
Spring AMQP - Reference Documentation

1.0.0.RC2

Copyright © 2005-2007 Mark Pollack, Mark Fisher, Oleg Zhurakousky, Dave Syer

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.



Preface ............................................................................................................................................ iii
I. Reference ...................................................................................................................................... 1

1. Using Spring AMQP ............................................................................................................. 2
1.1. AMQP Abstractions ................................................................................................... 2
1.2. Connection and Resource Management ....................................................................... 4
1.3. AmqpTemplate .......................................................................................................... 5
1.4. Sending messages ...................................................................................................... 6
1.5. Receiving messages .................................................................................................... 7
1.6. Message Converters ................................................................................................... 8
1.7. Configuring the broker ............................................................................................. 10
1.8. Exception Handling .................................................................................................. 13
1.9. Transactions ............................................................................................................ 13

1.9.1. A note on Rollback of Received Messages ...................................................... 14
1.10. Message Listener Container Features ....................................................................... 14

2. Erlang integration ............................................................................................................... 17
2.1. Introduction ............................................................................................................. 17
2.2. Communicating with Erlang processes ...................................................................... 17

2.2.1. Connection Management ............................................................................... 17
2.2.2. Executing RPC .............................................................................................. 17
2.2.3. ErlangConverter ............................................................................................ 18

2.3. Exceptions ............................................................................................................... 18
3. Sample Applications ........................................................................................................... 19

3.1. Introduction ............................................................................................................. 19
3.2. Hello World ............................................................................................................. 19

3.2.1. Synchronous Example ................................................................................... 19
3.2.2. Asynchronous Example ................................................................................. 20

3.3. Stock Trading .......................................................................................................... 21
II. Spring Integration - Reference ..................................................................................................... 25

4. Spring Integration AMQP Support ....................................................................................... 26
4.1. Introduction ............................................................................................................. 26
4.2. Inbound Channel Adapter ......................................................................................... 26
4.3. Outbound Channel Adapter ....................................................................................... 26
4.4. Inbound Gateway ..................................................................................................... 26
4.5. Outbound Gateway ................................................................................................... 26

III. Other Resources ........................................................................................................................ 27
5. Further Reading .................................................................................................................. 28
Bibliography .......................................................................................................................... 29

Spring-WS (1.0.0.RC2) ii



Preface
The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging
solutions. We provide a "template" as a high-level abstraction for sending and receiving messages. We also
provide support for Message-driven POJOs. These libraries facilitate management of AMQP resources while
promoting the use of dependency injection and declarative configuration. In all of these cases, you will see
similarities to the JMS support in the Spring Framework. The project consists of both Java and .NET versions.
This manual is dedicated to the Java version. For links to the .NET version's manual or any other
project-related information visit the Spring AMQP project homepage.

Spring-WS (1.0.0.RC2) iii

http://springsource.org/spring-amqp


Part I. Reference
This part of the reference documentation details the various components that comprise Spring AMQP. The
main chapter covers the core classes to develop an AMQP application. It part also includes a chapter on
integration with Erlang and a chapter about the sample applications.

Spring-WS (1.0.0.RC2) 1



Chapter 1. Using Spring AMQP
In this chapter, we will explore interface and classes that are the essential components for developing
applications with Spring AMQP.

1.1. AMQP Abstractions

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution. These modules
are: spring-amqp, spring-rabbit and spring-erlang. The 'spring-amqp' module contains the
org.springframework.amqp.core package. Within that package, you will find the classes that represent the
core AMQP "model". Our intention is to provide generic abstractions that do not rely on any particular AMQP
broker implementation or client library. End user code will be more portable across vendor implementations as
it can be developed against the abstraction layer only. These abstractions are then used implemented by
broker-specific modules, such as 'spring-rabbit'. For the 1.0 release there is only a RabbitMQ implementation
however the abstractions have been validated in .NET using Apache Qpid in addition to RabbitMQ. Since
AMQP operates at the protocol level in principle the RabbitMQ client can be used with any broker that
supports the same protocol version, but we do not test any other brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification already. If
you are not, then have a look at the resources listed in Part III, “Other Resources”

1.1.1. Message

The 0-8 and 0-9-1 AMQP specifications do not define an Message class or interface. Instead, when performing
an operation such as ' basicPublish ', the content is passed as a byte-array argument and additional properties
are passed in as separate arguments. Spring AMQP defines a Message class as part of a more general AMQP
domain model representation. The purpose of the Message class is to simply encapsulate the body and
properties within a single instance so that the API can in turn be simpler. The Message class definition is quite
straightforward.

public class Message {

private final MessageProperties messageProperties;

private final byte[] body;

public Message(byte[] body, MessageProperties messageProperties) {
this.body = body;
this.messageProperties = messageProperties;

}

public byte[] getBody() {
return this.body;

}

public MessageProperties getMessageProperties() {
return this.messageProperties;

}

The MessageProperties interface defines several common properties such as 'messageId', 'timestamp',
'contentType', and several more. Those properties can also be extended with user-defined 'headers' by calling
the setHeader(String key, Object value) method.

1.1.2. Exchange

Spring-WS (1.0.0.RC2) 2



The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to. Each
Exchange within a virtual host of a broker will have a unique name as well as a few other properties:

public interface Exchange {

String getName();

ExchangeType getExchangeType();

boolean isDurable();

boolean isAutoDelete();

Map<String, Object> getArguments();

}

As you can see, an Exchange also has a 'type' represented by the enumeration ExchangeType. The basic types
are: Direct, Topic and Fanout. In the core package you will find implementations of the Exchange interface for
each of those types. The behavior varies across these Exchange types in terms of how they handle bindings to
Queues. A Direct exchange allows for a Queue to be bound by a fixed routing key (often the Queue's name). A
Topic exchange supports bindings with routing patterns that may include the '*' and '#' wildcards for
'exactly-one' and 'zero-or-more', respectively. The Fanout exchange publishes to all Queues that are bound to it
without taking any routing key into consideration. For much more information about Exchange types, check out
Part III, “Other Resources”.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange that has
no name. All Queues that are declared will be bound to that default Exchange with their names as
routing keys. You will learn more about the default Exchange's usage within Spring AMQP in
Section 1.3, “AmqpTemplate”.

