SpringSource/spring-hateoas
http://en.wikipedia.org/wiki/HATEOAS

Spring XD Guide

1.2.0.RC1 Spring XD 68

the Stream’s processing pipeline. The behavior of the original stream is unaffected by the presence of
the Tap.

Figure 6.3. Taps, Jobs, and Streams

Streams

The programming model for processing event streams in Spring XD is based on the well known
Enterprise Integration Patterns as implemented by components in the Spring Integration project. The
programming model was designed so that it is easy to test components.

A Stream consist of the following types of modules: * An Input source * Processing steps * An Output sink

An Input source produces messages from an external source. XD supports a variety of sources, e.g.
syslog, tcp, http. The output from a module is a Spring Message containing a payload of data and a
collection of key-value headers. Messages flow through message channels from the source, through
optional processing steps, to the output sink. The output sink delivers the message to an external
resource. For example, it is common to write the message to a file system, such as HDFS, but you may
also configure the sink to forward the message over tcp, http, or another type of middleware, or route
the message to another stream.

A stream that consists of a input source and a output sink is shown below

http://www.eaipatterns.com/
http://www.springsource.org/spring-integration

Spring XD Guide

1.2.0.RC1 Spring XD 69

Figure 6.4. Foundational components of the Stream processing model

A stream that incorporates processing steps is shown below

Figure 6.5. Stream processing with multiple steps

For simple linear processing streams, an analogy can be made with the UNIX pipes and filters model.
Filters represent any component that produces, processes or consumes events. This corresponds to the
modules (source, processing steps, and sink) in a stream. Pipes represent the way data is transported
between the Filters. This corresponds to the Message Channel that moves data through a stream.

A simple stream definition using UNIX pipes and filters syntax that takes data sent via a HTTP post and
writes it to a file (with no processing done in between) can be expressed as

http | file

The pipe symbol represents a message channel that passes data from the HTTP source to the File
sink. The message channel implementation can either be backed with a local in-memory transport,
Redis queues, or RabbitMQ. The message channel abstraction and the XD architecture are designed
to support a pluggable data transport. Future releases will support other transports such as JMS.

Note that the UNIX pipes and filter syntax is the basis for the DSL that Spring XD uses to describe simple
linear flows. Non-linear processing is partially supported using named channels which can be combined
with a router sink to effectively split a single stream into multiple streams (see Dynamic Router Sink).
Additional capabilities for non-linear processing are planned for future releases.

The programming model for processing steps in a stream originates from the Spring Integration project
and is included in the core Spring Framework as of version 4. The central concept is one of a Message
Handler class, which relies on simple coding conventions to Map incoming messages to processing

Spring XD Guide

1.2.0.RC1 Spring XD 70

methods. For example, using an http source you can process the body of an HTTP POST request using
the following class

public class SimpleProcessor {

 public String process(String payload) {

 return payload.toUpperCase();

 }

}

The payload of the incoming Message is passed as a string to the method process. The contents of
the payload is the body of the http request as we are using a http source. The non-void return value is
used as the payload of the Message passed to the next step. These programming conventions make
it very easy to test your Processor component in isolation. There are several processing components
provided in Spring XD that do not require you to write any code, such as a filter and transformer that
use the Spring Expression Language or Groovy. For example, adding a processing step, such as a
transformer, in a stream processing definition can be as simple as

http | transformer --expression=payload.toUpperCase() | file

For more information on processing modules, refer to the Processors section.

Stream Deployment

The Container Server listens for module deployment events initiated from the Admin Server via
ZooKeeper. When the container node handles a module deployment event, it connects the module’s
input and output channels to the data bus used to transport messages during stream processing. In a
single node configuration, the data bus uses in-memory direct channels. In a distributed configuration,
the data bus communications are backed by the configured transport middleware. Redis and Rabbit are
both provided with the Spring XD distribution, but other transports are envisioned for future releases.

Spring XD Guide

1.2.0.RC1 Spring XD 71

Figure 6.6. A Stream Deployed in a single node server

Spring XD Guide

1.2.0.RC1 Spring XD 72

Figure 6.7. A Stream Deployed in a distributed runtime

In the http | file example, the Admin assigns each module to a separate Container instance,
provided there are at least two Containers available. The file module is deployed to one container
and the http module to another. The definition of a module is stored in a Module Registry. A module
definition consists of a Spring XML configuration file, some classes used to validate and handle options
defined by the module, and dependent jars. The module definition contains variable placeholders,
corresponding to DSL parameters (called options) that allow you to customize the behavior of the
module. For example, setting the http listening port would be done by passing in the option --port,
e.g. http --port=8090 | file, which is in turn used to substitute a placeholder value in the module
definition.

The Module Registry is backed by the filesystem and corresponds to the directory <xd-install-
directory>/modules. When a module deployment is handled by the Container, the module definition
is loaded from the registry and a new Spring ApplicationContext is created in the Container process to
run the module. Dependent classes are loaded via the Module Classloader which first looks at jars in
the modules /lib directory before delegating to the parent classloader.

Using the DIRT runtime, the http | file example would map onto the following runtime architecture

Spring XD Guide

1.2.0.RC1 Spring XD 73

Figure 6.8. Distributed HTTP to File Stream

Data produced by the HTTP module is sent over a Redis Queue and is consumed by the File module. If
there was a filter processing module in the stream definition, e.g http | filter | file that would
map onto the following DIRT runtime architecture.

Spring XD Guide

1.2.0.RC1 Spring XD 74

Figure 6.9. Distributed HTTP to Filter to File Stream

6.2 Jobs

The creation and execution of Batch jobs builds upon the functionality available in the Spring Batch and
Spring for Apache Hadoop projects. See the Batch Jobs section for more information.

6.3 Taps

Taps provide a non-invasive way to consume the data that is being processed by either a Stream or
a Job, much like a real time telephone wire tap lets you eavesdrop on telephone conversations. Taps
are recommended as way to collect metrics and perform analytics on a Stream of data. See the section
Taps for more information.

Spring XD Guide

1.2.0.RC1 Spring XD 75

7. Distributed Runtime

7.1 Introduction

This document describes what’s happening "under the hood" of the Spring XD Distributed Runtime
(DIRT) and in particular, how the runtime architecture achieves high availability and failover in a
clustered production environment. See Running in Distributed Mode for more information on installing
and running Spring XD in distributed mode.

This discussion focuses on Spring XD’s core runtime components and the role of ZooKeeper in
managing the state of the Spring XD cluster and enabling automatic recovery from failures.

7.2 Configuring Spring XD for High Availabilty(HA)

A production Spring XD environment is typically distributed among multiple hosts in a clustered
environment. Spring XD scales horizontally when you add container instances. In the simplest case, all
containers are replicas, that is each instance is running on an identically configured host and modules
are deployed to any available container in a round-robin fashion. However, this simplifying assumption
does not address real production scenarios in which more control is requred in order to optimize resource
utilization. To this end, Spring XD supports a flexible algorithm which allows you to match module
deployments to specific container configurations. The container matching algorithm will be covered
in more detail later, but for now, let’s assume the simple case. Running multiple containers not only
enables horizontal scalability, but enables failure recovery. If a container becomes unavailable due to
an unrecoverable connection loss, any modules currently deployed to that container will be deployed
automatically to the other available instances.

Spring XD requires that a single active Admin server handle interactions with the containers, such as
stream deployment requests, as these types of operations must be processed serially in the order
received. Without a backup, the Admin server becomes single point of failure. Therefore, two (or more for
the risk averse) Admin servers are recommended for a production environment. Note that every Admin
server can handle all requests via REST endpoints but only one instance, the "Leader", will actually
perform requests that update the runtime state. If the Leader goes down, another available Admin server
will assume the leader role. Leader Election is an example of a common feature for distributed systems
provided by the Curator Framework which sits on top of ZooKeeper.

An HA Spring XD installation also requires that external servers - ZooKeeper, messaging middleware,
and data stores needed for running Spring XD in distributed mode must be configured for HA as
well. Please consult the product documentation for specific recommendations regarding each of these
external components. Also see Message Bus Configuration for tips on configuring the MessageBus for
HA, error handling, etc.

7.3 ZooKeeper Overview

In the previous section, we claimed that if a container goes down, Spring XD will redeploy any modules
deployed on that instance to another available container. We also claimed that if the Admin Leader
goes down, another Admin server will assume that role. ZooKeeper is what makes this all possible.
ZooKeeper is a widely used Apache project designed primarily for distributed system management and
coordination. This section will cover some basic concepts necessary to understand its role in Spring
XD. See The ZooKeeper Wiki for a more complete overview.

http://zookeeper.apache.org
http://curator.apache.org/curator-recipes/leader-election.html
http://curator.apache.org
http://zookeeper.apache.org
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index

Spring XD Guide

1.2.0.RC1 Spring XD 76

ZooKeeper is based on a simple hierarchical data structure, formally a tree, and conceptually and
semantically similar to a file directory structure. As such, data is stored in nodes. A node is referenced
via a path, for example, /xd/streams/mystream. Each node can store additional data, serialized as a
byte array. In Spring XD, all data is a java.util.Map serialized as JSON. The following figure shows the
Spring XD schema:

A ZooKeeper node is either ephemeral or persistent. An ephemeral node exists only as long as the
session that created it remains active. A persistent node is, well, persistent. Ephemeral nodes are

Spring XD Guide

1.2.0.RC1 Spring XD 77

appropriate for registering Container instances. When an Spring XD container starts up it creates an
ephemeral node, /xd/containers/<container-id>, using an internally generated container id. When the
container’s session is closed due to a connection loss, for example, the container process terminates,
its node is removed. The ephemeral container node also holds metadata such as its hostname and
IP address, runtime metrics, and user defined container attributes. Persistent nodes maintain state
needed for normal operation and recovery. This includes data such as stream definitions, job definitions,
deployment manifests, module deployments, and deployment state for streams and jobs.

Obviously ZooKeeper is a critical piece of the Spring XD runtime and must itself be HA. ZooKeeper
itself supports a distributed architecture, called an ensemble. The details are beyond the scope of this
document but for the sake of this discussion it is worth mentioning that there should be at least three
ZooKeeper server instances running (an odd number is always recommended) on dedicated hosts. The
Container and Admin nodes are clients to the ZooKeeper ensemble and must connect to ZooKeeper at
startup. Spring XD components are configured with a zk.client.connect property which may designate a
single <host>:<port> or a comma separated list. The ZooKeeper client will attempt to connect to each
server in order until it succeeds. If it is unable to connect, it will keep trying. If a connection is lost, the
ZooKeeper client will attempt to reconnect to one of the servers. The ZooKeeper cluster guarantees
consistent replication of data across the ensemble. Specifically, ZooKeeper guarantees:

• Sequential Consistency - Updates from a client will be applied in the order that they were sent.

• Atomicity - Updates either succeed or fail. No partial results.

• Single System Image - A client will see the same view of the service regardless of the server that
it connects to.

• Reliability - Once an update has been applied, it will persist from that time forward until a client
overwrites the update.

• Timeliness - The clients view of the system is guaranteed to be up-to-date within a certain time bound.

ZooKeeper maintains data primarily in memory backed by a disk cache. Updates are logged to disk for
recoverability, and writes are serialized to disk before they are applied to the in-memory database.

In addition to performing basic CRUD operations on nodes, A ZooKeeper client can register a callback
on a node to respond to any events or state changes to that node or any of its children. Such node
operations and callbacks are the mechanism that control the Spring XD runtime.

Spring XD Guide

1.2.0.RC1 Spring XD 78

7.4 The Admin Server Internals

Assuming more than one Admin instance is running, Each instance requests leadership at start up.
If there is already a designated leader, the instance will watch the xd/admin node to be notified if the
Leader goes away. The instance designated as the "Leader", using the Leader Selector recipe provided
by Curator, a ZooKeeper client library that implements some common patterns. Curator also provides
some Listener callback interfaces that the client can register on a node. The AdminServer creates the
top level nodes, depicted in the figure above:

• /xd/admins - children are ephemeral nodes for each available Admin instance and used for Leader
Selector

• /xd/containers - children are ephemeral nodes containing runtime attributes including
hostname,process id, ip address, and user defined attributes for each container instance.

• /xd/streams - children are persistent nodes containing the definition (DSL) for each stream.

• /xd/jobs - children are persistent nodes containing the definition (DSL) for each job.

• /xd/taps - children are persistent nodes describing each deployed tap.

• /xd/deployments/streams - children are nodes containing stream deployment status (leaf nodes are
ephemeral).

• /xd/deployments/jobs - children are nodes containing job deployment status (leaf nodes are
ephemeral).

• /xd/deployments/modules/requested - stores module deployment requests including deployment
criteria.

http://curator.apache.org

Spring XD Guide

1.2.0.RC1 Spring XD 79

• /xd/deployments/modules/allocated - stores information describing currently deployed modules.

The admin leader creates a DeploymentSupervisor which registers listeners on /xd/deployments/
modules/requested to handle module deployment requests related to stream and job deployments, and
xd/containers/ to be notified when containers are added and removed from the cluster. Note that any
Admin instance can handle user requests. For example, if you enter the following commands via XD
shell,

xd>stream create ticktock --definition "time | log"

This command will invoke a REST service on its connected Admin instance to create a new node /xd/
streams/ticktock

xd>stream deploy ticktock

Assuming the deployment is successful, This will result in the creation of several nodes used to manage
deployed resources, for example, /xd/deployments/streams/ticktock. The details are discussed in the
example below.

If the Admin instance connected to the shell is not the Leader, it will perform no further action.
The Leader’s DeploymentSupervisor will attempt to deploy each module in the stream definition, in
accordance with the deployment manifest, to an available container, and update the runtime state.

Example

Let’s walk through the simple example above. If you don’t have a Spring XD cluster set up, this
example can be easily executed running Spring XD in a single node configuration. The single node

Spring XD Guide

1.2.0.RC1 Spring XD 80

application includes an embedded ZooKeeper server by default and allocates a random unused port.
The embedded ZooKeeper connect string is reported in the console log for the single node application:

...

13:04:27,016 INFO main util.XdConfigLoggingInitializer - Transport: local

13:04:27,016 INFO main util.XdConfigLoggingInitializer - Hadoop Distro: hadoop22

13:04:27,019 INFO main util.XdConfigLoggingInitializer - Hadoop version detected from classpath: 2.2.0

13:04:27,019 INFO main util.XdConfigLoggingInitializer - Zookeeper at: localhost:31316

...

For our purposes, we will use the ZooKeeper CLI tool to inspect the contents of ZooKeeper nodes
reflecting the current state of Spring XD. First, we need to know the port to connect the CLI tool to the
embedded server. For convenience, we will assign the ZooKeeper port (5555 in this example) when
starting the single node application. From the XD install directory:

$export JAVA_OPTS="-Dzk.embedded.server.port=5555"

$xd/bin/xd-singlenode

In another terminal session, start the ZooKeeper CLI included with ZooKeeper to connect to the
embedded server and inspect the contents of the nodes (NOTE: tab completion works) :

$zkCli.sh -server localhost:5555

After some console output, you should see a prompt:

WatchedEvent state:SyncConnected type:None path:null

[zk: localhost:5555(CONNECTED) 0]

navigate using the ls command. This will reflect the schema shown in the figure above, the unique
container ID will be different for you.

[[zk: localhost:5555(CONNECTED) 0] ls /xd

[deployments, containers, admins, taps, streams, jobs]

[zk: localhost:5555(CONNECTED) 1] ls /xd/streams

[]

[zk: localhost:5555(CONNECTED) 2] ls /xd/deployments

[jobs, streams, modules]

[zk: localhost:5555(CONNECTED) 3] ls /xd/deployments/streams

[]

[zk: localhost:5555(CONNECTED) 4] ls /xd/deployments/modules

[requested, allocated]

[zk: localhost:5555(CONNECTED) 5] ls /xd/deployments/modules/allocated

[2ebbbc9b-63ac-4da4-aa32-e39d69eb546b]

[zk: localhost:5555(CONNECTED) 6] ls /xd/deployments/modules/2ebbbc9b-63ac-4da4-aa32-e39d69eb546b

[]

[zk: localhost:5555(CONNECTED) 7] ls /xd/containers

[2ebbbc9b-63ac-4da4-aa32-e39d69eb546b]

[zk: localhost:5555(CONNECTED) 8]

The above reflects the initial state of Spring XD with a running admin and container instance. Nothing
is deployed yet and there are no existing stream or job definitions. Note that xd/deployments/modules/
allocated has a persistent child corresponding to the id of the container at xd/containers. If you are
running in a distributed configuration and connected to one of the ZooKeeper servers in the same
ensemble that Spring XD is connected to, you might see multiple nodes under /xd/containers, and xd/
admins. Because the external ensemble persists the state of the Spring XD cluster, you will also see
any deployments that existed when the Spring XD cluster was shut down.

Start the XD Shell in a new terminal session and create a stream:

Spring XD Guide

1.2.0.RC1 Spring XD 81

$ shell/bin/xd-shell

 _____ __ _______

/ ___| (-) \ \ / / _ \

\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |

 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |

/__/ / |_) | | | | | | | (_| | / / \ \ |/ /

____/| .__/|_| |_|_| |_|__, | \/ \/___/

 | | __/ |

 |_| |___/

eXtreme Data

1.2.0.RC1 | Admin Server Target: http://localhost:9393

Welcome to the Spring XD shell. For assistance hit TAB or type "help".

xd:>stream create ticktock --definition "time | log"

Created new stream 'ticktock'

xd:>

Back to the ZK CLI session:

[zk: localhost:5555(CONNECTED) 8] ls /xd/streams

[ticktock]

[zk: localhost:5555(CONNECTED) 9] get /xd/streams/ticktock

{"definition":"time | log"}

cZxid = 0x31

ctime = Mon Jul 14 10:32:33 EDT 2014

mZxid = 0x31

mtime = Mon Jul 14 10:32:33 EDT 2014

pZxid = 0x31

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 27

numChildren = 0

[zk: localhost:5555(CONNECTED) 10]

using the get command on the new stream node, we can see the stream definition represented as
JSON, along with some standard ZooKeeper metadata.

Note

ephemeralOwner = 0x0, indicating this is not an ephemeral node. At this point, nothing else should
have changed from the initial state.

Now, Using the Spring XD shell, let’s deploy the stream,

xd>stream deploy ticktock

Deployed stream 'ticktock'

and verify with ZooKeeper:

[zk: localhost:5555(CONNECTED) 10] ls /xd/deployments/streams

[ticktock]

[zk: localhost:2181(CONNECTED) 11] ls /xd/streams/deployments/ticktock

[modules, status]

[[zk: localhost:2181(CONNECTED) 12] get /xd/deployments/streams/ticktock/status

{"state":"deployed"}

....

zk: localhost:2181(CONNECTED) 13] ls /xd/deployments/streams/ticktock/modules

[source.time.1.2ebbbc9b-63ac-4da4-aa32-e39d69eb546b, sink.log.1.2ebbbc9b-63ac-4da4-aa32-e39d69eb546b]

Note the deployment state shown for the stream’s status node is deployed, meaning the deployment
request was satisfied. Deployment states are discussed in more detail here.

Spring XD Guide

1.2.0.RC1 Spring XD 82

Spring XD decomposes stream deployment requests to individual module deployment requests.
Hence, we see that each module in the stream is associated with a container instance. The
container instance in this case is the same since there is only one instance in the single
node configuration. In a distributed configuration with more than one instance, the stream source
and sink will each be deployed to a separate container. The node name itself is of the form
<module_type>.<module_name>.<module_sequence_number>.<container_id>, where the sequence
number identifies a deployed instance of a module if multiple instances of that module are requested.

[zk: localhost:2181(CONNECTED) 14] ls /xd/deployments/modules/allocated/2ebbbc9b-63ac-4da4-aa32-

e39d69eb546b/ticktock.source.time.1

[metadata, status]

The metadata and status nodes are ephemeral nodes which store details about the deployed module.
This information is provided to XD shell queries. For example:

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 ---------------------- ------------------------------------

 --- ---------------------

 ticktock.sink.log.1 2ebbbc9b-63ac-4da4-aa32-e39d69eb546b {name=ticktock, expression=payload,

 level=INFO} {count=1, sequence=1}

 ticktock.source.time.1 2ebbbc9b-63ac-4da4-aa32-e39d69eb546b {fixedDelay=1, format=yyyy-MM-dd

 HH:mm:ss} {count=1, sequence=1}

7.5 Module Deployment

This section describes how the Spring XD runtime manages deployment internally. For more details on
how to deploy streams and jobs see Chapter 29, Deployment.

To process a stream deployment request, the StreamDeploymentListener invokes its ContainerMatcher
to select a container instance for each module and records the module’s deployment properties under
/xd/deployments/modules/requested/. If a match is found, the StreamDeploymentListener creates a
node for the module under /xd/deployments/modules/allocated/<container_id>. The Container includes
a DeploymentListener that monitors the container node for new modules to deploy. If the deployment is
successful, the Container writes the ephemeral nodes status and metadata under the new module node.

Spring XD Guide

1.2.0.RC1 Spring XD 83

When a container departs, the ephemeral nodes are deleted so its modules are now undeployed. The
ContainerListener responds to the deleted nodes and attempts to redeploy any affected modules to
another instance.

Example: Automatic Redeployment

For this example we start two container instances and deploy and simple stream:

xd:>runtime containers

 Container Id Host IP Address PID Groups Custom Attributes

 ------------------------------------ -------------- ----------- ----- ------ -----------------

 0ddf80b9-1e80-44b8-8c12-ecc5c8c32e11 ultrafox.local 192.168.1.6 19222

 6cac85f8-4c52-4861-a225-cdad3675f6c9 ultrafox.local 192.168.1.6 19244

xd:>stream create ticktock --definition "time | log"

Created new stream 'ticktock'

xd:>stream deploy ticktock

Deployed stream 'ticktock'

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 ---------------------- ------------------------------------

 --- ---------------------

 ticktock.sink.log.1 0ddf80b9-1e80-44b8-8c12-ecc5c8c32e11 {name=ticktock, expression=payload,

 level=INFO} {count=1, sequence=1}

 ticktock.source.time.1 6cac85f8-4c52-4861-a225-cdad3675f6c9 {fixedDelay=1, format=yyyy-MM-dd

 HH:mm:ss} {count=1, sequence=1}

Spring XD Guide

1.2.0.RC1 Spring XD 84

Now we will kill one of the container processes and observe that the affect module has been redeployed
to the remaining container:

xd:>runtime containers

 Container Id Host IP Address PID Groups Custom Attributes

 ------------------------------------ -------------- ----------- ----- ------ -----------------

 6cac85f8-4c52-4861-a225-cdad3675f6c9 ultrafox.local 192.168.1.6 19244

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 ---------------------- ------------------------------------

 --- ---------------------

 ticktock.sink.log.1 6cac85f8-4c52-4861-a225-cdad3675f6c9 {name=ticktock, expression=payload,

 level=INFO} {count=1, sequence=1}

 ticktock.source.time.1 6cac85f8-4c52-4861-a225-cdad3675f6c9 {fixedDelay=1, format=yyyy-MM-dd

 HH:mm:ss} {count=1, sequence=1}

Now if we kill the remaining container, we see warnings in the xd-admin log:

14:36:07,593 WARN DeploymentSupervisorCacheListener-0 server.DepartingContainerModuleRedeployer - No

 containers available for redeployment of log for stream ticktock

14:36:07,599 WARN DeploymentSupervisorCacheListener-0 server.DepartingContainerModuleRedeployer - No

 containers available for redeployment of time for stream ticktock

Spring XD Guide

1.2.0.RC1 Spring XD 85

8. Batch Jobs

8.1 Introduction

One of the features that XD offers is the ability to launch and monitor batch jobs based on Spring Batch.
The Spring Batch project was started in 2007 as a collaboration between SpringSource and Accenture
to provide a comprehensive framework to support the development of robust batch applications. Batch
jobs have their own set of best practices and domain concepts which have been incorporated into
Spring Batch building upon Accenture’s consulting business. Since then Spring Batch has been used
in thousands of enterprise applications and is the basis for the recent JSR standardization of batch
processing, JSR-352.

Spring XD builds upon Spring Batch to simplify creating batch workflow solutions that span traditional
use-cases such as moving data between flat files and relational databases as well as Hadoop use-
cases where analysis logic is broken up into several steps that run on a Hadoop cluster. Steps specific
to Hadoop in a workflow can be MapReduce jobs, executing Hive/Pig scripts or HDFS operations.

8.2 Workflow

The concept of a workflow translates to a Job, not to be confused with a MapReduce job. A Job is a
directed graph, each node of the graph is a processing Step. Steps can be executed sequentially or in
parallel, depending on the configuration. Jobs can be started, stopped, and restarted. Restarting jobs is
possible since the progress of executed steps in a Job is persisted in a database via a JobRepository.
The following figures shows the basic components of a workflow.

A Job that has steps specific to Hadoop is shown below.

http://www.springsource.org/spring-batch
https://jcp.org/en/jsr/detail?id=352

Spring XD Guide

1.2.0.RC1 Spring XD 86

A JobLauncher is responsible for starting a job and is often triggered via a scheduler. Other options to
launch a job are through Spring XD’s RESTful administration API, the XD web application, or in response
to an external event from and XD stream definition, e.g. file polling using the file source.

8.3 Features

Spring XD allows you to create and launch jobs. The launching of a job can be triggered using a cron
expression or in reaction to data on a stream. When jobs are executing, they are also a source of
event data that can be subscribed to by a stream. There are several type of events sent during a job’s
execution, the most common being the status of the job and the steps taken within the job. This bi-
direction communication between stream processing and batch processing allows for more complex
chains of processing to be developed.

As a starting point, jobs for the following cases are provided to use out of the box

• Poll a Directory and import CSV files to HDFS

• Import CSV files to JDBC

• HDFS to JDBC Export

• JDBC to HDFS Import

• HDFS to MongoDB Export

These are described in the section below.

The purpose of this section is to show you how to create, schedule and monitor a job.

Spring XD Guide

1.2.0.RC1 Spring XD 87

8.4 The Lifecycle of a Job in Spring XD

Before we dive deeper into the details of creating batch jobs with Spring XD, we need to understand
the typical lifecycle for batch jobs in the context of Spring XD:

1. Register a Job Module

2. Create a Job Definition

3. Deploy a Job

4. Launch a Job

5. Job Execution

6. Un-deploy a Job

7. Destroy a Job Definition

Register a Job Module

Register a Job Module with the Module Registry by putting XML and/or jar files into the $XD_HOME/
modules/jobs directory.

Create a Job Definition

Create a Job Definition from a Job Module by providing a definition name as well as properties that
apply to all Job Instances. At this point the job is not deployed, yet.

Deploy the Job

Deploy the Job Definition to one or more Spring XD containers. This will initialize the Job Definitions
on those containers. The jobs are now "live" and a job can be created by sending a message to a job
queue that contains optional runtime Job Parameters.

Launch a Job

Launch a job by sending a message to the job queue with Job Parameters. A Job Instance is created,
representing a specific run of the job. A Job Instance is the Job Definition plus the runtime Job
Parameters. You can query for the Job Instances associated with a given job name.

Job Execution

The job is executed creating a Job Execution object that captures the success or failure of the job. You
can query for Job Executions associated with a given job name.

Un-deploy a Job

This removes the job from the Spring XD container(s) preventing the launching of any new Job
Instances. For reporting purposes, you will still be able to view historic Job Executions associated with
the the job.

Destroy a Job Definition

Destroying a Job Definition will not only un-deploy any still deployed Job Definitions but will also remove
the Job Definition itself.

http://docs.spring.io/spring-batch/trunk/reference/html/domain.html#domainJobParameters
http://docs.spring.io/spring-batch/trunk/reference/html/domain.html#domainJobParameters
http://docs.spring.io/spring-batch/trunk/reference/html/domain.html#domainJobInstance
http://docs.spring.io/spring-batch/trunk/reference/html/domain.html#domainJobExecution

Spring XD Guide

1.2.0.RC1 Spring XD 88

Creating Jobs - Additional Options

When creating jobs, the following options are available to all job definitions:

dateFormat
The optional date format for job parameters (default: yyyy-MM-dd)

numberFormat
Defines the number format when parsing numeric parameters (default:
NumberFormat.getInstance(Locale.US))

makeUnique
Shall job parameters be made unique? (default: true)

Also, similar to the stream create command, the job create command has an optional --deploy
option to create the job definition and deploy it. --deploy option is false by default.

Below is an example of some of these options combined:

job create myjob --definition "fooJob --makeUnique=false"

Remember that you can always find out about available options for a job by using the module info
command.

8.5 Deployment manifest support for job

When deploying batch job you can provide a deployment manifest. Deployment manifest properties for
jobs are the same as for streams, you can declare

• The number of job modules to deploy

• The criteria expression to use for matching the job to available containers

For example,

job create myjob --definition "fooJob --makeUnique=false"

job deploy myjob --properties "module.fooJob.count=3,module.fooJob.criteria=groups.contains('hdfs-

containers-group')"

The above deployment manifest would deploy 3 number of fooJob modules into containers whose
group name matches "hdfs-containers-group".

When a batch job is launched/scheduled, the job module that picks up the job launching request
message executes the batch job. To support partitioning of the job across multiple containers, the job
definition needs to define how the job will be partitioned. The type of partitioning depends on the type
of the job, for example a job reading from JDBC would partition the data in a table by dividing up the
number of rows and a job reading files form a directory would partition on the number of files available.

The FTP to HDFS and FILE to JDBC jobs support for partitioning. To add partitioning support for your
own jobs you should import singlestep-partition-support.xml in your job definition. This provides the
infrastructure so that the job module that processes the launch request can communicate as the master
with the other job modules that have been deployed. You will also need to provide an implementation
of the Partitioner interface.

https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/resources/META-INF/spring-xd/batch/singlestep-partition-support.xml
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/partition/support/Partitioner.html

Spring XD Guide

1.2.0.RC1 Spring XD 89

For more information on the deployment manifest, please refer here

8.6 Launching a job

XD uses triggers as well as regular event flow to launch the batch jobs. So in this section we will cover
how to:

• Launch the Batch Job Ad-hoc

• Launch the Batch Job using a named Cron-Trigger

• Launch the Batch Job as sink.

Ad-hoc

To launch a job one time, use the launch option of the job command. So going back to our example
above, we’ve created a job module instance named helloSpringXD. Launching that Job Module Instance
would look like:

xd:> job launch helloSpringXD

In the logging output of the XDContainer you should see the following

16:45:40,127 INFO http-bio-9393-exec-1 job.JobPlugin:98 - Configuring module with the following

 properties: {numberFormat=, dateFormat=, makeUnique=true, xd.job.name=myjob}

16:45:40,185 INFO http-bio-9393-exec-1 module.SimpleModule:140 - initialized module: SimpleModule

 [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

16:45:40,198 INFO http-bio-9393-exec-1 module.SimpleModule:161 - started module: SimpleModule

 [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

16:45:40,199 INFO http-bio-9393-exec-1 module.ModuleDeployer:161 - deployed SimpleModule [name=job,

 type=job, group=myjob, index=0 @3a9ecb9d]

Hello Spring XD!

To re-launch the job just execute the launch command. For example:

xd:> job launch helloSpringXD

Launch the Batch using Cron-Trigger

To launch a batch job based on a cron scheduler is done by creating a stream using the trigger source.

xd:> stream create --name cronStream --definition "trigger --cron='0/5 * * * * *' >

 queue:job:myCronJob" --deploy

A batch job can receive parameters from a source (in this case a trigger) or process. A trigger uses the
--payload expression to declare its payload.

xd:> stream create --name cronStream --definition "trigger --cron='0/5 * * * * *' --

payload={\"param1\":\"Kenny\"} > queue:job:myCronJob" --deploy

Note

The payload content must be in a JSON-based map representation.

To pause/stop future scheduled jobs from running for this stream, the stream must be undeployed for
example:

https://github.com/spring-projects/spring-xd/wiki/XD-Distributed-Runtime#deployment-manifest

Spring XD Guide

1.2.0.RC1 Spring XD 90

xd:> stream undeploy --name cronStream

Launch the Batch using a Fixed-Delay-Trigger

A fixed-delay-trigger is used to launch a Job on a regular interval. Using the --fixedDelay parameter you
can set up the number of seconds between executions. In the example below we are running myXDJob
every 10 seconds and passing it a payload containing a single attribute.

xd:> stream create --name fdStream --definition "trigger --payload={\"param1\":\"fixedDelayKenny\"} --

fixedDelay=5 > queue:job:myXDJob" --deploy

To pause/stop future scheduled jobs from running for this stream, you must undeploy the stream for
example:

xd:> stream undeploy --name fdStream

Launch job as a part of event flow

A batch job is always used as a sink, with that being said it can receive messages from sources (other
than triggers) and processors. In the case below we see that the user has created an http source (http
source receives http posts and passes the payload of the http message to the next module in the stream)
that will pass the http payload to the "myHttpJob".

 stream create --name jobStream --definition "http > queue:job:myHttpJob" --deploy

To test the stream you can execute a http post, like the following:

xd:> http post --target http://localhost:9000 --data "{\"param1\":\"fixedDelayKenny\"}"

8.7 Retrieve job notifications

Spring XD offers the facilities to capture the notifications that are sent from the job as it is executing.
When a batch job is deployed, by default it registers the following listeners along with pub/sub channels
that these listeners send messages to.

• Job Execution Listener

• Chunk Listener

• Item Listener

• Step Execution Listener

• Skip Listener

Along with the pub/sub channels for each of these listeners, there will also be a pub/sub channel that
the aggregated events from all these listeners are published to.

In the following example, we setup a Batch Job called myHttpJob. Afterwards we create a stream that
will tap into the pub/sub channels that were implicitly generated when the myHttpJob job was deployed.

To receive aggregated events

The stream receives aggregated event messages from all the default batch job listeners and sends
those messages to the log.

Spring XD Guide

1.2.0.RC1 Spring XD 91

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name aggregatedEvents --definition "tap:job:myHttpJob >log" --deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the aggregated events is: tap:job:<job-name>

In the logging output of the container you should see something like the following when the job completes
(with the aggregated events

09:55:53,532 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - JobExecution: id=2,

 version=1, startTime=Sat Apr 12 09:55:53 PDT 2014, endTime=null, lastUpdated=Sat Apr 12 09:55:53 PDT

 2014, status=STARTED, exitStatus=exitCode=UNKNOWN;exitDescription=, job=[JobInstance: id=2, version=0,

 Job=[myHttpJob]], jobParameters=[{random=0.07002785662707867}]

09:55:53,554 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - StepExecution: id=2,

 version=1, name=step1, status=STARTED, exitStatus=EXECUTING, readCount=0, filterCount=0, writeCount=0

 readSkipCount=0, writeSkipCount=0, processSkipCount=0, commitCount=0, rollbackCount=0, exitDescription=

09:55:53,561 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - XdChunkContextInfo

 [complete=false, stepExecution=StepExecution: id=2, version=1, name=step1, status=STARTED,

 exitStatus=EXECUTING, readCount=0, filterCount=0, writeCount=0 readSkipCount=0, writeSkipCount=0,

 processSkipCount=0, commitCount=0, rollbackCount=0, exitDescription=, attributes={}]

09:55:53,567 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - XdChunkContextInfo

 [complete=false, stepExecution=StepExecution: id=2, version=2, name=step1, status=STARTED,

 exitStatus=EXECUTING, readCount=0, filterCount=0, writeCount=0 readSkipCount=0, writeSkipCount=0,

 processSkipCount=0, commitCount=1, rollbackCount=0, exitDescription=, attributes={}]

09:55:53,573 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - StepExecution: id=2,

 version=2, name=step1, status=COMPLETED, exitStatus=COMPLETED, readCount=0, filterCount=0, writeCount=0

 readSkipCount=0, writeSkipCount=0, processSkipCount=0, commitCount=1, rollbackCount=0, exitDescription=

09:55:53,580 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - JobExecution:

 id=2, version=1, startTime=Sat Apr 12 09:55:53 PDT 2014, endTime=Sat Apr 12

 09:55:53 PDT 2014, lastUpdated=Sat Apr 12 09:55:53 PDT 2014, status=COMPLETED,

 exitStatus=exitCode=COMPLETED;exitDescription=, job=[JobInstance: id=2, version=0, Job=[myHttpJob]],

 jobParameters=[{random=0.07002785662707867}]

To receive job execution events

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name jobExecutionEvents --definition "tap:job:myHttpJob.job >log" --deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the job execution events is: tap:job:<job-name>.job

In the logging output of the container you should see something like the following when the job completes

10:06:41,579 WARN SimpleAsyncTaskExecutor-1 logger.jobExecutionEvents:150 - JobExecution: id=3,

 version=1, startTime=Sat Apr 12 10:06:41 PDT 2014, endTime=null, lastUpdated=Sat Apr 12 10:06:41 PDT

 2014, status=STARTED, exitStatus=exitCode=UNKNOWN;exitDescription=, job=[JobInstance: id=3, version=0,

 Job=[myHttpJob]], jobParameters=[{random=0.3774227747555795}]

10:06:41,626 INFO SimpleAsyncTaskExecutor-1 support.SimpleJobLauncher:136 - Job: [FlowJob:

 [name=myHttpJob]] completed with the following parameters: [{random=0.3774227747555795}] and the

 following status: [COMPLETED]

10:06:41,626 WARN SimpleAsyncTaskExecutor-1 logger.jobExecutionEvents:150 -

 JobExecution: id=3, version=1, startTime=Sat Apr 12 10:06:41 PDT 2014, endTime=Sat

 Apr 12 10:06:41 PDT 2014, lastUpdated=Sat Apr 12 10:06:41 PDT 2014, status=COMPLETED,

 exitStatus=exitCode=COMPLETED;exitDescription=, job=[JobInstance: id=3, version=0, Job=[myHttpJob]],

 jobParameters=[{random=0.3774227747555795}]

To receive step execution events

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name stepExecutionEvents --definition "tap:job:myHttpJob.step >log" --deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the step execution events is: tap:job:<job-name>.step

In the logging output of the container you should see something like the following when the job completes

Spring XD Guide

1.2.0.RC1 Spring XD 92

10:13:16,072 WARN SimpleAsyncTaskExecutor-1 logger.stepExecutionEvents:150 - StepExecution: id=6,

 version=1, name=step1, status=STARTED, exitStatus=EXECUTING, readCount=0, filterCount=0, writeCount=0

 readSkipCount=0, writeSkipCount=0, processSkipCount=0, commitCount=0, rollbackCount=0, exitDescription=

10:13:16,092 WARN SimpleAsyncTaskExecutor-1 logger.stepExecutionEvents:150 - StepExecution: id=6,

 version=2, name=step1, status=COMPLETED, exitStatus=COMPLETED, readCount=0, filterCount=0, writeCount=0

 readSkipCount=0, writeSkipCount=0, processSkipCount=0, commitCount=1, rollbackCount=0, exitDescription=

To receive item, skip and chunk events

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name itemEvents --definition "tap:job:myHttpJob.item >log" --deploy

xd>stream create --name skipEvents --definition "tap:job:myHttpJob.skip >log" --deploy

xd>stream create --name chunkEvents --definition "tap:job:myHttpJob.chunk >log" --deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the item events: tap:job:<job-name>.item,for skip
events: tap:job:<job-name>.skip and for chunk events: tap:job:<job-name>.chunk

To disable the default listeners

xd>job create --name myHttpJob --definition "httpJob --listeners=disable" --deploy

To select specific listeners

To select specific listeners, specify comma separated list in --listeners option. Following example
illustrates the selection of job and step execution listeners only:

xd>job create --name myHttpJob --definition "httpJob --listeners=job,step" --deploy

Note: List of options are: job, step, item, chunk and skip The aggregated channel is registered if at least
one of these default listeners are enabled.

For a complete example, please see the Batch Notifications Sample which is part of the Spring XD
Samples repository.

8.8 Removing Batch Jobs

Batch Jobs can be deleted by executing:

xd:> job destroy helloSpringXD

Alternatively, one can just undeploy the job, keeping its definition for a future redeployment:

xd:> job undeploy helloSpringXD

8.9 Pre-Packaged Batch Jobs

Spring XD comes with several batch import and export modules. You can run them out of the box or
use them as a basis for building your own custom modules.

Note regarding HDFS Configuration

To use the hdfs based jobs below, XD needs to have append enabled for hdfs. Update the hdfs-site.xml
with the following settings:

https://github.com/spring-projects/spring-xd-samples/tree/master/batch-notifications
https://github.com/spring-projects/spring-xd-samples
https://github.com/spring-projects/spring-xd-samples

Spring XD Guide

1.2.0.RC1 Spring XD 93

 <property>

 <name>dfs.support.append</name>

 <value>true</value>

 </property>

Poll a Directory and Import CSV Files to HDFS (filepollhdfs)

This module is designed to be driven by a stream polling a directory. It imports data from CSV files and
requires that you supply a list of named columns for the data using the names parameter. For example:

xd:> job create myjob --definition "filepollhdfs --names=forename,surname,address" --deploy

You would then use a stream with a file source to scan a directory for files and drive the job. A separate
job will be started for each file found:

xd:> stream create csvStream --definition "file --ref=true --dir=/mycsvdir --pattern=*.csv >

 queue:job:myjob" --deploy

The filepollhdfs job has the following options:

commitInterval
the commit interval to be used for the step (int, default: 1000)

deleteFiles
whether to delete files after successful import (boolean, default: false)

directory
the directory to write the file(s) to in HDFS (String, default: /xd/<job name>)

fileExtension
the file extension to use (String, default: csv)

fileName
the filename to use in HDFS (String, default: <job name>)

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

names
the field names in the CSV file (String, no default)

restartable
whether the job should be restartable or not in case of failure (boolean, default: false)

rollover
the number of bytes to write before creating a new file in HDFS (int, default: 1000000)

Import CSV Files to JDBC (filejdbc)

A module which loads CSV files into a JDBC table using a single batch job. By default it uses the internal
HSQL DB which is used by Spring Batch. Refer to how module options are resolved for further details
on how to change defaults (one can of course always use --foo=bar notation in the job definition to
achieve the same effect).

The filejdbc job has the following options:

Spring XD Guide

1.2.0.RC1 Spring XD 94

abandonWhenPercentageFull
connections that have timed out wont get closed and reported up unless the number of connections
in use are above the percentage (int, default: 0)

alternateUsernameAllowed
uses an alternate user name if connection fails (boolean, default: false)

commitInterval
the commit interval to be used for the step (int, default: 1000)

connectionProperties
connection properties that will be sent to our JDBC driver when establishing new connections
(String, no default)

deleteFiles
whether to delete files after successful import (boolean, default: false)

delimiter
the delimiter for the delimited file (String, default: ,)

driverClassName
the JDBC driver to use (String, no default)

fairQueue
set to true if you wish that calls to getConnection should be treated fairly in a true FIFO fashion
(boolean, default: true)

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

initSQL
custom query to be run when a connection is first created (String, no default)

initialSize
initial number of connections that are created when the pool is started (int, default: 0)

initializeDatabase
whether the database initialization script should be run (boolean, default: false)

initializerScript
the name of the SQL script (in /config) to run if 'initializeDatabase' is set (String, default:
init_batch_import.sql)

jdbcInterceptors
semicolon separated list of classnames extending org.apache.tomcat.jdbc.pool.JdbcInterceptor
(String, no default)

jmxEnabled
register the pool with JMX or not (boolean, default: true)

logAbandoned
flag to log stack traces for application code which abandoned a Connection (boolean, default:
false)

Spring XD Guide

1.2.0.RC1 Spring XD 95

maxActive
maximum number of active connections that can be allocated from this pool at the same time (int,
default: 100)

maxAge
time in milliseconds to keep this connection (int, default: 0)

maxIdle
maximum number of connections that should be kept in the pool at all times (int, default: 100)

maxWait
maximum number of milliseconds that the pool will wait for a connection (int, default: 30000)

minEvictableIdleTimeMillis
minimum amount of time an object may sit idle in the pool before it is eligible for eviction (int, default:
60000)

minIdle
minimum number of established connections that should be kept in the pool at all times (int, default:
10)

names
the field names in the CSV file (String, no default)

partitionResultsTimeout
time (ms) that the partition handler will wait for results (long, default: 3600000)

password
the JDBC password (Password, no default)

removeAbandoned
flag to remove abandoned connections if they exceed the removeAbandonedTimout (boolean,
default: false)

removeAbandonedTimeout
timeout in seconds before an abandoned connection can be removed (int, default: 60)

resources
the list of paths to import (Spring resources) (String, no default)

restartable
whether the job should be restartable or not in case of failure (boolean, default: false)

suspectTimeout
this simply logs the warning after timeout, connection remains (int, default: 0)

tableName
the database table to which the data will be written (String, default: <job name>)

testOnBorrow
indication of whether objects will be validated before being borrowed from the pool (boolean,
default: false)

testOnReturn
indication of whether objects will be validated before being returned to the pool (boolean, default:
false)

Spring XD Guide

1.2.0.RC1 Spring XD 96

testWhileIdle
indication of whether objects will be validated by the idle object evictor (boolean, default: false)

timeBetweenEvictionRunsMillis
number of milliseconds to sleep between runs of the idle connection validation/cleaner thread (int,
default: 5000)

url
the JDBC URL for the database (String, no default)

useEquals
true if you wish the ProxyConnection class to use String.equals (boolean, default: true)

username
the JDBC username (String, no default)

validationInterval
avoid excess validation, only run validation at most at this frequency - time in milliseconds (long,
default: 30000)

validationQuery
sql query that will be used to validate connections from this pool (String, no default)

validatorClassName
name of a class which implements the org.apache.tomcat.jdbc.pool.Validator (String, no default)

The job should be defined with the resources parameter defining the files which should be loaded.
It also requires a names parameter (for the CSV field names) and these should match the database
column names into which the data should be stored. You can either pre-create the database table or
the module will create it for you if you use --initializeDatabase=true when the job is created.
The table initialization is configured in a similar way to the JDBC sink and uses the same parameters.
The default table name is the job name and can be customized by setting the tableName parameter.
As an example, if you run the command

xd:> job create myjob --definition "filejdbc --resources=file:///mycsvdir/*.csv --

names=forename,surname,address --tableName=people --initializeDatabase=true" --deploy

it will create the table "people" in the database with three varchar columns called "forename", "surname"
and "address". When you launch the job it will load the files matching the resources pattern and write
the data to this table. As with the filepollhdfs job, this module also supports the deleteFiles
parameter which will remove the files defined by the resources parameter on successful completion
of the job.

Launch the job using:

xd:> job launch myjob

Tip

The connection pool settings for xd are located in servers.yml (i.e. spring.datasource.*)

HDFS to JDBC Export (hdfsjdbc)

This module functions very similarly to the filejdbc one except that the resources you specify should
actually be in HDFS, rather than the OS filesystem.

Spring XD Guide

1.2.0.RC1 Spring XD 97

xd:> job create myjob --definition "hdfsjdbc --resources=/xd/data/*.csv --names=forename,surname,address

 --tableName=people --initializeDatabase=true" --deploy

Launch the job using:

xd:> job launch myjob

The hdfsjdbc job has the following options:

abandonWhenPercentageFull
connections that have timed out wont get closed and reported up unless the number of connections
in use are above the percentage (int, default: 0)

alternateUsernameAllowed
uses an alternate user name if connection fails (boolean, default: false)

commitInterval
the commit interval to be used for the step (int, default: 1000)

connectionProperties
connection properties that will be sent to our JDBC driver when establishing new connections
(String, no default)

delimiter
the delimiter for the delimited file (String, default: ,)

driverClassName
the JDBC driver to use (String, no default)

fairQueue
set to true if you wish that calls to getConnection should be treated fairly in a true FIFO fashion
(boolean, default: true)

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

initSQL
custom query to be run when a connection is first created (String, no default)

initialSize
initial number of connections that are created when the pool is started (int, default: 0)

initializeDatabase
whether the database initialization script should be run (boolean, default: false)

initializerScript
the name of the SQL script (in /config) to run if 'initializeDatabase' is set (String, default:
init_batch_import.sql)

jdbcInterceptors
semicolon separated list of classnames extending org.apache.tomcat.jdbc.pool.JdbcInterceptor
(String, no default)

jmxEnabled
register the pool with JMX or not (boolean, default: true)

Spring XD Guide

1.2.0.RC1 Spring XD 98

logAbandoned
flag to log stack traces for application code which abandoned a Connection (boolean, default:
false)

maxActive
maximum number of active connections that can be allocated from this pool at the same time (int,
default: 100)

maxAge
time in milliseconds to keep this connection (int, default: 0)

maxIdle
maximum number of connections that should be kept in the pool at all times (int, default: 100)

maxWait
maximum number of milliseconds that the pool will wait for a connection (int, default: 30000)

minEvictableIdleTimeMillis
minimum amount of time an object may sit idle in the pool before it is eligible for eviction (int, default:
60000)

minIdle
minimum number of established connections that should be kept in the pool at all times (int, default:
10)

names
the field names in the CSV file (String, no default)

password
the JDBC password (Password, no default)

removeAbandoned
flag to remove abandoned connections if they exceed the removeAbandonedTimout (boolean,
default: false)

removeAbandonedTimeout
timeout in seconds before an abandoned connection can be removed (int, default: 60)

resources
the list of paths to import (Spring resources) (String, no default)

restartable
whether the job should be restartable or not in case of failure (boolean, default: false)

suspectTimeout
this simply logs the warning after timeout, connection remains (int, default: 0)

tableName
the database table to which the data will be written (String, default: <job name>)

testOnBorrow
indication of whether objects will be validated before being borrowed from the pool (boolean,
default: false)

Spring XD Guide

1.2.0.RC1 Spring XD 99

testOnReturn
indication of whether objects will be validated before being returned to the pool (boolean, default:
false)

testWhileIdle
indication of whether objects will be validated by the idle object evictor (boolean, default: false)

timeBetweenEvictionRunsMillis
number of milliseconds to sleep between runs of the idle connection validation/cleaner thread (int,
default: 5000)

url
the JDBC URL for the database (String, no default)

useEquals
true if you wish the ProxyConnection class to use String.equals (boolean, default: true)

username
the JDBC username (String, no default)

validationInterval
avoid excess validation, only run validation at most at this frequency - time in milliseconds (long,
default: 30000)

validationQuery
sql query that will be used to validate connections from this pool (String, no default)

validatorClassName
name of a class which implements the org.apache.tomcat.jdbc.pool.Validator (String, no default)

Tip

The connection pool settings for xd are located in servers.yml (i.e. spring.datasource.*)

JDBC to HDFS Import (jdbchdfs)

Performs the reverse of the previous module. The database configuration is the same as for filejdbc
but without the initialization options since you need to already have the data to import into HDFS. When
creating the job, you must either supply the select statement by setting the sql parameter, or you can
supply both tableName and columns options (which will be used to build the SQL statement).

To import data from the database table some_table, you could use

xd:> job create myjob --definition "jdbchdfs --sql='select col1,col2,col3 from some_table'" --deploy

You can customize how the data is written to HDFS by supplying the options directory (defaults
to /xd/(job name)), fileName (defaults to job name), rollover (in bytes, default 1000000) and
fileExtension (defaults to csv).

Launch the job using:

xd:> job launch myjob

If you want to partition your job across multiple XD containers you can provide the partitionColumn
and partitions option. When the job is launched the partitioner will query the database for the range of
values and evenly divide the load between the partitions. This assumes that there is an even distribution

Spring XD Guide

1.2.0.RC1 Spring XD 100

of column values in the table. When using the partitioning support you must also use the tableName
and columns options instead of the sql option. This is so the partitioner can construct the queries with
the appropriate where clauses for the different partitions.

An example of a partitioned job could look like this:

xd:> job create partitionedJob --definition "jdbchdfs --columns='id,col1,col2' --tableName=some_table --

partitionColumn=id --partitions=4" --deploy

Note

When using the partitioning support you can not use the sql option. Use tableName and
columns instead.

You can perform incremental imports using this job by defining a column to check against. Currently the
column must be numeric (similar to how the partitionColumn works). An example of launching a job that
performs incremental imports would look like the following:

xd:> job create incrementalImportJob --definition "jdbchdfs --columns='id,col1,col2' --

tableName=some_table --checkColumn=sequence --restartable=true" --deploy

If you want to specify the value for the checkColumn, you can pass the override value in as a
JobParameter named overrideCheckColumnValue as shown below:

xd:> job launch incrementalImportJob --params {"overrideCheckColumnValue" : 2}

There are two things to keep in mind when using incremental imports with this job:

• When using incremental imports, the sql option is not available. Use tableName and columns
instead.

• If an import fails, it must be rerun to completion before running the next import. Without this,
inconsistent data may result. Since HDFS is a non-transactional store, failed records may not be rolled
back. An administrator may need to check HDFS for completeness and the last imported value.

The jdbchdfs job has the following options:

abandonWhenPercentageFull
connections that have timed out wont get closed and reported up unless the number of connections
in use are above the percentage (int, default: 0)

alternateUsernameAllowed
uses an alternate user name if connection fails (boolean, default: false)

checkColumn
the column to be examined when determining which rows to import (String, default: ``)

columns
the column names to read from the supplied table (String, default: ``)

commitInterval
the commit interval to be used for the step (int, default: 1000)

connectionProperties
connection properties that will be sent to our JDBC driver when establishing new connections
(String, no default)

Spring XD Guide

1.2.0.RC1 Spring XD 101

delimiter
the delimiter for the delimited file (String, default: ,)

directory
the directory to write the file(s) to in HDFS (String, default: /xd/<job name>)

driverClassName
the JDBC driver to use (String, no default)

fairQueue
set to true if you wish that calls to getConnection should be treated fairly in a true FIFO fashion
(boolean, default: true)

fileExtension
the file extension to use (String, default: csv)

fileName
the filename to use in HDFS (String, default: <job name>)

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

initSQL
custom query to be run when a connection is first created (String, no default)

initialSize
initial number of connections that are created when the pool is started (int, default: 0)

jdbcInterceptors
semicolon separated list of classnames extending org.apache.tomcat.jdbc.pool.JdbcInterceptor
(String, no default)

jmxEnabled
register the pool with JMX or not (boolean, default: true)

logAbandoned
flag to log stack traces for application code which abandoned a Connection (boolean, default:
false)

maxActive
maximum number of active connections that can be allocated from this pool at the same time (int,
default: 100)

maxAge
time in milliseconds to keep this connection (int, default: 0)

maxIdle
maximum number of connections that should be kept in the pool at all times (int, default: 100)

maxWait
maximum number of milliseconds that the pool will wait for a connection (int, default: 30000)

minEvictableIdleTimeMillis
minimum amount of time an object may sit idle in the pool before it is eligible for eviction (int, default:
60000)

Spring XD Guide

1.2.0.RC1 Spring XD 102

minIdle
minimum number of established connections that should be kept in the pool at all times (int, default:
10)

partitionColumn
the column to use for partitioning, should be numeric and uniformly distributed (String, default: ``)

partitionResultsTimeout
time (ms) that the partition handler will wait for results (long, default: 3600000)

partitions
the number of partitions (int, default: 1)

password
the JDBC password (Password, no default)

removeAbandoned
flag to remove abandoned connections if they exceed the removeAbandonedTimout (boolean,
default: false)

removeAbandonedTimeout
timeout in seconds before an abandoned connection can be removed (int, default: 60)

restartable
whether the job should be restartable or not in case of failure (boolean, default: false)

rollover
the number of bytes to write before creating a new file in HDFS (int, default: 1000000)

sql
the SQL to use to extract data (String, default: ``)

suspectTimeout
this simply logs the warning after timeout, connection remains (int, default: 0)

tableName
the table to read data from (String, default: ``)

testOnBorrow
indication of whether objects will be validated before being borrowed from the pool (boolean,
default: false)

testOnReturn
indication of whether objects will be validated before being returned to the pool (boolean, default:
false)

testWhileIdle
indication of whether objects will be validated by the idle object evictor (boolean, default: false)

timeBetweenEvictionRunsMillis
number of milliseconds to sleep between runs of the idle connection validation/cleaner thread (int,
default: 5000)

url
the JDBC URL for the database (String, no default)

Spring XD Guide

1.2.0.RC1 Spring XD 103

useEquals
true if you wish the ProxyConnection class to use String.equals (boolean, default: true)

username
the JDBC username (String, no default)

validationInterval
avoid excess validation, only run validation at most at this frequency - time in milliseconds (long,
default: 30000)

validationQuery
sql query that will be used to validate connections from this pool (String, no default)

validatorClassName
name of a class which implements the org.apache.tomcat.jdbc.pool.Validator (String, no default)

Tip

The connection pool settings for xd are located in servers.yml (i.e. spring.datasource.*)

HDFS to MongoDB Export (hdfsmongodb)

Exports CSV data from HDFS and stores it in a MongoDB collection which defaults to the job name.
This can be overridden with the collectionName parameter. Once again, the field names should be
defined by supplying the names parameter. The data is converted internally to a Spring XD Tuple and
the collection items will have an id matching the tuple’s UUID. You can override this by setting the
idField parameter to one of the field names if desired.

An example:

xd:> job create myjob --definition "hdfsmongodb --resources=/data/*.log --

names=employeeId,forename,surname,address --idField=employeeId --collectionName=people" --deploy

The hdfsmongodb job has the following options:

authenticationDatabaseName
the MongoDB authentication database used for connecting (String, default: ``)

collectionName
the MongoDB collection to store (String, default: <job name>)

commitInterval
the commit interval to be used for the step (int, default: 1000)

databaseName
the MongoDB database name (String, default: xd)

delimiter
the delimiter for the delimited file (String, default: ,)

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

host
the MongoDB host to connect to (String, default: localhost)

Spring XD Guide

1.2.0.RC1 Spring XD 104

idField
the name of the field to use as the identity in MongoDB (String, no default)

names
the field names in the CSV file (String, no default)

password
the MongoDB password used for connecting (String, default: ``)

port
the MongoDB port to connect to (int, default: 27017)

resources
the list of paths to import (Spring resources) (String, no default)

restartable
whether the job should be restartable or not in case of failure (boolean, default: false)

username
the MongoDB username used for connecting (String, default: ``)

writeConcern
the default MongoDB write concern to use (WriteConcern, default: SAFE, possible values:
NONE,NORMAL,SAFE,FSYNC_SAFE,REPLICAS_SAFE,JOURNAL_SAFE,MAJORITY)

FTP to HDFS Export (ftphdfs)

Copies files from FTP directory into HDFS. Job is partitioned in a way that each separate file copy is
executed on its own partitioned step.

