
Spring Integration Reference Manual

2.0.0.M5

Copyright © 2005-2007 Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg
Zhurakousky, Gary Russell

© SpringSource Inc., 2010

1. Spring Integration Overview .. 1
1.1. Background ... 1
1.2. Goals and Principles ... 1
1.3. Main Components .. 2

1.3.1. Message .. 2
1.3.2. Message Channel .. 2
1.3.3. Message Endpoint ... 3

1.4. Message Endpoints ... 3
1.4.1. Transformer .. 4
1.4.2. Filter .. 4
1.4.3. Router .. 4
1.4.4. Splitter .. 4
1.4.5. Aggregator .. 5
1.4.6. Service Activator ... 5
1.4.7. Channel Adapter ... 5

2. Message Construction ... 7
2.1. The Message Interface .. 7
2.2. Message Headers ... 7
2.3. Message Implementations ... 8
2.4. The MessageBuilder Helper Class ... 8

3. Message Channels ... 11
3.1. The MessageChannel Interface .. 11

3.1.1. PollableChannel .. 11
3.1.2. SubscribableChannel ... 11

3.2. Message Channel Implementations .. 12
3.2.1. PublishSubscribeChannel ... 12
3.2.2. QueueChannel ... 12
3.2.3. PriorityChannel ... 12
3.2.4. RendezvousChannel .. 12
3.2.5. DirectChannel ... 13
3.2.6. ExecutorChannel ... 14
3.2.7. ThreadLocalChannel ... 14

3.3. Channel Interceptors ... 15
3.4. MessageChannelTemplate .. 16
3.5. Configuring Message Channels ... 16

3.5.1. DirectChannel Configuration .. 17
3.5.2. QueueChannel Configuration ... 17
3.5.3. PublishSubscribeChannel Configuration ... 17
3.5.4. ExecutorChannel ... 18
3.5.5. PriorityChannel Configuration .. 18
3.5.6. RendezvousChannel Configuration ... 19
3.5.7. ThreadLocalChannel Configuration .. 19
3.5.8. Channel Interceptor Configuration .. 19
3.5.9. Global Channel Interceptor Configuration ... 19
3.5.10. Wire Tap ... 20

4. Message Endpoints ... 21
4.1. Message Handler .. 21
4.2. Event Driven Consumer .. 21
4.3. Polling Consumer ... 22
4.4. Namespace Support .. 23

5. Service Activator .. 26
5.1. Introduction ... 26

Spring-WS (2.0.0.M5) ii

5.2. The <service-activator/> Element .. 26
6. Channel Adapter ... 28

6.1. The <inbound-channel-adapter> element ... 28
6.2. The <outbound-channel-adapter/> element .. 28

7. Router .. 30
7.1. Router Implementations .. 30

7.1.1. PayloadTypeRouter ... 30
7.1.2. HeaderValueRouter ... 30
7.1.3. RecipientListRouter ... 31

7.2. The <router> element ... 32
7.3. The @Router Annotation .. 32

8. Filter .. 34
8.1. Introduction ... 34
8.2. The <filter> Element .. 34

9. Transformer .. 36
9.1. Introduction ... 36
9.2. The <transformer> Element .. 36
9.3. The @Transformer Annotation ... 37

10. Splitter ... 39
10.1. Introduction ... 39
10.2. Programming model ... 39
10.3. Configuring a Splitter using XML ... 40
10.4. Configuring a Splitter with Annotations ... 40

11. Aggregator ... 41
11.1. Introduction ... 41
11.2. Functionality .. 41
11.3. Programming model ... 41

11.3.1. CorrelatingMessageHandler ... 41
11.3.2. ReleaseStrategy ... 43
11.3.3. CorrelationStrategy .. 43

11.4. Configuring an Aggregator with XML ... 44
11.5. Managing State in an Aggregator: MessageGroupStore ... 46
11.6. Configuring an Aggregator with Annotations ... 47

12. Resequencer ... 49
12.1. Introduction ... 49
12.2. Functionality .. 49
12.3. Configuring a Resequencer with XML ... 49

13. Delayer .. 51
13.1. Introduction ... 51
13.2. The <delayer> Element ... 51

14. Message Handler Chain ... 52
14.1. Introduction ... 52
14.2. The <chain> Element ... 52

15. Messaging Bridge ... 54
15.1. Introduction ... 54
15.2. The <bridge> Element .. 54

16. Inbound Messaging Gateways .. 55
16.1. SimpleMessagingGateway .. 55
16.2. GatewayProxyFactoryBean ... 55

17. Message Publishing ... 58
17.1. Message Publishing Configuration .. 58

17.1.1. Annotation-driven approach via @Publisher annotation ... 58

Spring Integration 2.0.0.M5

Spring-WS (2.0.0.M5) iii

17.1.2. XML-based approach via <publisher> element .. 59
18. File Support .. 61

18.1. Introduction ... 61
18.2. Reading Files ... 61
18.3. Writing files ... 62
18.4. File Transformers ... 63

19. JDBC Support ... 65
19.1. Inbound Channel Adapter ... 65

19.1.1. Polling and Transactions .. 65
19.2. Outbound Channel Adapter ... 66
19.3. Message Store .. 66

19.3.1. Initializing the Database ... 67
19.3.2. Partitioning a Message Store .. 67

20. JMS Support ... 68
20.1. Inbound Channel Adapter ... 68
20.2. Message-Driven Channel Adapter ... 69
20.3. Outbound Channel Adapter ... 69
20.4. Inbound Gateway ... 70
20.5. Outbound Gateway ... 71
20.6. JMS Backed Message Channels .. 71
20.7. JMS Samples ... 72

21. Web Services Support ... 73
21.1. Outbound Web Service Gateways .. 73
21.2. Inbound Web Service Gateways .. 73
21.3. Web Service Namespace Support .. 73

22. RMI Support ... 76
22.1. Introduction ... 76
22.2. Outbound RMI ... 76
22.3. Inbound RMI ... 76
22.4. RMI namespace support ... 76

23. HttpInvoker Support .. 78
23.1. Introduction ... 78
23.2. HttpInvoker Inbound Gateway .. 78
23.3. HttpInvoker Outbound Gateway .. 78
23.4. HttpInvoker Namespace Support ... 79

24. HTTP Support .. 80
24.1. Introduction ... 80
24.2. Http Inbound Gateway .. 80
24.3. Http Outbound Gateway ... 81
24.4. HTTP Namespace Support .. 81

25. TCP and UDP Support .. 83
25.1. Introduction ... 83
25.2. UDP Adapters .. 83
25.3. TCP Adapters .. 85
25.4. TCP Gateways ... 86
25.5. IP Endpoint Attributes .. 86

26. Mail Support ... 92
26.1. Mail-Sending Channel Adapter ... 92
26.2. Mail-Receiving Channel Adapter .. 92
26.3. Mail Namespace Support .. 93

27. JMX Support .. 95
27.1. Notification Listening Channel Adapter ... 95

Spring Integration 2.0.0.M5

Spring-WS (2.0.0.M5) iv

27.2. Notification Publishing Channel Adapter ... 95
27.3. Attribute Polling Channel Adapter ... 96
27.4. Operation Invoking Channel Adapter ... 96
27.5. Control Bus .. 97

28. XMPP Support .. 98
28.1. Inbound Channel Adapter ... 98
28.2. XMPP Samples .. 98

29. Stream Support ... 99
29.1. Introduction ... 99
29.2. Reading from streams ... 99
29.3. Writing to streams .. 99
29.4. Stream namespace support .. 99

30. Spring ApplicationEvent Support ... 101
30.1. Receiving Spring ApplicationEvents .. 101
30.2. Sending Spring ApplicationEvents .. 101

31. Dealing with XML Payloads .. 102
31.1. Introduction ... 102
31.2. Transforming xml payloads ... 102
31.3. Namespace support for xml transformers ... 103
31.4. Splitting xml messages ... 104
31.5. Routing xml messages using XPath ... 105
31.6. Selecting xml messages using XPath ... 105
31.7. XPath components namespace support ... 106

32. Security in Spring Integration .. 108
32.1. Introduction ... 108
32.2. Securing channels ... 108

A. Spring Integration Samples ... 109
A.1. The Cafe Sample ... 109
A.2. The XML Messaging Sample ... 112
A.3. The OSGi Samples .. 113

B. Configuration ... 117
B.1. Introduction .. 117
B.2. Namespace Support ... 117
B.3. Configuring the Task Scheduler .. 118
B.4. Error Handling .. 119
B.5. Annotation Support .. 120
B.6. Message Mapping rules and conventions ... 122

B.6.1. Simple Scenarios .. 122
B.6.2. Complex Scenarios ... 124

C. Additional Resources .. 127
C.1. Spring Integration Home .. 127

Spring Integration 2.0.0.M5

Spring-WS (2.0.0.M5) v

Chapter 1. Spring Integration Overview

1.1. Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means that
the framework handles responsibilities on behalf of the components that are managed within its context. The
components themselves are simplified since they are relieved of those responsibilities. For example,
dependency injection relieves the components of the responsibility of locating or creating their dependencies.
Likewise, aspect-oriented programming relieves business components of generic cross-cutting concerns by
modularizing them into reusable aspects. In each case, the end result is a system that is easier to test,
understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for building
enterprise applications. Developers benefit from the consistency of this model and especially the fact that it is
based upon well-established best practices such as programming to interfaces and favoring composition over
inheritance. Spring's simplified abstractions and powerful support libraries boost developer productivity while
simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles. It
extends the Spring programming model into the messaging domain and builds upon Spring's existing enterprise
integration support to provide an even higher level of abstraction. It supports message-driven architectures
where inversion of control applies to runtime concerns, such as when certain business logic should execute and
where the response should be sent. It supports routing and transformation of messages so that different
transports and different data formats can be integrated without impacting testability. In other words, the
messaging and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of configuration
options including annotations, XML with namespace support, XML with generic "bean" elements, and of
course direct usage of the underlying API. That API is based upon well-defined strategy interfaces and
non-invasive, delegating adapters. Spring Integration's design is inspired by the recognition of a strong affinity
between common patterns within Spring and the well-known Enterprise Integration Patterns as described in the
book of the same name by Gregor Hohpe and Bobby Woolf (Addison Wesley, 2004). Developers who have
read that book should be immediately comfortable with the Spring Integration concepts and terminology.

1.2. Goals and Principles

Spring Integration is motivated by the following goals:

• Provide a simple model for implementing complex enterprise integration solutions.

• Facilitate asynchronous, message-driven behavior within a Spring-based application.

• Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

• Components should be loosely coupled for modularity and testability.

Spring-WS (2.0.0.M5) 1

http://www.eaipatterns.com

• The framework should enforce separation of concerns between business logic and integration logic.

• Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3. Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-based
contracts between layers promote loose coupling. Spring-based applications are typically designed this way,
and the Spring framework and portfolio provide a strong foundation for following this best practice for the
full-stack of an enterprise application. Message-driven architectures add a horizontal perspective, yet these
same goals are still relevant. Just as "layered architecture" is an extremely generic and abstract paradigm,
messaging systems typically follow the similarly abstract "pipes-and-filters" model. The "filters" represent any
component that is capable of producing and/or consuming messages, and the "pipes" transport the messages
between filters so that the components themselves remain loosely-coupled. It is important to note that these two
high-level paradigms are not mutually exclusive. The underlying messaging infrastructure that supports the
"pipes" should still be encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters"
themselves would typically be managed within a layer that is logically above the application's service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

1.3.1. Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used by the
framework while handling that object. It consists of a payload and headers. The payload can be of any type and
the headers hold commonly required information such as id, timestamp, expiration, and return address. Headers
are also used for passing values to and from connected transports. For example, when creating a Message from
a received File, the file name may be stored in a header to be accessed by downstream components. Likewise, if
a Message's content is ultimately going to be sent by an outbound Mail adapter, the various properties (to, from,
cc, subject, etc.) may be configured as Message header values by an upstream component. Developers can also
store any arbitrary key-value pairs in the headers.

1.3.2. Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to a
channel, and consumers receive Messages from a channel. The Message Channel therefore decouples the
messaging components, and also provides a convenient point for interception and monitoring of Messages.

Spring Integration Overview

Spring-WS (2.0.0.M5) 2

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-Point
channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe channels, on
the other hand, will attempt to broadcast each Message to all of its subscribers. Spring Integration supports both
of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer messages?
In Spring Integration, Pollable Channels are capable of buffering Messages within a queue. The advantage of
buffering is that it allows for throttling the inbound Messages and thereby prevents overloading a consumer.
However, as the name suggests, this also adds some complexity, since a consumer can only receive the
Messages from such a channel if a poller is configured. On the other hand, a consumer connected to a
Subscribable Channel is simply Message-driven. The variety of channel implementations available in Spring
Integration will be discussed in detail in Section 3.2, “Message Channel Implementations”.

1.3.3. Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration solutions
through inversion of control. This means that you should not have to implement consumers and producers
directly, and you should not even have to build Messages and invoke send or receive operations on a Message
Channel. Instead, you should be able to focus on your specific domain model with an implementation based on
plain Objects. Then, by providing declarative configuration, you can "connect" your domain-specific code to
the messaging infrastructure provided by Spring Integration. The components responsible for these connections
are Message Endpoints. This does not mean that you will necessarily connect your existing application code
directly. Any real-world enterprise integration solution will require some amount of code focused upon
integration concerns such as routing and transformation. The important thing is to achieve separation of
concerns between such integration logic and business logic. In other words, as with the Model-View-Controller
paradigm for web applications, the goal should be to provide a thin but dedicated layer that translates inbound
requests into service layer invocations, and then translates service layer return values into outbound replies. The
next section will provide an overview of the Message Endpoint types that handle these responsibilities, and in
upcoming chapters, you will see how Spring Integration's declarative configuration options provide a
non-invasive way to use each of these.

1.4. Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a
non-invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as a
Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are mapped to
URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same in both cases: isolate
application code from the infrastructure. These concepts are discussed at length along with all of the patterns
that follow in the Enterprise Integration Patterns book. Here, we provide only a high-level description of the
main endpoint types supported by Spring Integration and their roles. The chapters that follow will elaborate and
provide sample code as well as configuration examples.

Spring Integration Overview

Spring-WS (2.0.0.M5) 3

http://www.eaipatterns.com

1.4.1. Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning the
modified Message. Probably the most common type of transformer is one that converts the payload of the
Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a transformer
may be used to add, remove, or modify the Message's header values.

1.4.2. Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This simply
requires a boolean test method that may check for a particular payload content type, a property value, the
presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if not it will be
dropped (or for a more severe implementation, an Exception could be thrown). Message Filters are often used
in conjunction with a Publish Subscribe channel, where multiple consumers may receive the same Message and
use the filter to narrow down the set of Messages to be processed based on some criteria.

Note
Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring
Integration's Message Endpoint: any component that can be connected to Message Channel(s) in
order to send and/or receive Messages.

1.4.3. Router

A Message Router is responsible for deciding what channel or channels should receive the Message next (if
any). Typically the decision is based upon the Message's content and/or metadata available in the Message
Headers. A Message Router is often used as a dynamic alternative to a statically configured output channel on a
Service Activator or other endpoint capable of sending reply Messages. Likewise, a Message Router provides a
proactive alternative to the reactive Message Filters used by multiple subscribers as described above.

1.4.4. Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel. This is
typically used for dividing a "composite" payload object into a group of Messages containing the sub-divided
payloads.

Spring Integration Overview

Spring-WS (2.0.0.M5) 4

1.4.5. Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives multiple
Messages and combines them into a single Message. In fact, Aggregators are often downstream consumers in a
pipeline that includes a Splitter. Technically, the Aggregator is more complex than a Splitter, because it is
required to maintain state (the Messages to-be-aggregated), to decide when the complete group of Messages is
available, and to timeout if necessary. Furthermore, in case of a timeout, the Aggregator needs to know whether
to send the partial results or to discard them to a separate channel. Spring Integration provides a
CompletionStrategy as well as configurable settings for timeout, whether to send partial results upon timeout,
and the discard channel.

1.4.6. Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system. The input
Message Channel must be configured, and if the service method to be invoked is capable of returning a value,
an output Message Channel may also be provided.

Note
The output channel is optional, since each Message may also provide its own 'Return Address'
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message, extracting
the request Message's payload and converting if necessary (if the method does not expect a Message-typed
parameter). Whenever the service object's method returns a value, that return value will likewise be converted
to a reply Message if necessary (if it's not already a Message). That reply Message is sent to the output channel.
If no output channel has been configured, then the reply will be sent to the channel specified in the Message's
"return address" if available.

A request-reply "Service Activator" endpoint connects a target object's method to input and output Message
Channels.

1.4.7. Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport. Channel
Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some mapping between
the Message and whatever object or resource is received-from or sent-to the other system (File, HTTP Request,
JMS Message, etc). Depending on the transport, the Channel Adapter may also populate or extract Message
header values. Spring Integration provides a number of Channel Adapters, and they will be described in
upcoming chapters.

Spring Integration Overview

Spring-WS (2.0.0.M5) 5

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Spring Integration Overview

Spring-WS (2.0.0.M5) 6

Chapter 2. Message Construction
The Spring Integration Message is a generic container for data. Any object can be provided as the payload, and
each Message also includes headers containing user-extensible properties as key-value pairs.

2.1. The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {

T getPayload();

MessageHeaders getHeaders();

}

The Message is obviously a very important part of the API. By encapsulating the data in a generic wrapper, the
messaging system can pass it around without any knowledge of the data's type. As an application evolves to
support new types, or when the types themselves are modified and/or extended, the messaging system will not
be affected by such changes. On the other hand, when some component in the messaging system does require
access to information about the Message, such metadata can typically be stored to and retrieved from the
metadata in the Message Headers.

2.2. Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports any Object
types as header values. In fact, the MessageHeaders class implements the java.util.Map interface:

public final class MessageHeaders implements Map<String, Object>, Serializable {
...

}

Note
Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an UnsupportedOperationException. The
same applies for remove and clear. Since Messages may be passed to multiple consumers, the
structure of the Map cannot be modified. Likewise, the Message's payload Object can not be set
after the initial creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get(..) with the name of the
header. Alternatively, you can provide the expected Class as an additional parameter. Even better, when
retrieving one of the pre-defined values, convenient getters are available. Here is an example of each of these
three options:

Object someValue = message.getHeaders().get("someKey");

CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

Long timestamp = message.getHeaders().getTimestamp();

Spring-WS (2.0.0.M5) 7

The following Message headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type

ID java.util.UUID

TIMESTAMP java.lang.Long

EXPIRATION_DATE java.lang.Long

CORRELATION_ID java.lang.Object

REPLY_CHANNEL java.lang.Object (can be a String or MessageChannel)

ERROR_CHANNEL java.lang.Object (can be a String or MessageChannel)

SEQUENCE_NUMBER java.lang.Integer

SEQUENCE_SIZE java.lang.Integer

PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers, and
additional user-defined headers can also be configured.

2.3. Message Implementations

The base implementation of the Message interface is GenericMessage<T>, and it provides two constructors:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map of
headers will copy the provided headers to the newly created Message.

There are also two convenient subclasses available: StringMessage and ErrorMessage. The former accepts a
String as its payload:

StringMessage message = new StringMessage("hello world");

String s = message.getPayload();

And, the latter accepts any Throwable object as its payload:

ErrorMessage message = new ErrorMessage(someThrowable);

Throwable t = message.getPayload();

Notice that these implementations take advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the Message
payload Object.

2.4. The MessageBuilder Helper Class

Message Construction

Spring-WS (2.0.0.M5) 8

You may notice that the Message interface defines retrieval methods for its payload and headers but no setters.
The reason for this is that a Message cannot be modified after its initial creation. Therefore, when a Message
instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of those consumers
needs to send a reply with a different payload type, it will need to create a new Message. As a result, the other
consumers are not affected by those changes. Keep in mind, that multiple consumers may access the same
payload instance or header value, and whether such an instance is itself immutable is a decision left to the
developer. In other words, the contract for Messages is similar to that of an unmodifiable Collection, and the
MessageHeaders' map further exemplifies that; even though the MessageHeaders class implements
java.util.Map, any attempt to invoke a put operation (or 'remove' or 'clear') on the MessageHeaders will result
in an UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor, Spring
Integration does provide a far more convenient way to construct Messages: MessageBuilder. The
MessageBuilder provides two factory methods for creating Messages from either an existing Message or with a
payload Object. When building from an existing Message, the headers and payload of that Message will be
copied to the new Message:

Message<String> message1 = MessageBuilder.withPayload("test")
.setHeader("foo", "bar")
.build();

Message<String> message2 = MessageBuilder.fromMessage(message1).build();

assertEquals("test", message2.getPayload());
assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Message<String> message3 = MessageBuilder.withPayload("test3")
.copyHeaders(message1.getHeaders())
.build();

Message<String> message4 = MessageBuilder.withPayload("test4")
.setHeader("foo", 123)
.copyHeadersIfAbsent(message1.getHeaders())
.build();

assertEquals("bar", message3.getHeaders().get("foo"));
assertEquals(123, message4.getHeaders().get("foo"));

Notice that the copyHeadersIfAbsent does not overwrite existing values. Also, in the second example above,
you can see how to set any user-defined header with setHeader. Finally, there are set methods available for the
predefined headers as well as a non-destructive method for setting any header (MessageHeaders also defines
constants for the pre-defined header names).