1.1.3. Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like the
various Exchange classes, our implementation is intended to be an abstract representation of this core AMQP
type.

public class Queue {

private final String name;

private volatile boolean durable;

private volatile boolean exclusive;

private volatile boolean autoDelete;

private volatile Map<String, Object> arguments;

public Queue(String name) {
this.name = name;

}

// Getters and Setters omitted for brevity

Notice that the constructor takes the Queue name. Depending on the implementation, the admin template may
provide methods for generating a uniquely named Queue. Such Queues can be useful as a "reply-to" address or

Using Spring AMQP

Spring-WS (1.0.0.RC2) 3



other temporary situations. For that reason, the 'exclusive' and 'autoDelete' properties of an auto-generated
Queue would both be set to 'true'.

1.1.4. Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings that connect
Queues to Exchanges are critical for connecting those producers and consumers via messaging. In Spring
AMQP, we define a Binding class to represent those connections. Let's review the basic options for binding
Queues to Exchanges.

You can bind a Queue to a DirectExchange with a fixed routing key.

new Binding(someQueue, someDirectExchange, "foo.bar")

You can bind a Queue to a TopicExchange with a routing pattern.

new Binding(someQueue, someTopicExchange, "foo.*")

You can bind a Queue to a FanoutExchange with no routing key.

new Binding(someQueue, someFanoutExchange)

We also provide a BindingBuilder to facilitate a "fluent API" style.

Binding b = BindingBuilder.bind(someQueue).to(someTopicExchange).with("foo.*");

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a static
import for the 'from()' method.

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it is not an
"active" component. However, as you will see later in Section 1.7, “Configuring the broker”, Binding instances
can be used by the AmqpAdmin class to actually trigger the binding actions on the broker. Also, as you will see in
that same section, the Binding instances can be defined using Spring's @Bean-style within @Configuration

classes. There is also a convenient base class which further simplifies that approach for generating
AMQP-related bean definitions and recognizes the Queues, Exchanges, and Bindings so that they will all be
declared on the AMQP broker upon application startup.

The AmqpTemplate is also defined within the core package. As one of the main components involved in actual
AMQP messaging, it is discussed in detail in its own section (see Section 1.3, “AmqpTemplate”).

1.2. Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our
"spring-rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the ConnectionFactory

Using Spring AMQP

Spring-WS (1.0.0.RC2) 4



interface. The responsibility of a ConnectionFactory implementation is to provide an instance of
com.rabbitmq.client.Connection. The simplest implementation we provide is SingleConnectionFactory

which establishes a single connection that can be shared by the application. Sharing of the connection is
possible since the "unit of work" for messaging with AMQP is actually a "channel" (in some ways, this is
similar to the relationship between a Connection and a Session in JMS). As you can imagine, the connection
instance provides a createChannel method. When creating an instance of SingleConnectionFactory, the
'hostname' can be provided via the constructor. The 'username' and 'password' properties should be provided as
well.

SingleConnectionFactory connectionFactory = new SingleConnectionFactory("somehost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");

Connection connection = connectionFactory.createConnection();

When using XML, the configuration might look like this:

<bean id="connectionFactory"
class="org.springframework.amqp.rabbit.connection.SingleConnectionFactory">

<constructor-arg value="somehost"/>
<property name="username" value="guest"/>
<property name="password" value="guest"/>

</bean>

Note
There is also a CachingConnectionFactory implementation, which is superior to the
SingleConnectionFactory in terms of performance and resilience. The
CachingConnectionFactory should be considered the default for most practical usage, and
SingleConnectionFactory as useful for simple tests and maybe as a building block for extending
the framework.

A ConnectionFactory can be created quickly and conveniently using the rabbit namespace:

<rabbit:connection-factory id="connectionFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you, and it will
always choose a CachingConnectionFactory.

1.3. AmqpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring
AMQP provides a "template" that plays a central role. The interface that defines the main operations is called
AmqpTemplate. Those operations cover the general behavior for sending and receiving Messages. In other
words, they are not unique to any implementation, hence the "AMQP" in the name. On the other hand, there are
implementations of that interface that are tied to implementations of the AMQP protocol. Unlike JMS, which is
an interface-level API itself, AMQP is a wire-level protocol. The implementations of that protocol provide their
own client libraries, so each implementation of the template interface will depend on a particular client library.
Currently, there is only a single implementation: RabbitTemplate. In the examples that follow, you will often
see usage of an "AmqpTemplate", but when you look at the configuration examples, or any code excerpts
where the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AmqpTemplate interface defines all of the basic operations for sending and receiving
Messages. We will explore Message sending and reception, respectively, in the two sections that follow.

Using Spring AMQP

Spring-WS (1.0.0.RC2) 5



1.4. Sending messages

When sending a Message, one can use any of the following methods:

void send(Message message) throws AmqpException;

void send(String routingKey, Message message) throws AmqpException;

void send(String exchange, String routingKey, Message message) throws AmqpException;

We can begin our discussion with the last method listed above since it is actually the most explicit. It allows an
AMQP Exchange name to be provided at runtime along with a routing key. The last parameter is the callback
that is responsible for actual creating of the Message instance. An example of using this method to send a
Message might look this this:

amqpTemplate.send("marketData.topic", "quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

The "exchange" property can be set on the template itself if you plan to use that template instance to send to the
same exchange most or all of the time. In such cases, the second method listed above may be used instead. The
following example is functionally equivalent to the previous one:

amqpTemplate.setExchange("marketData.topic");
amqpTemplate.send("quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting only the
Message may be used:

amqpTemplate.setExchange("marketData.topic");
amqpTemplate.setRoutingKey("quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method parameters
will always override the template's default values. In fact, even if you do not explicitly set those properties on
the template, there are always default values in place. In both cases, the default is an empty String, but that is
actually a sensible default. As far as the routing key is concerned, it's not always necessary in the first place
(e.g. a Fanout Exchange). Furthermore, a Queue may be bound to an Exchange with an empty String. Those are
both legitimate scenarios for reliance on the default empty String value for the routing key property of the
template. As far as the Exchange name is concerned, the empty String is quite commonly used because the
AMQP specification defines the "default Exchange" as having no name. Since all Queues are automatically
bound to that default Exchange (which is a Direct Exchange) using their name as the binding value, that second
method above can be used for simple point-to-point Messaging to any Queue through the default Exchange.
Simply provide the queue name as the "routingKey" - either by providing the method parameter at runtime:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.send("queue.helloWorld", new Message("Hello World".getBytes(), someProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to a single Queue,
the following is perfectly reasonable:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.setRoutingKey("queue.helloWorld"); // but we'll always send to this Queue
template.send(new Message("Hello World".getBytes(), someProperties));

Using Spring AMQP

Spring-WS (1.0.0.RC2) 6



1.5. Receiving messages

Message reception is always a bit more complicated than sending. The reason is that there are two ways to
receive a Message. The simpler option is to poll for a single Message at a time with a synchronous, blocking
method call. The more complicated yet more common approach is to register a listener that will receive
Messages on-demand, asynchronously. We will look at an example of each approach in the next two
sub-sections.