An example which copies files:

job create --name ftphdfsjob --definition "ftphdfs --host=ftp.example.com --port=21" --deploy

job launch --name ftphdfsjob --params {"remoteDirectory":"/pub/files","hdfsDirectory":"/ftp"}

Full path is preserved so that above command would result files in HDFS shown below:

/ftp/pub/files

/ftp/pub/files/file1.txt

/ftp/pub/files/file2.txt

The ftphdfs job has the following options:

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

host
the host name for the FTP server (String, default: localhost)

partitionResultsTimeout
time (ms) that the partition handler will wait for results (long, default: 3600000)

password
the password for the FTP connection (Password, no default)

Spring XD Guide

1.2.0.RC1 Spring XD 105

port
the port for the FTP server (int, default: 21)

restartable
whether the job should be restartable or not in case of failure (boolean, default: false)

username
the username for the FTP connection (String, no default)

Running Spark Application as a batch job (sparkapp)

A Spark Application can be deployed and launched from Spring XD as a batch job. SparkTasklet submits
the Spark application into Spark cluster manager using org.apache.spark.deploy.SparkSubmit.
Through this approach, you can also launch a Spark application with specific criteria via Spring XD
stream (for instance: A real time scoring algorithm through MLlib spark job can be triggered based on the
streaming data events). To get started, please refer to Spark examples here: https://spark.apache.org/
examples.html.

Note

The current Spark release that is supported is Spark 1.2.1

Lets run some Spark examples as Spring XD batch jobs:

xd:>job create SparkPiExample --definition "sparkapp --appJar=<the location of spark-examples-1.2.1 jar>

 --name=MyApp --master=<spark master url or local> --mainClass=org.apache.spark.examples.SparkPi" --

deploy

xd:>job launch SparkPiExample

xd:>job create JavaWordCountExample --definition "sparkapp --appJar=<the location

 of spark-examples-1.2.1 jar> --name=MyApp --master=<spark master url or local> --

mainClass=org.apache.spark.examples.JavaWordCount --programArgs=<location of the file to count the

 words>" --deploy

xd>job launch JavaWordCountExample

Once the job is launched, go to Spring XD admin-ui to verify the job results. Jobs # Executions # Select
the job to verify that execution context holds the log for Spark application results. If you launch the
Spark application through Spark Master, then the results and application status can be verified from
SparkUI as well.

The sparkapp job has the following options:

appJar
path to a bundled jar that includes your application and its dependencies - excluding spark (String,
no default)

conf
comma seperated list of key value pairs as config properties (String, default: ``)

files
comma separated list of files to be placed in the working directory of each executor (String, default:
``)

mainClass
the main class for Spark application (String, no default)

https://spark.apache.org/examples.html
https://spark.apache.org/examples.html

Spring XD Guide

1.2.0.RC1 Spring XD 106

master
the master URL for Spark (String, default: local)

name
the name of the Spark application (String, default: ``)

programArgs
program arguments for the application main class (String, default: ``)

Running Sqoop as a batch job (sqoop)

A Sqoop job can be deployed and launched from Spring XD as a batch job. The
Sqoop job uses a SqoopTasklet and a SqoopRunner that submits a Sqoop job using
org.apache.sqoop.Sqoop.runTool. The Spring XD Sqoop batch job aims to support most of the Sqoop
functionality, but at this point we have only tested a subset:

• import

• export

• codegen

• merge

• job

• list-tables

Note

The current release supports Sqoop 1.4.5

The intention is to eventually support all features of the Sqoop tool. See Sqoop User Guide for full
documentation of the Sqoop features.

We can test the Sqoop job by just listing the tables in the database:

xd:>job create sqoopListTables --definition "sqoop --command=list-tables" --deploy

xd:>job launch --name sqoopListTables

The definition contains the name of the provided job as sqoop and the --command option names the
Sqoop command we want to run, which in this case is "list-tables".

Once the job is launched, go to Spring XD admin-ui to verify the job results. Jobs # Executions # Select
the job to verify that step execution context holds the log for Sqoop Tool execution results. You should
see some tables listed there. Since we didn’t provide any connection arguments Spring XD will by default
use the batch respoitory database for the Sqoop Tool execution. We could provide options specifying a
different database using the --url, --username and --password options for the job:

xd:>job create sqoopListTables2 --definition "sqoop --command=list-tables --url=jdbc:mysql://

localhost:3306/test --username=myuser --password=mypasswd" --deploy

xd:>job launch --name sqoopListTables2

Here we connect to a local MySQL database. It’s important to note that you need to provide the MySQL
JDBC driver jar in the Spring XD lib directory for this to work.

http://sqoop.apache.org/docs/1.4.5/SqoopUserGuide.html

Spring XD Guide

1.2.0.RC1 Spring XD 107

There also is an option to specify connection arguments using the --args option. This allows you to
use the same arguments that you are used to provide on the command line when running the Sqoop
Tool directly. To connect to the same MySQL database as above using --args we would use:

xd:>job create sqoopListTables3 --definition "sqoop --command=list-tables --args='--

connect=jdbc:mysql://localhost:3306/test --username=myuser --password=mypasswd'" --deploy

xd:>job launch --name sqoopListTables3

When importing data, you simply use "import" as the command to run. Here is an example:

xd:>job create sqoopImport1 --definition "sqoop --command=import --args='--table=MYTABLE' --

url=jdbc:mysql://localhost:3306/test --username=myuser --password=mypasswd" --deploy

xd:>job launch --name sqoopImport1

In this example we provided the connection arguments using the -args option. We could also have
used --url, --username and --password options like we did above for the "list-tables" example.
The "import" command will use the spring.hadoop.fsUri that is specified when Spring XD starts
up. You can override this by providing the --fsUri option when defining the job. The same is true
for spring.hadoop.resourceManagerHost and spring.hadoop.resourceManagerPort.
You can override the Spring XD configured values with --resourceManagerHost and --
resourceManagerPort options.

For exports we use the "export" command. Here is an example:

xd:>job create sqoopExport1 --definition "sqoop --command=export --args='--table=NEWTABLE --export-dir=/

user/xduser/MYTABLE'" --deploy

xd:>job launch --name sqoopExport1

Here we rely on the connection options to default to the same database used for the batch repository.
Note that Sqoop requires that the table to export data into must already exist.

Note

If your Sqoop args are more complex, as is the case when you provide a query expression or
a where clause, then you will need to use escaping for double quotes used within the --args
option. A quick example of using a where clause:

job create sqoopComplexArgs1 --definition "sqoop --command=import --args='--table MYFILES --where \"ID <

 390000\" --target-dir /user/xduser/TEST --split-by ID'"

(For this example we have omitted the equal sign for the individual Sqoop arguments within the --args
option. Either style works fine.)

Note

If your Sqoop args use escape sequences (common when working with Hive data) then you should
provide double back-slash characters when working with the XD Shell (this effectively escapes
the escape character and only one back-slash will be passed on). Here is a brief example:

job create sqoopHiveArgs1 --definition "sqoop --command=import --args='--table MYFILES --target-dir /

user/xduser/TEST --split-by ID --null-string \\\\N --fields-terminated-by \\0001'"

For more detailed coverage of using quotes and escaping please see Single quotes, Double quotes,
Escaping.

Spring XD Guide

1.2.0.RC1 Spring XD 108

Note

Advanced Hadoop configuration options can be provided in one of several configuration files. The
hadoop-site.xml file is only used by the Sqoop job while the other configuration files are used
by all Hadoop related jobs and streams:

• $XD_HOME/config/hadoop.properties— just add the property you would like to set:

dfs.client.socket-timeout=20000

• $XD_HOME/config/hadoop-site.xml— add a property entry:

 <property>

 <name>dfs.client.socket-timeout</name>

 <value>20000</value>

 </property>

• $XD_HOME/config/servers.yml— add a spring.hadoop.config entry:

spring:

 hadoop:

 config:

 dfs.client.socket-timeout: 20000

Using Sqoop’s metastore

It is possible to use Sqoop’s metastore with some restrictions.

Warning

Sqoop ships with HSQLDB version 1.8 and Spring XD ships with HSQLDB version 2.3. Since
these two versions are not compatible you can not use a Sqoop metastore that uses HSQLDB.
This is unfortunate since HSQLDB version 1.8 is the only database that is fully supported for the
metastore by Sqoop. We can however use another database for the metastore as long as we
use some workarounds.

Note

You can use PostgreSQL for the Sqoop metastore. We recommend that you run the commands
listed below to create and initialize the tables to be used by the Sqoop metastore.

Create and initialize the Sqoop metastore tables:

Spring XD Guide

1.2.0.RC1 Spring XD 109

CREATE TABLE

 SQOOP_ROOT

 (

 version INTEGER,

 propname CHARACTER VARYING(128) NOT NULL,

 propval CHARACTER VARYING(256),

 UNIQUE (version, propname)

);

CREATE TABLE

 SQOOP_SESSIONS

 (

 job_name CHARACTER VARYING(64) NOT NULL,

 propname CHARACTER VARYING(128) NOT NULL,

 propval CHARACTER VARYING(1024),

 propclass CHARACTER VARYING(32) NOT NULL,

 UNIQUE (job_name, propname, propclass)

);

INSERT INTO sqoop_root (version, propname, propval) VALUES (null, 'sqoop.hsqldb.job.storage.version',

 '0');

INSERT INTO sqoop_root (version, propname, propval) VALUES (0, 'sqoop.hsqldb.job.info.table',

 'SQOOP_SESSIONS');

You can now modify the scoop-site.xml file in the Spring XD config directory. Add the JDBC URL,
username and password to use for connection to the PostgreSQL database that hosts the Sqoop
metastore tables. You need to provide the following properties:

• sqoop.metastore.client.autoconnect.url

• sqoop.metastore.client.autoconnect.username

• sqoop.metastore.client.autoconnect.password

Note

In addition to the above configurations you need to use a --password-file option when
creating the Sqoop job definitions. If you don’t then Sqoop will prompt for a password as Spring
XD runs the job. This will cause the job to hang.

Here is an example of defining a Sqoop job using Spring XD’s sqoop job:

xd>job create job1create --definition "sqoop --command=job --args='--create job1 -- import --table PETS

 --incremental append --check-column ID --last-value 0 --connect jdbc:hsqldb:hsql://localhost:9001/test

 --username sa --password-file /xd/hsql.password --target-dir /xd/job1 --num-mappers 1'" --deploy

xd>job launch job1create

Here is an example of executing the predefined Sqoop job using Spring XD’s sqoop job:

xd>job create job1exec --definition "sqoop --command=job --args='--exec job1'" --deploy

xd>job launch job1exec

Options for Sqoop job

The sqoop job has the following options:

args
the arguments for the Sqoop command (String, default: ``)

command
the Sqoop command to run (String, default: ``)

driverClassName
the JDBC driver to use (String, no default)

Spring XD Guide

1.2.0.RC1 Spring XD 110

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

password
the JDBC password (Password, no default)

resourceManagerHost
the Host for Hadoop's ResourceManager (String, default:
${spring.hadoop.resourceManagerHost})

resourceManagerPort
the Port for Hadoop's ResourceManager (String, default:
${spring.hadoop.resourceManagerPort})

url
the JDBC URL for the database (String, no default)

username
the JDBC username (String, no default)

Running gpload as a batch job (gpload)

The gpload utility can be deployed and launched from Spring XD as a batch job. The gpload job uses
a GploadTasklet that submits a gpload job as an external process. The Spring XD gpload batch job
aims to support most of the gpload functionality.

We need to provide the following required options:

• gploadHome - this must be the path to where gpload utility is installed. This is usually /usr/local/
greenplum-loaders-<version>.

• controlFile - this file defines the gpload options in effect for this load job and is documented in
the Greenplum Load Tools Reference documentation.

• password or passswordFile - you can either speciy the passord or provide a password file that
must follow the general format for a PostgreSQL password file.

Here is an example of a basic load job definition. Please note that some options like host, port, database
and username could have been specified in the control file as well.

The content of the control file:

VERSION: 1.0.0.1

GPLOAD:

 INPUT:

 - SOURCE:

 FILE: [/home/demo/data/test_file.csv]

 - FORMAT: CSV

 - DELIMITER: ','

 - NULL_AS: '\N'

 - QUOTE: '"'

 - HEADER: FALSE

 - ENCODING: 'UTF8'

 - ERROR_LIMIT: 1000

 - ERROR_TABLE: public.err_table

 OUTPUT:

 - TABLE: demo.test

 - MODE: INSERT

 PRELOAD:

 - TRUNCATE: FALSE

 - REUSE_TABLES: FALSE

Spring XD Guide

1.2.0.RC1 Spring XD 111

This is the command used to create and launch the job:

xd:>job create myload --definition "gpload --gploadHome=/usr/local/greenplum-loaders-4.3.4.1-build-2 --

controlFile=/home/demo/basic.yml --host=pivhdsne --port=5432 --database=pivotal --username=gpadmin --

passwordFile=/home/demo/.pgpass" --deploy

xd:>job launch --name myload

Once the job is launched, go to Spring XD admin-ui to verify the job results. Jobs # Executions # Select
the job to verify that step execution context holds the log for gpload execution results.

We can override the file name for the source file by providing it as a job parameter like this:

job launch --name myload --params {"input.source.file":"/home/demo/data/inputfile2.csv"}

This allows us to define a stream to capture new files created in a specific directory:

xd>stream create loadFiles --definition "file --ref=true --dir=/home/demo/input --pattern='*.csv'

 | transform --expression='{\"input.source.file\":\"'+#{'payload.getAbsolutePath()'}+'\"}' >

 queue:job:myload" --deploy

Now, any new file created in that directory will launch a gpload job for that new file.

The gpload job has the following options:

controlFile
path to the gpload control file (String, no default)

database
the name of the database to load into (String, no default)

gploadHome
the gpload home location (String, no default)

host
the host name for the Greenplum master database server (String, no default)

options
the gpload options to use (String, no default)

password
the password to use when connecting (String, no default)

passwordFile
the location of the password file (String, no default)

port
the port for the Greenplum master database server (Integer, no default)

username
the username to connect as (String, no default)

Spring XD Guide

1.2.0.RC1 Spring XD 112

9. Streams

9.1 Introduction

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. Stream processing is performed inside the XD Containers
and the deployment of stream definitions to containers is done via the XD Admin Server. The Getting
Started section shows you how to start these servers and how to start and use the Spring XD shell

Sources, sinks and processors are predefined configurations of a module. Module definitions are found
in the #0# directory. 1. Modules definitions are standard Spring configuration files that use existing Spring
classes, such as Input/Output adapters and Transformers from Spring Integration that support general
Enterprise Integration Patterns.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overriden using -- options, such as

http --port=8091 | file --dir=/tmp/httpdata/

To create these stream definitions you make an HTTP POST request to the XD Admin Server. More
details can be found in the sections below.

9.2 Creating a Simple Stream

The XD Admin server 5 exposes a full RESTful API for managing the lifecycle of stream definitions, but
the easiest way to use the XD shell. Start the shell as described in the Getting Started section

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’s walk through what happens if we execute the following shell command:

xd:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):

xd:> stream deploy --name ticktock

The stream server finds the time and log definitions in the modules directory and uses them to setup
the stream. In this simple example, the time source simply sends the current time as a message each
second, and the log sink outputs it using the logging framework.

1Using the filesystem is just one possible way of storing module defintions. Other backends will be supported in the future, e.g.
Redis.
5The server is implemented by the AdminMain class in the spring-xd-dirt subproject

http://static.springsource.org/spring-integration/reference/htmlsingle/#spring-integration-adapters
http://static.springsource.org/spring-integration/reference/htmlsingle/#transformer
http://www.eaipatterns.com/

Spring XD Guide

1.2.0.RC1 Spring XD 113

processing module 'Module [name=log, type=sink]' from group 'ticktock' with index: 1

processing module 'Module [name=time, type=source]' from group 'ticktock' with index: 0

17:26:18,774 WARN ThreadPoolTaskScheduler-1 logger.ticktock:141 - Thu May 23 17:26:18 EDT 2013

If you would like to have multiple instances of a module in the stream, you can include a property with
the deploy command:

xd:> stream deploy --name ticktock --properties "module.time.count=3"

You can also include a SpEL Expression as a criteria property for any module. That will be evaluated
against the attributes of each currently available Container. Instances of the module will only be deployed
to Containers for which the expression evaluates to true.

xd:> stream deploy --name ticktock --properties

 "module.time.count=3,module.log.criteria=groups.contains('x')"

Important

See Section 9.9, “Module Labels”.

9.3 Deleting a Stream

You can delete a stream by issuing the stream destroy command from the shell:

xd:> stream destroy --name ticktock

9.4 Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

xd:> stream undeploy --name ticktock

xd:> stream deploy --name ticktock

9.5 Other Source and Sink Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port (default 9000) from the Admin Server (default 8080).

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

xd:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

processing module 'Module [name=log, type=sink]' from group 'myhttpstream' with index: 1

processing module 'Module [name=http, type=source]' from group 'myhttpstream' with index: 0

Note that we don’t see any other output this time until we actually post some data (using shell command)

xd:> http post --target http://localhost:9000 --data "hello"

xd:> http post --target http://localhost:9000 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/htmlsingle/#expressions

Spring XD Guide

1.2.0.RC1 Spring XD 114

15:08:01,676 WARN ThreadPoolTaskScheduler-1 logger.myhttpstream:141 - hello

15:08:12,520 WARN ThreadPoolTaskScheduler-1 logger.myhttpstream:141 - goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file),
to hadoop (hdfs) or to any of the other sink modules which are provided. You can also define your
own modules.

9.6 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

xd:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 myprocstrem --deploy

Posting some data (using shell command)

xd:> http post --target http://localhost:9000 --data "hello"

Will result in an uppercased hello in the log

15:18:21,345 WARN ThreadPoolTaskScheduler-1 logger.myprocstream:141 - HELLO

See the Processors section for more information.

9.7 DSL Syntax

In the examples above, we connected a source to a sink using the pipe symbol |. You can also pass
parameters to the source and sink configurations. The parameter names will depend on the individual
module implementations, but as an example, the http source module exposes a port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

xd:> stream create --definition "http --port=8000 | log" --name myhttpstream

If you know a bit about Spring configuration files, you can inspect the module definition to see which
properties it exposes. Alternatively, you can read more in the source and sink documentation.

9.8 Advanced Features

In the examples above, simple module definitions are used to construct each stream. However, modules
may be grouped together in order to avoid duplication and/or reduce the amount of chattiness over the
messaging middleware. To learn more about that feature, refer to the Composing Modules section.

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant. First, named channels may be used as a way to combine multiple flows upstream and/or
downstream from the channel. The behavior of that channel may either be queue-based or topic-based
depending on what prefix is used ("queue:myqueue" or "topic:mytopic", respectively). To learn more,
refer to the Named Channels section. Second, you may need to determine the output channel of a
stream based on some information that is only known at runtime. To learn about such content-based
routing, refer to the Dynamic Router section.

Spring XD Guide

1.2.0.RC1 Spring XD 115

9.9 Module Labels

When a stream is comprised of multiple modules with the same name, they must be qualified with labels.
See Section 4.5, “Labels”.

Spring XD Guide

1.2.0.RC1 Spring XD 116

10. Modules

10.1 Introduction

Spring XD supports data ingestion by allowing users to define streams. Streams are composed of
modules which encapsulate a unit of work into a reusable component. A job in Spring XD must also
be implemented as a module.

Modules are categorized by type, typically representing the role or function of the module. Current
Spring XD module types include source, sink, processor, and job. The type determines how the
modules may be composed in a stream, or used to deploy a batch job. More precisely:

• A source polls an external resource, or is triggered by an event and only provides output. The first
module in a stream must be a source.

• A processor performs some type of task, using a message as input and produces a new message,
so it requires both input and output.

• A sink consumes input messages and outputs data to an external resource to terminate the stream.

• A job module implements a Spring Batch job enabled for Spring XD.

Spring XD ships with a number of pre-built modules useful for assembling streams to perform common
stream processing tasks using files, HDFS, Spark, Kafka, http, twitter, syslog, GemFire, and more. Users
can easily assemble these modules into streams to build complex big data applications declaratively,
without having to write Java code or know the underlying Spring products on which Spring XD is built.

However, if you are interested in extending Spring XD with your own modules, some knowledge of
Spring, Spring Integration or Spring Batch is essential. The remainder of this document assumes the
reader has some familiarity with these topics.

10.2 Creating a Module

This section provides some general details on implementing and packaging custom modules. For a quick
start, take a look at the si-dsl-module example or dive into the examples of creating source, processor,
sink, and job modules.

Stream Modules

Sources, processors, and sinks are built using Spring Integration and are typically perform a single task
that they may be easily reused in streams. Alternately, a custom module may be required to perform a
specific function, such as integration with a legacy service. In Spring Integration terms:

• A source is a valid message flow that contains a direct channel named output which is fed by an
inbound adapter, either configured with a poller, or triggered by an event.

• A processor is a valid message flow that contains a direct channel named input and a subscribable
channel named output (direct or publish subscribe). It typically performs some type of transformation
on the message, using its input channel’s message to create a new message on its output channel.

• A sink is a valid message flow that contains a direct channel named input and an outbound adapter,
or service activator used to provide the message to an external resource, HDFS for example.

https://github.com/spring-projects/spring-xd-samples/tree/master/si-dsl-module
http://spring.io/spring-integration

Spring XD Guide

1.2.0.RC1 Spring XD 117

For example, take a look at the file source which simply polls a directory using a file inbound adapter
and file sink which appends an incoming message payload to a file using a file outbound adapter. On
the surface, there is nothing special about these components. They are plain old Spring XML bean
definition files.

Notice that modules adhere to an important convention: The input and output channels are always
named input and output, in keeping with the KISS principle (let us know if you come up with some simpler
names). The Spring XD runtime uses these names to bind these channels to the message transport.

Module Packaging

A module is a packaged component containing artifacts used to create a Spring application context.
In general, a module is not aware of its runtime environment. Each module’s application context is
configured and connected to other modules via Plugins in order to support distributed processing. In
this respect, modules may potentially be applied to purposes other than stream processing. The module
types described here (source, processor, sink, and job) are specific to Spring XD, but the Module type
is designed to act as a core component of any micro-service architecture built with Spring.

Physically, a Module is somewhat analogous to a war file in Servlet container. The Spring XD container
configures and starts a module when it is deployed. Deploying a module in Spring XD terms means
activating an instance for processing, not to be confused with deploying a web application in Servlet
container. Consistent with the war analogy, a module has it’s own class loader to load resources
provided by the module, notably the files found in its config in its lib directories. Another feature in
common with a war file is that web applications are installed in a configured location and conform to
a standard layout. Artifacts are installed in a known location, either in expanded form or as a single
archive file. Spring XD modules work the same way. Spring XD module layout has evolved significantly
as new features have been added to support custom module development. This evolution has generally
led to increased flexibility with respect to individual artifacts. However, the module’s packaging structure
is well defined:

<module_name>

 ### <local class files and resources, e.g. com/acme/....>

 ### config

 # ### <any-name>.properties

 # ### <any-name>.[xml | groovy] (optional)

 ### lib

 # ### <dependent libraries not already in Spring XD class path (xd/lib)>

 #

For historical reasons, all modules included with Spring XD distribution are provided in expanded form
and are commonly configured using XML bean definition files (<module-name>.xml) and property
files (<module-name>.properties>. This is subject to change as this convention is no longer
required. Meanwhile the out-of-the-box modules provide copious examples of module configuration and
packaging.

A module’s contents typically includes:

• Application context configuration: If either config/<any_name>.xml, or config/<any_name>.groovy
are present, this will be loaded by an XmlBeanDefinitionReader or GroovyBeanDefinitionReader to
configure the application context. If using an @Configuration class, neither of these files should be
present.

• Module properties file: If the module declares options (e.g. property placeholders whose
values must be supplied for each instance when creating a stream), the properties file config/

https://github.com/spring-projects/spring-xd/blob/master/modules/source/file/config/file.xml
https://github.com/spring-projects/spring-xd/blob/master/modules/sink/file/config/file.xml
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/xml/XmlBeanDefinitionReader.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html

Spring XD Guide

1.2.0.RC1 Spring XD 118

<any_name>.properties may provide an options_class property containing the fully qualified class
name of a Module Options Metadata class. Alternately the properties file may provide in-line Module
Option descriptors (see Module Options below).

Note

As of Spring XD 1.1, the names of the module’s bean definition resource (xml or groovy) and
properties file are arbitrary. This provides additional flexibilty over requiring a conventional file
name, as has been the case in prior releases. Now the top level config directory is the
convention. This carries the constraint that no other similar file types may be present in config.
Multiple xml, groovy, or properties files matching the pattern, for example, config/*.xml will
result in an exception. If you want to combine bean definitions from multiple resources, you may
use import declarations and the imported resources must be somewhere else in the module’s
class path. This may be a subdirectory of config or any other arbitrary location.

If no configuration resource (config/*.xml or config/*.groovy) is present, Spring XD will expect
a base_packages property containing a comma delimited list of package names to enable Spring
component scanning scoped to the module.

• Custom code: Any root level .class files packaged as in a typical jar file. This could include an
@Configuration class and dependent classes defined by the module.

• Dependent jar files: Any required runtime dependencies that are not already present in the Spring
XD class path ($XD_INSTALL_DIR/xd/lib) must be provided in the module’s /lib directory.

As mentioned previously, a Spring XD module can be installed as an expanded directory tree or an
archive. If the module requires dependent jars, which is the typical case, it may be packaged as an
uberjar compatible with Spring Boot, and conforming to the above structure. The next section describes
Spring XD’s support for module packaging and development.

Creating a Module Project

Spring XD 1.1.x provides support for creating a module project to test and package the module with
Maven or Gradle.

Configuring your Maven build

Start by setting the parent to spring-xd-module-parent in your pom.xml:

<parent>

 <groupId>org.springframework.xd</groupId>

 <artifactId>spring-xd-module-parent</artifactId>

 <version>1.1.2.RELEASE</version>

</parent>

Configuring your Gradle build

Start by adding the following to your build.gradle script

http://stackoverflow.com/questions/11947037/what-is-an-uber-jar

Spring XD Guide

1.2.0.RC1 Spring XD 119

buildscript {

 repositories {

 ...

 }

 // Add the path of the Spring XD Module plugin

 dependencies {

 classpath("org.springframework.xd:spring-xd-module-plugin:1.1.2.RELEASE") //or a later release of

 the plugin

 }

}

//The Spring XD version is required by the plugin to pull in order to configure dependent libraries that

 your module project will likely need.

ext {

 springXdVersion = '1.1.2.RELEASE' //or a later release of Spring XD

}

apply plugin: 'spring-xd-module'

Note

If your module has no internal dependencies, a plain old jar file conforming to the module
packaging structure above will work. In this case, you may still benefit from using these build
support tools to inherit common dependencies and automate tasks critical to in-container testing.
An example of such a module project that does not use the parent pom is here.

These build support tools provide the necessary Spring XD libraries to compile and test the module
along with support for packaging your module as an uber-jar, using the respective Spring Boot plugin:
Spring Boot Maven Plugin or the Spring Boot Gradle Plugin.

As described in the above sections, the module must include any dependencies that are not already
provided by the Spring XD container. These are loaded at runtime by the module class loader
when the module is deployed. Missing jars in the module’s lib directory will result in the dreaded
ClassDefNotFoundException. Additionally, the module should typically not export different versions
of libraries which are already on the Spring XD class path, as this can result in version conflicts and
related class loading issues. Both build support tools configure the boot plugin with the MODULE layout
and is configured to exclude any artifacts that are provided by Spring XD (which covers quite a lot). So
you don’t have to worry about it. There are two basic rules:

• The MODULE layout for Spring Boot packaging ensures provided dependencies will not be included
in the uber-jar. The Spring XD module build support declares spring-xd-dirt as a provided
dependency, as some of its classes are needed for module development.

• Any compile dependencies, transitive or declared for the module will be excluded from the uber-jar
if they are also Spring XD runtime dependencies.

Note

In rare cases, it may be necessary to override the default exclusions. For example, if your module
requires a different version of library that is on the Spring XD class path, you can override the
boot maven plugin configuration in your pom, like so:

https://github.com/spring-projects/spring-xd-samples/blob/master/tweet-transformer-processor/pom.xml
http://docs.spring.io/spring-boot/docs/current/reference/html/build-tool-plugins-maven-plugin.html
http://docs.spring.io/spring-boot/docs/current/reference/html/build-tool-plugins-gradle-plugin.html

Spring XD Guide

1.2.0.RC1 Spring XD 120

<parent>

 <groupId>org.springframework.xd</groupId>

 <artifactId>spring-xd-module-parent</artifactId>

 <version>1.1.0.BUILD-SNAPSHOT</version>

</parent>

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

<!-- this is required to force the includes to come after the excludes and override -->

 <excludes>

 <exclude/>

 </excludes>

<!-- specify exactly what is included; again transitive dependencies are not included -->

 <includes>

 <include>

 <groupId>xmlpull</groupId>

 <artifactId>xmlpull</artifactId>

 </include>

 </includes>

 </configuration>

 </plugin>

 </plugins>

 </build>

 <dependencies>

 <dependency>

 <groupId>xmlpull</groupId>

 <artifactId>xmlpull</artifactId>

 <version>1.1.3.4d_b4_min</version>

 </dependency>

 </dependencies>

The build support tools declare dependencies on spring-xd-dirt and spring-xd-test which
provide some useful features for module development, including support for:

• Java defined Module Options Metadata

• In-container module testing - start an embedded single node container, deploy your module and
validate the results.

Testing a Module Project

The sections Creating a Source Module, Creating a Processor Module, Creating a Sink Module, and
Creating a Job Module each reference working examples of custom module projects including in-
container tests.

Note

As of Spring XD 1.1.x, the Spring XD message transport is loaded dynamically from a location
given by XD_HOME/lib/messagebus/<transport>, according to the configured transport. This
avoids having unnecessary dependencies on Spring XD’s class path corresponding to unused
transports. Thus, the embedded single node container used for testing modules must load the
message bus libraries from the above location (typically local transport). Thus, these tools set
XD_HOME to the project root directory and copy the local message bus jars to a top level lib
directory to enable in-container tests using the respective build command. However, if you write
such a test in your IDE and it fails with an exception message about not finding a message bus
implementation, run

Spring XD Guide

1.2.0.RC1 Spring XD 121

$mvn process-resources

or

$./gradlew processTestResources

to install the local message bus. Currently testing modules for additional transports from a
standalone module project is not supported out of the box.

To build the module:

$mvn clean package

or

$./gradlew clean test bootRepackage

Note

Spring XD does not parse any embedded version in the jar name, a la Maven. myModule-v1.jar
resolves to module named myModule-v1.

See the si-dsl-module example for a complete working example.

10.3 Registering a Module

Registering a module requires you to install to the Spring XD Module Registry. A Module must be
registered before it may be deployed as part of a stream or job. Once you have packaged your module,
following the instructions in the above section, you can register it using the Spring XD Shell module
upload command:

xd:>module upload --file [path-to]/mymodule-1.0.0.BUILD-SNAPSHOT.jar --name mymodule --type processor

The Module Registry

A module definition requires the following attributes to uniquely define a module:

• name - the name of the component, normally a single word representing the purpose of the module.
Examples are file, http, syslog.

• type - the module type, current Spring XD module types include source, sink, processor, and job

All modules included with Spring XD out-of-the-box are located in the xd/modules directory where Spring
XD is installed. The Module Registry organizes modules by type in corresponding sub-directories, so
a directory listing will look something like:

modules

 ### job

 ### processor

 ### sink

 ### source

Spring XD provides a strategy interface ModuleRegistry used to locate a module of a given name and
type. Currently Spring XD implements a ResourceModuleRegistry which is configured to locate modules
in the following locations in this order:

https://github.com/spring-projects/spring-xd-samples/tree/master/si-dsl-module
http://docs.spring.io/spring-xd/docs/current/api/org/springframework/xd/module/ModuleDefinition.html
http://docs.spring.io/spring-xd/docs/current/api/org/springframework/xd/dirt/module/ModuleRegistry.html

Spring XD Guide

1.2.0.RC1 Spring XD 122

• The file path given by xd.module.home (${xd.home}/modules by default)

• classpath:/modules/ (Spring XD does not provide any module definitions here)

• The file path given by xd.customModule.home (${xd.home}/custom-modules by default)

Custom Module Registry

Custom modules are located separately from out-of-the-box modules. The location is given by
xd.customModule.home in servers.yml. The location defaults to ${xd.home}/custom-modules
but we strongly recommend setting this to an external location on a network file system or using the
replicating registry if you are using custom modules in production. There are two reasons for doing
this. First, custom modules must be accessible to all nodes on the Spring XD cluster, including the XD
Admin node. This allows any container instance to deploy the module. Second, if custom modules are
registered within the Spring XD installation, they will not survive an upgrade to the Spring XD distribution
and will need to be reinstalled.

Note

An alternative way for specifying the location of custom modules via servers.yml is using the
environment variable XD_CUSTOMMODULE_HOME that must point to the custom modules location.

In cases where you want to start e.g. a single-node runtime with a custom module location you
can also define the environment variable right before the executable like this:
XD_CUSTOMMODULE_HOME=file\:/path/to/custom-modules bin/xd-singlenode

Replicating Module Registry

When running in distributed mode, an alternative to using a shared file system for custom modules is
to use the replicating module registry.

If the value of xd.customModule.home does not use the file: protocol, then Spring XD will
automatically set up a replicating registry that proxies that remote registry to the local filesystem. This
is all done transparently and by default, files are copied down from the central repository only if their
contents has changed.

At the time of writing, only the hdfs: protocol is supported. Setting this up is straightforward:

xd:

 customModule:

 home: hdfs://somehost/root/path/of/registry

Files will be replicated on the local filesystem in a temporary directory, on demand and loaded from
there. The XD Admin process will need to have write access to that shared HDFS directory. Intermediary
paths (/root/path/of/registry in the example above) are created at startup if they don’t exist yet.

10.4 Module Class Loading

Modules use a separate class loader that will first load classes from jars in the module’s /lib (and
any class files located in the module’s root path). If not found, the class will be loaded from the parent
ClassLoader that Spring XD normally uses (which includes everything under $XD_HOME/lib). Still, there
are a couple of caveats to be aware of:

• Avoid putting into the module’s lib/ directory any jar files that are already in Spring XD’s class path or
you may end up with ClassCastExceptions or other class loading issues.

Spring XD Guide

1.2.0.RC1 Spring XD 123

• When using local transport, any class that is directly or indirectly referenced from the payload type
of your messages (i.e. any type in transit from module to module) must be referenced by both the
producing and consuming modules and thus should be installed into xd/lib.

Dynamic Module ClassLoader

Starting with Spring XD 1.2, a module can selectively add libraries from paths that are derived from
module options. The aim is e.g. to support several alternative implementations in the same module.
This works like the following:

1. In the module .properties file, specify a value for the module.classloader key. The default is
/lib/*.jar,/lib/*.zip, which is consistent with what has been exposed earlier.

2. The value for that key is a comma separated list of paths (most certainly with Ant-style patterns) that
will be looked for additional libraries to add to the module ClassLoader (in addition to the module
"Archive" itself, which is always considered).

a. paths that start with a / (as /lib/*.jar in the example above) are considered internal resources
to the archives (e.g. nested jars in the über-jar)

b. paths that do not start with a / (and in particular paths that start with a protocol, such as file:)
are loaded with a regular Spring resource pattern resolver

3. Those paths can contain placeholders of the form ${foo}. Those will be resolved against the visible
module options (and other inherited properties). Paths containing unresolvable placeholders are
silently ignored.

This allows constructions like those (assuming for example that we want to create a jpa module that
supports several JPA providers):

jpa.jar

 +- config/

 | jpa.properties

 +- lib/

 +- hibernate/

 | hibernate-core-4.2.jar

 | other-hibernate-specific.jar

 +- eclipse-link/

 | eclipse-link-2.5.0.jar

 | ...

 +- some-common.jar

 +- another-common.jar

And, in jpa.properties:

options_class = com.acme.jpa.JpaOptionsMetadata

module.classloader = /lib/*.jar, /lib/${provider}/*.jar, ${xd.home}/lib/jpa/${provider}/*.jpa

Where the metadata class includes a provider option (of type String) that will take e.g. the values
hibernate or eclipse-link. Note the presence of a third ${xd.home}/lib/jpa/${provider}/
*.jpa entry that can be used for unforeseen provider implementations.

10.5 Module Options

Each module instance is configured using property placeholders which are bound to the module’s
options defined via Module Options Metadata. Options may be required or optional, where optional

Spring XD Guide

1.2.0.RC1 Spring XD 124

properties must provide a default value. Module Options Metadata may be provided within the module’s
properties file or in a Java class provided by the module or one of its dependencies. In addition to binding
module options to properties in the module’s application context, options may also be used to activate
Spring environment profiles.

For example, here is part of the Spring configuration for the twittersearch source that runs a query
against Twitter:

<beans>

 <bean class="org.springframework.integration.x.twitter.TwitterSearchChannelAdapter">

 <constructor-arg ref="twitterTemplate"/>

 <property name="readTimeout" value="${readTimeout}"/>

 <property name="connectTimeout" value="${connectTimeout}"/>

 <property name="autoStartup" value="false"/>

 <property name="outputChannel" ref="output"/>

 <property name="query" value="${query}" />

 <property name="language" value="${language}" />

 <property name="geocode" value="${geocode}" />

 <property name="resultType" value="${resultType}"/>

 <property name="includeEntities" value="${includeEntities}"/>

 </bean>

 <bean id="twitterTemplate" class="org.springframework.social.twitter.api.impl.TwitterTemplate">

 <constructor-arg value="${consumerKey}"/>

 <constructor-arg value="${consumerSecret}"/>

 </bean>

 <int:channel id="output"/>

</beans>

Note the Spring properties such as query, language, consumerKey and consumerSecret. Spring XD
will bind values for all of these properties as provided as options for each module instance. The options
exposed for this module are defined in TwitterSearchOptionsMetadata.java

For example, we can create two different streams, each using the twittersearch source providing different
option values.

xd:> stream create --name tweettest --definition "twittersearch --query='java' | file"

and

xd:> stream create --name tweettest2 --definition "twittersearch --query='spring' --language=en --

consumerKey='mykey' --consumerSecret='mysecret' | file"

In addition to options, modules may reference Spring beans such that each module instance may inject
a different implementation of a bean. The ability to deploy the same module definition with different
configurations is only possible because each module is created in its own application context. This
results in some very useful features, such as the ability to use standard bean ids such as input and
output and simple property names without having to worry about naming collisions.

Observe the use of property placeholders with sensible defaults where possible in the above example.
Sometimes, a sensible default is derived from the stream name, module name, or some other runtime
context. For example, the file source requires a directory. An appropriate strategy is to define a common
root path for XD input files (At the time of this writing it is /tmp/xd/input/. This is subject to change,
but illustrates the point). A stream definition using the file source may specify the the directory name by
providing a value for the dir option. If not provided, it will default to the stream name, which is contained
in the xd.stream.name property bound to the module by the Spring XD runtime, see file source
metadata. The module info command illustrates this point:

https://github.com/spring-projects/spring-xd/blob/master/extensions/spring-xd-extension-twitter/src/main/java/org/springframework/integration/x/twitter/TwitterSearchOptionsMetadata.java
https://github.com/spring-projects/spring-xd/blob/master/modules/source/file/config/file.properties
https://github.com/spring-projects/spring-xd/blob/master/modules/source/file/config/file.properties

Spring XD Guide

1.2.0.RC1 Spring XD 125

xd:>module info --name source:file

Information about source module 'file':

 Option Name Description

 Default Type

 ----------------- ---

 ------------------------------- --------

 dir the absolute path to the directory to monitor for files /tmp/

xd/input/${xd.stream.name} String

 pattern a filter expression (Ant style) to accept only files that match the pattern *

 String

 preventDuplicates whether to prevent the same file from being processed twice true

 boolean

 ref set to true to output the File object itself false

 boolean

 fixedDelay the fixed delay polling interval specified in seconds 5

 int

 outputType how this module should emit messages it produces <none>

 MimeType

Placeholders available to all modules

By convention, Spring XD defined properties are prefixed with xd. Below is the list of all available
${xd.xxx} keys that module authors may use in their declaration.

Placeholder Context Meaning

${xd.stream.name} streams the name of the stream the
module lives in

${xd.job.name} jobs the name of the job the module
lives in

${xd.module.name} streams, jobs the technical name of the
module

${xd.module.type} streams, jobs the type of the module

${xd.module.index} streams the 0-based position of the
module inside the stream

${xd.container.id} streams, jobs the generated unique id of
the container the module is
deployed in

${xd.container.host} streams, jobs the hostname of the container
the module is deployed in

${xd.container.pid} streams, jobs the process id of the container
the module is deployed in

${xd.container.ip} streams, jobs the IP address of the container
the module is deployed in

${xd.container.<foo>} streams, jobs the value of the custom attribute
<foo> for the container

Spring XD Guide

1.2.0.RC1 Spring XD 126

Using placeholders in stream definitions

One can also use the ${xd.xxx} notation directly inside the DSL definition of a stream or a job.
For example:

xd:>stream create foo --definition "http | filter --expression=\"'${xd.stream.name}'\" | log"

will only let messages that read "foo" pass through.

How module options are resolved

As we’ve seen so far, a module is a re-usable Spring Integration or Spring Batch application context
that can be dynamically configured through the use of module options.

A module option is any value that the may be configured within a stream or job definition. Preferably, the
module provides metadata to describe the available options. This section explains how default values
are computed for each module option.

In a nutshell, actual values are resolved from the following sources, in order of precedence:

1. values provided in the stream definition (e.g. --foo=bar)

2. platform-wide defaults (appearing e.g. in .yml and .properties files, see below)

3. defaults defined in the module’s metadata

Going into more detail, the platform-wide defaults will resolve like so, assuming option <optionname>
of a module <modulename> which is of type <moduletype>:

1. a system property named <moduletype>.<modulename>.<optionname>

2. an environment variable named <moduletype>.<modulename>.<optionname> (or
<MODULETYPE>_<MODULENAME>_<OPTIONNAME>)

3. a key named <optionname> in the properties file <root>/<moduletype>/<modulename>/
<modulename>.properties

4. a key named <moduletype>.<modulename>.<optionname> in the YaML file <root>/
<module-config>.yml

where

<root>

is the value of the xd.module.config.location system property (driven by the
XD_MODULE_CONFIG_LOCATION env var when using the canonical Spring XD shell scripts). This
property defaults to ${xd.config.home}/modules/

<module-config>

is the value of the xd.module.config.name system property (driven by the
XD_MODULE_CONFIG_NAME env var). Defaults to xd-module-config

Note that YaML is particularly well suited for hierarchical configuration, so for example, instead of

source.file.dir: foo

source.file.pattern: *.txt

source.http.port: 1234

Spring XD Guide

1.2.0.RC1 Spring XD 127

one can write

source:

 file:

 dir: foo

 pattern: *.txt

 http:

 port: 1234

Note that options in the .properties files can reference values that appear in the modules.yml
file (this makes sharing common configuration easy). Also, the values that are used to configure the
server runtimes (in servers.yml) are visible to modules.yml and .properties file (but the inverse
is not true).

10.6 Composing Modules

As described above, a stream is defined as a sequence of modules, minimally a source module followed
by a sink module. Sometimes streams may want share a common processing chain. For example,
consider the following two streams:

stream1 = http | filter --expression=payload.contains('foo') | file

stream2 = file | filter --expression=payload.contains('foo') | file

Aside from the source, the two stream definitions are the same. Composite Modules provide a way
to avoid this type of duplication by allowing the filter processor and file sink to be combined into a
single composite module. Perhaps more importantly, composite modules may improve performance.
Each module within a stream represents a unit of deployment. Therefore, stream1 and stream2, as
defined above, are each comprised of three such units (a source, a processor, and a sink). In a
singlenode runtime with local transport, creating a composite module won’t affect performance since
the communication between modules in this case already uses in-memory channels. However, when
deploying a stream to a distributed runtime environment, the communication between adjacent modules
typically occurs via messaging middleware, as modules are, by default, distributed evenly among the
available containers. Often a stream will perform better when adjacent modules are co-located and
can avoid middleware "hops", and object marshalling. In such cases, composing modules allows the
composite module to behave as a single "black box." In other words, if "foo | bar" are composed to create
a new module named "baz", the input and/or output to "baz" will still go over the middleware, but foo
and bar will be co-located in a single container instance and wired to communicate via local memory.

Working with Composite Modules

To create a composite module, use the module compose shell command:

xd:> module compose foo --definition "filter --expression=payload.contains('foo') | file"

Then, to verify the new module composition was successful, check if it exists:

xd:>module list

 Source Processor Sink Job

 ------------------ ------------------ ----------------------- ----------------

 file aggregator aggregate-counter filejdbc

 gemfire http-client counter ftphdfs

 (....)

 trigger splunk

 twittersearch tcp

 twitterstream throughput-sampler

 time (c) foo

Spring XD Guide

1.2.0.RC1 Spring XD 128

Notice that the composed module shows up in the list of sink modules. That is because logically it acts
as a sink: It provides an input channel (which is bridged to the filter processor’s input channel), but it
provides no output channel (since the file sink has no output). Also notice that the module has a small
(c) prefixed to it, to indicate that it is a composed module.

If a module were composed of two processors, it would be classified as a processor:

xd:> module compose myprocessor --definition "splitter | filter --expression=payload.contains('foo')"

If a module were composed of a source and a processor, it would be classified as a source:

xd:> module compose mysource --definition "http | filter --expression=payload.contains('foo')"

Based on the logical type of the composed module, it may be used in a stream as if it were a simple
module instance. For example, to redefine the two streams from the first problem case above, now that
the foo sink module has been composed, you can issue the following shell commands:

xd:> stream create httpfoo --definition "http | foo" --deploy

xd:> stream create filefoo --definition "file --outputType=text/plain | foo" --deploy

To test the httpfoo stream, try the following:

xd:> http post --data hi

xd:> http post --data hifoo

The first message should have been ignored due to the filter, but the second one should exist in the file:

xd:> ! cat /tmp/xd/output/httpfoo.out

command is:cat /tmp/xd/output/httpfoo.out

hifoo

To test the filefoo stream, echo "foo" to a file in the /tmp/xd/input/filefoo directory, then verify:

xd:> ! cat /tmp/xd/output/filefoo.out

command is:cat /tmp/xd/output/filefoo.out

foo

When you no longer need a composed module, you may delete it with the module delete shell
command. However, if that composed module is currently being used in one or more stream definitions,
Spring XD will not allow you to delete it until those stream definitions are destroyed. In this case, module
delete will fail as shown below:

xd:> module delete --name sink:foo

16:51:37,349 WARN Spring Shell client.RestTemplate:566 - DELETE request for "http://localhost:9393/

modules/sink/foo" resulted in 500 (Internal Server Error); invoking error handler

Command failed org.springframework.xd.rest.client.impl.SpringXDException: Cannot delete module sink:foo

 because it is used by [stream:filefoo, stream:httpfoo]

As you can see, the failure message shows which stream(s) depend upon the composed module you
are trying to delete.

If you destroy both of those streams and try again, it will work:

xd:> stream destroy --name filefoo

Destroyed stream 'filefoo'

xd:> stream destroy --name httpfoo

Destroyed stream 'httpfoo'

xd:> module delete --name sink:foo

Successfully destroyed module 'foo' with type sink

Spring XD Guide

1.2.0.RC1 Spring XD 129

When creating a module, if you duplicate the name of an existing module for the same type, you will
receive an error. In the example below the user tried to compose a tcp module, however one already
exists:

xd:>module compose tcp --definition "filter --expression=payload.contains('foo') | file"

14:52:27,781 WARN Spring Shell client.RestTemplate:566 - POST request for "http://

ec2-50-16-24-31.compute-1.amazonaws.com:9393/modules" resulted in 409 (Conflict); invoking error handler

Command failed org.springframework.xd.rest.client.impl.SpringXDException: There is already a module

 named 'tcp' with type 'sink'

However, you can create a module for a given type even though a module of that name exists but as
a different type. For example: I can create a sink module named filter, even though filter already exists
as a processor.

Finally, it’s worth mentioning that in some cases duplication may be avoided by reusing an actual stream
rather than a composed module. This is possible when named channels are used in the source and/or
sink position of a stream definition. For example, the same overall functionality as provided by the two
streams above could also be achieved as follows:

xd:> stream create foofilteredfile --definition "queue:foo > filter --expression=payload.contains('foo')

 | file"

xd:> stream create httpfoo --definition "http > queue:foo"

xd:> stream create filefoo --definition "file > queue:foo"

This approach is more appropriate for use-cases where individual streams on either side of the named
channel may need to be deployed or undeployed independently. Whereas the queue typed channel
will load-balance across multiple downstream consumers, the topic: prefix may be used if broadcast
behavior is needed instead. For more information about named channels, refer to the Named Channels
section.

10.7 Getting Information about Modules

To view the available modules use the the module list command. Modules appearing with a (c)
marker are composed modules. For example:

xd:>module list

 Source Processor Sink Job

 ------------------ ------------------ ----------------------- ----------------

 file aggregator aggregate-counter filejdbc

 gemfire analytic-pmml counter ftphdfs

 gemfire-cq http-client field-value-counter hdfsjdbc

 http bridge file hdfsmongodb

 jms filter gauge jdbchdfs

 mail json-to-tuple gemfire-json-server filepollhdfs

 mqtt object-to-json gemfire-server

 post script jdbc

 reactor-syslog splitter mail

 reactor-tcp transform mqtt

 syslog-tcp (c) myfilter rich-gauge

 syslog-udp splunk

 tail tcp

 tcp throughput-sampler

 tcp-client avro

 trigger hdfs

 twittersearch log

 twitterstream rabbit

 rabbit router

 time

To get information about a particular module (such as what options it accepts), use the module info
--<module type>:<module name> command. For example:

Spring XD Guide

1.2.0.RC1 Spring XD 130

xd:>module info --name source:file

Information about source module 'file':

 Option Name Description

 Default Type

 ----------------- ---

 ------- ---------

 dir the absolute path to the directory to monitor for files <none>

 String

 pattern a filter expression (Ant style) to accept only files that match the pattern *

 String

 outputType how this module should emit messages it produces <none>

 MimeType

 preventDuplicates whether to prevent the same file from being processed twice true

 boolean

 ref set to true to output the File object itself false

 boolean

 fixedDelay the fixed delay polling interval specified in seconds 5

 int

Spring XD Guide

1.2.0.RC1 Spring XD 131

11. Sources

11.1 Introduction

In this section we will show some variations on input sources. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sources covered are

• HTTP

• FTP

• SFTP

• Tail

• File

• Mail

• Twitter Search

• Twitter Stream

• Gemfire Source

• Gemfire CQ

• Syslog

• TCP

• TCP Client

• Reactor IP

• JMS

• RabbitMQ

• Time

• MQTT

• Stdout Capture

• Kafka

• JDBC

• MongoDB

• Trigger

Spring XD Guide

1.2.0.RC1 Spring XD 132

Future releases will provide support for other currently available Spring Integration Adapters. For
information on how to adapt an existing Spring Integration Adapter for use in Spring XD see the section
Creating a Source Module.

The following sections show a mix of Spring XD shell and plain Unix shell commands, so if you are trying
them out, you should open two separate terminal prompts, one running the XD shell and one to enter
the standard commands for sending HTTP data, creating directories, reading files and so on.

11.2 HTTP

To create a stream definition in the server using the XD shell

xd:> stream create --name httptest --definition "http | file" --deploy

Post some data to the http server on the default port of 9000

xd:> http post --target http://localhost:9000 --data "hello world"

See if the data ended up in the file

$ cat /tmp/xd/output/httptest

To send binary data, set the Content-Type header to application/octet-string

$ curl --data-binary @foo.zip -H'Content-Type: application-octet-string' http://localhost:9000

HTTP with options

The http source has the following options:

https
true for https:// (boolean, default: false)

maxContentLength
the maximum allowed content length (int, default: 1048576)

messageConverterClass
the name of a custom MessageConverter class, to convert HttpRequest to Message;
must have a constructor with a 'MessageBuilderFactory' parameter (String, default:
org.springframework.integration.x.http.NettyInboundMessageConverter)

port
the port to listen to (int, default: 9000)

sslPropertiesLocation
location (resource) of properties containing the location of the pkcs12 keyStore and pass phrase
(String, default: classpath:httpSSL.properties)

Here is an example

xd:> stream create --name httptest9020 --definition "http --port=9020 | file" --deploy

Post some data to the new port

xd:> http post --target http://localhost:9020 --data "hello world"

Spring XD Guide

1.2.0.RC1 Spring XD 133

$ cat /tmp/xd/output/httptest9020

hello world

Note

When using https, you need to provide a properties file that references a pkcs12 key store
(containing the server certificate(s)) and its passphrase. Setting --https=true enables https://
and the module looks for the SSL properties in resource classpath:httpSSL.properties.
This location can be overridden with the --sslPropertiesLocation property. For example:

xd:> stream create --name https9021 --definition "http --port=9021 --https=true --

sslPropertiesLocation=file:/secret/ssl.properties | file" --deploy

$ cat /secret/ssl.properties

keyStore=file:/secret/httpSource.p12

keyStore.passPhrase=secret

Since this properties file contains sensitive information, it will typically be secured by the operating
system with the XD container process having read access.

11.3 FTP

This source module supports transfer of files using the FTP protocol. Files are transferred from the
remote directory to the local directory where the module is deployed. Messages emitted by the source
are provided as a byte array by default. However, this can be customized using the --mode option:

• ref Provides a java.io.File reference

• lines Will split files line-by-line and emit a new message for each line

• contents The default. Provides the contents of a file as a byte array

Options

The ftp source has the following options:

autoCreateLocalDir
local directory must be auto created if it does not exist (boolean, default: true)

clientMode
client mode to use : 2 for passive mode and 0 for active mode (int, default: 0)

deleteRemoteFiles
delete remote files after transfer (boolean, default: false)

filenamePattern
simple filename pattern to apply to the filter (String, default: *)

fixedDelay
the rate at which to poll the remote directory (int, default: 1)

host
the host name for the FTP server (String, default: localhost)

Spring XD Guide

1.2.0.RC1 Spring XD 134

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

localDir
set the local directory the remote files are transferred to (String, default: /tmp/xd/ftp)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: -1)

mode
specifies how the file is being read. By default the content of a file is provided as byte array
(FileReadingMode, default: contents, possible values: ref,lines,contents)

password
the password for the FTP connection (Password, no default)

port
the port for the FTP server (int, default: 21)

preserveTimestamp
whether to preserve the timestamp of files retrieved (boolean, default: true)

remoteDir
the remote directory to transfer the files from (String, default: /)

remoteFileSeparator
file separator to use on the remote side (String, default: /)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

tmpFileSuffix
extension to use when downloading files (String, default: .tmp)

username
the username for the FTP connection (String, no default)

11.4 SFTP

This source module supports transfer of files using the SFTP protocol. Files are transferred from the
remote directory to the local directory where the module is deployed.

Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the --mode option:

• ref Provides a java.io.File reference

• lines Will split files line-by-line and emit a new message for each line

• contents The default. Provides the contents of a file as a byte array

Options

The sftp source has the following options:

Spring XD Guide

1.2.0.RC1 Spring XD 135

autoCreateLocalDir
if local directory must be auto created if it does not exist (boolean, default: true)

deleteRemoteFiles
delete remote files after transfer (boolean, default: false)

fixedDelay
fixed delay in SECONDS to poll the remote directory (int, default: 1)

host
the remote host to connect to (String, default: localhost)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

localDir
set the local directory the remote files are transferred to (String, default: /tmp/xd/output)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: -1)

mode
specifies how the file is being read. By default the content of a file is provided as byte array
(FileReadingMode, default: contents, possible values: ref,lines,contents)

passPhrase
the passphrase to use (String, default: ``)

password
the password for the provided user (String, default: ``)

pattern
simple filename pattern to apply to the filter (String, no default)

port
the remote port to connect to (int, default: 22)

privateKey
the private key location (a valid Spring Resource URL) (String, default: ``)

regexPattern
filename regex pattern to apply to the filter (String, no default)

remoteDir
the remote directory to transfer the files from (String, no default)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

tmpFileSuffix
extension to use when downloading files (String, default: .tmp)

user
the username to use (String, no default)

Spring XD Guide

1.2.0.RC1 Spring XD 136

11.5 Tail

Make sure the default input directory exists

$ mkdir -p /tmp/xd/input

Create an empty file to tail (this is not needed on some platforms such as Linux)

$ touch /tmp/xd/input/tailtest

To create a stream definition using the XD shell

xd:> stream create --name tailtest --definition "tail | file" --deploy

Send some text into the file being monitored

$ echo blah >> /tmp/xd/input/tailtest

See if the data ended up in the file

$ cat /tmp/xd/output/tailtest

Tail with options

The tail source has the following options:

delay
how often (ms) to poll for new lines (forces use of the Apache Tailer, requires nativeOptions='')
(long, no default)

fileDelay
on platforms that don't wait for a missing file to appear, how often (ms) to look for the file (long,
default: 5000)

fromEnd
whether to tail from the end (true) or from the start (false) of the file (forces use of the Apache Tailer,
requires nativeOptions='') (boolean, no default)

lines
the number of lines prior to the end of an existing file to tail; does not apply if 'nativeOptions' is
provided (int, default: 0)

name
the absolute path of the file to tail (String, default: /tmp/xd/input/<stream name>)

nativeOptions
options for a native tail command; do not set and use 'end', 'delay', and/or 'reOpen' to use the
Apache Tailer (String, no default)

reOpen
whether to reopen the file each time it is polled (forces use of the Apache Tailer, requires
nativeOptions='') (boolean, no default)

Here is an example

xd:> stream create --name tailtest --definition "tail --name=/tmp/foo | file --name=bar" --deploy

Spring XD Guide

1.2.0.RC1 Spring XD 137

$ echo blah >> /tmp/foo

$ cat /tmp/xd/output/bar

Tail Status Events

Some platforms, such as linux, send status messages to stderr. The tail module sends these events
to a logging adapter, at WARN level; for example…

[message=tail: cannot open `/tmp/xd/input/tailtest' for reading: No such file or directory, file=/tmp/

xd/input/tailtest]

[message=tail: `/tmp/xd/input/tailtest' has become accessible, file=/tmp/xd/input/tailtest]

11.6 File

The file source provides the contents of a File as a byte array by default. However, this can be
customized using the --mode option:

• ref Provides a java.io.File reference

• lines Will split files line-by-line and emit a new message for each line

• contents The default. Provides the contents of a file as a byte array

To log the contents of a file create a stream definition using the XD shell

xd:> stream create --name filetest --definition "file | log" --deploy

The file source by default will look into a directory named after the stream, in this case /tmp/xd/input/
filetest

Note the above will log the raw bytes. For text files, it is normally desirable to output the contents as
plain text. To do this, set the outputType parameter:

xd:> stream create --name filetest --definition "file --outputType=text/plain | log" --deploy

For more details on the use of the outputType parameter see Type Conversion

Copy a file into the directory /tmp/xd/input/filetest and observe its contents being logged in
the XD Container.