Message<Integer> importantMessage = MessageBuilder.withPayload(99)
.setPriority(MessagePriority.HIGHEST)
.build();

assertEquals(MessagePriority.HIGHEST, importantMessage.getHeaders().getPriority());

Message<Integer> anotherMessage = MessageBuilder.fromMessage(importantMessage)
.setHeaderIfAbsent(MessageHeaders.PRIORITY, MessagePriority.LOW)
.build();

assertEquals(MessagePriority.HIGHEST, anotherMessage.getHeaders().getPriority());

The MessagePriority is only considered when using a PriorityChannel (as described in the next chapter). It
is defined as an enum with five possible values:

public enum MessagePriority {

Message Construction

Spring-WS (2.0.0.M5) 9

HIGHEST,
HIGH,
NORMAL,
LOW,
LOWEST

}

Message Construction

Spring-WS (2.0.0.M5) 10

Chapter 3. Message Channels
While the Message plays the crucial role of encapsulating data, it is the MessageChannel that decouples
message producers from message consumers.

3.1. The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {

String getName();

boolean send(Message message);

boolean send(Message message, long timeout);
}

When sending a message, the return value will be true if the message is sent successfully. If the send call times
out or is interrupted, then it will return false.

3.1.1. PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are two
sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior. Here is the
definition of PollableChannel.

public interface PollableChannel extends MessageChannel {

Message<?> receive();

Message<?> receive(long timeout);

List<Message<?>> clear();

List<Message<?>> purge(MessageSelector selector);

}

Similar to the send methods, when receiving a message, the return value will be null in the case of a timeout or
interrupt.

3.1.2. SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send Messages directly to their
subscribed MessageHandlers. Therefore, they do not provide receive methods for polling, but instead define
methods for managing those subscribers:

public interface SubscribableChannel extends MessageChannel {

boolean subscribe(MessageHandler handler);

boolean unsubscribe(MessageHandler handler);

}

Spring-WS (2.0.0.M5) 11

3.2. Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly described in
the sections below.

3.2.1. PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its subscribed
handlers. This is most often used for sending Event Messages whose primary role is notification as opposed to
Document Messages which are generally intended to be processed by a single handler. Note that the
PublishSubscribeChannel is intended for sending only. Since it broadcasts to its subscribers directly when its
send(Message) method is invoked, consumers cannot poll for Messages (it does not implement
PollableChannel and therefore has no receive() method). Instead, any subscriber must be a MessageHandler

itself, and the subscriber's handleMessage(Message) method will be invoked in turn.

3.2.2. QueueChannel

The QueueChannel implementation wraps a queue. Unlike the PublishSubscribeChannel, the QueueChannel

has point-to-point semantics. In other words, even if the channel has multiple consumers, only one of them
should receive any Message sent to that channel. It provides a default no-argument constructor (providing an
essentially unbounded capacity of Integer.MAX_VALUE) as well as a constructor that accepts the queue capacity:

public QueueChannel(int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the send()

method will return immediately even if no receiver is ready to handle the message. If the queue has reached
capacity, then the sender will block until room is available. Or, if using the send call that accepts a timeout, it
will block until either room is available or the timeout period elapses, whichever occurs first. Likewise, a
receive call will return immediately if a message is available on the queue, but if the queue is empty, then a
receive call may block until either a message is available or the timeout elapses. In either case, it is possible to
force an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that
calls to the no-arg versions of send() and receive() will block indefinitely.

3.2.3. PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the PriorityChannel is an alternative
implementation that allows for messages to be ordered within the channel based upon a priority. By default the
priority is determined by the 'priority' header within each message. However, for custom priority
determination logic, a comparator of type Comparator<Message<?>> can be provided to the PriorityChannel's
constructor.

3.2.4. RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until another party
invokes the channel's receive() method or vice-versa. Internally, this implementation is quite similar to the
QueueChannel except that it uses a SynchronousQueue (a zero-capacity implementation of BlockingQueue).
This works well in situations where the sender and receiver are operating in different threads but simply
dropping the message in a queue asynchronously is not appropriate. In other words, with a RendezvousChannel

at least the sender knows that some receiver has accepted the message, whereas with a QueueChannel, the
message would have been stored to the internal queue and potentially never received.

Message Channels

Spring-WS (2.0.0.M5) 12

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only. When
persistence is required, you can either invoke a database operation within a handler or use Spring
Integration's support for JMS-based Channel Adapters. The latter option allows you to take
advantage of any JMS provider's implementation for message persistence, and it will be discussed
in Chapter 20, JMS Support. However, when buffering in a queue is not necessary, the simplest
approach is to rely upon the DirectChannel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can create a
temporary, anonymous instance of RendezvousChannel which it then sets as the 'replyChannel' header when
building a Message. After sending that Message, the sender can immediately call receive (optionally providing
a timeout value) in order to block while waiting for a reply Message. This is very similar to the implementation
used internally by many of Spring Integration's request-reply components.

3.2.5. DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described above. It
implements the SubscribableChannel interface instead of the PollableChannel interface, so it dispatches
Messages directly to a subscriber. As a point-to-point channel, however, it differs from the
PublishSubscribeChannel in that it will only send each Message to a single subscribed MessageHandler.

In addition to being the simplest point-to-point channel option, one of its most important features is that it
enables a single thread to perform the operations on "both sides" of the channel. For example, if a handler is
subscribed to a DirectChannel, then sending a Message to that channel will trigger invocation of that handler's
handleMessage(Message) method directly in the sender's thread, before the send() method invocation can
return.

The key motivation for providing a channel implementation with this behavior is to support transactions that
must span across the channel while still benefiting from the abstraction and loose coupling that the channel
provides. If the send call is invoked within the scope of a transaction, then the outcome of the handler's
invocation (e.g. updating a database record) will play a role in determining the ultimate result of that
transaction (commit or rollback).

Note
Since the DirectChannel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify
those to be queue-based PollableChannels. Likewise, if a channel needs to broadcast messages, it
should not be a DirectChannel but rather a PublishSubscribeChannel. Below you will see how
each of these can be configured.

The DirectChannel internally delegates to a Message Dispatcher to invoke its subscribed Message Handlers,
and that dispatcher can have a load-balancing strategy. The load-balancer determines how invocations will be
ordered in the case that there are multiple handlers subscribed to the same channel. When using the namespace
support described below, the default strategy is "round-robin" which essentially load-balances across the
handlers in rotation.

Message Channels

Spring-WS (2.0.0.M5) 13

Note
The "round-robin" strategy is currently the only implementation available out-of-the-box in Spring
Integration. Other strategy implementations may be added in future versions.

The load-balancer also works in combination with a boolean failover property. If the "failover" value is true
(the default), then the dispatcher will fall back to any subsequent handlers as necessary when preceding
handlers throw Exceptions. The order is determined by an optional order value defined on the handlers
themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback in the same
fixed order sequence every time an error occurs, no load-balancing strategy should be provided. In other words,
the dispatcher still supports the failover boolean property even when no load-balancing is enabled. Without
load-balancing, however, the invocation of handlers will always begin with the first according to their order.
For example, this approach works well when there is a clear definition of primary, secondary, tertiary, and so
on. When using the namespace support, the "order" attribute on any endpoint will determine that order.

Note
Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than one
endpoint shares the same channel reference in the "input-channel" attribute.

3.2.6. ExecutorChannel

The ExecutorChannel is a point-to-point channel that supports the same dispatcher configuration as
DirectChannel (load-balancing strategy and the failover boolean property). The key difference between these
two dispatching channel types is that the ExecutorChannel delegates to an instance of TaskExecutor to
perform the dispatch. This means that the send method typically will not block, but it also means that the
handler invocation may not occur in the sender's thread. It therefore does not support transactions spanning the
sender and receiving handler.

Tip
Note that there are occasions where the sender may block. For example, when using a
TaskExecutor with a rejection-policy that throttles back on the client (such as the
ThreadPoolExecutor.CallerRunsPolicy), the sender's thread will execute the method directly
anytime the thread pool is at its maximum capacity and the executor's work queue is full. Since that
situation would only occur in a non-predictable way, that obviously cannot be relied upon for
transactions.

3.2.7. ThreadLocalChannel

The final channel implementation type is ThreadLocalChannel. This channel also delegates to a queue
internally, but the queue is bound to the current thread. That way the thread that sends to the channel will later
be able to receive those same Messages, but no other thread would be able to access them. While probably the
least common type of channel, this is useful for situations where DirectChannels are being used to enforce a
single thread of operation but any reply Messages should be sent to a "terminal" channel. If that terminal
channel is a ThreadLocalChannel, the original sending thread can collect its replies from it.

Message Channels

Spring-WS (2.0.0.M5) 14

3.3. Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannels, those channels provide an opportunity for
intercepting the send and receive operations. The ChannelInterceptor strategy interface provides methods for
each of those operations:

public interface ChannelInterceptor {

Message<?> preSend(Message<?> message, MessageChannel channel);

void postSend(Message<?> message, MessageChannel channel, boolean sent);

boolean preReceive(MessageChannel channel);

Message<?> postReceive(Message<?> message, MessageChannel channel);
}

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel.addInterceptor(someChannelInterceptor);

The methods that return a Message instance can be used for transforming the Message or can return 'null' to
prevent further processing (of course, any of the methods can throw a RuntimeException). Also, the
preReceive method can return 'false' to prevent the receive operation from proceeding.

Note
Keep in mind that receive() calls are only relevant for PollableChannels. In fact the
SubscribableChannel interface does not even define a receive() method. The reason for this is
that when a Message is sent to a SubscribableChannel it will be sent directly to one or more
subscribers depending on the type of channel (e.g. a PublishSubscribeChannel sends to all of its
subscribers). Therefore, the preReceive(..) and postReceive(..) interceptor methods are only
invoked when the interceptor is applied to a PollableChannel.

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor that sends
the Message to another channel without otherwise altering the existing flow. It can be very useful for
debugging and monitoring. An example is shown in Section 3.5.10, “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a ChannelInterceptorAdapter class
is also available for sub-classing. It provides no-op methods (the void method is empty, the Message returning
methods return the Message as-is, and the boolean method returns true). Therefore, it is often easiest to extend
that class and just implement the method(s) that you need as in the following example.

public class CountingChannelInterceptor extends ChannelInterceptorAdapter {

private final AtomicInteger sendCount = new AtomicInteger();

@Override
public Message<?> preSend(Message<?> message, MessageChannel channel) {

sendCount.incrementAndGet();
return message;

}
}

Tip
The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted in the

Message Channels

Spring-WS (2.0.0.M5) 15

http://eaipatterns.com/WireTap.html

first place. Additionally, the relationship between send and receive interception depends on the
timing of separate sender and receiver threads. For example, if a receiver is already blocked while
waiting for a message the order could be: preSend, preReceive, postReceive, postSend. However, if
a receiver polls after the sender has placed a message on the channel and already returned, the
order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive. The time that
elapses in such a case depends on a number of factors and is therefore generally unpredictable (in
fact, the receive may never happen!). Obviously, the type of queue also plays a role (e.g.
rendezvous vs. priority). The bottom line is that you cannot rely on the order beyond the fact that
preSend will precede postSend and preReceive will precede postReceive.

3.4. MessageChannelTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring Integration
provides a foundation for messaging components that enables non-invasive invocation of your application code
from the messaging system. However, sometimes it is necessary to invoke the messaging system from your
application code. For convenience when implementing such use-cases, Spring Integration provides a
MessageChannelTemplate that supports a variety of operations across the Message Channels, including
request/reply scenarios. For example, it is possible to send a request and wait for a reply.

MessageChannelTemplate template = new MessageChannelTemplate();

Message reply = template.sendAndReceive(new StringMessage("test"), someChannel);

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other exchange types are
also supported.

public boolean send(final Message<?> message, final MessageChannel channel) { ... }

public Message<?> sendAndReceive(final Message<?> request, final MessageChannel channel) { .. }

public Message<?> receive(final PollableChannel<?> channel) { ... }

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or header
values instead of Message instances is described in Section 16.2, “GatewayProxyFactoryBean”.

3.5. Configuring Message Channels

To create a Message Channel instance, you can use the 'channel' element:

<channel id="exampleChannel"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the
"publish-subscribe-channel" element:

<publish-subscribe-channel id="exampleChannel"/>

To create a Datatype Channel that only accepts messages containing a certain payload type, provide the

Message Channels

Spring-WS (2.0.0.M5) 16

http://www.eaipatterns.com/DatatypeChannel.html

fully-qualified class name in the channel element's datatype attribute:

<channel id="numberChannel" datatype="java.lang.Number"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words, the
"numberChannel" above would accept messages whose payload is java.lang.Integer or java.lang.Double.
Multiple types can be provided as a comma-delimited list:

<channel id="stringOrNumberChannel" datatype="java.lang.String,java.lang.Number"/>

When using the "channel" element without any sub-elements, it will create a DirectChannel instance (a
SubscribableChannel).

However, you can alternatively provide a variety of "queue" sub-elements to create any of the pollable channel
types (as described in Section 3.2, “Message Channel Implementations”). Examples of each are shown below.

3.5.1. DirectChannel Configuration

As mentioned above, DirectChannel is the default type.

<channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the discussion
in Section 3.2.5, “DirectChannel” for more detail). To disable one or both of these, add a <dispatcher/>
sub-element and configure the attributes:

<channel id="failFastChannel">
<dispatcher failover="false"/>

</channel>

<channel id="channelWithFixedOrderSequenceFailover">
<dispatcher load-balancer="none"/>

</channel>

3.5.2. QueueChannel Configuration

To create a QueueChannel, use the "queue" sub-element. You may specify the channel's capacity:

<channel id="queueChannel">
<queue capacity="25"/>

</channel>

Note
If you do not provide a value for the 'capacity' attribute on this <queue/> sub-element, the resulting
queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

3.5.3. PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the "publish-subscribe-channel" element. When using this element,
you can also specify the "task-executor" used for publishing Messages (if none is specified it simply publishes
in the sender's thread):

Message Channels

Spring-WS (2.0.0.M5) 17

<publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a PublishSubscribeChannel, then you
can set the 'apply-sequence' property on the channel to true. That will indicate that the channel should set the
sequence-size and sequence-number Message headers as well as the correlation id prior to passing the
Messages along. For example, if there are 5 subscribers, the sequence-size would be set to 5, and the Messages
would have sequence-number header values ranging from 1 to 5.

<publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note
The 'apply-sequence' value is false by default so that a Publish Subscribe Channel can send the
exact same Message instances to multiple outbound channels. Since Spring Integration enforces
immutability of the payload and header references, the channel creates new Message instances with
the same payload reference but different header values when the flag is set to true.

3.5.4. ExecutorChannel

To create an ExecutorChannel, add the <dispatcher> sub-element along with a 'task-executor' attribute. Its
value can reference any TaskExecutor within the context. For example, this enables configuration of a
thread-pool for dispatching messages to subscribed handlers. As mentioned above, this does break the
"single-threaded" execution context between sender and receiver so that any active transaction context will not
be shared by the invocation of the handler (i.e. the handler may throw an Exception, but the send invocation has
already returned successfully).

<channel id="executorChannel">
<dispatcher task-executor="someExecutor"/>

</channel>

Note
The "load-balancer" and "failover" options are also both available on the dispatcher sub-element as
described above in Section 3.5.1, “DirectChannel Configuration”. The same defaults apply as well.
So, the channel will have a round-robin load-balancing strategy with failover enabled unless
explicit configuration is provided for one or both of those attributes.

<channel id="executorChannelWithoutFailover">
<dispatcher task-executor="someExecutor" failover="false"/>

</channel>

3.5.5. PriorityChannel Configuration

To create a PriorityChannel, use the "priority-queue" sub-element:

<channel id="priorityChannel">
<priority-queue capacity="20"/>

</channel>

By default, the channel will consult the MessagePriority header of the message. However, a custom
Comparator reference may be provided instead. Also, note that the PriorityChannel (like the other types) does
support the "datatype" attribute. As with the QueueChannel, it also supports a "capacity" attribute. The
following example demonstrates all of these:

Message Channels

Spring-WS (2.0.0.M5) 18

<channel id="priorityChannel" datatype="example.Widget">
<priority-queue comparator="widgetComparator"

capacity="10"/>
</channel>

3.5.6. RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not provide any
additional configuration options to those described above, and its queue does not accept any capacity value
since it is a 0-capacity direct handoff queue.

<channel id="rendezvousChannel"/>
<rendezvous-queue/>

</channel>

3.5.7. ThreadLocalChannel Configuration

The ThreadLocalChannel does not provide any additional configuration options.

<thread-local-channel id="threadLocalChannel"/>

3.5.8. Channel Interceptor Configuration

Message channels may also have interceptors as described in Section 3.3, “Channel Interceptors”. The
<interceptors> sub-element can be added within <channel> (or the more specific element types). Provide the
"ref" attribute to reference any Spring-managed object that implements the ChannelInterceptor interface:

<channel id="exampleChannel">
<interceptors>

<ref bean="trafficMonitoringInterceptor"/>
</interceptors>

</channel>

In general, it is a good idea to define the interceptor implementations in a separate location since they usually
provide common behavior that can be reused across multiple channels.

3.5.9. Global Channel Interceptor Configuration

Channel Interceptors allow you for a clean and concise way of applying cross-cutting behavior per individual
channel. But what if the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. The better way would be to configure
interceptors globally and apply them on multiple channels in one shot. Spring Integration provides capabilities
to configure Global Interceptors and apply them on multiple channels. Look at the example below:

<int:channel-interceptor pattern="input*, bar*, foo" order="3">
<bean class="foo.barSampleInterceptor"/>

</int:channel-interceptor>

or

<int:channel-interceptor ref="myInterceptor" pattern="input*, bar*, foo" order="3"/>

<bean id="myInterceptor" class="foo.barSampleInterceptor"/>

<channel-interceptor> element allows you to define a global interceptor which will be applied on all channels

Message Channels

Spring-WS (2.0.0.M5) 19

that match patterns defined via pattern attribute. In the above case the global interceptor will be applied on 'foo'
channel and all other channels that begin with 'bar' and 'input'. The order attribute allows you to manage the
place where this interceptor will be injected. For example, channel 'inputChannel' could have individual
interceptors configured locally (see below):

<int:channel id="inputChannel">
<int:interceptors>

<int:wire-tap channel="logger"/>
</int:interceptors>

</int:channel>

The reasonable question would be how global interceptor will be injected in relation to other interceptors
configured locally or through other global interceptor definitions? Current implementation provides a very
simple and clever mechanism of handling this. Positive number in the order attribute will ensure interceptor
injection after existing interceptors and negative number will ensure that such interceptors injected before. This
means that in the above example global interceptor will be injected AFTER (since its order is greater then 0)
'wire-tap' interceptor configured locally. If there was another global interceptor with matching pattern their
order would be determined based on who's got the higher or lower value in order attribute. To inject global
interceptor BEFORE the existing interceptors use negative value for the order attribute.

Note
Note that order and pattern attributes are optional. The default value for order will be 0 and for
pattern is '*'

3.5.10. Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an 'interceptors' element. This is especially useful for debugging,
and can be used in conjunction with Spring Integration's logging Channel Adapter as follows:

<channel id="in">
<interceptors>

<wire-tap channel="logger"/>
</interceptors>

</channel>

<logging-channel-adapter id="logger" level="DEBUG"/>

Tip
The 'logging-channel-adapter' also accepts a boolean attribute: 'log-full-message'. That is false by
default so that only the payload is logged. Setting that to true enables logging of all headers in
addition to the payload.

Note

If namespace support is enabled, there are also two special channels defined within the context by
default: errorChannel and nullChannel. The 'nullChannel' acts like /dev/null, simply logging
any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for a reply that you don't care about, you can set the affected component's
'output-channel' to reference 'nullChannel' (the name 'nullChannel' is reserved within the context).
The 'errorChannel' is used internally for sending error messages, and it can be overridden with a
custom configuration. It is discussed in greater detail in Section B.4, “Error Handling”.

Message Channels

Spring-WS (2.0.0.M5) 20

Chapter 4. Message Endpoints
The first part of this chapter covers some background theory and reveals quite a bit about the underlying API
that drives Spring Integration's various messaging components. This information can be helpful if you want to
really understand what's going on behind the scenes. However, if you want to get up and running with the
simplified namespace-based configuration of the various elements, feel free to skip ahead to Section 4.4,
“Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various messaging
components to channels. Over the next several chapters, you will see a number of different components that
consume Messages. Some of these are also capable of sending reply Messages. Sending Messages is quite
straightforward. As shown above in Chapter 3, Message Channels, it's easy to send a Message to a Message
Channel. However, receiving is a bit more complicated. The main reason is that there are two types of
consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a separate
poller thread, they are essentially just listeners with a callback method. When connecting to one of Spring
Integration's subscribable Message Channels, this simple option works great. However, when connecting to a
buffering, pollable Message Channel, some component has to schedule and manage the polling thread(s).
Spring Integration provides two different endpoint implementations to accommodate these two types of
consumers. Therefore, the consumers themselves can simply implement the callback interface. When polling is
required, the endpoint acts as a "container" for the consumer instance. The benefit is similar to that of using a
container for hosting Message Driven Beans, but since these consumers are simply Spring-managed Objects
running within an ApplicationContext, it more closely resembles Spring's own MessageListener containers.