1.5.1. Synchronous Consumer

The AmqpTemplate itself can be used for synchronous Message reception. There are two 'receive' methods
available. As with the Exchange on the sending side, there is a method that requires a queue property having
been set directly on the template itself, and there is a method that accepts a queue parameter at runtime.

Message receive() throws AmqpException;

Message receive(String queueName) throws AmqpException;

Just like in the case of sending messages, the AmqpTemplate has some convenience methods for receiving
POJOs instead of Message instances, and implementations will provide a way to customize the
MessageConverter used to create the Object returned:

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

1.5.2. Asynchronous Consumer

For asynchronous Message reception, a dedicated component (not the AmqpTemplate) is involved. That
component is a container for a Message consuming callback. We will look at the container and its properties in
just a moment, but first we should look at the callback since that is where your application code will be
integrated with the messaging system. There are a few options for the callback. The simplest of these is to
implement the MessageListener interface:

public interface MessageListener {

void onMessage(Message message);

}

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use the
ChannelAwareMessageListener. It looks similar but with an extra parameter:

public interface ChannelAwareMessageListener<M extends Message> {

void onMessage(M message, Channel channel) throws Exception;

}

If you prefer to maintain a stricter separation between your application logic and the messaging API, you can
rely upon an adapter implementation that is provided by the framework. This is often referred to as
"Message-driven POJO" support. When using the adapter, you only need to provide a reference to the instance
that the adapter itself should invoke.

Using Spring AMQP

Spring-WS (1.0.0.RC2) 7



MessageListener listener = new MessageListenerAdapter(somePojo);

Now that you've seen the various options for the Message-listening callback, we can turn our attention to the
container. Basically, the container handles the "active" responsibilities so that the listener callback can remain
passive. The container is an example of a "lifecycle" component. It provides methods for starting and stopping.
When configuring the container, you are essentially bridging the gap between an AMQP Queue and the
MessageListener instance. You must provide a reference to the ConnectionFactory and the queue name or
Queue instance(s) from which that listener should consume Messages. Here is the most basic example using the
default implementation, SimpleMessageListenerContainer :

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(rabbitConnectionFactory);
container.setQueueNames("some.queue");
container.setMessageListener(new MessageListenerAdapter(somePojo));

As an "active" component, it's most common to create the listener container with a bean definition so that it can
simply run in the background. This can be done via XML:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">
<rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>

</rabbit:listener-container>

Or, you may prefer to use the @Configuration style which will look very similar to the actual code snippet
above:

@Configuration
public class ExampleAmqpConfiguration {

@Bean
public MessageListenerContainer messageListenerContainer() {

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(rabbitConnectionFactory());
container.setQueueName("some.queue");
container.setMessageListener(exampleListener());
return container;

}

@Bean
public ConnectionFactory rabbitConnectionFactory() {

SingleConnectionFactory connectionFactory = new SingleConnectionFactory("localhost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");
return connectionFactory;

}

@Bean
public MessageListener exampleListener() {

return new MessageListener() {
public void onMessage(Message message) {

System.out.println("received: " + message);
}

};
}

}

1.6. Message Converters

The AmqpTemplate also defines several methods for sending and receiving Messages that will delegate to a
MessageConverter. The MessageConverter itself is quite straightforward. It provides a single method for each
direction: one for converting to a Message and another for converting from a Message. Notice that when
converting to a Message, you may also provide properties in addition to the object. The "object" parameter
typically corresponds to the Message body.

public interface MessageConverter {

Using Spring AMQP

Spring-WS (1.0.0.RC2) 8



Message toMessage(Object object, MessageProperties messageProperties)
throws MessageConversionException;

Object fromMessage(Message message) throws MessageConversionException;

}

The relevant Message-sending methods on the AmqpTemplate are listed below. They are simpler than the
methods we discussed previously because they do not require the Message instance. Instead, the
MessageConverter is responsible for "creating" each Message by converting the provided object to the byte
array for the Message body and then adding any provided MessageProperties.

void convertAndSend(Object message) throws AmqpException;

void convertAndSend(String routingKey, Object message) throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message) throws AmqpException;

void convertAndSend(Object message, MessagePostProcessor messagePostProcessor) throws AmqpException;

void convertAndSend(String routingKey, Object message, MessagePostProcessor messagePostProcessor)
throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message,
MessagePostProcessor messagePostProcessor) throws AmqpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies on the
template's "queue" property having been set.

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

1.6.1. SimpleMessageConverter

The default implementation of the MessageConverter strategy is called SimpleMessageConverter. This is the
converter that will be used by an instance of RabbitTemplate if you do not explicitly configure an alternative. It
handles text-based content, serialized Java objects, and simple byte arrays.

1.6.1.1. Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain"), it will also check for the
content-encoding property to determine the charset to be used when converting the Message body byte array to
a Java String. If no content-encoding property had been set on the input Message, it will use the "UTF-8"
charset by default. If you need to override that default setting, you can configure an instance of
SimpleMessageConverter, set its "defaultCharset" property and then inject that into a RabbitTemplate

instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object", the
SimpleMessageConverter will attempt to deserialize (rehydrate) the byte array into a Java object. While that
might be useful for simple prototyping, it's generally not recommended to rely on Java serialization since it
leads to tight coupling between the producer and consumer. Of course, it also rules out usage of non-Java
systems on either side. With AMQP being a wire-level protocol, it would be unfortunate to lose much of that
advantage with such restrictions. In the next two sections, we'll explore some alternatives for passing rich
domain object content without relying on Java serialization.

For all other content-types, the SimpleMessageConverter will return the Message body content directly as a

Using Spring AMQP

Spring-WS (1.0.0.RC2) 9



byte array.

1.6.1.2. Converting To a Message

When converting to a Message from an arbitrary Java Object, the SimpleMessageConverter likewise deals
with byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the case of byte
arrays, there is nothing to convert), and it will set the content-type property accordingly. If the Object to be
converted does not match one of those types, the Message body will be null.