File with options

The file source has the following options:

dir
the absolute path to the directory to monitor for files (String, default: /tmp/xd/input/<stream
name>)

fixedDelay
the fixed delay polling interval specified in seconds (int, default: 5)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

Spring XD Guide

1.2.0.RC1 Spring XD 138

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: -1)

mode
specifies how the file is being read. By default the content of a file is provided as byte array
(FileReadingMode, default: contents, possible values: ref,lines,contents)

pattern
a filter expression (Ant style) to accept only files that match the pattern (String, default: *)

preventDuplicates
whether to prevent the same file from being processed twice (boolean, default: true)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

The ref option is useful in some cases in which the file contents are large and it would be more efficient
to send the file path.

11.7 Mail

Spring XD provides a source module for receiving emails, named mail. Depending on the protocol
used, in can work by polling or receive mails as they become available.

Let’s see an example:

xd:> stream create --name mailstream --definition "mail --host=imap.gmail.com --username=your.user

%40gmail.com --password=password --port=993 | file" --deploy

One can also specify JavaMail properties as comma separated key=value pairs or as Spring supported
resource URL location for the properties file.

xd:> stream create --name mailstream --definition "mail --host=imap.gmail.com --username=your.user

%40gmail.com --password=password --port=993

 --properties=mail.debug=true | file" --deploy

xd:> stream create --name mailstream --definition "mail --host=imap.gmail.com --username=your.user

%40gmail.com --password=password --port=993

--propertiesFile=file:/<path>/java-mail.properties | file" --deploy

If you are using imaps protocol, the mail source is configured to use these default properties:

mail.imap.socketFactory.class=javax.net.ssl.SSLSocketFactory

mail.imap.socketFactory.fallback=false

mail.store.protocol=imaps

Then send an email to yourself and you should see it appear inside a file at /tmp/xd/output/
mailstream

Note: If the username/password have special characters like @, <space> then you need to enter
appropriate unicode characters for them. For example the character @ can be specified with its unicode
%40 as in the above definition.

The full list of options for the mail source is below:

The mail source has the following options:

Spring XD Guide

1.2.0.RC1 Spring XD 139

charset
the charset used to transform the body of the incoming emails to Strings (String, default: UTF-8)

delete
whether to delete the emails once they’ve been fetched (boolean, default: true)

expression
a SpEL expression which filters which mail messages will be processed (non polling imap only)
(String, default: true)

fixedDelay
the polling interval used for looking up messages (s) (int, default: 60)

folder
the folder to take emails from (String, default: INBOX)

host
the hostname of the mail server (String, default: localhost)

markAsRead
whether to mark emails as read once they’ve been fetched (boolean, default: false)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: 1)

password
the password to use to connect to the mail server (String, no default)

port
the port of the mail server (int, default: 25)

properties
comma separated JavaMail property values (String, no default)

propertiesFile
file to load the JavaMail properties (String, no default)

protocol
the protocol to use to retrieve messages (MailProtocol, default: imap, possible values:
imap,imaps,pop3,pop3s)

usePolling
whether to use polling or not (no polling works with imap(s) only) (boolean, default: false)

username
the username to use to connect to the mail server (String, no default)

Warning

Of special attention are the markAsRead and delete options, which by default will delete the
emails once they are consumed. It is hard to come up with a sensible default option for this (please
refer to the Spring Integration documentation section on mail handling for a discussion about this),
so just be aware that the default for XD is to delete incoming messages.

Spring XD Guide

1.2.0.RC1 Spring XD 140

11.8 Twitter Search

The twittersearch source runs a continuous query against Twitter.

The twittersearch source has the following options:

connectTimeout
the connection timeout for making a connection to Twitter (ms) (int, default: 5000)

consumerKey
a consumer key issued by twitter (String, no default)

consumerSecret
consumer secret corresponding to the consumer key (String, no default)

geocode
geo-location given as latitude,longitude,radius. e.g., '37.781157,-122.398720,1mi' (String, default:
``)

includeEntities
whether to include entities such as urls, media and hashtags (boolean, default: true)

language
language code e.g. 'en' (String, default: ``)

query
the query string (String, default: ``)

readTimeout
the read timeout for the underlying URLConnection to the twitter stream (ms) (int, default: 9000)

resultType
result type: recent, popular, or mixed (ResultType, default: mixed, possible values:
mixed,recent,popular)

For information on how to construct a query, see the Search API v1.1.

To get a consumerKey and consumerSecret you need to register a twitter application. If you don’t
already have one set up, you can create an app at the Twitter Developers site to get these credentials.

Tip

For both twittersearch and twitterstream you can put these keys in a module properties
file instead of supplying them in the stream definition. If both sources share the same credentials, it
is easiest to configure the required credentials in config/modules/modules.yml. Alternately,
each module has its own properties file. For twittersearch, the file would be config/modules/
source/twittersearch/twittersearch.properties.

To create and deploy a stream definition in the server using the XD shell:

xd:> stream create --name springone2gx --definition "twittersearch --query='#springone2gx' | file" --

deploy

Let the twittersearch run for a little while and then check to see if some data ended up in the file

https://dev.twitter.com/docs/api/1.1/get/search/tweets
https://dev.twitter.com/apps

Spring XD Guide

1.2.0.RC1 Spring XD 141

$ cat /tmp/xd/output/springone2gx

Note

Both twittersearch and twitterstream emit JSON in the native Twitter format.

11.9 Twitter Stream

This source ingests data from Twitter’s streaming API v1.1. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for
this source, so it is easiest if you just add these to XD_HOME/config/modules/modules.yml or
XD_HOME/config/modules/source/twitterstream/twitterstream.properties file.

Stream creation is then straightforward:

xd:> stream create --name tweets --definition "twitterstream | file" --deploy

The twitterstream source has the following options:

accessToken
a valid OAuth access token (String, no default)

accessTokenSecret
an OAuth secret corresponding to the access token (String, no default)

connectTimeout
the connection timeout for making a connection to Twitter (ms) (int, default: 5000)

consumerKey
a consumer key issued by twitter (String, no default)

consumerSecret
consumer secret corresponding to the consumer key (String, no default)

delimited
set to true to get length delimiters in the stream data (boolean, default: false)

discardDeletes
set to discard 'delete' events (boolean, default: true)

filterLevel
controls which tweets make it through to the stream: none,low,or medium (FilterLevel, default:
none, possible values: none,low,medium)

follow
comma delimited set of user ids whose tweets should be included in the stream (String, default: ̀ `)

language
language code e.g. 'en' (String, default: ``)

locations
comma delimited set of latitude/longitude pairs to include in the stream (String, default: ``)

https://dev.twitter.com/docs/platform-objects/tweets
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public

Spring XD Guide

1.2.0.RC1 Spring XD 142

readTimeout
the read timeout for the underlying URLConnection to the twitter stream (ms) (int, default: 9000)

stallWarnings
set to true to enable stall warnings (boolean, default: false)

track
comma delimited set of terms to include in the stream (String, default: ``)

Note: The options available are pretty much the same as those listed in the Twitter API docs and unless
otherwise stated, the accepted formats are the same.

Note

Both twittersearch and twitterstream emit JSON in the native Twitter format.

11.10 GemFire Source

This source configures a client cache and client region, along with the necessary subscriptions enabled,
in the XD container process along with a Spring Integration GemFire inbound channel adapter, backed
by a CacheListener that outputs messages triggered by an external entry event on the region. By default
the payload contains the updated entry value, but may be controlled by passing in a SpEL expression
that uses the EntryEvent as the evaluation context.

Tip

If native gemfire properties are required to configure the client cache, e.g., for security, place a
gemfire.properties file in $XD_HOME/config.

Options

The gemfire source has the following options:

cacheEventExpression
an optional SpEL expression referencing the event (String, default: newValue)

host
host name of the cache server or locator (if useLocator=true). May be a comma delimited list (String,
no default)

port
port of the cache server or locator (if useLocator=true). May be a comma delimited list (String, no
default)

regionName
the name of the region for which events are to be monitored (String, default: <stream name>)

useLocator
indicates whether a locator is used to access the cache server (boolean, default: false)

Example

Use of the gemfire source requires an external process (or a separate stream) that creates or updates
entries in a GemFire region configured for a cache server. Such events may feed a Spring XD stream.

https://dev.twitter.com/docs/streaming-apis/parameters
https://dev.twitter.com/docs/platform-objects/tweets
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/EntryEvent.html

Spring XD Guide

1.2.0.RC1 Spring XD 143

To support such a stream, the Spring XD container must join a GemFire distributed client-server grid as
a client, creating a client region corresponding to an existing region on a cache server. The client region
registers a cache listener via the Spring Integration GemFire inbound channel adapter. The client region
and pool are configured for a subscription on all keys in the region.

The following example creates two streams: One to write http messages to a Gemfire region named
Stocks, and another to listen for cache events and record the updates to a file. This works with the
Cache Server and sample configuration included with the Spring XD distribution:

xd:> stream create --name gftest --definition "gemfire --regionName=Stocks | file" --deploy

xd:> stream create --name stocks --definition "http --port=9090 | gemfire-json-server --

regionName=Stocks --keyExpression=payload.getField('symbol')" --deploy

Now send some messages to the stocks stream.

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":73}

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":78}

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":80}

Note

Avoid spaces in the JSON when using the shell to post data

As updates are posted to the cache you should see them captured in the output file:

$ cat /tmp/xd/output/gftest.out

{"symbol":"FAKE","price":73}

{"symbol":"FAKE","price":78}

{"symbol":"FAKE","price":80}

Note

The useLocator option is intended for integration with an existing GemFire installation in which
the cache servers are configured to use locators in accordance with best practice. GemFire
supports configuration of multiple locators (or direct server connections) and this is specified by
supplying comma-delimited values for the host and port options. You may specify a single value
for either of these options otherwise each value must contain the same size list. The following are
examples are valid for multiple connection addresses:

gemfire --host=myhost --port=10334,10335

gemfire --host=myhost1,myhost2 --port=10334

gemfire --host=myhost1,myhost2,myhost3 --port=10334,10335,10336

The last example creates connections to myhost1:10334, myhost2:10335, myhost3:10336

Note

You may also configure default Gemfire connection settings for all gemfire modules in config
\modules.yml:

gemfire:

 useLocator: true

 host: myhost1,myhost2

 port: 10334

Spring XD Guide

1.2.0.RC1 Spring XD 144

Tip

If you are deploying on Java 7 or earlier and need to deploy more than 4 Gemfire modules be sure
to increase the permsize of the singlenode or container. i.e. JAVA_OPTS="-XX:PermSize=256m"

Launching the XD GemFire Server

This source requires a cache server to be running in a separate process and its host and port, or a
locator host and port must be configured. The XD distribution includes a GemFire server executable
suitable for development and test purposes. This is a Java main class that runs with a Spring configured
cache server. The configuration is passed as a command line argument to the server’s main method.
The configuration includes a cache server port and one or more configured region. XD includes a sample
cache configuration called cq-demo. This starts a server on port 40404 and creates a region named
Stocks. A Logging cache listener is configured for the region to log region events.

Run Gemfire cache server by changing to the gemfire/bin directory and execute

$./gemfire-server ../config/cq-demo.xml

11.11 GemFire Continuous Query

Continuous query allows client applications to create a GemFire query using Object Query
Language(OQL) and register a CQ listener which subscribes to the query and is notified every time the
query’s result set changes. The gemfire_cq source registers a CQ which will post CQEvent messages
to the stream.

Options

The gemfire-cq source has the following options:

host
host name of the cache server or locator (if useLocator=true). May be a comma delimited list (String,
no default)

port
port of the cache server or locator (if useLocator=true). May be a comma delimited list (String, no
default)

query
the query string in Object Query Language (OQL) (String, no default)

useLocator
indicates whether a locator is used to access the cache server (boolean, default: false)

The example is similar to that presented for the gemfire source above, and requires an external cache
server as described in the above section. In this case the query provides a finer filter on data events.
In the example below, the cqtest stream will only receive events matching a single ticker symbol,
whereas the gftest stream example above will receive updates to every entry in the region.

xd:> stream create --name stocks --definition "http --port=9090 | gemfire-json-server --

regionName=Stocks --keyExpression=payload.getField('symbol')" --deploy

xd:> stream create --name cqtest --definition "gemfire-cq --query='Select * from /Stocks where

 symbol=''FAKE''' | file" --deploy

Now send some messages to the stocks stream.

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD Guide

1.2.0.RC1 Spring XD 145

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":73}

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":78}

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":80}

The cqtest stream is now listening for any stock quote updates for the ticker symbol FAKE. As updates
are posted to the cache you should see them captured in the output file:

$ cat /tmp/xd/output/cqtest.out

{"symbol":"FAKE","price":73}

{"symbol":"FAKE","price":78}

{"symbol":"FAKE","price":80}

11.12 Syslog

Three syslog sources are provided: reactor-syslog, syslog-udp, and syslog-tcp. The reactor-
syslog adapter uses tcp and builds upon the functionality available in the Reactor project and provides
improved throughput over the syslog-tcp adapter.

The reactor-syslog source has the following options:

port
the port on which the system will listen for syslog messages (int, default: 5140)

The syslog-udp source has the following options:

port
the port on which to listen (int, default: 5140)

rfc
the format of the syslog (String, default: 3164)

The syslog-tcp source has the following options:

nio
use nio (recommend false for a small number of senders, true for many) (boolean, default: false)

port
the port on which to listen (int, default: 5140)

rfc
the format of the syslog (String, default: 3164)

To create a stream definition (using shell command)

xd:> stream create --name syslogtest --definition "reactor-syslog --port=5140 | file" --deploy

or

xd:> stream create --name syslogtest --definition "syslog-udp --port=5140 | file" --deploy

or

xd:> stream create --name syslogtest --definition "syslog-tcp --port=5140 | file" --deploy

(--port is not required when using the default 5140)

https://github.com/reactor/reactor

Spring XD Guide

1.2.0.RC1 Spring XD 146

Send a test message to the syslog

logger -p local3.info -t TESTING "Test Syslog Message"

See if the data ended up in the file

$ cat /tmp/xd/output/syslogtest

Refer to your syslog documentation to configure the syslog daemon to forward syslog messages to the
stream; some examples are:

UDP - Mac OSX (syslog.conf) and Ubuntu (rsyslog.conf)

. @localhost:5140

TCP - Ubuntu (rsyslog.conf)

$ModLoad omfwd

. @@localhost:5140

Restart the syslog daemon after reconfiguring.

11.13 TCP

The tcp source acts as a server and allows a remote party to connect to XD and submit data over a
raw tcp socket.

To create a stream definition in the server, use the following XD shell command

xd:> stream create --name tcptest --definition "tcp | file" --deploy

This will create the default TCP source and send data read from it to the tcptest file.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of decoders are available, the default being CRLF which is compatible with Telnet.

$ telnet localhost 1234

Trying ::1...

Connected to localhost.

Escape character is '^]'.

foo

^]

telnet> quit

Connection closed.

See if the data ended up in the file

$ cat /tmp/xd/output/tcptest

By default, the TCP module will emit a byte[]; to convert to a String, add --outputType=text/
plain to the module definition.

TCP with options

The tcp source has the following options:

bufferSize
the size of the buffer (bytes) to use when encoding/decoding (int, default: 2048)

Spring XD Guide

1.2.0.RC1 Spring XD 147

charset
the charset used when converting from bytes to String (String, default: UTF-8)

decoder
the decoder to use when receiving messages (Encoding, default: CRLF, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

nio
whether or not to use NIO (boolean, default: false)

port
the port on which to listen (int, default: 1234)

reverseLookup
perform a reverse DNS lookup on the remote IP Address (boolean, default: false)

socketTimeout
the timeout (ms) before closing the socket when no data is received (int, default: 120000)

useDirectBuffers
whether or not to use direct buffers (boolean, default: false)

Available Decoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

Examples

The following examples all use echo to send data to netcat which sends the data to the source.

The echo options -en allows echo to interpret escape sequences and not send a newline.

Spring XD Guide

1.2.0.RC1 Spring XD 148

CRLF Decoder.

xd:> stream create --name tcptest --definition "tcp | file" --deploy

This uses the default (CRLF) decoder and port 1234; send some data

$ echo -en 'foobar\r\n' | netcat localhost 1234

See if the data ended up in the file

$ cat /tmp/xd/output/tcptest

LF Decoder.

xd:> stream create --name tcptest2 --definition "tcp --decoder=LF --port=1235 | file" --deploy

$ echo -en 'foobar\n' | netcat localhost 1235

$ cat /tmp/xd/output/tcptest2

NULL Decoder.

xd:> stream create --name tcptest3 --definition "tcp --decoder=NULL --port=1236 | file" --deploy

$ echo -en 'foobar\x00' | netcat localhost 1236

$ cat /tmp/xd/output/tcptest3

STXETX Decoder.

xd:> stream create --name tcptest4 --definition "tcp --decoder=STXETX --port=1237 | file" --deploy

$ echo -en '\x02foobar\x03' | netcat localhost 1237

$ cat /tmp/xd/output/tcptest4

RAW Decoder.

xd:> stream create --name tcptest5 --definition "tcp --decoder=RAW --port=1238 | file" --deploy

$ echo -n 'foobar' | netcat localhost 1238

$ cat /tmp/xd/output/tcptest5

L1 Decoder.

xd:> stream create --name tcptest6 --definition "tcp --decoder=L1 --port=1239 | file" --deploy

$ echo -en '\x06foobar' | netcat localhost 1239

$ cat /tmp/xd/output/tcptest6

L2 Decoder.

xd:> stream create --name tcptest7 --definition "tcp --decoder=L2 --port=1240 | file" --deploy

$ echo -en '\x00\x06foobar' | netcat localhost 1240

$ cat /tmp/xd/output/tcptest7

Spring XD Guide

1.2.0.RC1 Spring XD 149

L4 Decoder.

xd:> stream create --name tcptest8 --definition "tcp --decoder=L4 --port=1241 | file" --deploy

$ echo -en '\x00\x00\x00\x06foobar' | netcat localhost 1241

$ cat /tmp/xd/output/tcptest8

Binary Data Example

xd:> stream create --name tcptest9 --definition "tcp --decoder=L1 --port=1242 | file --binary=true" --

deploy

Note that we configure the file sink with binary=true so that a newline is not appended.

$ echo -en '\x08foo\x00bar\x0b' | netcat localhost 1242

$ hexdump -C /tmp/xd/output/tcptest9

00000000 66 6f 6f 00 62 61 72 0b |foo.bar.|

00000008

11.14 TCP Client

The tcp-client source module uses raw tcp sockets, as does the tcp module but contrary to the tcp
module, acts as a client. Whereas the tcp module will open a listening socket and wait for connections
from a remote party, the tcp-client will initiate the connection to a remote server and emit as
messages what that remote server sends over the wire. As an optional feature, the tcp-client can
itself emit messages to the remote server, so that a simple conversation can take place.

TCP Client options

The tcp-client source has the following options:

bufferSize
the size of the buffer (bytes) to use when encoding/decoding (int, default: 2048)

charset
the charset used when converting from bytes to String (String, default: UTF-8)

close
whether to close the socket after each message (boolean, default: false)

decoder
the decoder to use when receiving messages (Encoding, default: CRLF, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

encoder
the encoder to use when sending messages (Encoding, default: CRLF, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

expression
a SpEL expression used to transform messages (String, default: payload.toString())

fixedDelay
the rate at which stimulus messages will be emitted (seconds) (int, default: 5)

Spring XD Guide

1.2.0.RC1 Spring XD 150

host
the remote host to connect to (String, default: localhost)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: 1)

nio
whether or not to use NIO (boolean, default: false)

port
the port on the remote host to connect to (int, default: 1234)

propertiesLocation
the path of a properties file containing custom script variable bindings (String, no default)

reverseLookup
perform a reverse DNS lookup on the remote IP Address (boolean, default: false)

script
reference to a script used to process messages (String, no default)

socketTimeout
the timeout (ms) before closing the socket when no data is received (int, default: 120000)

useDirectBuffers
whether or not to use direct buffers (boolean, default: false)

variables
variable bindings as a comma delimited string of name-value pairs, e.g., 'foo=bar,baz=car' (String,
no default)

Implementing a simple conversation

That "stimulus" counter concept bears some explanation. By default, the module will emit (at interval set
by fixedDelay) an incrementing number, starting at 1. Given that the default is to use an expression
of payload.toString(), this results in the module sending 1, 2, 3, ... to the remote server.

By using another expression, or more certainly a script, one can implement a simple conversation,
assuming it is time based. As an example, let’s assume we want to join some kind of chat server where
one first needs to authenticate, then specify which rooms to join. Lastly, all clients are supposed to send
some keepalive commands to make sure that the connection is open.

The following groovy script could be used to that effect:

def commands = ['', // index 0 is not used

'LOGIN user=johndoe', // first command sent

'JOIN weather',

'JOIN news',

'JOIN gossip'

]

// payload will contain an incrementing counter, starting at 1

if (commands.size > payload)

 return commands[payload] + "\n"

else

 return "PING\n" // send keep alive after 4th 'real' command

Spring XD Guide

1.2.0.RC1 Spring XD 151

11.15 Reactor IP

The reactor-ip source acts as a server and allows a remote party to connect to XD and submit data
over a raw TCP or UDP socket. The reactor-ip source differs from the standard tcp source in that it
is based on the Reactor Project and can be configured to use the LMAX Disruptor RingBuffer library
allowing for extremely high ingestion rates, e.g. ~ 1M/sec.

To create a stream definition use the following XD shell command

xd:> stream create --name tcpReactor --definition "reactor-ip | file" --deploy

This will create the reactor TCP source and send data read from it to the file named tcpReactor.

The reactor-ip source has the following options:

codec
codec used to transcode data (String, default: string)

dispatcher
type of Reactor Dispatcher to use (String, default: shared)

framing
method of framing the data (String, default: linefeed)

host
host to bind the server to (String, default: 0.0.0.0)

lengthFieldLength
byte precision of the number used in the length field (int, default: 4)

port
port to bind the server to (int, default: 3000)

transport
whether to use TCP or UDP as a transport protocol (String, no default)

11.16 RabbitMQ

The "rabbit" source enables receiving messages from RabbitMQ.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name rabbittest --definition "rabbit | file --binary=true" --deploy

This receives messages from a queue named rabbittest and writes them to the default file sink (/
tmp/xd/output/rabbittest.out). It uses the default RabbitMQ broker running on localhost, port
5672.

The queue(s) must exist before the stream is deployed. We do not create the queue(s) automatically.
However, you can easily create a Queue using the RabbitMQ web UI. Then, using that same UI, you
can navigate to the "rabbittest" Queue and publish test messages to it.

https://github.com/reactor/reactor
http://martinfowler.com/articles/lmax.html

Spring XD Guide

1.2.0.RC1 Spring XD 152

Notice that the file sink has --binary=true; this is because, by default, the data emitted by the
source will be bytes. This can be modified by setting the content_type property on messages to
text/plain. In that case, the source will convert the message to a String; you can then omit the --
binary=true and the file sink will then append a newline after each message.

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name rabbittest

RabbitMQ with Options

The rabbit source has the following options:

ackMode
the acknowledge mode (AUTO, NONE, MANUAL) (String, default: AUTO)

addresses
a comma separated list of 'host[:port]' addresses (String, default:
${spring.rabbitmq.addresses})

concurrency
the minimum number of consumers (int, default: 1)

converterClass
the class name of the message converter (String, default:
org.springframework.amqp.support.converter.SimpleMessageConverter)

enableRetry
enable retry; when retries are exhausted the message will be rejected; message disposition will
depend on dead letter configuration (boolean, default: false)

initialRetryInterval
initial interval between retries (int, default: 1000)

mappedRequestHeaders
request message header names to be propagated to/from the adpater/gateway (String, default:
STANDARD_REQUEST_HEADERS)

maxAttempts
maximum delivery attempts (int, default: 3)

maxConcurrency
the maximum number of consumers (int, default: 1)

maxRetryInterval
maximum retry interval (int, default: 30000)

password
the password to use to connect to the broker (String, default: ${spring.rabbitmq.password})

prefetch
the prefetch size (int, default: 1)

queues
the queue(s) from which messages will be received (String, default: <stream name>)

Spring XD Guide

1.2.0.RC1 Spring XD 153

requeue
whether rejected messages will be requeued by default (boolean, default: true)

retryMultiplier
retry interval multiplier (double, default: 2.0)

sslPropertiesLocation
resource containing SSL properties (String, default: ${spring.rabbitmq.sslProperties})

transacted
true if the channel is to be transacted (boolean, default: false)

txSize
the number of messages to process before acking (int, default: 1)

useSSL
true if SSL should be used for the connection (String, default: ${spring.rabbitmq.useSSL})

username
the username to use to connect to the broker (String, default:
${spring.rabbitmq.username})

vhost
the RabbitMQ virtual host to use (String, default: ${spring.rabbitmq.virtual_host})

See the RabbitMQ MessageBus Documentation for more information about SSL configuration.

A Note About Retry

Note

With the default ackMode (AUTO) and requeue (true) options, failed message deliveries will be
retried indefinitely. Since there is not much processing in the rabbit source, the risk of failure in the
source itself is small. However, when using the LocalMessageBus or Direct Binding, exceptions
in downstream modules will be thrown back to the source. Setting requeue to false will cause
messages to be rejected on the first attempt (and possibly sent to a Dead Letter Exchange/Queue
if the broker is so configured). The enableRetry option allows configuration of retry parameters
such that a failed message delivery can be retried and eventually discarded (or dead-lettered)
when retries are exhausted. The delivery thread is suspended during the retry interval(s). Retry
options are enableRetry, maxAttempts, initialRetryInterval, retryMultiplier, and maxRetryInterval.
Message deliveries failing with a MessageConversionException (perhaps when using a custom
converterClassName) are never retried; the assumption being that if a message could not be
converted on the first attempt, subsequent attempts will also fail. Such messages are discarded
(or dead-lettered).

11.17 JMS

The "jms" source enables receiving messages from JMS.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name jmstest --definition "jms | file" --deploy

Spring XD Guide

1.2.0.RC1 Spring XD 154

This receives messages from a queue named jmstest and writes them to the default file sink (/tmp/
xd/output/jmstest). It uses the default ActiveMQ broker running on localhost, port 61616.

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name jmstest

To test the above stream, you can use something like the following…

public class Broker {

 public static void main(String[] args) throws Exception {

 BrokerService broker = new BrokerService();

 broker.setBrokerName("broker");

 String brokerURL = "tcp://localhost:61616";

 broker.addConnector(brokerURL);

 broker.start();

 ConnectionFactory cf = new ActiveMQConnectionFactory(brokerURL);

 JmsTemplate template = new JmsTemplate(cf);

 while (System.in.read() >= 0) {

 template.convertAndSend("jmstest", "testFoo");

 }

 }

}

and tail -f /tmp/xd/output/jmstest

Run this as a Java application; each time you hit <enter> in the console, it will send a message to queue
jmstest.

The out of the box configuration is setup to use ActiveMQ. To use another JMS provider you will need
to update a few files in the XD distribution. There are sample files for HornetMQ in the distribution as
an example for you to follow. You will also need to add the appropriate libraries for your provider in the
JMS module lib directory or in the main XD lib directory.

JMS with Options

The jms source has the following options:

acknowledge
the session acknowledge mode (String, default: auto)

clientId
an identifier for the client, to be associated with a durable topic subscription (String, no default)

destination
the destination name from which messages will be received (String, default: <stream name>)

durableSubscription
when true, indicates the subscription to a topic is durable (boolean, default: false)

provider
the JMS provider (String, default: activemq)

pubSub
when true, indicates that the destination is a topic (boolean, default: false)

subscriptionName
a name that will be assigned to the topic subscription (String, no default)

Spring XD Guide

1.2.0.RC1 Spring XD 155

Note

the selected broker requires an infrastructure configuration file jms-<provider>-

infrastructure-context.xml in modules/common. This is used to declare any
infrastructure beans needed by the provider. See the default (jms-activemq-
infrastructure-context.xml) for an example. Typically, all that is required
is a ConnectionFactory. The activemq provider uses a properties file jms-

activemq.properties which can be found in the config directory. This contains the broker
URL.

11.18 Time

The time source will simply emit a String with the current time every so often.

The time source has the following options:

fixedDelay
time delay between messages, expressed in TimeUnits (seconds by default) (int, default: 1)

format
how to render the current time, using SimpleDateFormat (String, default: yyyy-MM-dd
HH:mm:ss)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: 1)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

11.19 MQTT

The mqtt source connects to an mqtt server and receives telemetry messages.

Configure a stream:

xd:> stream create tcptest --definition "mqtt --url='tcp://localhost:1883' --topics='xd.mqtt.test' |

 log" --deploy

If you wish to use the MQTT Source defaults you can execute the command as follows:

xd:> stream create tcptest --definition "mqtt | log" --deploy

Options

The mqtt source has the following options:

binary
true to leave the payload as bytes (boolean, default: false)

charset
the charset used to convert bytes to String (when binary is false) (String, default: UTF-8)

Spring XD Guide

1.2.0.RC1 Spring XD 156

cleanSession
whether the client and server should remember state across restarts and reconnects (boolean,
default: true)

clientId
identifies the client (String, default: xd.mqtt.client.id.src)

connectionTimeout
the connection timeout in seconds (int, default: 30)

keepAliveInterval
the ping interval in seconds (int, default: 60)

password
the password to use when connecting to the broker (String, default: guest)

persistence
'memory' or 'file' (String, default: memory)

persistenceDirectory
file location when using 'file' persistence (String, default: /tmp/paho)

qos
the qos; a single value for all topics or a comma-delimited list to match the topics (String, default: 0)

topics
the topic(s) (comma-delimited) to which the source will subscribe (String, default: xd.mqtt.test)

url
location of the mqtt broker(s) (comma-delimited list) (String, default: tcp://localhost:1883)

username
the username to use when connecting to the broker (String, default: guest)

Note

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost.

11.20 Stdout Capture

There isn’t actually a source named "stdin" but it is easy to capture stdin by redirecting it to a tcp source.
For example if you wanted to capture the output of a command, you would first create the tcp stream,
as above, using the appropriate sink for your requirements:

xd:> stream create tcpforstdout --definition "tcp --decoder=LF | log" --deploy

You can then capture the output from commands using the netcat command:

$ cat mylog.txt | netcat localhost 1234

11.21 Kafka

This source module ingests data from a single or comma separated list of Kafka topics. When using
single topic configuration, one can also specify explicit partitions list and initial offset

Spring XD Guide

1.2.0.RC1 Spring XD 157

to fetch data from. Also note that for the stream with the given name or kafka source with the given
groupId, the offsets for the configured topics aren’t deleted when the stream is undeployed/destroyed.
This allows the re-deployed stream read from where it left when it was undeployed/destroyed.

The kafka source has the following options:

autoOffsetReset
strategy to reset the offset when there is no initial offset in ZK or if an offset is out of range
(AutoOffsetResetStrategy, default: smallest, possible values: smallest,largest)

encoding
string encoder to translate bytes into string (String, default: UTF8)

fetchMaxBytes
max messages to attempt to fetch for each topic-partition in each fetch request (int, default:
1048576)

fetchMaxWait
max wait time before answering the fetch request (int, default: 100)

fetchMinBytes
the minimum amount of data the server should return for a fetch request (int, default: 1)

groupId
kafka consumer configuration group id (String, default: <stream name>)

initialOffsets
comma separated list of <partition>@<offset> pairs indicating where the source should start
consuming from (String, default: ``)

kafkaOffsetTopicBatchBytes
maximum batched bytes for writes to offset topic, if Kafka offset strategy is chosen (int, default:
200)

kafkaOffsetTopicBatchTime
maximum time for batching writes to offset topic, if Kafka offset strategy is chosen (int, default:
1000)

kafkaOffsetTopicMaxSize
maximum size of reads from offset topic, if Kafka offset strategy is chosen (int, default: 1048576)

kafkaOffsetTopicName
name of the offset topic, if Kafka offset strategy is chosen (String, default: <stream name>-
${xd.module.name}-offsets)

kafkaOffsetTopicRequiredAcks
required acks for writing to the Kafka offset topic, if Kafka offset strategy is chosen (int, default: 1)

kafkaOffsetTopicRetentionTime
retention time for dead records (tombstones), if Kafka offset strategy is chosen (int, default: 60000)

kafkaOffsetTopicSegmentSize
segment size of the offset topic, if Kafka offset strategy is chosen (int, default: 262144000)

Spring XD Guide

1.2.0.RC1 Spring XD 158

offsetStorage
strategy for persisting offset values (OffsetStorageStrategy, default: kafka, possible values:
inmemory,redis,kafka)

offsetUpdateCount
frequency, in number of messages, with which offsets are persisted, per concurrent processor,
mutually exclusive with the time-based offset update option (use 0 to disable either) (int, default: 0)

offsetUpdateShutdownTimeout
timeout for ensuring that all offsets have been written, on shutdown (int, default: 2000)

offsetUpdateTimeWindow
frequency (in milliseconds) with which offsets are persisted mutually exclusive with the count-based
offset update option (use 0 to disable either) (int, default: 10000)

partitions
comma separated list of partition IDs to listen on (String, default: ``)

queueSize
the maximum number of messages held internally and waiting for processing, per concurrent
handler. Value must be a power of 2 (int, default: 8192)

socketBufferBytes
socket receive buffer for network requests (int, default: 2097152)

socketTimeout
sock timeout for network requests in milliseconds (int, default: 30000)

streams
number of streams in the topic (int, default: 1)

topic
single topic name (String, default: ``)

topics
comma separated kafka topic names (String, default: ``)

zkconnect
zookeeper connect string (String, default: localhost:2181)

zkconnectionTimeout
the max time the client waits to connect to ZK in milliseconds (int, default: 6000)

zksessionTimeout
zookeeper session timeout in milliseconds (int, default: 6000)

zksyncTime
how far a ZK follower can be behind a ZK leader in milliseconds (int, default: 2000)

Configure a stream that has kafka source with a single topic:

xd:> stream create myKafkaSource1 --definition "kafka --zkconnect=localhost:2181 --topic=mytopic | log"

 --deploy

Configure a stream that has kafka source with a multiple topics:

Spring XD Guide

1.2.0.RC1 Spring XD 159

xd:> stream create myKafkaSource2 --definition "kafka --zkconnect=localhost:2181 --

topics=mytopic1,mytopic2 | log" --deploy

11.22 JDBC Source

This source module supports the ability to ingest data directly from various databases. It does this by
querying the database and sending the results as messages to the stream.

Configure a stream with a jdbc source using a query:

xd:> stream create foo --definition "jdbc --fixedDelay=1 --split=1 --url=jdbc:hsqldb:hsql://

localhost:9101/mydb --query='select * from testfoo' |log" --deploy

In the example above the user will be polling the testfoo table to retrieve all the rows in the table once
a second until the stream is undeployed or destroyed.

Configure a stream with a jdbc source using a query and update:

xd:> stream create foo --definition "jdbc --fixedDelay=1 --split=1 --url=jdbc:hsqldb:hsql://

localhost:9101/mydb --query='select * from testfoo where tag = 0' --update='update testfoo set tag=1

 where fooid in (:fooid)'|log" --deploy

In the example above the user will be polling the testfoo table to retrieve rows in the table that have a
"tag" of zero. The update will set the value of tag to 1 for the rows that were retrieved, thus rows that
have already been retrieved will not included in future queries.

The jdbc source has the following options:

abandonWhenPercentageFull
connections that have timed out wont get closed and reported up unless the number of connections
in use are above the percentage (int, default: 0)

alternateUsernameAllowed
uses an alternate user name if connection fails (boolean, default: false)

connectionProperties
connection properties that will be sent to our JDBC driver when establishing new connections
(String, no default)

driverClassName
the JDBC driver to use (String, no default)

fairQueue
set to true if you wish that calls to getConnection should be treated fairly in a true FIFO fashion
(boolean, default: true)

fixedDelay
how often to poll for new messages (s) (int, default: 5)

initSQL
custom query to be run when a connection is first created (String, no default)

initialSize
initial number of connections that are created when the pool is started (int, default: 0)

Spring XD Guide

1.2.0.RC1 Spring XD 160

jdbcInterceptors
semicolon separated list of classnames extending org.apache.tomcat.jdbc.pool.JdbcInterceptor
(String, no default)

jmxEnabled
register the pool with JMX or not (boolean, default: true)

logAbandoned
flag to log stack traces for application code which abandoned a Connection (boolean, default:
false)

maxActive
maximum number of active connections that can be allocated from this pool at the same time (int,
default: 100)

maxAge
time in milliseconds to keep this connection (int, default: 0)

maxIdle
maximum number of connections that should be kept in the pool at all times (int, default: 100)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: 1)

maxRowsPerPoll
max numbers of rows to process for each poll (int, default: 0)

maxWait
maximum number of milliseconds that the pool will wait for a connection (int, default: 30000)

minEvictableIdleTimeMillis
minimum amount of time an object may sit idle in the pool before it is eligible for eviction (int, default:
60000)

minIdle
minimum number of established connections that should be kept in the pool at all times (int, default:
10)

password
the JDBC password (Password, no default)

query
an SQL select query to execute to retrieve new messages when polling (String, no default)

removeAbandoned
flag to remove abandoned connections if they exceed the removeAbandonedTimout (boolean,
default: false)

removeAbandonedTimeout
timeout in seconds before an abandoned connection can be removed (int, default: 60)

split
whether to split the SQL result as individual messages (boolean, default: true)

Spring XD Guide

1.2.0.RC1 Spring XD 161

suspectTimeout
this simply logs the warning after timeout, connection remains (int, default: 0)

testOnBorrow
indication of whether objects will be validated before being borrowed from the pool (boolean,
default: false)

testOnReturn
indication of whether objects will be validated before being returned to the pool (boolean, default:
false)

testWhileIdle
indication of whether objects will be validated by the idle object evictor (boolean, default: false)

timeBetweenEvictionRunsMillis
number of milliseconds to sleep between runs of the idle connection validation/cleaner thread (int,
default: 5000)

update
an SQL update statement to execute for marking polled messages as 'seen' (String, no default)

url
the JDBC URL for the database (String, no default)

useEquals
true if you wish the ProxyConnection class to use String.equals (boolean, default: true)

username
the JDBC username (String, no default)

validationInterval
avoid excess validation, only run validation at most at this frequency - time in milliseconds (long,
default: 30000)

validationQuery
sql query that will be used to validate connections from this pool (String, no default)

validatorClassName
name of a class which implements the org.apache.tomcat.jdbc.pool.Validator (String, no default)

11.23 MongoDB Source

The MongoDB source allows one to query a MongoDB collection and emit messages for each and
every matching result. This source works by regularly polling MongoDB and emitting the result list, as
independent objects. If split is set to false, the whole list is emitted as payload.

Here is an example:

xd:> stream create foo --definition "mongodb --collectionName=orders --fixedDelay=1 | log" --deploy

The mongodb source has the following options:

authenticationDatabaseName
the MongoDB authentication database used for connecting (String, default: ``)

Spring XD Guide

1.2.0.RC1 Spring XD 162

collectionName
the MongoDB collection to read from (String, default: <stream name>)

databaseName
the MongoDB database name (String, default: xd)

fixedDelay
the time delay between polls for data, expressed in TimeUnits (seconds by default) (int, default:
1000)

host
the MongoDB host to connect to (String, default: localhost)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: 1)

password
the MongoDB password used for connecting (String, default: ``)

port
the MongoDB port to connect to (int, default: 27017)

query
the query to make to the mongo db (String, default: {})

split
whether to split the query result as individual messages (boolean, default: true)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

username
the MongoDB username used for connecting (String, default: ``)

11.24 Trigger Source

The trigger source emits a message or messages according to the provided trigger configuration. The
message payload is a simple literal value, provided in the payload property.

The trigger source has the following options:

cron
cron expression specifying when the trigger should fire (String, no default)

date
a one-time date when the trigger should fire; only applies if 'fixedDelay' and 'cron' are not provided
(String, default: The current time)

dateFormat
the format specifying how the 'date' should be parsed (String, default: MM/dd/yy HH:mm:ss)

Spring XD Guide

1.2.0.RC1 Spring XD 163

fixedDelay
time delay between executions, expressed in TimeUnits (seconds by default) (Integer, no default)

initialDelay
an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int,
default: 0)

maxMessages
the maximum messages per poll; -1 for unlimited (long, default: 1)

payload
the message that will be sent when the trigger fires (String, default: ``)

timeUnit
the time unit for the fixed and initial delays (String, default: SECONDS)

Spring XD Guide

1.2.0.RC1 Spring XD 164

12. Processors

12.1 Introduction

This section will cover the processors available out-of-the-box with Spring XD. As a prerequisite, start
the XD Container as instructed in the Getting Started page.

The Processors covered are

• Filter

• Transform

• Script

• Splitter

• Aggregator

• HTTP Client

• Shell Command

• JSON to Tuple

• Object to JSON

See the section Creating a Processor Module for information on how to create custom processor
modules.

12.2 Filter

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

The filter processor has the following options:

expression
a SpEL expression used to transform messages (String, default: payload.toString())

propertiesLocation
the path of a properties file containing custom script variable bindings (String, no default)

script
reference to a script used to process messages (String, no default)

variables
variable bindings as a comma delimited string of name-value pairs, e.g., 'foo=bar,baz=car' (String,
no default)

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream.
The expression should evaluate the message and return true or false. For example:

xd:> stream create --name filtertest --definition "http | filter --expression=payload=='good' | log" --

deploy

Spring XD Guide

1.2.0.RC1 Spring XD 165

This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good"
to the HTTP endpoint and you should see it in the XD log:

xd:> http post --target http://localhost:9000 --data "good"

Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.

Filter using jsonPath evaluation

As part of the SpEL expression you can make use of the pre-registered JSON Path function.

This filter example shows to pass messages to the output channel if they contain a specific JSON field
matching a specific value.

xd:> stream create --name jsonfiltertest --definition "http --port=9002 | filter --

expression=#jsonPath(payload,'$.firstName').contains('John') | log" --deploy

Note: There is no space between payload JSON and the jsonPath in the expression

This filter will only pass Messages to the log sink if the JSON payload contains the firstName "John".
Try sending this payload to the HTTP endpoint and you should see it in the XD log:

xd:> http post --target http://localhost:9002 --data "{\"firstName\":\"John\", \"lastName\":\"Smith\"}"

Alternatively, if you send a different firstName, you shouldn’t see the log entry.

Here is another example usage of filter

filter --expression=#jsonPath(payload,'$.entities.hashtags[*].text').contains('obama')

This is an example that is operating on a JSON payload of tweets as consumed from the twitter search
module.

Filter with Groovy Script

For more complex filtering, you can pass the location of a Groovy script using the script option. If you
want to pass variable values to your script, you can statically bind values using the variables option
or optionally pass the path to a properties file containing the bindings using the propertiesLocation
option.All properties in the file will be made available to the script as variables. Note that payload and
headers are implicitly bound to give you access to the data contained in a message.

Example:

Note

These features are common to all modules backed by Groovy scripts.

//custom-filter.groovy

return payload.size()> 4 || shortstrings=='true'

#custom-filter.properties

shortstrings=false

By default, Spring XD will search the classpath for custom-filter.groovy and custom-filter.properties.
You can place the script in ${xd.home}/modules/processor/scripts and the properties file in ${xd.home}/
config to make them available on the classpath. Alternatively, you can prefix the script and properties-
location values with file: to load from the file system.

Spring XD Guide

1.2.0.RC1 Spring XD 166

In the following stream definitions, the filter will pass only the first message:

xd>: stream create --name groovyfiltertest1 --definition "http --port=9001 | filter --

script=file:<absolute-path-to>/custom-filter.groovy --variables='shortstrings=false' | log" --deploy

Created and deployed new stream 'groovyfiltertest1'

xd:>http post --target http://localhost:9001 --data hello

xd:http post --target http://localhost:9001 --data hi

xd>: stream create --name groovyfiltertest2 --definition "http --port=9002 | filter --

script=file:<absolute-path-to>/custom-filter.groovy --propertiesLocation=file:<absolute-path-to>/custom-

filter.properties | log" --deploy

Created and deployed new stream 'groovyfiltertest2'

xd:>http post --target http://localhost:9002 --data hello

xd:http post --target http://localhost:9002 --data hi

In the following stream definitions, the filter will pass all messages (provided the payload type supports
a size() method):

xd>: stream create --name groovyfiltertest1 --definition "http --port=9001 | filter --

script=file:<absolute-path-to>/custom-filter.groovy --variables='shortstrings=false' | log" --deploy

Created and deployed new stream 'groovyfiltertest1'

xd>: stream create --name groovyfiltertest2 --definition "http --port=9002 | filter --

script=file:<absolute-path-to>/custom-filter.groovy --variables='shortstring=false' --

propertiesLocation=file:<absolute-path-to>/custom-filter.properties | log" --deploy

Created and deployed new stream 'groovyfiltertest2'

Note the last example demonstrates that values specified in variables override values from
propertiesLocation

Tip

The script is checked for updates every 60 seconds, so it may be replaced in a running system.

12.3 Transform

Use the transform module in a stream to convert a Message’s content or structure.

The transform processor has the following options:

expression
a SpEL expression used to transform messages (String, default: payload.toString())

propertiesLocation
the path of a properties file containing custom script variable bindings (String, no default)

script
reference to a script used to process messages (String, no default)

variables
variable bindings as a comma delimited string of name-value pairs, e.g., 'foo=bar,baz=car' (String,
no default)

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream.
The expression should return the modified message or payload. For example:

Spring XD Guide

1.2.0.RC1 Spring XD 167

xd:> stream create --name transformtest --definition "http --port=9003 | transform --

expression=payload.toUpperCase() | log" --deploy

This transform will convert all message payloads to upper case. If sending the word "foo" to the HTTP
endpoint and you should see "FOO" in the XD log:

xd:> http post --target http://localhost:9003 --data "foo"

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,<json path expression>)

Transform with Groovy Script

For more complex transformations, you can pass the location of a Groovy script using the script option.
If you want to pass variable values to your script, you can statically bind values using the variables
option or optionally pass the path to a properties file containing the bindings using the propertiesLocation
option. All properties in the file will be made available to the script as variables. Note that payload and
headers are implicitly bound to give you access to the data contained in a message. See the Filter
example for a more detailed discussion of script variables.

xd:> stream create --name groovytransformtest1 --definition "http --port=9004 | transform --

script=custom-transform.groovy --variables="x=foo" | log" --deploy

xd:> stream create --name groovytransformtest2 --definition "http --port=9004 | transform --

script=custom-transform.groovy --propertiesLocation=custom-transform.properties | log" --deploy

By default, Spring XD will search the classpath for custom-transform.groovy and custom-
transform.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the script and properties-location values with file: to load from the file system.

Tip

The script is checked for updates every 60 seconds, so it may be replaced in a running system.

12.4 Script

The script processor contains a Service Activator that invokes a specified Groovy script. This is a slightly
more generic way to accomplish processing logic, as the provided script may simply terminate the stream
as well as transform or filter Messages.

The script processor has the following options:

propertiesLocation
the path of a properties file containing custom script variable bindings (String, no default)

script
reference to a script used to process messages (String, no default)

variables
variable bindings as a comma delimited string of name-value pairs, e.g., 'foo=bar,baz=car' (String,
no default)

To use the module, pass the location of a Groovy script using the script attribute. If you want to pass
variable values to your script, you can statically bind values using the variables option or optionally pass

Spring XD Guide

1.2.0.RC1 Spring XD 168

the path to a properties file containing the bindings using the propertiesLocation option. All properties
in the file will be made available to the script as variables. Note that payload and headers are implicitly
bound to give you access to the data contained in a message. See the Filter example for a more detailed
discussion of script variables.

xd:> stream create --name groovyprocessortest --definition "http --port=9006 | script --script=custom-

processor.groovy --variables='x=foo' | log" --deploy

xd:> stream create --name groovyprocessortest --definition "http --port=9006 | script --script=custom-

processor.groovy --propertiesLocation=custom-processor.properties | log" --deploy

By default, Spring XD will search the classpath for custom-processor.groovy and custom-
processor.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the location and properties-location values with file: to load from the file system.

Tip

The script is checked for updates every 60 seconds, so it may be replaced in a running system.

12.5 Splitter

The splitter module builds upon the concept of the same name in Spring Integration and allows the
splitting of a single message into several distinct messages.

The splitter processor has the following options:

expression
a SpEL expression which would typically evaluate to an array or collection (String, default:
payload)

Note

The default value for expression is payload, which actually does not split, unless the message
is already a collection.

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,<json path expression>)

Extract the value of a specific field

This splitter converts a JSON message payload to the value of a specific JSON field.

xd:> stream create --name jsontransformtest --definition "http --port=9005 | splitter --

expression=#jsonPath(payload,'$.firstName') | log" --deploy

Try sending this payload to the HTTP endpoint and you should see just the value "John" in the XD log:

xd:> http post --target http://localhost:9005 --data '{"firstName":"John", "lastName":"Smith"}'

12.6 Aggregator

The aggregator module does the opposite of the splitter, and builds upon the concept of the same name
found in Spring Integration. By default, it will consider all incoming messages from a stream to belong
to the same group:

Spring XD Guide

1.2.0.RC1 Spring XD 169

xd:> stream create --name aggregates --definition "http | aggregator --count=3 --

aggregation=T(org.springframework.util.StringUtils).collectionToDelimitedString(#this.![payload],' ') |

 log" --deploy

This uses a SpEL expression that will basically concatenate all payloads together, inserting a space
character in between. As such,

xd:> http post --data Hello

xd:> http post --data World

xd:> http post --data !

would emit a single message whose contents is "Hello World !". This is because we set the aggregator
release strategy to accumulate 3 messages.

The aggregator processor has the following options:

aggregation
how to construct the aggregated message (SpEL expression against a collection of messages)
(String, default: #this.![payload])

correlation
how to correlate messages (SpEL expression against each message) (String, default: '<stream
name>')

count
the number of messages to group together before emitting a group (int, default: 50)

dbkind
which flavor of init scripts to use for the jdbc store (blank to attempt autodetection) (String, no
default)

driverClassName
the jdbc driver to use when using the jdbc store (String, no default)

hostname
hostname of the redis instance to use as a store (String, default: localhost)

initializeDatabase
whether to auto-create the database tables for the jdbc store (boolean, default: false)

password
the password to use when using the jdbc or redis store (String, default: ``)

port
port of the redis instance to use as a store (int, default: 6379)

release
when to release messages (SpEL expression against a collection of messages accumulated so far)
(String, no default)

store
the kind of store to use to retain messages (StoreKind, default: memory, possible values:
memory,jdbc,redis)

timeout
the delay (ms) after which messages should be released, even if the completion criteria is not met
(int, default: 50000)

Spring XD Guide

1.2.0.RC1 Spring XD 170

url
the jdbc url to connect to when using the jdbc store (String, no default)

username
the username to use when using the jdbc store (String, no default)

Note

• Some of the options are only relevant when using a particular store

• The default correlation of '<stream name>' actually considers all messages to be
correlated, since they all belong to the same stream.

• Using the release option overrides the count option (which is a simpler approach)

• The default for aggregation creates a new collection made of the payloads of the
accumulated messages

• About the timeout option: due to the way it is implemented (see MessageGroupStoreReaper
in the Spring Integration documentation), the actual observed delay may vary between
timeout and 2xtimeout.

12.7 HTTP Client

The http-client processor acts as a client that issues HTTP requests to a remote server, submitting
the message payload it receices to that server and in turn emitting the response it receives to the next
module down the line.

For example, the following command will result in an immediate fetching of earthquake data and it being
logged in the container:

xd:>stream create earthquakes --definition "trigger | http-client --url='''http://earthquake.usgs.gov/

earthquakes/feed/geojson/all/day''' --httpMethod=GET | log" --deploy

Note

Please be aware that the url option above is actually a SpEL expression, hence the triple quotes.
If you’d like to learn more about quotes, please read the relevant documentation.

The http-client processor has the following options:

charset
the charset to use when in the Content-Type header when emitting Strings (String, default: UTF-8)

httpMethod
the http method to use when performing the request (HttpMethod, default: POST, possible values:
OPTIONS,GET,HEAD,POST,PUT,PATCH,DELETE,TRACE,CONNECT)

mappedRequestHeaders
request message header names to be propagated to/from the adpater/gateway (String, default:
HTTP_REQUEST_HEADERS)

mappedResponseHeaders
response message header names to be propagated from the adpater/gateway (String, default:
HTTP_RESPONSE_HEADERS)

Spring XD Guide

1.2.0.RC1 Spring XD 171

replyTimeout
the amount of time to wait (ms) for a response from the remote server (int, default: 0)

url
the url to perform an http request on (String, no default)

12.8 Shell

The shell processor forks an external process by running a shell command to launch a process written
in any language. The process should implement a continual loop that waits for input from stdin and
writes a result to stdout in a request-response manner. The process will be destroyed when the stream
is undeployed. For example, it is possible to invoke a Python script within a stream in this manner. Since
the shell processor relies on low-level stream processing there are some additional requirements:

• Input and output data are expected to be Strings, the charset is configurable.

• The shell process must not write out of band data to stdout, such as a start up message or prompt.

• Anything written to stderr will be logged as an ERROR in Spring XD but will not terminate the stream.

• Responses written to stdout must be terminated using the configured encoder (CRLF or "\r\n" is the
default) for the module and must not exceed the configured bufferSize

• Any external software required to run the script must be installed on the container node to which the
module is deployed.

Here is a simple Python example that echos the input:

#echo.py

import sys

#=====================

Write data to stdout

#=====================

def send(data):

 sys.stdout.write(data)

 sys.stdout.flush()

#===

Terminate a message using the default CRLF

#===

def eod():

 send("\r\n")

#===========================

Main - Echo the input

#===========================

while True:

 try:

 data = raw_input()

 if data:

 send(data)

 eod()

 except EOFError:

 eod()

 break

Note

Spring XD provides additional Python programming support for handling basic stream processing,
as shown above, see xref:creating a Python module.

Creating-a-Python-Module

Spring XD Guide

1.2.0.RC1 Spring XD 172

To try this example, copy the above script and save it to echo.py. Start Spring XD and create a stream:

xd:>stream create pytest --definition "time | shell --command='python <absolute-path-to>/echo.py' | log"

 --deploy

Created and deployed new stream 'pytest'

you should see the time echoed in the log:

09:49:14,856 INFO task-scheduler-5 sink.pytest - 2014-10-10 09:49:14

09:49:15,860 INFO task-scheduler-1 sink.pytest - 2014-10-10 09:49:15

09:49:16,862 INFO task-scheduler-1 sink.pytest - 2014-10-10 09:49:16

09:49:17,864 INFO task-scheduler-1 sink.pytest - 2014-10-10 09:49:17

This script can be easily modified to do some actual work by providing a function that takes the input
as an argument and returns a string. Then insert the function call:

while True:

 try:

 data = raw_input()

 if data:

 result = myfunc(data)

 send(result)

 eod()

 except EOFError:

 eod()

 break

The shell processor has the following options:

bufferSize
the size of the buffer (bytes) to use when encoding/decoding (int, default: 2048)

charset
the charset used when converting from String to bytes (String, default: UTF-8)

command
the shell command (String, no default)

encoder
the encoder to use when sending messages (Encoding, default: CRLF, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

environment
additional process environment variables as comma delimited name-value pairs (String, no
default)

redirectErrorStream
redirects stderr to stdout (boolean, default: false)

workingDir
the process working directory (String, no default)

12.9 JSON to Tuple

The json-to-tuple processor is able to transform a String representation of some JSON map into
a Tuple.

Here is a simple example:

Spring XD Guide

1.2.0.RC1 Spring XD 173

xd:>stream create tuples --definition "http | json-to-tuple | transform --expression='payload.firstName

 + payload.lastName' | log" --deploy

xd:>http post --data '{"firstName": "Spring", "lastName": "XD"}'

Note

Transformation to Tuple can be used as an alternative or in addition of Type Conversion,
depending on your usecase.

The json-to-tuple processor has no particular option (in addition to options shared by all modules)

12.10 Object to JSON

The object-to-json processor can be used to convert any java Object to a JSON String.

In the following example, notice how the collection of three elements is transformed to JSON (in
particular, the three Strings are surrounded by quotes):

xd:>stream create json --deploy --definition "http | aggregator --count | object-to-json | log"

xd:>http post --data hello

xd:>http post --data world

xd:>http post --data !

results in ["hello", "world", "!"] appearing in the log.

The object-to-json processor has no particular option (in addition to options shared by all modules)

Spring XD Guide

1.2.0.RC1 Spring XD 174

13. Sinks

13.1 Introduction

In this section we will show some variations on output sinks. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sinks covered are

• Log

• File

• FTP

• HDFS

• HDFS Dataset

• JDBC

• GPFDIST

• TCP

• Shell Command

• Mongo

• Mail

• RabbitMQ

• GemFire Server

• Splunk Server

• MQTT

• Dynamic Router

• Null Sink

• Redis

• Kafka

See the section Creating a Sink Module for information on how to create sink modules using other
Spring Integration Adapters.

13.2 Log

Probably the simplest option for a sink is just to log the data. The log sink uses the application logger
to output the data for inspection. The log level is set to WARN and the logger name is created from the
stream name. To create a stream using a log sink you would use a command like

xd:> stream create --name mylogstream --definition "http --port=8000 | log" --deploy

Spring XD Guide

1.2.0.RC1 Spring XD 175

You can then try adding some data. We’ve used the http source on port 8000 here, so run the following
command to send a message

xd:> http post --target http://localhost:8000 --data "hello"

and you should see the following output in the XD container console.

13/06/07 16:12:18 INFO sink.mylogstream: hello

The log sink has the following options:

expression
the expression to be evaluated for the log content; use '#root' to log the full message (String,
default: payload)

level
the log level (String, default: INFO)

name
the name of the log category to log to (will be prefixed by 'xd.sink.') (String, default: <stream
name>)

Here are some examples explaining the above options:

The logger name is the sink name prefixed with the string xd.sink.. The sink name is the same as
the stream name by default, but you can set it by passing the --name parameter

xd:> stream create --name myotherlogstream --definition "http --port=8001 | log --name=mylogger" --

deploy

The log level is INFO by default; this can be changed with the --level property (FATAL, ERROR, WARN,
INFO, DEBUG, or TRACE)

xd:> stream create --name mylogstream --definition "http --port=8001 | log --level=WARN" --deploy

By default, the message payload is logged; this can be changed with the --expression property (e.g.
payload.foo to log some property foo of the payload, or #root to log the entire message)

xd:> stream create --name mylogstream --definition "http --port=8001 | log --expression=#root" --deploy

13.3 File Sink

Another simple option is to stream data to a file on the host OS. This can be done using the file sink
module to create a stream.

xd:> stream create --name myfilestream --definition "http --port=8000 | file" --deploy

We’ve used the http source again, so run the following command to send a message

xd:> http post --target http://localhost:8000 --data "hello"

The file sink uses the stream name as the default name for the file it creates, and places the file in
the /tmp/xd/output/ directory.