4.1. Message Handler

Spring Integration's MessageHandler interface is implemented by many of the components within the
framework. In other words, this is not part of the public API, and a developer would not typically implement
MessageHandler directly. Nevertheless, it is used by a Message Consumer for actually handling the consumed
Messages, and so being aware of this strategy interface does help in terms of understanding the overall role of a
consumer. The interface is defined as follows:

public interface MessageHandler {

void handleMessage(Message<?> message);

}

Despite its simplicity, this provides the foundation for most of the components that will be covered in the
following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc). Those components
each perform very different functionality with the Messages they handle, but the requirements for actually
receiving a Message are the same, and the choice between polling and event-driven behavior is also the same.
Spring Integration provides two endpoint implementations that "host" these callback-based handlers and allow
them to be connected to Message Channels.

4.2. Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first. You may recall
that the SubscribableChannel interface provides a subscribe() method and that the method accepts a
MessageHandler parameter (as shown in Section 3.1.2, “SubscribableChannel”):

Spring-WS (2.0.0.M5) 21

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

subscribableChannel.subscribe(messageHandler);

Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an Event
Driven Consumer, and the implementation provided by Spring Integration accepts a a SubscribableChannel

and a MessageHandler:

SubscribableChannel channel = (SubscribableChannel) context.getBean("subscribableChannel");

EventDrivenConsumer consumer = new EventDrivenConsumer(channel, exampleHandler);

4.3. Polling Consumer

Spring Integration also provides a PollingConsumer, and it can be instantiated in the same way except that the
channel must implement PollableChannel:

PollableChannel channel = (PollableChannel) context.getBean("pollableChannel");

PollingConsumer consumer = new PollingConsumer(channel, exampleHandler);

There are many other configuration options for the Polling Consumer. For example, the trigger is a required
property:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setTrigger(new IntervalTrigger(30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface: IntervalTrigger and
CronTrigger. The IntervalTrigger is typically defined with a simple interval (in milliseconds), but also
supports an 'initialDelay' property and a boolean 'fixedRate' property (the default is false, i.e. fixed delay):

IntervalTrigger trigger = new IntervalTrigger(1000);
trigger.setInitialDelay(5000);
trigger.setFixedRate(true);

The CronTrigger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setMaxMessagesPerPoll(10);

consumer.setReceiveTimeout(5000);

The 'maxMessagesPerPoll' property specifies the maximum number of messages to receive within a given poll
operation. This means that the poller will continue calling receive() without waiting until either null is returned
or that max is reached. For example, if a poller has a 10 second interval trigger and a 'maxMessagesPerPoll'
setting of 25, and it is polling a channel that has 100 messages in its queue, all 100 messages can be retrieved
within 40 seconds. It grabs 25, waits 10 seconds, grabs the next 25, and so on.

The 'receiveTimeout' property specifies the amount of time the poller should wait if no messages are available
when it invokes the receive operation. For example, consider two options that seem similar on the surface but

Message Endpoints

Spring-WS (2.0.0.M5) 22

are actually quite different: the first has an interval trigger of 5 seconds and a receive timeout of 50
milliseconds while the second has an interval trigger of 50 milliseconds and a receive timeout of 5 seconds. The
first one may receive a message up to 4950 milliseconds later than it arrived on the channel (if that message
arrived immediately after one of its poll calls returned). On the other hand, the second configuration will never
miss a message by more than 50 milliseconds. The difference is that the second option requires a thread to wait,
but as a result it is able to respond much more quickly to arriving messages. This technique, known as "long
polling", can be used to emulate event-driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecutor, and it can be configured to participate in
Spring-managed transactions. The following example shows the configuration of both:

PollingConsumer consumer = new PollingConsumer(channel, handler);

TaskExecutor taskExecutor = (TaskExecutor) context.getBean("exampleExecutor");
consumer.setTaskExecutor(taskExecutor);

PlatformTransactionManager txManager = (PlatformTransationManager) context.getBean("exampleTxManager");
consumer.setTransactionManager(txManager);

The examples above show dependency lookups, but keep in mind that these consumers will most often be
configured as Spring bean definitions. In fact, Spring Integration also provides a FactoryBean that creates the
appropriate consumer type based on the type of channel, and there is full XML namespace support to even
further hide those details. The namespace-based configuration will be featured as each component type is
introduced.

Note
Many of the MessageHandler implementations are also capable of generating reply Messages. As
mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless, when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as a
downstream consumer for a Splitter which may generate multiple replies for each Message it
handles. When using the namespace configuration, you do not strictly need to know all of the
details, but it still might be worth knowing that several of these components share a common base
class, the AbstractReplyProducingMessageHandler, and it provides a setOutputChannel(..)

method.

4.4. Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements, such as
router, transformer, service-activator, and so on. Most of these will support an "input-channel" attribute and
many will support an "output-channel" attribute. After being parsed, these endpoint elements produce an
instance of either the PollingConsumer or the EventDrivenConsumer depending on the type of the
"input-channel" that is referenced: PollableChannel or SubscribableChannel respectively. When the channel
is pollable, then the polling behavior is determined based on the endpoint element's "poller" sub-element. For
example, a simple interval-based poller with a 1-second interval would be configured like this:

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller>
<interval-trigger interval="1000"/>

</poller>
</transformer>

For a poller based on a Cron expression, use the "cron-trigger" child element instead:

Message Endpoints

Spring-WS (2.0.0.M5) 23

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller>
<cron-trigger expression="*/10 * * * * MON-FRI"/>

</poller>
</transformer>

If the input channel is a PollableChannel, then the poller configuration is required. Specifically, as mentioned
above, the 'trigger' is a required property of the PollingConsumer class. Therefore, if you omit the "poller"
sub-element for a Polling Consumer endpoint's configuration, an Exception may be thrown. However, it is also
possible to create top-level pollers in which case only a "ref" is required:

<poller id="weekdayPoller">
<cron-trigger expression="*/10 * * * * MON-FRI"/>

</poller>

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller ref="weekdayPoller"/>
</transformer>

In fact, to simplify the configuration, you can define a global default poller. A single top-level poller within an
ApplicationContext may have the default attribute with a value of "true". In that case, any endpoint with a
PollableChannel for its input-channel that is defined within the same ApplicationContext and has no explicitly
configured 'poller' sub-element will use that default.

<poller id="defaultPoller" default="true" max-messages-per-poll="5">
<interval-trigger interval="3" time-unit="SECONDS"/>

</poller>

<!-- No <poller/> sub-element is necessary since there is a default -->
<transformer input-channel="pollable"

ref="transformer"
output-channel="output"/>

Spring Integration also provides transaction support for the pollers so that each receive-and-forward operation
can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add the
<transactional/> sub-element. The attributes for this element should be familiar to anyone who has experience
with Spring's Transaction management:

<poller>
<interval-trigger interval="1000"/>
<transactional transaction-manager="txManager"

propagation="REQUIRED"
isolation="REPEATABLE_READ"
timeout="10000"
read-only="false"/>

</poller>

The polling threads may be executed by any instance of Spring's TaskExecutor abstraction. This enables
concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a "task" namespace in the core
Spring Framework, and its <executor/> element supports the creation of a simple thread pool executor. That
element accepts attributes for common concurrency settings such as pool-size and queue-capacity. Configuring
a thread-pooling executor can make a substantial difference in how the endpoint performs under load. These
settings are available per-endpoint since the performance of an endpoint is one of the major factors to consider
(the other major factor being the expected volume on the channel to which the endpoint subscribes). To enable
concurrency for a polling endpoint that is configured with the XML namespace support, provide the
'task-executor' reference on its <poller/> element and then provide one or more of the properties shown below:

<poller task-executor="pool"/>

Message Endpoints

Spring-WS (2.0.0.M5) 24

<interval-trigger interval="5" time-unit="SECONDS"/>
</poller>

<task:executor id="pool"
pool-size="5-25"
queue-capacity="20"
keep-alive="120"/>

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note that the
"caller" is usually the default TaskScheduler (see Section B.3, “Configuring the Task Scheduler”). Also, keep
in mind that the 'task-executor' attribute can provide a reference to any implementation of Spring's
TaskExecutor interface by specifying the bean name. The "executor" element above is simply provided for
convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message source.
Note that this will only apply to sources that have a blocking wait call with a timeout. For example, the File
poller does not block, each receive() call returns immediately and either contains new files or not. Therefore,
even if a poller contains a long receive-timeout, that value would never be usable in such a scenario. On the
other hand when using Spring Integration's own queue-based channels, the timeout value does have a chance to
participate. The following example demonstrates how a Polling Consumer will receive Messages nearly
instantaneously.

<service-activator input-channel="someQueueChannel"
output-channel="output">

<poller receive-timeout="30000">
<interval-trigger interval="10"/>

</poller>
</service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait thread
which does not require nearly as much CPU resource usage as a thrashing, infinite while loop for example.

Message Endpoints

Spring-WS (2.0.0.M5) 25

Chapter 5. Service Activator

5.1. Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel so
that it may play the role of a service. If the service produces output, it may also be connected to an output
channel. Alternatively, an output producing service may be located at the end of a processing pipeline or
message flow in which case, the inbound Message's "replyChannel" header can be used. This is the default
behavior if no output channel is defined, and as with most of the configuration options you'll see here, the same
behavior actually applies for most of the other components we have seen.

5.2. The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref' attributes:

<service-activator input-channel="exampleChannel" ref="exampleHandler"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated with the
@ServiceActivator annotation or that it contains only one public method at all. To delegate to an explicitly
defined method of any object, simply add the "method" attribute.

<service-activator input-channel="exampleChannel" ref="somePojo" method="someMethod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the reply
message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<service-activator input-channel="exampleChannel" output-channel="replyChannel"
ref="somePojo" method="someMethod"/>

If no "output-channel" is available, it will then check the Message's REPLY_CHANNEL header value. If that value
is available, it will then check its type. If it is a MessageChannel, the reply message will be sent to that channel.
If it is a String, then the endpoint will attempt to resolve the channel name to a channel instance. If the channel
cannot be resolved, then a ChannelResolutionException will be thrown.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then it will be
assumed that it is a Message payload, which will be extracted from the message and injected into such service
method. This is generally the recommended approach as it follows and promotes a POJO model when working
with Spring Integration. Arguments may also have @Header, @Headers or @MessageMapping annotations as
described in Section B.5, “Annotation Support”

Note
Since v1.0.3 of Spring Integration, the service method is not required to have an argument at all,
which means you can now implement event-style Service Activators, where all you care about is an
invocation of the service method, not worrying about the contents of the message. Think of it as a
NULL JMS message. An example use-case for such an implementation could be a simple
counter/monitor of messages deposited on the input channel.

Using a "ref" attribute is generally recommended if the custom Service Activator handler implementation can

Spring-WS (2.0.0.M5) 26

be reused in other <service-activator> definitions. However if the custom Service Activator handler
implementation should be scoped to a single definition of the <service-activator>, you can use an inner bean
definition:

<service-activator id="exampleServiceActivator" input-channel="inChannel"
output-channel = "outChannel" method="foo">

<beans:bean class="org.foo.ExampleServiceActivator"/>
</service-activator>

Note

Using both the "ref" attribute and an inner handler definition in the same <service-activator>

configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Service Activator

Spring-WS (2.0.0.M5) 27

Chapter 6. Channel Adapter
A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a Message
Channel. Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, and Mail. Those will be discussed in upcoming chapters of this reference
guide. However, this chapter focuses on the simple but flexible Method-invoking Channel Adapter support.
There are both inbound and outbound adapters, and each may be configured with XML elements provided in
the core namespace.

6.1. The <inbound-channel-adapter> element

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send a
non-null return value to a MessageChannel after converting it to a Message. When the adapter's subscription is
activated, a poller will attempt to receive messages from the source. The poller will be scheduled with the
TaskScheduler according to the provided configuration. To configure the polling interval or cron expression
for an individual channel-adapter, provide a 'poller' element with either an 'interval-trigger' (in milliseconds) or
'cron-trigger' sub-element.

<inbound-channel-adapter ref="source1" method="method1" channel="channel1">
<poller>

<interval-trigger interval="5000"/>
</poller>

</inbound-channel-adapter>

<inbound-channel-adapter ref="source2" method="method2" channel="channel2">
<poller>

<cron-trigger expression="30 * 9-17 * * MON-FRI"/>
</poller>

</channel-adapter>

Note

If no poller is provided, then a single default poller must be registered within the context. See
Section 4.4, “Namespace Support” for more detail.

6.2. The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer method
that should be invoked with the payload of Messages sent to that channel.

<outbound-channel-adapter channel="channel1" ref="target1" method="method1"/>

If the channel being adapted is a PollableChannel, provide a poller sub-element:

<outbound-channel-adapter channel="channel2" ref="target2" method="method2">
<poller>

<interval-trigger interval="3000"/>
</poller>

</outbound-channel-adapter>
<beans:bean id="target1" class="org.bar.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused in other
<outbound-channel-adapter> definitions. However if the consumer implementation should be scoped to a

Spring-WS (2.0.0.M5) 28

single definition of the <outbound-channel-adapter>, you can define it as inner bean:

<outbound-channel-adapter channel="channel2" method="method2">
<beans:bean class="org.bar.Foo"/>

</outbound-channel-adapter>

Note

Using both the "ref" attribute and an inner handler definition in the same
<outbound-channel-adapter> configuration is not allowed, as it creates an ambiguous condition
and will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly create an
instance of DirectChannel. The created channel's name will match the "id" attribute of the
<inbound-channel-adapter/> or <outbound-channel-adapter element. Therefore, if the "channel" is not
provided, the "id" is required.

Channel Adapter

Spring-WS (2.0.0.M5) 29

Chapter 7. Router

7.1. Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require Spring
Integration's options for delegating to POJOs using the XML namespace support and/or Annotations. Both of
these are discussed below, but first we present a couple implementations that are available out-of-the-box since
they fulfill generic, but common, requirements.

7.1.1. PayloadTypeRouter

A PayloadTypeRouter will send Messages to the channel as defined by payload-type mappings.

<bean id="payloadTypeRouter" class="org.springframework.integration.router.PayloadTypeRouter">
<property name="payloadTypeChannelMap">

<map>
<entry key="java.lang.String" value-ref="stringChannel"/>
<entry key="java.lang.Integer" value-ref="integerChannel"/>

</map>
</property>

</bean>

Configuration of PayloadTypeRouter is also supported via the namespace provided by Spring Integration (see
Section B.2, “Namespace Support”), which essentially simplifies configuration by combining <router/>

configuration and its corresponding implementation defined using <bean/> element into a single and more
concise configuration element. The example below demonstrates PayloadTypeRouter configuration which is
equivalent to the one above using Spring Integration's namespace support:

<payload-type-router input-channel="routingChannel">
<mapping type="java.lang.String" channel="stringChannel" />
<mapping type="java.lang.Integer" channel="integerChannel" />

</payload-type-router>

7.1.2. HeaderValueRouter

A HeaderValueRouter will send Messages to the channel based on the individual header value mappings.
When HeaderValueRouter is created it is initialized with the name of the header to be evaluated, using
constructor-arg. The value of the header could be one of two things:

1. Arbitrary value

2. Channel name

If arbitrary value, then a channelResolver should be provided to map header values to channel names. The
example below uses MapBasedChannelResolver to set up a map of header values to channel names.

<bean id="myHeaderValueRouter"
class="org.springframework.integration.router.HeaderValueRouter">

<constructor-arg value="someHeaderName" />
<property name="channelResolver">
<bean class="org.springframework.integration.channel.MapBasedChannelResolver">
<property name="channelMap">

<map>
<entry key="someHeaderValue" value-ref="channelA" />
<entry key="someOtherHeaderValue" value-ref="channelB" />

Spring-WS (2.0.0.M5) 30

</map>
</property>

</bean>
</property>

</bean>

If channelResolver is not specified, then the header value will be treated as a channel name making
configuration much simpler, where no channelResolver needs to be specified.

<bean id="myHeaderValueRouter"
class="org.springframework.integration.router.HeaderValueRouter">
<constructor-arg value="someHeaderName" />

</bean>

Similar to the PayloadTypeRouter, configuration of HeaderValueRouter is also supported via namespace
support provided by Spring Integration (see Section B.2, “Namespace Support”). The example below
demonstrates two types of namespace-based configuration of HeaderValueRouter which are equivalent to the
ones above using Spring Integration namespace support:

1. Configuration where mapping of header values to channels is required

<header-value-router input-channel="routingChannel" header-name="testHeader">
<mapping value="someHeaderValue" channel="channelA" />
<mapping value="someOtherHeaderValue" channel="channelB" />

</header-value-router>

2. Configuration where mapping of header values is not required if header values themselves represent the
channel names

<header-value-router input-channel="routingChannel" header-name="testHeader"/>

Note
The two router implementations shown above share some common properties, such as
"defaultOutputChannel" and "resolutionRequired". If "resolutionRequired" is set to "true", and the
router is unable to determine a target channel (e.g. there is no matching payload for a
PayloadTypeRouter and no "defaultOutputChannel" has been specified), then an Exception will be
thrown.

7.1.3. RecipientListRouter

A RecipientListRouter will send each received Message to a statically-defined list of Message Channels:

<bean id="recipientListRouter" class="org.springframework.integration.router.RecipientListRouter">
<property name="channels">

<list>
<ref bean="channel1"/>
<ref bean="channel2"/>
<ref bean="channel3"/>

</list>
</property>

</bean>

Configuration for RecipientListRouter is also supported via namespace support provided by Spring
Integration (see Section B.2, “Namespace Support”). The example below demonstrates namespace-based

Router

Spring-WS (2.0.0.M5) 31

configuration of RecipientListRouter and all the supported attributes using Spring Integration namespace
support:

<recipient-list-router id="customRouter" input-channel="routingChannel"
timeout="1234"
ignore-send-failures="true"
apply-sequence="true">

<recipient channel="channel1"/>
<recipient channel="channel2"/>

</recipient-list-router>

Note
The 'apply-sequence' flag here has the same affect as it does for a publish-subscribe-channel, and
like publish-subscribe-channel it is disabled by default on the recipient-list-router. Refer to
Section 3.5.3, “PublishSubscribeChannel Configuration” for more information.

7.2. The <router> element

The "router" element provides a simple way to connect a router to an input channel, and also accepts the
optional default output channel. The "ref" may provide the bean name of a custom Router implementation
(extending AbstractMessageRouter):

<router ref="payloadTypeRouter" input-channel="input1" default-output-channel="defaultOutput1"/>

<router ref="recipientListRouter" input-channel="input2" default-output-channel="defaultOutput2"/>

<router ref="customRouter" input-channel="input3" default-output-channel="defaultOutput3"/>

<beans:bean id="customRouterBean class="org.foo.MyCustomRouter"/>

Alternatively, the "ref" may point to a simple Object that contains the @Router annotation (see below), or the
"ref" may be combined with an explicit "method" name. When specifying a "method", the same behavior
applies as described in the @Router annotation section below.

<router input-channel="input" ref="somePojo" method="someMethod"/>

Using a "ref" attribute is generally recommended if the custom router implementation can be reused in other
<router> definitions. However if the custom router implementation should be scoped to a concrete definition
of the <router>, you can provide an inner bean definition:

<router method="someMethod" input-channel="input3" default-output-channel="defaultOutput3">
<beans:bean class="org.foo.MyCustomRouter"/>

</router>

Note

Using both the "ref" attribute and an inner handler definition in the same <router> configuration is
not allowed, as it creates an ambiguous condition and will result in an Exception being thrown.

7.3. The @Router Annotation

When using the @Router annotation, the annotated method can return either the MessageChannel or String

type. In the case of the latter, the endpoint will resolve the channel name as it does for the default output.

Router

Spring-WS (2.0.0.M5) 32

Additionally, the method can return either a single value or a collection. When a collection is returned, the
reply message will be sent to multiple channels. To summarize, the following method signatures are all valid.

@Router
public MessageChannel route(Message message) {...}

@Router
public List<MessageChannel> route(Message message) {...}

@Router
public String route(Foo payload) {...}

@Router
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available within the
message header as either a property or attribute. Rather than requiring use of the Message type as the method
parameter, the @Router annotation may also use the @Header parameter annotation that is documented in
Section B.5, “Annotation Support”.

@Router
public List<String> route(@Header("orderStatus") OrderStatus status)

Note
For routing of XML-based Messages, including XPath support, see Chapter 31, Dealing with XML
Payloads.

Router

Spring-WS (2.0.0.M5) 33

Chapter 8. Filter

8.1. Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on some
criteria such as a Message Header value or even content within the Message itself. Therefore, a Message Filter
is similar to a router, except that for each Message received from the filter's input channel, that same Message
may or may not be sent to the filter's output channel. Unlike the router, it makes no decision regarding which
Message Channel to send to but only decides whether to send.

Note
As you will see momentarily, the Filter does also support a discard channel, so in certain cases it
can play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to some
implementation of the MessageSelector interface. That interface is itself quite simple:

public interface MessageSelector {

boolean accept(Message<?> message);

}

The MessageFilter constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(someSelector);

In combination with the namespace and SpEL very powerful filters can be configured with very little java code.

8.2. The <filter> Element

The <filter> element is used to create a Message-selecting endpoint. In addition to "input-channel" and
"output-channel" attributes, it requires a "ref". The "ref" may point to a MessageSelector implementation:

<filter input-channel="input" ref="selector" output-channel="output"/>

<bean id="selector" class="example.MessageSelectorImpl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages. The return
value of the method must be a boolean value. Any time the method returns 'true', the Message will be passed
along to the output-channel.