1.6.2. JsonMessageConverter

As mentioned in the previous section, relying on Java serialization is generally not recommended. One rather
common alternative that is more flexible and portable across different languages and platforms is JSON
(JavaScript Object Notation). An implementation is available and can be configured on any RabbitTemplate

instance to override its usage of the SimpleMessageConverter default.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">

<bean class="org.springframework.amqp.support.converter.JsonMessageConverter">
<!-- if necessary, override the DefaultClassMapper -->
<property name="classMapper" ref="customClassMapper"/>

</bean>
</property>

</bean>

1.6.3. MarshallingMessageConverter

Yet another option is the MarshallingMessageConverter. It delegates to the Spring OXM library's
implementations of the Marshaller and Unmarshaller strategy interfaces. You can read more about that library
here. In terms of configuration, it's most common to provide the constructor argument only since most
implementations of Marshaller will also implement Unmarshaller.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">

<bean class="org.springframework.amqp.support.converter.MarshallingMessageConverter">
<constructor-arg ref="someImplemenationOfMarshallerAndUnmarshaller"/>

</bean>
</property>

</bean>

1.7. Configuring the broker

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and Bindings
on the broker. These operations which are portable from the 0.8 specification and higher are present in the
AmqpAdmin interface in the org.springframework.amqp.core package. The RabbitMQ implementation of that
class is RabbitAdmin located in the org.springframework.amqp.rabbit.core package.

The AmqpAdmin interface is based on using the Spring AMQP domain abstractions and is shown below:

public interface AmqpAdmin {

// Exchange Operations

void declareExchange(Exchange exchange);

void deleteExchange(String exchangeName);

Using Spring AMQP

Spring-WS (1.0.0.RC2) 10

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html


// Queue Operations

Queue declareQueue();

void declareQueue(Queue queue);

void deleteQueue(String queueName);

void deleteQueue(String queueName, boolean unused, boolean empty);

void purgeQueue(String queueName, boolean noWait);

// Binding Operations

void declareBinding(Binding binding);

}

The declareQueue() method defined a queue on the broker whose name is automatically created. The additional
properties of this auto-generated queue are exclusive=true, autoDelete=true, and durable=false.

Note

Removing a binding was not introduced until the 0.9 version of the AMQP spec.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring XML
would look like this:

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:admin id="amqpAdmin" connection-factory="connectionFactory"/>

The RabbitAdmin implementation does automatic lazy declaration of Queues, Exchanges and Bindings

declared in the same ApplicationContext. These components will be declared as son as a Connection is
opened to the broker. There are some namespace features that make this very convenient, e.g. in the Stocks
sample application we have:

<rabbit:queue id="tradeQueue" />

<rabbit:queue id="marketDataQueue" />

<fanout-exchange name="broadcast.responses" xmlns="http://www.springframework.org/schema/rabbit">
<bindings>
<binding queue="tradeQueue" />

</bindings>
</fanout-exchange>

<topic-exchange name="app.stock.marketdata" xmlns="http://www.springframework.org/schema/rabbit">
<bindings>
<binding queue="marketDataQueue" pattern="${stocks.quote.pattern}" />

</bindings>
</topic-exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names generated
by the framework, not by the broker) and refer to them by ID. We can also declare Queues with explicit names,
which also serve as identifiers for their bean definitions in the context. E.g.

<rabbit:queue name="stocks.trade.queue"/>

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample application, there is the
@Configuration class AbstractStockRabbitConfiguration which in turn has RabbitClientConfiguration and

Using Spring AMQP

Spring-WS (1.0.0.RC2) 11



RabbitServerConfiguration subclasses. The code for AbstractStockRabbitConfiguration is show below

@Configuration
public abstract class AbstractStockAppRabbitConfiguration {

@Bean
public ConnectionFactory connectionFactory() {

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");
return connectionFactory;

}

@Bean
public RabbitTemplate rabbitTemplate() {

RabbitTemplate template = new RabbitTemplate(connectionFactory());
template.setMessageConverter(jsonMessageConverter());
configureRabbitTemplate(template);
return template;

}

@Bean
public MessageConverter jsonMessageConverter() {

return new JsonMessageConverter();
}

@Bean
public TopicExchange marketDataExchange() {

return new TopicExchange("app.stock.marketdata");
}

// additional code omitted for brevity

}

In the Stock application, the server is configured using the following @Configuration class

@Configuration
public class RabbitServerConfiguration extends AbstractStockAppRabbitConfiguration {

@Bean
public Queue stockRequestQueue() {

return new Queue("app.stock.request");
}

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. There is no binding of the
TopicExchange to a queue in the server configuration, as that is done in the client application. The stock
request queue however is automatically bound to the AMQP default exchange - this behavior is defined by the
specification.

The client @Configuration class is a little more interesting and is show below.

@Configuration
public class RabbitClientConfiguration extends AbstractStockAppRabbitConfiguration {

@Value("${stocks.quote.pattern}")
private String marketDataRoutingKey;

@Bean
public Queue marketDataQueue() {

return amqpAdmin().declareQueue();
}

/**
* Binds to the market data exchange. Interested in any stock quotes.
*/

@Bean
public Binding marketDataBinding() {

return BindingBuilder.bind(
marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

Using Spring AMQP

Spring-WS (1.0.0.RC2) 12



}

// additional code omitted for brevity

}

The client is declaring another queue via the declareQueue() method on the AmqpAdmin, and it binds that
queue to the market data exchange with a routing pattern that is externalized in a properties file.

1.8. Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For example, there are a lot of
cases where IOExceptions may be thrown. The RabbitTemplate, SimpleMessageListenerContainer, and other
Spring AMQP components will catch those Exceptions and convert into one of the Exceptions within our
runtime hierarchy. Those are defined in the 'org.springframework.amqp' package, and AmqpException is the
base of the hierarchy.

If you are using a SimpleMessageListenerContainer you will also be able to inject a Spring ErrorHandler

instance that can be used to react to an exception in the listener. The ErrorHandler cannot prevent the
exception from eventually propagating, but it can be used to log or alert another component that there is a
problem.

1.9. Transactions

The Spring Rabbit framework has support for automatic transaction management in the synchronous and
asynchronous use cases with a number of different semantics that can be selected declaratively, as is familiar to
existing users of Spring transactions. This makes many if not most common messaging patterns very easy to
implement.

There are two ways to signal the desired transaction semantics to the framework. In both the RabbitTemplate

and SimpleMessageListenerContainer there is a flag channelTransacted which, if true, tells the framework
to use a transactional channel and to end all operations (send or receive) with a commit or rollback depending
on the outcome, with an exception signalling a rollback. Another signal is to provide an external transaction
with one of Spring's PlatformTransactionManager implementations as a context for the ongoing operation. If
there is already a transaction in progress when the framework is sending or receiving a message, and the
channelTransacted flag is true, then the commit or rollback of the messaging transaction will be deferred until
the end of the current transaction. If the channelTransacted flag is false, then no transaction semantics apply
to the messaging operation (it is auto-acked).