$ less /tmp/xd/output/myfilestream

hello

Spring XD Guide

1.2.0.RC1 Spring XD 176

You can cutomize the behavior and specify the name and dir options of the output file. For example

xd:> stream create --name otherfilestream --definition "http --port=8000 | file --name=myfile --dir=/

some/custom/directory" --deploy

To set the filename from a SpEL expression (e.g. headers[file_name]), you can use the
nameExpression option.

xd:> stream create --name myfilestream --definition "http --port=8000 | file --

nameExpression=payload.trim()" --deploy

If you run this command :

xd:> http post --target http://localhost:8000 --data "hello.txt"

It will take the payload of the message ("hello.txt"), as it’s defined previously with nameExpression,
and use it as the filename. In this example, the filename is equal to the content of the file.

You can use dirExpression to specify the name of the directory that will contain the new file.

xd:> stream create --name myfilestream --definition "http --port=8000 | file --

nameExpression=payload.trim() --dirExpression='''/tmp/test/dir-'' + payload.trim()'" --deploy

If you run this command :

xd:> http post --target http://localhost:8000 --data "hello.txt"

For the filename, it will do the same thing as explained previously. For the directory name it will use
the content of the file (trimmed) concatenated with dir- (in that case : "/tmp/test/dir-hello.txt"). If the
destination directory does not exists, the respective destination directory and any non-existing parent
directories are being created automatically.

When you use the nameExpression option you have to use the dirExpression option (not the dir
option) to specify the destination directory name, even if it’s a simple string (e.g. 'mydir').

File with Options

The file sink has the following options:

binary
if false, will append a newline character at the end of each line (boolean, default: false)

charset
the charset to use when writing a String payload (String, default: UTF-8)

dir
the directory in which files will be created (String, default: /tmp/xd/output/)

dirExpression
spring expression used to define directory name (String, no default)

mode
what to do if the file already exists (Mode, default: APPEND, possible values:
APPEND,REPLACE,FAIL,IGNORE)

name
filename pattern to use (String, default: <stream name>)

Spring XD Guide

1.2.0.RC1 Spring XD 177

nameExpression
spring expression used to define filename (String, no default)

suffix
filename extension to use (String, no default)

13.4 FTP Sink

FTP sink is a simple option to push files to an FTP server from incoming messages.

It uses an ftp-outbound-adapter, therefore incoming messages could be either a java.io.File
object, a String (content of the file) or an array of bytes (file content as well).

To use this sink, you need a username and a password to login. Once you have this you can stream
data from, for instance, a file source to the ftp sink:

xd:> stream create --name mystream --definition "file | ftp --username=me --password=mypwd" --deploy

We use the file source, so create a file:

$ echo hello > /tmp/xd/input/mystream/test.txt

On the ftp server, you should see the file test.txt with the content hello.

To pass the filename to the module you can use the header file_name with the filename you wish
to be used.

NOTE: By default Spring Integration will use o.s.i.file.DefaultFileNameGenerator if none
is specified. DefaultFileNameGenerator will determine the file name based on the value of the
file_name header (if it exists) in the MessageHeaders, or if the payload of the Message is already
a java.io.File, then it will use the original name of that file.

FTP with Options

The ftp sink has the following options:

autoCreateDir
remote directory must be auto created if it does not exist (boolean, default: true)

clientMode
client mode to use: 2 for passive mode and 0 for active mode (int, default: 0)

host
the host name for the FTP server (String, default: localhost)

mode
what to do if the file already exists (Mode, default: REPLACE, possible values:
APPEND,REPLACE,FAIL,IGNORE)

password
the password for the FTP connection (Password, no default)

port
the port for the FTP server (int, default: 21)

Spring XD Guide

1.2.0.RC1 Spring XD 178

remoteDir
the remote directory to transfer the files to (String, default: /)

remoteFileSeparator
file separator to use on the remote side (String, default: /)

temporaryRemoteDir
temporary remote directory that should be used (String, default: /)

tmpFileSuffix
extension to use on server side when uploading files (String, default: .tmp)

useTemporaryFilename
use a temporary filename while transferring the file and rename it to its final name once it's fully
transferred (boolean, default: true)

username
the username for the FTP connection (String, no default)

13.5 Hadoop (HDFS)

If you do not have Hadoop installed, you can install Hadoop as described in our separate guide. Spring
XD supports 4 Hadoop distributions, see using Hadoop for more information on how to start Spring XD
to target a specific distribution.

Once Hadoop is up and running, you can then use the hdfs sink when creating a stream

xd:> stream create --name myhdfsstream1 --definition "time | hdfs" --deploy

In the above example, we’ve scheduled time source to automatically send ticks to hdfs once in every
second. If you wait a little while for data to accumuluate you can then list can then list the files in the
hadoop filesystem using the shell’s built in hadoop fs commands. Before making any access to HDFS in
the shell you first need to configure the shell to point to your name node. This is done using the hadoop
config command.

xd:>hadoop config fs --namenode hdfs://localhost:8020

In this example the hdfs protocol is used but you may also use the webhdfs protocol. Listing the contents
in the output directory (named by default after the stream name) is done by issuing the following
command.

xd:>hadoop fs ls /xd/myhdfsstream1

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 0 2013-12-18 18:10 /xd/myhdfsstream1/

myhdfsstream1-0.txt.tmp

While the file is being written to it will have the tmp suffix. When the data written exceeds the rollover
size (default 1GB) it will be renamed to remove the tmp suffix. There are several options to control the in
use file file naming options. These are --inUsePrefix and --inUseSuffix set the file name prefix
and suffix respectfully.

When you destroy a stream

xd:>stream destroy --name myhdfsstream1

and list the stream directory again, in use file suffix doesn’t exist anymore.

Spring XD Guide

1.2.0.RC1 Spring XD 179

xd:>hadoop fs ls /xd/myhdfsstream1

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 380 2013-12-18 18:10 /xd/myhdfsstream1/myhdfsstream1-0.txt

To list the list the contents of a file directly from a shell execute the hadoop cat command.

xd:> hadoop fs cat /xd/myhdfsstream1/myhdfsstream1-0.txt

2013-12-18 18:10:07

2013-12-18 18:10:08

2013-12-18 18:10:09

...

In the above examples we didn’t yet go through why the file was written in a specific directory and
why it was named in this specific way. Default location of a file is defined as /xd/<stream name>/
<stream name>-<rolling part>.txt. These can be changed using options --directory and
--fileName respectively. Example is shown below.

xd:>stream create --name myhdfsstream2 --definition "time | hdfs --directory=/xd/tmp --fileName=data" --

deploy

xd:>stream destroy --name myhdfsstream2

xd:>hadoop fs ls /xd/tmp

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 120 2013-12-18 18:31 /xd/tmp/data-0.txt

It is also possible to control the size of a files written into HDFS. The --rollover option can be used
to control when file currently being written is rolled over and a new file opened by providing the rollover
size in bytes, kilobytes, megatypes, gigabytes, and terabytes.

xd:>stream create --name myhdfsstream3 --definition "time | hdfs --rollover=100" --deploy

xd:>stream destroy --name myhdfsstream3

xd:>hadoop fs ls /xd/myhdfsstream3

Found 3 items

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-0.txt

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-1.txt

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-2.txt

Shortcuts to specify sizes other than bytes are written as --rollover=64M, --rollover=512G or
--rollover=1T.

The stream can also be compressed during the write operation. Example of this is shown below.

xd:>stream create --name myhdfsstream4 --definition "time | hdfs --codec=gzip" --deploy

xd:>stream destroy --name myhdfsstream4

xd:>hadoop fs ls /xd/myhdfsstream4

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 80 2013-12-18 18:48 /xd/myhdfsstream4/

myhdfsstream4-0.txt.gzip

From a native os shell we can use hadoop’s fs commands and pipe data into gunzip.

bin/hadoop fs -cat /xd/myhdfsstream4/myhdfsstream4-0.txt.gzip | gunzip

2013-12-18 18:48:10

2013-12-18 18:48:11

...

Often a stream of data may not have a high enough rate to roll over files frequently, leaving the file in
an opened state. This prevents users from reading a consistent set of data when running mapreduce
jobs. While one can alleviate this problem by using a small rollover value, a better way is to use the
idleTimeout option that will automatically close the file if there was no writes during the specified
period of time. This feature is also useful in cases where burst of data is written into a stream and you’d
like that data to become visible in HDFS.

Spring XD Guide

1.2.0.RC1 Spring XD 180

Note

The idleTimeout value should not exceed the timeout values set on the
Hadoop cluster. These are typically configured using the dfs.socket.timeout and/or
dfs.datanode.socket.write.timeout properties in the hdfs-site.xml configuration
file.

xd:> stream create --name myhdfsstream5 --definition "http --port=8000 | hdfs --rollover=20 --

idleTimeout=10000" --deploy

In the above example we changed a source to http order to control what we write into a hdfs sink.
We defined a small rollover size and a timeout of 10 seconds. Now we can simply post data into this
stream via source end point using a below command.

xd:> http post --target http://localhost:8000 --data "hello"

If we repeat the command very quickly and then wait for the timeout we should be able to see that some
files are closed before rollover size was met and some were simply rolled because of a rollover size.

xd:>hadoop fs ls /xd/myhdfsstream5

Found 4 items

-rw-r--r-- 3 jvalkealahti supergroup 12 2013-12-18 19:02 /xd/myhdfsstream5/myhdfsstream5-0.txt

-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-1.txt

-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-2.txt

-rw-r--r-- 3 jvalkealahti supergroup 18 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-3.txt

Files can be automatically partitioned using a partitionPath expression. If we create a stream with
idleTimeout and partitionPath with simple format yyyy/MM/dd/HH/mm we should see writes
ending into its own files within every minute boundary.

xd:>stream create --name myhdfsstream6 --definition "time|hdfs --idleTimeout=10000 --

partitionPath=dateFormat('yyyy/MM/dd/HH/mm')" --deploy

Let a stream run for a short period of time and list files.

xd:>hadoop fs ls --recursive true --dir /xd/myhdfsstream6

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05/28

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42

-rw-r--r-- 3 jvalkealahti supergroup 140 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42/

myhdfsstream6-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43

-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43/

myhdfsstream6-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44

-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44/

myhdfsstream6-0.txt

Partitioning can also be based on defined lists. In a below example we simulate feeding data by
using a time and a transform elements. Data passed to hdfs sink has a content APP0:foobar,
APP1:foobar, APP2:foobar or APP3:foobar.

xd:>stream create --name myhdfsstream7 --definition "time | transform --expression=

\"'APP'+T(Math).round(T(Math).random()*3)+':foobar'\" | hdfs --idleTimeout=10000 --

partitionPath=path(dateFormat('yyyy/MM/dd/HH'),list(payload.split(':')[0],{{'0TO1','APP0','APP1'},

{'2TO3','APP2','APP3'}}))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

Spring XD Guide

1.2.0.RC1 Spring XD 181

xd:>stream destroy --name myhdfsstream7

Destroyed stream 'myhdfsstream7'

xd:>hadoop fs ls --recursive true --dir /xd

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/0TO1_list

-rw-r--r-- 3 jvalkealahti supergroup 108 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/2TO3_list

-rw-r--r-- 3 jvalkealahti supergroup 180 2014-05-28 19:24 /xd/

myhdfsstream7/2014/05/28/19/2TO3_list/myhdfsstream7-0.txt

xd:>hadoop fs cat /xd/myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt

APP1:foobar

APP1:foobar

APP0:foobar

APP0:foobar

APP1:foobar

Partitioning can also be based on defined ranges. In a below example we simulate feeding data by using
a time and a transform elements. Data passed to hdfs sink has a content ranging from APP0 to
APP15. We simple parse the number part and use it to do a partition with ranges {3,5,10}.

xd:>stream create --name myhdfsstream8 --definition "time | transform --expression=

\"'APP'+T(Math).round(T(Math).random()*15)\" | hdfs --idleTimeout=10000 --

partitionPath=path(dateFormat('yyyy/MM/dd/HH'),range(T(Integer).parseInt(payload.substring(3)),

{3,5,10}))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

xd:>stream destroy --name myhdfsstream8

Destroyed stream 'myhdfsstream8'

xd:>hadoop fs ls --recursive true --dir /xd

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/10_range

-rw-r--r-- 3 jvalkealahti supergroup 16 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/3_range

-rw-r--r-- 3 jvalkealahti supergroup 35 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/5_range

-rw-r--r-- 3 jvalkealahti supergroup 5 2014-05-28 19:34 /xd/

myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt

xd:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt

APP3

APP3

APP1

APP0

APP1

xd:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt

APP4

xd:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt

APP6

APP15

APP7

Spring XD Guide

1.2.0.RC1 Spring XD 182

Partition using a dateFormat can be based on content itself. This is a good use case if old log files
needs to be processed where partitioning should happen based on timestamp of a log entry. We create
a fake log data with a simple date string ranging from 1970-01-10 to 1970-01-13.

xd:>stream create --name myhdfsstream9 --definition "time | transform --expression=

\"'1970-01-'+1+T(Math).round(T(Math).random()*3)\" | hdfs --idleTimeout=10000 --

partitionPath=path(dateFormat('yyyy/MM/dd/HH',payload,'yyyy-MM-DD'))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files. If you
see the partition paths, those are based on year 1970, not present year.

xd:>stream destroy --name myhdfsstream9

Destroyed stream 'myhdfsstream9'

xd:>hadoop fs ls --recursive true --dir /xd

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/10

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00

-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00/

myhdfsstream9-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/11

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00

-rw-r--r-- 3 jvalkealahti supergroup 99 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00/

myhdfsstream9-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/12

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00

-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00/

myhdfsstream9-0.txt

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/13

drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00

-rw-r--r-- 3 jvalkealahti supergroup 55 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00/

myhdfsstream9-0.txt

xd:>hadoop fs cat /xd/myhdfsstream9/1970/01/10/00/myhdfsstream9-0.txt

1970-01-10

1970-01-10

1970-01-10

1970-01-10

HDFS with Options

The hdfs sink has the following options:

closeTimeout
timeout in ms, regardless of activity, after which file will be automatically closed (long, default: 0)

codec
compression codec alias name (gzip, snappy, bzip2, lzo, or slzo) (String, default: ``)

directory
where to output the files in the Hadoop FileSystem (String, default: /xd/<stream name>)

fileExtension
the base filename extension to use for the created files (String, default: txt)

fileName
the base filename to use for the created files (String, default: <stream name>)

fileOpenAttempts
maximum number of file open attempts to find a path (int, default: 10)

fileUuid
whether file name should contain uuid (boolean, default: false)

Spring XD Guide

1.2.0.RC1 Spring XD 183

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

idleTimeout
inactivity timeout in ms after which file will be automatically closed (long, default: 0)

inUsePrefix
prefix for files currently being written (String, default: ``)

inUseSuffix
suffix for files currently being written (String, default: .tmp)

overwrite
whether writer is allowed to overwrite files in Hadoop FileSystem (boolean, default: false)

partitionPath
a SpEL expression defining the partition path (String, default: ``)

rollover
threshold in bytes when file will be automatically rolled over (String, default: 1G)

Note

In the context of the fileOpenAttempts option, attempt is either one rollover request or failed
stream open request for a path (if another writer came up with a same path and already opened it).

Partition Path Expression

SpEL expression is evaluated against a Spring Messaging Message passed internally into a HDFS
writer. This allows expression to use headers and payload from that message. While you could do a
custom processing within a stream and add custom headers, timestamp is always going to be there.
Data to be written is then available in a payload.

Accessing Properties

Using a payload simply returns whatever is currently being written. Access to headers is via
headers property. Any other property is automatically resolved from headers if found. For example
headers.timestamp is equivalent to timestamp.

Custom Methods

Addition to a normal SpEL functionality, few custom methods has been added to make it easier to build
partition paths. These custom methods can be used to work with a normal partition concepts like date
formatting, lists, ranges and hashes.

path

path(String... paths)

Concatenates paths together with a delimiter /. This method can be used to make the expression less
verbose than using a native SpEL functionality to combine path parts together. To create a path part1/
part2, expression 'part1' + '/' + 'part2' is equivalent to path('part1','part2').

Parameters

paths
Any number of path parts

Spring XD Guide

1.2.0.RC1 Spring XD 184

Return Value. Concatenated value of paths delimited with /.

dateFormat

dateFormat(String pattern)

dateFormat(String pattern, Long epoch)

dateFormat(String pattern, Date date)

dateFormat(String pattern, String datestring)

dateFormat(String pattern, String datestring, String dateformat)

Creates a path using date formatting. Internally this method delegates into SimpleDateFormat and
needs a Date and a pattern. On default if no parameter used for conversion is given, timestamp
is expected. Effectively dateFormat('yyyy') equals to dateFormat('yyyy', timestamp) or
dateFormat('yyyy', headers.timestamp).

Method signature with three parameters can be used to create a custom Date object which is then
passed to SimpleDateFormat conversion using a dateformat pattern. This is useful in use cases
where partition should be based on a date or time string found from a payload content itself. Default
dateformat pattern if omitted is yyyy-MM-dd.

Parameters

pattern
Pattern compatible with SimpleDateFormat to produce a final output.

epoch
Timestamp as Long which is converted into a Date.

date
A Date to be formatted.

dateformat
Secondary pattern to convert datestring into a Date.

datestring
Date as a String

Return Value. A path part representation which can be a simple file or directory name or a directory
structure.

list

list(Object source, List<List<Object>> lists)

Creates a partition path part by matching a source against a lists denoted by lists.

Lets assume that data is being written and it’s possible to extrace an appid

either from headers or payload. We can automatically do a list based partition
by using a partition method list(headers.appid,{{'1TO3','APP1','APP2','APP3'},

{'4TO6','APP4','APP5','APP6'}}). This method would create three partitions, 1TO3_list,
4TO6_list and list. Latter is used if no match is found from partition lists passed to lists.

Parameters

source
An Object to be matched against lists.

Spring XD Guide

1.2.0.RC1 Spring XD 185

lists
A definition of list of lists.

Return Value. A path part prefixed with a matched key i.e. XXX_list or list if no match.

range

range(Object source, List<Object> list)

Creates a partition path part by matching a source against a list denoted by list using a simple binary
search.

The partition method takes a source as first argument and list as a second argument. Behind the
scenes this is using jvm’s binarySearch which works on an Object level so we can pass in anything.
Remember that meaningful range match only works if passed in Object and types in list are of same
type like Integer. Range is defined by a binarySearch itself so mostly it is to match against an upper
bound except the last range in a list. Having a list of {1000,3000,5000} means that everything above
3000 will be matched with 5000. If that is an issue then simply adding Integer.MAX_VALUE as last
range would overflow everything above 5000 into a new partition. Created partitions would then be
1000_range, 3000_range and 5000_range.

Parameters

source
An Object to be matched against list.

list
A definition of list.

Return Value. A path part prefixed with a matched key i.e. XXX_range.

hash

hash(Object source, int bucketcount)

Creates a partition path part by calculating hashkey using source`s hashCode and bucketcount.
Using a partition method hash(timestamp,2) would then create partitions named 0_hash, 1_hash
and 2_hash. Number suffixed with _hash is simply calculated using Object.hashCode() %

bucketcount.

Parameters

source
An Object which hashCode will be used.

bucketcount
A number of buckets

Return Value. A path part prefixed with a hash key i.e. XXX_hash.

13.6 HDFS Dataset (Avro/Parquet)

The HDFS Dataset sink is used to store Java classes that are sent as the payload on the stream. It uses
the Kite SDK Data Module's Dataset implementation to store the payload data serialized in either Avro
or Parquet format. The Avro schema is generated from the Java class that is persisted. For Parquet the

http://kitesdk.org/

Spring XD Guide

1.2.0.RC1 Spring XD 186

Java object must follow JavaBean conventions with properties for any fields to be persisted. The fields
can only be simple scalar values like Strings and numbers.

The HDFS Dataset sink requires that you have a Hadoop installation that is based on Hadoop v2
(Hadoop 2.2.0, Pivotal HD 1.0, Cloudera CDH4 or Hortonworks HDP 2.0), see using Hadoop for more
information on how to start Spring XD to target a specific distribution.

Once Hadoop is up and running, you can then use the hdfs-dataset sink when creating a stream

xd:>stream create --name mydataset --definition "time | hdfs-dataset --batchSize=20" --deploy

In the above example, we’ve scheduled time source to automatically send ticks to the hdfs-dataset
sink once every second. The data will be stored in a directory named /xd/<streamname> by default, so
in this example it will be /xd/mydataset. You can change this by supplying a --basePath parameter
and/or --namespace parameter. The --basePath defaults to /xd and the --namespace defaults
to <streamname>. The Avro format is used by default and the data files are stored in a sub-directory
named after the payload Java class. In this example the stream payload is a String so the name of
the data sub-directory is string. If you have multiple Java classes as payloads, each class will get
its own sub-directory.

Let the stream run for a minute or so. You can then list the contents of the hadoop filesystem using the
shell’s built in hadoop fs commands. You will first need to configure the shell to point to your name node
using the hadoop config command. We use the hdfs protocol is to access the hadoop name node.

xd:>hadoop config fs --namenode hdfs://localhost:8020

Then list the contents of the stream’s data directory.

xd:>hadoop fs ls /xd/mydataset/string

Found 3 items

drwxr-xr-x - trisberg supergroup 0 2013-12-19 12:23 /xd/mydataset/string/.metadata

-rw-r--r-- 3 trisberg supergroup 202 2013-12-19 12:23 /xd/mydataset/

string/1387473825754-63.avro

-rw-r--r-- 3 trisberg supergroup 216 2013-12-19 12:24 /xd/mydataset/

string/1387473846708-80.avro

You can see that the sink has created two files containing the first two batches of 20 stream payloads
each. There is also a .metadata directory created that contains the metadata that the Kite SDK Dataset
implementation uses as well as the generated Avro schema for the persisted type.

xd:>hadoop fs ls /xd/mydataset/string/.metadata

Found 2 items

-rw-r--r-- 3 trisberg supergroup 136 2013-12-19 12:23 /xd/mydataset/string/.metadata/

descriptor.properties

-rw-r--r-- 3 trisberg supergroup 8 2013-12-19 12:23 /xd/mydataset/string/.metadata/

schema.avsc

Now destroy the stream.

xd:>stream destroy --name mydataset

HDFS Dataset with Options

The hdfs-dataset sink has the following options:

allowNullValues
whether null property values are allowed, if set to true then schema will use UNION for each field
(boolean, default: false)

Spring XD Guide

1.2.0.RC1 Spring XD 187

basePath
the base directory path where the files will be written in the Hadoop FileSystem (String, default:
/xd)

batchSize
threshold in number of messages when file will be automatically flushed and rolled over (long,
default: 10000)

compressionType
compression type name (snappy, deflate, bzip2 (avro only) or uncompressed) (String, default:
snappy)

format
the format to use, valid options are avro and parquet (String, default: avro)

fsUri
the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})

idleTimeout
idle timeout in milliseconds when Hadoop file resource is automatically closed (long, default: -1)

namespace
the sub-directory under the basePath where files will be written (String, default: <stream name>)

partitionPath
the partition path strategy to use, a list of KiteSDK partition expressions separated by a '/' symbol
(String, default: ``)

writerCacheSize
the size of the cache to be used for partition writers (10 if omitted) (int, default: -1)

About null values

If allowNullValues is set to true then each field in the generated schema will use a union of null and
the data type of the field. You can also set allowNullValues to false and instead annotate fields in
a POJO using Avro’s org.apache.avro.reflect.Nullable annotation to create a schema using
a union with null for that annotated field.

About partitionPath

The partitionPath option lets you specify one or more paths that will be used to partition the files
that the data is written to based on the content of the data. You can use any of the FieldPartitioners that
are available for the Kite SDK project. We simply pass in what is specified to create the corresponding
partition strategy. You can separate multiple paths with a / character. The following partitioning functions
are available:

• year, month, day, hour, minute creates partitions based on the value of a timestamp and creates
directories named like "YEAR=2014" (works well with fields of datatype long)

• specify function plus field name like: year('timestamp')

• dateformat creates partitions based on a timestamp and a dateformat expression provided - creates
directories based on the name provided (works well with fields of datatype long)

• specify function plus field name, a name for the partition and the date format like:
dateFormat('timestamp', 'Y-M', 'yyyyMM')

http://kitesdk.org/docs/0.11.0/apidocs/org/kitesdk/data/FieldPartitioner.html

Spring XD Guide

1.2.0.RC1 Spring XD 188

• range creates partitions based on a field value and the upper bounds for each bucket that is specified
(works well with fields of datatype int and string)

• specify function plus field name and the upper bounds for each partition bucket
like: range('age',20,50,80,T(Integer).MAX_VALUE) (Note that you can use SpEL
expressions like we just did for the Integer.MAX_VALUE)

• identity creates partitions based on the exact value of a field (works well with fields of datatype string,
long and int)

• specify function plus field name, a name for the partition, the type of the field (String or Integer) and
the number of values/buckets for the partition like: identity('region','R',T(String),10)

• hash creates partitions based on the hash calculated from the value of a field divided into a number
of buckets that is specified (works well with all data types)

• specify function plus field name and number of buckets like: hash('lastname',10)

Multiple expressions can be specified by separating them with a / like:
identity('region','R',T(String),10)/year('timestamp')/month('timestamp')

13.7 JDBC

The JDBC sink can be used to insert message payload data into a relational database table. By default
it inserts the entire payload into a table named after the stream name in the HSQLDB database that XD
uses to store metadata for batch jobs. To alter this behavior, the jdbc sink accepts several options that
you can pass using the --foo=bar notation in the stream, or change globally. There is also a config/
init_db.sql file that contains the SQL statements used to initialize the database table. You can modify
this file if you’d like to create a table with your specific layout when the sink starts. You should also
change the initializeDatabase property to true to have this script execute when the sink starts up.

The payload data will be inserted as-is if the names option is set to payload. This is the default behavior.
If you specify any other column names the payload data will be assumed to be a JSON document that
will be converted to a hash map. This hash map will be used to populate the data values for the SQL
insert statement. A matching of column names with underscores like user_name will match onto camel
case style keys like userName in the hash map. There will be one insert statement executed for each
message.

To create a stream using a jdbc sink relying on all defaults you would use a command like

xd:> stream create --name mydata --definition "time | jdbc --initializeDatabase=true" --deploy

This will insert the time messages into a payload column in a table named mydata. Since the default
is using the XD batch metadata HSQLDB database we can connect to this database instance from an
external tool. After we let the stream run for a little while, we can connect to the database and look at
the data stored in the database.

You can query the database with your favorite SQL tool using the following database URL:
jdbc:hsqldb:hsql://localhost:9101/xdjob with sa as the user name and a blank password.
You can also use the HSQL provided SQL Tool (download from HSQLDB) to run a quick query from
the command line:

$ java -cp ~/Downloads/hsqldb-2.3.0/hsqldb/lib/sqltool.jar org.hsqldb.cmdline.SqlTool --inlineRc

 url=jdbc:hsqldb:hsql://localhost:9101/xdjob,user=sa,password= --sql "select payload from mydata;"

http://hsqldb.org/

Spring XD Guide

1.2.0.RC1 Spring XD 189

This should result in something similar to the following output:

2014-01-06 09:33:25

2014-01-06 09:33:26

2014-01-06 09:33:27

2014-01-06 09:33:28

2014-01-06 09:33:29

2014-01-06 09:33:30

2014-01-06 09:33:31

2014-01-06 09:33:32

2014-01-06 09:33:33

2014-01-06 09:33:34

2014-01-06 09:33:35

2014-01-06 09:33:36

2014-01-06 09:33:37

Now we can destroy the stream using:

xd:> stream destroy --name mydata

JDBC with Options

The jdbc sink has the following options:

abandonWhenPercentageFull
connections that have timed out wont get closed and reported up unless the number of connections
in use are above the percentage (int, default: 0)

alternateUsernameAllowed
uses an alternate user name if connection fails (boolean, default: false)

columns
the database columns to map the data to (String, default: payload)

connectionProperties
connection properties that will be sent to our JDBC driver when establishing new connections
(String, no default)

driverClassName
the JDBC driver to use (String, no default)

fairQueue
set to true if you wish that calls to getConnection should be treated fairly in a true FIFO fashion
(boolean, default: true)

initSQL
custom query to be run when a connection is first created (String, no default)

initialSize
initial number of connections that are created when the pool is started (int, default: 0)

initializeDatabase
whether the database initialization script should be run (boolean, default: false)

initializerScript
the name of the SQL script (in /config) to run if 'initializeDatabase' is set (String, default:
init_db.sql)

Spring XD Guide

1.2.0.RC1 Spring XD 190

jdbcInterceptors
semicolon separated list of classnames extending org.apache.tomcat.jdbc.pool.JdbcInterceptor
(String, no default)

jmxEnabled
register the pool with JMX or not (boolean, default: true)

logAbandoned
flag to log stack traces for application code which abandoned a Connection (boolean, default:
false)

maxActive
maximum number of active connections that can be allocated from this pool at the same time (int,
default: 100)

maxAge
time in milliseconds to keep this connection (int, default: 0)

maxIdle
maximum number of connections that should be kept in the pool at all times (int, default: 100)

maxWait
maximum number of milliseconds that the pool will wait for a connection (int, default: 30000)

minEvictableIdleTimeMillis
minimum amount of time an object may sit idle in the pool before it is eligible for eviction (int, default:
60000)

minIdle
minimum number of established connections that should be kept in the pool at all times (int, default:
10)

password
the JDBC password (Password, no default)

removeAbandoned
flag to remove abandoned connections if they exceed the removeAbandonedTimout (boolean,
default: false)

removeAbandonedTimeout
timeout in seconds before an abandoned connection can be removed (int, default: 60)

suspectTimeout
this simply logs the warning after timeout, connection remains (int, default: 0)

tableName
the database table to which the data will be written (String, default: <stream name>)

testOnBorrow
indication of whether objects will be validated before being borrowed from the pool (boolean,
default: false)

testOnReturn
indication of whether objects will be validated before being returned to the pool (boolean, default:
false)

Spring XD Guide

1.2.0.RC1 Spring XD 191

testWhileIdle
indication of whether objects will be validated by the idle object evictor (boolean, default: false)

timeBetweenEvictionRunsMillis
number of milliseconds to sleep between runs of the idle connection validation/cleaner thread (int,
default: 5000)

url
the JDBC URL for the database (String, no default)

useEquals
true if you wish the ProxyConnection class to use String.equals (boolean, default: true)

username
the JDBC username (String, no default)

validationInterval
avoid excess validation, only run validation at most at this frequency - time in milliseconds (long,
default: 30000)

validationQuery
sql query that will be used to validate connections from this pool (String, no default)

validatorClassName
name of a class which implements the org.apache.tomcat.jdbc.pool.Validator (String, no default)

Note

To include the whole message into a single column, use payload (the default) for the columns
option

Tip

The connection pool settings for xd are located in servers.yml (i.e. spring.datasource.*)

13.8 GPFDIST

The gpfdist sink allows you to stream data in parallel to either Pivotal Greenplum DB or Pivotal HAWQ.
Internally, this sink creates a custom http listener that supports the gpfdist protcol and schedules a
task that orchestrates a gploadd session in the same way it is done natively in Greenplum.

No data is written into temporary files and all data is kept in stream buffers waiting to get inserted into
Greenplum DB or HAWQ. If there are no existing load sessions from Greenplum, the sink will block until
such sessions are established.

Example usage

The load-generator-gpfdist source can be used to send dummy test data to the gpfdist sink.

Using psql, create the following table with a simple schema that matches the data produced by the
load-generator-string source, two integer values, a producer ID and a timestamp separated by
a tab.

https://github.com/spring-projects/spring-xd-modules/tree/master/load-generator-gpfdist-source

Spring XD Guide

1.2.0.RC1 Spring XD 192

create table xdsink (date integer, time integer) distributed randomly;

Now create the stream definition and deploy. You should ensure that your pg_hba.conf (e.g. /data/
master/gpsne-1/pg_hba.conf) is configured to allow a connection from your host where you are running
the gpfdist sink. (an entry such as host all gpadmin 192.168.70.128/32 trust)

xd:>stream create --name gpfdiststream --definition "load-generator-gpfdist --messageCount=10000000 --

producers=1 --recordType=counter | gpfdist --dbHost=192.168.70.138 --table=xdsink --batchTimeout=5 --

batchCount=1000 --batchPeriod=0 --flushCount=200 --flushTime=2 --rateInterval=1000000" --deploy

Created and deployed new stream 'gpfdiststream'

In this XD stream we send 10M messages from the load-generator-string source to the gpfdist
sink. We roughly keep load session alive for 5 seconds while flushing data after 2s or 200 entries which
ever comes first and sleep 0s in between load sessions.

You will see log output (you will probably need to set the log level of the package
log4j.logger.org.springframework.xd.greenplum to INFO.)

2015-05-14 22:48:23,669 1.2.0.SNAP INFO pool-14-thread-1 gpfdist.GPFDistMessageHandler - METER: 1

 minute rate = 200000.0 mean rate = 269618.7284878825

2015-05-14 22:48:25,495 1.2.0.SNAP INFO sqlTaskScheduler-1 support.CleanableJdbcOperations - DROP

 EXTERNAL TABLE xdsink_ext_fabcf3bb_c514_49ca_bfd6_cacb009463dc

2015-05-14 22:48:25,498 1.2.0.SNAP INFO sqlTaskScheduler-1 support.CleanableJdbcOperations - CREATE

 READABLE EXTERNAL TABLE xdsink_ext_ae89e85d_eb65_4e11_ad72_4b8302086ebd (LIKE xdsink) LOCAT

gpfdist sink currently contains a throughput meter for this POC to get perf numbers. In this case it is
showing about 270K/sec messages per second to be transferred from XD into Greenplum.

Performance Notes

On a Lenovo W540, Spring XD singlenode, load-generator-string | gpfdist inserted data at
~ 540K/sec. The underlying message handler in the gpfdist sink is able to achieve ~1.2M/sec, which is
comprable to the use of the native gpload client. Additional performance optimizations when used within
an XD stream are on the roadmap. ==== Implementation Notes

Within a gpfdist sink we have a Reactor based stream where data is published from the incoming
SI channel. This channel receives data from the Message Bus. The Reactor stream is then connected
to Netty based http channel adapters so that when a new http connection is established, the Reactor
stream is flushed and balanced among existing http clients. When Greenplum does a load from an
external table, each segment will initiate a http connection and start loading data. The net effect is that
incoming data is automatically spread among the Greenplum segments.

GPFDIST with Options

The options flushCount and flushTime are used to determine when to flush data that is buffered
in an internal Reactor stream to the http connection. Data is flushed based on if the count value has
been reached or the time specified has elapsed. Note that with too high a value, memory consumption
will go up. Too small a value combined with a low ingestion rate will result in data being inserted into
the database less frequently.

batchCount defines the maximum count of aggregated windows the client takes before the internal
Reactor stream and http channel is closed.

batchTimeout defines how many seconds each http connection should be kept alive if no data is
streamed to a client. Use this together with batchCount to estimate how long each loading session
should last.

http://projectreactor.io/docs/reference/streams.html#basics

Spring XD Guide

1.2.0.RC1 Spring XD 193

batchPeriod defines how many seconds a task running load operation should sleep in between a
loads.

delimiter is used to postfix incoming data with a line termination because Greenplum expects line
terminated data.

controlFile can be used to introduce more parameters for a load operation. For simple use cases,
the table property can be used.

rateInterval if set, enables rate logging passing through sink.

The gpfdist sink has the following options:

batchCount
batch count (int, default: 100)

batchPeriod
batch period (int, default: 10)

batchTimeout
batch timeout (int, default: 4)

controlFile
path to yaml control file (String, no default)

dbHost
database host (String, default: localhost)

dbName
database name (String, default: gpadmin)

dbPassword
database password (String, default: gpadmin)

dbPort
database port (int, default: 5432)

dbUser
database user (String, default: gpadmin)

delimiter
data line delimiter (String, default: ` `)

flushCount
flush item count (int, default: 100)

flushTime
flush item time (int, default: 2)

port
gpfdist listen port (int, default: 0)

rateInterval
enable transfer rate interval (int, default: 0)

Spring XD Guide

1.2.0.RC1 Spring XD 194

table
target database table (String, no default)

13.9 TCP Sink

The TCP Sink provides for outbound messaging over TCP.

The following examples use netcat (linux) to receive the data; the equivalent on Mac OSX is nc.

First, start a netcat to receive the data, and background it

$ netcat -l 1234 &

Now, configure a stream

xd:> stream create --name tcptest --definition "time --fixedDelay=3 | tcp" --deploy

This sends the time, every 3 seconds to the default tcp Sink, which connects to port 1234 on
localhost.

$ Thu May 30 10:28:21 EDT 2013

Thu May 30 10:28:24 EDT 2013

Thu May 30 10:28:27 EDT 2013

Thu May 30 10:28:30 EDT 2013

Thu May 30 10:28:33 EDT 2013

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of encoders are available, the default being CRLF.

Destroy the stream; netcat will terminate when the TCP Sink disconnects.

http://localhost:8080> stream destroy --name tcptest

TCP with Options

The tcp sink has the following options:

bufferSize
the size of the buffer (bytes) to use when encoding/decoding (int, default: 2048)

charset
the charset used when converting from String to bytes (String, default: UTF-8)

close
whether to close the socket after each message (boolean, default: false)

encoder
the encoder to use when sending messages (Encoding, default: CRLF, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

host
the remote host to connect to (String, default: localhost)

nio
whether or not to use NIO (boolean, default: false)

Spring XD Guide

1.2.0.RC1 Spring XD 195

port
the port on the remote host to connect to (int, default: 1234)

reverseLookup
perform a reverse DNS lookup on the remote IP Address (boolean, default: false)

socketTimeout
the timeout (ms) before closing the socket when no data is received (int, default: 120000)

useDirectBuffers
whether or not to use direct buffers (boolean, default: false)

Note

With the default retry configuration, the attempts will be made after 0, 2, 4, 8, and 16 seconds.

Available Encoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

An Additional Example

Start netcat in the background and redirect the output to a file foo

$ netcat -l 1235 > foo &

Create the stream, using the L4 encoder

xd:> stream create --name tcptest --definition "time --interval=3 | tcp --encoder=L4 --port=1235" --

deploy

Spring XD Guide

1.2.0.RC1 Spring XD 196

Destroy the stream

http://localhost:8080> stream destroy --name tcptest

Check the output

$ hexdump -C foo

00000000 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000010 30 3a 34 37 3a 30 33 20 45 44 54 20 32 30 31 33 |0:47:03 EDT 2013|

00000020 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000030 30 3a 34 37 3a 30 36 20 45 44 54 20 32 30 31 33 |0:47:06 EDT 2013|

00000040 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000050 30 3a 34 37 3a 30 39 20 45 44 54 20 32 30 31 33 |0:47:09 EDT 2013|

Note the 4 byte length field preceding the data generated by the L4 encoder.

13.10 Shell Sink

The shell sink forks an external process by running a shell command to launch a process written in
any language. The process should implement a continual loop that waits for and consumes input from
stdin. The process will be destroyed when the stream is undeployed. For example, it is possible to
invoke a Python script within a stream in this manner. Since the shell sink relies on low-level stream
processing there are some additional requirements:

• Input data is expected to be a String, the charset is configurable.

• Anything written to stderr will be logged as an ERROR in Spring XD but will not terminate the stream.

• All messages must be terminated using the configured encoder (CRLF or "\r\n" is the default) for the
module and must not exceed the configured bufferSize (see the detailed description of encoders
in the TCP section).

• Any external software required to run the script must be installed on the container node to which the
module is deployed.

Here is a simple template for a Python script that consumes input:

#sink.py

import sys

while True:

 try:

 data = raw_input()

 if data:

 #insert a function call here, data is a string.

 except EOFError:

 break

Note

Spring XD provides additional Python programming support for handling basic stream processing,
as shown above, see creating a Python module.

The shell sink has the following options:

bufferSize
the size of the buffer (bytes) to use when encoding/decoding (int, default: 2048)

Spring XD Guide

1.2.0.RC1 Spring XD 197

charset
the charset used when converting from String to bytes (String, default: UTF-8)

command
the shell command (String, no default)

encoder
the encoder to use when sending messages (Encoding, default: CRLF, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

environment
additional process environment variables as comma delimited name-value pairs (String, no
default)

redirectErrorStream
redirects stderr to stdout (boolean, default: false)

workingDir
the process working directory (String, no default)

13.11 Mongo

The Mongo sink writes into a Mongo collection. Here is a simple example

xd:>stream create --name attendees --definition "http | mongodb --databaseName=test --

collectionName=names" --deploy

Then,

xd:>http post --data {"firstName":"mark"}

In the mongo console you will see the document stored

> use test

switched to db test

> show collections

names

system.indexes

> db.names.find()

{ "_id" : ObjectId("53c93bc324ac76925a77b9df"), "firstName" : "mark" }

The mongodb sink has the following options:

authenticationDatabaseName
the MongoDB authentication database used for connecting (String, default: ``)

collectionName
the MongoDB collection to store (String, default: <stream name>)

databaseName
the MongoDB database name (String, default: xd)

host
the MongoDB host to connect to (String, default: localhost)

password
the MongoDB password used for connecting (String, default: ``)

Spring XD Guide

1.2.0.RC1 Spring XD 198

port
the MongoDB port to connect to (int, default: 27017)

username
the MongoDB username used for connecting (String, default: ``)

writeConcern
the default MongoDB write concern to use (WriteConcern, default: SAFE, possible values:
NONE,NORMAL,SAFE,FSYNC_SAFE,REPLICAS_SAFE,JOURNAL_SAFE,MAJORITY)

13.12 Mail

The "mail" sink allows sending of messages as emails, leveraging Spring Integration mail-sending
channel adapter. Please refer to Spring Integration documentation for the details, but in a nutshell, the
sink is able to handle String, byte[] and MimeMessage messages out of the box.

Here is a simple example of how the mail module is used:

xd:> stream create mystream --definition "http | mail --to='\"your.email@gmail.com\"' --

host=your.imap.server --subject=payload+' world'" --deploy

Then,

xd:> http post --data Hello

You would then receive an email whose body contains "Hello" and whose subject is "Hellow world". Of
special attention here is the way you need to escape strings for most of the parameters, because they’re
actually SpEL expressions (so here for example, we used a String literal for the to parameter).

The mail sink has the following options:

bcc
the recipient(s) that should receive a blind carbon copy (SpEL) (String, default: null)

cc
the recipient(s) that should receive a carbon copy (SpEL) (String, default: null)

contentType
the content type to use when sending the email (SpEL) (String, default: null)

from
the primary recipient(s) of the email (SpEL) (String, default: null)

host
the hostname of the mail server (String, default: localhost)

password
the password to use to connect to the mail server (String, no default)

port
the port of the mail server (int, default: 25)

replyTo
the address that will become the recipient if the original recipient decides to "reply to" the email
(SpEL) (String, default: null)

Spring XD Guide

1.2.0.RC1 Spring XD 199

subject
the email subject (SpEL) (String, default: null)

to
the primary recipient(s) of the email (SpEL) (String, default: null)

username
the username to use to connect to the mail server (String, no default)

13.13 RabbitMQ

The "rabbit" sink enables outbound messaging over RabbitMQ.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name rabbittest --definition "time --interval=3 | rabbit" --deploy

This sends the time, every 3 seconds to the default (no-name) Exchange for a RabbitMQ broker running
on localhost, port 5672.

The routing key will be the name of the stream by default; in this case: "rabbittest". Since the default
Exchange is a direct-exchange to which all Queues are bound with the Queue name as the binding key,
all messages sent via this sink will be passed to a Queue named "rabbittest", if one exists. We do not
create that Queue automatically. However, you can easily create a Queue using the RabbitMQ web UI.
Then, using that same UI, you can navigate to the "rabbittest" Queue and click the "Get Message(s)"
button to pop messages off of that Queue (you can choose whether to requeue those messages).

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name rabbittest

RabbitMQ with Options

The rabbit sink has the following options:

addresses
a comma separated list of 'host[:port]' addresses (String, default:
${spring.rabbitmq.addresses})

converterClass
the class name of the message converter (String, default:
org.springframework.amqp.support.converter.SimpleMessageConverter)

deliveryMode
the delivery mode (PERSISTENT, NON_PERSISTENT) (String, default: PERSISTENT)

exchange
the Exchange on the RabbitMQ broker to which messages should be sent (String, default: ``)

mappedRequestHeaders
request message header names to be propagated to/from the adpater/gateway (String, default:
STANDARD_REQUEST_HEADERS)

Spring XD Guide

1.2.0.RC1 Spring XD 200

password
the password to use to connect to the broker (String, default: ${spring.rabbitmq.password})

routingKey
the routing key to be passed with the message, as a SpEL expression (String, default: '<stream
name>')

sslPropertiesLocation
resource containing SSL properties (String, default: ${spring.rabbitmq.sslProperties})

useSSL
true if SSL should be used for the connection (String, default: ${spring.rabbitmq.useSSL})

username
the username to use to connect to the broker (String, default:
${spring.rabbitmq.username})

vhost
the RabbitMQ virtual host to use (String, default: ${spring.rabbitmq.virtual_host})

Note

Please be aware that the routingKey option is actually a SpEL expression. Hence if a simple,
constant, string literal is to be used, make sure to use something like this:

xd:> stream create rabbitSinkStream --definition "http | rabbit --routingKey='\"myqueue\"'" --

deploy

See the RabbitMQ MessageBus Documentation for more information about SSL configuration.

13.14 GemFire Server

Currently XD supports GemFire’s client-server topology. A sink that writes data to a GemFire cache
requires at least one cache server to be running in a separate process and may also be configured to
use a Locator. While Gemfire configuration is outside of the scope of this document, details are covered
in the GemFire Product documentation. The XD distribution includes a standalone GemFire server
executable suitable for development and test purposes and bootstrapped using a Spring configuration
file provided as a command line argument. The GemFire jar is distributed freely under GemFire’s
development license and is subject to the license’s terms and conditions. Sink modules provided with
the XD distrubution that write data to GemFire create a client cache and client region. No data is cached
on the client.

Launching the XD GemFire Server

To start the GemFire cache server GemFire Server included in the Spring XD distribution, go to the
XD install directory:

$cd gemfire/bin

$./gemfire-server ../config/cq-demo.xml

The command line argument is the path of a Spring Data Gemfire configuration file with including
a configured cache server and one or more regions. A sample cache configuration is provided cq-
demo.xml located in the config directory. Note that Spring interprets the path as a relative path unless

http://docs.gopivotal.com/gemfire/index.html
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD Guide

1.2.0.RC1 Spring XD 201

it is explicitly preceded by file:. The sample configuration starts a server on port 40404 and creates
a region named Stocks.

Gemfire sinks

There are 2 implementations of the gemfire sink: gemfire-server and gemfire-json-server. They are
identical except the latter converts JSON string payloads to a JSON document format proprietary to
GemFire and provides JSON field access and query capabilities. If you are not using JSON, the gemfire-
server module will write the payload using java serialization to the configured region. Both modules
accept the same options.

Tip

If native gemfire properties are required to configure the client cache, e.g., for security, place a
gemfire.properties file in $XD_HOME/config.

The gemfire-server sink has the following options:

host
host name of the cache server or locator (if useLocator=true). May be a comma delimited list (String,
no default)

keyExpression
a SpEL expression which is evaluated to create a cache key (String, default: '<stream name>')

port
port of the cache server or locator (if useLocator=true). May be a comma delimited list (String, no
default)

regionName
name of the region to use when storing data (String, default: <stream name>)

useLocator
indicates whether a locator is used to access the cache server (boolean, default: false)

Tip

The keyExpression, as its name suggests, is a SpEL. Typically, the key value is derived from
the payload. The default of '<streamname>' (mind the quotes), will overwrite the same entry
for every message received on the stream.

Note

The useLocator option is intended for integration with an existing GemFire installation in which
the cache servers are configured to use locators in accordance with best practice. GemFire
supports configuration of multiple locators (or direct server connections) and this is specified by
supplying comma-delimited values for the host and port options. You may specify a single value
for either of these options otherwise each value must contain the same size list. The following are
examples are valid for multiple connection addresses:

gemfire-server --host=myhost --port=10334,10335

gemfire server --host=myhost1,myhost2 --port=10334

gemfire server --host=myhost1,myhost2,myhost3 --port=10334,10335,10336

Spring XD Guide

1.2.0.RC1 Spring XD 202

The last example creates connections to myhost1:10334, myhost2:10335, myhost3:10336

Note

You may also configure default Gemfire connection settings for all gemfire modules in config
\modules.yml:

gemfire:

 useLocator: true

 host: myhost1,myhost2

 port: 10334

Example

Suppose we have a JSON document containing a stock price:

{"symbol":"FAKE", "price":73}

We want this to be cached using the stock symbol as the key. The stream definition is:

http | gemfire-json-server --regionName=Stocks --keyExpression=payload.getField('symbol')

The keyExpression is a SpEL expression that depends on the payload type. In this case,
com.gemstone.org.json.JSONObject. JSONObject which provides the getField method. To run this
example:

xd:> stream create --name stocks --definition "http --port=9090 | gemfire-json-server --

regionName=Stocks --keyExpression=payload.getField('symbol')" --deploy

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":73}

This will write an entry to the GemFire Stocks region with the key FAKE. Please do not put spaces when
separating the JSON key-value pairs, only a comma.

You should see a message on STDOUT for the process running the GemFire server like:

INFO [LoggingCacheListener] - updated entry FAKE

Tip

If you are deploying on Java 7 or earlier and need to deploy more than 4 Gemfire modules, be sure
to increase the permsize of the singlenode or container. i.e. JAVA_OPTS="-XX:PermSize=256m".

13.15 Splunk Server

A Splunk sink that writes data to a TCP Data Input type for Splunk.

Splunk sinks

The Splunk sink converts an object payload to a string using the object’s toString method and then
converts this to a SplunkEvent that is sent via TCP to Splunk.

The splunk sink has the following options:

host
the host name or IP address of the Splunk server (String, default: localhost)

http://www.splunk.com/

Spring XD Guide

1.2.0.RC1 Spring XD 203

owner
the owner of the tcpPort (String, default: admin)

password
the password associated with the username (String, default: password)

port
the TCP port number of the Splunk server (int, default: 8089)

tcpPort
the TCP port number to where XD will send the data (int, default: 9500)

username
the login name that has rights to send data to the tcpPort (String, default: admin)

How To Setup Splunk for TCP Input

1. From the Manager page select Manage Inputs link

2. Click the Add data Button

3. Click the From a TCP port link

4. TCP Port enter the port you want Splunk to monitor

5. Set Source Type select Manual

6. Source Type enter tcp-raw

7. Click Save

Example

An example stream would be to take data from a twitter search and push it through to a splunk instance.

xd:> stream create --name springone2gx --definition "twittersearch --consumerKey= --consumerSecret= --

query='#LOTR' | splunk" --deploy

13.16 MQTT Sink

The mqtt sink connects to an mqtt server and publishes telemetry messages.

Options

The mqtt sink has the following options:

async
whether or not to use async sends (boolean, default: false)

charset
the charset used to convert a String payload to byte[] (String, default: UTF-8)

cleanSession
whether the client and server should remember state across restarts and reconnects (boolean,
default: true)

clientId
identifies the client (String, default: xd.mqtt.client.id.snk)

Spring XD Guide

1.2.0.RC1 Spring XD 204

connectionTimeout
the connection timeout in seconds (int, default: 30)

keepAliveInterval
the ping interval in seconds (int, default: 60)

password
the password to use when connecting to the broker (String, default: guest)

persistence
'memory' or 'file' (String, default: memory)

persistenceDirectory
file location when using 'file' persistence (String, default: /tmp/paho)

qos
the quality of service to use (int, default: 1)

retained
whether to set the 'retained' flag (boolean, default: false)

topic
the topic to which the sink will publish (String, default: xd.mqtt.test)

url
location of the mqtt broker(s) (comma-delimited list) (String, default: tcp://localhost:1883)

username
the username to use when connecting to the broker (String, default: guest)

Note

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost.

13.17 Dynamic Router

The Dynamic Router support allows for routing Spring XD messages to named channels based on the
evaluation of SpEL expressions or Groovy Scripts.

SpEL-based Routing

In the following example, 2 streams are created that listen for message on the foo and the bar channel.
Furthermore, we create a stream that receives messages via HTTP and then delegates the received
messages to a router:

xd:>stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log" --deploy

Created new stream 'f'

xd:>stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log" --deploy

Created new stream 'b'

xd:>stream create r --definition "http | router --

expression=payload.contains('a')?'queue:foo':'queue:bar'" --deploy

Created new stream 'r'

Now we make 2 requests to the HTTP source:

Spring XD Guide

1.2.0.RC1 Spring XD 205

xd:>http post --data "a"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 a

> 200 OK

xd:>http post --data "b"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 b

> 200 OK

In the server log you should see the following output:

11:54:19,868 WARN ThreadPoolTaskScheduler-1 sink.f:145 - a-foo

11:54:25,669 WARN ThreadPoolTaskScheduler-1 sink.b:145 - b-bar

For more information, please also consult the Spring Integration
Reference manual: http://static.springsource.org/spring-integration/reference/html/messaging-routing-
chapter.html#router-namespace particularly the section "Routers and the Spring Expression Language
(SpEL)".

Groovy-based Routing

Instead of SpEL expressions, Groovy scripts can also be used. Let’s create a Groovy script in the file
system at "/my/path/router.groovy"

println("Groovy processing payload '" + payload +"'");

if (payload.contains('a')) {

 return ":foo"

}

else {

 return ":bar"

}

Now we create the following streams:

xd:>stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --deploy

Created new stream 'f'

xd:>stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --deploy

Created new stream 'b'

xd:>stream create g --definition "http | router --script='file:/my/path/router.groovy'" --deploy

Now post some data to the HTTP source:

xd:>http post --data "a"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 a

> 200 OK

xd:>http post --data "b"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 b

> 200 OK

In the server log you should see the following output:

Groovy processing payload 'a'

11:29:27,274 WARN ThreadPoolTaskScheduler-1 sink.f:145 - a-foo

Groovy processing payload 'b'

11:34:09,797 WARN ThreadPoolTaskScheduler-1 sink.b:145 - b-bar

Note

You can also use Groovy scripts located on your classpath by specifying:

http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace
http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace

Spring XD Guide

1.2.0.RC1 Spring XD 206

--script='org/my/package/router.groovy'

If you want to pass variable values to your script, you can statically bind values using the variables
option or optionally pass the path to a properties file containing the bindings using the propertiesLocation
option. All properties in the file will be made available to the script as variables. You may specify both
variables and propertiesLocation, in which case any duplicate values provided as variables override
values provided in propertiesLocation. Note that payload and headers are implicitly bound to give you
access to the data contained in a message.

For more information, see the Spring Integration Reference manual: "Groovy support" http://
static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy

Options

The router sink has the following options:

expression
a SpEL expression used to transform messages (String, default: payload.toString())

propertiesLocation
the path of a properties file containing custom script variable bindings (String, no default)

script
reference to a script used to process messages (String, no default)

variables
variable bindings as a comma delimited string of name-value pairs, e.g., 'foo=bar,baz=car' (String,
no default)

Tip

If the script option is set, the script is checked for updates every 60 seconds.

13.18 Null Sink

Null sink can be useful when the main stream isn’t focused on stream destination but the tap streams
are used for analytics etc., It is also useful to iteratively add in steps to a stream without worrying about
having to land data anywhere.

For example,

xd:>stream create nullStream --definition "http | null" --deploy

Created and deployed new stream 'nullStream'

xd:>stream create tap1 --definition "tap:stream:nullStream > counter" --deploy

Created and deployed new stream 'tap1'

In the above, the null sink can be useful as we can create as many number of tap streams off the main
stream while we set the main stream sink as null.

13.19 Redis

Redis sink can be used to ingest data into redis store. You can choose queue, topic or key with
selcted collection type to point to a specific data store.

http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy
http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy

Spring XD Guide

1.2.0.RC1 Spring XD 207

For example,

xd:>stream create store-into-redis --definition "http | redis --queue=myList" --deploy

xd:>Created and deployed new stream 'store-into-redis'

Options

The redis sink has the following options:

collectionType
the collection type to use for the given key (CollectionType, default: LIST, possible values:
LIST,SET,ZSET,MAP,PROPERTIES)

database
database index used by the connection factory (int, default: 0)

hostname
redis host name (String, default: localhost)

key
name for the key (String, no default)

keyExpression
a SpEL expression to use for keyExpression (String, no default)

maxActive
max number of connections that can be allocated by the pool at a given time; negative value for
no limit (int, default: 8)

maxIdle
max number of idle connections in the pool; a negative value indicates an unlimited number of idle
connections (int, default: 8)

maxWait
max amount of time (in milliseconds) a connection allocation should block before throwing an
exception when the pool is exhausted; negative value to block indefinitely (int, default: -1)

minIdle
target for the minimum number of idle connections to maintain in the pool; only has an effect if it
is positive (int, default: 0)

password
redis password (String, default: ``)

port
redis port (int, default: 6379)

queue
name for the queue (String, no default)

queueExpression
a SpEL expression to use for queue (String, no default)

sentinelMaster
name of Redis master server (String, default: ``)

Spring XD Guide

1.2.0.RC1 Spring XD 208

sentinelNodes
comma-separated list of host:port pairs (String, default: ``)

topic
name for the topic (String, no default)

topicExpression
a SpEL expression to use for topic (String, no default)

13.20 Kafka Sink

Kafka sink can be used to ingest data into a specific Kafka topic configuration.

For example,

xd:>stream create push-to-kafka --definition "http | kafka --topic=myTopic" --deploy

xd:>Created and deployed new stream 'push-to-kafka'

xd:>http post --data "push-messages"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 push-messages

> 200 OK

Now, the posted messages will be available on kafka topic myTopic.

The kafka sink has the following options:

ackTimeoutOnServer
the maximum amount of time the server will wait for acknowledgments from followers to meet the
acknowledgment requirements the producer has specified with the acks configuration (int, default:
30000)

batchBytes
batch size in bytes, per partition (int, default: 16384)

blockOnBufferFull
whether to block or not when the memory buffer is full (boolean, default: true)

brokerList
comma separated broker list (String, default: localhost:9092)

bufferMemory
the total bytes of memory the producer can use to buffer records waiting to be sent to the server
(int, default: 33554432)

compressionCodec
compression codec to use (String, default: none)

maxBufferTime
the amount of time, in ms that the producer will wait before sending a batch to the server (int,
default: 0)

maxRequestSize
the maximum size of a request (int, default: 1048576)

maxSendRetries
number of attempts to automatically retry a failed send request (int, default: 3)

Spring XD Guide

1.2.0.RC1 Spring XD 209

receiveBufferBytes
the size of the TCP receive buffer to use when reading data (int, default: 32768)

reconnectBackoff
the amount of time to wait before attempting to reconnect to a given host when a connection fails
(long, default: 10)

requestRequiredAck
producer request acknowledgement mode (int, default: 0)

retryBackoff
the amount of time to wait before attempting to retry a failed produce request to a given topic partition
(long, default: 100)

sendBufferBytes
the size of the TCP send buffer to use when sending data (int, default: 131072)

topic
kafka topic name (String, default: <stream name>)

topicMetadataFetchTimeout
the maximum amount of time to block waiting for the metadata fetch to succeed (int, default: 60000)

topicMetadataRefreshInterval
the period of time in milliseconds after which a refresh of metadata is forced (int, default: 300000)

Spring XD Guide

1.2.0.RC1 Spring XD 210

14. Taps

14.1 Introduction

A Tap allows you to "listen" to data while it is processed in an existing stream and process the data in a
separate stream. The original stream is unaffected by the tap and isn’t aware of its presence, similar to
a phone wiretap. (WireTap is included in the standard catalog of EAI patterns and implemented in the
Spring Integration EAI framework used by Spring XD).