<filter input-channel="input" output-channel="output"
ref="exampleObject" method="someBooleanReturningMethod"/>

<bean id="exampleObject" class="example.SomeObject"/>

If the selector or adapted POJO method returns false, there are a few settings that control the fate of the
rejected Message. By default (if configured like the example above), the rejected Messages will be silently
dropped. If rejection should instead indicate an error condition, then set the 'throw-exception-on-rejection' flag
to true:

Spring-WS (2.0.0.M5) 34

<filter input-channel="input" ref="selector"
output-channel="output" throw-exception-on-rejection="true"/>

If you want the rejected messages to go to a specific channel, provide that reference as the 'discard-channel':

<filter input-channel="input" ref="selector"
output-channel="output" discard-channel="rejectedMessages"/>

Note
A common usage for Message Filters is in conjunction with a Publish Subscribe Channel. Many
filter endpoints may be subscribed to the same channel, and they decide whether or not to pass the
Message for the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router with
a single Point-to-Point input channel and multiple output channels.

Using a "ref" attribute is generally recommended if the custom filter implementation can be reused in other
<filter> definitions. However if the custom filter implementation should be scoped to a single <filter>

element, provide an inner bean definition:

<filter method="someMethod" input-channel="inChannel" output-channel="outChannel">
<beans:bean class="org.foo.MyCustomFilter"/>

</filter>

Note

Using both the "ref" attribute and an inner handler definition in the same <filter> configuration is
not allowed, as it creates an ambiguous condition, and it will therefore result in an Exception being
thrown.

With the introduction of SpEL Spring Integration has added the expression attribute to the filter element. It
can be used to avoid Java entirely for simple filters.

<filter input-channel="input" expression="payload.equals(nonsense)"/>

The string passed as the expression attribute will be evaluated as a SpEL expression in the context of the
message. If it is needed to include the result of an expression in the scope of the application context you can use
the #{} notation as defined in the SpEL reference documentation SpEL reference documentation .

<filter input-channel="input" expression="payload.matches(#{filterPatterns.nonsensePattern})"/>

Filter

Spring-WS (2.0.0.M5) 35

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

Chapter 9. Transformer

9.1. Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers and
Message Consumers. Rather than requiring every Message-producing component to know what type is
expected by the next consumer, Transformers can be added between those components. Generic transformers,
such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration aims to
provide the simplest possible model for extension. As with the other endpoint types, the use of declarative
configuration in XML and/or Annotations enables simple POJOs to be adapted for the role of Message
Transformers. These configuration options will be described below.

Note
For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see Chapter 31, Dealing with XML Payloads.

9.2. The <transformer> Element

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-channel"
and "output-channel" attributes, it requires a "ref". The "ref" may either point to an Object that contains the
@Transformer annotation on a single method (see below) or it may be combined with an explicit method name
value provided via the "method" attribute.

<transformer id="testTransformer" ref="testTransformerBean" input-channel="inChannel"
method="transform" output-channel="outChannel"/>

<beans:bean id="testTransformerBean" class="org.foo.TestTransformer" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation can be
reused in other <transformer> definitions. However if the custom transformer handler implementation should
be scoped to a single definition of the <transformer>, you can define an inner bean definition:

<transformer id="testTransformer" input-channel="inChannel" method="transform"
output-channel="outChannel">

<beans:bean class="org.foo.TestTransformer"/>
</transformer>

Note

Using both the "ref" attribute and an inner handler definition in the same <transformer>

configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

The method that is used for transformation may expect either the Message type or the payload type of inbound
Messages. It may also accept Message header values either individually or as a full map by using the @Header

Spring-WS (2.0.0.M5) 36

http://www.eaipatterns.com/CanonicalDataModel.html

and @Headers parameter annotations respectively. The return value of the method can be any type. If the return
value is itself a Message, that will be passed along to the transformer's output channel. If the return type is a
Map, and the original Message payload was not a Map, the entries in that Map will be added to the Message
headers of the original Message (the keys must be Strings). If the return value is null, then no reply Message
will be sent (effectively the same behavior as a Message Filter returning false). Otherwise, the return value will
be sent as the payload of an outbound reply Message.

There are a also a few Transformer implementations available out of the box. Because, it is fairly common to
use the toString() representation of an Object, Spring Integration provides an ObjectToStringTransformer

whose output is a Message with a String payload. That String is the result of invoking the toString operation on
the inbound Message's payload.

<object-to-string-transformer input-channel="in" output-channel="out"/>

A potential example for this would be sending some arbitrary object to the 'outbound-channel-adapter' in the
file namespace. Whereas that Channel Adapter only supports String, byte-array, or java.io.File payloads by
default, adding this transformer immediately before the adapter will handle the necessary conversion. Of
course, that works fine as long as the result of the toString() call is what you want to be written to the File.
Otherwise, you can just provide a custom POJO-based Transformer via the generic 'transformer' element shown
previously.

Tip
When debugging, this transformer is not typically necessary since the 'logging-channel-adapter' is
capable of logging the Message payload. Refer to Section 3.5.10, “Wire Tap” for more detail.

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers.

<payload-serializing-transformer input-channel="objectsIn" output-channel="bytesOut"/>

<payload-deserializing-transformer input-channel="bytesIn" output-channel="objectsOut"/>

If you only need to add headers to a Message, and they are not dynamically determined by Message content,
then referencing a custom implementation may be overkill. For that reason, Spring Integration provides the
'header-enricher' element.

<header-enricher input-channel="in" output-channel="out">
<header name="foo" value="123"/>
<header name="bar" ref="someBean"/>

</header-enricher>

9.3. The @Transformer Annotation

The @Transformer annotation can also be added to methods that expect either the Message type or the message
payload type. The return value will be handled in the exact same way as described above in the section
describing the <transformer> element.

@Transformer
Order generateOrder(String productId) {

return new Order(productId);
}

Transformer methods may also accept the @Header and @Headers annotations that is documented in
Section B.5, “Annotation Support”

Transformer

Spring-WS (2.0.0.M5) 37

@Transformer
Order generateOrder(String productId, @Header("customerName") String customer) {

return new Order(productId, customer);
}

Transformer

Spring-WS (2.0.0.M5) 38

Chapter 10. Splitter

10.1. Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that includes an
Aggregator.

10.2. Programming model

The API for performing splitting consists from one base class, AbstractMessageSplitter, which is a
MessageHandler implementation, encapsulating features which are common to splitters, such as filling in the
appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER on the
messages that are produced. This allows to track down the messages and the results of their processing (in a
typical scenario, these headers would be copied over to the messages that are produced by the various
transforming endpoints), and use them, for example, in a Composed Message Processor scenario.

An excerpt from AbstractMessageSplitter can be seen below:

public abstract class AbstractMessageSplitter
extends AbstractReplyProducingMessageConsumer {

...
protected abstract Object splitMessage(Message<?> message);

}

For implementing a specific Splitter in an application, a developer can extend AbstractMessageSplitter and
implement the splitMessage method, thus defining the actual logic for splitting the messages. The return value
can be one of the following:

• a Collection (or subclass thereof) or an array of Message objects - in this case the messages will be sent as
such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER are populated). Using
this approach gives more control to the developer, for example for populating custom message headers as
part of the splitting process.

• a Collection (or subclass thereof) or an array of non-Message objects - works like the prior case, except that
each collection element will be used as a Message payload. Using this approach allows developers to focus
on the domain objects without having to consider the Messaging system and produces code that is easier to
test.

• a Message or non-Message object (but not a Collection or an Array) - it works like the previous cases, except
that there is a single message to be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method that
accepts a single argument and has a return value. In this case, the return value of the method will be interpreted
as described above. The input argument might either be a Message or a simple POJO. In the latter case, the
splitter will receive the payload of the incoming message. Since this decouples the code from the Spring
Integration API and will typically be easier to test, it is the recommended approach.

Spring-WS (2.0.0.M5) 39

10.3. Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<channel id="inputChannel"/>

<splitter id="splitter" ❶
ref="splitterBean" ❷
method="split" ❸
input-channel="inputChannel" ❹
output-channel="outputChannel" ❺/>

<channel id="outputChannel"/>

<beans:bean id="splitterBean" class="sample.PojoSplitter"/>

❶ The id of the splitter is optional.
❷ A reference to a bean defined in the application context. The bean must implement the splitting logic as

described in the section above. Optional. If reference to a bean is not provided, then it is assumed that the
payload of the Message that arrived on the input-channel is an implementation of java.util.Collection
and the default splitting logic will be applied on such Collection, incorporating each individual element
into a Message and depositing it on the output-channel.

❸ The method (defined on the bean specified above) that implements the splitting logic. Optional.
❹ The input channel of the splitter. Required.
❺ The channel where the splitter will send the results of splitting the incoming message. Optional (because

incoming messages can specify a reply channel themselves).

Using a "ref" attribute is generally recommended if the custom splitter handler implementation can be reused in
other <splitter> definitions. However if the custom splitter handler implementation should be scoped to a
single definition of the <splitter>, you can configure an inner bean definition:

<splitter id="testSplitter" input-channel="inChannel" method="split"
output-channel="outChannel">

<beans:bean class="org.foo.TestSplitter"/>
</spliter>

Note

Using both a "ref" attribute and an inner handler definition in the same <splitter> configuration is
not allowed, as it creates an ambiguous condition and will result in an Exception being thrown.

10.4. Configuring a Splitter with Annotations

The @Splitter annotation is applicable to methods that expect either the Message type or the message payload
type, and the return values of the method should be a collection of any type. If the returned values are not actual
Message objects, then each of them will be sent as the payload of a message. Those messages will be sent to the
output channel as designated for the endpoint on which the @Splitter is defined.

@Splitter
List<LineItem> extractItems(Order order) {

return order.getItems()
}

Splitter

Spring-WS (2.0.0.M5) 40

Chapter 11. Aggregator

11.1. Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives multiple
Messages and combines them into a single Message. In fact, Aggregators are often downstream consumers in a
pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain state (the
Messages to be aggregated), to decide when the complete group of Messages is available. In order to do this it
requires a MessageStore

11.2. Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group is
deemed complete. At that point, the Aggregator will create a single message by processing the whole group,
and will send that aggregated message as output.

An main aspect of implementing an Aggregator is providing the logic that has to be executed when the
aggregation (creation of a single message out of many) takes place. The other two aspects are correlation and
release

In Spring Integration, the grouping of the messages for aggregation (correlation) is done by default based on
their CORRELATION_ID message header (i.e. the messages with the same CORRELATION_ID will be
grouped together). However, this can be customized, and the users can opt for other ways of specifying how the
messages should be grouped together, by using a CorrelationStrategy (see below).

To determine whether or not a group of messages may be processed, a ReleaseStrategy is consulted. The
default release strategy for aggregator will release groups that have all messages from the sequence, but this can
be entirely customized

11.3. Programming model

The Aggregation API consists of a number of classes:

• The interface MessageGroupProcessor and related base class
AbstractAggregatingMessageGroupProcessor and its subclass
MethodInvokingAggregatingMessageGroupProcessor

• The ReleaseStrategy interface and its default implementation SequenceSizeReleaseStrategy

• The CorrelationStrategy interface and its default implementation HeaderAttributeCorrelationStrategy

11.3.1. CorrelatingMessageHandler

The CorrelatingMessageHandler is a MessageHandler implementation, encapsulating the common
functionalities of an Aggregator (and other correlating use cases), which are:

Spring-WS (2.0.0.M5) 41

• correlating messages into a group to be aggregated

• maintaining those messages in a MessageStore until the group may be released

• deciding when the group is in fact may be released

• processing the released group into a single aggregated message

• recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
CorrelationStrategy instance. The responsibility of deciding whether the message group can be released is
delegated to a ReleaseStrategy instance.

Here is a brief highlight of the base AbstractAggregatingMessageGroupProcessor (the responsibility of
implementing the aggregateMessages method is left to the developer):

public abstract class AbstractAggregatingMessageGroupProcessor
implements MessageGroupProcessor {

protected Map<String, Object> aggregateHeaders(MessageGroup group) {
....
}

protected abstract Object aggregatePayloads(MessageGroup group);

}

The CorrelationStrategy is owned by the CorrelatingMessageHandler and it has a default value based on the
correlation ID message header:

private volatile CorrelationStrategy correlationStrategy =
new HeaderAttributeCorrelationStrategy(MessageHeaders.CORRELATION_ID);

When appropriate, the simplest option is the DefaultAggregatingMessageGroupProcessor. It creates a single
Message whose payload is a List of the payloads received for a given group. It uses the default
CorrelationStrategy and CompletionStrategy as shown above. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario, be sure
to enable the flag to apply-sequence. That will add the necessary headers (correlation id, sequence
number and sequence size). That behavior is enabled by default for Splitters in Spring Integration,
but it is not enabled for the Publish Subscribe Channel or Recipient List Router because those
components may be used in a variety of contexts where those headers are not necessary.

When implementing a specific aggregator object for an application, a developer can extend
AbstractAggregatingMessageGroupProcessor and implement the aggregatePayloads method. However,
there are better suited (which reads, less coupled to the API) solutions for implementing the aggregation logic,
which can be configured easily either through XML or through annotations.

In general, any ordinary Java class (i.e. POJO) can implement the aggregation algorithm. For doing so, it must
provide a method that accepts as an argument a single java.util.List (parametrized lists are supported as well).
This method will be invoked for aggregating messages, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the

Aggregator

Spring-WS (2.0.0.M5) 42

whole list of messages accumulated for aggregation will be sent to the aggregator

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message, then
the method will receive the payloads of the accumulated messages

• if the return type is not assignable to Message, then it will be treated as the payload for a Message that will
be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for setting it up in the application.

11.3.2. ReleaseStrategy

The ReleaseStrategy interface is defined as follows:

public interface ReleaseStrategy {

boolean canRelease(MessageGroup messages);

}

In general, any ordinary Java class (i.e. POJO) can implement the completion decision mechanism. For doing
so, it must provide a method that accepts as an argument a single java.util.List (parametrized lists are supported
as well), and returns a boolean value. This method will be invoked after the arrival of a new message, to decide
whether the group is complete or not, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the
whole list of messages accumulated in the group will be sent to the method

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message, then
the method will receive the payloads of the accumulated messages

• the method must return true if the message group is ready for aggregation, and false otherwise.

When the group is released for aggregation, all its unmarked messages are processed and then marked so they
will not be processed again. If the group is also complete (i.e. if all messages from a sequence have arrived or if
there is no sequence defined) then the group is removed from the message store. Partial sequences can be
released, in which case the next time the ReleaseStrategy is called it will be presented with a group containing
marked messages (already processed) and unmarked messages (a potential new partial sequence)

Spring Integration provides an out-of-the box implementation for ReleaseStrategy, the
SequenceSizerReleaseStrategy. This implementation uses the SEQUENCE_NUMBER and
SEQUENCE_SIZE of the arriving messages for deciding when a message group is complete and ready to be
aggregated. As shown above, it is also the default strategy.

11.3.3. CorrelationStrategy

The CorrelationStrategy interface is defined as follows:

public interface CorrelationStrategy {

Aggregator

Spring-WS (2.0.0.M5) 43

Object getCorrelationKey(Message<?> message);

}

The method shall return an Object which represents the correlation key used for grouping messages together.
The key must satisfy the criteria used for a key in a Map with respect to the implementation of equals() and
hashCode().

In general, any ordinary Java class (i.e. POJO) can implement the correlation decision mechanism, and the rules
for mapping a message to a method's argument (or arguments) are the same as for a ServiceActivator

(including support for @Header annotations). The method must return a value, and the value must not be null.

Spring Integration provides an out-of-the box implementation for CorrelationStrategy, the
HeaderAttributeCorrelationStrategy. This implementation returns the value of one of the message headers
(whose name is specified by a constructor argument) as the correlation key. By default, the correlation strategy
is a HeaderAttributeCorrelationStrategy returning the value of the CORRELATION_ID header attribute.

11.4. Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/> element.
Below you can see an example of an aggregator with all optional parameters defined.

<channel id="inputChannel"/>

<aggregator id="completelyDefinedAggregator" ❶
input-channel="inputChannel" ❷
output-channel="outputChannel" ❸
discard-channel="discardChannel" ❹
ref="aggregatorBean" ❺
method="add" ❻
release-strategy="releaseStrategyBean" ❼
release-strategy-method="canRelease" ❽
correlation-strategy="correlationStrategyBean" ❾
correlation-strategy-method="groupNumbersByLastDigit" ❿
message-store="messageStore" 11

send-partial-result-on-expiry="true" 12

send-timeout="86420000" 13 />

<channel id="outputChannel"/>

<bean id="aggregatorBean" class="sample.PojoAggregator"/>

<bean id="releaseStrategyBean" class="sample.PojoReleaseStrategy"/>

<bean id="correlationStrategyBean" class="sample.PojoCorrelationStrategy"/>

❶ The id of the aggregator is optional.
❷ The input channel of the aggregator. Required.
❸ The channel where the aggregator will send the aggregation results. Optional (because incoming

messages can specify a reply channel themselves).
❹ The channel where the aggregator will send the messages that timed out (if

send-partial-results-on-timeout is false). Optional.
❺ A reference to a bean defined in the application context. The bean must implement the aggregation logic

as described above. Required.
❻ A method defined on the bean referenced by ref, that implements the message aggregation algorithm.

Optional, with restrictions (see above).
❼ A reference to a bean that implements the decision algorithm as to whether a given message group is

complete. The bean can be an implementation of the CompletionStrategy interface or a POJO. In the latter

Aggregator

Spring-WS (2.0.0.M5) 44

case the completion-strategy-method attribute must be defined as well. Optional (by default, the
aggregator will use sequence size) .

❽ A method defined on the bean referenced by release-strategy, that implements the completion decision
algorithm. Optional, with restrictions (requires completion-strategy to be present).

❾ A reference to a bean that implements the correlation strategy. The bean can be an implementation of the
CorrelationStrategy interface or a POJO. In the latter case the correlation-strategy-method attribute must
be defined as well. Optional (by default, the aggregator will use the correlation id header attribute) .

❿ A method defined on the bean referenced by correlation-strategy, that implements the correlation key
algorithm. Optional, with restrictions (requires correlation-strategy to be present).

11 A reference to a MessageGroupStore that can be used to store groups of messages under their correlation
key until they are complete. Optional with default a volatile in-memory store.

12 Whether upon the expiration of the message group, the aggregator will try to aggregate the messages that
have already arrived. Optional (false by default).

13 The timeout for sending the aggregated messages to the output or reply channel. Optional.

Using a "ref" attribute is generally recommended if a custom aggregator handler implementation can be reused
in other <aggregator> definitions. However if a custom aggregator handler implementation should be scoped
to a concrete definition of the <aggregator>, you can use an inner bean definition (starting with version 1.0.3)
for custom aggregator handlers within the <aggregator> element:

<aggregator input-channel="input" method="sum" output-channel="output">
<beans:bean class="org.foo.ExampleAggregator"/>

</aggregator>

Note

Using both a "ref" attribute and an inner bean definition in the same <aggregator> configuration is
not allowed, as it creates an ambiguous condition. In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public class PojoAggregator {

public Long add(List<Long> results) {
long total = 0l;
for (long partialResult: results) {
total += partialResult;

}
return total;

}

}

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoReleaseStrategy {
...
public boolean canRelease(List<Long> numbers) {
int sum = 0;
for (long number: numbers) {
sum += number;

}
return sum >= maxValue;

}
}

Note

Aggregator

Spring-WS (2.0.0.M5) 45

Wherever it makes sense, the release strategy method and the aggregator method can be combined
in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrelationStrategy {
...
public Long groupNumbersByLastDigit(Long number) {
return number % 10;

}
}

For example, this aggregator would group numbers by some criterion (in our case the remainder after dividing
by 10) and will hold the group until the sum of the numbers which represents the payload exceeds a certain
value.

Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in a single bean (all of them or any two).

11.5. Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions to be
made based on a group of messages that have arrived over a period of time, all with the same correlation key.
The design of the interfaces in the stateful patterns (e.g. ReleaseStrategy) is driven by the principle that the
components (framework and user) should be to remain stateless. All state is carried by the MessageGroup and
its management is delegated to the MessageGroupStore.

The MessageGroupStore accumulates state information in MessageGroups, potentially forever. So to prevent
stale state from hanging around, and for volatile stores to provide a hook for cleaning up when the application
shots down, the MessageGroupStore allows the user to register callbacks to apply to MessageGroups when they
expire. The interface is very straighforward:

public interface MessageGroupCallback {

void execute(MessageGroupStore messageGroupStore, MessageGroup group);

}

The callback has access directly to the store and the message group so it can manage the persistent state (e.g. by
removing the group from the store entirely).

The MessageGroupStore maintains a list of these callbacks which it applies when asked to all messages whose
timestamp is earlier than a time supplied as a parameter:

public interface MessageGroupStore {
void registerMessageGroupExpiryCallback(MessageGroupCallback callback);
int expireMessageGroups(long timeout);

}

The expireMessageGroups method can be called with a timeout value: any message older than the current time

Aggregator

Spring-WS (2.0.0.M5) 46

minus this value wiull be expired, and have the callbacks applied. Thus it is the user of the store that defines
what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form of a
MessageGroupStoreReaper:

<bean id="reaper" class="org...MessageGroupStoreReaper">
<property name="messageGroupStore" ref="messageStore"/>
<property name="timeout" value="10"/>

</bean>

<task:scheduled-tasks scheduler="scheduler">
<task:scheduled ref="reaper" method="run" fixed-rate="10000"/>

</task:scheduled-tasks>

The reaper is a Runnable, and all that is happening is that the message group store's expire method is being
called in the sample above once every 10 seconds. In addition to the reaper, the expiry callbacks are invoked
when the application shuts down via a lifecycle callback in the CorrelatingMessageHandler.