The channelTransacted flag is a configuration time setting: it is declared and processed once when the AMQP
components are created, usually at application startup. The external transaction is more dynamic in principle
because the system responds to the current Thread state at runtime, but in practice is often also a configuration
setting, when the transactions are layed onto an application declaratively.

For synchronous use cases with RabbitTemplate the external transaction is provided by the caller, either
declaratively or imperatively according to taste (the usual Spring transaction model). An example of a
declarative approach (usually preferred because it is non-invasive), where the template has been configured
with channelTransacted=true:

@Transactional
public void doSomething() {

String incoming = rabbitTemplate.receiveAndConvert();
// do some more database processing...

Using Spring AMQP

Spring-WS (1.0.0.RC2) 13



String outgoing = processInDatabaseAndExtractReply(incoming);
rabbitTemplate.convertAndSend(outgoing);

}

A String payload is received, converted and sent as a message body inside a method marked as @Transactional,
so if the database processing fails with an exception, the incoming message will be returned to the broker, and
the outgoing message will not be sent. This applies to any operations with the RabbitTemplate inside a chain
of transactional methods (unless the Channel is directly manipulated to commit the transactiom early for
instance).

For asynchronous use cases with SimpleMessageListenerContainer if an external transaction is needed it has
to be requested by the container when it sets up the listener. To signal that an external transaction is required
the user provides an implementation of PlatformTransactionManager to the container when it is configured.
For example:

@Configuration
public class ExampleExternalTransactionAmqpConfiguration {

@Bean
public MessageListenerContainer messageListenerContainer() {

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(rabbitConnectionFactory());
container.setTransactionManager(transactionManager());
container.setChannelTransacted(true);
container.setQueueName("some.queue");
container.setMessageListener(exampleListener());
return container;

}

}

In the example above, the transaction manager is added as a dependency injected from another bean definition
(not shown), and the channelTransacted flag is also set to true. The effect is that if the listener fails with an
exception the transaction will be rolled back, and the message will also be returned to the broker. Significantly,
if the transaction fails to commit (e.g. a database constraint error, or connectivity problem), then the AMQP
transaction will also be rolled back, and message will be returned to the broker. This is sometimes known as a
Best Efforts 1 Phase Commit, and is a very powerful pattern for reliable messaging. If the channelTransacted

flag was set to false in the example above, which is the default, then the external transaction would still be
provided for the listener, but all messaging operations would be auto-acked, so the effect is to commit the
messaging operations even on a rollback of the business operation.

1.9.1. A note on Rollback of Received Messages

AMQP transactions only apply to messages and acks sent to the broker, so when there is a rollback of a Spring
transaction and a message has been received, wheat Spring AMQP has to do is not just rollback the transaction,
but also manually reject the message (sort of a nack, but that's not what the specification calls it). Such
messages (and any that are unacked when a channel is closed or aborts) go to the back of the queue on a Rabbit
broker, and this behaviour is not what some users expect, especially if they come from a JMS background, so
it's good to be aware of it. The re-queuing order is not mandated by the AMQP specification, but it makes the
broker much more efficient, and also means that if it is under load there is a natural back off before the message
can be consumed again.

1.10. Message Listener Container Features

There are quite a few options for configuring a SimpleMessageListenerContainer related to transactions and

Using Spring AMQP

Spring-WS (1.0.0.RC2) 14



quality of service, and some of them interact with each other.

Table 1.1. Configuration options for a message listener container

Property Description

channelTransacted Boolean flag to signal that all messages should be
acknowledged in a transaction (either manually or
automatically)

acknowledgeMode NONE = no acks will be sent (the default and
incompatible with channelTransacted=true).
RabbitMQ calls this "autoack" because the broker
assumes all messages are acked without any action
from the consumer. MANUAL = the listener must
acknowledge all messages by calling
Channel.basicAck(). AUTO = the container will
acknowledge the message automatically. Note that
acknowledgeMode is complementary to
channelTransacted - if the channel is transacted then
the broker requires a commit notification in addition
to the ack.

transactionManager External transaction manager for the operation of the
listener. Also complementary to channelTransacted -
if the Channel is transacted then its transaction will
be synchronized with the external transaction.

prefetchCount The number of messages to accept from the broker in
one socket frame. The higher this is the faster the
messages can be delivered, but the higher the risk of
non-sequential processing. Ignored if the
acknowledgeMode is NONE.

shutdownTimeout When a container shuts down (e.g. if its enclosing
ApplicationContext is closed) it waits for in-flight
messages to be processed up to this limit. Defaults to
10 seconds. After the limit is reached, if the channel
is not transacted messages will be discarded.

txSize If the channel is transacted or an external transaction
manager is provided, the container will attempt to
process up to this number of messages per transaction
(waiting for each one up to the receieve timeout
setting).

receiveTimeout The maximum time to wait for each message. If
acknowledgeMode=NONE (the default) this has very
little effect - the container just spins round an asks for
another message. It has the biggest effect for a
transactional Channel with txSize>1, since it can
cause messages already consumed not to be
acknowledged until the timeout expires.

autoStartup Flag to indicate that the container should start when

Using Spring AMQP

Spring-WS (1.0.0.RC2) 15



Property Description

the ApplicationContext does (as part of the
SmartLifecycle callbacks which happen after all
beans are initialized). Defaults to true, but set it to
false if your broker might not be available on startup,
and then call start() later manually when you know
the broker is ready.

adviceChain An array of AOP Advice to apply to the listener
execution. This can be used to apply additional cross
cutting concerns such as automatic retry in the event
of broker death. Note that simple re-connection after
an AMQP error is handled by the
CachingConnectionFactory, as long as the broker is
still alive.

Using Spring AMQP

Spring-WS (1.0.0.RC2) 16



Chapter 2. Erlang integration

2.1. Introduction

There is an open source project called JInterface that provides a way for Java applications to communicate with
an Erlang process. The API is very low level and rather tedious to use and throws checked exceptions. The
Spring Erlang module makes accessing functions in Erlang from Java easy, often they can be one liners.