Simply put, a Tap is a stream that uses a point in another stream as a source.

Example

The following XD shell commands create a stream foo1 and a tap named foo1tap:

xd:> stream create --name foo1 --definition "time | log" --deploy

xd:> stream create --name foo1tap --definition "tap:stream:foo1 > log" --deploy

Since a tap is a type of stream, use the stream create command to create the tap. The tap source
is specified using the named channel syntax and always begins with tap:. In this case, we are tapping
the stream named foo1 specified by :stream:foo1

Note

stream: is required in this case as it is possible to tap alternate XD targets such as jobs. This
tap consumes data at the source of the target stream.

A tap can consume data from any point along the target stream’s processing pipeline. XD provides a
few ways to tap a stream after a given processor has been applied:

Example - tap after a processor has been applied

If the module name is unique in the target stream, use tap:stream:<stream_name>.<module_name>

If you have a stream called mystream, defined as

http | filter --expression=payload.startsWith('A') | transform --expression=payload.toLowerCase() | file

Create a tap after the filter is applied using

tap:stream:mystream.filter >

Example - using a label

You may also use labels to create an alias for a module and reference the label in the tap

If you have a stream called mystream, defined as

http | transform --expression=payload.toLowerCase() | flibble: transform --

expression=payload.substring(3) | file

Create a tap after the second transformer is applied using

tap:stream:mystream.flibble >

http://www.enterpriseintegrationpatterns.com/WireTap.html
http://static.springsource.org/spring-integration/reference/htmlsingle/#channel-wiretap

Spring XD Guide

1.2.0.RC1 Spring XD 211

A primary use case for a Tap is to perform realtime analytics at the same time as data is being ingested
via its primary stream. For example, consider a Stream of data that is consuming Twitter search results
and writing them to HDFS. A tap can be created before the data is written to HDFS, and the data piped
from the tap to a counter that correspond to the number of times specific hashtags were mentioned
in the tweets.

Creating a tap on a named channel, a stream whose source is a named channel, or a label is not yet
supported. This is planned for a future release.

You’ll find specific examples of creating taps on existing streams in the Analytics section.

Note

In cases where a multiple modules with the same module name, a label must be specified
on the module to be tapped. For example if you want to tap the 2nd transform: http |

transform --expression=payload.toLowerCase() | tapMe: transform --

expression=payload.substring(3) | file

14.2 Tap Lifecycle

A side effect of a stream being unaware of any taps on its pipeline is that deleting the stream will not
automatically delete the taps. The taps have to be deleted separately. However if the tapped stream is
re-created, the existing tap will continue to function.

Spring XD Guide

1.2.0.RC1 Spring XD 212

15. Analytics

15.1 Introduction

Spring XD provides support for the real-time evaluation of various machine learning scoring algorithms
as well simple real-time data analytics using various types of counters and gauges. The analytics
functionality is provided via modules that can be added to a stream. In that sense, real-time analytics
is accomplished via the same exact model as data-ingestion. It’s possible that the primary role of a
stream is to perform real-time analytics, but it’s quite common to add a tap to initiate a secondary stream
where analytics, e.g. a field-value-counter, is applied to the same data being ingested through a primary
stream. You will see both approaches in the examples below.

15.2 Predictive analytics

Spring XD’s support for implementing predictive analytics by scoring analytical models that
leverage machine learning algorithms begins with an extensible class library foundation upon which
implementations can be built, such as the PMML Module that we describe here.

That module integrates with the JPMML-Evaluator library that provides support for a wide range of model
types and is interoperable with models exported from R, Rattle, KNIME, and RapidMiner. For counter
and gauge analytics, in-memory and Redis implementations are provided.

Incorporating the evaluation of machine learning algorithms into stream processing is as easy as using
any other processing module. Here is a simple example

http --outputType=application/x-xd-tuple | analytic-pmml

 --location=/models/iris-flower-naive-bayes.pmml.xml

 --inputFieldMapping=

 'sepalLength:Sepal.Length,

 sepalWidth:Sepal.Width,

 petalLength:Petal.Length,

 petalWidth:Petal.Width'

 --outputFieldMapping='Predicted_Species:predictedSpecies' | log"

The http source converts posted data to a Tuple. The analytic-pmml processor loads the model
from the specifed file and creates two mappings so that fields from the Tuple can be mapped into the
input and output model names. The log sink writes the payload of the event message to the log file
of the XD container.

Posting the following JSON data to the http source

{

 "sepalLength": "6.4",

 "sepalWidth": "3.2",

 "petalLength": "4.5",

 "petalWidth": "1.5"

}

will produce output in the log file as shown below.

https://github.com/spring-projects/spring-xd-modules/tree/master/analytics-ml-pmml
https://github.com/jpmml/jpmml-evaluator
https://github.com/jpmml/jpmml-evaluator#features
https://github.com/jpmml/jpmml-evaluator#features
http://www.r-project.org/
http://rattle.togaware.com/
http://www.knime.org/
http://rapid-i.com/content/view/181/190/
http://redis.io/

Spring XD Guide

1.2.0.RC1 Spring XD 213

{

 "id":"1722ec00-baad-11e3-b988-005056c00008",

 "timestamp":1396473833152,

 "sepalLength":"6.4",

 "sepalWidth":"3.2",

 "petalLength":"4.5",

 "petalWidth":"1.5",

 "predictedSpecies":"versicolor"

}

The next section on analytical models goes into more detail on the general infrastructure

15.3 Analytical Models

We provide some core abstractions for implementing analytical models in stream processing
applications. The main interface for integrating analytical models is Analytic. Some analytical models
need to adjust the domain input and the model output in some way, therefore we provide a special base
class MappedAnalytic which has core abstractions for implementing that mapping via InputMapper
and OutputMapper.

Since Spring XD 1.0.0.M6 we support the integration of analytical models, also called statistical models
or mining models, that are defined via PMML. PMML is the abbreviation for Predictive Model Markup
Language and is a standard XML representation that allows specifications of different mining models,
their ensembles, and associated preprocessing.

Note

PMML is maintained by the Data Mining Group (DMG) and supported by several state-of-the-
art statistics and data mining software tools such as InfoSphere Warehouse, R / Rattle, SAS
Enterprise Miner, SPSS®, and Weka. The current version of the PMML specification is 4.2 at
the time of this writing. Applications can produce and consume PMML models, thus allowing an
analytical model created in one application to be implemented and used for scoring or prediction
in another.

PMML is just one of many other technologies that one can integrate to implement analytics with, more
will follow in upcoming releases.

Modeling and Evaluation

Analytical models are usually defined by a statistician aka data scientist or quant by using some
statistical tool to analyze the data and build an appropriate model. In order to implement those models
in a business application they are usually transformed and exported in some way (e.g. in the form of a
PMML definition). This model is then loaded into the application which then evaluates it against a given
input (event, tuple, example).

Modeling

Analytical models can be defined in various ways. For the sake of brevity we use R from the r-project to
demonstrate how easy it is to export an analytical model to PMML and use it later in stream processing.

For our example we use the iris example dataset in R to generate a classifier for iris flower species by
applying the Naive Bayes algorithm.

http://en.wikipedia.org/wiki/Predictive_Model_Markup_Language
http://www.dmg.org/v4-2/GeneralStructure.html
http://www.r-project.org
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://en.wikipedia.org/wiki/Naive_Bayes_classifier

Spring XD Guide

1.2.0.RC1 Spring XD 214

library(e1071) # Load library with the naive bayes algorithm support.

library(pmml) # Load library with PMML export support.

data(iris) # Load the IRIS example dataset

#Helper function to split the given dataset into a dataset used for training (trainset) and (testset)

 used for evaulation.

splitDataFrame <- function(dataframe, seed = NULL, n = trainSize) {

 if (!is.null(seed)){

 set.seed(seed)

 }

 index <- 1:nrow(dataframe)

 trainindex <- sample(index, n)

 trainset <- dataframe[trainindex,]

 testset <- dataframe[-trainindex,]

 list(trainset = trainset, testset = testset)

}

#We want to use 95% of the IRIS data as training data and 5% as test data for evaluation.

datasets <- splitDataFrame(iris, seed = 1337, n= round(0.95 * nrow(iris)))

#Create a naive Bayes classifier to predict iris flower species (iris[,5]) from [,1:4] = Sepal.Length

 Sepal.Width Petal.Length Petal.Width

model <- naiveBayes(datasets$trainset[,1:4], datasets$trainset[,5])

#The name of the model and it's externalId could be used to uniquely identify this version of the model.

modelName = "iris-flower-classifier"

externalId = 42

#Convert the given model into a PMML model definition

pmmlDefinition = pmml.naiveBayes(model,model.name=paste(modelName,externalId,sep = ";"),

 predictedField='Species')

#Print the PMML definition to stdout

cat(toString(pmmlDefinition))

The r script above should produce the following PMML document that contains the abstract definition
of the naive bayes classifier that we derived from the training dataset of the IRIS dataset.

Spring XD Guide

1.2.0.RC1 Spring XD 215

<PMML version="4.1" xmlns="http://www.dmg.org/PMML-4_1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.dmg.org/PMML-4_1 http://www.dmg.org/v4-1/pmml-4-1.xsd">

<Header copyright="Copyright (c) 2014 tom" description="NaiveBayes Model">

 <Extension name="user" value="tom" extender="Rattle/PMML"/>

 <Application name="Rattle/PMML" version="1.4"/>

 <Timestamp>2014-04-02 13:22:15</Timestamp>

</Header>

<DataDictionary numberOfFields="6">

 <DataField name="Species" optype="categorical" dataType="string">

 <Value value="setosa"/>

 <Value value="versicolor"/>

 <Value value="virginica"/>

 </DataField>

 <DataField name="Sepal.Length" optype="continuous" dataType="double"/>

 <DataField name="Sepal.Width" optype="continuous" dataType="double"/>

 <DataField name="Petal.Length" optype="continuous" dataType="double"/>

 <DataField name="Petal.Width" optype="continuous" dataType="double"/>

 <DataField name="DiscretePlaceHolder" optype="categorical" dataType="string">

 <Value value="pseudoValue"/>

 </DataField>

</DataDictionary>

<NaiveBayesModel modelName="iris-flower-classifier;42"

 functionName="classification" threshold="0.001">

 <MiningSchema>

 <MiningField name="Species" usageType="predicted"/>

 <MiningField name="Sepal.Length" usageType="active"/>

 <MiningField name="Sepal.Width" usageType="active"/>

 <MiningField name="Petal.Length" usageType="active"/>

 <MiningField name="Petal.Width" usageType="active"/>

 <MiningField name="DiscretePlaceHolder" usageType="active"

 missingValueReplacement="pseudoValue"/>

 </MiningSchema>

 <Output>

 <OutputField name="Predicted_Species" feature="predictedValue"/>

 <OutputField name="Probability_setosa" optype="continuous"

 dataType="double" feature="probability" value="setosa"/>

 <OutputField name="Probability_versicolor" optype="continuous"

 dataType="double" feature="probability" value="versicolor"/>

 <OutputField name="Probability_virginica" optype="continuous"

 dataType="double" feature="probability" value="virginica"/>

 </Output>

 <BayesInputs>

 <Extension>

 <BayesInput fieldName="Sepal.Length">

 <TargetValueStats>

 <TargetValueStat value="setosa">

 <GaussianDistribution mean="5.006" variance="0.124248979591837"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="5.8953488372093" variance="0.283311184939092"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="6.58163265306122" variance="0.410697278911565"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <Extension>

 <BayesInput fieldName="Sepal.Width">

 <TargetValueStats>

 <TargetValueStat value="setosa">

...

Spring XD Guide

1.2.0.RC1 Spring XD 216

...

 <GaussianDistribution mean="3.428" variance="0.143689795918367"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="2.76279069767442" variance="0.0966777408637874"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="2.97142857142857" variance="0.105833333333333"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <Extension>

 <BayesInput fieldName="Petal.Length">

 <TargetValueStats>

 <TargetValueStat value="setosa">

 <GaussianDistribution mean="1.462" variance="0.0301591836734694"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="4.21627906976744" variance="0.236633444075305"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="5.55510204081633" variance="0.310442176870748"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <Extension>

 <BayesInput fieldName="Petal.Width">

 <TargetValueStats>

 <TargetValueStat value="setosa">

 <GaussianDistribution mean="0.246" variance="0.0111061224489796"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="1.30697674418605" variance="0.042093023255814"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="2.02448979591837" variance="0.0768877551020408"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <BayesInput fieldName="DiscretePlaceHolder">

 <PairCounts value="pseudoValue">

 <TargetValueCounts>

 <TargetValueCount value="setosa" count="50"/>

 <TargetValueCount value="versicolor" count="43"/>

 <TargetValueCount value="virginica" count="49"/>

 </TargetValueCounts>

 </PairCounts>

 </BayesInput>

 </BayesInputs>

 <BayesOutput fieldName="Species">

 <TargetValueCounts>

 <TargetValueCount value="setosa" count="50"/>

 <TargetValueCount value="versicolor" count="43"/>

 <TargetValueCount value="virginica" count="49"/>

 </TargetValueCounts>

 </BayesOutput>

</NaiveBayesModel>

</PMML>

Evaluation

The above defined PMML model can be evaluated in a Spring XD stream definition by using the
analytic-pmml module as a processor in your stream definition. The actual evaluation of the PMML is
performed via the PmmlAnalytic which uses the jpmml-evaluator library.

https://github.com/jpmml/jpmml-evaluator

Spring XD Guide

1.2.0.RC1 Spring XD 217

Model Selection

The PMML standard allows multiple models to be defined within a single PMML document. The model
to be used can be configured through the modelName option.

NOTE The PMML standard also supports other ways for selection models, e.g. based on a predicate.
This is currently not supported.

In order to perform the evaluation in Spring XD you need to save the generated PMML document to
some folder, typically the with the extension "pmml.xml". For this example we save the PMML document
under the name iris-flower-classification-naive-bayes-1.pmml.xml.

In the following example we set up a stream definition with an http source that produces iris-flower-
records that are piped to the analytic-pmml module which applies our iris flower classifier to predict
the species of a given flower record. The result of that is a new record extended by a new attribute
predictedSpecies which simply sent to a log sink.

The definition of the stream, which we call iris-flower-classification, looks as follows:

xd:>stream create --name iris-flower-classification

 --definition "http --outputType=application/x-xd-tuple | analytic-pmml

 --location=/models/iris-flower-classification-naive-bayes-1.pmml.xml

 --inputFieldMapping='sepalLength:Sepal.Length,

 sepalWidth:Sepal.Width,

 petalLength:Petal.Length,

 petalWidth:Petal.Width'

 --outputFieldMapping='Predicted_Species:predictedSpecies' | log" --deploy

• The location parameter can be used to specify the exact location of the pmml document. The value
must be a valid spring resource location

• The inputFieldMapping parameter defines a mapping of domain input fields to model input fields. It
is just a list of fields or optional field:alias mappings to control which fields and how they are going
to end up in the model-input. If no inputFieldMapping is defined then all domain input fields are used
as model input.

• The outputFieldMapping parameter defines a mapping of model output fields to domain output fields
with semantics analog to the inputFieldMapping.

• The optional modelName parameter of the analytic-pmml module can be used to refer to a particular
named model within the PMML definition. If modelName is not defined the first model is selected by
default.

NOTE Some analytical models like for instance association rules require a different typ of mapping.
You can implement your own custom mapping strategies by implementing a custom InputMapper and
OutputMapper and defining a new PmmlAnalytic or TuplePmmlAnalytic bean that uses your custom
mappers.

After the stream has been successfully deployed to Spring XD we can eventually start to throw some
data at it by issuing the following http request via the XD-Shell (or curl, or any other tool):

Note that our example record contains no information about which species the example belongs to -
this will be added by our classifier.

xd:>http post --target http://localhost:9000 --contentType application/json --data "{ \"sepalLength\":

 6.4, \"sepalWidth\": 3.2, \"petalLength\":4.5, \"petalWidth\":1.5 }"

http://www.springindepth.com/2.5.x/0.10/ch05.html

Spring XD Guide

1.2.0.RC1 Spring XD 218

After posting the above json document to the stream we should see the following output in the console:

 {

 "id":"1722ec00-baad-11e3-b988-005056c00008"

 , "timestamp":1396473833152

 , "sepalLength":"6.4"

 , "sepalWidth":"3.2"

 , "petalLength":"4.5"

 , "petalWidth":"1.5"

 , "predictedSpecies":"versicolor"

 }

NOTE the generated field predictedSpecies which now identifies our input as belonging to the iris
species versicolor.

We verify that the generated PMML classifier produces the same result as R by executing the issuing
the following commands in rproject:

datasets$testset[,1:4][1,]

This is the first example record that we sent via the http post.

 Sepal.Length Sepal.Width Petal.Length Petal.Width

52 6.4 3.2 4.5 1.5

#Predict the class for the example record by using our naiveBayes model.

> predict(model, datasets$testset[,1:4][1,])

[1] versicolor

15.4 Counters and Gauges

Counter and Gauges are analytical data structures collectively referred to as metrics. Metrics can be
used directly in place of a sink just as if you were creating any other stream, but you can also analyze
data from an existing stream using a tap. We’ll look at some examples of using metrics with taps in the
following sections. As a prerequisite start the XD Container as instructed in the Getting Started page.

The 1.0 release provides the following types of metrics

• Counter

• Field Value Counter

• Aggregate Counter

• Gauge

• Rich Gauge

Spring XD supports these metrics and analytical data structures as a general purpose class library
that works with several backend storage technologies. The 1.0 release provides in memory and Redis
implementations.

Counter

A counter is a Metric that associates a unique name with a long value. It is primarily used for counting
events triggered by incoming messages on a target stream. You create a counter with a unique
name and optionally an initial value then set its value in response to incoming messages. The most
straightforward use for counter is simply to count messages coming into the target stream. That is, its
value is incremented on every message. This is exactly what the counter module provided by Spring
XD does.

Spring XD Guide

1.2.0.RC1 Spring XD 219

Here’s an example:

Start by creating a data ingestion stream. Something like:

xd:> stream create --name springtweets --definition "twittersearch --consumerKey=<your_key> --

consumerSecret=<your_secret> --query=spring | file --dir=/tweets/" --deploy

Next, create a tap on the springtweets stream that sets a message counter named tweetcount

xd:> stream create --name tweettap --definition "tap:stream:springtweets > counter --name=tweetcount" --

deploy

To retrieve the count:

xd:>counter display tweetcount

The counter sink has the following options:

name
the name of the metric to contribute to (will be created if necessary) (String, default: <stream
name>)

nameExpression
a SpEL expression to compute the name of the metric to contribute to (String, no default)

Field Value Counter

A field value counter is a Metric used for counting occurrences of unique values for a named field in a
message payload. XD Supports the following payload types out of the box:

• POJO (Java bean)

• Tuple

• JSON String

For example suppose a message source produces a payload with a field named user :

class Foo {

 String user;

 public Foo(String user) {

 this.user = user;

 }

}

If the stream source produces messages with the following objects:

 new Foo("fred")

 new Foo("sue")

 new Foo("dave")

 new Foo("sue")

The field value counter on the field user will contain:

fred:1, sue:2, dave:1

Multi-value fields are also supported. For example, if a field contains a list, each value will be counted
once:

Spring XD Guide

1.2.0.RC1 Spring XD 220

users:["dave","fred","sue"]

users:["sue","jon"]

The field value counter on the field users will contain:

dave:1, fred:1, sue:2, jon:1

The field-value-counter sink has the following options:

fieldName
the name of the field for which values are counted (String, no default)

name
the name of the metric to contribute to (will be created if necessary) (String, default: <stream
name>)

nameExpression
a SpEL expression to compute the name of the metric to contribute to (String, no default)

To try this out, create a stream to ingest twitter feeds containing the word spring and output to a file:

xd:> stream create --name springtweets --definition "twittersearch --consumerKey=<your_key> --

consumerSecret=<your_secret> --query=spring | file" --deploy

Now create a tap for a field value counter:

xd:> stream create --name fromUserCount --definition "tap:stream:springtweets > field-value-counter --

fieldName=user.screen_name" --deploy

The twittersearch source produces JSON strings which contain the user id of the tweeter in the
fromUser field. The field_value_counter sink parses the tweet and updates a field value counter named
fromUserCount in Redis. To view the counts:

From xd-shell,

 xd:> field-value-counter display fromUserCount

Aggregate Counter

The aggregate counter differs from a simple counter in that it not only keeps a total value for the count,
but also retains the total count values for each minute, hour day and month of the period for which it
is run. The data can then be queried by supplying a start and end date and the resolution at which the
data should be returned.

Creating an aggregate counter is very similar to a simple counter. For example, to obtain an aggregate
count for our spring tweets stream:

xd:> stream create --name springtweets --definition "twittersearch --query=spring | file" --deploy

you’d simply create a tap which pipes the input to aggregate-counter:

xd:> stream create --name tweettap --definition "tap:stream:springtweets > aggregate-counter --

name=tweetcount" --deploy

From the XD shell:

xd:> aggregate-counter display tweettap

Spring XD Guide

1.2.0.RC1 Spring XD 221

Note: you can also use some criteria to filter out aggregate counter display values. Please refer to Shell
documentation for aggregate counter for more details.

The aggregate-counter sink has the following options:

dateFormat
a pattern (as in SimpleDateFormat) for parsing/formatting dates and timestamps (String, default:
yyyy-MM-dd'T'HH:mm:ss.SSS'Z')

incrementExpression
how much to increment each bucket, as a SpEL against the message (String, default: 1)

name
the name of the metric to contribute to (will be created if necessary) (String, default: <stream
name>)

nameExpression
a SpEL expression to compute the name of the metric to contribute to (String, no default)

timeField
name of a field in the message that contains the timestamp to contribute to (String, default: null)

Gauge

A gauge is a Metric, similar to a counter in that it holds a single long value associated with a unique
name. In this case the value can represent any numeric value defined by the application.

The gauge sink provided with XD stores expects a numeric value as a payload, typically this would be
a decimal formatted string.

The gauge sink has the following options:

name
the name of the metric to contribute to (will be created if necessary) (String, default: <stream
name>)

nameExpression
a SpEL expression to compute the name of the metric to contribute to (String, no default)

Here is an example of creating a tap for a gauge:

Simple Tap Example

Create an ingest stream

xd:> stream create --name test --definition "http --port=9090 | file" --deploy

Next create the tap:

xd:> stream create --name simplegauge --definition "tap:stream:test > gauge" --deploy

Now Post a message to the ingest stream:

xd:> http post --target http://localhost:9090 --data "10"

Spring XD Guide

1.2.0.RC1 Spring XD 222

Check the gauge:

xd:>gauge display --name simplegauge

Rich Gauge

A rich gauge is a Metric that holds a double value associated with a unique name. In addition to the
value, the rich gauge keeps a running average, along with the minimum and maximum values and the
sample count.

The rich-gauge sink provided with XD expects a numeric value as a payload, typically this would be a
decimal formatted string, and keeps its value in a store.

The rich-gauge sink has the following options:

alpha
smoothing constant, or -1 to use arithmetic mean (double, default: -1.0)

name
the name of the metric to contribute to (will be created if necessary) (String, default: <stream
name>)

nameExpression
a SpEL expression to compute the name of the metric to contribute to (String, no default)

Note

The smoothing factor behaves as an exponential moving average. The default value does no
smoothing.

Here are some examples of creating a tap for a rich gauge:

Simple Tap Example

Create an ingest stream

xd:> stream create --name test --definition "http --port=9090 | file" --deploy

Next create the tap:

xd:> stream create --name testgauge --definition "tap:stream:test > rich-gauge" --deploy

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data "10"

xd:> http post --target http://localhost:9090 --data "13"

xd:> http post --target http://localhost:9090 --data "16"

Check the gauge:

xd:>rich-gauge display testgauge

Stock Price Example

In this example, we will track stock prices, which is a more practical example. The data is ingested as
JSON strings like

http://en.wikipedia.org/wiki/Exponential_smoothing

Spring XD Guide

1.2.0.RC1 Spring XD 223

{"symbol":"VMW","price":72.04}

Create an ingest stream

xd:> stream create --name stocks --definition "http --port=9090 | file"

Next create the tap, using the transform module to extract the stock price from the payload:

xd:> stream create --name stockprice --definition "tap:stream:stocks > transform --

expression=#jsonPath(payload,'$.price') | rich-gauge"

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.04}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.06}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.08}

Note: JSON fields should be separated by a comma without any spaces. Alternatively, enclose the
whole argument to --data with quotes and escape inner quotes with a backslash.

Check the gauge:

xd:>rich-gauge display stockprice

Improved Stock Price Example

In this example, we will track stock prices for selected stocks. The data is ingested as JSON strings like

{"symbol":"VMW","price":72.04}

{"symbol":"EMC","price":24.92}

The previous example would feed these prices to a single gauge. What we really want is to create a
separate tap for each ticker symbol in which we are interested:

Create an ingest stream

xd:> stream create --name stocks --definition "http --port=9090 | file"

Next create the tap, using the transform module to extract the stock price from the payload:

xd:> stream create --name vmwprice --definition "tap:stream:stocks > filter --

expression=#jsonPath(payload,'$.symbol')==VMW | transform --expression=#jsonPath(payload,'$.price') |

 rich-gauge" --deploy

xd:> stream create --name emcprice --definition "tap:stream:stocks > filter --

expression=#jsonPath(payload,'$.symbol')==EMC | transform --expression=#jsonPath(payload,'$.price') |

 rich-gauge" --deploy

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.04}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.06}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.08}

xd:> http post --target http://localhost:9090 --data {"symbol":"EMC","price":24.92}

xd:> http post --target http://localhost:9090 --data {"symbol":"EMC","price":24.90}

xd:> http post --target http://localhost:9090 --data {"symbol":"EMC","price":24.96}

Check the gauge:

Spring XD Guide

1.2.0.RC1 Spring XD 224

xd:>rich-gauge display emcprice

xd:>rich-gauge display vmwprice

Accessing Analytics Data over the RESTful API

Spring XD has a discoverable RESTful API based on the Spring HATEAOS library. You can discover
the resources available by making a GET request on the root resource of the Admin server. Here is an
example where navigate down to find the data for a counter named httptap that was created by these
commands

xd:>stream create --name httpStream --definition "http | file" --deploy

xd:>stream create --name httptap --definition "tap:stream:httpStream > counter" --deploy

xd:>http post --target http://localhost:9000 --data "helloworld"

The root resource returns

xd:>! wget -q -S -O - http://localhost:9393/

{

 "links":[

 {},

 {

 "rel":"jobs",

 "href":"http://localhost:9393/jobs"

 },

 {

 "rel":"modules",

 "href":"http://localhost:9393/modules"

 },

 {

 "rel":"runtime/modules",

 "href":"http://localhost:9393/runtime/modules"

 },

 {

 "rel":"runtime/containers",

 "href":"http://localhost:9393/runtime/containers"

 },

 {

 "rel":"counters",

 "href":"http://localhost:9393/metrics/counters"

 },

 {

 "rel":"field-value-counters",

 "href":"http://localhost:9393/metrics/field-value-counters"

 },

 {

 "rel":"aggregate-counters",

 "href":"http://localhost:9393/metrics/aggregate-counters"

 },

 {

 "rel":"gauges",

 "href":"http://localhost:9393/metrics/gauges"

 },

 {

 "rel":"rich-gauges",

 "href":"http://localhost:9393/metrics/rich-gauges"

 }

]

}

Following the resource location for the counter

Spring XD Guide

1.2.0.RC1 Spring XD 225

xd:>! wget -q -S -O - http://localhost:9393/metrics/counters

{

 "links":[

],

 "content":[

 {

 "links":[

 {

 "rel":"self",

 "href":"http://localhost:9393/metrics/counters/httptap"

 }

],

 "name":"httptap"

 }

],

 "page":{

 "size":0,

 "totalElements":1,

 "totalPages":1,

 "number":0

 }

}

And then the data for the counter itself

xd:>! wget -q -S -O - http://localhost:9393/metrics/counters/httptap

{

 "links":[

 {

 "rel":"self",

 "href":"http://localhost:9393/metrics/counters/httptap"

 }

],

 "name":"httptap",

 "value":2

}

Spring XD Guide

1.2.0.RC1 Spring XD 226

16. Tuples

16.1 Introduction

The Tuple class is a central data structure in Spring XD. It is an ordered list of values that can be
retrieved by name or by index. Tuples are created by a TupleBuilder and are immutable. The values
that are stored can be of any type and null values are allowed.

The underlying Message class that moves data from one processing step to the next can have an
arbitrary data type as its payload. Instead of creating a custom Java class that encapsulates the
properties of what is read or set in each processing step, the Tuple class can be used instead.
Processing steps can be developed that read data from specific named values and write data to specific
named values.

There are accessor methods that perform type conversion to the basic primitive types as well as
BigDecimal and Date. This avoids you from having to cast the values to specific types. Instead you can
rely on the Tuple’s type conversion infastructure to perform the conversion.

The Tuple’s types conversion is performed by Spring’s Type Conversion Infrastructure which supports
commonly encountered type conversions and is extensible.

There are several overloads for getters that let you provide default values for primitive types should the
field you are looking for not be found. Date format patterns and Locale aware NumberFormat conversion
are also supported. A best effort has been made to preserve the functionality available in Spring Batch’s
FieldSet class that has been extensively used for parsing String based data in files.

Creating a Tuple

The TupleBuilder class is how you create new Tuple instances. The most basic case is

Tuple tuple = TupleBuilder.tuple().of("foo", "bar");

This creates a Tuple with a single entry, a key of foo with a value of bar. You can also use a static
import to shorten the syntax.

import static org.springframework.xd.tuple.TupleBuilder.tuple;

Tuple tuple = tuple().of("foo", "bar");

You can use the of method to create a Tuple with up to 4 key-value pairs.

Tuple tuple2 = tuple().of("up", 1, "down", 2);

Tuple tuple3 = tuple().of("up", 1, "down", 2, "charm", 3);

Tuple tuple4 = tuple().of("up", 1, "down", 2, "charm", 3, "strange", 4);

To create a Tuple with more then 4 entries use the fluent API that strings together the put method and
terminates with the build method

Tuple tuple6 = tuple().put("up", 1)

 .put("down", 2)

 .put("charm", 3)

 .put("strange", 4)

 .put("bottom", 5)

 .put("top", 6)

 .build();

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring-batch/2.1.x/apidocs/org/springframework/batch/item/file/transform/FieldSet.html

Spring XD Guide

1.2.0.RC1 Spring XD 227

To customize the underlying type conversion system you can specify the DateFormat to use
for converting String to Date as well as the NumberFormat to use based on a Locale. For
more advanced customization of the type conversion system you can register an instance of a
FormattingConversionService. Use the appropriate setter methods on TupleBuilder to make
these customizations.

You can also create a Tuple from a list of String field names and a List of Object values.

Object[] tokens = new String[]

 { "TestString", "true", "C", "10", "-472", "354224", "543", "124.3", "424.3", "1,3245",

 null, "2007-10-12", "12-10-2007", "" };

String[] nameArray = new String[]

 { "String", "Boolean", "Char", "Byte", "Short", "Integer", "Long", "Float", "Double",

 "BigDecimal", "Null", "Date", "DatePattern", "BlankInput" };

List<String> names = Arrays.asList(nameArray);

List<Object> values = Arrays.asList(tokens);

tuple = tuple().ofNamesAndValues(names, values);

Getting Tuple values

There are getters for all the primitive types and also for BigDecimal and Date. The primitive types are

• Boolean

• Byte

• Char

• Double

• Float

• Int

• Long

• Short

• String

Each getter has an overload for providing a default value. You can access the values either by field
name or by index.

The overloaded methods for asking for a value to be converted into an integer are

• int getInt(int index)

• int getInt(String name)

• int getInt(int index, int defaultValue)

• int getInt(String name, int defaultValue)

There are similar methods for other primitive types. For Boolean there is a special case of providing
the String value that represents a trueValue.

• boolean getBoolean(int index, String trueValue)

• boolean getBoolean(String name, String trueValue)

Spring XD Guide

1.2.0.RC1 Spring XD 228

If the value that is stored for a given field or index is null and you ask for a primitive type, the standard
Java defalt value for that type is returned.

The getString method will remove and leading and trailing whitespace. If you want to get the String
and preserve whitespace use the methods getRawString

There is extra functionality for getting `Date`s. The are overloaded getters that take a String based date
format

• Date getDateWithPattern(int index, String pattern)

• Date getDateWithPattern(int index, String pattern, Date defaultValue)

• Date getDateWithPattern(String name, String pattern)

• Date getDateWithPattern(String name, String pattern, Date defaultValue)

There are a few other more generic methods available. Their functionality should be obvious from their
names

• size()

• getFieldCount()

• getFieldNames()

• getFieldTypes()

• getTimestamp() - the time the tuple was created - milliseconds since epoch

• getId() - the UUID of the tuple

• Object getValue(int index)

• Object getValue(String name)

• T getValue(int index, Class<T> valueClass)

• T getValue(String name, Class<T> valueClass)

• List<Object> getValues()

• List<String> getFieldNames()

• boolean hasFieldName(String name)

Using SpEL expressions to filter a tuple

SpEL provides support to transform a source collection into another by selecting from its entries. We
make use of this functionalty to select a elements of a the tuple into a new one.

Tuple tuple = tuple().put("red", "rot")

 .put("brown", "braun")

 .put("blue", "blau")

 .put("yellow", "gelb")

 .put("beige", "beige")

 .build();

Tuple selectedTuple = tuple.select("?[key.startsWith('b')]");

assertThat(selectedTuple.size(), equalTo(3));

Spring XD Guide

1.2.0.RC1 Spring XD 229

To select the first match use the ^ operator

selectedTuple = tuple.select("^[key.startsWith('b')]");

assertThat(selectedTuple.size(), equalTo(1));

assertThat(selectedTuple.getFieldNames().get(0), equalTo("brown"));

assertThat(selectedTuple.getString(0), equalTo("braun"));

Gradle Dependencies

If you wish to use Spring XD Tuples in you project add the following dependencies:

//Add this repo to your repositories if it does not already exist.

maven { url "http://repo.spring.io/libs-snapshot"}

//Add this dependency

compile 'org.springframework.xd:spring-xd-tuple:1.2.0.RC1'

Spring XD Guide

1.2.0.RC1 Spring XD 230

17. Type Conversion

17.1 Introduction

Spring XD allows you to declaratively configure type conversion in stream definitions using the inputType
and outputType module options. Note that general type conversion may also be accomplished easily
within a transformer or a custom module. Currently, Spring XD natively supports the following type
conversions commonly used in streams:

• JSON to/from POJO

• JSON to/from org.springframework.xd.tuple.Tuple

• Object to/from byte[] : Either the raw bytes serialized for remote transport, bytes emitted by a module,
or converted to bytes using Java serialization(requires the object to be Serializable)

• String to/from byte[]

• Object to plain text (invokes the object’s toString() method)

Where JSON represents either a byte array or String payload containing JSON. Currently, Objects
may be converted from a JSON byte array or String. Converting to JSON always produces a String.
Registration of custom type converters is covered in this section.

17.2 MIME types

inputType and outputType values are parsed as media types, e.g., application/json or text/
plain;charset=UTF-8. MIME types are especially useful for indicating how to convert to String
or byte[] content. Spring XD also uses MIME type format to represent Java types, using the general
type application/x-java-object with a type parameter. For example, application/x-
java-object;type=java.util.Map or application/x-java-object;type=com.bar.Foo .
For convenience, you can use the class name by itself and Spring XD will translate a valid class
name to the corresponding MIME type. In addition, Spring XD provides custom MIME types, notably,
application/x-xd-tuple to specify a Tuple.

17.3 Stream Definition Examples

17.4 POJO to JSON

Type conversion will likely come up when implementing a custom module which produces or consumes
a custom domain object. For example, you want to create a stream that integrates with a legacy system
that includes custom domain types in its API. To process custom domain types directly minimally
requires these types to be defined in Spring XD’s class path. This approach will be cumbersome to
maintain when the domain model changes. The recommended approach is to convert such types to
JSON at the source, or back to POJO at the sink. You can do this by declaring the required conversions
in the stream definition:

customPojoSource --outputType=application/json |p1 | p2 | ... | customPojoSink --inputType=application/

x-java-object;type=com.acme.MyDomainType

Note that the sink above does require the declared type to be in the module’s classpath to perform
the JSON to POJO conversion. Generally, POJO to JSON does not require the Java class. Once the

https://github.com/spring-projects/spring-xd/blob/master/spring-xd-tuple/src/main/java/org/springframework/xd/tuple/Tuple.java

Spring XD Guide

1.2.0.RC1 Spring XD 231

payload is converted to JSON, Spring XD provided transformers and filters (p1, p2, etc.) can evaluate
the payload contents using JsonPath functions in SpEL expressions. Alternately, you can convert the
JSON to a Tuple, as shown in the following example.

JSON to Tuple

Sometimes it is convenient to convert JSON content to a Tuple in order to evaluate and access individual
field values.

xd:> stream create tuple --definition "http | filter --inputType=application/

x-xd-tuple --expression=payload.hasFieldName('hello') | transform --

expression=payload.getString('hello').toUpperCase() | log" --deploy

Created and deployed new stream 'tuple'

Note inputType=application/x-xd-tuple on the filter module will cause the payload to be converted to a
Tuple at the filter’s input channel. Thus, subsequent expressions are evaluated on a Tuple object. Here
we invoke the Tuple methods hasFieldName('hello') on the filter and getString('hello') on
the transformer. The output of the http source is expected to be JSON in this case. We set the Content-
Type header to tell Spring XD that the payload is JSON.

xd:>http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://

localhost:9000

> POST (application/json;charset=UTF-8) http://localhost:9000 {"hello":"world","foo":"bar"}

> 200 OK

In the Spring XD console log, you should see something like:

13:19:45,054 INFO pool-42-thread-4 sink.tuple - WORLD

Java Serialization

The following serializes a java.io.Serializable object to a file. Presumably the foo module outputs a
Serializable type. If not, this will result in an exception. If remote transport is configured, the output of
foo will be marshalled using Spring XD’s internal serialization. The object will be unmarshalled in the
file module and then converted to a byte array using Java serialization.

foo | --inputType=application/x-java-serialized-object file

17.5 MIME types and Java types

Internally, Spring XD implements type conversion using Spring Integration’s data type channels. The
data type channel converts payloads to the configured data type using Spring’s MessageConverter.

Note

The use of MessageCoverter for data type channels was introduced in Spring Integration 4 to pass
the Message to the converter method to allow it to access the Message’s content-type header.
This provides greater flexibility. For example, it is now possible to support multiple strategies for
converting a String or byte array to a POJO, based on the content-type header.

When Spring XD deploys a module with a declared type conversion, it modifies the module’s input and/
or output channel definition to set the required Java type and registers MessageConverters associated
with the target MIME type and Java type to the channel. The type conversions Spring XD provides out
of the box are summarized in the following table:

http://docs.spring.io/spring-integration/reference/html/spel.html
http://docs.spring.io/spring-integration/docs/latest-ga/reference/htmlsingle/#channel-configuration
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/MessageConverter.html

Spring XD Guide

1.2.0.RC1 Spring XD 232

Source Payload Target Payload content-type
header

outputType/
inputType

Comments

POJO JSON String ignored application/json

Tuple JSON String ignored application/json JSON is tailored
for Tuple

POJO String (toString()) ignored text/plain,
java.lang.String

POJO byte[] (java.io
serialized)

ignored application/x-java-
serialized-object

JSON byte[] or
String

POJO application/json
(or none)

application/x-java-
object

byte[] or String Serializable application/x-java-
serialized-object

application/x-java-
object

JSON byte[] or
String

Tuple application/json
(or none)

application/x-xd-
tuple

byte[] String any text/plain,
java.lang.String

will apply any
Charset specified
in the content-
type header

String byte[] any application/octet-
stream

will apply any
Charset specified
in the content-
type header

Caveats

Note that inputType and outputType parameters only apply to payloads that require type conversion.
For example, if a module produces an XML string with outputType=application/json, the payload will not
be converted from XML to JSON. This is because the payload at the module’s output channel is already
a String so no conversion will be applied at runtime.

Part II. Developing
Modules and Extensions

Spring XD Guide

1.2.0.RC1 Spring XD 234

18. Creating a Source Module

18.1 Introduction

As outlined in the modules document, Spring XD currently supports four types of modules: source, sink,
and processor for stream processing and job for batch processing. This document walks through the
creation of a custom source module.

The first module in a stream is always a source. Source modules are built with Spring Integration and
are responsible for producing messages originating from an external data source on its output channel.
These message can then be processed by the downstream modules in a stream. A source module is
often fed data by a Spring Integration inbound channel adapter, configured with a poller.

Spring Integration provides a number of adapters out of the box to integrate with various transports and
data stores, such as JMS, File, HTTP, Web Services, Mail, and more. Typically, it is straightforward to
create a source module using an existing inbound channel adapter.

Here we walk through an example demonstrating how to create and register a source module using the
Spring Integration Feed Inbound Channel Adapter. The complete code for this example is in the rss-
feed-source sample project.

18.2 Create the module Application Context file

Configure the inbound channel adapter using an xml bean definition file in the config resource
directory:

<beans...>

 <int-feed:inbound-channel-adapter id="xdFeed" channel="output" url="${url}" auto-startup="false" >

 <int:poller fixed-rate="${fixedRate}" max-messages-per-poll="${maxMessagesPerPoll}" />

 </int-feed:inbound-channel-adapter>

 <int:channel id="output"/>

</beans>

The adapter is configured to poll an RSS feed at a fixed rate (e.g., every 5 seconds). Note that auto-
startup is set to false. This is a requirement for Spring XD modules. When a stream is deployed,
the Spring XD runtime will create and start stream modules in reverse order to ensure that all modules
are initialized before the source starts emiting messages. When an RSS Entry is retreived, it will create
a message with a com.rometools.rome.feed.synd.SyndEntry payload type and send it to a
message channel called output. The name output is a Spring XD convention indicating the module’s
output channel. Any messages on the output channel will be consumed by the downstream processor
or sink in a stream used by this module.

The module is configurable so that it may pull data from any feed URL, such
as http://feeds.bbci.co.uk/news/rss.xml. Spring XD will automatically register a
PropertyPlaceholderConfigurer in the module’s application context. These properties correspond to
module options defined for this module (discussed below). Users supply option values when creating
a stream using the DSL.

Users must provide a url option value when creating a stream that uses this source. The polling rate
and maximum number of entries retrieved for each poll are also configurable and for these properties
we should provide reasonable default values. The module’s properties file in the config resource

http://docs.spring.io/spring-integration/reference/html/feed.html#feed-inbound-channel-adapter
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/src/main/resources/config/spring-module.xml
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/src/main/resources/config/spring-module.properties

Spring XD Guide

1.2.0.RC1 Spring XD 235

directory contains Module Options Metadata including a description, type, and optional default value for
each property. The metadata supports features like auto-completion in the Spring XD shell and option
validation:

options.url.description = the URL of the RSS feed

options.url.type = java.lang.String

options.fixedRate.description = the fixed rate polling interval specified in milliseconds

options.fixedRate.default = 5000

options.fixedRate.type = int

options.maxMessagesPerPoll.description = the maximum number of messages per poll

options.maxMessagesPerPoll.default = 100

options.maxMessagesPerPoll.type = int

Alternately, you can write a POJO to define the metadata. Using a Java class provides better validation
along with additional features and requires that the class be packaged as part of the module.

18.3 Create a Module Project

This section covers the setup of a standalone project containing the module configuration and some
code for testing the module. This example uses Maven but Spring XD supports Gradle as well.

Take a look at the pom file for this example. You will see it declares spring-xd-module-parent as
its parent and declares a dependency on spring-integration-feed which provides the inbound
channel adapter. The parent pom provides everything else you need. We also need to configure
repositories to access the parent pom and any other dependencies. The required xml file containing
the bean definitions and properties file are located in src\main\resources\config. In this case,
we have elected to use a custom transformer to convert the output of the feed inbound adapter to a
JSON string.

<beans ...>

 <int-feed:inbound-channel-adapter id="xdFeed" channel="to.json" url="${url}" auto-startup="false">

 <int:poller fixed-rate="${fixedRate}" max-messages-per-poll="${maxMessagesPerPoll}" />

 </int-feed:inbound-channel-adapter>

 <int:transformer input-channel="to.json" output-channel="output">

 <bean class="com.acme.SyndEntryJsonTransformer"/>

 </int:transformer>

 <int:channel id="output"/>

</beans>

The project README contains a detailed explanation of why this transformer is needed, but such things
are easily accomplished with Spring Integration.

Create a Spring Integration test

The first level of testing should ensure that the module’s Application Context is loaded and that the
message flow works as expected independent of Spring XD. In this case, we need to wrap the module
application context in a test context that provides a property placeholder (the Spring XD runtime does
this for you). In addition, it is convenient to override the module’s output channel with a queue channel
so that the test will block until a message is received from the feed.

Add the following configuration in the appropriate location under src/test/resources/:

https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/pom.xml
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/src/main/resources/config/spring-module.xml
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/src/main/resources/config/spring-module.properties
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/README.md
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/src/test/resources/com/acme/FeedConfigurationTest-context.xml

Spring XD Guide

1.2.0.RC1 Spring XD 236

<beans ...>

 <context:property-placeholder properties-ref="props"/>

 <util:properties id="props">

 <prop key="url">http://feeds.bbci.co.uk/news/rss.xml</prop>

 <prop key="fixedRate">5000</prop>

 <prop key="maxMessagesPerPoll">100</prop>

 </util:properties>

 <import resource="classpath:config/spring-module.xml"/>

 <!-- Override direct channel with a queue channel so the test will block until a message is received --

>

 <int:channel id="output">

 <int:queue/>

 </int:channel>

</beans>

Next, create and run the test:

package com.acme;

import ...

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration

public class FeedConfigurationTest {

 @Autowired

 PollableChannel output;

 @Autowired

 ConfigurableApplicationContext applicationContext;

 @Test

 public void test() {

 applicationContext.start();

 Message message = output.receive(10000);

 assertNotNull(message);

 assertTrue(message.getPayload() instanceof String);

 }

}

The test will load an Application Context using our feed and test context files. It will fail if a item is not
received on the output channel within 10 seconds.e

Create an in-container test

Now that you have verified that the module is basically correct, you can write a test to use it in a stream
deployed to an embedded Spring XD container.

Note

See test a module for some important tips abouts regarding in-container testing.

The spring-xd-module-parent pom provides the necessary dependencies to write such a test:

https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/src/test/java/com/acme/FeedConfigurationTest.java
https://github.com/spring-projects/spring-xd-samples/blob/master/rss-feed-source/src/test/java/com/acme/FeedSourceModuleIntegrationTest.java

Spring XD Guide

1.2.0.RC1 Spring XD 237

package com.acme;

import ...

public class FeedSourceModuleIntegrationTest {

 private static SingleNodeApplication application;

 private static int RECEIVE_TIMEOUT = 6000;

 /**

 * Start the single node container, binding random unused ports, etc. to not conflict with any other

 instances

 * running on this host. Configure the ModuleRegistry to include the project module.

 */

 @BeforeClass

 public static void setUp() {

 RandomConfigurationSupport randomConfigSupport = new RandomConfigurationSupport();

 application = new SingleNodeApplication().run();

 SingleNodeIntegrationTestSupport singleNodeIntegrationTestSupport = new

 SingleNodeIntegrationTestSupport(application);

 singleNodeIntegrationTestSupport.addModuleRegistry(new

 SingletonModuleRegistry(ModuleType.source, "feed"));

 }

 @Test

 public void test() {

 String url = "http://feeds.bbci.co.uk/news/rss.xml";

 SingleNodeProcessingChainConsumer chain = chainConsumer(application, "feedStream", String.format("feed

 --url='%s'", url));

 Object payload = chain.receivePayload(RECEIVE_TIMEOUT);

 assertTrue(payload instanceof String);

 chain.destroy();

 }

}

The above test configures an and starts embedded Spring XD runtime (SingleNodeApplication) to
deploy a stream that uses the module under test.

The SingleNodeProcessingChainConsumer can test a stream that does not include a sink. The
chain itself provides an in-memory sink to access the stream’s output directly. In this case, we use the
chain to test the source in isolation. The above test is equivalent to deploying following stream definition:

feed --url='http://feeds.bbci.co.uk/news/rss.xml' > queue:aNamedChannel

and the chain consumes messages on the named queue channel. At the end of each test method, the
chain should be destroyed to destroy these internal resources and restore the initial state of the Spring
XD container.

Note

The spring-xd-module-parent Maven pom includes a tasks to install a local message bus
implementation under lib in the project root to enable a local transport provider for the embedded
Spring XD container. It is necessary to run maven process-resources or a downstream goal
(e.g., compile, test, package) once in order for this test to work correctly.

18.4 Install the Module

We have implemented and tested the module using Spring Integration directly and also by deploying
the module to an embedded Spring XD container. Time to install the module to Spring XD!

Spring XD Guide

1.2.0.RC1 Spring XD 238

The next step is to package the module as an uber-jar using maven:

$mvn package

This will build an uber-jar in target/rss-feed-source-1.0.0.BUILD-SNAPSHOT.jar. If you
inspect the contents of this jar, you will see it includes the module configuration files, custom transformer
class, and dependent jars. Fire up the Spring XD runtime if it is not already running and, using the Spring
XD Shell, install the module as a source named feed using the module upload command:

xd:>module upload --file [path-to]/rss-source-feed/target/rss-source-feed-1.0.0.BUILD-SNAPSHOT.jar --

name feed --type source

Also See registering a module for more details.

18.5 Test the source module

Once Spring XD is running, create a stream to test it the module. This stream will write SyndEntry objects
rendered as JSON to the Spring XD log:

xd:> stream create --name feedtest --definition "feed --url='http://feeds.bbci.co.uk/news/rss.xml' |

 log" --deploy

You should start seeing messages like the following in the container log:

16:46:41,309 1.1.0.SNAP INFO xdbus.feedTest.0-1 sink.feedTest - {"uri":"http://

www.bbc.co.uk/sport/0/football/30700069","link":"http://www.bbc.co.uk/sport/0/

football/30700069","comments":null,"updatedDate":null,"title":"Gerrard to seal move

 to LA Galaxy","description":{"type":"text/html","value":"Liverpool captain Steven

 Gerrard is on the brink of finalising an 18-month deal to join MLS side Los Angeles

 Galaxy.","mode":null,"interface":"com.rometools.rome.feed.synd.SyndContent"},"links":[],"contents":

[],"modules":[{"uri":"http://purl.org/dc/

elements/1.1/","title":null,"creator":null,"subject":null,"description":null,"publisher":null,"contributors":

[],"date":1420580673000,"type":null,"format":null,"identifier":null,"source":null,"language":null,"relation":null,"coverage":null,"rights":null,"sources":

[],"types":[],"formats":[],"identifiers":

[],"interface":"com.rometools.rome.feed.module.DCModule","creators":[],"titles":

[],"descriptions":[],"publishers":[],"contributor":null,"dates":[1420580673000],"languages":

[],"relations":[],"coverages":[],"rightsList":[],"subjects":[]}],"enclosures":

[],"authors":[],"contributors":[],"source":null,"wireEntry":null,"categories":

[],"interface":"com.rometools.rome.feed.synd.SyndEntry","titleEx":{"type":null,"value":"Gerrard to seal

 move to LA

 Galaxy","mode":null,"interface":"com.rometools.rome.feed.synd.SyndContent"},"publishedDate":1420580673000,"author":""}

Spring XD Guide

1.2.0.RC1 Spring XD 239

19. Creating a Data Stream Processor

19.1 Introduction

This section covers how to create a processor module that uses stream processing libraries and
runtimes.module. Spring XD 1.2 provides integration with Project Reactor Stream, RxJava Observables,
and Spark Streaming. Creating a data stream processor in XD allows you to use a functional
programming model to filter, transform and aggregate data in a very concise and performant way. This
section walks through implementing a custom processor module using each of these libraries.

19.2 Reactor Streams

Project Reactor provides a Stream API that is based on the Reactive Streams specification. The
specification was jointly developed by twenty people from a dozen companies (Pivotal included) and has
the goal of creating a standard for asynchronous stream processing with non-blocking back pressure
on the JVM.

Tip

Explore Reactor with the reference guide.

To implement a Stream based processor module you need to implement the interface
org.springframework.xd.reactor.Processor

public interface Processor<I, O> {

 /**

 * Process a stream of messages and return an output stream. The input

 * and output stream will be mapped onto receive/send operations on the message bus.

 *

 * @param inputStream Input Stream the receives messages from the message bus

 * @return Output Publisher (Stream, Promise, or any valid Reactive Stream Publisher) of messages

 sent to the message bus

 */

 Publisher<O> process(Stream<I> inputStream);

}

Messages that are delivered on the Message Bus are accessed from the input Stream, which can be
directly composed. The return value is the output Stream that is the result of applying various operations
to the input stream. The content of the output Stream is sent to the message bus for consumption by
other processors or sinks.

Examples of operations you can perform on the Stream are map, flatMap, buffer, window, and
reduce. The parameterized data type can be a org.springframework.messaging.Message,
org.springframework.xd.tuple.Tuple, java.lang.Map or any other POJO. The following
example uses the Tuple object to compute the average value of a measurement from a sample size
of 5.

https://github.com/reactor/reactor
https://reactor.github.io/docs/api/2.0.2.RELEASE/reactor/rx/Stream.html
http://www.reactive-streams.org/
http://projectreactor.io/docs/reference/

Spring XD Guide

1.2.0.RC1 Spring XD 240

import org.springframework.xd.reactor.Processor;

import org.springframework.xd.tuple.Tuple;

import reactor.rx.Stream;

import static com.acme.Math.avg;

import static org.springframework.xd.tuple.TupleBuilder.tuple;

public class MovingAverage implements Processor<Tuple, Tuple> {

 @Override

 public Publisher<Tuple> process(Stream<Tuple> inputStream) {

 return inputStream.map(tuple -> tuple.getDouble("measurement"))

 .buffer(5)

 .map(data -> tuple().of("average", avg(data)));

 }

}

You can now create unit tests for the Processor module just as you would for any other Java class.
The module application context file can be in XML or in Java using a @Configuration class. The XML
version is shown below.

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="messageProcessor" class="com.acme.MovingAverage"/>

 <int:channel id="input"/>

 <bean name="messageHandler" class="org.springframework.xd.reactor.BroadcasterMessageHandler">

 <constructor-arg ref="messageProcessor"/>

 </bean>

 <int:service-activator input-channel="input" ref="messageHandler"

 output-channel="output"/>

 <int:channel id="output"/>

</beans>

Examples of unit and integration testing a module are available in the reactor sample project. The sample
project also shows how you can package your module into a single jar and upload it to the admin server.

19.3 RxJava Streams

RxJava provides the Observable API that is based on the Reactive Extensions .NET library.

To implement a Observable based XD processor module you need to implement the interface
org.springframework.xd.rxjava.Processor

https://github.com/spring-projects/spring-xd-samples/tree/master/reactor-moving-average
https://github.com/spring-projects/spring-xd/wiki/Modules#module-packaging
https://github.com/spring-projects/spring-xd/wiki/Creating-a-Processor-Module#register-the-module
http://reactivex.io/RxJava/javadoc/rx/Observable.html
http://msdn.microsoft.com/en-us/data/gg577609.aspx

Spring XD Guide

1.2.0.RC1 Spring XD 241

public interface Processor<I,O> {

 /**

 * Process a stream of messages and return an output stream. The input

 * and output stream will be mapped onto receive/send operations on the message bus.

 *

 * @param inputStream Input stream the receives messages from the message bus

 * @return Output stream of messages sent to the message bus

 */

 Observable<O> process(Observable<I> inputStream);

}

Messages that are delivered on the Message Bus are accessed from the Observable input stream. The
return value is the Observable output stream that contains the results of applying various operation to
the input stream. The content of the output stream is sent to the message bus for consumption by other
processors or sinks.

Examples of operations you can perform on the Stream are map, flatMap, buffer, window, and
reduce. The parameterized data type can be a org.springframework.messaging.Message,
org.springframework.xd.tuple.Tuple, java.lang.Map or any other POJO.

When used in combination with Data Partitioning on the Message Bus, this allows you to create an
streaming application where Stream state is calculated based on those partitions where necessary.

In this deployment the data that is sent to the RxJava processing modules from the HTTP sources
is partitioned such that the red data always goes to the red stream processing module and so on for
the other colors. The next hop of processing, where writing to HDFS occurs, does not require data
partitioning, so the message load can be shared across the HDFS sink instances.

There can be as many layers of RxJava Stream processing as you require, allowing you to collocate
specific functional operations as you see fit within a single JVM or to distribute across multiple JVMs.

Spring XD Guide

1.2.0.RC1 Spring XD 242

The following example uses the Tuple object to compute the average value of a measurement from
a sample size of 5.

import org.springframework.xd.rxjava.Processor;

import org.springframework.xd.tuple.Tuple;

import rx.Observable;

import static com.acme.Math.avg;

import static org.springframework.xd.tuple.TupleBuilder.tuple;

public class MovingAverage implements Processor<Tuple, Tuple> {

 @Override

 public Observable<Tuple> process(Observable<Tuple> inputStream) {

 return inputStream.map(tuple -> tuple.getDouble("measurement"))

 .buffer(5)

 .map(data -> tuple().of("average", avg(data)));

 }

}

You can now create unit tests for the Processor module as you would for any other Java class. The
module application context file can be in XML or in Java using a @Configuration class. The XML version
is shown below.

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="messageProcessor" class="com.acme.MovingAverage"/>

 <!-- Using a SubjectMessageHandler to share Observerable state across threads -->

 <int:channel id="input"/>

 <bean name="messageHandler" class="org.springframework.xd.rxjava.SubjectMessageHandler">

 <constructor-arg ref="messageProcessor"/>

 </bean>

 <int:service-activator input-channel="input" ref="messageHandler"

 output-channel="output"/>

 <int:channel id="output"/>

</beans>

Spring XD Guide

1.2.0.RC1 Spring XD 243

Examples of unit and integration testing a module are available in the RxJava Moving Average sample
project. The sample project also shows how you can package your module into a single jar and upload
it to the admin server.