The CorrelatingMessageHandler registers its own expiry callback, and this is the link with the boolean flag
send-partial-result-on-expiry in the XML configuration of the aggregator. If the flag is set to true, then
when the expiry callback is invoked then any unmarked messages in groups that are not yet released can be sent
on to the downstream channel.

11.6. Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.

public class Waiter {
...

@Aggregator ❶
public Delivery aggregatingMethod(List<OrderItem> items) {
...

}

@ReleaseStrategy ❷
public boolean releaseChecker(List<Message<?>> messages) {
...

}

@CorrelationStrategy ❸
public String correlateBy(OrderItem item) {
...

}

}

❶ An annotation indicating that this method shall be used as an aggregator. Must be specified if this class
will be used as an aggregator.

❷ An annotation indicating that this method shall be used as the release strategy of an aggregator. If not
present on any method, the aggregator will use the SequenceSizeCompletionStrategy.

❸ An annotation indicating that this method shall be used as the correlation strategy of an aggregator. If no
correlation strategy is indicated, the aggregator will use the HeaderAttributeCorrelationStrategy based on
CORRELATION_ID.

All of the configuration options provided by the xml element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined on the

Aggregator

Spring-WS (2.0.0.M5) 47

class, detected automatically through classpath scanning.

Aggregator

Spring-WS (2.0.0.M5) 48

Chapter 12. Resequencer

12.1. Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

12.2. Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the CORRELATION_ID to
store messages in groups, the difference being that the Resequencer does not process the messages in any way.
It simply releases them in the order of their SEQUENCE_NUMBER header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence, according to
the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.

12.3. Configuring a Resequencer with XML

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="inputChannel"/>

<channel id="outputChannel"/>

<resequencer id="completelyDefinedResequencer" ❶
input-channel="inputChannel" ❷
output-channel="outputChannel" ❸
discard-channel="discardChannel" ❹
release-partial-sequences="true" ❺
message-store="messageStore" ❻
send-partial-result-on-expiry="true" ❼
send-timeout="86420000" ❽ />

❶ The id of the resequencer is optional.
❷ The input channel of the resequencer. Required.
❸ The channel where the resequencer will send the reordered messages. Optional.
❹ The channel where the resequencer will send the messages that timed out (if

send-partial-result-on-timeout is false). Optional.
❺ Whether to send out ordered sequences as soon as they are available, or only after the whole message

group arrives. Optional (false by default).
If this flag is not specified (so a complete sequence is defined by the sequence headers) then it can make
sense to provide a custom Comparator to be used to order the messages when sending (use the XML
attribute comparator to point to a bean definition). If release-partial-sequences is true then there is no
way with a custom comparator to define a partial sequence. To do that you would have to provide a
release-strategy (also a reference to another bean definition, either a POJO or a ReleaseStrategy).

❻ A reference to a MessageGroupStore that can be used to store groups of messages under their correlation
key until they are complete. Optional with default a volatile in-memory store.

❼ Whether, upon the expiration of the group, the ordered group should be sent out (even if some of the
messages are missing). Optional (false by default). See Section 11.5, “Managing State in an Aggregator:
MessageGroupStore”.

Spring-WS (2.0.0.M5) 49

❽ The timeout for sending out messages. Optional.

Note
Since there is no custom behavior to be implemented in Java classes for resequencers, there is no
annotation support for it.

Resequencer

Spring-WS (2.0.0.M5) 50

Chapter 13. Delayer

13.1. Introduction

A Delayer is a simple endpoint that allows a Message flow to be delayed by a certain interval. When a Message
is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled with an instance
of java.util.concurrent.ScheduledExecutorService to be sent to the output channel after the delay has
passed. This approach is scalable even for rather long delays, since it does not result in a large number of
blocked sender Threads. On the contrary, in the typical case a thread pool will be used for the actual execution
of releasing the Messages. Below you will find several examples of configuring a Delayer.

13.2. The <delayer> Element

The <delayer> element is used to delay the Message flow between two Message Channels. As with the other
endpoints, you can provide the "input-channel" and "output-channel" attributes, but the delayer also requires at
least the 'default-delay' attribute with the number of milliseconds that each Message should be delayed.

<delayer input-channel="input" default-delay="3000" output-channel="output"/>

If you need per-Message determination of the delay, then you can also provide the name of a header within the
'delay-header-name' attribute:

<delayer input-channel="input" output-channel="output"
default-delay="3000" delay-header-name="delay"/>

In the example above the 3 second delay would only apply in the case that the header value is not present for a
given inbound Message. If you only want to apply a delay to Messages that have an explicit header value, then
you can set the 'default-delay' to 0. For any Message that has a delay of 0 (or less), the Message will be sent
directly. In fact, if there is not a positive delay value for a Message, it will be sent to the output channel on the
calling Thread.

Tip
The delay handler actually supports header values that represent an interval in milliseconds (any
Object whose toString() method produces a value that can be parsed into a Long) as well as
java.util.Date instances representing an absolute time. In the former case, the milliseconds will
be counted from the current time (e.g. a value of 5000 would delay the Message for at least 5
seconds from the time it is received by the Delayer). In the latter case, with an actual Date instance,
the Message will not be released until that Date occurs. In either case, a value that equates to a
non-positive delay, or a Date in the past, will not result in any delay. Instead, it will be sent directly
to the output channel in the original sender's Thread.

The delayer delegates to an instance of Spring's TaskScheduler abstraction. The default scheduler is a
ThreadPoolTaskScheduler instance with a pool size of 1. If you want to delegate to a different scheduler, you
can provide a reference through the delayer element's 'scheduler' attribute:

<delayer input-channel="input" output-channel="output"
default-delay="0" delay-header-name="delay"
scheduler="exampleTaskScheduler"/>

<task:scheduler id="exampleTaskScheduler" pool-size="3"/>

Spring-WS (2.0.0.M5) 51

Chapter 14. Message Handler Chain

14.1. Introduction

The MessageHandlerChain is an implementation of MessageHandler that can be configured as a single
Message Endpoint while actually delegating to a chain of other handlers, such as Filters, Transformers,
Splitters, and so on. This can lead to a much simpler configuration when several handlers need to be connected
in a fixed, linear progression. For example, it is fairly common to provide a Transformer before other
components. Similarly, when providing a Filter before some other component in a chain, you are essentially
creating a Selective Consumer. In either case, the chain only requires a single input-channel and a single
output-channel as opposed to the configuration of channels for each individual component.

Tip
Spring Integration's Filter provides a boolean property 'throwExceptionOnRejection'. When
providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true' (the default is false) so that the dispatcher will
know that the Message was rejected and as a result will attempt to pass the Message on to other
subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if the
Message had been passed on successfully even though the Filter had dropped the Message to
prevent further processing.

The handler chain simplifies configuration while internally maintaining the same degree of loose coupling
between components, and it is trivial to modify the configuration if at some point a non-linear arrangement is
required.

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by direct channels.
The reply channel header will not be taken into account within the chain: only after the last handler is invoked
will the resulting message be forwarded on to the reply channel or the chain's output channel. Because of this
setup all handlers except the last require a setOutputChannel implementation. The last handler only needs an
output channel if the outputChannel on the MessageHandlerChain is set.

Note

As with other endpoints, the output-channel is optional. If there is a reply Message at the end of the
chain, the output-channel takes precedence, but if not available, the chain handler will check for a
reply channel header on the inbound Message.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators and
Transformers, are suitable for use within a MessageHandlerChain.

14.2. The <chain> Element

The <chain> element provides an 'input-channel' attribute, and if the last element in the chain is capable of
producing reply messages (optional), it also supports an 'output-channel' attribute. The sub-elements are then
filters, transformers, splitters, and service-activators. The last element may also be a router.

<chain input-channel="input" output-channel="output">
<filter ref="someSelector" throw-exception-on-rejection="true"/>

Spring-WS (2.0.0.M5) 52

http://www.eaipatterns.com/MessageSelector.html

<header-enricher error-channel="customErrorChannel">
<header name="foo" value="bar"/>

</header-enricher>
<service-activator ref="someService" method="someMethod"/>

</chain>

The <header-enricher> element used in the above example will set a message header with name "foo" and
value "bar" on the message. A header enricher is a specialization of Transformer that touches only header
values. You could obtain the same result by implementing a MessageHandler that did the header modifications
and wiring that as a bean.

Some time you need to make a nested call to another chain from within the chain and then come back and
continue execution within the original chain. To accomplish this you can utilize Messaging Gateway by
including light-configuration via <gateway> element. For example:

<si:chain id="main-chain" input-channel="inputA" output-channel="inputB">
<si:header-enricher>

<si:header name="name" value="Many" />
</si:header-enricher>
<si:service-activator>

<bean class="org.foo.SampleService" />
</si:service-activator>
<si:gateway request-channel="inputC"/>

</si:chain>
<si:chain id="nested-chain-a" input-channel="inputC">

<si:header-enricher>
<si:header name="name" value="Moe" />

</si:header-enricher>
<si:gateway request-channel="inputD"/>
<si:service-activator>

<bean class="org.foo.SampleService" />
</si:service-activator>

</si:chain>
<si:chain id="nested-chain-b" input-channel="inputD">

<si:header-enricher>
<si:header name="name" value="Jack" />

</si:header-enricher>
<si:service-activator>

<bean class="org.foo.SampleService" />
</si:service-activator>

</si:chain>

In the above example the nested-chain-a will be called at the end of main-chain processing by the 'gateway'
element configured there. While in nested-chain-a a call to a nested-chain-b will be made after header
enrichment and then it will come back to finish execution in nested-chain-b finally getting back to the
main-chain. When light version of <gateway> element is defined in the chain SI will construct an instance
SimpleMessagingGateway (no need to provide 'service-interface' configuration) which will take the message in
its current state and will place it on the channel defined via 'request-channel' attribute. Upon processing
Message will be returned to the gateway and continue its journey within the current chain.

Message Handler Chain

Spring-WS (2.0.0.M5) 53

Chapter 15. Messaging Bridge

15.1. Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels or Channel
Adapters. For example, you may want to connect a PollableChannel to a SubscribableChannel so that the
subscribing endpoints do not have to worry about any polling configuration. Instead, the Messaging Bridge
provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle inbound
Messages. The poller's trigger will determine the rate at which messages arrive on the second channel, and the
poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a poller if
necessary. It is probably more common to have at least a Transformer between the two systems to translate
between their formats, and in that case, the channels would be provided as the 'input-channel' and
'output-channel' of a Transformer endpoint. If data format translation is not required, the Messaging Bridge
may indeed be sufficient.

15.2. The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<bridge input-channel="input" output-channel="output"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a PollableChannel to a
SubscribableChannel, and when performing this role, the Messaging Bridge may also serve as a throttler:

<bridge input-channel="pollable" output-channel="subscribable">
<poller max-messages-per-poll="10">

<interval-trigger interval="5" time-unit="SECONDS"/>
</poller>

</bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and "stdout"
adapters from Spring Integration's "stream" namespace.

<stream:stdin-channel-adapter id="stdin"/>

<stream:stdout-channel-adapter id="stdout"/>

<bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges, such
as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming chapters.

Note

If no 'output-channel' is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be
thrown.

Spring-WS (2.0.0.M5) 54

Chapter 16. Inbound Messaging Gateways

16.1. SimpleMessagingGateway

Even though the MessageChannelTemplate is fairly straightforward, it does not hide the details of messaging
from your application code. To support working with plain Objects instead of messages, Spring Integration
provides SimpleMessagingGateway with the following methods:

public void send(Object object) { ... }

public Object receive() { ... }

public Object sendAndReceive(Object object) { ... }

Message<?> sendAndReceiveMessage(Object object);

It enables configuration of a request and/or reply channel and delegates to instances of the
InboundMessageMapper and OutboundMessageMapper strategy interfaces.

SimpleMessagingGateway gateway = new SimpleMessagingGateway(inboundMapper, outboundMapper);
gateway.setRequestChannel(requestChannel);
gateway.setReplyChannel(replyChannel);
Object result = gateway.sendAndReceive("test");

16.2. GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better to have no
dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring
Integration also provides a GatewayProxyFactoryBean that generates a proxy for any interface and internally
invokes the gateway methods shown above. Namespace support is also provided as demonstrated by the
following example.

<gateway id="fooService"
service-interface="org.example.FooService"
default-request-channel="requestChannel"
default-reply-channel="replyChannel"/>

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that proxied
instance of the FooService interface has no awareness of the Spring Integration API. The general approach is
similar to that of Spring Remoting (RMI, HttpInvoker, etc.). See the "Samples" Appendix for an example that
uses this "gateway" element (in the Cafe demo).

The reason that the attributes on the 'gateway' element are named 'default-request-channel' and
'default-reply-channel' is that you may also provide per-method channel references by using the @Gateway
annotation.

public interface Cafe {

@Gateway(requestChannel="orders")
void placeOrder(Order order);

}

It is also possible to pass values to be interpreted as Message headers on the Message that is created and sent to
the request channel by using the @Header annotation:

Spring-WS (2.0.0.M5) 55

public interface FileWriter {

@Gateway(requestChannel="filesOut")
void write(byte[] content, @Header(FileHeaders.FILENAME) String filename);

}

If you prefer XML way of configuring Gateway methods, you can provide method sub-elements to the gateway
configuration (see below)

<si:gateway id="myGateway" service-interface="org.foo.bar.TestGateway"
default-request-channel="inputC">

<si:method name="echo" request-channel="inputA" reply-timeout="2" request-timeout="200"/>
<si:method name="echoUpperCase" request-channel="inputB"/>
<si:method name="echoViaDefault"/>

</si:gateway>

You can also provide individual headers per method invocation via XML. This could be very useful if headers
you want to set are static in nature and you don't want to embed them in the gateway's method signature via
@Header annotation. For example; in the Loan Broker example we want to influence how aggregation of the
Loan quotes will be done based on what type of request was initiated (single quote or all quotes). Determining
the type of the request by evaluating what gateway's method was invoked, although possible would violate the
separation of concerns paradigm (method is a java artifact), but expressing your intention (meta information)
via Message headers is natural to Messaging architecture.

<int:gateway id="loanBrokerGateway"
service-interface="org.springframework.integration.loanbroker.LoanBrokerGateway">

<int:method name="getLoanQuote" request-channel="loanBrokerPreProcessingChannel">
<int:header name="RESPONSE_TYPE" value="BEST"/>

</int:method>
<int:method name="getAllLoanQuotes" request-channel="loanBrokerPreProcessingChannel">

<int:header name="RESPONSE_TYPE" value="ALL"/>
</int:method>

</int:gateway>

In the above case you can clearly see how a different header value will be set for the 'RESPONSE_TYPE'
header based on the gateway's method.

As with anything else, Gateway invocation might result in error. By default all error that have occurred
downstream will be re-thrown as MessagingExeption (RuntimeException) upon Gateway's method invocation.
However there are times when you may want to treat Exception as a valid reply, by mapping it to a Message.
To accomplish this Gateway provides support for Exception mappers via exception-mapper attribute.

<si:gateway id="sampleGateway"
default-request-channel="gatewayChannel"
service-interface="foo.bar.SimpleGateway"
exception-mapper="exceptionMapper"/>

<bean id="exceptionMapper" class="foo.bar.SampleExceptionMapper"/>

foo.bar.SampleExceptionMapper is the implementation of
org.springframework.integration.message.InboundMessageMapper which only defines one method
toMessage(Object object).

public static class SampleExceptionMapper implements InboundMessageMapper<Throwable>{
public Message<?> toMessage(Throwable object) throws Exception {

MessageHandlingException ex = (MessageHandlingException) object;
return MessageBuilder.withPayload("Error happened in message: " +

ex.getFailedMessage().getPayload()).build();
}

}

Inbound Messaging Gateways

Spring-WS (2.0.0.M5) 56

Inbound Messaging Gateways

Spring-WS (2.0.0.M5) 57

Chapter 17. Message Publishing
The AOP Message Publishing feature allows you to construct and send a message as a by-product of method
invocation. For example, imagine you have a component and every time the state of this component changes
you would like to be notified via a Message. The easiest way to send such notifications would be to send a
message to a dedicated channel, but how would you connect the method invocation that changes the state of the
object to a message sending process, and how should the notification Message be structured? The AOP
Message Publishing feature handles these responsibilities with a configuration-driven approach.

17.1. Message Publishing Configuration

Spring Integration provides two approaches: XML and Annotation-driven.

17.1.1. Annotation-driven approach via @Publisher annotation

The annotation-driven approach allows you to annotate any method with the @Publisher annotation and
provide configuration attributes which will dictate the structure of a Message. The invocation of the annotated
method will be proxied through PublisherAnnotationAdvisor which will construct a Message and send it to a
Message Channel.

Internally PublisherAnnotationAdvisor uses the Spring 3.0 Expression Language support, giving you
considerable flexibility and control over the structure of the Message it will build. Here's an example:

@Publisher(payload="#return", channel="testChannel", headers="bar='123',fname=#args.fname")
public String setName(String fname, String lname){

return fname + " " + lname;
}

PublisherAnnotationAdvisor defines and binds the following variables:

• #return - will bind to a return value allowing you to reference it or its attributes (e.g., #return.foo where 'foo'
is an attribute of the object bound to #return)

• #exception - will bind to an exception if one is thrown by the method invocation.

• #args - will bind to method arguments, so individual arguments could be extracted by name (e.g.,
#args.fname as in the above method)

In the above example the Message will be constructed with the following structure:

• Message payload - will be of type String and contain the value returned by the method.

• Message headers will contain 'bar' with a value of "123" and 'fname' with the value of the 'fname' argument
passed to the method at runtime.

As with most other annotation-driven features in Spring, you will need to register a post-processor
(PublisherAnnotationBeanPostProcessor).

<bean class="org.springframework.integration.aop.PublisherAnnotationBeanPostProcessor"/>

Spring-WS (2.0.0.M5) 58

17.1.2. XML-based approach via <publisher> element

The XML-based approach allows you to configure the same AOP-based Message Publishing functionality with
simple namespace-based configuration of a MessagePublishingInterceptor. It certainly has some benefits
over the annotation-driven approach since it allows you to use AOP pointcut expressions, thus possibly
intercepting multiple methods at once or intercepting and publishing methods to which you don't have the
source code.

To configure Message Publishing via XML, you only need to do the following two things:

• Provide configuration for MessagePublishingInterceptor via the <publisher> XML element.

• Provide AOP configuration to apply the MessagePublishingInterceptor to managed objects.

<beans:bean id="testBean" class="org.foo.bar.TestBean" />
<aop:config>

<aop:advisor advice-ref="interceptor" pointcut="bean(testBean)" />
</aop:config>

<publisher id="interceptor" default-channel="defaultChannel">
<method pattern="echo" payload="'Echoing: ' + #return" headers="foo='bar'" channel="echoChannel"/>
<method pattern="echoDef*" payload="#return"/>
<method pattern="foo*"/>

</publisher>

As you can see the <publisher> element expects the same variables as the PublisherAnnotationAdvisor and
also utilizes the power of the Spring 3.0 Expression Language.

In the above example the execution of the echo method of a testBean will render a Message with the following
structure:

• The Message payload will be of type String and value of "Echoing: [value]" where value is the value
returned by an executed method.

• The Message headers will contain the key "foo" with a value of "bar".

• The Message will be sent to echoChannel.

The second method, mapping the execution of any method that begins with echoDef of testBean, will produce
a Message with the following structure.

• The Message payload will be the value returned by an executed method.

• Since the channel attribute is not provided explicitly, the Message will be sent to the defaultChannel

defined by the publisher.

The third mapping is almost identical to the previous one (with the exception of method pattern), since the
return value will be mapped to the Message payload by default if nothing else is specified.

For simple mapping rules you can rely on the publisher defaults. For example:

<publisher id="anotherInterceptor"/>

Message Publishing

Spring-WS (2.0.0.M5) 59

This will map the return value of every method that matches the pointcut expression to a payload and will be
sent to a default-channel. If the defaultChannelis not specified (as above) the messages will be sent to the
global nullChannel.

Message Publishing

Spring-WS (2.0.0.M5) 60

Chapter 18. File Support

18.1. Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary to deal with
reading, writing, and transforming files. It provides a namespace that enables elements defining Channel
Adapters dedicated to files and support for Transformers that can read file contents into strings or byte arrays.

This section will explain the workings of FileReadingMessageSource and FileWritingMessageHandler and
how to configure them as beans. Also the support for dealing with files through file specific implementations of
Transformer will be discussed. Finally the file specific namespace will be explained.