2.2. Communicating with Erlang processes

TODO

2.2.1. Connection Management

TODO

2.2.2. Executing RPC

The interface ErlangOperations is the high level API for interacting with an Erlang process.

public interface ErlangOperations {

<T> T execute(ConnectionCallback<T> action) throws OtpException;

OtpErlangObject executeErlangRpc(String module, String function, OtpErlangList args)
throws OtpException;

OtpErlangObject executeErlangRpc(String module, String function, OtpErlangObject... args)
throws OtpException;

OtpErlangObject executeRpc(String module, String function, Object... args)
throws OtpException;

Object executeAndConvertRpc(String module, String function,
ErlangConverter converterToUse, Object... args) throws OtpException;

// Sweet!
Object executeAndConvertRpc(String module, String function, Object... args)

throws OtpException;

}

The class that implements this interface is called ErlangTemplate. There are a few convenience methods, most
notably executeAndConvertRpc, as well as the execute method which gives you access to the 'native' API of
the JInterface project. For simple functions, you can invoke executeAndConvertRpc with the appropriate
Erlang module name, function, and arguments in a one-liner. For example, here is the implementation of the
RabbitBrokerAdmin method 'DeleteUser'

@ManagedOperation
public void deleteUser(String username) {

erlangTemplate.executeAndConvertRpc(
"rabbit_access_control", "delete_user", username.getBytes());

}

As the JInterface library uses specific classes such as OtpErlangDouble, OtpErlangString to represent the

Spring-WS (1.0.0.RC2) 17



primitive types in Erlang RPC calls, there is a converter class that works in concert with ErlangTemplate that
knows how to translate from Java primitive types to their Erlang class equivalents. You can also create custom
converters and register them with the ErlangTemplate to handle more complex data format translations.

2.2.3. ErlangConverter

The ErlangConverter interface is show below

public interface ErlangConverter {

/**
* Convert a Java object to a Erlang data type.
* @param object the object to convert
* @return the Erlang data type
* @throws ErlangConversionException in case of conversion failure
*/

OtpErlangObject toErlang(Object object) throws ErlangConversionException;

/**
* Convert from a Erlang data type to a Java object.
* @param erlangObject the Elang object to convert
* @return the converted Java object
* @throws ErlangConversionException in case of conversion failure
*/

Object fromErlang(OtpErlangObject erlangObject) throws ErlangConversionException;

/**
* The return value from executing the Erlang RPC.
*/

Object fromErlangRpc(String module, String function, OtpErlangObject erlangObject)
throws ErlangConversionException;

}

2.3. Exceptions

The JInterface checked exception hierarchy is translated into a parallel runtime exception hierarchy when
executing operations through ErlangTemplate.

Erlang integration

Spring-WS (1.0.0.RC2) 18



Chapter 3. Sample Applications

3.1. Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello World"
example that demonstrates both synchronous and asynchronous message reception. It provides an excellent
starting point for acquiring an understanding of the essential components. The second sample is based on a
stock-trading use case to demonstrate the types of interaction that would be common in real world applications.
In this chapter, we will provide a quick walk-through of each sample so that you can focus on the most
important components. The samples are both Maven-based, so you should be able to import them directly into
any Maven-aware IDE (such as SpringSource Tool Suite).

3.2. Hello World

The Hello World sample demonstrates both synchronous and asynchronous message reception. You can import
the 'spring-rabbit-helloworld' sample into the IDE and then follow the discussion below.

3.2.1. Synchronous Example

Within the 'src/main/java' directory, navigate to the 'org.springframework.amqp.helloworld' package. Open the
HelloWorldConfiguration class and notice that it contains the @Configuration annotation at class-level and
some @Bean annotations at method-level. This is an example of Spring's Java-based configuration. You can
read more about that here.

You will see that the RabbitConfiguration class extends a framework-provided class called
AbstractRabbitConfiguration. That forces it to implement the abstract rabbitTemplate() method while the base
class itself then creates an 'amqpAdmin' bean. The "rabbitTemplate" bean in turn depends upon the bean that is
created by the connectionFactory() method. There, we are providing the 'username' and 'password' properties as
well as the 'hostname' constructor argument to an instance of SingleConnectionFactory.

@Bean
public ConnectionFactory connectionFactory() {

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");
connectionFactory.setUsername("guest");
connectionFactory.setPassword("guest");
return connectionFactory;

}

The base class also provides a mechanism that will recognize any Exchange, Queue, or Binding bean
definitions and then declare them on the broker. In fact, the "helloWorldQueue" bean that is generated in
HelloWorldConfiguration is an example simply because it is an instance of Queue.

@Bean
public Queue helloWorldQueue() {

return new Queue(this.helloWorldQueueName);
}

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue's name
set as its "queue" property (for receiving Messages) and for its "routingKey" property (for sending Messages).

Now that we've explored the configuration, let's look at the code that actually uses these components. First,

Spring-WS (1.0.0.RC2) 19

http://github.com/SpringSource/spring-amqp-samples
http://www.springsource.com/products/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java


open the Producer class from within the same package. It contains a main() method where the Spring
ApplicationContext is created.

public static void main(String[] args) {
ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);
amqpTemplate.convertAndSend("Hello World");
System.out.println("Sent: Hello World");

}

As you can see in the example above, the AmqpTemplate bean is retrieved and used for sending a Message.
Since the client code should rely on interfaces whenever possible, the type is AmqpTemplate rather than
RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance of RabbitTemplate,
relying on the interface means that this code is more portable (the configuration can be changed independently
of the code). Since the convertAndSend() method is invoked, the template will be delegating to its
MessageConverter instance. In this case, it's using the default SimpleMessageConverter, but a different
implementation could be provided to the "rabbitTemplate" bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means it will be
sharing the "rabbitTemplate" bean. That's why we configured that template with both a "routingKey" (for
sending) and "queue" (for receiving). As you saw in Section 1.3, “AmqpTemplate”, you could instead pass the
'routingKey' argument to the send method and the 'queue' argument to the receive method. The Consumer code
is basically a mirror image of the Producer, calling receiveAndConvert() rather than convertAndSend().

public static void main(String[] args) {
ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);
System.out.println("Received: " + amqpTemplate.receiveAndConvert());

}

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello World" in
the console output.