Scheduling

There are two MessageHandler implementations that you can choose from,
SubjectMessageHandler and MultipleSubjectMessageHandler.

SubjectMessageHandler uses a single SerializedSubject to process messages that were
received from the Message Bus. This subject, downcast to Observable, is what is passed into
the process method. Using SubjectMessageHandler has the advantage that the state of the
Observabale input stream can be shared across all the Message Bus dispatcher threads that are
invoking onNext. It has the disadvantage that the processing and consumption of the Observable output
stream (that sends messages to the Message Bus) will execute serially on one of the dispatcher threads.
Note you can modify what thread the Observable output stream will use by calling observeOn before
returning the output stream from your processor.

MultipleSubjectMessageHandler uses multiple Subjects to perform processing. A Spring
Expression Language (SpEL) expression is used to map the incoming message to a specific
Subject to use for processing. Using MultipleSubjectMessageHandler has the advantage
that it can use all Message Bus dispatcher threads. It has the disadvantage in that each
Observable input stream has its own state, which may not be desirable for certain types of
aggregate calculations that should see all of the data. A common partition expression to use is
T(java.lang.Thread).currentThread().getId() so that a Subject will be created per thread.

 <bean name="messageHandler" class="org.springframework.xd.rxjava.MultipleSubjectMessageHandler">

 <constructor-arg ref="messageProcessor"/>

 <constructor-arg value="T(java.lang.Thread).currentThread().getId()"/>

 </bean>

The satisfies the contract to have single threaded access to a Subject. Another interesting partition
expression to use in the case of the Kafka Message Bus is header['kafka_partition_id']. This
will create a Subject per Kafka partition that represents an ordered sequence of events. The XD Kafka
Message Bus statically maps partitions to dispatcher threads to there is only single threaded access
toa Subject.

19.4 Spark streaming

Spring XD integrates with Spark streaming so that the streaming data computation logic can be run on
a spark cluster. Spring XD runs the Spark Driver as an XD module (processor or sink) in the XD
container while the Spark streaming reliable receiver and the data computation is done at the
Spark Cluster.

This provides advantage over connecting to various streaming sources while running the computation
logic on spark cluster. Running the spark driver on the XD container also provides automatic failover
capabilities in case of driver failure.

With Spark Streaming, events are processed at the micro batch level via DStreams, which
represent a continuous flow of partitioned RDDs. Setting up a Spark Streaming module within XD can
be beneficial when adding streaming data computation logic for a tapped XD stream. While the primary
stream processes events one at a time (through the regular XD modules), the tapped stream will become
a source for the Spark Streaming module.

https://github.com/spring-projects/spring-xd-samples/tree/master/rxjava-moving-average
https://github.com/spring-projects/spring-xd-samples/tree/master/rxjava-moving-average
https://github.com/spring-projects/spring-xd/wiki/Modules#module-packaging
https://github.com/spring-projects/spring-xd/wiki/Creating-a-Processor-Module#register-the-module

Spring XD Guide

1.2.0.RC1 Spring XD 244

Lets discuss a real world scenario of data collection and doing some analytics on it.

stream create mainstream --definition "mqtt | filter1: <some filtering> | hdfs"

stream create sparkstream1 --definition "tap:mainstream:filter1 > spark-streaming-processor-module1 |

 <some XD sink>"

stream create sparkstream2 --definition "tap:mainstream:filter1 > spark-streaming-processor-module2 |

 spark-streaming-sinkmodule1"

stream create sparkstream3 --definition "tap:mainstream:filter1 > spark-streaming-sinkmodule2"

In the above set of streams, consider a primary stream that collects data one at a time from various
sensors and stores that raw data into HDFS, after only same basic filtering. At the same time, there
are a few other streams that perform analytics on the data being collected at micro-batch level.
Here, the tapped stream’s source can be reliable or durable based on the messagebus implementation,
and this data is processed (at the micro batch level) by the Spark Streaming module. This allows the
developer to choose the stream data processing based on the use case.

Writing a spark streaming module

Spring XD provides Java and Scala based interfaces which expose a process method that the spark
streaming developer would implement. This method processes the input DStream received by the spark
streaming receiver. In case of XD processor module this method would return an output DStream.
In case of XD sink module, it would write the computed data into file system, HDFS etc., (for example
saveAsTextFiles(), saveAsHadoopFiles() using Spark APIs).

For Java based implementation, the interface
org.springframework.xd.spark.streaming.java.Processor is defined

 public interface Processor<I extends JavaDStreamLike, O extends JavaDStreamLike> extends

 SparkStreamingSupport {

 /**

 * Processes the input DStream and optionally returns an output DStream.

 *

 * @param input the input DStream

 * @return output DStream (optional, may be null)

 */

 O process(I input);

}

It is recommended to write the implementation in Java 8.

For Scala based implementation, the trait
org.springframework.xd.spark.streaming.scala.Processor is defined

trait Processor[I, O] extends SparkStreamingSupport {

 /**

 * Processes the input DStream and optionally returns an output DStream.

 *

 * @param input the input DStream from the receiver

 * @return output DStream (optional, may be null)

 */

 def process(input: ReceiverInputDStream[I]): DStream[O]

When creating an XD processor/sink module, developer would implement this interface and make the
module archive (along with its dependencies) available in the modules registry.

To set the Spark configuration properties when developing spark streaming module, the developer can
use org.springframework.xd.spark.streaming.SparkConfig annotation on the method that
returns type java.util.Properties.

https://databricks.com/blog/2014/04/14/spark-with-java-8.html

Spring XD Guide

1.2.0.RC1 Spring XD 245

To add default spark streaming command line options for the spark streaming module and to
let XD admin know this is spark streaming module, following entry should be added in module
registry module config properties (for example: modules/processor/spark-wordcount/config/spark-
wordcount.properties):

options_class=org.springframework.xd.spark.streaming.DefaultSparkStreamingModuleOptionsMetadata

Developer can extend this to provide more custom command line options. By default, the following
module options are supported for the spark streaming module:

• batchInterval (the time interval in millis for batching the stream events)

• storageLevel (the streaming data persistence storage level)

Note

If you are using Java7 to run Spring XD, then make sure to set the JAVA_OPTS to increase -
XX:MaxPermSize to avoid PermGen issue on the XD container where the spark driver would be
running.

How this works

When a spark streaming processor (a processor or a sink) that implements Processor interface above
is deployed, the SparkDriver sets up the streaming context and runs as an XD module inside the
XD container.

This sets up Spark streaming receiver (in case of processor and sink) in spark cluster that connects to XD
upstream module’s output channel in the message bus. Also note that this receiver is a reliable Spark
streaming receiver (if you use rabbit or kafka as message-bus) out of the box. This is implemented
using manual acknowledgement and explicit offset management on Rabbit and Kafka respectively. The
MessageBusReceiver makes the incoming messages available for the computation in spark cluster
as DStreams. If the streaming module is of XD processor type then the computed messages are pushed
to the downstream module by MessageBusSender. The MessageBusSender binds to the downstream
module’s input channel which subsequently connects to any of the XD processor or sink modules.

It is important to note that the MessageBusReceiver, streaming processor computation and the
MessageBusSender run on Spark cluster.

Spring XD Guide

1.2.0.RC1 Spring XD 246

Data loss and recovery

The current implementation of the spark streaming supports automatic failover capability on
spark driver failure by re-deploying the spark streaming module but the streaming receiver
(MessageBus receiver) implementation isn't reliable yet. (There could be data loss in case of
receiver worker node failure). In the upcoming release, we will have a reliable receiver implementation.

Module Type Conversion

Spark streaming modules avail the out of the box module type conversion support from Spring XD. A
spark streaming processor module can specify inputType and outputType while a spark streaming
sink module can specify inputType to denote the contentType of the incoming/outgoing messages
before they get ingested into/written out of spark streaming module.

stream create mainstream --definition "mqtt | filter1: <some filtering> | hdfs"

stream create sparkstream1 --definition "tap:mainstream:filter1 > spark-streaming-processor-module1 --

inputType=application/json --outputType=application/x-xd-tuple | <some XD sink>"

stream create sparkstream2 --definition "tap:mainstream:filter1 > spark-streaming-processor-module2 |

 spark-streaming-sinkmodule1"

stream create sparkstream3 --definition "tap:mainstream:filter1 > spark-streaming-sinkmodule2 --

inputType=text/plain"

For info on module type conversion, please refer here

https://jira.spring.io/browse/XD-2748
https://github.com/spring-projects/spring-xd/wiki/Type-conversion

Spring XD Guide

1.2.0.RC1 Spring XD 247

XD processor module examples

Java based implementation

import java.util.Arrays;

import java.util.Properties;

import org.apache.spark.api.java.function.FlatMapFunction;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.api.java.function.PairFunction;

import org.apache.spark.streaming.api.java.JavaDStream;

import org.apache.spark.streaming.api.java.JavaPairDStream;

import org.springframework.xd.spark.streaming.SparkConfig;

import org.springframework.xd.spark.streaming.java.Processor;

import scala.Tuple2;

@SuppressWarnings({ "serial" })

public class WordCount implements Processor<JavaDStream<String>, JavaPairDStream<String, Integer>> {

 @Override

 public JavaPairDStream<String, Integer> process(JavaDStream<String> input) {

 JavaDStream<String> words = input.flatMap(new FlatMapFunction<String, String>() {

 @Override

 public Iterable<String> call(String x) {

 return Arrays.asList(x.split(" "));

 }

 });

 JavaPairDStream<String, Integer> wordCounts = words.mapToPair(new PairFunction<String, String,

 Integer>() {

 @Override

 public Tuple2<String, Integer> call(String s) {

 return new Tuple2<String, Integer>(s, 1);

 }

 }).reduceByKey(new Function2<Integer, Integer, Integer>() {

 @Override

 public Integer call(Integer i1, Integer i2) {

 return i1 + i2;

 }

 });

 return wordCounts;

 }

 @SparkConfig

 public Properties getSparkConfigProperties() {

 Properties props = new Properties();

 props.setProperty(SPARK_MASTER_URL_PROP, "local[4]");

 return props;

 }

}

Scala based implementation

Spring XD Guide

1.2.0.RC1 Spring XD 248

import java.util.Properties

import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}

import org.springframework.xd.spark.streaming.SparkConfig

import org.springframework.xd.spark.streaming.scala.Processor

class WordCount extends Processor[String, (String, Int)] {

 def process(input: ReceiverInputDStream[String]): DStream[(String, Int)] = {

 val words = input.flatMap(_.split(" "))

 val pairs = words.map(word => (word, 1))

 val wordCounts = pairs.reduceByKey(_ + _)

 wordCounts

 }

 @SparkConfig

 def properties : Properties = {

 val props = new Properties()

 props.setProperty("spark.master", "local[4]")

 props

 }

}

Spring XD Guide

1.2.0.RC1 Spring XD 249

20. XD sink module example

Java based implementation

Spring XD Guide

1.2.0.RC1 Spring XD 250

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.Iterator;

import java.util.Properties;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.VoidFunction;

import org.apache.spark.streaming.api.java.JavaDStream;

import org.springframework.xd.spark.streaming.SparkConfig;

import org.springframework.xd.spark.streaming.java.Processor;

@SuppressWarnings({ "serial" })

public class FileLogger implements Processor<JavaDStream<String>, JavaDStream<String>> {

 private File file;

 public void setPath(String filePath) {

 file = new File(filePath);

 if (!file.exists()) {

 try {

 file.createNewFile();

 }

 catch (IOException ioe) {

 throw new RuntimeException(ioe);

 }

 }

 }

 @SparkConfig

 public Properties getSparkConfigProperties() {

 Properties props = new Properties();

 props.setProperty("spark.master", "local[4]");

 return props;

 }

 @Override

 public JavaDStream<String> process(JavaDStream<String> input) {

 input.foreachRDD(new Function<JavaRDD<String>, Void>() {

 @Override

 public Void call(JavaRDD<String> rdd) {

 rdd.foreachPartition(new VoidFunction<Iterator<String>>() {

 @Override

 public void call(Iterator<String> items) throws Exception {

 FileWriter fw;

 BufferedWriter bw = null;

 try {

 fw = new FileWriter(file.getAbsoluteFile());

 bw = new BufferedWriter(fw);

 while (items.hasNext()) {

 bw.append(items.next() + System.lineSeparator());

 }

 }

 catch (IOException ioe) {

 throw new RuntimeException(ioe);

 }

 finally {

 if (bw != null) {

 bw.close();

 }

 }

 }

 });

 return null;

 }

 });

 return null;

 }

}

Spring XD Guide

1.2.0.RC1 Spring XD 251

Scala based implementation

import java.io.{BufferedWriter, File, FileWriter, IOException}

import java.util.Properties

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}

import org.springframework.xd.spark.streaming.SparkConfig

import org.springframework.xd.spark.streaming.scala.Processor

class FileLogger extends Processor[String, String] {

 var file: File = null

 def setPath(filePath: String) {

 file = new File(filePath)

 if (!file.exists) {

 try {

 file.createNewFile

 }

 catch {

 case ioe: IOException => {

 throw new RuntimeException(ioe)

 }

 }

 }

 }

 @SparkConfig def getSparkConfigProperties: Properties = {

 val props: Properties = new Properties

 props.setProperty("spark.master", "local[4]")

 return props

 }

 def process(input: ReceiverInputDStream[String]): DStream[String] = {

 input.foreachRDD(rdd => {

 rdd.foreachPartition(partition => {

 var fw: FileWriter = null

 var bw: BufferedWriter = null

 try {

 fw = new FileWriter(file.getAbsoluteFile)

 bw = new BufferedWriter(fw)

 while (partition.hasNext) {

 bw.append(partition.next.toString + System.lineSeparator)

 }

 }

 catch {

 case ioe: IOException => {

 throw new RuntimeException(ioe)

 }

 }

 finally {

 if (bw != null) {

 bw.close

 }

 }

 })

 })

 null

 }

}

Checkout some examples, module configurations and tests

https://github.com/spring-projects/spring-xd/tree/master/spring-xd-spark-streaming/src/main/java/org/springframework/xd/spark/streaming/examples
https://github.com/spring-projects/spring-xd/tree/master/spring-xd-spark-streaming-tests/src/test/resources/spring-xd/xd/modules
https://github.com/spring-projects/spring-xd/tree/master/spring-xd-spark-streaming-tests/src/test/java/org/springframework/xd/spark/streaming

Spring XD Guide

1.2.0.RC1 Spring XD 252

21. Creating a Processor Module

21.1 Introduction

As outlined in the modules document, Spring XD currently supports four types of modules: source,
sink, and processor for stream processing and job for batch processing. This document walks through
implementing a custom processor module.

One or more processors can be included in a stream definition to modify the data as it passes on its way
from the source to the sink. The architecture section covers the basics of stream processing. Processor
modules provided out of the box are covered in the processors section.

Here we’ll look at how to create a simple processor module from scratch. This module will extract
the text field from input messages from from a twittersearch source. The steps are essentially
the same regardless of the module’s functionality. Note that Spring XD can perform this type of
transformation without requiring a custom module. Rather than using the built-in functionality, we will
implement a custom processor and wire it up with Spring Integration. The complete code for this example
is here.

21.2 Write the Transformer Code

The tweet messages from twittersearch contain quite a lot of data (id, author, time, hash tags, and
so on). The transformer we’ll write extracts the text of each tweet and outputs this as a string. The output
messages from the twittersearch source are also strings, rendering the tweet data as JSON. We
first load this into a map using Jackson library code, then extract the text field from the map.

package my.custom.transformer;

import java.io.IOException;

import java.util.Map;

import org.codehaus.jackson.map.ObjectMapper;

import org.codehaus.jackson.type.TypeReference;

import org.springframework.integration.transformer.MessageTransformationException;

public class TweetTransformer {

 private ObjectMapper mapper = new ObjectMapper();

 public String transform(String payload) {

 try {

 Map<String, Object> tweet = mapper.readValue(payload, new TypeReference<Map<String, Object>>()

 {});

 return tweet.get("text").toString();

 } catch (IOException e) {

 throw new MessageTransformationException("Unable to transform tweet: " + e.getMessage(), e);

 }

 }

}

21.3 Create the module Application Context File

Create the following file as spring-module.xml in the config resource directory:

https://github.com/spring-projects/spring-xd-samples/tree/master/tweet-transformer-processor

Spring XD Guide

1.2.0.RC1 Spring XD 253

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <channel id="input"/>

 <transformer input-channel="input" output-channel="output">

 <beans:bean class="my.custom.transformer.TweetTransformer" />

 </transformer>

 <channel id="output"/>

</beans:beans>

Alternately, you can create the application context using an @Configuration class. In the example below,
we’ve combined the configuration and the transformer into a single Java file for simplicity. Note that
TweetTransformer now includes Spring Integration annotations:

Spring XD Guide

1.2.0.RC1 Spring XD 254

package my.custom.transformer;

import java.io.IOException;

import java.util.Map;

import my.custom.transformer.TweetTransformer;

import org.codehaus.jackson.map.ObjectMapper;

import org.codehaus.jackson.type.TypeReference;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.integration.annotation.MessageEndpoint;

import org.springframework.integration.annotation.Transformer;

import org.springframework.integration.channel.DirectChannel;

import org.springframework.integration.config.EnableIntegration;

import org.springframework.integration.transformer.MessageTransformationException;

import org.springframework.messaging.MessageChannel;

@Configuration

@EnableIntegration

public class ModuleConfiguration {

 @Autowired

 TweetTransformer transformer;

 @Bean

 public MessageChannel input() {

 return new DirectChannel();

 }

 @Bean

 MessageChannel output() {

 return new DirectChannel();

 }

}

@MessageEndpoint

class TweetTransformer {

 private ObjectMapper mapper = new ObjectMapper();

 @Transformer(inputChannel = "input", outputChannel = "output")

 public String transform(String payload) {

 try {

 Map<String, Object> tweet = mapper.readValue(payload, new TypeReference<Map<String, Object>>() {

 });

 return tweet.get("text").toString();

 }

 catch (IOException e) {

 throw new MessageTransformationException("Unable to transform tweet: " + e.getMessage(), e);

 }

 }

}

To use @Configuration, you must also tell Spring which packages to scan in the module’s properties
file spring-module.properties:

base_packages=my.custom.transformer

21.4 Write a Test

Writing a test to deploy the module in an embedded single node container requires the spring-xd-
dirt and spring-xd-test libraries and a few other things. See the project pom or the gradle build
script for details. The following code snippets are from TweetTransformerIntegrationTest

https://github.com/spring-projects/spring-xd-samples/blob/master/tweet-transformer-processor/pom.xml
https://github.com/spring-projects/spring-xd-samples/blob/master/tweet-transformer-processor/build.gradle
https://github.com/spring-projects/spring-xd-samples/blob/master/tweet-transformer-processor/src/test/java/my/custom/transformer/TweetTransformerIntegrationTest.java

Spring XD Guide

1.2.0.RC1 Spring XD 255

Note

See test a module for some important tips abouts regarding in-container testing.

First we start the SingleNodeApplication and register the module under test by adding
a SingletonModuleRegistry providing the module name and type. This looks in the
root classpath by default, so will find the module configuration in src/main/resources/config.
SingleNodeIntegrationTestSupport provides programmatic access to major beans in the Admin
and Container application contexts, as well as the contexts themselves.

/**

 * Unit tests a module deployed to an XD single node container.

 */

public class TweetTransformerIntegrationTest {

 private static SingleNodeApplication application;

 private static int RECEIVE_TIMEOUT = 5000;

 private static String moduleName = "tweet-transformer";

 /**

 * Start the single node container, binding random unused ports, etc. to not conflict with any other

 instances

 * running on this host. Configure the ModuleRegistry to include the project module.

 */

 @BeforeClass

 public static void setUp() {

 RandomConfigurationSupport randomConfigSupport = new RandomConfigurationSupport();

 application = new SingleNodeApplication().run();

 SingleNodeIntegrationTestSupport singleNodeIntegrationTestSupport = new

 SingleNodeIntegrationTestSupport

 (application);

 singleNodeIntegrationTestSupport.addModuleRegistry(new SingletonModuleRegistry(ModuleType.processor,

 moduleName));

 }

To implement ths test, we will use the SingleNodeProcessingChain test fixture. The chain is a
partial stream definition, represented as Spring XD DSL, which may be a single module, a chain of
processors separated by |. In this case we are testing a single module. The chain binds local message
handlers that act as source and sink to complete the stream. Thus we can deploy the stream and send
messages directly to the source and receive messages directly from the sink:

We could, in theory, test against the actual twittersearch source, but this is not advised because it would
depend on connecting to Twitter, providing credentials, etc. So we will save that for when the module is
actually installed to the target Spring XD runtime. Instead, we can simply send a message with a sample
tweet and verify that we get the content of the text property as output, as expected.

https://github.com/spring-projects/spring-xd-samples/tree/master/tweet-transformer-processor/src/main/resources/config

Spring XD Guide

1.2.0.RC1 Spring XD 256

 /**

 * This test creates a stream with the module under test, or in general a "chain" of processors. The

 * SingleNodeProcessingChain is a test fixture that allows the test to send and receive messages to

 verify each

 * message is processed as expected.

 */

 @Test

 public void test() {

 String streamName = "tweetTest";

 String tweet = "..." //JSON omitted here for clarity

 String processingChainUnderTest = moduleName;

 SingleNodeProcessingChain chain = chain(application, streamName, processingChainUnderTest);

 chain.sendPayload(tweet);

 String result = (String) chain.receivePayload(RECEIVE_TIMEOUT);

 assertEquals("Aggressive Ponytail #freebandnames", result);

 //Unbind the source and sink channels from the message bus

 chain.destroy();

 }

21.5 Register the Module

Since the module requires no external dependencies in this case, we can build the project as a simple
jar file and install it using the module upload shell command:

xd:>module upload --file [path-to]/tweet-transformer-1.0.0.BUILD-SNAPSHOT.jar --name tweet-transformer

 --type processor

Successfully uploaded module 'processor:tweet-transformer'

If you make changes and need to re-install, you must first delete the existing module:

xd:>module delete processor:tweet-transformer

Note

A simple jar file works in this case because the module requires no additional library dependencies
since the Spring XD class path already includes Jackson and Spring Integration. See Module
Packaging for more details.

21.6 Test the custom module in the Spring XD runtime:

Start the Spring XD runtime and try creating a stream to test your processor:

xd:> stream create --name javatweets --definition "twittersearch --query=java --consumerKey=<your_key>

 --consumerSecret=<your_secret> | tweet-transformer | file" --deploy

If you haven’t already used twittersearch, read the sources section for more details. This
command should stream tweets to the file /tmp/xd/output/javatweets but, unlike the normal
twittersearch output, you should just see the text of the tweet rather than the full JSON document.

Also see si-dsl-module example for a more complex example of a processor module.

https://github.com/spring-projects/spring-xd-samples/tree/master/si-dsl-module

Spring XD Guide

1.2.0.RC1 Spring XD 257

22. Creating a Sink Module

22.1 Introduction

As outlined in the modules document, Spring XD currently supports four types of modules: source,
sink, and processor for stream processing and job for batch procesing. This document walks through
implementing a custom sink module.

The last module in a stream is always a sink. A sink module is built with Spring Integration to consume
messages on its input channel and send them to an external resource to terminate the stream.

Spring Integration provides a number of outbound channel adapters to integrate with various transports
such as TCP, AMQP, JMS, Kafka, HTTP, web services, mail, or data stores such as file, Redis,
MongoDB, JDBC, Splunk, Gemfire, and more. It is straightforward to create a sink module using an
existing outbound channel adapters. Such outbound channel adapters are typically used to integrate
streams with external data stores or legacy systems. Alternately, you may need to invoke a third party
Java API to provide data to an external system. In this case, the sink can easily invoke a Java method
using a Service Activator.

Here, we will demonstrate step-by-step how to create and install a sink module using the Spring
Integration Redis Store Outbound Channel Adapter. The complete code for this example is redis-store-
sink sample project.

22.2 Create the module Application Context

Configure the outbound channel adapter in an xml bean definition file under the config resource
directoy:

<beans ...>

 <int:channel id="input" />

 <int-redis:store-outbound-channel-adapter

 id="redisListAdapter" collection-type="LIST" channel="input" key="${collection}" auto-startup="false"/

>

 <beans:bean id="redisConnectionFactory"

 class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory">

 <beans:property name="hostName" value="${host}" />

 <beans:property name="port" value="${port}" />

 </beans:bean>

</beans>

The adapter, as required by Spring XD, is configured as an endpoint on a channel named input. When
a message is consumed, the Redis Store outbound channel adapter will write the payload to a Redis
list with a key given by the ${collection} property. By default, the Redis Store outbound channel adapter
uses a bean named redisConnectionFactory to connect to the Redis server. Here the connection factory
is configured with property placeholders ${host}, ${port} which will be provided as module options in
stream definitions that use this sink. Note that auto-startup is set to false. This is a requirement for
Spring XD modules. When a stream is deployed, the Spring XD runtime will create and start the modules
in the correct order to ensure that everything is initialized before the stream starts processing messages.

http://docs.spring.io/spring-integration/docs/latest-ga/reference/html/messaging-endpoints-chapter.html#service-activator
http://docs.spring.io/spring-integration/reference/html/redis.html#redis-store-outbound-channel-adapter
https://github.com/spring-projects/spring-xd-samples/tree/master/redis-store-sink
https://github.com/spring-projects/spring-xd-samples/tree/master/redis-store-sink
https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/src/main/resources/config/spring-module.xml

Spring XD Guide

1.2.0.RC1 Spring XD 258

Note

By default, the adapter uses a StringRedisTemplate. Therefore, this module will store all payloads
directly as Strings. You may configure a RedisTemplate with a different value Serializer to serialize
other data types, such as Java objects, to the Redis collection.

Spring XD will automatically register a PropertyPlaceholderConfigurer to your application context, so
there is no need to declare one here. These properties correspond to module options defined for this
module (discussed below). Users supply option values when creating a stream using the DSL.

The module’s properties file in the config resource directory contains Module Options Metadata
including a description, type, and optional default value for each property. The metadata supports
features like auto-completion in the Spring XD shell and option validation:

options.collection.description = the name of the list

options.collection.default= ${xd.stream.name}

options.collection.type = java.lang.String

#

options.host.description = the host name for the Redis store

options.host.default= localhost

options.host.type = java.lang.String

#

options.port.description = the port for the Redis store

options.port.default= 6379

options.port.type = java.lang.Integer

Note that the collection defaults to the stream name, referencing a common property provided by Spring
XD.

Alternately, you can write a POJO to define the metadata. Using a Java class provides better validation
along with additional features and requires that the class be packaged as part of the module.

22.3 Create a module project

This section covers creating the module as a standalone project containing some code to test the
module. This example uses Maven but Spring XD supports Gradle as well

Take a look at the pom file for this example. You will see it declares spring-xd-module-parent as
its parent and declares a dependency on spring-integration-redis which provides the outbound
channel adapter. The parent pom provides everything else you need. We also need to configure
repositories to access the parent pom and any other dependencies. The xml file containing the bean
definitions and the properties file are located in src\main\resources\config.

Create the Spring integration test

The main objective of the test is to ensure that messages are stored in a Redis list once the module’s
Application Context is loaded. In order to test the module stand-alone, we need to enhance the module
context with property values and a RedisTemplate to retrieve the stored messages.

Add the following src/test/resources/org/springframework/xd/samples/RedisStoreSinkTest-context.xml:

https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/src/main/resources/config/spring-module.properties
https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/pom.xml
https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/src/main/resources/config/spring-module.xml
https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/src/main/resources/config/spring-module.properties
https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/src/test/resources/org/springframework/xd/samples/RedisStoreSinkTest-context.xml

Spring XD Guide

1.2.0.RC1 Spring XD 259

<beans...>

 <context:property-placeholder properties-ref="props"/>

 <util:properties id="props">

 <prop key="collection">mycollection</prop>

 <prop key="host">localhost</prop>

 <prop key="port">6379</prop>

 </util:properties>

 <import resource="classpath:config/spring-module.xml"/>

 <bean id="redisTemplate" class="org.springframework.data.redis.core.StringRedisTemplate">

 <property name="connectionFactory" ref="redisConnectionFactory"/>

 </bean>

</beans>

Next, create and run the RedisStoreSinkTest:

package org.springframework.xd.samples;

import ...

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration

public class RedisStoreSinkTest {

 @Autowired

 ConfigurableApplicationContext applicationContext;

 @Autowired

 MessageChannel input;

 @Autowired

 RedisTemplate<String,String> redisTemplate;

 @Test

 public void test() {

 applicationContext.start();

 input.send(new GenericMessage<String>("hello"));

 assertEquals("hello", redisTemplate.boundListOps("mycollection").leftPop(5, TimeUnit.SECONDS));

 }

 @After

 public void cleanUp() {

 redisTemplate.delete("mycollection");

 }

}

The test will load the module application context using our test context and send a message to the
module’s input channel. It will fail if the input payload "hello" is not added to the Redis list within 5
seconds.

Run the test

The test requires a running Redis server. See Getting Started for information on installing and starting
Redis.

Test the Module Options

Another test you may want to include is one to verify the module options metadata, as
defined in spring-module.properties Here is an example ModuleOptionsTest that uses Spring XD’s
DefaultModuleOptionsMetadataResolver

https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/src/test/java/org/springframework/xd/samples/RedisStoreSinkTest.java
https://github.com/spring-projects/spring-xd-samples/blob/master/redis-store-sink/src/test/java/org/springframework/xd/samples/ModuleOptionsTest.java
http://docs.spring.io/autorepo/docs/spring-xd/current/api/org/springframework/xd/module/options/DefaultModuleOptionsMetadataResolver.html

Spring XD Guide

1.2.0.RC1 Spring XD 260

package org.springframework.xd.samples;

import ...

/**

 * Tests expected module properties are present.

 */

 public class ModuleOptionsTest {

 @Test

 public void testModuleOptions() {

 ModuleOptionsMetadataResolver moduleOptionsMetadataResolver = new

 DefaultModuleOptionsMetadataResolver();

 String resource = "classpath:/";

 ModuleDefinition definition = ModuleDefinitions.simple("redis-store", sink, resource);

 ModuleOptionsMetadata metadata = moduleOptionsMetadataResolver.resolve(definition);

 assertThat(

 metadata,

 containsInAnyOrder(moduleOptionNamed("collection"), moduleOptionNamed("host"),

 moduleOptionNamed("port")));

 for (ModuleOption moduleOption : metadata) {

 if (moduleOption.getName().equals("collection")) {

 assertEquals("${xd.stream.name}", moduleOption.getDefaultValue());

 }

 if (moduleOption.getName().equals("port")) {

 assertEquals("6379", moduleOption.getDefaultValue());

 }

 if (moduleOption.getName().equals("host")) {

 assertEquals("localhost", moduleOption.getDefaultValue());

 }

 }

 }

 public static Matcher<ModuleOption> moduleOptionNamed(String name) {

 return hasProperty("name", equalTo(name));

 }

}

22.4 Install the module

The next step is to package the module as an uber-jar using maven:

$mvn package

This will build an uber-jar in target/redis-store-sink-1.0.0.BUILD-SNAPSHOT.jar. If you
inspect the contents of this jar, you will see it includes the module configuration files and dependent
jars (spring-integration-redis in this case). Fire up the Spring XD runtime if it is not already
running and, using the Spring XD Shell, install the module as a sink named redis-store using the
module upload command:

xd:>module upload --file [path-to]/redis-store-sink/target/redis-store-sink-1.0.0.BUILD-SNAPSHOT.jar --

name redis-store --type sink

See registering a module for more details.

22.5 Test the module

Once the XD server is running, create a stream to test your new module. This stream will write tweets
containing the word "java" to Redis as a JSON string:

xd:> stream create --name javasearch --definition "twittersearch --consumerKey=<your_key> --

consumerSecret=<your_secret> --query=java | redis-store --collection=javatweets" --deploy

Spring XD Guide

1.2.0.RC1 Spring XD 261

Note that you need to have a consumer key and secret to use the twittersearch module. See the
description in the sources section for more information.

Fire up the redis-cli and verify that tweets are being stored:

$ redis-cli

redis 127.0.0.1:6379> lrange javatweets 0 -1

1) "{\"id\":342386150738120704,\"text\":\"Now Hiring: Senior Java Developer\",\"createdAt

\":1370466194000,\"fromUser\":\"jencompgeek\",...\"}"

If you prefer a simpler test, you can create a stream using the http source and manually post data to it:

xd:> stream create --name redisTest --definition "http | redis-store" --deploy

xd:> http post --target http://localhost:9000 --data hello

redis 127.0.0.1:6379> lrange redisTest 0 -1

1) "hello"

Spring XD Guide

1.2.0.RC1 Spring XD 262

23. Creating a Job Module

23.1 Introduction

As outlined in the modules document, XD currently supports four types of modules: source, sink, and
processor for stream processing and job for batch procesing. This document walks through creation of
a simple job module.

23.2 Developing your Job

The Job definitions provided as part of the Spring XD distribution as well as those included in the Spring
XD Samples repository can be used a basis for building your own custom Jobs. The development of a
Job largely follows the development of a Spring Batch job, for which there are several references.

• Spring Batch home page

• Spring Batch In Action - Manning

• Pro Spring Batch - APress

For help developing Job steps specific to Hadoop, e.g. HDFS, Pig, Hive, the Spring XD Samples is
useful as well as the following resources

• Spring for Apache Hadoop home page

• Spring Data - O’Reilly - Chapter 13

23.3 Creating a Simple Job

First we’ll look at how to create a job module from scratch. The complete working example is here.

Create a Module Project

This section covers the setup of a standalone project containing the module configuration and custom
code. This example uses Maven but Spring XD supports Gradle as well.

Take a look at the pom file for this example. You will see it declares spring-xd-module-parent
as its parent. The parent pom provides support for building and packaging Spring XD modules,
including spring-batch libraries. We also need to configure repositories to access the parent pom and
its dependencies.

First create a java project for your module, named batch-simple in your favorite IDE.

Create the Spring Batch Job Definition

Create a The job definition file in src\main\resources\config. In this case, we use a custom
Tasklet. In this example there is only one step and it simply prints out the job parameters.

https://github.com/spring-projects/spring-xd-samples
https://github.com/spring-projects/spring-xd-samples
http://projects.spring.io/spring-batch/
http://www.manning.com/templier/
http://www.apress.com/9781430234524
https://github.com/spring-projects/spring-xd-samples
http://projects.spring.io/spring-hadoop/
http://shop.oreilly.com/product/0636920024767.do
https://github.com/spring-projects/spring-xd-samples/tree/master/batch-simple
https://github.com/spring-projects/spring-xd-samples/blob/master/batch-simple/pom.xml
https://github.com/spring-projects/spring-xd-samples/blob/master/batch-simple/src/main/resources/config/spring-module.xml
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/step/tasklet/Tasklet.html

Spring XD Guide

1.2.0.RC1 Spring XD 263

<?xml version="1.0" encoding="UTF-8"?>

<beans ...>

 <batch:job id="job">

 <batch:step id="helloSpringXDStep">

 <batch:tasklet ref="helloSpringXDTasklet" />

 </batch:step>

 </batch:job>

 <bean id="helloSpringXDTasklet"

 class="org.springframework.springxd.samples.batch.HelloSpringXDTasklet" />

</beans>

Write the Tasklet

Write a HelloSpringXDTasklet java class that implements Tasklet. This will retrieve the job parameters
and print them to stdout.

https://github.com/spring-projects/spring-xd-samples/blob/master/batch-simple/src/main/java/org/springframework/springxd/samples/batch/HelloSpringXDTasklet.java
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/step/tasklet/Tasklet.html

Spring XD Guide

1.2.0.RC1 Spring XD 264

package org.springframework.springxd.samples.batch;

import ...

public class HelloSpringXDTasklet implements Tasklet, StepExecutionListener {

 private volatile AtomicInteger counter = new AtomicInteger(0);

 public HelloSpringXDTasklet() {

 super();

 }

 public RepeatStatus execute(StepContribution contribution,

 ChunkContext chunkContext) throws Exception {

 final JobParameters jobParameters =

 chunkContext.getStepContext().getStepExecution().getJobParameters();

 final ExecutionContext stepExecutionContext =

 chunkContext.getStepContext().getStepExecution().getExecutionContext();

 System.out.println("Hello Spring XD!");

 if (jobParameters != null && !jobParameters.isEmpty()) {

 final Set<Entry<String, JobParameter>> parameterEntries = jobParameters.getParameters().entrySet();

 System.out.println(String.format("The following %s Job Parameter(s) is/are present:",

 parameterEntries.size()));

 for (Entry<String, JobParameter> jobParameterEntry : parameterEntries) {

 System.out.println(String.format(

 "Parameter name: %s; isIdentifying: %s; type: %s; value: %s",

 jobParameterEntry.getKey(),

 jobParameterEntry.getValue().isIdentifying(),

 jobParameterEntry.getValue().getType().toString(),

 jobParameterEntry.getValue().getValue()));

 if (jobParameterEntry.getKey().startsWith("context")) {

 stepExecutionContext.put(jobParameterEntry.getKey(), jobParameterEntry.getValue().getValue());

 }

 }

 if (jobParameters.getString("throwError") != null

 && Boolean.TRUE.toString().equalsIgnoreCase(jobParameters.getString("throwError"))) {

 if (this.counter.compareAndSet(3, 0)) {

 System.out.println("Counter reset to 0. Execution will succeed.");

 }

 else {

 this.counter.incrementAndGet();

 throw new IllegalStateException("Exception triggered by user.");

 }

 }

 }

 return RepeatStatus.FINISHED;

 }

 @Override

 public void beforeStep(StepExecution stepExecution) {

 }

 @Override

 public ExitStatus afterStep(StepExecution stepExecution) {

 // To make the job execution fail, set the step execution to fail

 // and return failed ExitStatus

 // stepExecution.setStatus(BatchStatus.FAILED);

 // return ExitStatus.FAILED;

 return ExitStatus.COMPLETED;

 }

}

Spring XD Guide

1.2.0.RC1 Spring XD 265

Package and install the Module:

Follow the instructions in the project README for more details. The steps are summarized here.

Build the project with maven:

$mvn package

Uupload the jar file to Spring XD and register it as a job module named myjob using the Spring XD
shell module upload command:

xd:>module upload --type job --name myjob --file [path-to]/batch-simple/target/springxd-batch-

simple-1.0.0.BUILD-SNAPSHOT.jar

Modules can reside in an expanded directory named after the module, e.g. modules/job/myjob or
as a single uber-jar, e.g., modules/job/myjob.jar. See module packaging and registering a modulefor
more details.

Run the job

Start the Spring XD container if it is not already running.

xd:> job create --name helloSpringXD --definition "myjob" --deploy

xd:> job launch helloSpringXD --params {"myStringParameter":"foobar","-secondParam(long)":"123456"}

Note

By default, deploy is set to false. "--deploy" or "--deploy true" will deploy the job along with job
creation.

In the console log of the Spring XD container you should see the following:

Hello Spring XD!

The following 3 Job Parameter(s) is/are present:

Parameter name: secondParam; isIdentifying: false; type: LONG; value: 123456

Parameter name: myStringParameter; isIdentifying: true; type: STRING; value: foobar

Parameter name: random; isIdentifying: true; type: STRING; value: 0.06893349621991496

23.4 Creating a read-write processing Job

To create a job in the XD shell, execute the job create command specifying:

• name - the "name" that will be associated with the Job

• definition - the name of the job module

Often a batch job will involve reading batches of data from a source, tranforming or processing that data
and then wrting the batch of data to a destination. This kind of flow is implemented using Chunk-oriented
processing, represented in the job configuration using the <chunk/> element containing reader,
writer and optional processor elements. Other attributes define the size of the chunck and various
policies for handling failure cases.

You will usually be able to reuse existing reader and writer implementations. The filejdbc job provided
with the Spring XD distribution shows an example of this using the standard File reader and JDBC writer.

The processor is based on the ItemProcessor interface. It has a generic signature that lets you
operate on a record at at time. The batch of records is handled as a collection in reader and writer

https://github.com/spring-projects/spring-xd-samples/blob/master/batch-simple/README.md
http://docs.spring.io/spring-batch/trunk/reference/html/configureStep.html#chunkOrientedProcessing
http://docs.spring.io/spring-batch/trunk/reference/html/configureStep.html#chunkOrientedProcessing
http://docs.spring.io/spring-batch/trunk/apidocs/org/springframework/batch/item/ItemReader.html
http://docs.spring.io/spring-batch/trunk/apidocs/org/springframework/batch/item/ItemWriter.html
https://github.com/spring-projects/spring-xd/blob/master/modules/job/filejdbc/config/filejdbc.xml

Spring XD Guide

1.2.0.RC1 Spring XD 266

implementations. In the filejdbc job, the reader converts input records into a Spring XD Tuple. The
tuple serves as a generic data structure but you can also use or write another converter to convert the
input record to your own custom POJO object.

23.5 Orchestrating Hadoop Jobs

There are several tasklet implementation that will run various types of Hadoop Jobs

• MapReduce Job

• HDFS Scripts

• Hive Scripts

• Pig Scripts

The Spring Hadoop Samples project provides examples of how to create batch jobs that orchestate
various hadoop jobs at each step. You can also mix and match steps related to work that is executed
on the Hadoop cluster and work that is executed on the Spring XD cluster.

http://docs.spring.io/spring-hadoop/docs/2.0.2.RELEASE/reference/html/hadoop.html#hadoop:tasklet
http://docs.spring.io/spring-hadoop/docs/2.0.2.RELEASE/reference/html/fs.html#scripting-tasklet
http://docs.spring.io/spring-hadoop/docs/2.0.2.RELEASE/reference/html/hive.html#hive:tasklet
http://docs.spring.io/spring-hadoop/docs/2.0.2.RELEASE/reference/html/pig.html#pig:tasklet
https://github.com/spring-projects/spring-hadoop-samples

Spring XD Guide

1.2.0.RC1 Spring XD 267

24. Creating a Python Module

24.1 Introduction

Spring XD provides support for processor and sink modules that invoke an external shell command.
You can use these to integrate a Python script with a Spring XD stream. The following echo.py script
is a simple example which can implement a processor to simply echo the input.

#echo.py

import sys

#=====================

Write data to stdout

#=====================

def send(data):

 sys.stdout.write(data)

 sys.stdout.flush()

#===

Terminate a message using the default CRLF

#===

def eod():

 send("\r\n")

#===========================

Main - Echo the input

#===========================

while True:

 try:

 data = raw_input()

 if data:

 send(data)

 eod()

 except:

 break

To use this in a stream, create a stream definition like this:

xd:>stream create pytest --definition "time | shell --command='python <absolute-path-to>/echo.py' | log"

 --deploy

Created and deployed new stream 'pytest'

Note

Python must be installed on the host of any container to which the processor module is deployed.

You should see the time messages echoed in the Spring XD container log. The shell processor works
by binding its message channels to the external process' stdin and stdout. Behind the scenes, the
shell modules use java.lang.ProcessBuilder to connect to the shell process. As you can see, most of
echo.py is boilerplate code. To make things easier, Spring XD provides a python module to handle
all of the low level I/O.

from springxd.stream import Processor

def echo(data):

 return data

process = Processor()

process.start(echo)

http://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-python/src/springxd/stream.py

Spring XD Guide

1.2.0.RC1 Spring XD 268

As you can see, this creates a Processor object which has a start method to which you may pass
any function that accepts a single argument and returns a value. Currently, both the input and output
data must be strings. Processor uses Encoders.CRLF (\r\n) by default. This is how the Spring XD
module delimits individual messages in the stream. Encoders.LF is also supported. The shell command
processor also uses CRLF by default.

xd:>stream create pytest --definition "time | shell --command='python <absolute-path-to>/echo.py' | log"

 --deploy

Created and deployed new stream 'pytest'

Alternately, you can specify the LF encoder in the Python script and the stream definition:

from springxd.stream import Processor, Encoders

def echo(data):

 return data

process = Processor(Encoders.LF)

process.start(echo)

xd:>stream create pytest --definition "time | shell --command='python <absolute-path-to>/echo.py' --

encoder=LF | log" --deploy

The stream module also provides a similar Sink object which accepts a function that need not return
a value (Sink will ignore the returned value).

Note

In order to import the springxd.stream module into your script, you must include it in your
Python module search path. Python provides several ways to do this as described here. Spring
XD python modules are included in the distribution in the python directory. The stream module is
designed to be version agnostic and has been tested against Python 2.7.6 and Python 3.4.2

https://docs.python.org/2/tutorial/modules.html#the-module-search-path

Spring XD Guide

1.2.0.RC1 Spring XD 269

25. Providing Module Options Metadata

25.1 Introduction

Each available module can expose metadata about the options it accepts. This is useful to enhance the
user experience, and is the foundation to advanced features like contextual help and code completion.
the For example, provided that the file source module has been enriched with options metadata (and it
has), one can use the module info command in the shell to get information about the module:

xd:> module info source:file

Information about source module 'file':

 Option Name Description

 Default Type

 ----------------- ---

 ------- ---------

 dir the absolute path to the directory to monitor for files <none>

 String

 pattern a filter expression (Ant style) to accept only files that match the pattern *

 String

 outputType how this module should emit messages it produces <none>

 MediaType

 preventDuplicates whether to prevent the same file from being processed twice true

 boolean

 ref set to true to output the File object itself false

 boolean

 fixedDelay the fixed delay polling interval specified in seconds 5

 int

For this to be available, module authors have to provide a little bit of extra information, known as "Module
Options Metadata". That metadata can take two forms, depending on the needs of the module: one can
either use the "simple" approach, or the "POJO" approach. If one does not need advanced features like
profile activation, validation or options encapsulation, then the "simple" approach is sufficient.

25.2 Using the "Simple" approach

To use the simple approach, simply create a file named <module>.properties right next to the
<module>.xml file for your module.

Declaring and documenting an option

In that file, each option <option> is declared by adding a line of the form

options.<option>.description = the description

The description for the option is the only required part, and is a very important piece of information for
the end user, so pay special attention to it (see also Style remarks)

That sole line in the properties file makes a --<option>= construct available in the definition of a
stream using your module.

About plugin provided options metadata

Some options are automatically added to a module, depending on its type. For example, every
source module automatically inherits a outputType option, that controls the type conversion
feature between modules. You don’t have to do anything for that to happen.

Similarly, every job module benefits from a handful of job specific options.

Spring XD Guide

1.2.0.RC1 Spring XD 270

Here is a recap of those automatically provided options:

Module Type Options

Source outputType

Processor outputType, inputType

Sink inputType

Job makeUnique, numberFormat, dateFormat

Advertising default values

In addition to this, one can also provide a default value for the option, using

options.<option>.default = SomeDefault

Doing this, the default value should not be used in the placeholder syntax in the xml file. Assuming this
is the contents of foo.properties:

options.bar.description = a very useful option

options.bar.default = 5

then in foo.xml:

<!-- this is correct -->

<feature the-bar="${bar}"" />

<!-- this is incorrect/not needed -->

<feature the-bar="${bar:5}" />

Exposing the option type

Lastly, one can document the option type using a construct like

options.<option>.type = fully.qualified.class.Name

For simple "primitive" types, one can use short names, like so:

options.<option>.type = String

or

options.<option>.type = boolean

or

options.<option>.type = Integer

Note that there is support for both wrapper types (e.g. Integer) and primitive types (e.g. int). Although
this is used for documentation purposes only, the primitive type would typically be used to indicate a
required option (null being prohibited).

25.3 Using the "POJO" approach

To use advanced features such as profile activation driven by the values provided by the end user, one
would need to leverage the "POJO" approach.

Instead of writing a properties file, you will need to write a custom java class that will hold the values at
runtime. That class is also introspected to derive metadata about your module.

Spring XD Guide

1.2.0.RC1 Spring XD 271

Declaring options to the module

For the simplest cases, the class you need to write does not need to implement or inherit from anything.
The only thing you need to do is to reference it in a properties file named after your module (the same
file location you would have used had you been leveraging the "simple" approach):

options_class = fully.qualified.name.of.your.Pojo

Note that the key is options_class, with an s and an underscore (not to be confused with
option.<optionname> that is used in the "simple" approach)

For each option you want available using the --<option>= syntax, you must write a public setter
annotated with @ModuleOption, providing the option description in the annotation.

The type accepted by that setter will be used as the documented type.

That setter will typically be used to store the value in a private field. How the module application can
get ahold of the value is the topic of the next section.

Exposing values to the context

For a provided value to be used in the module definition (using the ${foo} syntax), your POJO class
needs to expose a getFoo() getter.

At runtime, an instance of the POJO class will be created (it requires a no-arg constructor, by the way)
and values given by the user will be bound (using setters). The POJO class thus acts as an intermediate
PropertySource to provide values to ${foo} constructs.

Providing defaults

To provide default values, one would most certainly simply store a default value in the backing field of a
getter/setter pair. That value (actually, the result of invoking the matching getter to a setter on a newly
instanciated object) is what is advertised as the default.

Encapsulating options

Although one would typically use the combination of a foo field and a getFoo(), setFoo(x) pair,
one does not have to.

In particular, if your module definition requires some "complex" (all things being relative here) value
to be computed from "simpler" ones (e.g. a suffix value would be computed from an extension option,
that would take care of adding a dot, depending on whether it is blank or not), then you’d simply do
the following:

 1 public class MyOptions {

 private String extension;

 @ModuleOption("the file extension to use")

 5 public void setExtension(String extension) {

 this.extension = extension;

 }

 public String getSuffix() {

 10 return extension == null ? null : "." + extension;

 }

 }

Spring XD Guide

1.2.0.RC1 Spring XD 272

This would expose a --extension= option, being surfaced as a ${suffix} placeholder construct.

The astute reader will have realized that the default can not be computed then, because there is no
getExtension() (and there should not be, as this could be mistakenly used in ${extension}).
To provide the default value, you should use the defaultValue attribute of the @ModuleOption
annotation.

Using profiles

The real benefit of using a POJO class for options metadata comes with advanced features though, one
of which is dynamic profile activation.

If the set of beans (or xml namespaced elements) you would define in the module definition file
depends on the value that the user provided for one or several options, then you can make
your POJO class implement ProfileNamesProvider. That interface brings one contract method,
profilesToActivate() that you must implement, returning the names of the profiles you want to use
(this method is invoked after user option values have been bound, so you can use any logic involving
those to compute the list of profile names).

As an example of this feature, see e.g. TriggerSourceOptionsMetadata.

Using validation

Your POJO class can optionally bear JSR303 annotations. If it does, then validation will occur after
values have been successfully bound (understand that injection can fail early due to type incoherence
by the way. This comes for free and does not require JSR303 annotations).

This can be used to validate a set of options passed in (some are often mutually exclusive) or to catch
misconfiguration earlier than deployment time (e.g. a port number cannot be negative).

25.4 Metadata style remarks

To provide a uniform user experience, it is better if your options metadata information adheres to the
following style:

• option names should follow the camelCase syntax, as this is easier with the POJO approach. If we
later decide to switch to a more unix-style, this will be taken care of by XD itself, with no change
to the metadata artifacts described here

• description sentences should be concise

• descriptions should start with a lowercase letter and should not end with a dot

• use primitive types for required numbers

• descriptions should mention the unit for numbers (e.g ms)

• descriptions should not describe the default value, to the best extent possible (this is surfaced thru
the actual default metadata awareness)

• options metadata should know about the default, rather than relying on the ${foo:default}
construct

Spring XD Guide

1.2.0.RC1 Spring XD 273

26. Extending Spring XD

26.1 Introduction

This document describes how to customize or extend the Spring XD Container. Spring XD is a distributed
runtime platform delivered as executable components including XD Admin, XD Container, and XD
Shell. The XD Container is a Spring application combining XML resources, Java @Configuration
classes, and Spring Boot auto configuration for its internal configuration, initialized via the Spring Boot
SpringApplicationBuilder. Since Spring XD is open source, the curious user can see exactly how it
is configured. However, all Spring XD’s configuration is bundled in jar files and therefore not directly
accessible to end users. Most users do not need to customize or extend the XD Container. For those
that do, Spring XD provides hooks to:

• Provide additional bean definitions

• Override selected bean definitions with custom implementations

Customization scenarios might include:

• Add a new data transport

• Add a Spring XD plugin to configure modules

• Embed a shared component used by user provided Plugin, such as a GemFire cache or a data source

• Providing additional type converters

This following sections provide an overview of XD Container internals and explain how to extend Spring
XD for each of these scenarios. The reader is expected to have a working knowledge of both the Spring
Framework and Spring Integration.

26.2 Spring XD Application Contexts

The diagram below shows how Spring XD is organized into several Spring application contexts.
Some understanding of the Spring XD application context hierarchy is necessary for extending XD. In
the diagram, solid arrows indicate a parent-child relationship. As with any Spring application a child
application context may reference beans defined in its parent application context, but the parent context
cannot access beans defined in the child context. It is important to keep in mind that a bean definition
registered in a child context with the same id as a bean in the parent context will create a separate
instance in the child context. Similarly, any bean definition will override an earlier bean definition in the
same application context registered with the same id (Sometimes referred to as "last one wins").

Spring XD’s primary extension mechanism targets the Plugin Context highlighted in the diagram. Using
a separate convention, it is also possible to register an alternate MessageBus implementation in the
Shared Server Context.

http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/api/org/springframework/boot/builder/SpringApplicationBuilder.html

Spring XD Guide

1.2.0.RC1 Spring XD 274

Figure 26.1. The Spring XD Application Context Hierarchy

While this arrangement of application contexts is more complex than the typical Spring application, XD
is designed this way for the following reasons:

• Bean isolation - Some beans are "global" in that they are shared by all XD runtime components:
Admin, Container, and Modules. Those allocated to the Shared Server Context are shared only
by Admin and Container. Some beans must be available to Plugins ,used to configure Modules.
However Plugins and Modules should be isolated from critical internal components. While complete
isolation has proven difficult to achieve, the intention is to minimize any undesirable side effects when
introducing extensions.

• Bean scoping - To ensure that single node and distributed configurations of the Spring XD runtime
are logically equivalent, the Spring configuration is identical in both cases, avoiding unnecessary
duplication of bean definitions.

• Lifecycle management - Plugins and other beans used to configure these application contexts are
also Spring beans which Spring XD dynamically "discovers" during initialization. Such components
must be fully instantiated prior to the creation of the application context to which they are targeted.

Spring XD Guide

1.2.0.RC1 Spring XD 275

To ensure initialization happens in the desired order, such beans may be either defined in an isolated
application context (i.e., not part of the hierarchy) or in a parent context which Spring initializes before
any of its descendants.

26.3 Plugin Architecture

The XD Container at its core is simply a runtime environment for hosting and managing micro Spring
applications called Modules. Each module runs in its own application context (Module Context). The
Module Context is a child of Global Context, as modules share some bean definitions, but otherwise is
logically isolated from beans defined in the XD Container. The Module Context is fundamental to the
Spring XD design. In fact, this is what allows each module to define its own input and output channels,
and in general, enables beans be uniquely configured via property placeholders evaluated for each
deployed instance of a Module. The Module interface and its default implementation provide a thin
wrapper around a Spring Application Context for which properties are bound, profiles activated, and
beans added or enhanced in order to "plug" the module into the XD Container.

The ModuleDeployer, shown in the diagram, is a core component of the Container Context, responsible
for initializing modules during deployment, and shutting them down during undeployment. The
ModuleDeployer sees the module as a "black box", unaware of its purpose or runtime requirements.
Binding a module’s channels to XD’s data transport, for instance, is the responsibility of the MessageBus
implementation configured for the transport. The MessageBus binding methods are actually invoked by
the StreamPlugin during the initialization of a stream module. To support jobs, XD provides a JobPlugin
to wire the Spring Batch components defined in the module during deployment. The JobPlugin also
invokes the MessageBus to support communications between XD and job modules. These, and other
functions critical to Spring XD are performed by classes that implement the Plugin interface. A Plugin
operates on every deployed Module which it is implemented to support. Thus the ModuleDeployer simply
invokes the deployment life cycle methods provided by every Plugin registered in the Plugin Context.

The ModuleDeployer discovers registered Plugins by calling getBeansOfType(Plugin.class) for
the Plugin Context (its parent context). This means that adding your own Plugin requires these steps:

• Implement the Plugin interface

• Add your Plugin implementation and any dependent classes to Spring XD’s class path

• Follow conventions that Spring XD uses to register Plugins

The next section covers these steps in more detail.

26.4 How to Add a Spring bean to the XD Container

This section applies to adding a Plugin, which is generally useful since a Plugin has access to every
module as it is being deployed (see the previous section on Plugin Architecture). Furthermore, this
section describes a generic mechanism for adding any bean definition to the Plugin Context. Spring
XD uses both Spring Framework’s class path component scanning and resource resolution to find any
components that you add to specified locations in the class path. This means you may provide Java
@Configuration and/or any classes annotated with the @Component stereotype in a configured base
package in addition to bean definitions defined in any XML or Groovy resource placed under a configured
resource location. These locations are given by the properties xd.extensions.locations and
xd.extensions.basepackages, optionally configured in servers.yml down at the bottom:

http://docs.spring.io/spring-xd/docs/1.2.0.RC1/api/org/springframework/xd/module/core/Module.html
http://docs.spring.io/spring-xd/docs/1.2.0.RC1/api/org/springframework/integration/x/bus/MessageBus.html
http://docs.spring.io/spring-xd/docs/1.2.0.RC1/api/org/springframework/xd/module/core/Plugin.html
http://docs.spring.io/spring-xd/docs/1.2.0.RC1/api/org/springframework/xd/module/core/Plugin.html

Spring XD Guide

1.2.0.RC1 Spring XD 276

User Extensions: Where XD scans the class path to discover extended container configuration to adds

 beans to the Plugins context.

Each property may be a comma delimited string. 'basepackages' refers to package names used for

annotated component (@Configuration or @Component stereotypes) scanning. 'locations' is a list of root

 resource directories containing XML or Groovy configuration.

XD prepends classpath:* if no prefix included and appends **/*.* to each location

#xd:

extensions:

basepackages: com.acme.xd.extensions

locations: META-INF/spring-xd/ext

As the pluralization of these property names suggests, you may represent multiple values as a comma
delimited string. Also note that there is no default for xd.extensions.basepackages. So if you want
to use annotation based configuration, you must first set up one or more base package locations. The
resource location(s) define the root locations where any XML or Groovy Spring bean definition file found
in the given root or any of its subdirectories will be loaded. The root location defaults to META-INF/
spring-xd/ext

The Container loads any bean definitions found in these configured locations on the class path and adds
them to the Plugin Context. This is the appropriate application context since in order to apply custom
logic to modules, you will most likely need to provide a custom Plugin.

Note

The extension mechanism is very flexible. In theory, one can define BeanPostProcessors,
BeanFactoryPostProcessors, or ApplicationListeners to manipulate Spring XD application
contexts. Do so at your own risk as the Spring XD initialization process is fairly complex, and not
all beans are intended to be extensible.