18.2. Reading Files

A FileReadingMessageSource can be used to consume files from the filesystem. This is an implementation of
MessageSource that creates messages from a file system directory.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"

p:inputDirectory="file:${input.directory}"/>

To prevent creating messages for certain files, you may supply a FileListFilter. By default, an
AcceptOnceFileListFilter is used. This filter ensures files are picked up only once from the directory.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"

p:inputDirectory="file:${input.directory}"
p:filter-ref="customFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
AcceptOnceFileListFilter does not prevent this. In most cases, this can be prevented if the file-writing
process renames each file as soon as it is ready for reading. A pattern-matching filter that accepts only files that
are ready (e.g. based on a known suffix), composed with the default AcceptOnceFileListFilter allows for
this. The CompositeFileListFilter enables the composition.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"

p:inputDirectory="file:${input.directory}"
p:filter-ref="compositeFilter"/>

<bean id="compositeFilter" class="org.springframework.integration.file.CompositeFileListFilter">
<constructor-arg>

<list>
<bean class="org.springframework.integration.file.AcceptOnceFileListFilter" />
<bean class="org.springframework.integration.file.PatternMatchingFileListFilter">

<constructor-arg value="^test.*$"/>
</bean>

</list>
</constructor-arg>

</bean>

The configuration can be simplified using the file specific namespace. To do this use the following template.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:file="http://www.springframework.org/schema/integration/file"

Spring-WS (2.0.0.M5) 61

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-integration-file-1.0.xsd">

</beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound Channel
Adapter like this:

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}" prevent-duplicates="true"/>

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}"
filter="customFilterBean" />

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}"
filename-pattern="^test.*$" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is using a
custom filter, and the third is using the filename-pattern attribute to add a Pattern based filter to the
FileReadingMessageSource. The file-name-pattern and filter attributes are mutually exclusive, but you can use
a CompositeFileListFilter to use any combination of filters, including a pattern based filter to fit your
particular needs.

When multiple processes are reading from the same directory it can be desirable to lock files to prevent them
from being picked up concurrently. To do this you can use a FileLocker. There is a java.nio based
implementation available out of the box, but it is also possible to implement your own locking scheme. The nio
locker can be injected as follows

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}" prevent-duplicates="true">

<file:nio-locker/>
</file:inbound-channel-adapter>

A custom locker you can configure like this:

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}" prevent-duplicates="true">

<file:locker ref="customLocker"/>
</file:inbound-channel-adapter>

When filtering and locking files is not enough it might be needed to control the way files are listed entirely. To
implement this type of requirement you can use an implementation of DirectoryScanner. This scanner allows
you to determine entirely what files are listed each poll. This is also the interface that Spring Integration uses
internally to wire FileListFilters FileLocker to the FileReadingMessageSource. A custom DirectoryScanner can
be injected into the <file:inbound-channel-adapter/> on the scanner attribute.

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory}" prevent-duplicates="true" scanner="customDirectoryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

18.3. Writing files

File Support

Spring-WS (2.0.0.M5) 62

To write messages to the file system you can use a FileWritingMessageHandler. This class can deal with File,
String, or byte array payloads. In its simplest form the FileWritingMessageHandler only requires a
destination directory for writing the files. The name of the file to be written is determined by the handler's
FileNameGenerator. The default implementation looks for a Message header whose key matches the constant
defined as FileHeaders.FILENAME.

Additionally, you can configure the encoding and the charset that will be used in case of a String payload.

To make things easier you can configure the FileWritingMessageHandler as part of an outbound channel
adapter using the namespace.

<file:outbound-channel-adapter id="filesOut" directory="file:${input.directory.property}"/>

The namespace based configuration also supports a delete-source-files attribute. If set to true, it will
trigger deletion of the original source files after writing to a destination. The default value for that flag is false.

<file:outbound-channel-adapter id="filesOut"
directory="file:${output.directory}"
delete-source-files="true"/>

Note

The delete-source-files attribute will only have an effect if the inbound Message has a File
payload or if the FileHeaders.ORIGINAL_FILE header value contains either the source File
instance or a String representing the original file path.

In cases where you want to continue processing messages based on the written File you can use the
outbound-gateway instead. It plays a very similar role as the outbound-channel-adapter. However after
writing the File, it will also send it to the reply channel as the payload of a Message.

<file:outbound-gateway id="mover" request-channel="moveInput"
reply-channel="output"
directory="${output.directory}"
delete-source-files="true"/>

Note
The 'outbound-gateway' works well in cases where you want to first move a File and then send it
through a processing pipeline. In such cases, you may connect the file namespace's
'inbound-channel-adapter' element to the 'outbound-gateway' and then connect that gateway's
reply-channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be converted to
file content you could extend the FileWritingMessageHandler, but a much better option is to rely on a
Transformer.

18.4. File Transformers

To transform data read from the file system to objects and the other way around you need to do some work.
Contrary to FileReadingMessageSource and to a lesser extent FileWritingMessageHandler, it is very likely
that you will need your own mechanism to get the job done. For this you can implement the Transformer

interface. Or extend the AbstractFilePayloadTransformer for inbound messages. Some obvious

File Support

Spring-WS (2.0.0.M5) 63

implementations have been provided.

FileToByteArrayTransformer transforms Files into byte[]s using Spring's FileCopyUtils. It is often better to
use a sequence of transformers than to put all transformations in a single class. In that case the File to byte[]
conversion might be a logical first step.

FileToStringTransformer will convert Files to Strings as the name suggests. If nothing else, this can be useful
for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<file-to-bytes-transformer input-channel="input" output-channel="output"
delete-files="true"/>

<file:file-to-string-transformer input-channel="input" output-channel="output
delete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File after the transformation
is complete. This is in no way a replacement for using the AcceptOnceFileListFilter when the
FileReadingMessageSource is being used in a multi-threaded environment (e.g. Spring Integration in general).

File Support

Spring-WS (2.0.0.M5) 64

Chapter 19. JDBC Support
Spring Integration provides Channel Adapters for receiving and sending messages via database queries.

19.1. Inbound Channel Adapter

The main function of an inbound Channel Adapter is to execute a SQL SELECT query and turn the result set into
a message. The message payload is the whole result set, expressed as a List, and the types of the items in the
list depends on the row-mapping strategy that is used. The default strategy is a generic mapper that just returns
a Map for each row i nthe query. Optionally this can be changed by adding a reference to requires a reference to
a RowMapper instance (see the Spring JDBC documentation for more detailed information about row mapping).

Note

If you want to convert rows in the SELECT query result to individual messages you can use a
downstream splitter.

The inbound adapter also requires a reference to either JdbcTemplate instance or DataSource. The following
example defines an inbound Channel Adapter with a DataSource reference.

<jdbc:inbound-channel-adapter query="select * from item where status=2"
channel="target" data-source="dataSource"
update="update item set status=10 where id in (:idList)" />

Note
The parameters in the update query are specified with a colon (:) prefix to the name of a map key.
This is a standard feature of the named parameter JDBC support in Spring JDBC.

As well as the SELECT statement to generate the messages, the adapter above also has an UPDATE statement that
is being used to mark the records as processed, so they don't show up in the next poll. The update is
parameterised by the list of ids from the original select. This is done through a naming convention by default (a
column in the input result set called "id" is translated into a list in the parameter map for the update called
"idList"). To change the parameter generation strategy you can inject a SqlParameterSourceFactory into the
adapter to override the default behaviour (the adapter has a sql-parameter-source-factory attribute).

19.1.1. Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a sub element, so for instance the frequency
of the polling can be controlled. A very important feature of the poller for JDBC usage is the option to wrap the
poll operation in a transaction, for example:

<jdbc:inbound-channel-adapter query="..."
channel="target" data-source="dataSource"
update="...">
<poller>
<interval-trigger interval="1000"/>
<transactional/>

</poller>
</jdbc:inbound-channel-adapter>

Spring-WS (2.0.0.M5) 65

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html

Note
If a poller is not explicitly specified a default value will be used (and as per normal with Spring
Integration can be defined as a top level bean)

In this example the database is polled every 1000 milliseconds, and the update and select queries are both
executed in the same transaction. The transaction manager configuration is not shown, but as long as it is aware
of the data source then the poll is transactional. A common use case is for the downstream channels to be direct
channels (the default), so that the endpoints are invoked in the same thread, and hence the same transaction.
then if any of them fails, the transaction rolls back and the input data are reverted to their original state.

19.2. Outbound Channel Adapter

The outbound Channel Adapter is the inverse of the inbound: its role is to handle a message and use it to
execute a SQL query. The message payload and headers are available by default as input parameters to the
query, for instance:

<jdbc:outbound-channel-adapter
query="insert into foos (id, status, name) values (:headers[$id], 0, :payload[foo])"
channel="input" data-source="dataSource"/>

In the example above, messages arriving on the channel "input" have a payload of a map with key "foo", so the
[] operator dereferences that value from the map. The headers are also accessed as a map.

Note
The parameters in the query above are bean paths in the incoming message (they are not Spring EL
expressions). This behaviour is part of the MapSqlParameterSource in Spring JDBC, which is the
default source created by the outbound adapter. Other behaviour is possible in the adapter, and only
requires the user to inject a different SqlParameterSourceFactory .

The outbound adapter requires a reference to either a DataSource or a JdbcTemplate. It can also have a
SqlParameterSourceFactory injected to control the binding of incoming message to the query.

If the input channel is a direct channel then the outbound adapter runs its query in the same thread, and therefor
ethe same transaction (if there is one) as the sender of the message.

19.3. Message Store

The JDBC module provides an implementation of the Spring Integration MessageStore (important in the Claim
Check pattern) and MessageGroupStore (important in stateful patterns like Aggregator) backed by a database.
Both interfaces are implemented by the JdbcMessageStore and there is also support for configuring store
instances in XML. For example:

<jdbc:message-store id="messageStore" data-source="dataSource"/>

A JdbcTemplate can be specified instead of a DataSource.

Other optional attributes are show in the next example:

<jdbc:message-store id="messageStore" data-source="dataSource"
lob-handler="lobHandler" table-prefix="MY_INT_"/>

JDBC Support

Spring-WS (2.0.0.M5) 66

Here we have specified a LobHandler for dealing with messages as large objects (e.g. often necessary if using
Oracle) and a prefix for the table names in the queries generated by the store. The table name prefix defaults to
"INT_".

19.3.1. Initializing the Database

Spring Integration ships with some sample scripts that can be used to initialize a database. In the
spring-integration-jdbc JAR file you will find scripts in the org.springframework.integration.jdbc

package: there is a create and a drop script example for a range of common database platforms. A common way
to use these scripts is to reference them in a Spring JDBC data source initializer. Note that the scripts are
provided as samples or specifications of the the required table and column names. You may find that you need
to enhance them for production use (e.g. with index declarations).

19.3.2. Partitioning a Message Store

It is common to use a JdbcMessageStore as a global store for a group of applications, or nodes in the same
application. To provide some portection against name clashes, and to give control over the database meta-data
configuration, the message store allows the tables to be partitioned in two ways. One is to use separate table
names, by changing the prefix as described above, and the other is to specify a "region" name for partitioning
data within a single table. An important use case for this is using the store to manage persistent queues backing
a Spring Integration channel. The message data for a persistent channel is keyed in the store on the channel
name, so if the channel names are not globally unique then there is the danger of channels picking up data that
was not intended for them. To avoid this the message store region can be used to keep data separate for
different physical channels that happen to have the same logical name.

JDBC Support

Spring-WS (2.0.0.M5) 67

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182

Chapter 20. JMS Support
Spring Integration provides Channel Adapters for receiving and sending JMS messages. There are actually two
JMS-based inbound Channel Adapters. The first uses Spring's JmsTemplate to receive based on a polling
period. The second is "message-driven" and relies upon a Spring MessageListener container. There is also an
outbound Channel Adapter which uses the JmsTemplate to convert and send a JMS Message on demand.

Whereas the JMS Channel Adapters are intended for unidirectional Messaging (send-only or receive-only),
Spring Integration also provides inbound and outbound JMS Gateways for request/reply operations. The
inbound gateway relies on one of Spring's MessageListener container implementations for Message-driven
reception that is also capable of sending a return value to the "reply-to" Destination as provided by the received
Message. The outbound Gateway sends a JMS Message to a "request-destination" and then receives a reply
Message. The "reply-destination" reference (or "reply-destination-name") can be configured explicitly or else
the outbound gateway will use a JMS TemporaryQueue.

20.1. Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JmsTemplate instance or both
ConnectionFactory and Destination (a 'destinationName' can be provided in place of the 'destination'
reference). The following example defines an inbound Channel Adapter with a Destination reference.

<jms:inbound-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel">
<integration:poller>

<integration:interval-trigger interval="30" time-unit="SECONDS"/>
</integration:poller>

</jms:inbound-channel-adapter>

Tip
Notice from the configuration that the inbound-channel-adapter is a Polling Consumer. That means
that it invokes receive() when triggered. This should only be used in situations where polling is
done relatively infrequently and timeliness is not important. For all other situations (a vast majority
of JMS-based use-cases), the message-driven-channel-adapter described below is a better option.

Note
All of the JMS adapters that require a reference to the ConnectionFactory will automatically look
for a bean named "connectionFactory" by default. That is why you don't see a "connection-factory"
attribute in many of the examples. However, if your JMS ConnectionFactory has a different bean
name, then you will need to provide that attribute.

If 'extract-payload' is set to true (which is the default), the received JMS Message will be passed through the
MessageConverter. When relying on the default SimpleMessageConverter, this means that the resulting Spring
Integration Message will have the JMS Message's body as its payload. A JMS TextMessage will produce a
String-based payload, a JMS BytesMessage will produce a byte array payload, and a JMS ObjectMessage's
Serializable instance will become the Spring Integration Message's payload. If instead you prefer to have the
raw JMS Message as the Spring Integration Message's payload, then set 'extract-payload' to false.

<jms:inbound-channel-adapter id="jmsIn"
destination="inQueue"
channel="exampleChannel"
extract-payload="false"/>

<integration:poller>
<integration:interval-trigger interval="30" time-unit="SECONDS"/>

Spring-WS (2.0.0.M5) 68

</integration:poller>
</jms:inbound-channel-adapter>

20.2. Message-Driven Channel Adapter

The "message-driven-channel-adapter" requires a reference to either an instance of a Spring MessageListener
container (any subclass of AbstractMessageListenerContainer) or both ConnectionFactory and
Destination (a 'destinationName' can be provided in place of the 'destination' reference). The following
example defines a message-driven Channel Adapter with a Destination reference.

<jms:message-driven-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel"/>

Note
The Message-Driven adapter also accepts several properties that pertain to the MessageListener
container. These values are only considered if you do not provide an actual 'container' reference. In
that case, an instance of DefaultMessageListenerContainer will be created and configured based on
these properties. For example, you can specify the "transaction-manager" reference, the
"concurrent-consumers" value, and several other property references and values. Refer to the
JavaDoc and Spring Integration's JMS Schema (spring-integration-jms-1.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default value is 'true'.
The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be actively invoked.
For most usage scenarios, the message-driven approach is better since the Messages will be passed along to the
MessageChannel as soon as they are received from the underlying JMS consumer.

20.3. Outbound Channel Adapter

The JmsSendingMessageHandler implements the MessageHandler interface and is capable of converting
Spring Integration Messages to JMS messages and then sending to a JMS destination. It requires either a
'jmsTemplate' reference or both 'connectionFactory' and 'destination' references (again, the 'destinationName'
may be provided in place of the 'destination'). As with the inbound Channel Adapter, the easiest way to
configure this adapter is with the namespace support. The following configuration will produce an adapter that
receives Spring Integration Messages from the "exampleChannel" and then converts those into JMS Messages
and sends them to the JMS Destination reference whose bean name is "outQueue".

<jms:outbound-channel-adapter id="jmsOut" destination="outQueue" channel="exampleChannel"/>

As with the inbound Channel Adapters, there is an 'extract-payload' property. However, the meaning is reversed
for the outbound adapter. Rather than applying to the JMS Message, the boolean property applies to the Spring
Integration Message payload. In other words, the decision is whether to pass the Spring Integration Message
itself as the JMS Message body or whether to pass the Spring Integration Message's payload as the JMS
Message body. The default value is once again 'true'. Therefore, if you pass a Spring Integration Message
whose payload is a String, a JMS TextMessage will be created. If on the other hand you want to send the actual
Spring Integration Message to another system via JMS, then simply set this to 'false'.

Note
Regardless of the boolean value for payload extraction, the Spring Integration MessageHeaders
will map to JMS properties as long as you are relying on the default converter or provide a

JMS Support

Spring-WS (2.0.0.M5) 69

reference to another instance of HeaderMappingMessageConverter (the same holds true for
'inbound' adapters except that in those cases, it's the JMS properties mapping to Spring Integration
MessageHeaders).

20.4. Inbound Gateway

Spring Integration's message-driven JMS inbound-gateway delegates to a MessageListener container, supports
dynamically adjusting concurrent consumers, and can also handle replies. The inbound gateway requires
references to a ConnectionFactory, and a request Destination (or 'requestDestinationName'). The following
example defines a JMS "inbound-gateway" that receives from the JMS queue referenced by the bean id
"inQueue" and sends to the Spring Integration channel named "exampleChannel".

<jms:inbound-gateway id="jmsInGateway"
request-destination="inQueue"
request-channel="exampleChannel"/>

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also have two
distinct properties for the "payload extraction" (as discussed above for the Channel Adapters' 'extract-payload'
setting). For an inbound-gateway, the 'extract-request-payload' property determines whether the received JMS
Message body will be extracted. If 'false', the JMS Message itself will become the Spring Integration Message
payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload' property applies to the Spring Integration
Message that is going to be converted into a reply JMS Message. If you want to pass the whole Spring
Integration Message (as the body of a JMS ObjectMessage) then set this to 'false'. By default, it is also 'true'
such that the Spring Integration Message payload will be converted into a JMS Message (e.g. String payload
becomes a JMS TextMessage).

As with anything else, Gateway invocation might result in error. By default Producer will not be notified of the
errors thta might have occurredon ythe consumer side and will time out waiting for the reply. However there
might be times when you to communicate error condition back to the consumer, in other words treat the
Exception as a valid reply valid reply by mapping it to a Message. To accomplish this JMS Inbound Gateway
provides support for Exception mappers via exception-mapper attribute.

<int-jms:inbound-gateway request-destination="requestQueue"
request-channel="jmsinputchannel"
exception-mapper="errorMessageMapper"/>

<bean id="exceptionMapper" class="foo.bar.SampleExceptionMapper"/>

foo.bar.SampleExceptionMapper is the implementation of
org.springframework.integration.message.InboundMessageMapper which only defines one method
toMessage(Object object).

public static class SampleExceptionMapper implements InboundMessageMapper<Throwable>{
public Message<?> toMessage(Throwable object) throws Exception {

MessageHandlingException ex = (MessageHandlingException) object;
return MessageBuilder.withPayload("Error happened in message: " +

ex.getFailedMessage().getPayload()).build();
}

}

JMS Support

Spring-WS (2.0.0.M5) 70

20.5. Outbound Gateway

The outbound Gateway creates JMS Messages from Spring Integration Messages and then sends to a
'request-destination'. It will then handle the JMS reply Message either by using a selector to receive from the
'reply-destination' that you configure, or if no 'reply-destination' is provided, it will create JMS
TemporaryQueues. Notice that the "reply-channel" is also provided.

<jms:outbound-gateway id="jmsOutGateway"
request-destination="outQueue"
request-channel="outboundJmsRequests"
reply-channel="jmsReplies"/>

The 'outbound-gateway' payload extraction properties are inversely related to those of the 'inbound-gateway'
(see the discussion above). That means that the 'extract-request-payload' property value applies to the Spring
Integration Message that is being converted into a JMS Message to be sent as a request, and the
'extract-reply-payload' property value applies to the JMS Message that is received as a reply and then converted
into a Spring Integration Message to be subsequently sent to the 'reply-channel' as shown in the example
configuration above.

Note
For all of these JMS adapters, you can also specify your own "message-converter" reference.
Simply provide the bean name of an instance of MessageConverter that is available within the
same ApplicationContext. Note, however, that when you provide your own MessageConverter
instance, it will still be wrapped within the HeaderMappingMessageConverter. This means that the
'extract-request-payload' and 'extract-reply-payload' properties may effect what actual objects are
passed to your converter. The HeaderMappingMessageConverter itself simply delegates to a target
MessageConverter while also mapping the Spring Integration MessageHeaders to JMS Message
properties and vice-versa.

20.6. JMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applications that are integrating with
other external systems. The inbound options assume that some other system is sending JMS Messages to the
JMS Destination and the outbound options assume that some other system is receiving from the Destination.
The other system may or may not be a Spring Integration application. Of course, when sending the Spring
Integration Message instance as the body of the JMS Message itself (with the 'extract-payload' value set to
false), it is assumed that the other system is based on Spring Integration. However, that is by no means a
requirement. That flexibility is one of the benefits of using a Message-based integration option with the
abstraction of "channels" or Destinations in the case of JMS.

There are cases where both the producer and consumer for a given JMS Destination are intended to be part of
the same application, running within the same process. This could be accomplished by using a pair of inbound
and outbound Channel Adapters. The problem with that approach is that two adapters are required even though
conceptually the goal is to have a single Message Channel. A better option is supported as of Spring Integration
version 2.0. Now it is possible to define a single "channel" when using the JMS namespace.