3.2.2. Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a slightly more
advanced but significantly more powerful option. With a few modifications, the Hello World sample can
provide an example of asynchronous reception, a.k.a. Message-driven POJOs. In fact, there is a sub-package
that provides exactly that: org.springframework.amqp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it creates
a "connectionFactory" and "rabbitTemplate" bean. This time, since the configuration is dedicated to the
message sending side, we don't even need any Queue definitions, and the RabbitTemplate only has the
'routingKey' property set. Recall that messages are sent to an Exchange rather than being sent directly to a
Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are bound to that default
Exchange with their name as the routing key. That is why we only need to provide the routing key here.

public RabbitTemplate rabbitTemplate() {
RabbitTemplate template = new RabbitTemplate(connectionFactory());
template.setRoutingKey(this.helloWorldQueueName);
return template;

}

Since this sample will be demonstrating asynchronous message reception, the producing side is designed to
continuously send messages (if it were a message-per-execution model like the synchronous version, it would
not be quite so obvious that it is in fact a message-driven consumer). The component responsible for sending

Sample Applications

Spring-WS (1.0.0.RC2) 20



messages continuously is defined as an inner class within the ProducerConfiguration. It is configured to execute
every 3 seconds.

static class ScheduledProducer {

@Autowired
private volatile RabbitTemplate rabbitTemplate;

private final AtomicInteger counter = new AtomicInteger();

@Scheduled(fixedRate = 3000)
public void sendMessage() {

rabbitTemplate.convertAndSend("Hello World " + counter.incrementAndGet());
}

}

You don't need to understand all of the details since the real focus should be on the receiving side (which we
will cover momentarily). However, if you are not yet familiar with Spring 3.0 task scheduling support, you can
learn more here. The short story is that the "postProcessor" bean in the ProducerConfiguration is registering the
task with a scheduler.

Now, let's turn to the receiving side. To emphasize the Message-driven POJO behavior will start with the
component that is reacting to the messages. The class is called HelloWorldHandler.

public class HelloWorldHandler {

public void handleMessage(String text) {
System.out.println("Received: " + text);

}

}

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any interfaces, and it doesn't
even contain any imports. It is being "adapted" to the MessageListener interface by the Spring AMQP
MessageListenerAdapter. That adapter can then be configured on a SimpleMessageListenerContainer. For this
sample, the container is created in the ConsumerConfiguration class. You can see the POJO wrapped in the
adapter there.

@Bean
public SimpleMessageListenerContainer listenerContainer() {

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();
container.setConnectionFactory(connectionFactory());
container.setQueueName(this.helloWorldQueueName);
container.setMessageListener(new MessageListenerAdapter(new HelloWorldHandler()));
return container;

}

The SimpleMessageListenerContainer is a Spring lifecycle component and will start automatically by default.
If you look in the Consumer class, you will see that its main() method consists of nothing more than a one-line
bootstrap to create the ApplicationContext. The Producer's main() method is also a one-line bootstrap, since the
component whose method is annotated with @Scheduled will also start executing automatically. You can start
the Producer and Consumer in any order, and you should see messages being sent and received every 3
seconds.

3.3. Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World sample.
However, the configuration is very similar - just a bit more involved. Since we've walked through the Hello

Sample Applications

Spring-WS (1.0.0.RC2) 21

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support


World configuration in detail, here we'll focus on what makes this sample different. There is a server that
pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe to the market data feed by
binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdaq.*"). The other main feature of this demo
is a request-reply "stock trade" interaction that is initiated by the client and handled by the server. That involves
a private "replyTo" Queue that is sent by the client within the order request Message itself.

The Server's core configuration is in the RabbitServerConfiguration class within the
org.springframework.amqp.rabbit.stocks.config.server package. It extends the
AbstractStockAppRabbitConfiguration. That is where the resources common to the Server and Client(s) are
defined, including the market data Topic Exchange (whose name is 'app.stock.marketdata') and the Queue that
the Server exposes for stock trades (whose name is 'app.stock.request'). In that common configuration file, you
will also see that a JsonMessageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on the
RabbitTemplate so that it does not need to provide that exchange name with every call to send a Message. It
does this within an abstract callback method defined in the base configuration class.

public void configureRabbitTemplate(RabbitTemplate rabbitTemplate) {
rabbitTemplate.setExchange(MARKET_DATA_EXCHANGE_NAME);

}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case, because it
will be bound to the default no-name exchange with its own name as the routing key. As mentioned earlier, the
AMQP specification defines that behavior.

@Bean
public Queue stockRequestQueue() {

return new Queue(STOCK_REQUEST_QUEUE_NAME);
}

Now that you've seen the configuration of the Server's AMQP resources, navigate to the
'org.springframework.amqp.rabbit.stocks' package under the 'src/test/java' directory. There you will see the
actual Server class that provides a main() method. It creates an ApplicationContext based on the
'server-bootstrap.xml' config file. In there you will see the scheduled task that publishes dummy market data.
That configuration relies upon Spring 3.0's "task" namespace support. The bootstrap config file also imports a
few other files. The most interesting one is 'server-messaging.xml' which is directly under 'src/main/resources'.
In there you will see the "messageListenerContainer" bean that is responsible for handling the stock trade
requests. Finally have a look at the "serverHandler" bean that is defined in "server-handlers.xml" (also in
'src/main/resources'). That bean is an instance of the ServerHandler class and is a good example of a
Message-driven POJO that is also capable of sending reply Messages. Notice that it is not itself coupled to the
framework or any of the AMQP concepts. It simply accepts a TradeRequest and returns a TradeResponse.

public TradeResponse handleMessage(TradeRequest tradeRequest) { ... }

Now that we've seen the most important configuration and code for the Server, let's turn to the Client. The best
starting point is probably RabbitClientConfiguration within the
'org.springframework.amqp.rabbit.stocks.config.client' package. Notice that it declares two queues without
providing explicit names.

@Bean
public Queue marketDataQueue() {

return amqpAdmin().declareQueue();
}

@Bean
public Queue traderJoeQueue() {

Sample Applications

Spring-WS (1.0.0.RC2) 22



return amqpAdmin().declareQueue();
}

Those are private queues, and unique names will be generated automatically. The first generated queue is used
by the Client to bind to the market data exchange that has been exposed by the Server. Recall that in AMQP,
consumers interact with Queues while producers interact with Exchanges. The "binding" of Queues to
Exchanges is what instructs the broker to deliver, or route, messages from a given Exchange to a Queue. Since
the market data exchange is a Topic Exchange, the binding can be expressed with a routing pattern. The
RabbitClientConfiguration declares that with a Binding object, and that object is generated with the
BindingBuilder's fluent API.

@Value("${stocks.quote.pattern}")
private String marketDataRoutingKey;

@Bean
public Binding marketDataBinding() {

return BindingBuilder.bind(
marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

}

Notice that the actual value has been externalized in a properties file ("client.properties" under
src/main/resources), and that we are using Spring's @Value annotation to inject that value. This is generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making changes
to the routing pattern used for binding. Let's try that now.

Start by running org.springframework.amqp.rabbit.stocks.Server and then
org.springframework.amqp.rabbit.stocks.Client. You should see dummy quotes for NASDAQ stocks because
the current value associated with the 'stocks.quote.pattern' key in client.properties is
'app.stock.quotes.nasdaq.*'. Now, while keeping the existing Server and Client running, change that property
value to 'app.stock.quotes.nyse.*' and start a second Client instance. You should see that the first client is still
receiving NASDAQ quotes while the second client receives NYSE quotes. You could instead change the
pattern to get all stocks or even an individual ticker.