Extensions are packaged in a jar file which must be added to Spring XD’s class path. Currently, you
must manually copy the jar to $XD_HOME/lib for each container instance. To implement a Plugin, you
will need to include a compile time dependency on spring-xd-module in your build. To access other
container classes and to test your code in a container you will also require spring-xd-dirt.

26.5 Providing A new Type Converter

Spring XD supports automatic type conversion to convert payloads declaratively. For example, to
convert an object to JSON, you provide the module option --outputType=application/json to
a module used in a stream definition. The conversion is enabled by a Plugin that binds a Spring
MessageConverter to a media type. The default type converters are currently configured in streams.xml,
packaged in spring-xd-dirt-<version>.jar. If you look at that file, you can see an empty list
registered as customMessageConverters.

<!-- Users can override this to add converters.-->

 <util:list id="customMessageConverters"/>

So registering new type converters is a matter of registering an alternate list as
customMessageConverters to the application context. Spring XD will replace the default empty list
with yours. xd.messageConverters and customMessageConverters are two lists injected into the
ModuleTypeConversionPlugin to build an instance of CompositeMessageConverter which delegates to
the first converter in list order that is able to perform the necessary conversion. The Plugin injects the
CompositeMessageConverter into the module’s input or output the MessageChannel, corresponding to
the inputType or outputType options declared for any module in the stream definition (or defined
as the module’s default inputType).

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/MessageConverter.html
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/resources/META-INF/spring-xd/plugins/streams.xml
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/CompositeMessageConverter.html
http://docs.spring.io/spring-integration/docs/current/api/org/springframework/integration/channel/AbstractMessageChannel.html

Spring XD Guide

1.2.0.RC1 Spring XD 277

The CompositeMessageConverter is desirable because a module does not generally know what
payload type it will get from its predecessor. For example, the converters that Spring XD provides out
of the box can convert any Java object, including a Tuple and a byte array to a JSON String. However
the methods for converting a byte array or a Tuple are each optimized for the respective type. The
CompositeMessageConverter for --outputType=application/json must provide all three methods and the
Data Type channel chooses the first converter that applies to both the incoming payload type and the
media type (e.g., application/json). Note that the order that the converters appear in the list is significant.
In general, converters for specific payload types precede more general converters for the same media
type. The customMessageConverters are added after the standard converters in the order defined.
So it is generally easier to add converters for new media types than to replace existing converters.

For example, a member of the Spring XD community inquired about Spring XD’s support for
Google protocol buffers. This user was interested in integrating Spring XD with an existing
messaging system that uses GPB heavily and needed a way to convert incoming and outgoing
GPB payloads to interoperate with XD streams. This could be accomplished by providing a
customMessageConverters bean containing a list of required message converters. Writing a custom
converter to work with XD requires extending AbstractFromMessageConverter provided by spring-
xd-dirt. It is recommended to review the existing implementations listed in streams.xml to get a feel
for how to do this. In addition, you would likely define a custom MimeType such as application/gpb.

Note

It is worth mentioning that GPB is commonly used for marshaling objects over the network. In
the context of Spring XD marshaling is treated as a separate concern from payload conversion.
In Spring XD, marshaling happens at the "pipe" indicated by the | symbol using a different
serialization mechanism, described below. In this case, the GPB payloads are produced and
consumed by systems external to Spring XD and need to be converted in order that a GPB payload
can work with XD streams. In this scenario, if the GPB is represented as a byte array, the bytes
are transmitted over the network directly and marshaling is unnecessary.

As an illustration, suppose this user has developed a source module that emits GPB payloads from
a legacy service. Spring XD provides transform and filter modules that accept SpEL expressions to
perform their respective tasks. These modules are useful in many situations but the SpEL expressions
generally require a POJO representing a domain type, or a JSON string. In this case it would be
convenient to support stream definitions such as

gpb-source --outputType=application/x-java-object | transform --expression=...

where gpb-source represents a custom module that emits a GPB payload and expression references
some specific object property. The media type application/x-java-object is a convention used by XD to
indicate that the payload should be converted to a Java type embedded in the serialized representation
(GPB in this example). Alternately, converting to JSON could be performed if the stream definition were:

gpb-source --outputType=application/json | transform --expression=...

To convert an XD stream result to GPB to be consumed by an external service might look like:

source | P1 ... | Pn | gpb-sink --inputType=application/gpb

These examples would require registering custom MessageConverters to handle the indicated
conversions. Alternately, this may be accomplished by writing custom processor modules to perform
the required conversion. The above examples would then have stream definitions that look more like:

http://docs.spring.io/spring-xd/docs/1.2.0.RC1/api/org/springframework/xd/tuple/Tuple.html
https://developers.google.com/protocol-buffers/
http://docs.spring.io/spring-xd/docs/1.2.0.RC1/api/org/springframework/integration/x/bus/converter/AbstractFromMessageConverter.html
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/resources/META-INF/spring-xd/plugins/streams.xml
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/MimeType.html

Spring XD Guide

1.2.0.RC1 Spring XD 278

gpb-source | gpb-to-pojo | transform --expression=...

source | P1 ... | Pn | json-to-gpb | gpb-sink

Tip

While custom processor modules are easier to implement, they add unnecessary complexity to
stream definitions that use them. If such conversions are required everywhere, enabling automatic
conversion may be worth the effort. Also, note that using a separate module generally requires
additional network hops (at each pipe). If a processor module is necessary only to perform a
common payload conversion, it is more efficient to install a custom converter.

26.6 Adding a New Data Transport

Spring XD offers Redis and Rabbit MQ for data transport out of the box. Transport is configured simply
by setting the property xd.transport to redis or rabbit. In addition xd-singlenode supports a
--transport command line option that can accept local(the single node default) in addition. This
simple configuration mechanism is supported internally by an import declaration that binds the transport
implementation to a name.

<import resource="classpath*:/META-INF/spring-xd/transports/${XD_TRANSPORT}-bus.xml"/>

The above snippet is from an internal Spring configuration file loaded into the Shared Server Context.
Spring XD provides MessageBus implementations in META-INF/spring-xd/transports/redis-
bus.xml and META-INF/spring-xd/transports/rabbit-bus.xml

This makes it relatively simple for Spring XD developers and advanced users to provide alternate
MessageBus implementations to enable a new transport and activate that transport by setting the
xd.transport property. For example, to implement a JMS MessageBus you would add a jar
containing /META-INF/spring-xd/transports/jms-bus.xml in the class path. This file must
register a bean of type MessageBus with the ID messageBus. A jar providing the above configuration file
along with the MessageBus implementation and any dependencies must be installed $XD_HOME/lib.

When implementing a MessageBus, it is advisable to review and understand the existing
implementations which extend MessageBusSupport. This base class performs some common tasks
including payload marshaling. Spring XD uses the term codec to connote a component that performs
both serialization and deserialization and provides a bean with the same name. In the example
above, the JMS MessageBus configuration`/META-INF/spring-xd/transports/jms-bus.xml` might look
something like:

<bean id="messageBus" class="my.example.JmsMessageBus">

 <constructor-arg ref="jmsConnectionFactory" />

 <constructor-arg ref="codec"/>

</bean>

where JmsMessageBus extends MessageBusSupport and the developer is responsible for configuring
any dependent JMS resources appropriately.

http://docs.spring.io/spring-xd/docs/1.2.0.RC1/api/org/springframework/integration/x/bus/MessageBusSupport.html

Spring XD Guide

1.2.0.RC1 Spring XD 279

27. Samples

We have a number of sample projects in the Spring XD Samples GitHub repository. Below are some
additional examples for ingesting syslog data to HDFS.

27.1 Syslog ingestion into HDFS

In this section we will show a simple example on how to setup syslog ingestion from multiple hosts
into HDFS.

Create the streams with syslog as source and HDFS as sink (Please refer to source and sink)

If you’re using syslog over TCP and need the highest throughput, use the Reactor-backed syslog
module.

xd:> stream create --definition "reactor-syslog --port=<tcp-port> | hdfs" --name <stream-name>

The reactor-syslog module doesn’t yet support UDP (though it soon will), so if you’re using syslog
over UDP you’ll want to use the standard syslog module.

xd:> stream create --definition "syslog-udp --port=<udp-port> | hdfs" --name <stream-name>

xd:> stream create --definition "syslog-tcp --port=<tcp-port> | hdfs" --name <stream-name>

Please note for hdfs sink, set rollover parameter to a smaller value to avoid buffering and to see the
data has made to HDFS (incase of smaller volume of log).

Configure the external hosts’ syslog daemons forward their messages to the xd-container host’s UDP/
TCP port (where the syslog-udp/syslog-tcp source module is deployed).

A sample configuration using syslog-ng

Edit syslog-ng configuration (for example: /etc/syslog-ng/syslog-ng.conf):

1) Add destination

destination <destinationName> {

 tcp("<host>" port("<tcp-port>"));

};

or,

destination <destinationName> {

 udp("<host>" port("<udp-port>"));

};

where "host" is the container(launcher) host where the syslog module is deployed.

2) Add log rule to log message sources:

log {

 source(<message_source>); destination(<destinationName>);

};

3) Make sure to restart the service after the change:

sudo service syslog-ng restart

https://github.com/spring-projects/spring-xd-samples

Spring XD Guide

1.2.0.RC1 Spring XD 280

Now, the syslog messages from the syslog message sources are written into HDFS /xd/<stream-name>/

Part III. Configuration Guidelines

Spring XD Guide

1.2.0.RC1 Spring XD 282

28. Overview

When running a distributed Spring XD runtime, there are a number of considerations related to
performance and reliability. In most cases, these involve settings that have tradeoffs, but in this section
we provide some background so you know what the options are and how to configure them.

In the Deployment section that follows, we provide detailed information about various properties that
can be passed along with the stream deploy command. That section also describes a scenario that
is common for minimizing network hops, where direct binding can occur between modules rather than
having each pipe within a stream correspond to a send and receive over the Message Bus. For more
detail see the Direct Binding subsection.

Another relevant topic for minimizing network hops is the ability to compose modules. That is a useful
technique where a subset of the stream’s contiguous modules can be grouped together as if a single
module. All of the pipes within the composed module will rely upon a local transport rather than sending
and receiving via the Message Bus. For more detail read the Composing Modules section.

For production use, high availability will typically be a requirement for the data transport. In the Message
Bus Configuration section below, we provide details on the relevant HA configuration settings as well
as other reliability settings, security settings (including enabling SSL), and error-handling capabilities.

When configuring a RabbitMQ Message Bus, you will also want to consider several performance
settings. For example, unless strict sequential ordering is required, the prefetch and concurrency values
should be overridden (the default for each is 1). That can lead to a significant performance improvement.
In the less likely case that performance concerns completely outweigh reliability, you can disable
acknowledgements and even disable the persistence of messages. For a listing of these settings and
more, refer to the RabbitMQ Configuration section. Several performance related configuration settings
exist on the broker itself, and those are well-documented in the RabbitMQ Admin Guide. For example,
the vm_memory_high_watermark and vm_memory_high_watermark_paging_ratio are both explained
within the Flow Control subsection of the guide.

If you are using the HTTP source module in a stream and want to scale, you can deploy multiple
instances by specifying the module.http.count property as described in the Deployment Properties
section. Keep in mind that each instance will share the same port value. The default is 9000, but that
can be overridden, for all instances, by including --port as an option for the HTTP module in the stream
definition. That means you would want to ensure that each container that may be a candidate for
deploying one of the HTTP module instances (taking into account the criteria deployment property if
provided), is running on a different host, either physically or on separate virtual machines. Of course, in a
production environment, you would likely want to add a load balancer in front of those HTTP endpoints.

Also when using the HTTP source module, you may want to consider enabling support for HTTPS. An
example is provided in the documentation for that module’s options.

http://www.rabbitmq.com/admin-guide.html
http://www.rabbitmq.com/memory.html

Spring XD Guide

1.2.0.RC1 Spring XD 283

29. Deployment

29.1 Introduction

This section covers topics related to deployment, including:

• The Deployment Manifest

• Deployment States

• Container Attributes

• Stream Partitioning

• Direct Binding

• Troubleshooting

When you deploy a Stream or Job, the Spring XD Runtime performs the following steps:

• parse the stream or job definition (DSL Guide) to resolve each Module reference along with its options

• set option values assigned to each component Module

• parse and store the deployment request including the Deployment Manifest

• allocate each Module to an available Container instance in accordance with the Deployment Manifest

• binding Module channel(s), either to the MessageBus or directly using Direct Binding

• track the state of each deployed module

• track the overall stream or job’s Deployment State

29.2 Deployment Manifest

A stream is composed of modules. Each module is deployed to one or more Container instance(s). In
this way, stream processing is distributed among multiple containers. By default, deploying a stream to a
distributed runtime configuration uses simple round robin logic. For example if there are three containers
and three modules in a stream definition, s1= m1 | m2 | m3, then Spring XD will attempt to distribute
the work load evenly among each container. This is a very simplistic strategy and does not take into
account things like:

• server load - how many modules are already deployed to a container? What is the current memory
and CPU utilization?

• server affinity - some containers may have external software installed and specific modules will benefit
from co-location. For example, an hdfs sink might be deployed only to hosts running Hadoop. Or
perhaps a file sink should be deployed to hosts configured with extra disk space.

• scalability - Suppose the stream s1, above, can achieve higher throughput with multiple instances of
m2 running, so we want to deploy m2 to every available container.

Spring XD Guide

1.2.0.RC1 Spring XD 284

• fault tolerance - the ability to target physical servers on redundant networks, routers, racks, etc.

Generally, more complex deployment strategies are needed to tune and operate XD. Additionally, we
must consider various features and constraints when deploying to a PaaS, Yarn or some other cluster
manager. Additionally, Spring XD allows supports Stream Partitioning and Direct Binding.

To address such deployment concerns, Spring XD provides a Deployment Manifest which is submitted
with the deployment request, in the form of in-line deployment properties (or potentially a reference to
a separate document containing deployment properties).

Deployment Properties

When you execute the stream deploy shell command, you can optionally provide a comma
delimited list of key=value pairs known as deployment properties. Examples for the key include module.
[modulename].count and module.[modulename].criteria (for a full list of properties, see below). The
value for the count is a positive integer, and the value for criteria is a valid SpEL expression. The Spring
XD runtime matches an available container for each module according to the deployment manifest.

The deployment properties allow you to specify deployment instructions for each module. Currently this
includes:

• The number of module instances

• A target server or server group

• MessageBus attributes required for a specific module

• Stream Partitioning

• Direct Binding

• History Tracking

Spring XD Shell interaction

When using the Spring XD Shell, there are two ways to provide deployment properties: either inline or
via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the --properties shell option and list properties as a comma separated list of key=value
pairs, like so:

stream deploy foo --properties

 "module.transform.count=2,module.log.criteria=groups.contains('group1')"

Using a file reference
use the --propertiesFile option and point it to a local Java .properties file (i.e. that lives in
the filesystem of the machine running the shell). Being read as a .properties file, normal rules
apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend using = as
a key-value pair delimiter for consistency:

stream deploy foo --propertiesFile myprops.properties

where myprops.properties contains

Spring XD Guide

1.2.0.RC1 Spring XD 285

this is a comment

module.transform.count=2

module.log.criteria = groups.contains('group1')

Those two options apply to the stream deploy and job deploy commands.

General Properties

Note

You can apply criteria to all modules in the stream by using the wildcard * for [modulename]

module.[modulename].count
The number of module instances (see above).

module.[modulename].criteria
A boolean SpEL expression using the Container Attributes as an evaluation context.

module.[modulename].trackHistory
A boolean value indicating whether history should be tracked in a message header for this module.
Usually used during stream development or for debugging, with module.*.trackHistory=true
to track all modules. The xdHistory message header contains an entry for each module that
processes the message; each entry includes useful information including the stream name, module
label, host, container id, thread name, etc. This enables the determination of exactly how a message
was processed through the stream(s).

Example:

xd:>stream deploy --name test1 --properties

 "module.transform.count=3,module.log.criteria=groups.contains('group1')"

Bus Properties

Common Bus Properties

Note

The following properties are only allowed when using a RabbitMessageBus or a
RedisMessageBus; the LocalMessageBus does not support properties.

module.[modulename].consumer.backOffInitialInterval
The number of milliseconds to wait for the first delivery retry (default 1000)

module.[modulename].consumer.backOffMaxInterval
The maximum number of milliseconds to wait between retries (default 10000)

module.[modulename].consumer.backOffMultiplier
The previous retry interval is multiplied by this to determine the current interval (but see
backOffMaxInterval) (default 2.0)

module.[modulename].consumer.concurrency
The number of concurrent consumers for the module (default 1).

module.[modulename].consumer.maxAttempts
The maximum number of attempts to make a delivery when a failure occurs (default 3)

Spring XD Guide

1.2.0.RC1 Spring XD 286

RabbitMQ Bus Properties

Note

The following properties are only allowed when using a RabbitMessageBus.

See the Spring AMQP reference documentation for information about the RabbitMQ-specific attributes.

module.[modulename].consumer.ackMode
Controls message acknowledgements (default AUTO)

module.[modulename].consumer.maxConcurrency
The maximum number of concurrent consumers for the module (default 1).

module.[modulename].consumer.prefetch
The number of messages prefetched from the RabbitMQ broker (default 1)

module.[modulename].consumer.prefix
A prefix applied to all queues/exchanges that are declared by the bus - allows policies to be applied
(default xdbus.)

module.[modulename].consumer.requestHeaderPatterns
Controls which message headers are passed between modules (default
STANDARD_REQUEST_HEADERS,*)

module.[modulename].consumer.replyHeaderPatterns
Controls which message headers are passed between modules (only used in partitioned jobs)
(default STANDARD_REPLY_HEADERS,*)

module.[modulename].consumer.requeue
Whether messages will be requeued (and retried) on failure (default true)

module.[modulename].consumer.transacted
Whether consumers use transacted channels (default false)

module.[modulename].consumer.txSize
The number of delivered messages between acknowledgements (when ackMode=AUTO) (default
1)

module.[modulename].consumer.durableSubscription
When true, publish/subscribe named channels (tap:, topic:) will be backed by a durable queue
and will be eligible for dead-letter configuration, accoring to the autBindDLQ setting. Note that,
since RabbitMQ doesn’t permit queue attributes to be changed, changing the durableSubscription
property from true to false between deployments, without first removing the queue, will not have any
effect. If a stream is deployed with durableSubscription=true, and you wish to change it to a non-
durable subscription, you will need to remove the queue from RabbitMQ before redeploying. Spring
XD will create the queue the with the appropriate settings, unless the queue exists already. Changing
from a non-durable subscription to a durable subscription will not have this problem because, for a
non-durable subscription, the queue will be automatically deleted when the stream is undeployed.

module.[modulename].producer.deliveryMode
The delivery mode of messages sent to RabbitMQ (PERSISTENT or NON_PERSISTENT) (default
PERSISTENT)

Spring XD Guide

1.2.0.RC1 Spring XD 287

module.[modulename].producer.requestHeaderPatterns
Controls which message headers are passed between modules (default
STANDARD_REQUEST_HEADERS,*)

module.[modulename].producer.replyHeaderPatterns
Controls which message headers are passed between modules (only used in partitioned jobs)
(default STANDARD_REPLY_HEADERS,*)

module.[modulename].consumer.autoBindDLQ
When true, the bus will automatically declare dead letter queues and binding for each bus queue.
The user is responsible for setting a policy on the broker to enable dead-lettering; see Message Bus
Configuration for more information. The bus will configure a dead-letter-exchange (<prefix>DLX)
and bind a queue with the name <original queue name>.dlq and route using the original
queue name..

module.[modulename].consumer.republishToDLQ
By default, failed messages after retries are exhausted are rejected. If a dead-letter queue (DLQ) is
configured, rabbitmq will route the failed message (unchanged) to the DLQ. Setting this property to
true instructs the bus to republish failed messages to the DLQ, with additional headers, including
the exception message and stack trace from the cause of the final failure. Note that the republish
will occur even if maxAttempts is only set to 1. Also see autoBindDLQ (default false)

module.[modulename].producer.batchingEnbled
Batch messages sent to the bus (default false)

module.[modulename].producer.batchSize
The normal batch size, may be preempted by batchBufferLimit or batchTimeout (default 100)

module.[modulename].producer.batchBufferLimit
If a batch will exceed this limit, the batch will be sent prematurely (default 10000)

module.[modulename].producer.batchTimeout
If no messages are received in this time (ms), the batch will be sent (default 5000)

module.[modulename].producer.compress
When true, compress the message before sending to rabbit; (default false) see RabbitMQ Message
Bus Properties for information about the compression level

Stream Partitioning

Note

Partitioning is only allowed when using a RabbitMessageBus or a RedisMessageBus.

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming module and using content-based routing so that messages
containing the identical data value(s) are always routed to the same module instance. You can use
the Deployment Manifest to declaratively configure a partitioning strategy to route each message to a
specific consumer instance.

Partition Properties

See below for examples of deploying partitioned streams.

Spring XD Guide

1.2.0.RC1 Spring XD 288

module.[modulename].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default null)

module.[modulename].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractorClass is null. If both are null, the module is not partitioned (default null)

module.[modulename].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default null)

module.[modulename].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to
which the message will be routed. The final partition index will be the return value (an
integer) modulo [nextModule].count If both the class and expression are null, the bus’s default
PartitionSelectorStrategy will be applied to the key (default null)

In summary, a module is partitioned if its count is > 1 and the previous module has a
partitionKeyExtractorClass or partitionKeyExpression (class takes precedence). When a partition key
is extracted, the partitioned module instance is determined by invoking the partitionSelectorClass, if
present, or the partitionSelectorExpression % count. If neither is present the result is key.hashCode()
% count.

Direct Binding

Sometimes it is desirable to allow co-located, contiguous modules to communicate directly, rather than
using the configured remote transport, to eliminate network latency. Spring XD creates direct bindings
by default only in cases where every "pair" of producer and consumer (modules bound on either side
of a pipe) are guaranteed to be co-located.

Currently Spring XD implements no conditional logic to force modules to be co-located. The only way
to guarantee that every producer-consumer pair is co-located is to specify that the pair be deployed
to every available container instance, in other words, the module counts must be 0. The figure below
illustrates this concept. In the first hypothetical case, we deploy one instance (the default)of producer
m1, and two instances of the consumer m2. In this case, enabling direct binding would isolate one of the
consumer instances. Spring XD will not create direct bindings in this case. The second case guarantees
co-location of the pairs and will result in direct binding.

Spring XD Guide

1.2.0.RC1 Spring XD 289

In addition, direct binding requires that the producer is not configured for partitioning since partitioning
is implemented by the Message Bus.

Using module.*.count=0 is the most straightforward way to enable direct binding. Direct binding may be
disabled for the stream using module.*.producer.directBindingAllowed=false. Additional direct binding
deployment examples are shown below.

Spring XD Guide

1.2.0.RC1 Spring XD 290

29.3 Deployment States

The ability to specify criteria to match container instances and deploy multiple instances for each module
leads to one of several possible deployment states for the stream as a whole. Consider a stream in an
initial undeployed state.

After executing the stream deployment request, the stream will be one of the following states:

• Deployed - All modules deployed successfully as specified in the deployment manifest.

• Incomplete - One of the requested module instances could not be deployed, but at least one instance
of each module definition was successfully deployed. The stream is operational and can process
messages end-to-end but the deployment manifest was not completely satisfied.

• Failed - At least one of the module definitions was not deployed. The stream is not operational.

Note

The state diagram above represents these states as final. This is an over-simplification since these
states are affected by container arrivals and departures that occur during or after the execution of
a deployment request. Such transitions have been omitted intentionally but are worth considering.
Also, there is an analogous state machine for undeploying a stream, initially in any of these states,
which is left as an exercise for the reader.

Spring XD Guide

1.2.0.RC1 Spring XD 291

Example

xd:>stream create test1 --definition "http | transform --expression=payload.toUpperCase() | log"

Created new stream 'test1'

Next, deploy it requesting three transformer instances:

xd:>stream deploy --name test1 --properties "module.transform.count=3"

Deployed stream 'test1'

xd:>stream list

 Stream Name Stream Definition Status

 ----------- --- ----------

 test1 http | transform --expression=payload.toUpperCase() | log incomplete

If there are only two container instances available, only two instances of transform will be deployed. The
stream deployment state is incomplete and the stream is functional. However the unfulfilled deployment
request remains active and the third instance will be deployed if a new container comes on line that
matches the criteria.

29.4 Container Attributes

The SpEL context (root object) for module.[modulename].criteria is ContainerAttributes, basically a map
derivative that contains some standard attributes:

• id - the generated container ID

• pid - the process ID of the container instance

• host - the host name of the machine running the container instance

• ip — the IP address of the machine running the container instance

ContainerAttributes also includes any user-defined attribute values configured for the container. These
attributes are configured by editing xd/config/servers.yml the file included in the XD distribution contains
some commented out sections as examples. In this case, the container attributes configuration looks
something like:

xd:

 container:

 groups: group2

 color: red

Groups

Groups may be assigned to a container via the optional command line argument --groups or by setting
the environment variable XD_CONTAINER_GROUPS. As the property name suggests, a container may
belong to more than one group, represented as comma-delimited string. The concept of server groups
is considered an especially useful convention for targeting groups of servers for deployment to support
many common scenarios, so it enjoys special status. Internally, groups is simply a user defined attribute.

IP Address

The IP address of the container can also be optionally set via the command argument --containerIp
or by setting the environment variable XD_CONTAINER_IP. If not specified, the IP address will be

Spring XD Guide

1.2.0.RC1 Spring XD 292

automatically set. Please be aware of the limitations, though, particularly in cases where the physically
machine has multiple IP addresses assigned.

For the automatic assignment of the IP address, XD internally loops through the available network
interfaces and assigned IP addresses and will pick the first available IPv4 address that is not a loopback
address.

Depending on your underlying server or network infrastructure, you may prefer specifying the IP address
explicitly.

Hostname

The hostname of the container can be optionally set as well via the command argument --
containerHostname or by setting the environment variable XD_CONTAINER_HOSTNAME. If not
specified, the hostname will be automatically set. Please be aware of the limitations, though. You may
prefer specifying the hostname address explicitly.

Tip

While there is no command line option to set the container hostname and IP address when running
in Single Node mode, you can still specify the values via environment variables or by customizing
the respective settings in application.yml

29.5 Stream Deployment Examples

To Illustrate how to use the Deployment Manifest, We will use a runtime configuration with 3 container
instances, as displayed in the XD shell:

xd:>runtime containers

 Container Id Host IP Address PID Groups Custom Attributes

 ------------------------------------ ---------------- ------------- ---- ------ -----------------

 bc624816-f8a8-4f35-83f6-a125ed147b7c ip-10-110-18-10 10.110.18.10 1708 group2 {color=red}

 018b7c8d-6fa9-4759-8471-76899766f892 ip-10-139-36-168 10.139.36.168 1852 group2 {color=blue}

 afc3741c-217a-415a-9d86-a1f62de03613 ip-10-139-17-116 10.139.17.116 1861 group1 {color=green}

Each of the three containers is running on a different host and has configured Groups and Custom
Attributes as shown.

First, create a stream:

xd:>stream create test1 --definition "http | transform --expression=payload.toUpperCase() | log"

Created new stream 'test1'

Next, deploy it using a manifest:

xd:>stream deploy --name test1 --properties

 "module.transform.count=3,module.log.criteria=groups.contains('group1')"

Deployed stream 'test1'

Verify the deployment:

http://stackoverflow.com/questions/7348711/recommended-way-to-get-hostname-in-java/7800008#7800008

Spring XD Guide

1.2.0.RC1 Spring XD 293

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 --------------------------- ------------------------------------

 --

 test1.processor.transform.1 bc624816-f8a8-4f35-83f6-a125ed147b7c {valid=true,

 expression=payload.toUpperCase()} {count=3, sequence=1}

 test1.processor.transform.2 018b7c8d-6fa9-4759-8471-76899766f892 {valid=true,

 expression=payload.toUpperCase()} {count=3, sequence=2}

 test1.processor.transform.3 afc3741c-217a-415a-9d86-a1f62de03613 {valid=true,

 expression=payload.toUpperCase()} {count=3, sequence=3}

 test1.sink.log.1 afc3741c-217a-415a-9d86-a1f62de03613 {name=test1, expression=payload,

 level=INFO} {count=1, sequence=1, criteria=groups.contains('group1')}

 test1.source.http.1 bc624816-f8a8-4f35-83f6-a125ed147b7c {port=9000}

 {count=1, sequence=1}

We can see that three instances of the transform processor have been deployed, one to each container
instance. Also the log module has been deployed to the container assigned to group1. Now we can
undeploy and deploy the stream using a different manifest:

xd:>stream undeploy test1

Un-deployed stream 'test1'

xd:>runtime modules

 Module Container Id Properties

 ------ ------------ ----------

xd:>stream deploy --name test1 --properties "module.log.count=3,module.log.criteria=!

groups.contains('group1')"

Deployed stream 'test1'

xd:>stream list

 Stream Name Stream Definition Status

 ----------- --- ----------

 test1 http | transform --expression=payload.toUpperCase() | log incomplete

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 --------------------------- ------------------------------------

 --

 --

 test1.processor.transform.1 018b7c8d-6fa9-4759-8471-76899766f892 {valid=true,

 expression=payload.toUpperCase()} {count=1, sequence=1}

 test1.sink.log.1 bc624816-f8a8-4f35-83f6-a125ed147b7c {name=test1, expression=payload,

 level=INFO} {count=3, sequence=1, criteria=!groups.contains('group1')}

 test1.sink.log.2 018b7c8d-6fa9-4759-8471-76899766f892 {name=test1, expression=payload,

 level=INFO} {count=3, sequence=2, criteria=!groups.contains('group1')}

 test1.source.http.1 afc3741c-217a-415a-9d86-a1f62de03613 {port=9000}

 {count=1, sequence=1}

Now there are only two instances of the log module deployed. We asked for three however the
deployment criteria specifies only containers not in group1 are eligible. The log module is deployed
only to the two containers matching the criteria. The deployment status of stream test1 is shown as
incomplete. The stream is functional even though the deployment manifest is not completely satisfied.
If we fire up a new container not in group1, the DeploymentSupervisor will handle any outstanding
deployment requests by comparing xd/deployments/modules/requested to xd/deployments/modules/
allocated, and will deploy the third log instance and update the stream state to deployed.

29.6 Partitioned Stream Deployment Examples

Using SpEL Expressions

First, create a stream:

Spring XD Guide

1.2.0.RC1 Spring XD 294

xd:>stream create --name partitioned --definition "jms | transform --

expression=#expensiveTransformation(payload) | log"

Created new stream 'partitioned'

The hypothetical SpEL function expensiveTransformation represents a resource intensive processor
which we want to load balance by running on multiple containers. In this case, we also want to partition
the stream so that payloads containing the same customerId are always routed to the same processor
instance. Perhaps the processor aggregates data by customerId and this step needs to run using co-
located resources.

Next, deploy it using a manifest:

xd:>stream deploy --name partitioned --properties

 "module.jms.producer.partitionKeyExpression=payload.customerId,module.transform.count=3"

Deployed stream 'partitioned'

In this example three instances of the transformer will be created (with partition index of 0, 1, and
2). When the jms module sends a message it will take the customerId property on the message
payload, invoke its hashCode() method and apply the modulo function with the divisor being the
transform.count property to determine which instance of the transform will process the message
(payload.getCustomerId().hashCode() % 3). Messages with the same customerId will always be
processed by the same instance.

29.7 Direct Binding Deployment Examples

In the simplest case, we enforce direct binding by setting the instance count to 0 for all modules in the
stream. A count of 0 means deploy the module to all available containers:

xd:>runtime containers

 Container Id Host IP Address PID Groups Custom Attributes

 ------------------------------------ -------------- ------------ ----- ------ -----------------

 8e814924-15de-4ca1-82d3-ddfe851668ab ultrafox.local 192.168.1.18 81532

 a2b89274-2d40-46e4-afc5-4988bea28a16 ultrafox.local 192.168.1.9 4605 group1

We start with two container instances. One belongs to the group group1.

xd:>stream create direct --definition "time | log"

Created new stream 'direct'

xd:>stream deploy direct --properties module.*.count=0

Deployed stream 'direct'

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 -------------------- ------------------------------------

 direct.sink.log.0 a2b89274-2d40-46e4-afc5-4988bea28a16 {name=direct, expression=payload,

 level=INFO} {count=0, sequence=0}

 direct.sink.log.0 8e814924-15de-4ca1-82d3-ddfe851668ab {name=direct, expression=payload,

 level=INFO} {count=0, sequence=0}

 direct.source.time.0 a2b89274-2d40-46e4-afc5-4988bea28a16 {fixedDelay=1, format=yyyy-MM-dd HH:mm:ss}

 {producer.directBindingAllowed=true, count=0, sequence=0}

 direct.source.time.0 8e814924-15de-4ca1-82d3-ddfe851668ab {fixedDelay=1, format=yyyy-MM-dd HH:mm:ss}

 {producer.directBindingAllowed=true, count=0, sequence=0}

Note that we have two containers and two instances of each module deployed to
each. Spring XD automatically sets the bus properties needed to allow direct binding,
producer.directBindingAllowed=true on the time module.

Spring XD Guide

1.2.0.RC1 Spring XD 295

Suppose we only want one instance of this stream and we want it to use direct binding. Here we can
add deployment criteria to restrict the available containers to group1.

xd:>stream undeploy direct

Un-deployed stream 'direct'

xd:>stream deploy direct --properties "module.*.count=0, module.*.criteria=groups.contains('group1')"

Deployed stream 'direct'

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 -------------------- ------------------------------------

 direct.sink.log.0 a2b89274-2d40-46e4-afc5-4988bea28a16 {name=direct, expression=payload,

 level=INFO} {count=0, sequence=0, criteria=groups.contains('group1')}

 direct.source.time.0 a2b89274-2d40-46e4-afc5-4988bea28a16 {fixedDelay=1, format=yyyy-MM-dd HH:mm:ss}

 {producer.directBindingAllowed=true, count=0, sequence=0, criteria=groups.contains('group1')}

Direct binding eliminates latency between modules but sacrifices some of the resiliency provided
by the messaging middleware. In the scenario above, if we lose one of the containers,
we lose messages. To disable direct binding when module counts are set to 0, set
module.*.producer.directBindingAllowed=false.

xd:>stream undeploy direct

Un-deployed stream 'direct'

xd:>stream deploy direct --properties "module.*.count=0, module.*.producer.directBindingAllowed=false"

Deployed stream 'direct'

xd:>runtime modules

 Module Container Id Options

 Deployment Properties

 -------------------- ------------------------------------

 --

 direct.sink.log.0 a2b89274-2d40-46e4-afc5-4988bea28a16 {name=direct, expression=payload,

 level=INFO} {producer.directBindingAllowed=false, count=0, sequence=0}

 direct.sink.log.0 8e814924-15de-4ca1-82d3-ddfe851668ab {name=direct, expression=payload,

 level=INFO} {producer.directBindingAllowed=false, count=0, sequence=0}

 direct.source.time.0 a2b89274-2d40-46e4-afc5-4988bea28a16 {fixedDelay=1, format=yyyy-MM-dd HH:mm:ss}

 {producer.directBindingAllowed=false, count=0, sequence=0}

 direct.source.time.0 8e814924-15de-4ca1-82d3-ddfe851668ab {fixedDelay=1, format=yyyy-MM-dd HH:mm:ss}

 {producer.directBindingAllowed=false, count=0, sequence=0}

Finally, we can still have the best of both worlds by enabling guaranteed delivery at one point in the
stream, usually the source. If the tail of the stream is co-located and the source uses the message bus,
the message bus may be configured so that if a container instance goes down, any unacknowledged
messages will be retried until the container comes back or its modules are redeployed.

TDB: A realistic example

An alternate scenario with similar characteristics would be if the stream uses a rabbit or jms source.
In this case, guaranteed delivery would be configured in the external messaging system instead of the
Spring XD transport.

29.8 Troubleshooting

Debugging a distributed system to diagnose problems can be challenging. While using Spring XD, if
you encounter

ZooKeeper disconnects

Problem: Spring XD processes disconnecting from ZooKeeper

Spring XD Guide

1.2.0.RC1 Spring XD 296

Recommendation: Depending on your setup, modify either xd-singlenode or xd-container scripts
by setting the environment variable export JAVA_OPTS=-verbose:gc before launching them.

Reason: ZooKeeper requires a heartbeat at a regular interval to test liveness of connected processes.
Full "stop the world" GCs can result in connection and session timeouts from ZooKeeper. While verbose,
GC logs are helpful for diagnosing this and other performance issues.

Debugging Slowness

Problem: Slow or unresponsive application

Recommendation: Capture multiple thread dumps several seconds apart using jstack.

Reason: Examination of thread dumps can reveal stuck or slow moving threads. This data is useful for
determining the root cause of a slow or unresponsive application.

File Descriptors and limit violation

Problem: java.io.FileNotFoundException: (Too many open files)

Recommendation: Default ulimit setting in most UNIX based operating systems is 1024. Raise
ulimit setting to at least 10000.

Reason: Stream and job modules in Spring XD are loaded and unloaded dynamically on demand. When
a module is unloaded, the associated class loaders may not be garbage collected right away, resulting
in open file handles for the jar files used by the module. Depending on the number of modules in use,
the file handle limit of 1024 may be exceeded.

Spring XD Guide

1.2.0.RC1 Spring XD 297

30. Message Bus Configuration

30.1 Introduction

This section contains additional information about configuring the Message Bus, including High
Availability, SSL, and Error handling.

30.2 Rabbit Message Bus High Availability (HA) Configuration

Introduction

The RabbitMessageBus allows for HA configuration using normal RabbitMQ HA Configuration.

First, use the addresses property in servers.yml to include the host/port for each server in the
cluster. See Application Configuration.

By default, queues and exchanges declared by the bus are prefixed with xdbus. (this prefix can be
changed as described in Application Configuration).

To configure the entire bus for HA, create a policy:

rabbitmqctl set_policy ha-xdbus "^xdbus\." '{"ha-mode":"all"}'

Connection Management and HA Queues

When consuming from HA queues, there might be some performance advantage in consuming from the
node that actually hosts the queue. Starting with version 1.2 it is now possible to configure the Rabbit
Message Bus to do that.

Caution

To utilize this mechanism, the rabbit management plugin must be enabled on each node in the
cluster. The plugin’s REST API is used to determine the location of the queue.

This feature is enabled by adding more than one node to the spring.rabbitmq.node property. See
RabbitMQ Configuration for configuration details.

When a node fails and a queue is moved to one of the mirrors, the bus will automatically reconnect
to the right node.

30.3 Error Handling (Message Delivery Failures)

RabbitMQ Message Bus

Note

The following applies to normally deployed streams. When direct binding between modules is
being used, exceptions thrown by the consumer are thrown back to the producer.

When a consuming module (processor, sink) fails to handle a message, the bus will retry delivery based
on the module (or default bus) retry configuration. The default configuration will make 3 attempts to
deliver the message. The retry configuration can be modified at the bus level (in servers.yml), or for
an individual stream/module using the deployment manifest.

https://www.rabbitmq.com/ha.html
https://www.rabbitmq.com/management.html

Spring XD Guide

1.2.0.RC1 Spring XD 298

When retries are exhausted, by default, messages are discarded. However, using RabbitMQ, you can
configure such messages to be routed to a dead-letter exchange/dead letter queue. See the RabbitMQ
Documentation for more information.

Note

The following configuration examples assume you are using the default bus prefix used for
naming rabbit elements: "xdbus."

Consider a stream: stream create foo --definition "source | processor | sink"

The first pipe (by default) will be backed by a queue named xdbus.foo.0, the second by
xdbus.foo.1. Messages are routed to these queues using the default exchange (with routing keys
equal to the queue names).

To enable dead lettering just for this stream, first configure a policy:

rabbitmqctl set_policy foo.DLX "^xdbus\.foo\..*" '{"dead-letter-

exchange":"foo.dlx"}' --apply-to queues

To configure dead-lettering for all streams:

rabbitmqctl set_policy DLX "^xdbus\..*" '{"dead-letter-exchange":"dlx"}' --

apply-to queues

The next step is to declare the dead letter exchange, and bind dead letter queues with the appropriate
routing keys.

For example, for the second "pipe" in the stream above we might bind a queue foo.sink.dlq to
exchange foo.dlx with a routing key xdbus.foo.1 (remember, the original routing key was the queue
name).

Now, when the sink fails to handle a message, after the configured retries are exhausted, the failed
message will be routed to foo.sink.dlq.

There is no automated mechanism provided to move dead lettered messages back to the bus queue.

Automatic Dead Lettering Queue Binding

Starting with version 1.1, the dead letter queue and binding can be automatically configured by the
system. A new property autoBindDLQ has been added; it can be set at the bus level (in servers.yml)
or using deployment properties, e.g. --properties module.*.consumer.autoBindDLQ=true
for all modules in the stream. When true, the dead letter queue will be declared (if necessary) and
bound to a dead letter exchange named xdbus.DLX (again, assuming the default prefix) using the
queue name as the routing key.

In the above example, where we have queues xdbus.foo.0 and xdbus.foo.1, the system
will also create xdbus.foo.0.dlq, bound to xdbus.DLX with routing key xdbus.foo.0 and
xdbus.foo.1.dlq, bound to xdbus.DLX with routing key xdbus.foo.1.

Note

Starting with version 1.2, any queues that are deployed with autoBindDLQ will automatically be
configured to enable dead-lettering, routing to the DLX with the proper routing key. It is no longer
necessary to use a policy to set up dead-lettering when using autoBindDLQ.

https://www.rabbitmq.com/dlx.html
https://www.rabbitmq.com/dlx.html

Spring XD Guide

1.2.0.RC1 Spring XD 299

Also, starting with version 1.2, the provision of dead-lettering on publish/subscribe named channels
(tap: or topic:) depends on a new deployment property durable. This property is similar to a JMS
durable subscription to a topic and is false by default. When false (default), the queue backing such
a named channel is declared auto-delete and is removed when the stream is undeployed. A DLQ
will not be created for such queues. When true, the queue becomes permanent (durable) and is not
removed when the stream is undeployed. Also, when true, the queue is eligible for DLQ provisioning,
according to the autoBindDLQ deployment property. durable can be set at the bus level, or in an
individual deployment property, such as:

stream create ticktock --definition="time --fixedDelay=5 | log" --deploy

stream create tttap --definition="tap:stream:ticktock > log" stream deploy
tttap --properties=module.log.consumer.durableSubscription=true

Redis Message Bus

When Redis is the transport, the failed messages (after retries are exhausted) are LPUSH+ed to a
+LIST ERRORS:<stream>.n (e.g. ERRORS:foo.1 in the above example in the RabbitMQ Message
Bus section).

This is unconditional; the data in the ERRORS LIST is in "bus" format; again, as with the RabbitMQ
Message Bus, some external mechanism would be needed to move the data from the ERRORS LIST
back to the bus’s foo.1 LIST.

Note

When moving errored messages back to the main stream, it is important to understand that these
messages contain binary data and are unlikely to survive conversion to and from Unicode (such
as with Java String variables). If you use Java to move these messages, we recommend that
you use a RedisTemplate configured as follows:

<bean id="redisTemplate"

 class="org.springframework.data.redis.core.RedisTemplate">

 <property name="connectionFactory" ref="jedisConnectionFactory" />

 <property name="keySerializer">

 <bean

 class="org.springframework.data.redis.serializer.StringRedisSerializer" />

 </property>

 <property name="enableDefaultSerializer" value="false" />

</bean>

or

@Bean

public RedisTemplate<String, byte[]> redisTemplate() {

 RedisTemplate<String, byte[]> template = new RedisTemplate<String, byte[]>();

 template.setConnectionFactory(connectionFactory());

 template.setKeySerializer(new StringRedisSerializer());

 template.setEnableDefaultSerializer(false);

 return template;

}

This enables the message payload to be retained as byte[] with no conversion; you would then use
something like…

byte[] errorEvt = redisTemplate.opsForList().rightPop(errorQueue);

redisTemplate.opsForList().leftPush(destinationQueue, errorEvt);

If, after moving a message, you see an error such as:

Spring XD Guide

1.2.0.RC1 Spring XD 300

redis.RedisMessageBus$ReceivingHandler - Could not convert message: EFBFBD...

This is a sure sign that a UTF-8 # Unicode # UTF-8 conversion was performed on the message.

30.4 Rabbit Message Bus Secure Sockets Layer (SSL)

If you wish to use SSL for communications with the RabbitMQ server, consult the RabbitMQ SSL Support
Documentation.

First configure the broker as described there. The message bus is a client of the broker and supports
both of the described configurations for connecting clients (SSL without certificate validation and with
certficate validation).

To use SSL without certificate validation, simply set

spring:

 rabbitmq:

 useSSL: true

In application.yml (and set the port(s) in the addresses property appropriately).

To use SSL with certificate validation, set

spring:

 rabbitmq:

 useSSL: true

 sslProperties: file:path/to/secret/ssl.properties

The sslProperties property is a Spring resource (file:, classpath: etc) that points to a
properties file, Typically, this file would be secured by the operating system (and readable by the XD
container) because it contains security information. Specifically:

keyStore=file:/secret/client/keycert.p12

trustStore=file:/secret/trustStore

keyStore.passPhrase=secret

trustStore.passPhrase=secret

Where the pkcs12 keystore contains the client certificate and the truststore contains the server’s
certificate as described in the rabbit documentation. The key/trust store properties are Spring resources.

Note

By default, the rabbit source and sink modules inherit their default configuration from the
container, but it can be overridden, either using modules.yml or with specific module definitions.

30.5 Rabbit Message Bus Batching and Compression

See RabbitMQ Message Bus Properties for information about batching and compressing messages
passing through the bus.

30.6 Removing RabbitMQ MessageBus Resources

When a stream or job is undeployed, the broker resources (queues, exchanges) are NOT removed
from RabbitMQ. This is due to the possibility that a stream might be being undeployed temporarily, and
avoids message loss.

https://www.rabbitmq.com/ssl.html
https://www.rabbitmq.com/ssl.html

Spring XD Guide

1.2.0.RC1 Spring XD 301

If you wish to completely remove these resources, a REST API is provided for
this purpose. In addition, the SpringXDTemplate provides a Java binding for this
REST api via its streamOperations().cleanBusResources(String name) and
jobOperations().cleanBusResources(String name) APIs.

Or, you can use the REST API directly; for example:

curl 'http://localhost:9393/streams/clean/rabbit/foo\

 ?user=guest&pw=guest&vhost=/&busPrefix=xdbus.&adminUri=http://localhost:15672'

curl 'http://localhost:9393/jobs/clean/rabbit/bar\

 ?user=guest&pw=guest&vhost=/&busPrefix=xdbus.&adminUri=http://localhost:15672'

Where foo is the stream name and bar is the job name.

The stream or job name supports a simple wildcard syntax; if it ends with *, then all streams beginning
with the name (excluding the *) will be cleaned.

These operations remove the inter-module stream queues, any tap exchanges created for the stream,
the job queue and request queue for partitioned jobs.

The operation will fail if any queue currently has a consumer; similarly, the operation will fail if any
exchange has a binding. Under either condition, no changes will be made to RabbitMQ.

The following query params are supported:

• adminUri - location of the RabbitMQ Admin (default http://localhost:15672)

• user - admin user (default guest)

• pw - admin password (default guest)

• vhost - the vhost used for the bus resources (default /)

• busPrefix - the prefix used for all bus resources (default xdbus.)

Part IV. Administration

Spring XD Guide

1.2.0.RC1 Spring XD 303

31. Monitoring and Management

Spring XD uses Spring Boot’s monitoring and management support over HTTP and JMX along with
Spring Integration’s MBean Exporters

31.1 Monitoring XD Admin, Container and Single-node servers

JMX is disabled by default. To enable JMX, set XD_JMX_ENABLED=true. JMX is disabled by default
due to performance issues when message rates are over 100K (for ~100 byte messages). Peformance
related issue will be addressed in a future release.

Spring integration components are exposed over JMX using IntegrationMBeanExporter

Once JMX is enabled, all the available MBeans can be accessed over HTTP using Jolokia.

If you want to disable Jolokia endpoints but still want to use JMX, then you can set this property in
config/servers.yml:

endpoints:

 jolokia:

 enabled: false

To enable boot provided management endpoints over HTTP

The Spring Boot management endpoints are exposed over HTTP.

When starting admin, container or singlenode server, the command-line option --mgmtPort can be
specified to use an explicit port for management server. With the given valid management port, the
management endpoints can be accessed from that port. Please refer Spring Boot document here for
more details on the endpoints.

For instance, once XD admin is started on localhost and the management port set to use the admin
port (9393)

http://localhost:9393/management/health

http://localhost:9393/management/env

http://localhost:9393/management/beans

etc..

To enable the container shutdown operation in the UI

Add the following configuration to config/servers.yml. This configuration is available as a commented
section in config/servers.yml.

spring:

 profiles: container

management:

 port: 0

To disable boot endpoints over HTTP

Set management.port=-1 for both default and container profiles in config/servers.yml

http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#production-ready-monitoring
http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#production-ready-jmx
http://docs.spring.io/spring-integration/docs/4.0.0.M4/reference/htmlsingle/#jmx-mbean-exporter
http://docs.spring.io/spring-boot/docs/1.2.3.RELEASE/reference/htmlsingle/#production-ready-endpoints

Spring XD Guide

1.2.0.RC1 Spring XD 304

31.2 Management over JMX

All the boot endpoints are exposed over JMX with the domain name org.springframework.boot
The MBeans that are exposed within XD admin, container server level are available with the domain
names xd.admin (for XD admin), xd.container (for XD container), xd.shared.server and
xd.parent representing the application contexts common to both XD admin and container. Singlenode
server will have all these domain names exposed. When the stream/job gets deployed into the XD
container, the stream/job MBeans are exposed with specific domain/object naming strategy.

Monitoring deployed modules in XD container

When a module is deployed (with JMX is enabled on the XD container), the IntegrationMBeanExporter
is injected into module’s context via MBeanExportingPlugin and this exposes all the spring integration
components inside the module. For the given module, the IntegrationMBeanExporter uses a specific
object naming strategy that assigns domain name as xd.<stream/job name> and, object name as
<module name>.<module index>.

Streams

For a stream name mystream with DSL http | log will have

MBeans with domain name xd.mystream with two objects http.0 and log.1

Source, processor, and sink modules will generally have the following attributes and operations

Module Type Attributes and
Operations

Source MessageSourceMetrics

Processor,Sink MessageHandlerMetrics

In addition, each module has channel attributes and operations defined by MessageChannelMetrics.

Jobs

For a job name myjob with DSL jdbchdfs will have

MBeans with domain name xd.myjob with an object jdbchdfs.0

You can also obtain monitoring information for Jobs using the UI or accessing the Job management
REST API. Documentation for the Job Management REST API is forthcoming, but until then
please reference the request mappings in BatchJobsController, BatchJobExecutionsController,
BatchStepExecutionsController, and BatchJobInstancesController.

31.3 Using Jolokia to access JMX over http

When JMX is enabled (after setting XD_JMX_ENABLED to true), Jolokia is auto-configured to expose
the XD admin, container and singenode server MBeans.

For example, with XD singlenode running management port 9080

http://localhost:9393/management/jolokia/search/xd*:*,component=MessageChannel

http://docs.spring.io/spring-integration/docs/current/api/org/springframework/integration/monitor/LifecycleMessageSourceMetrics.html
http://docs.spring.io/spring-integration/docs/current/api/org/springframework/integration/monitor/LifecycleMessageHandlerMetrics.html
http://docs.spring.io/spring-integration/docs/current/api/org/springframework/integration/monitor/MessageChannelMetrics.html
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchJobsController.java
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchJobExecutionsController.java
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchStepExecutionsController.java
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchJobInstancesController.java

Spring XD Guide

1.2.0.RC1 Spring XD 305

will list all the MessageChannel MBeans exposed in XD container. Apart from this, other available
domain and types can be accessed via Jolokia endpoints.

Spring XD Guide

1.2.0.RC1 Spring XD 306

32. REST API

32.1 Introduction

The Spring XD Administrator process (Admin) provides a REST API to access various Spring XD
resources such as streams, jobs, metrics, modules, Spring batch resources, and container runtime
information. The REST API is used internally by the XD Shell and Admin UI and can support any custom
client application that requires interaction with XD.

The HTTP port is configurable and may be set as a command line argument when starting the Admin
server, or set in $XD_HOME/config/servers.yml. The default port is 9393:

> $XD_HOME/bin/xd-admin --httpPort <port>

The Admin server also exposes runtime management resources enabled by Spring Boot under the
/management context path, e.g., http://localhost:9393/management/metrics. These resources are
covered in the Spring Boot documentation.

Note

There is also a mgmtPort command line argument which assigns a separate port for management
services. Normally the same port is used for everything.

32.2 XD Resources

Table 32.1. Table XD REST endpoints

stream definitions /streams/definitions

stream deployments /streams/deployments

job definitions /jobs/definitions

job deployments /jobs/deployments

batch job configurations /jobs/configurations

batch job executions /jobs/executions

batch job instances /jobs/instances

module definitions /modules

deployed modules /runtime/modules

containers /runtime/containers

counters /metrics/counters

field value counters /metrics/field-value-counters

aggregate counters /metrics/aggregate-counters

gauges /metrics/gauges

http://localhost:9393/management/metrics
http://docs.spring.io/spring-boot/docs/1.1.7.RELEASE/reference/htmlsingle/#production-ready-monitoring

Spring XD Guide

1.2.0.RC1 Spring XD 307

rich-gauges /metrics/rich-gauges

completions /completions

32.3 Stream Definitions

Table 32.2. Table Stream Definitions

Resource URL Request Method Description

/streams/definitions GET list defined streams along with
deployment state

/streams/definitions DELETE delete all stream definitions,
undeploying deployed streams

/streams/definitions/{name} GET get a stream definition
(currently no deployment
information is included)

/streams/definitions POST create a new stream,
optionally deploying it if
deploy=true(default). The
request body is application/
x-www-form-urlencoded and
requires two parameters, name
and definition (DSL)

/streams/definitions/{name} DELETE delete a stream, undeploying if
deployed.

32.4 Stream Deployments

Table 32.3. Table Stream Deployments

Resource URL Request Method Description

/streams/deployments/ GET get detailed deployment state
for all streams (TBD)

/streams/deployments DELETE undeploy all streams

/streams/deployments/{name} GET get detailed deployment state
for a stream (TBD)

/streams/deployments/{name} POST deploy a stream, where
the request body contains
the deployment properties
application/x-www-form-
urlencoded

/streams/deployments/{name} DELETE undeploy a stream

Spring XD Guide

1.2.0.RC1 Spring XD 308

32.5 Job Definitions
Table 32.4. Table Job Definitions

Resource URL Request Method Description

/jobs/definitions GET list defined jobs along with
deployment state

/jobs/definitions DELETE delete all job definitions,
undeploying deployed jobs

/jobs/definitions/{name} GET get a job definition

/jobs/definitions POST create a new job, where the
The request body is application/
x-www-form-urlencoded and
requires two parameters, name
and definition (DSL)

/jobs/definitions/{name} DELETE delete a job, undeploying if
deployed

32.6 Job Deployments
Table 32.5. Table Job Deployments

Resource URL Request Method Description

/jobs/deployments/ GET get detailed deployment state
for all jobs (TBD)

/jobs/deployments DELETE undeploy all jobs

/jobs/deployments/{name} GET get detailed deployment state
for a job (TBD. Probably not in
1.0)

/jobs/deployments/{name} POST deploy a job, where the request
body contains the deployment
properties

/jobs/deployments/{name} DELETE undeploy a job

32.7 Batch Job Configurations

Spring Batch configured jobs stored in the Spring Batch Repository

Table 32.6. Table Batch Jobs

Resource URL Request Method Description

/jobs/configurations GET get configuration information
about all batch jobs

/jobs/configurations/{jobName} GET get configuration information
about a batch job

Spring XD Guide

1.2.0.RC1 Spring XD 309

32.8 Batch Job Executions

Table 32.7. Table Batch Executions

Resource URL Request Method Description

/jobs/executions GET list all job executions (Only
application/json mediatype
supported)

/jobs/executions?stop=true PUT stop all jobs

/jobs/executions?
jobname={jobName}

GET get information about all
executions of a job (Only
application/json accept header
is supported)

/jobs/executions?
jobname={jobName}

POST request the launch of a job

/jobs/executions/
{jobExecutionId}

GET get information about a
particular execution of a job

/jobs/executions/
{jobExecutionId}?restart=true

PUT restart a job

/jobs/executions/
{jobExecutionId}?stop=true

PUT stop a job

/jobs/executions/
{jobExecutionId}/steps

GET list the steps for a job execution
(Only application/json accept
header is supported)

/jobs/executions/
{jobExecutionId}/steps/
{stepExecutionId}

GET get a step execution

/jobs/executions/
{jobExecutionId}/steps/
{stepExecutionId}/progress

GET get the step execution progress

32.9 Batch Job Instances

Table 32.8. Table Batch Job Instances

Resource URL Request Method Description

/jobs/instances?
jobname={jobName}

GET get information about all
instances of a job

/jobs/instances/{instanceId} GET get information about a batch
job instance

For both the GET endpoints only application/json accept header is supported.

Spring XD Guide

1.2.0.RC1 Spring XD 310

32.10 Module Definitions

Table 32.9. Table Module Definitions

Resource URL Request Method Description

/modules GET list all registered modules

/modules POST create a composite module,
where The request body
is application/x-www-form-
urlencoded and requires
two parameters, name and
definition (DSL). The
module type is derived from the
definition.