<jms:channel id="jmsChannel" queue="exampleQueue"/>

The channel in the above example will behave much like a normal <channel/> element from the main Spring
Integration namespace. It can be referenced by both "input-channel" and "output-channel" attributes of any

JMS Support

Spring-WS (2.0.0.M5) 71

endpoint. The difference is that this channel is backed by a JMS Queue instance named "exampleQueue". This
means that asynchronous messaging is possible between the producing and consuming endpoints, but unlike the
simpler asynchronous Message Channels created by adding a <queue/> sub-element within a non-JMS
<channel/> element, the Messages are not just stored in an in-memory queue. Instead those Messages are
passed within a JMS Message body, and the full power of the underlying JMS provider is then available for that
channel. Probably the most common rationale for using this alternative would be to take advantage of the
persistence made available by the store and forward approach of JMS messaging. If configured properly, the
JMS-backed Message Channel also supports transactions. In other words, a producer would not actually write
to a transactional JMS-backed channel if its send operation is part of a transaction that rolls back. Likewise, a
consumer would not physically remove a JMS Message from the channel if the reception of that Message is
part of a transaction that rolls back. Note that the producer and consumer transactions are separate in such a
scenario. This is significantly different than the propagation of a transactional context across the simple,
synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a JMS Queue instance, it will act as a point-to-point channel. If on the
other hand, publish/subscribe behavior is needed, then a separate element can be used, and a JMS Topic can be
referenced instead.

<jms:publish-subscribe-channel id="jmsChannel" topic="exampleTopic"/>

For either type of JMS-backed channel, the name of the destination may be provided instead of a reference.

<jms:channel id="jmsQueueChannel" queue-name="exampleQueueName"/>

<jms:publish-subscribe-channel id="jmsTopicChannel" topic-name="exampleTopicName"/>

In the examples above, the Destination names would be resolved by Spring's default
DynamicDestinationResolver implementation, but any implementation of the DestinationResolver interface
could be provided. Also, the JMS ConnectionFactory is a required property of the channel, but by default the
expected bean name would be "connectionFactory". The example below provides both a custom instance for
resolution of the JMS Destination names and a different name for the ConnectionFactory.

<jms:channel id="jmsChannel" queue-name="exampleQueueName"
destination-resolver="customDestinationResolver"
connection-factory="customConnectionFactory"/>

20.7. JMS Samples

To experiment with these JMS adapters, check out the samples available within the "samples/jms" directory in
the distribution. There are two samples included. One provides inbound and outbound Channel Adapters, and
the other provides inbound and outbound Gateways. They are configured to run with an embedded ActiveMQ
process, but the "common.xml" file can easily be modified to support either a different JMS provider or a
standalone ActiveMQ process. In other words, you can split the configuration so that the inbound and outbound
adapters are running in separate JVMs. If you have ActiveMQ installed, simply modify the "brokerURL"
property within the configuration to use "tcp://localhost:61616" for example (instead of "vm://localhost"). Both
of the samples accept input via stdin and then echo back to stdout. Look at the configuration to see how these
messages are routed over JMS.

JMS Support

Spring-WS (2.0.0.M5) 72

Chapter 21. Web Services Support

21.1. Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of which build
upon the Spring Web Services project: SimpleWebServiceOutboundGateway and
MarshallingWebServiceOutboundGateway. The former will accept either a String or
javax.xml.transform.Source as the message payload. The latter provides support for any implementation of
the Marshaller and Unmarshaller interfaces. Both require a Spring Web Services DestinationProvider for
determining the URI of the Web Service to be called.

simpleGateway = new SimpleWebServiceOutboundGateway(destinationProvider);

marshallingGateway = new MarshallingWebServiceOutboundGateway(destinationProvider, marshaller);

Note
When using the namespace support described below, you will only need to set a URI. Internally,
the parser will configure a fixed URI DestinationProvider implementation. If you do need dynamic
resolution of the URI at runtime, however, then the DestinationProvider can provide such behavior
as looking up the URI from a registry. See the Spring Web Services javadoc for more information
about the DestinationProvider strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering client
access as well as the chapter covering Object/XML mapping.

21.2. Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options again:
SimpleWebServiceInboundGateway and MarshallingWebServiceInboundGateway. The former will extract a
javax.xml.transform.Source from the WebServiceMessage and set it as the message payload. The latter
provides support for implementation of the Marshaller and Unmarshaller interfaces. If the incoming web
service message is a SOAP message the SOAP Action header will be added to the headers of the Message that
is forwarded onto the request channel.

simpleGateway = new SimpleWebServiceInboundGateway();
simpleGateway.setRequestChannel(forwardOntoThisChannel);
simpleGateway.setReplyChannel(listenForResponseHere); //Optional

marshallingGateway = new MarshallingWebServiceInboundGateway(marshaller);
//set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoint interface, so they can be configured with
a MessageDispatcherServlet as per standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's chapter
covering creating a Web Service. The chapter covering Object/XML mapping is also applicable again.

21.3. Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws"

Spring-WS (2.0.0.M5) 73

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

namespace:

<ws:outbound-gateway id="simpleGateway"
request-channel="inputChannel"
uri="http://example.org"/>

Note
Notice that this example does not provide a 'reply-channel'. If the Web Service were to return a
non-empty response, the Message containing that response would be sent to the reply channel
provided in the request Message's REPLY_CHANNEL header, and if that were not available a
channel resolution Exception would be thrown. If you want to send the reply to another channel
instead, then provide a 'reply-channel' attribute on the 'outbound-gateway' element.

Tip
When invoking a Web Service that returns an empty response after using a String payload for the
request Message, no reply Message will be sent by default. Therefore you don't need to set a
'reply-channel' or have a REPLY_CHANNEL header in the request Message. If for any reason you
actually do want to receive the empty response as a Message, then provide the
'ignore-empty-responses' attribute with a value of false (this only applies for Strings, because using
a Source or Document object simply leads to a NULL response and will therefore never generate a
reply Message).

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<ws:inbound-gateway id="simpleGateway"
request-channel="inputChannel"/>

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<ws:outbound-gateway id="marshallingGateway"
request-channel="requestChannel"
uri="http://example.org"
marshaller="someMarshaller"
unmarshaller="someUnmarshaller"/>

And for inbound:

<ws:inbound-gateway id="marshallingGateway"
request-channel="requestChannel"
marshaller="someMarshaller"
unmarshaller="someUnmarshaller"/>

Note
Most Marshaller implementations also implement the Unmarshaller interface. When using such a
Marshaller, only the "marshaller" attribute is necessary. Even when using a Marshaller, you may
also provide a reference for the "request-callback" on the outbound gateways.

For either outbound gateway type, a "destination-provider" attribute can be specified instead of the "uri"
(exactly one of them is required). You can then reference any Spring Web Services DestinationProvider
implementation (e.g. to lookup the URI at runtime from a registry).

For either outbound gateway type, the "message-factory" attribute can also be configured with a reference to
any Spring Web Services WebServiceMessageFactory implementation.

For the simple inbound gateway type, the "extract-payload" attribute can be set to false to forward the entire

Web Services Support

Spring-WS (2.0.0.M5) 74

WebServiceMessage instead of just its payload as a Message to the request channel. This might be useful, for
example, when a custom Transformer works against the WebServiceMessage directly.

Web Services Support

Spring-WS (2.0.0.M5) 75

Chapter 22. RMI Support

22.1. Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple JVMs.
The first section will deal with sending messages over RMI. The second section shows how to receive
messages over RMI. The last section shows how to define rmi channel adapters through the namespace support.

22.2. Outbound RMI

To send messages from a channel over RMI, simply define an RmiOutboundGateway. This gateway will use
Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that to invoke a remote
interface that doesn't use Spring Integration you should use a service activator in combination with Spring's
RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiOutboundGateway>
<constructor-arg value="rmi://host"/>
<property name="replyChannel" value="replies"/>

</bean>

22.3. Inbound RMI

To receive messages over RMI you need to use a RmiInboundGateway. This gateway can be configured like this

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiInboundGateway>
<property name="requestChannel" value="requests"/>

</bean>

22.4. RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following code
snippet shows the different configuration options that are supported.

<rmi:inbound-gateway id="gatewayWithDefaults" request-channel="testChannel"/>

<rmi:inbound-gateway id="gatewayWithCustomProperties" request-channel="testChannel"
expect-reply="false" request-timeout="123" reply-timeout="456"/>

<rmi:inbound-gateway id="gatewayWithHost" request-channel="testChannel"
registry-host="localhost"/>

<rmi:inbound-gateway id="gatewayWithPort" request-channel="testChannel"
registry-port="1234"/>

<rmi:inbound-gateway id="gatewayWithExecutorRef" request-channel="testChannel"
remote-invocation-executor="invocationExecutor"/>

To configure the outbound gateway you can use the namespace support as well. The following code snippet

Spring-WS (2.0.0.M5) 76

shows the different configuration for an outbound rmi gateway.

<rmi:outbound-gateway id="gateway"
request-channel="localChannel"
remote-channel="testChannel"
host="localhost"/>

RMI Support

Spring-WS (2.0.0.M5) 77

Chapter 23. HttpInvoker Support

23.1. Introduction

HttpInvoker is a Spring-specific remoting option that essentially enables Remote Procedure Calls (RPC) over
HTTP. In order to accomplish this, an outbound representation of a method invocation is serialized using
standard Java serialization and then passed within an HTTP POST request. After being invoked on the target
system, the method's return value is then serialized and written to the HTTP response. There are two main
requirements. First, you must be using Spring on both sides since the marshalling to and from HTTP requests
and responses is handled by the client-side invoker and server-side exporter. Second, the Objects that you are
passing must implement Serializable and be available on both the client and server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of logical
decoupling as a messaging-based system. In other words, both participants in an RPC-based invocation must be
aware of a specific interface and specific argument types. Interestingly, in Spring Integration, the "parameter"
being sent is a Spring Integration Message, and the interface is an internal detail of Spring Integration's
implementation. Therefore, the RPC mechanism is being used as a transport so that from the end user's
perspective, it is not necessary to consider the interface and argument types. It's just another adapter to enable
messaging between two systems.

23.2. HttpInvoker Inbound Gateway

To receive messages over http you can use an HttpInvokerInboundGateway. Here is an example bean
definition:

<bean id="inboundGateway"
class="org.springframework.integration.httpinvoker.HttpInvokerInboundGateway">

<property name="requestChannel" ref="requestChannel"/>
<property name="replyChannel" ref="replyChannel"/>
<property name="requestTimeout" value="30000"/>
<property name="replyTimeout" value="10000"/>

</bean>

Because the inbound gateway must be able to receive HTTP requests, it must be configured within a Servlet
container. The easiest way to do this is to provide a servlet definition in web.xml:

<servlet>
<servlet-name>inboundGateway</servlet-name>
<servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>

</servlet>

Notice that the servlet name matches the bean name.

Note
If you are running within a Spring MVC application and using the BeanNameHandlerMapping,
then the servlet definition is not necessary. In that case, the bean name for your gateway can be
matched against the URL path just like a Spring MVC Controller bean.

23.3. HttpInvoker Outbound Gateway

Spring-WS (2.0.0.M5) 78

To configure the HttpInvokerOutboundGateway write a bean definition like this:

<bean id="outboundGateway"
class="org.springframework.integration.httpinvoker.HttpInvokerOutboundGateway">

<property name="replyChannel" ref="replyChannel"/>
</bean>

The outbound gateway is a MessageHandler and can therefore be registered with either a PollingConsumer or
EventDrivenConsumer. The URL must match that defined by an inbound HttpInvoker Gateway as described in
the previous section.

23.4. HttpInvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To include it in your
configuration, simply provide the following URI within a namespace declaration:
'http://www.springframework.org/schema/integration/httpinvoker'. The schema location should then map to
'http://www.springframework.org/schema/integration/httpinvoker/spring-integration-httpinvoker-1.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The following code
snippet shows the different configuration options that are supported.

<httpinvoker:inbound-gateway id="inboundGateway"
request-channel="requestChannel"
request-timeout="10000"
expect-reply="false"
reply-timeout="30000"/>

Note
A 'reply-channel' may also be provided, but it is recommended to rely on the temporary anonymous
channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following code snippet
shows the different configuration for an outbound HttpInvoker gateway. Only the 'url' and 'request-channel' are
required.

<httpinvoker:outbound-gateway id="outboundGateway"
url="http://localhost:8080/example"
request-channel="requestChannel"
request-timeout="5000"
reply-channel="replyChannel"
reply-timeout="10000"/>

HttpInvoker Support

Spring-WS (2.0.0.M5) 79

Chapter 24. HTTP Support

24.1. Introduction

The HTTP support allows for the execution of HTTP requests and the processing of inbound HTTP requests.
Because interaction over HTTP is always synchronous, even if all that is returned is a 200 status code, the
HTTP support consists of two gateway implementations: HttpInboundEndpoint and
HttpRequestExecutingMessageHandler.

24.2. Http Inbound Gateway

To receive messages over HTTP you need to use an HttpInboundEndpoint. In common with the HttpInvoker
support the Http Inbound Gateway needs to be deployed within a servlet container. The easiest way to do this is
to provide a servlet definition in web.xml, see Section 23.2, “HttpInvoker Inbound Gateway” for further details.
Below is an example bean definition for a simple HttpInboundEndpoint

<bean id="httpInbound" class="org.springframework.integration.http.HttpInboundEndpoint">
<property name="requestChannel" ref="httpRequestChannel" />
<property name="replyChannel" ref="httpReplyChannel" />

</bean>

The HttpInboundEndpoint accepts an instance of InboundRequestMapper which allows customisation of the
mapping from HttpServletRequest to Message. If none is provided an instance of
DefaultInboundRequestMapper will be used. This encapsulates a simple strategy, which for example will
create a String message for a POST request where the content type starts with "text", see the Javadoc for full
details.

Starting with this release MultiPart File support was implemented. If the request has been wrapped as a
MultipartHttpServletRequest, then the 'content type' can be checked. If it is known, and begins with "text", then
the MultipartFile will be copied to a String in the parameter map. If the content type does not begin with "text",
then the MultipartFile will be copied to a byte array within the parameter map instead.

Note
The HttpInboundEndpoint will locate a MultipartResolver in the context if one exists with the bean
name "multipartResolver" (the same name expected by Spring's DispatcherServlet). If it does in
fact locate that bean, then the support for MultipartFiles will be enabled on the inbound request
mapper. Otherwise, it will fail when trying to map a multipart-file request to a Spring Integration
Message. For more on Spring's support for MultipartResolvers, refer to the Spring Reference
Manual.

In sending a response to the client there are a number of ways to customize the behavior of the gateway. By
default the gateway will simply acknowledge that the request was received by sending a 200 status code back.
It is possible to customize this response by providing an implementation of the Spring MVC View which will be
invoked with the created Message. In the case that the gateway should expect a reply to the Message then setting
the expectReply flag will cause the gateway to wait for a response Message before creating an Http response.
Below is an example of a gateway configured to use a custom view and to wait for a response. It also shows
how to customize the Http methods accepted by the gateway, which are POST and GET by default.

<bean id="httpInbound" class="org.springframework.integration.http.HttpInboundEndpoint">
<property name="requestChannel" ref="httpRequestChannel" />
<property name="replyChannel" ref="httpReplyChannel" />
<property name="view" ref="jsonView" />

Spring-WS (2.0.0.M5) 80

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

<property name="supportedMethods" >
<list>

<value>GET</value>
<value>DELETE</value>

</list>
</property>
<property name="expectReply" value="true" />
<property name="requestMapper" ref="customRequestMapper" />

</bean>

The message created from the request will be available in the Model map. The key that is used for that map
entry by default is 'requestMessage', but this can be overridden by setting the 'requestKey' property on the
endpoint's configuration.

24.3. Http Outbound Gateway

To configure the HttpRequestExecutingMessageHandler write a bean definition like this:

<bean id="httpOutbound" class="org.springframework.integration.http.HttpRequestExecutingMessageHandler" >
<constructor-arg value="http://localhost:8080/example" />
<property name="outputChannel" ref="responseChannel" />

</bean>

This bean definition will execute HTTP requests by delegating to a RestTemplate. That template in turn
delegates to a list of HttpMessageConverters to generate the HTTP request body from the Message payload.
You can configure those converters as well as the ClientHttpRequestFactory instance to use:

<bean id="httpOutbound" class="org.springframework.integration.http.HttpRequestExecutingMessageHandler" >
<constructor-arg value="http://localhost:8080/example" />
<property name="outputChannel" ref="responseChannel" />
<property name="messageConverters" ref="messageConverterList" />
<property name="requestFactory" ref="customRequestFactory" />

</bean>

By default the HTTP request will be generated using an instance of SimpleClientHttpRequestFactory which
uses the JDK HttpURLConnection. Use of the Apache Commons HTTP Client is also supported through the
provided CommonsClientHttpRequestFactory which can be injected as shown above.

24.4. HTTP Namespace Support

Spring Integration provides an "http" namespace and schema definition. To include it in your configuration,
simply provide the following URI within a namespace declaration:
'http://www.springframework.org/schema/integration/http'. The schema location should then map to
'http://www.springframework.org/schema/integration/http/spring-integration-http.xsd'.

To configure an inbound http channel adapter which is an instance of HttpInboundEndpoint configured not to
expect a response.

<http:inbound-channel-adapter id="httpChannelAdapter" channel="requests" supported-methods="PUT, DELETE"/>

To configure an inbound http gateway which expects a response.

<http:inbound-gateway id="inboundGateway" request-channel="requests" reply-channel="responses"/>

To configure the outbound gateway you can use the namespace support as well. The following code snippet
shows the different configuration options for an outbound Http gateway. Most importantly, notice that the

HTTP Support

Spring-WS (2.0.0.M5) 81

'http-method' and 'expected-response-type' are provided. Those are two of the most commonly configured
values. The default http-method is POST, and the default response type is null. With a null response type, the
payload of the reply Message would only contain the status code (e.g. 200) as long as it's a successful status
(non-successful status codes will throw Exceptions). If you are expecting a different type, such as a String,
then provide that fully-qualified class name as shown below.

<http:outbound-gateway id="example"
request-channel="requests"
url="http://localhost/test"
http-method="POST"
extract-request-payload="false"
expected-response-type="java.lang.String"
charset="UTF-8"
request-factory="requestFactory"
request-timeout="1234"
reply-channel="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-channel-adapter
instead. This means that a successful response will simply execute without sending any Messages to a reply
channel. In the case of any non-successful response status code, it will throw an exception. The configuration
looks very similar to the gateway:

<http:outbound-channel-adapter id="example"
url="http://localhost/example"
http-method="GET"
channel="requests"
charset="UTF-8"
extract-payload="false"
expected-response-type="java.lang.String"
request-factory="someRequestFactory"
order="3"
auto-startup="false"/>

HTTP Support

Spring-WS (2.0.0.M5) 82

Chapter 25. TCP and UDP Support
Spring Integration provides Channel Adapters for receiving and sending messages over internet protocols. Both
UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are provided. Each adapter
provides for one-way communication over the underlying protocol. In addition, a simple inbound tcp gateway
is provided.

25.1. Introduction

Two flavors each of UDP inbound and outbound adapters are provided UnicastSendingMessageHandler sends
a datagram packet to a single destination. UnicastReceivingChannelAdapter receives incoming datagram
packets. MulticastSendingMessageHandler sends (broadcasts) datagram packets to a multicast address.
MulticastReceivingChannelAdapter receives incoming datagram packets by joining to a multicast address.

Two flavors each of TCP inbound and outbound adapters are provided TcpNetSendingMessageHandler and
TcpNioSendingMessageHandler send messages over TCP. They are functionally equivalent, but use different
underlying technology for socket communication. Similarly, TcpNetReceivingChannelAdapter and
TcpNioReceivingChannelAdapter are the equivalent inbound channel adapters. The choice of which to use in
what circumstances is described below.

A simple inbound TCP gateway is provided; this allows for simple request/response processing. While the
gateway can support any number of connections, each connection can only process serially. The thread that
reads from the socket waits for, and sends, the response before reading again.

A simple outbound TCP gateway is provided; this allows for simple request/response processing. Each request
is processed serially. The calling thread blocks on the socket until either a response is received or an I/O error
occurs. Requests are single-threaded over the socket.

25.2. UDP Adapters

<ip:outbound-channel-adapter id="udpOut"
protocol="udp"
host="somehost"
port="11111"
multicast="false"
channel="exampleChannel" />

A simple UDP outbound channel adapter.

Tip
When setting multicast to true, provide the multicast address in the host attribute.

UDP is an efficient, but unreliable protocol. Two attributes are added to improve reliability. When check-length
is set to true, the adapter precedes the message data with a length field (4 bytes in network byte order). This
enables the receiving side to verify the length of the packet received. If a receiving system uses a buffer that is
too short the contain the packet, the packet can be truncated. The length header provides a mechanism to detect
this.

<ip:outbound-channel-adapter id="udpOut"
protocol="udp"
host="somehost"

Spring-WS (2.0.0.M5) 83

port="11111"
multicast="false"
check-length="true"
channel="exampleChannel" />

An outbound channel adapter that adds length checking to the datagram packets.

Tip
The recipient of the packet must also be configured to expect a length to precede the actual data.
For a Spring Integration UDP inbound channel adapter, set its check-length attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used. The
receiver must send an acknowledgment to the sender within a specified time.

<ip:outbound-channel-adapter id="udpOut"
protocol="udp"
host="somehost"
port="11111"
multicast="false"
check-length="true"
acknowledge="true"
ack-host="thishost"
ack-port="22222"
ack-timeout="10000"
channel="exampleChannel" />

An outbound channel adapter that adds length checking to the datagram packets and waits for an
acknowledgment.