The final feature we'll explore is the request-reply interaction from the Client's perspective. Recall that we have
already seen the ServerHandler that is accepting TradeRequest objects and returning TradeResponse objects.
The corresponding code on the Client side is RabbitStockServiceGateway in the
'org.springframework.amqp.rabbit.stocks.gateway' package. It delegates to the RabbitTemplate in order to send
Messages.

public void send(TradeRequest tradeRequest) {
getRabbitTemplate().convertAndSend(tradeRequest, new MessagePostProcessor() {

public Message postProcessMessage(Message message) throws AmqpException {
message.getMessageProperties().setReplyTo(new Address(defaultReplyToQueue));
try {

message.getMessageProperties().setCorrelationId(
UUID.randomUUID().toString().getBytes("UTF-8"));

}
catch (UnsupportedEncodingException e) {

throw new AmqpException(e);
}
return message;

}
});

}

Notice that prior to sending the message, it sets the "replyTo" address. It's providing the queue that was
generated by the "traderJoeQueue" bean definition shown above. Here's the @Bean definition for the
StockServiceGateway class itself.

Sample Applications

Spring-WS (1.0.0.RC2) 23



@Bean
public StockServiceGateway stockServiceGateway() {

RabbitStockServiceGateway gateway = new RabbitStockServiceGateway();
gateway.setRabbitTemplate(rabbitTemplate());
gateway.setDefaultReplyToQueue(traderJoeQueue());
return gateway;

}

If you are no longer running the Server and Client, start them now. Try sending a request with the format of
'100 TCKR'. After a brief artificial delay that simulates "processing" of the request, you should see a
confirmation message appear on the Client.

Sample Applications

Spring-WS (1.0.0.RC2) 24



Part II. Spring Integration - Reference
This part of the reference documentation details the integration with the Spring Integration project.

Spring-WS (1.0.0.RC2) 25



Chapter 4. Spring Integration AMQP Support

4.1. Introduction

The Spring Integration project will include AMQP Channel Adapters and Gateways that build upon the Spring
AMQP project as soon as the Spring AMQP project has a GA release. For now, those adapters are under
development in the Spring Integration sandbox. In Spring Integration, "Channel Adapters" are unidirectional
(one-way) whereas "Gateways" are bidirectional (request-reply). Ultimately, we will be providing an
inbound-channel-adapter, outbound-channel-adapter, inbound-gateway, and outbound-gateway. As of the time
of the Spring AMQP 1.0 Milestone 1 release, the 2 Channel Adapters are available. As mentioned, they are still
in the "sandbox" and as such are subject to change and should not be depended upon in a production
environment. That said, if you check out the project, you should be able to build it with Maven and experiment
for yourself.

When the AMQP adapters are part of an official Spring Integration release, the documentation will be available
as part of the Spring Integration distribution. In the meantime, we will just provide a quick overview of the
current state of that development here.

4.2. Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel-adapter>

<amqp:inbound-channel-adapter queue-name="some.queue"
channel="fromAMQP"
connection-factory="rabbitConnectionFactory"/>

4.3. Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A 'routing-key' may
optionally be provided in addition to the exchange name.

<amqp:outbound-channel-adapter channel="toAMQP"
exchange-name="some.exchange"
routing-key="foo"
amqp-template="rabbitTemplate"/>

4.4. Inbound Gateway

Coming Soon

4.5. Outbound Gateway

Coming Soon

Spring-WS (1.0.0.RC2) 26

http://springsource.org/spring-integration
https://src.springsource.org/svn/spring-integration/sandbox/spring-integration-amqp/


Part III. Other Resources
In addition to this reference documentation, there exist a number of other resources that may help you learn
about AMQP.

Spring-WS (1.0.0.RC2) 27



Chapter 5. Further Reading
For those who are not familiar with AMQP, the specification is actually quite readable. It is of course the
authoritative source of information, and the Spring AMQP code should be very easy to understand for anyone
who is familiar with the spec. Our current implementation of the RabbitMQ support is based on their 1.8.x
version, and it officially supports AMQP 0.8. However, we recommend reading the 0.9.1 document. The
differences are minor (mostly clarifications in fact), and the document itself is more readable.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started page. Since
that is currently the only supported implementation for Spring AMQP, we also recommend that as a general
starting point for all broker-related concerns.

Finally, be sure to visit the Spring AMQP Forum if you have questions or suggestions. With this first milestone
release, we are looking forward to a lot of community feedback!

Spring-WS (1.0.0.RC2) 28

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.rabbitmq.com/how.html
http://forum.springsource.org/forumdisplay.php?f=74


Bibliography
[jinterface-00] Ericsson AB. jinterface User Guide. Ericson AB . 2000.

Spring-WS (1.0.0.RC2) 29


	Spring AMQP - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	Chapter 1. Using Spring AMQP
	1.1. AMQP Abstractions
	1.1.1. Message
	1.1.2. Exchange
	1.1.3. Queue
	1.1.4. Binding

	1.2. Connection and Resource Management
	1.3. AmqpTemplate
	1.4. Sending messages
	1.5. Receiving messages
	1.5.1. Synchronous Consumer
	1.5.2. Asynchronous Consumer

	1.6. Message Converters
	1.6.1. SimpleMessageConverter
	1.6.1.1. Converting From a Message
	1.6.1.2. Converting To a Message

	1.6.2. JsonMessageConverter
	1.6.3. MarshallingMessageConverter

	1.7. Configuring the broker
	1.8. Exception Handling
	1.9. Transactions
	1.9.1. A note on Rollback of Received Messages

	1.10. Message Listener Container Features

	Chapter 2. Erlang integration
	2.1. Introduction
	2.2. Communicating with Erlang processes
	2.2.1. Connection Management
	2.2.2. Executing RPC
	2.2.3. ErlangConverter

	2.3. Exceptions

	Chapter 3. Sample Applications
	3.1. Introduction
	3.2. Hello World
	3.2.1. Synchronous Example
	3.2.2. Asynchronous Example

	3.3. Stock Trading


	Part II. Spring Integration - Reference
	Chapter 4. Spring Integration AMQP Support
	4.1. Introduction
	4.2. Inbound Channel Adapter
	4.3. Outbound Channel Adapter
	4.4. Inbound Gateway
	4.5. Outbound Gateway


	Part III. Other Resources
	Chapter 5. Further Reading
	Bibliography