/modules/{type}/{name} POST upload a module archive (uber
jar), where The content type is
application/octect-stream and
the request body contains the
binary archive contents

/modules/{type}/{name} GET list a module along with options
metadata, where type is
source,processor,sink, or
job

/modules/{type}/{name} DELETE delete a composed or uploaded
module

32.11 Deployed Modules

Table 32.10. Table Deployed Modules

Resource URL Request Method Description

/runtime/modules GET display runtime module
option values and
deployment information for
deployed modules, optional
parameters are moduleId
(<stream>.<type>.<moduleName>,containerId,jobname

32.12 Containers

Table 32.11. Table Containers

Resource URL Request Method Description

/runtime/containers GET display all available containers
along with runtime and user-
defined container attributes

Spring XD Guide

1.2.0.RC1 Spring XD 311

32.13 Counters

Table 32.12. Table Counters

Resource URL Request Method Description

/metrics/counters/ GET list all the known counters

/metrics/counters?detailed=true GET list metric values for all known
counters

/metrics/counters/{name} GET get the current metric value

/metrics/counters/{name} DELETE delete the metric

32.14 Field Value Counters

Table 32.13. Table Field Value Counters

Resource URL Request Method Description

/metrics/field-value-counters/ GET list all the known field value
counters

/metrics/field-value-counters?
detailed=true

GET list metric values for all known
field value counters

/metrics/field-value-counters/
{name}

GET get the current metric values

/metrics/field-value-counters/
{name}

DELETE delete the metric

32.15 Aggregate Counters

Table 32.14. Table Aggregate Counters

Resource URL Request Method Description

/metrics/aggregate-counters/ GET list all the known aggregate
counters

/metrics/aggregate-counters?
detailed=true

GET list current metric values for all
known aggregate counters

/metrics/aggregate-counters/
{name}

GET get the current metric values

/metrics/aggregate-counters/
{name}

DELETE delete the metric

Spring XD Guide

1.2.0.RC1 Spring XD 312

32.16 Gauges

Table 32.15. Table Gauges

Resource URL Request Method Description

/metrics/gauges/ GET list all the known gauges

/metrics/gauges?detailed=true GET list current metric values for all
known gauges

/metrics/gauges/{name} GET get the current metric values

/metrics/gauges/{name} DELETE delete the metric

32.17 Rich Gauges

Table 32.16. Table Rich Gauges

Resource URL Request Method Description

/metrics/rich-gauges/ GET list all the known rich gauges

/metrics/rich-gauges?
detailed=true

GET list metric values for all known
rich gauges

/metrics/rich-gauges/{name} GET get the current metric values

/metrics/rich-gauges/{name} DELETE delete the metric

32.18 Tab Completions

Used to support DSL tab completion for the XD Shell. All requests require the start parameter which
contains the incomplete definition.

Table 32.17. Table Tab Completions

Resource URL Request Method Description

/completions/stream?
start={start}

GET retrieve valid choices to
complete a stream definition

/completions/job?start={start} GET retrieve valid choices to
complete a job definition

/completions/module?
start={start}

GET retrieve valid choices to
complete a module definition

Spring XD Guide

1.2.0.RC1 Spring XD 313

33. JAVA API

33.1 Introduction

The class SpringXDTemplate lets you intereact with Spring XD’s REST API in Java. It saves you the
trouble of wrapping your own calls to RestTemplate or other REST client libraries. Within Spring XD
SpringXDTemplate is used to implement shell commands and for testing.

Required Libraries

The following maven snippet will pull in the required dependencies:

<dependencies>

 <dependency>

 <groupId>org.springframework.xd</groupId>

 <artifactId>spring-xd-rest-client</artifactId>

 <version>1.0.1.RELEASE</version>

 </dependency>

</dependencies>

<repositories>

 <repository>

 <id>spring-release</id>

 <name>Spring Releases</name>

 <url>http://repo.spring.io/libs-release</url>

 </repository>

</repositories>

Note: The artifact is not yet hosted in maven central.

Sample Usage

The program

SpringXDTemplate xdTemplate = new SpringXDTemplate(new URI("http://localhost:9393"));

PagedResources<DetailedContainerResource> containers = xdTemplate.runtimeOperations().listContainers();

for (DetailedContainerResource container : containers) {

 System.out.println(container);

}

Will produce the following output on a single node server

{groups=, host=feynman, id=e4fb54bc-119b-46cc-acb3-cd0b72ccd1df, ip=192.168.70.130, pid=9559}

http://docs.spring.io/spring-xd/docs/1.0.1.RELEASE/api/org/springframework/xd/rest/client/impl/SpringXDTemplate.html

Part V. Appendices

Spring XD Guide

1.2.0.RC1 Spring XD 315

Appendix A. Installing Hadoop
A.1 Installing Hadoop

If you don’t have a local Hadoop cluster available already, you can do a local single node installation
(v2.6.0) and use that to try out Hadoop with Spring XD.

Tip

This guide is intended to serve as a quick guide to get you started in the context of Spring XD. For
more complete documentation please refer back to the documentation provided by your respective
Hadoop distribution.

Download

First, download an installation archive (hadoop-2.6.0.tar.gz) and unpack it locally. Linux users can also
install Hadoop through the system package manager and on Mac OS X, you can use Homebrew.
However, the manual installation is self-contained and it’s easier to see what’s going on if you just
unpack it to a known location.

If you have wget available on your system, you can also execute:

$ wget http://archive.apache.org/dist/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz

Unpack the distribution with:

$ tar xzf hadoop-2.6.0.tar.gz

Change into the directory and have a look around

$ cd hadoop-2.6.0

$ ls

$ bin/hadoop

Usage: hadoop [--config confdir] COMMAND

 where COMMAND is one of:

 fs run a generic filesystem user client

 version print the version

 jar <jar> run a jar file

 ...

The bin directory contains the start and stop scripts as well as the hadoop and hdfs scripts which
allow us to interact with Hadoop from the command line.

Java Setup

Make sure that you set JAVA_HOME in the etc/hadoop/hadoop-env.sh script, or you will get an
error when you start Hadoop. For example:

The java implementation to use. Required.

#export JAVA_HOME=${JAVA_HOME}

export JAVA_HOME=/usr/lib/jdk1.7.0_65

Tip

When using Mac OS X you can determine the Java home directory by executing $ /usr/

libexec/java_home -v 1.6

http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/SingleCluster.html
http://archive.apache.org/dist/hadoop/common/hadoop-2.6.0/
http://brew.sh/

Spring XD Guide

1.2.0.RC1 Spring XD 316

Tip

When using Ubuntu you can determine the Java home directory by executing $ sudo update-
java-alternatives -l

Note

When using MAC OS X (Other systems possible also) you may still encounter Unable to load
realm info from SCDynamicStore (For details see Hadoop Jira HADOOP-7489). In that
case, please also add to conf/hadoop-env.sh the following line: export HADOOP_OPTS="-
Djava.security.krb5.realm= -Djava.security.krb5.kdc=".

Setup SSH

As described in the installation guide, you also need to set up SSH login to localhost without a
passphrase. On Linux, you may need to install the ssh package and ensure the sshd daemon is
running. On Mac OS X, ssh is already installed but the sshd daemon isn’t usually running. To start it,
you need to enable "Remote Login" in the "Sharing" section of the control panel. Then you can carry on
and setup SSH keys as described in the installation guide:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Make sure you can log in at the command line using ssh localhost and ssh 0.0.0.0 before trying
to start Hadoop:

$ ssh localhost

Last login: Thu May 1 15:02:32 2014 from localhost

...

$ ssh 0.0.0.0

Last login: Thu May 1 15:06:02 2014 from localhost

You also need to decide where in your local filesystem you want Hadoop to store its data. Let’s say
you decide to use /data.

First create the directory and make sure it is writeable:

$ mkdir /data

$ chmod 777 /data

Now edit etc/hadoop/core-site.xml and add the following property:

<property>

 <name>hadoop.tmp.dir</name>

 <value>/data</value>

</property>

You’re then ready to format the filesystem for use by HDFS

$ bin/hadoop namenode -format

Setting the Namenode Port

By default Spring XD will use a Namenode setting of hdfs://localhost:8020 which can be
overridden in ${xd.home}/config/server.yml, depending on the used Hadoop distribution and
version the by-default-defined port 8020 may be different, e.g. port 9000. Therefore, please ensure you
have the following property setting in etc/hadoop/core-site.xml:

https://issues.apache.org/jira/browse/HADOOP-7489
http://en.wikipedia.org/wiki/Secure_Shell

Spring XD Guide

1.2.0.RC1 Spring XD 317

<property>

 <name>fs.defaultFS</name>

 <value>hdfs://localhost:8020</value>

</property>

Further Configuration File Changes

In etc/hadoop/hdfs-site.xml add the following properties:

<property>

 <name>dfs.replication</name>

 <value>1</value>

</property>

<property>

 <name>dfs.support.append</name>

 <value>true</value>

</property>

<property>

 <name>dfs.webhdfs.enabled</name>

 <value>true</value>

</property>

Create etc/hadoop/mapred-site.xml and add:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

In etc/hadoop/yarn-site.xml add these properties:

<property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

</property>

<property>

 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

 <value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

A.2 Running Hadoop

First we need to set up the environment settings. It’s convenient to add these to a file that you can source
when you want to work with Hadoop. We create a file called hadoop-env and add the following content:

The directory of the unpacked distribution

export HADOOP_INSTALL="$HOME/Downloads/hadoop-2.6.0"

The JAVE_HOME (see above how to determine this)

export JAVA_HOME=/usr/lib/jdk1.7.0_65

Some HOME settings

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_YARN_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

Add Hadoop scripts to the PATH

export PATH=$HADOOP_INSTALL/bin:$HADOOP_INSTALL/sbin:$PATH

To use these settings we need to source this script:

Spring XD Guide

1.2.0.RC1 Spring XD 318

$ source hadoop-env

You should now finally be ready to run Hadoop. Run the following commands

$ start-dfs.sh

$ start-yarn.sh

$ mr-jobhistory-daemon.sh start historyserver

You should see six Hadoop Java processes running:

$ jps

 21636 NameNode

 22004 SecondaryNameNode

 22360 NodeManager

 22425 JobHistoryServer

 21808 DataNode

 22159 ResourceManager

 22471 Jps

Try a few commands with hdfs dfs to make sure the basic system works

$ hdfs dfs -ls /

Found 1 items

drwxrwx--- - trisberg supergroup 0 2014-11-01 15:31 /tmp

$ hdfs dfs -mkdir /xd

$ bin/hadoop dfs -ls /

Found 2 items

drwxrwx--- - trisberg supergroup 0 2014-11-01 15:31 /tmp

drwxr-xr-x - trisberg supergroup 0 2014-11-01 15:34 /xd

Lastly, you can also browse the web interface for NameNode and ResourceManager at:

• NameNode: http://localhost:50070/

• ResourceManager: http://localhost:8088/

At this point you should be good to create a Spring XD stream using a Hadoop sink.

http://localhost:50070/
http://localhost:8088/

Spring XD Guide

1.2.0.RC1 Spring XD 319

Appendix B. Building Spring XD
B.1 Instructions

Here are some useful steps to build and run Spring XD.

Warning

Please ensure that you provide as a minimum 6GB of available RAM for a full build. The executed
integration tests use several embedded services such as Apache Kafka, Apache ZooKeeper and
Apache Hadoop which contribute to the high resource usage.

To build all sub-projects and run tests for Spring XD (please note tests require a running Redis instance):

./gradlew build

To build and bundle the distribution of Spring XD

./gradlew dist

The above gradle task creates spring-xd-<version>.zip binary distribution archive and spring-xd-
<version>-docs.zip documentation archive files under build/distributions. This will also create a build/
dist/spring-xd directory which is the expanded version of the binary distribution archive.

To just create the Spring XD expanded binary distribution directory

./gradlew copyInstall

The above gradle task creates the distribution directory under build/dist/spring-xd.

Once the binary distribution directory is created, please refer to Getting Started on how to run Spring XD.

To create the reference docs

./gradlew reference

B.2 IDE support

If you would like to work with the Spring XD code in your IDE, please use the following project generation
depending on the IDE you use:

For Eclipse/Spring Tool Suite

./gradlew eclipse

For IntelliJ IDEA

./gradlew idea

http://kafka.apache.org/
http://zookeeper.apache.org/
http://hadoop.apache.org/
http://redis.io/
https://github.com/SpringSource/spring-xd/wiki/Getting-Started

Spring XD Guide

1.2.0.RC1 Spring XD 320

Appendix C. Using MQTT Modules
C.1 Introduction

MQTT(MQ for telemetry transport) is a machine to machine connectivity protocol. It is a lightweight pub/
sub protocol for devices where bandwidth and battery power are at a premium. This purpose of this
document is to show you how to: enable the RabbitMQ MQTT plugin, setup a Spring XD MQTT source
and Spring MQTT sink.

Note

This document assumes that you have a RabbitMQ installed and running. If you don’t have
RabbitMQ available already you can download it from http://www.rabbitmq.com/download.html.

Setting up MQTT on RabbitMQ

If you are using RabbitMQ 3.3.4 or above then the MQTT plugin is already included with your
deployment, however it is inactive. To Activate:

1. Shutdown the Rabbit MQ instance

2. $RABBIT_HOME/sbin/rabbitmq-plugins list

...

[] rabbitmq_federation_management 3.3.4

[E] rabbitmq_management 3.3.4

[e] rabbitmq_management_agent 3.3.4

[] rabbitmq_management_visualiser 3.3.4

[] rabbitmq_mqtt 3.3.4

[] rabbitmq_shovel 3.3.4

[] rabbitmq_shovel_management 3.3.4

…

3. We see that the rabitt_mqtt does not have a [E] denoted next to it. Thus it is not enabled. Note: if
you do see the [E] next to the rabbitmq_mqtt then your plugin is enabled and all you need to do is
restart your RabbitMQ.

4. Now enable rabbit_mqtt plugin

a. Run: $RABBIT_HOME/sbin/rabbitmq-plugins enable rabbitmq_mqtt

b. Run: $RABBIT_HOME/sbin/rabbitmq-plugins list

...

[] rabbitmq_federation_management 3.3.4

[E] rabbitmq_management 3.3.4

[e] rabbitmq_management_agent 3.3.4

[] rabbitmq_management_visualiser 3.3.4

[E] rabbitmq_mqtt 3.3.4

[] rabbitmq_shovel 3.3.4

[] rabbitmq_shovel_management 3.3.4

...

c. Now we see that the rabbitmq_mqtt plugin is now active.

d. Restart your RabbitMQ.

http://www.rabbitmq.com/download.html

Spring XD Guide

1.2.0.RC1 Spring XD 321

Rabbit MQTT Plugin settings

The MQTT plugin can be can be configured via the rabbitmq.config file and this is covered here: http://
www.rabbitmq.com/mqtt.html. The settings for the MQTT plugin that Spring XD are concerned about
are as follows:

1. allow_anonymous Determines if the user must supply a user name or password. If true then the plugin
will use the default_user and default password enumerated below. If false the Spring XD source or
sink must provide the username and password Default: true

2. default_user If allow_anonymous is set to true then this will set the user for anonymous clients.
Default: guest

3. default_password If allow_anonymous is set to true then this will set the password for anonymous
clients. Default: guest

4. exchange - The name of the exchange that will route all MQTT messages to a the queues. Default:
amq.topic

5. tcp_listeners - host and port that rabbit will monitor for MQTT messages. Default: 1883

Out of the box the Spring XD MQTT source and sink currently works with the MQTT plugin defaults
without any configuration.

MQTT Source

When Spring XD deploys the MQTT source module, a message queue is created along with the
necessary binding on RabbitMQ. The message queue that is created will have the name structure
[mqtt-subscription-][client_id][srcqos1]. * mqtt-subscription- Queues created for MQTT
subscribers will have names starting with mqtt-subscription. * client-id is the client-id specified by the
MQTT source module, the default is xd.mqtt.client.id * srcqos1 - The QoS level for the queue.

The MQTT source module also generates the binding from the amq.topic to the message queue via the
routing key (topic). The default topic for the MQTT source module is xd.mqtt.test.

Example 1: Using defaults

To show this in detail let us create the following stream: stream create mqtt-in --definition
“mqtt|log” --deploy. In this example the stream will retrieve MQTT messages from RabbitMQ and
write the content to Spring XD’s log. So on RabbitMQ a message queue named mqtt-subscription-
xd.mqtt.client.id.srcqos1 and a binding for the topic (routing key) xd.mqtt.test will be
created.

Thus any message published with the topic, xd.mqtt.test will be sent to the mqtt-subscription-
xd.mqtt.client.id.srcqos1 message queue and thus picked up by the Spring XD MQTT module
and then written to log. So to exercise the stream created we can write the following:

http://www.rabbitmq.com/mqtt.html
http://www.rabbitmq.com/mqtt.html

Spring XD Guide

1.2.0.RC1 Spring XD 322

stream create --name rabbittest --definition "http|rabbit --exchange='amq.topic' --

routingKey='''xd.mqtt.test'''" --deploy

http post --data 'hello world'

In the log you should see:

09:53:34,487 INFO MQTT Call: xd.mqtt.client.id.src sink.mqtt-in - hello world

Example 2: Monitoring different topics.

In this scenario we want to setup a MQTT Source Module to retrieve messages that may come in from
different topics. So lets pretend that we want to monitor all the infusion machines at a medical facility. Our
monitor wants to log all messages that notify us that a machine has completed its task or if a machine
in need of maintenance.

In this case it would look like this:

#Create a simulated device that will dispatch a patient alert message

stream create --name patientAlert --definition "http|rabbit --exchange='amq.topic' --

routingKey='''patient.alert'''" --deploy

#Create a simulated device that will dispatch a patient notification message

stream create --name patientNotification --definition "http --port=9005|rabbit --exchange='amq.topic' --

routingKey='''patient.notification'''" --deploy

create our monitor that will capture the mqtt traffic.

stream create --name patientMonitor --definition "mqtt --topics=patient.alert,patient.notification |log"

 --deploy

Now lets dispatch messages to both topics:

http post --target http://localhost:9005 --data 'infusion complete'

http post --data 'pump failure'

In the log you should see:

10:25:21,403 INFO MQTT Call: xd.mqtt.client.id.src sink.patientMonitor - infusion complete

10:25:46,226 INFO MQTT Call: xd.mqtt.client.id.src sink.patientMonitor - pump failure

MQTT Sink

The MQTT sink module will publish messages for a topic to the broker for a specific topic.

Example 1: Using defaults

In this example we will create a stream that will publish a message to topic using the defaults:

stream create mqtt-out --definition “http|mqtt” --deploy

stream create mqtt-in --definition”mqtt|log”

This mqtt-out stream will receive http messages to port 9000 on localhost and then the mqtt will publish
the information to a rabbit instance on the localhost. The message will be routed to the queue (mqtt-

Spring XD Guide

1.2.0.RC1 Spring XD 323

subscription-xd.mqtt.client.id.srcqos1) that was created by MQTT source module and then, the message
will be delivered to the MQTT source module.

So the output will look something like this, if you execute a http post --data ‘hello world’

14:03:57,340 INFO MQTT Call: xd.mqtt.client.id.src sink.mqtt-in - hello world

Spring XD Guide

1.2.0.RC1 Spring XD 324

Appendix D. XD Shell Command
Reference
Below is a reference list of all Spring XD specific commands you can use in the XD Shell.

D.1 Configuration Commands

admin config info

Show the XD admin server being used.

admin config info

admin config server

Configure the XD admin server to use.

admin config server [[--uri] <uri>] [--username <username>] [--password [<password>]]

uri
the location of the XD Admin REST endpoint. (default: http://localhost:9393/)

username
the username for authenticated access to the Admin REST endpoint. (default: ``)

password
the password for authenticated access to the Admin REST endpoint (valid only with a username).

admin config timezone list

List all timezones.

admin config timezone list

admin config timezone set

Set the timezone of the Spring XD Shell (Not persisted).

admin config timezone set [--timeZone] <timeZone>

timeZone
the id of the timezone, You can obtain a list of timezone ids using 'admin config timezone list', If an
invalid timezone id is provided, then 'Greenwich Mean Time' is being used. (required)

D.2 Runtime Commands

runtime containers

List runtime containers.

runtime containers

Shell#interactive-shell

Spring XD Guide

1.2.0.RC1 Spring XD 325

runtime modules

List runtime modules.

runtime modules [--containerId <containerId>] [--moduleId <moduleId>]

containerId
to filter by container id.

moduleId
to filter by module id.

D.3 Stream Commands

stream all destroy

Destroy all existing streams.

stream all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

stream all undeploy

Un-deploy all previously deployed stream.

stream all undeploy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

stream create

Create a new stream definition.

stream create [--name] <name> --definition <definition> [--deploy [<deploy>]]

name
the name to give to the stream. (required)

definition
a stream definition, using XD DSL (e.g. "http --port=9000 | hdfs"). (required)

deploy
whether to deploy the stream immediately. (default: false, or true if --deploy is specified
without a value)

stream deploy

Deploy a previously created stream.

stream deploy [--name] <name> [--properties <properties>] [--propertiesFile <propertiesFile>]

name
the name of the stream to deploy. (required)

Spring XD Guide

1.2.0.RC1 Spring XD 326

properties
the properties for this deployment.

propertiesFile
the properties for this deployment (as a File).

stream destroy

Destroy an existing stream.

stream destroy [--name] <name>

name
the name of the stream to destroy. (required)

stream list

List created streams.

stream list

stream undeploy

Un-deploy a previously deployed stream.

stream undeploy [--name] <name>

name
the name of the stream to un-deploy. (required)

D.4 Job Commands

job all destroy

Destroy all existing jobs.

job all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

job all undeploy

Un-deploy all existing jobs.

job all undeploy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

job create

Create a job.

job create [--name] <name> --definition <definition> [--deploy [<deploy>]]

Spring XD Guide

1.2.0.RC1 Spring XD 327

name
the name to give to the job. (required)

definition
job definition using xd dsl . (required)

deploy
whether to deploy the job immediately. (default: false, or true if --deploy is specified without
a value)

job deploy

Deploy a previously created job.

job deploy [--name] <name> [--properties <properties>] [--propertiesFile <propertiesFile>]

name
the name of the job to deploy. (required)

properties
the properties for this deployment.

propertiesFile
the properties for this deployment (as a File).

job destroy

Destroy an existing job.

job destroy [--name] <name>

name
the name of the job to destroy. (required)

job execution all stop

Stop all the job executions that are running.

job execution all stop [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

job execution display

Display the details of a Job Execution.

job execution display [--id] <id>

id
the id of the job execution. (required)

job execution list

List all job executions.

Spring XD Guide

1.2.0.RC1 Spring XD 328

job execution list

job execution restart

Restart a job that failed or interrupted previously.

job execution restart [--id] <id>

id
the id of the job execution that failed or interrupted. (required)

job execution step display

Display the details of a Step Execution.

job execution step display [--id] <id> --jobExecutionId <jobExecutionId>

id
the id of the step execution. (required)

jobExecutionId
the job execution id. (required)

job execution step list

List all step executions for the provided job execution id.

job execution step list [--id] <id>

id
the id of the job execution. (required)

job execution step progress

Get the progress info for the given step execution.

job execution step progress [--id] <id> --jobExecutionId <jobExecutionId>

id
the id of the step execution. (required)

jobExecutionId
the job execution id. (required)

job execution stop

Stop a job execution that is running.

job execution stop [--id] <id>

id
the id of the job execution. (required)

job instance display

Display information about a given job instance.

Spring XD Guide

1.2.0.RC1 Spring XD 329

job instance display [[--id] <id>]

id
the id of the job instance to retrieve.

job launch

Launch previously deployed job.

job launch [[--name] <name>] [--params <params>]

name
the name of the job to deploy.

params
the parameters for the job. (default: ``)

job list

List all jobs.

job list

job undeploy

Un-deploy an existing job.

job undeploy [--name] <name>

name
the name of the job to un-deploy. (required)

D.5 Module Commands

module compose

Create a virtual module.

module compose [--name] <name> --definition <definition> [--force [<force>]]

name
the name to give to the module. (required)

definition
module definition using xd dsl. (required)

force
force update if module already exists (only if not in use). (default: false, or true if --force is
specified without a value)

module delete

Delete a virtual module.

Spring XD Guide

1.2.0.RC1 Spring XD 330

module delete [--name] <name>

name
name of the module to delete, in the form 'type:name'. (required)

module info

Get information about a module.

module info [--name] <name> [--hidden [<hidden>]]

name
name of the module to query, in the form 'type:name'. (required)

hidden
whether to show 'hidden' options. (default: false, or true if --hidden is specified without a
value)

module list

List all modules.

module list

module upload

Upload a new module.

module upload --type <type> --name <name> [--file] <file> [--force [<force>]]

type
the type for the uploaded module. (required)

name
the name for the uploaded module. (required)

file
path to the module archive. (required)

force
force update if module already exists (only if not in use). (default: false, or true if --force is
specified without a value)

D.6 Metrics Commands

counter delete

Delete the counter with the given name.

counter delete [--name] <name>

name
the name of the counter to delete. (required)

Spring XD Guide

1.2.0.RC1 Spring XD 331

counter display

Display the value of a counter.

counter display [--name] <name> [--pattern <pattern>]

name
the name of the counter to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use platform locale>)

counter list

List all available counter names.

counter list

field-value-counter delete

Delete the field-value-counter with the given name.

field-value-counter delete [--name] <name>

name
the name of the field-value-counter to delete. (required)

field-value-counter display

Display the value of a field-value-counter.

field-value-counter display [--name] <name> [--pattern <pattern>] [--size <size>]

name
the name of the field-value-counter to display. (required)

pattern
the pattern used to format the field-value-counter's field count (see DecimalFormat). (default: <use
platform locale>)

size
the number of values to display. (default: 25)

field-value-counter list

List all available field-value-counter names.

field-value-counter list

aggregate-counter delete

Delete an aggregate counter.

aggregate-counter delete [--name] <name>

Spring XD Guide

1.2.0.RC1 Spring XD 332

name
the name of the aggregate counter to delete. (required)

aggregate-counter display

Display aggregate counter values by chosen interval and resolution(minute, hour).

aggregate-counter display [--name] <name> [--from <from>] [--to <to>] [--lastHours <lastHours>] [--

lastDays <lastDays>] [--resolution <resolution>] [--pattern <pattern>]

name
the name of the aggregate counter to display. (required)

from
start-time for the interval. format: 'yyyy-MM-dd HH:mm:ss'.

to
end-time for the interval. format: 'yyyy-MM-dd HH:mm:ss'. defaults to now.

lastHours
set the interval to last 'n' hours.

lastDays
set the interval to last 'n' days.

resolution
the size of the bucket to aggregate (minute, hour, day, month). (default: hour)

pattern
the pattern used to format the count values (see DecimalFormat). (default: <use platform

locale>)

aggregate-counter list

List all available aggregate counter names.

aggregate-counter list

gauge delete

Delete a gauge.

gauge delete [--name] <name>

name
the name of the gauge to delete. (required)

gauge display

Display the value of a gauge.

gauge display [--name] <name> [--pattern <pattern>]

name
the name of the gauge to display. (required)

Spring XD Guide

1.2.0.RC1 Spring XD 333

pattern
the pattern used to format the value (see DecimalFormat). (default: <use platform locale>)

gauge list

List all available gauge names.

gauge list

rich-gauge delete

Delete the richgauge.

rich-gauge delete [--name] <name>

name
the name of the richgauge to delete. (required)

rich-gauge display

Display Rich Gauge value.

rich-gauge display [--name] <name> [--pattern <pattern>]

name
the name of the richgauge to display value. (required)

pattern
the pattern used to format the richgauge value (see DecimalFormat). (default: <use platform
locale>)

rich-gauge list

List all available richgauge names.

rich-gauge list

D.7 Http Commands

http get

Make GET request to http endpoint.

http get [[--target] <target>]

target
the URL to make the request to. (default: http://localhost:9393)

http post

POST data to http endpoint.

http post [[--target] <target>] [--data <data>] [--file <file>] [--contentType <contentType>]

target
the location to post to. (default: http://localhost:9000)

Spring XD Guide

1.2.0.RC1 Spring XD 334

data
the text payload to post. exclusive with file. embedded double quotes are not supported if next to
a space character.

file
filename to read data from. exclusive with data.

contentType
the content-type to use. file is also read using the specified charset. (default: text/plain;
Charset=UTF-8)

D.8 Hadoop Configuration Commands

hadoop config fs

Sets the Hadoop namenode.

hadoop config fs [--namenode] <namenode>

namenode
namenode URL - can be file:///|hdfs://<namenode>:<port>|webhdfs://<namenode>:<port>.
(required)

hadoop config info

Returns basic info about the Hadoop configuration.

hadoop config info

hadoop config load

Loads the Hadoop configuration from the given resource.

hadoop config load [--location] <location>

location
configuration location (can be a URL). (required)

hadoop config props get

Returns the value of the given Hadoop property.

hadoop config props get [--key] <key>

key
property name. (required)

hadoop config props list

Returns (all) the Hadoop properties.

hadoop config props list

hadoop config props set

Sets the value for the given Hadoop property.

Spring XD Guide

1.2.0.RC1 Spring XD 335

hadoop config props set [--property] <property>

property
what to set, in the form <name=value>. (required)

D.9 Hadoop FileSystem Commands

hadoop fs cat

Copy source paths to stdout.

hadoop fs cat [--path] <path>

path
file name to be shown. (required)

hadoop fs chgrp

Change group association of files.

hadoop fs chgrp [--recursive [<recursive>]] --group <group> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

group
group name. (required)

path
path of the file whose group will be changed. (required)

hadoop fs chmod

Change the permissions of files.

hadoop fs chmod [--recursive [<recursive>]] --mode <mode> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

mode
permission mode. (required)

path
path of the file whose permissions will be changed. (required)

hadoop fs chown

Change the owner of files.

hadoop fs chown [--recursive [<recursive>]] --owner <owner> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

Spring XD Guide

1.2.0.RC1 Spring XD 336

owner
owner name. (required)

path
path of the file whose ownership will be changed. (required)

hadoop fs copyFromLocal

Copy single src, or multiple srcs from local file system to the destination file system. Same as put.

hadoop fs copyFromLocal --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs copyMergeToLocal

Takes a source directory and a destination file as input and concatenates files in src into the destination
local file.

hadoop fs copyMergeToLocal --from <from> --to <to> [--endline [<endline>]]

from
source file names. (required)

to
destination path name. (required)

endline
whether add a newline character at the end of each file. (default: false, or true if --endline
is specified without a value)

hadoop fs copyToLocal

Copy files to the local file system. Same as get.

hadoop fs copyToLocal --from <from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to
destination path name. (required)

ignoreCrc
whether ignore CRC. (default: false, or true if --ignoreCrc is specified without a value)

crc
whether copy CRC. (default: false, or true if --crc is specified without a value)

hadoop fs count

Count the number of directories, files, bytes, quota, and remaining quota.

Spring XD Guide

1.2.0.RC1 Spring XD 337

hadoop fs count [--quota [<quota>]] --path <path>

quota
whether with quta information. (default: false, or true if --quota is specified without a value)

path
path name. (required)

hadoop fs cp

Copy files from source to destination. This command allows multiple sources as well in which case the
destination must be a directory.

hadoop fs cp --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs du

Displays sizes of files and directories contained in the given directory or the length of a file in case its
just a file.

hadoop fs du [[--dir] <dir>] [--summary [<summary>]]

dir
directory to be listed. (default: .)

summary
whether with summary. (default: false, or true if --summary is specified without a value)

hadoop fs expunge

Empty the trash.

hadoop fs expunge

hadoop fs get

Copy files to the local file system.

hadoop fs get --from <from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to
destination path name. (required)

ignoreCrc
whether ignore CRC. (default: false, or true if --ignoreCrc is specified without a value)

Spring XD Guide

1.2.0.RC1 Spring XD 338

crc
whether copy CRC. (default: false, or true if --crc is specified without a value)

hadoop fs ls

List files in the directory.

hadoop fs ls [[--dir] <dir>] [--recursive [<recursive>]]

dir
directory to be listed. (default: .)

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

hadoop fs mkdir

Create a new directory.

hadoop fs mkdir [--dir] <dir>

dir
directory name. (required)

hadoop fs moveFromLocal

Similar to put command, except that the source localsrc is deleted after it's copied.

hadoop fs moveFromLocal --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs mv

Move source files to destination in the HDFS.

hadoop fs mv --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs put

Copy single src, or multiple srcs from local file system to the destination file system.

hadoop fs put --from <from> --to <to>

from
source file names. (required)

Spring XD Guide

1.2.0.RC1 Spring XD 339

to
destination path name. (required)

hadoop fs rm

Remove files in the HDFS.

hadoop fs rm [[--path] <path>] [--skipTrash [<skipTrash>]] [--recursive [<recursive>]]

path
path to be deleted. (default: .)

skipTrash
whether to skip trash. (default: false, or true if --skipTrash is specified without a value)

recursive
whether to recurse. (default: false, or true if --recursive is specified without a value)

hadoop fs setrep

Change the replication factor of a file.

hadoop fs setrep --path <path> --replica <replica> [--recursive [<recursive>]] [--waiting [<waiting>]]

path
path name. (required)

replica
source file names. (required)

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

waiting
whether wait for the replic number is eqal to the number. (default: false, or true if --waiting
is specified without a value)

hadoop fs tail

Display last kilobyte of the file to stdout.

hadoop fs tail [--file] <file> [--follow [<follow>]]

file
file to be tailed. (required)

follow
whether show content while file grow. (default: false, or true if --follow is specified without
a value)

hadoop fs text

Take a source file and output the file in text format.

hadoop fs text [--file] <file>

Spring XD Guide

1.2.0.RC1 Spring XD 340

file
file to be shown. (required)

hadoop fs touchz

Create a file of zero length.

hadoop fs touchz [--file] <file>

file
file to be touched. (required)

Spring XD Guide

1.2.0.RC1 Spring XD 341

Appendix E. Connecting to
Kerberized Hadoop
If you have enabled Kerberos security in your Hadoop cluster it is possible to connect XD Shell, hdfs
and hdfs-dataset sinks to it.

hadoop.properties

hadoop.security.authorization=true

spring.hadoop.security.authMethod=kerberos

spring.hadoop.security.userKeytab=/path/to/user.keytab

spring.hadoop.security.userPrincipal=user/host

spring.hadoop.security.namenodePrincipal=hdfs/host@DOMAIN

spring.hadoop.security.rmManagerPrincipal=yarn/host@DOMAIN

For both XD Container and XD Shell the config file is config/hadoop.properties.

E.1 Setting Principals

Principals for spring.hadoop.security.namenodePrincipal and
spring.hadoop.security.rmManagerPrincipal would equal what are in use in Hadoop cluster.

E.2 Automatic Login

If you want to avoid running kerberos login commands manually, use
spring.hadoop.security.userKeytab and spring.hadoop.security.userPrincipal

propertys respectively. Path to your kerberos keytab file needs to be a fully qualified path in your file
system. Essentially this is a model used by internal Hadoop components to do automatic Kerberos
logins.

Spring XD Guide

1.2.0.RC1 Spring XD 342

Appendix F. Modules-Project-
Migration

F.1 Introduction

With the release of Spring XD 1.1.0, creating and deploying a module has been greatly simplified.
Features such as simplified pom (using the spring-xd-module-parent) or simplified build.gradle (using the
spring-xd-module plugin) mean simpler dependency management and smaller build scripts to manage.
Another new feature is that a user can execute the module upload command via the XD shell to register a
custom module on the fly, vs. having to copy it to the modules subdirectory. The purpose of this appendix
is to show how to upgrade an the existing 1.0.x style module project to a 1.1.0 style module project.

Note

If you are currently using the 1.0.x style of deploying modules, the format of deployment is still
supported by 1.1.0.

Updating your Maven Project

Cleaning up

If you are using an assembly file for your POM, go ahead and remove it now. For example (From your
project directory):

rm -rf src/assembly

Updating your POM file

Since we are using the XD Module Parent you can remove any XD dependencies as well as some
of the boiler plate configurations. For example we can take the following pom.xml from a 1.0.x style
module project:

Spring XD Guide

1.2.0.RC1 Spring XD 343

<?xml version="1.0" encoding="UTF-8"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.springframework.xd.samples</groupId>

 <artifactId>payload-conversion</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 <name>Spring XD Sample - Payload type conversion example with a custom module</name>

 <packaging>jar</packaging>

 <prerequisites>

 <maven>2.2.1</maven>

 </prerequisites>

 <parent>

 <groupId>io.spring.platform</groupId>

 <artifactId>platform-bom</artifactId>

 <version>1.0.1.RELEASE</version>

 <relativePath/>

 </parent>

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <spring.xd.version>1.1.0.RELEASE</spring.xd.version>

 </properties>

 <repositories>

 <repository>

 <id>spring-milestone</id>

 <url>http://repo.springsource.org/libs-milestone</url>

 </repository>

 <repository>

 <id>spring-release</id>

 <url>http://repo.springsource.org/libs-milestone</url>

 </repository>

 </repositories>

 <dependencies>

 <dependency>

 <groupId>org.springframework.xd</groupId>

 <artifactId>spring-xd-tuple</artifactId>

 <version>${spring.xd.version}</version>

 <scope>compile</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-assembly-plugin</artifactId>

 <version>2.4</version>

 <configuration>

 <descriptors>

 <descriptor>src/main/assembly/assembly.xml</descriptor>

 </descriptors>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

and now replace it with a pom.xml that uses spring-xd-module-parent.

Spring XD Guide

1.2.0.RC1 Spring XD 344

<?xml version="1.0" encoding="UTF-8"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.springframework.xd.samples</groupId>

 <artifactId>payload-conversion</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 <name>Spring XD Sample - Payload type conversion example with a custom module</name>

 <parent>

 <groupId>org.springframework.xd</groupId>

 <artifactId>spring-xd-module-parent</artifactId>

 <version>1.1.0.RELEASE</version>

 </parent>

 <repositories>

 <repository>

 <id>spring-io-release</id>

 <url>http://repo.spring.io/release</url>

 </repository>

 <repository>

 <id>jcenter</id>

 <url>http://jcenter.bintray.com</url>

 </repository>

 </repositories>

</project>

If there is a dependency that your project needs and is not included in the XD dependencies you can
add the dependencies as you normally would. For example if we needed the feed adapter from Spring
Integration for a source module, we would need to add the following to our pom.xml file:

 <dependencies>

 <dependency>

 <groupId>org.springframework.integration</groupId>

 <artifactId>spring-integration-feed</artifactId>

 <version>4.1.2.RELEASE</version>

 </dependency>

 </dependencies>

Updating your Gradle Project

Since we can now use the spring-xd-module plugin you can remove any XD dependencies from the
build.gradle. For example we can take the following build.gradle from a 1.0.x style module project:

Spring XD Guide

1.2.0.RC1 Spring XD 345

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'io.spring.dependency-management'

repositories{

 maven { url 'http://repo.spring.io/libs-milestone' }

}

dependencyManagement {

 imports {

 mavenBom 'io.spring.platform:platform-bom:1.0.1.RELEASE'

 }

}

ext {

 springXdVersion ='1.1.0.RELEASE'

}

dependencies{

 compile "org.springframework.xd:spring-xd-tuple:$springXdVersion"

 runtime "org.slf4j:jcl-over-slf4j"

 runtime "org.slf4j:slf4j-log4j12"

 runtime "log4j:log4j"

 testCompile "junit:junit"

}

task dist(type: Copy) {

 destinationDir = file("${buildDir}")

 from { project.jar } {

 into 'dist/modules/processor/myTupleProcessor/lib/'

 }

 from { 'modules/' } {

 into 'dist/modules'

 }

}

buildscript {

 repositories {

 maven { url 'http://repo.spring.io/plugins-snapshot'}

 }

 dependencies {

 classpath 'io.spring.gradle:dependency-management-plugin:0.1.0.RELEASE'

 }

}

task wrapper(type: Wrapper) {

 description = 'Generates gradlew[.bat] scripts'

 gradleVersion = '1.11'

}

and replace it with the a build.gradle that uses the spring-xd-module plugin.

Spring XD Guide

1.2.0.RC1 Spring XD 346

buildscript {

 repositories {

 maven { url "http://repo.spring.io/plugins-snapshot" }

 maven { url "http://repo.spring.io/release" }

 jcenter()

 maven { url "http://repo.spring.io/snapshot" }

 maven { url "http://repo.spring.io/milestone" }

 }

 dependencies {

 classpath("org.springframework.xd:spring-xd-module-plugin:1.1.0.RELEASE")

 }

}

ext {

 springXdVersion = '1.1.0.RELEASE'

 springIntegrationVersion = '4.1.2.RELEASE'

}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'spring-xd-module'

task wrapper(type: Wrapper) {

 gradleVersion = '1.12'

}

group = 'org.springframework.xd.samples'

version = '1.0.0.BUILD-SNAPSHOT'

description = "Spring XD processor module "

sourceCompatibility = 1.7

targetCompatibility = 1.7

repositories {

 maven { url "http://repo.spring.io/release" }

 mavenCentral()

 jcenter()

 maven { url "http://repo.spring.io/snapshot" }

 maven { url "http://repo.spring.io/milestone" }

}

If there is a dependency that your project needs and is not included in the XD dependencies you can
add the dependencies as you normally would. For example if we needed the feed adapter from Spring
Integration for a source module, we would need to add the following to our build.gradle file:

dependencies {

 compile "org.springframework.integration:spring-integration-feed:$springIntegrationVersion"

}

Building the Module Project

Maven

mvn clean package

Gradle

./gradlew clean test bootRepackage

Updating Configurations

Within your project the bean definition and property files in your resources directory will need to be
moved to the resources/config directory. i.e.

Spring XD Guide

1.2.0.RC1 Spring XD 347

mkdir src/resources/config

mv src/resources/module.xml src/resources/config

mv src/resources/module.properties src/resources/config

If you have more than one bean definition file you will need to consolidate it to one bean definition
file. You may import other bean definition files, but only the main one can be in the top level config
directory. The same applies if you have more than one properties file, you will need to consolidate them
to one properties file.

Registering the module

In XD 1.1.x there is no need for explicit copying of your module into the modules directory. You can
register your module from the XD Shell by executing the module upload command as shown below:

xd:>module upload --file [path-to]/payload-conversion-1.0.0.BUILD-SNAPSHOT.jar --name mymodule --type

 processor

The example above will upload the payload-conversion-1.0.0.BUILD-SNAPSHOT.jar that was created
after building the project. The module will be placed in the ${xd.customModule.home}/processor/
mymodule subdirectory. To verify that the module was successfully registered, in the shell execute a
module info type:module_name command. For example:

xd:>module info processor:mymodule

Information about processor module 'mymodule':

 Option Name Description Default Type

 ----------- --- ------- --------

 outputType how this module should emit messages it produces <none> MimeType

 inputType how this module should interpret messages it consumes <none> MimeType

Note

The uploaded module will be deployed to the xd.customModule.home directory of the admin
server. If the XD deployment has containers that are not on the same machine as the admin
server, you’ll need to use a shared filesystem or a replicating registry, as documented here.

To do a deeper dive on Module Project Development refer to Creating a Module Project

	Spring XD Guide
	Table of Contents
	Part I. Reference Guide
	1. Introduction
	1.1 Overview

	2. Getting Started
	2.1 Requirements
	2.2 Download Spring XD
	2.3 Install Spring XD
	2.4 Start the Runtime and the XD Shell
	2.5 Create a Stream
	2.6 Explore Spring XD
	2.7 OSX Homebrew installation
	2.8 RedHat/CentOS Installation
	2.9 Running in Distributed Mode
	Introduction
	XD CommandLine Options
	xd-admin command line args:
	xd-container command line args:

	Setting up a RDBMS
	Setting up ZooKeeper
	Setting up Redis
	Installing Redis
	Troubleshooting
	Redis on Windows
	Redis is not running

	Starting Redis

	Using RabbitMQ
	Installing RabbitMQ
	Launching RabbitMQ

	Starting Spring XD in Distributed Mode
	Choosing a Transport
	Choosing an Analytics provider
	Other Options

	Using Hadoop
	XD-Shell in Distributed Mode

	2.10 Running on YARN
	Introduction
	What do you need?
	Download Spring XD on YARN binaries
	Configure your deployment
	XD options
	Hadoop settings
	Zookeeper settings
	Transport options
	JDBC datasource properties
	XD Admin port

	Adding custom modules
	Customizing module configurations
	Modify container logging
	Control XD YARN application lifecycle
	Push the Spring XD application binaries and config to HDFS
	List installed application versions
	Submit the Spring XD YARN application
	Check the status of YARN apps
	Kill application
	Using a built-in shell

	Connect xd-shell to YARN runtime managed admins
	Configuring YARN memory reservations
	Working with container groups
	List existing groups
	Get status of a group
	Control group state
	Modify group configuration
	Create a new group
	Destroy a group
	Built-in group configurations

	Configuration examples
	Run containers on a specific hosts
	Run admins on a specific racks
	Disable default admin and container groups

	xd-yarn command synopsis
	Introduction to YARN resource allocation

	3. Application Configuration
	3.1 Introduction
	3.2 Server Configuration
	Profile support
	Database Configuration
	HSQLDB
	MySQL
	PostgreSQL
	Oracle database

	Redis
	RabbitMQ
	Kafka
	Management Port
	Admin Server Security
	Enabling HTTPS
	Enabling authentication
	Single user authentication
	LDAP authentication
	File based authentication

	Customizing authorization

	Local transport

	3.3 Module Configuration
	Profiles
	Batch Jobs or modules accessing JDBC

	4. DSL Guide
	4.1 Introduction
	4.2 Pipes and filters
	4.3 Module parameters
	4.4 Named channels
	4.5 Labels
	4.6 Single quotes, Double quotes, Escaping
	Spring Shell
	XD Syntax
	SpEL syntax and SpEL literals
	Putting it all together

	4.7 Introduction
	Using the Shell
	Tab completion for Job and Stream DSL definitions
	Executing a script
	Single quotes, Double quotes, Escaping

	5. Admin UI
	5.1 Introduction
	5.2 Containers
	5.3 Streams
	5.4 Jobs
	Modules
	List available batch job modules
	Create a Job Definition from a selected Job Module
	View Job Module Details

	List job definitions
	List job deployments
	Launching a batch Job
	Schedule Batch Job Execution

	Job Deployment Details
	List job executions
	Job execution details
	Step execution details
	Step execution history

	6. Architecture
	6.1 Introduction
	Runtime Architecture
	DIRT Runtime
	Support for other distributed runtimes

	Single Node Runtime
	Admin Server Architecture
	Container Server Architecture
	Streams
	Stream Deployment

	6.2 Jobs
	6.3 Taps

	7. Distributed Runtime
	7.1 Introduction
	7.2 Configuring Spring XD for High Availabilty(HA)
	7.3 ZooKeeper Overview
	7.4 The Admin Server Internals
	Example

	7.5 Module Deployment
	Example: Automatic Redeployment

	8. Batch Jobs
	8.1 Introduction
	8.2 Workflow
	8.3 Features
	8.4 The Lifecycle of a Job in Spring XD
	Register a Job Module
	Create a Job Definition
	Deploy the Job
	Launch a Job
	Job Execution
	Un-deploy a Job
	Destroy a Job Definition
	Creating Jobs - Additional Options

	8.5 Deployment manifest support for job
	8.6 Launching a job
	Ad-hoc
	Launch the Batch using Cron-Trigger
	Launch the Batch using a Fixed-Delay-Trigger
	Launch job as a part of event flow

	8.7 Retrieve job notifications
	To receive aggregated events
	To receive job execution events
	To receive step execution events
	To receive item, skip and chunk events
	To disable the default listeners
	To select specific listeners

	8.8 Removing Batch Jobs
	8.9 Pre-Packaged Batch Jobs
	Note regarding HDFS Configuration
	Poll a Directory and Import CSV Files to HDFS (filepollhdfs)
	Import CSV Files to JDBC (filejdbc)
	HDFS to JDBC Export (hdfsjdbc)
	JDBC to HDFS Import (jdbchdfs)
	HDFS to MongoDB Export (hdfsmongodb)
	FTP to HDFS Export (ftphdfs)
	Running Spark Application as a batch job (sparkapp)
	Running Sqoop as a batch job (sqoop)
	Using Sqoop’s metastore
	Options for Sqoop job

	Running gpload as a batch job (gpload)

	9. Streams
	9.1 Introduction
	9.2 Creating a Simple Stream
	9.3 Deleting a Stream
	9.4 Deploying and Undeploying Streams
	9.5 Other Source and Sink Types
	9.6 Simple Stream Processing
	9.7 DSL Syntax
	9.8 Advanced Features
	9.9 Module Labels

	10. Modules
	10.1 Introduction
	10.2 Creating a Module
	Stream Modules
	Module Packaging
	Creating a Module Project
	Configuring your Maven build
	Configuring your Gradle build

	Testing a Module Project

	10.3 Registering a Module
	The Module Registry
	Custom Module Registry
	Replicating Module Registry

	10.4 Module Class Loading
	Dynamic Module ClassLoader

	10.5 Module Options
	Placeholders available to all modules
	How module options are resolved

	10.6 Composing Modules
	Working with Composite Modules

	10.7 Getting Information about Modules

	11. Sources
	11.1 Introduction
	11.2 HTTP
	HTTP with options

	11.3 FTP
	Options

	11.4 SFTP
	Options

	11.5 Tail
	Tail with options
	Tail Status Events

	11.6 File
	File with options

	11.7 Mail
	11.8 Twitter Search
	11.9 Twitter Stream
	11.10 GemFire Source
	Options
	Example
	Launching the XD GemFire Server

	11.11 GemFire Continuous Query
	Options

	11.12 Syslog
	11.13 TCP
	TCP with options
	Available Decoders
	Examples
	Binary Data Example

	11.14 TCP Client
	TCP Client options
	Implementing a simple conversation

	11.15 Reactor IP
	11.16 RabbitMQ
	RabbitMQ with Options
	A Note About Retry

	11.17 JMS
	JMS with Options

	11.18 Time
	11.19 MQTT
	Options

	11.20 Stdout Capture
	11.21 Kafka
	11.22 JDBC Source
	11.23 MongoDB Source
	11.24 Trigger Source

	12. Processors
	12.1 Introduction
	12.2 Filter
	Filter with SpEL expression
	Filter using jsonPath evaluation
	Filter with Groovy Script

	12.3 Transform
	Transform with SpEL expression
	Transform with Groovy Script

	12.4 Script
	12.5 Splitter
	Extract the value of a specific field

	12.6 Aggregator
	12.7 HTTP Client
	12.8 Shell
	12.9 JSON to Tuple
	12.10 Object to JSON

	13. Sinks
	13.1 Introduction
	13.2 Log
	13.3 File Sink
	File with Options

	13.4 FTP Sink
	FTP with Options

	13.5 Hadoop (HDFS)
	HDFS with Options
	Partition Path Expression
	Accessing Properties
	Custom Methods
	path
	dateFormat
	list
	range
	hash

	13.6 HDFS Dataset (Avro/Parquet)
	HDFS Dataset with Options
	About null values
	About partitionPath

	13.7 JDBC
	JDBC with Options

	13.8 GPFDIST
	Example usage
	Performance Notes
	GPFDIST with Options

	13.9 TCP Sink
	TCP with Options
	Available Encoders
	An Additional Example

	13.10 Shell Sink
	13.11 Mongo
	13.12 Mail
	13.13 RabbitMQ
	RabbitMQ with Options

	13.14 GemFire Server
	Launching the XD GemFire Server
	Gemfire sinks
	Example

	13.15 Splunk Server
	Splunk sinks
	How To Setup Splunk for TCP Input
	Example

	13.16 MQTT Sink
	Options

	13.17 Dynamic Router
	SpEL-based Routing
	Groovy-based Routing
	Options

	13.18 Null Sink
	13.19 Redis
	Options

	13.20 Kafka Sink

	14. Taps
	14.1 Introduction
	Example
	Example - tap after a processor has been applied
	Example - using a label

	14.2 Tap Lifecycle

	15. Analytics
	15.1 Introduction
	15.2 Predictive analytics
	15.3 Analytical Models
	Modeling and Evaluation
	Modeling
	Evaluation
	Model Selection

	15.4 Counters and Gauges
	Counter
	Field Value Counter
	Aggregate Counter
	Gauge
	Simple Tap Example

	Rich Gauge
	Simple Tap Example
	Stock Price Example
	Improved Stock Price Example

	Accessing Analytics Data over the RESTful API

	16. Tuples
	16.1 Introduction
	Creating a Tuple
	Getting Tuple values
	Using SpEL expressions to filter a tuple
	Gradle Dependencies

	17. Type Conversion
	17.1 Introduction
	17.2 MIME types
	17.3 Stream Definition Examples
	17.4 POJO to JSON
	JSON to Tuple
	Java Serialization

	17.5 MIME types and Java types
	Caveats

	Part II. Developing Modules and Extensions
	18. Creating a Source Module
	18.1 Introduction
	18.2 Create the module Application Context file
	18.3 Create a Module Project
	Create a Spring Integration test
	Create an in-container test

	18.4 Install the Module
	18.5 Test the source module

	19. Creating a Data Stream Processor
	19.1 Introduction
	19.2 Reactor Streams
	19.3 RxJava Streams
	Scheduling

	19.4 Spark streaming
	Writing a spark streaming module
	How this works
	Data loss and recovery
	Module Type Conversion
	XD processor module examples

	20. XD sink module example
	21. Creating a Processor Module
	21.1 Introduction
	21.2 Write the Transformer Code
	21.3 Create the module Application Context File
	21.4 Write a Test
	21.5 Register the Module
	21.6 Test the custom module in the Spring XD runtime:

	22. Creating a Sink Module
	22.1 Introduction
	22.2 Create the module Application Context
	22.3 Create a module project
	Create the Spring integration test
	Run the test
	Test the Module Options

	22.4 Install the module
	22.5 Test the module

	23. Creating a Job Module
	23.1 Introduction
	23.2 Developing your Job
	23.3 Creating a Simple Job
	Create a Module Project
	Create the Spring Batch Job Definition
	Write the Tasklet
	Package and install the Module:
	Run the job

	23.4 Creating a read-write processing Job
	23.5 Orchestrating Hadoop Jobs

	24. Creating a Python Module
	24.1 Introduction

	25. Providing Module Options Metadata
	25.1 Introduction
	25.2 Using the "Simple" approach
	Declaring and documenting an option
	Advertising default values
	Exposing the option type

	25.3 Using the "POJO" approach
	Declaring options to the module
	Exposing values to the context
	Providing defaults
	Encapsulating options
	Using profiles
	Using validation

	25.4 Metadata style remarks

	26. Extending Spring XD
	26.1 Introduction
	26.2 Spring XD Application Contexts
	26.3 Plugin Architecture
	26.4 How to Add a Spring bean to the XD Container
	26.5 Providing A new Type Converter
	26.6 Adding a New Data Transport

	27. Samples
	27.1 Syslog ingestion into HDFS
	A sample configuration using syslog-ng

	Part III. Configuration Guidelines
	28. Overview
	29. Deployment
	29.1 Introduction
	29.2 Deployment Manifest
	Deployment Properties
	Spring XD Shell interaction
	General Properties
	Bus Properties
	Common Bus Properties
	RabbitMQ Bus Properties

	Stream Partitioning
	Partition Properties

	Direct Binding

	29.3 Deployment States
	Example

	29.4 Container Attributes
	Groups
	IP Address
	Hostname

	29.5 Stream Deployment Examples
	29.6 Partitioned Stream Deployment Examples
	Using SpEL Expressions

	29.7 Direct Binding Deployment Examples
	29.8 Troubleshooting
	ZooKeeper disconnects
	Debugging Slowness
	File Descriptors and limit violation

	30. Message Bus Configuration
	30.1 Introduction
	30.2 Rabbit Message Bus High Availability (HA) Configuration
	Introduction
	Connection Management and HA Queues

	30.3 Error Handling (Message Delivery Failures)
	RabbitMQ Message Bus
	Redis Message Bus

	30.4 Rabbit Message Bus Secure Sockets Layer (SSL)
	30.5 Rabbit Message Bus Batching and Compression
	30.6 Removing RabbitMQ MessageBus Resources

	Part IV. Administration
	31. Monitoring and Management
	31.1 Monitoring XD Admin, Container and Single-node servers
	To enable boot provided management endpoints over HTTP
	To enable the container shutdown operation in the UI
	To disable boot endpoints over HTTP

	31.2 Management over JMX
	Monitoring deployed modules in XD container
	Streams
	Jobs

	31.3 Using Jolokia to access JMX over http

	32. REST API
	32.1 Introduction
	32.2 XD Resources
	32.3 Stream Definitions
	32.4 Stream Deployments
	32.5 Job Definitions
	32.6 Job Deployments
	32.7 Batch Job Configurations
	32.8 Batch Job Executions
	32.9 Batch Job Instances
	32.10 Module Definitions
	32.11 Deployed Modules
	32.12 Containers
	32.13 Counters
	32.14 Field Value Counters
	32.15 Aggregate Counters
	32.16 Gauges
	32.17 Rich Gauges
	32.18 Tab Completions

	33. JAVA API
	33.1 Introduction
	Required Libraries
	Sample Usage

	Part V. Appendices
	Appendix A. Installing Hadoop
	A.1 Installing Hadoop
	Download
	Java Setup
	Setup SSH
	Setting the Namenode Port
	Further Configuration File Changes

	A.2 Running Hadoop

	Appendix B. Building Spring XD
	B.1 Instructions
	B.2 IDE support

	Appendix C. Using MQTT Modules
	C.1 Introduction
	Setting up MQTT on RabbitMQ
	Rabbit MQTT Plugin settings
	MQTT Source
	Example 1: Using defaults
	Example 2: Monitoring different topics.

	MQTT Sink
	Example 1: Using defaults

	Appendix D. XD Shell Command Reference
	D.1 Configuration Commands
	admin config info
	admin config server
	admin config timezone list
	admin config timezone set

	D.2 Runtime Commands
	runtime containers
	runtime modules

	D.3 Stream Commands
	stream all destroy
	stream all undeploy
	stream create
	stream deploy
	stream destroy
	stream list
	stream undeploy

	D.4 Job Commands
	job all destroy
	job all undeploy
	job create
	job deploy
	job destroy
	job execution all stop
	job execution display
	job execution list
	job execution restart
	job execution step display
	job execution step list
	job execution step progress
	job execution stop
	job instance display
	job launch
	job list
	job undeploy

	D.5 Module Commands
	module compose
	module delete
	module info
	module list
	module upload

	D.6 Metrics Commands
	counter delete
	counter display
	counter list
	field-value-counter delete
	field-value-counter display
	field-value-counter list
	aggregate-counter delete
	aggregate-counter display
	aggregate-counter list
	gauge delete
	gauge display
	gauge list
	rich-gauge delete
	rich-gauge display
	rich-gauge list

	D.7 Http Commands
	http get
	http post

	D.8 Hadoop Configuration Commands
	hadoop config fs
	hadoop config info
	hadoop config load
	hadoop config props get
	hadoop config props list
	hadoop config props set

	D.9 Hadoop FileSystem Commands
	hadoop fs cat
	hadoop fs chgrp
	hadoop fs chmod
	hadoop fs chown
	hadoop fs copyFromLocal
	hadoop fs copyMergeToLocal
	hadoop fs copyToLocal
	hadoop fs count
	hadoop fs cp
	hadoop fs du
	hadoop fs expunge
	hadoop fs get
	hadoop fs ls
	hadoop fs mkdir
	hadoop fs moveFromLocal
	hadoop fs mv
	hadoop fs put
	hadoop fs rm
	hadoop fs setrep
	hadoop fs tail
	hadoop fs text
	hadoop fs touchz

	Appendix E. Connecting to Kerberized Hadoop
	E.1 Setting Principals
	E.2 Automatic Login

	Appendix F. Modules-Project-Migration
	F.1 Introduction
	Updating your Maven Project
	Cleaning up
	Updating your POM file

	Updating your Gradle Project
	Building the Module Project
	Maven
	Gradle

	Updating Configurations
	Registering the module