Tip
Setting acknowledge to true implies the recipient of the packet can interpret the header added to the
packet containing acknowledgment data (host and port). Most likely, the recipient will be a Spring
Integration inbound channel adapter.

Tip
When multicast is true, an additional attribute min-acks-for-success specifies how many
acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

<ip:inbound-channel-adapter id="udpReceiver"
channel="udpOutChannel"
protocol="udp"
port="11111"
receive-buffer-size="500"
multicast="false"
check-length="true" />

A basic unicast inbound udp channel adapter.

<ip:inbound-channel-adapter id="udpReceiver"
channel="udpOutChannel"
protocol="udp"
port="11111"
receive-buffer-size="500"
multicast="true"
multicast-address="225.6.7.8"
check-length="true" />

TCP and UDP Support

Spring-WS (2.0.0.M5) 84

A basic multicast inbound udp channel adapter.

25.3. TCP Adapters

Two versions of TCP inbound and outbound channel adapters are provided; these adapters use either
java.net.Socket IO, or java.nio.channels.SocketChannel IO. The choice of which to use depends on the
application. The TcpNet* adapters use java.net.Socket and the TcpNio* adapters use
java.nio.channels.ChannelSocket. It is not anticipated that much difference in performance, if any, would exist
between these technologies on the outbound side. This is because each outbound adapter sends data over only
one socket. On the receiving side however, consideration should be given to the number of connections. For the
TcpNetReceivingChannelAdapter a thread is dedicated to receiving data on each connected socket; the pool
size must therefore be set large enough to handle the expected number of connections. For the
TcpNioReceivingChannelAdapter threads are used on an as-needed basis and it is likely that many fewer
threads would be needed. If a small number of connections is expected, we expect that the the
TcpNetReceivingChannelAdapter will give the best performance. For large number of connections, the
TcpNioReceivingChannelAdapter will likely give the best performance. In addition, the
TcpNioReceivingChannelAdapter provides an attribute using-direct-buffers which attempts to use direct
buffers. See java.nio.ByteBuffer for more information about direct buffers.

Tip
It is not expected that direct buffers will offer much, if any, performance difference. You should
experiment with the use of TcpNxx* adapters, and direct buffers when using TcpNio* adapters to
determine the best performance in your environment.

TCP is a streaming protocol; this means that some structure has to be provided to data transported over TCP, so
the receiver can demarcate the data into discrete messages. Four standard message formats are provided for this
purpose; you can also provide code for your own custom format. The first of the four standard formats is
'length-header', in which case a 4 byte length header precedes the data; this is the default. The second is 'stx-etx'
in which the message data is preceded by an STX (0x02) character and terminated with an ETX (0x03)
character. The third is 'crlf' in which the message is terminated with a carriage return and line feed (\r\n). These
three formats require a byte array or String payload outbound endpoints; inbound endpoints produce messages
with byte array payloads. The fourth format is 'serialized' wherby standard java serialization is used; payloads
must implement Serializable. For the simple formats, the first (the default) is likely to be the most
performant. This is because we can determine exactly how many bytes to read to obtain the complete message.
The other two formats require examining each byte to determine if the end of the message has been received.
The length-header format can also handle binary data. The other two formats can only handle text data
(specifcally, data that does not contain characters 0x02 and 0x03 for stx-etx and 0x0d and 0x0a for crlf). This
limitation can be avoided by appropriate character escaping techniques in the application layer. No such
escaping is provided by the adapters; therefore it is not recommened that these formats be used without some
transformation if the data may contain these characters.

<ip:outbound-channel-adapter id="tcpOut"
channel="inChannel"
protocol="tcp"
host="somehost"
port="11111"
message-format="length-header"
using-nio="true"
using-direct-buffers="false"
so-keep-alive="true"
so-timeout="10000"
/>

A basic outbound tcp channel adapter. This adapter uses java.nio.channels.SocketChannel. To use a

TCP and UDP Support

Spring-WS (2.0.0.M5) 85

java.net.Socket, set using-nio to false and using-direct-buffers is not relevant.

<ip:inbound-channel-adapter id="tcp1"
channel="channel"
protocol="tcp"
port="11111"
message-format="length-header"
using-nio="true"
using-direct-buffers="false"
pool-size="2"
so-keep-alive="true"
so-timeout="10000"
/>

A basic inbound tcp channel adapter. This adapter uses java.nio.channels.SocketChannel. To use a
java.net.Socket, set using-nio to false and using-direct-buffers is not relevant.

25.4. TCP Gateways

The simple inbound TCP gateway SimpleTcpNetInboundGateway and simple oubound TCP gateway
SimpleTcpNetOutboundGateway use java.net.Socket for communications. Each connection can process a
single request/response at a time.

The inbound gateway delegates to a subclass of the TcpNetReceivingChannelAdapter described above, so
please read that section for more information. After constructing a message with the incoming payload and
sending it to the requestChannel, it waits for a response and sends the payload from the response message by
writing it to the socket, using the same message format configured for the incoming message.

The outbound gateway delegates to a TcpNetSendingMessageHandler described above, so please read that
section for more information. After sending a message over the socket, the thread waits for a response and
constructs a response message with a byte[] payload The incoming response is decoded using the same message
format configured for the outgoing message. Communications over the socket are single-threaded. Users should
be aware that only one message can be handled at a time and if another thread attempts to send a message
before the current response has been received, it will block. Only when the inprocess message receives a
response (or times out based on the socket timeout option) will it proceed. If an error occurs while reading the
response, the socket will be closed, regardless of the close attribute.

<ip:inbound-gateway id="gatewayCrLf"
port="1234"
request-channel="someChannel"
message-format="crlf"

/>

A simple inbound TCP gateway; it uses '/r/n' delimited data and can be used by a simple client such as telnet.

<ip:outbound-gateway id="simpleOutGateway"
request-channel="tcpChannel"
message-format="crlf"
host="localhost"
port="1234"
/>

A simple oubound TCP gateway; it uses '/r/n' delimited data.

25.5. IP Endpoint Attributes

TCP and UDP Support

Spring-WS (2.0.0.M5) 86

Table 25.1. IP Outbound Channel Adapter Attributes

Attribute Name TCP? UDP? Allowed Values Attribute Description

protocol Y Y tcp, udp Determines whether the adapter uses TCP or
UDP, over IP.

host Y Y The host name or ip address of the destination.
For multicast udp adapters, the multicast
address.

port Y Y The port on the destination.

multicast N Y true, false Whether or not the udp adapter uses multicast.

acknowledge N Y true, false Whether or not a udp adapter requires an
acknowledgment from the destination. when
enabled, requires setting the following 4
attributes.

ack-host N Y When acknowledge is true, indicates the host
or ip address to which the acknowledgment
should be sent. Usually the current host, but
may be different, for example when Network
Address Transation (NAT) is being used.

ack-port N Y When acknowledge is true, indicates the port
to which the acknowledgment should be sent.
The adapter listens on this port for
acknowledgments.

ack-timeout N Y When acknowledge is true, indicates the time
in milliseconds that the adapter will wait for
an acknowlegment. If an acknowlegment is
not received in time, the adapter will throw an
exception.

min-acks-for- success N Y Defaults to 1. For multicast adapters, you can
set this to a larger value, requiring
acknowlegments from multiple destinations.

check-length N Y true, false Whether or not a udp adapter includes a data
length field in the packet sent to the
destination.

time-to-live N Y For multicast adapters, specifies the time to
live attribute for the MulticastSocket;
controls the scope of the multicasts. Refer to
the Java API documentation for more
information.

using-nio Y N true, false Whether or not the tcp adapter is using NIO.
Refer to the java.nio package for more
information.

using-direct-buffers Y N true, false When using NIO, whether or not the tcp
adapter uses direct buffers. Refer to

TCP and UDP Support

Spring-WS (2.0.0.M5) 87

Attribute Name TCP? UDP? Allowed Values Attribute Description

java.nio.ByteBuffer documentation for
more information.

message-format Y N length-header, stx-etx,
crlf, serialized,
custom

The formatting that the tcp adapter uses so the
receiver can demarcate messages. Defaults to
length-header. See the discussion above for
details about each format.

custom-socket-
writer-class-name

Y N Subclass of
TcpNetSocket- Writer
or TcpNioSocket-
Writer

When message-format is 'custom' the name of
the class that implements the custom format.
Must be a subclass of the
TcpNxxSocketWriter, depending on whether
using-nio is false or true.

so-timeout Y Y See java.net.Socket and
java.net.DatagramSocket setSoTimeout()
methods for more information.

so-send-buffer-size Y Y See java.net.Socket and
java.net.DatagramSocket

setSendBufferSize() methods for more
information.

so-receive-buffer-
size

N Y Used for udp acknowlegment packets. See
java.net.DatagramSocket

setReceiveBufferSize() methods for more
information.

so-keep-alive Y N true, false See java.net.Socket. setKeepAlive().

so-linger Y N Sets linger to true with supplied value. See
java.net.Socket. setSoLinger().

so-tcp-no-delay Y N true, false See java.net.Socket. setTcpNoDelay().

so-traffic-class Y N See java.net.Socket. setTrafficClass().

local-address N Y On a multi-homed system, for the UDP
adapter, specifies an IP address for the
interface to which the socket will be bound for
reply messages. For a multicast adapter it is
also used to determine which interface the
multicast packets will be sent over. Not
applicable to the TCP adapter.

Table 25.2. IP Inbound Channel Adapter Attributes

Attribute Name TCP? UDP? Allowed Values Attribute Description

protocol Y Y tcp, udp Determines whether the adapter uses TCP or
UDP, over IP.

port Y Y The port on which the adapter listens.

multicast N Y true, false Whether or not the udp adapter uses multicast.

TCP and UDP Support

Spring-WS (2.0.0.M5) 88

Attribute Name TCP? UDP? Allowed Values Attribute Description

multicast-address N Y When multicast is true, the multicast address
to which the adapter joins.

pool-size Y Y Specifies the concurrency. For udp, specifies
how many packets can be handled
concurrently. For tcp, not using nio, specifies
the number of concurrent connections
supported by the adapter. For tcp, using nio,
specifies the number of tcp fragments that are
concurrently reassembled into complete
messages.

receive-buffer-size Y Y For udp, the size of the buffer used to receive
DatagramPackets. Usually set to the MTU
size. If a smaller buffer is used than the size of
the sent packet, truncation can occur. This can
be detected by means of the check-length
attribute.For tcp, the size of the buffer used to
reassemble incoming messages. Effectively
the maximum message size that can be
received.

check-length N Y true, false Whether or not a udp adapter expects a data
length field in the packet received. Used to
detect packet truncation.

using-nio Y N true, false Whether or not the tcp adapter is using NIO.
Refer to the java.nio package for more
information.

using-direct-buffers Y N true, false When using NIO, whether or not the tcp
adapter uses direct buffers. Refer to
java.nio.ByteBuffer documentation for more
information.

message-format Y N length-header, stx-etx,
crlf, serialized,
custom

The formatting that the tcp adapter uses so the
adapter can demarcate messages. Defaults to
length-header. See the discussion above for
details about each format.

custom-socket-
reader-class-name

Y N Subclass of
TcpNetSocket-
Reader or
TcpNioSocket-
Reader

When message-format is 'custom' the name of
the class that implements the custom format.
Must be a subclass of the
TcpNxxSocketReader, depending on whether
using-nio is false or true.

so-timeout Y Y See java.net.Socket and
java.net.DatagramSocket setSoTimeout()
methods for more information.

so-send-buffer-size N Y Used for udp acknowlegment packets. See
java.net.DatagramSocket

setSendBufferSize() methods for more
information.

TCP and UDP Support

Spring-WS (2.0.0.M5) 89

Attribute Name TCP? UDP? Allowed Values Attribute Description

so-receive-buffer-
size

Y Y See java.net.Socket and
java.net.DatagramSocket

setReceiveBufferSize() for more information.

so-keep-alive Y N true, false See java.net.Socket. setKeepAlive().

local-address Y Y On a multi-homed system, specifies an IP
address for the interface to which the socket
will be bound.

close Y N If set to true, instructs the adapter to close the
socket after receiving a message. Defaults to
false.

Table 25.3. TCP Inbound Gateway Attributes

Attribute Name Allowed Values Attribute Description

port The port on which the gateway listens.

pool-size Specifies the number of concurrent connections supported by the
gateway.

receive-buffer-size The size of the buffer used to reassemble incoming messages.
Effectively the maximum message size that can be received.

message-format length-header,
stx-etx, crlf,
serialized, custom

The formatting that the tcp gateway uses for demarcating
incoming requests and formatting responses. Defaults to
length-header. See the discussion above for details about each
format.

custom-socket-
reader-class-name

Subclass of
TcpNetSocket-
Reader

When message-format is 'custom' the name of the class that
implements the custom format. Must be a subclass of the
TcpNetSocketReader.

custom-socket-
writer-class-name

Subclass of
TcpNetSocket-
Writer

When message-format is 'custom' the name of the class that
implements the custom format. Must be a subclass of the
TcpNetSocketWriter.

so-timeout See java.net.Socket setSoTimeout() for more information.

so-send-buffer-size See java.net.Socket setSendBufferSize() methods for more
information.

so-receive-buffer-
size

See java.net.Socket setReceiveBufferSize() for more
information.

so-keep-alive true, false See java.net.Socket. setKeepAlive().

local-address On a multi-homed system, specifies an IP address for the
interface to which the socket will be bound.

close If set to true, instructs the gateway to close the socket after
sending the reply to a message. Defaults to false.

TCP and UDP Support

Spring-WS (2.0.0.M5) 90

Table 25.4. TCP Outbound Gateway Attributes

Attribute Name Allowed Values Attribute Description

host The host name or ip address of the destination.

port The port to which the gateway connects.

receive-buffer-size The size of the buffer used to reassemble incoming messages.
Effectively the maximum message size that can be received.

message-format length-header,
stx-etx, crlf,
serialized, custom

The formatting that the tcp gateway uses for formating requests
and demarcating incoming responses. Defaults to length-header.
See the discussion above for details about each format.

custom-socket-
reader-class-name

Subclass of
TcpNetSocket-
Reader

When message-format is 'custom' the name of the class that
implements the custom format. Must be a subclass of the
TcpNetSocketReader.

custom-socket-
writer-class-name

Subclass of
TcpNetSocket-
Writer

When message-format is 'custom' the name of the class that
implements the custom format. Must be a subclass of the
TcpNetSocketWriter.

so-timeout See java.net.Socket setSoTimeout() for more information.

so-send-buffer-size See java.net.Socket setSendBufferSize() methods for more
information.

so-receive-buffer-
size

See java.net.Socket setReceiveBufferSize() for more
information.

so-keep-alive true, false See java.net.Socket. setKeepAlive().

close If set to true, instructs the adapter to close the socket after
receiving the reply to a message. Defaults to false.

TCP and UDP Support

Spring-WS (2.0.0.M5) 91

Chapter 26. Mail Support

26.1. Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the MailSendingMessageHandler. It delegates to a
configured instance of Spring's JavaMailSender:

JavaMailSender mailSender = (JavaMailSender) context.getBean("mailSender");

MailSendingMessageHandler mailSendingHandler = new MailSendingMessageHandler(mailSender);

MailSendingMessageHandler has various mapping strategies that use Spring's MailMessage abstraction. If the
received Message's payload is already a MailMessage instance, it will be sent directly. Therefore, it is generally
recommended to precede this consumer with a Transformer for non-trivial MailMessage construction
requirements. However, a few simple Message mapping strategies are supported out-of-the-box. For example,
if the message payload is a byte array, then that will be mapped to an attachment. For simple text-based emails,
you can provide a String-based Message payload. In that case, a MailMessage will be created with that String
as the text content. If you are working with a Message payload type whose toString() method returns
appropriate mail text content, then consider adding Spring Integration's ObjectToStringTransformer prior to the
outbound Mail adapter (see the example within Section 9.2, “The <transformer> Element” for more detail).

The outbound MailMessage may also be configured with certain values from the MessageHeaders. If available,
values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and BCC), the
from/reply-to, and the subject. The header names are defined by the following constants:

MailHeaders.SUBJECT
MailHeaders.TO
MailHeaders.CC
MailHeaders.BCC
MailHeaders.FROM
MailHeaders.REPLY_TO

Note
MailHeaders also allows you to override corresponding MailMessage values. For example: If
MailMessage.to is set to 'foo@bar.com' and MailHeaders.TO Message header is provided it will
take precedence and override the corresponding value in MailMessage

26.2. Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the MailReceivingMessageSource. It delegates
to a configured instance of Spring Integration's own MailReceiver interface, and there are two
implementations: Pop3MailReceiver and ImapMailReceiver. The easiest way to instantiate either of these is
by passing the 'uri' for a Mail store to the receiver's constructor. For example:

MailReceiver receiver = new Pop3MailReceiver("pop3://usr:pwd@localhost/INBOX");

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you are using).
Spring Integration provides the ImapIdleChannelAdapter which is itself a Message-producing endpoint. It
delegates to an instance of the ImapMailReceiver but enables asynchronous reception of Mail Messages. There
are examples in the next section of configuring both types of inbound Channel Adapter with Spring

Spring-WS (2.0.0.M5) 92

Integration's namespace support in the 'mail' schema.

26.3. Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mail="http://www.springframework.org/schema/integration/mail"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration/mail
http://www.springframework.org/schema/integration/mail/spring-integration-mail-1.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the MailSender:

<mail:outbound-channel-adapter channel="outboundMail"
mail-sender="mailSender"/>

Alternatively, provide the host, username, and password:

<mail:outbound-channel-adapter channel="outboundMail"
host="somehost" username="someuser" password="somepassword"/>

Note
Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or
cron-trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven (assuming
your mail server supports IMAP IDLE - if not, then polling is the only option). A polling Channel Adapter
simply requires the store URI and the channel to send inbound Messages to. The URI may begin with "pop3" or
"imap":

<mail:inbound-channel-adapter channel="mailIn"
store-uri="imap://usr:pwd@imap.example.com/INBOX">

<poller max-messages-per-poll="3">
<interval-trigger interval="30" time-unit="SECONDS"/>

</poller>
</mail:inbound-channel-adapter>

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter" element
instead. Since the "idle" command enables event-driven notifications, no poller is necessary for this adapter. It
will send a Message to the specified channel as soon as it receives the notification that new mail is available:

<mail:imap-idle-channel-adapter channel="mailIn"
store-uri="imaps://usr:pwd@imap.example.com:993/INBOX"/>

When using the namespace support, a header-enricher Message Transformer is also available. This simplifies
the application of the headers mentioned above to any Message prior to sending to the Mail-sending Channel
Adapter.

<mail:header-enricher subject="Example Mail"
to="to@example.org"
cc="cc@example.org"
bcc="bcc@example.org"

Mail Support

Spring-WS (2.0.0.M5) 93

from="from@example.org"
reply-to="replyTo@example.org"
overwrite="false"/>

Mail Support

Spring-WS (2.0.0.M5) 94

Chapter 27. JMX Support
Spring Integration provides Channel Adapters for receiving and publishing JMX Notifications. There is also an
inbound Channel Adapter for polling JMX MBean attribute values, and an outbound Channel Adapter for
invoking JMX MBean operations.

27.1. Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes
Notifications to which this listener should be registered. A very simple configuration might look like this:

<jmx:notification-listening-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"/>

Tip
The notification-listening-channel-adapter registers with an MBeanServer at startup, and the
default bean name is "mbeanServer" which happens to be the same bean name generated when
using Spring's <context:mbean-server/> element. If you need to use a different name be sure to
include the "mbean-server" attribute.

The adapter can also accept a reference to a NotificationFilter and a "handback" Object to provide some context
that is passed back with each Notification. Both of those attributes are optional. Extending the above example
to include those attributes as well as an explicit MBeanServer bean name would produce the following:

<jmx:notification-listening-channel-adapter id="adapter"
channel="channel"
mbean-server="someServer"
object-name="example.domain:name=somePublisher"
notification-fliter="notificationFilter"
handback="myHandback"/>

Since the notification-listening adapter is registered with the MBeanServer directly, it is event-driven and does
not require any poller configuration.

27.2. Notification Publishing Channel Adapter

The Notification-publishing Channel Adapter is relatively simple. It only requires a JMX ObjectName in its
configuration as shown below.

<context:mbean:export/>

<jmx:notification-publishing-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"/>

It does also require that an MBeanExporter be present in the context. That is why the <context:mbean-export/>
element is shown above as well.

When Messages are sent to the channel for this adapter, the Notification is created from the Message content. If
the payload is a String it will be passed as the "message" text for the Notification. Any other payload type will
be passed as the "userData" of the Notification.

JMX Notifications also have a "type", and it should be a dot-delimited String. There are two ways to provide

Spring-WS (2.0.0.M5) 95

the type. Precedence will always be given to a Message header value associated with the
JmxHeaders.NOTIFICATION_TYPE key. On the other hand, you can rely on a fallback
"default-notification-type" attribute provided in the configuration.

<context:mbean:export/>

<jmx:notification-publishing-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=publisher"
default-notification-type="some.default.type"/>

27.3. Attribute Polling Channel Adapter

The attribute polling adapter is useful when you have a requirement to periodically check on some value that is
available through an MBean as a managed attribute. The poller can be configured in the same way as any other
polling adapter in Spring Integration (or it's possible to rely on the default poller). The "object-name" and
"attribute-name" are required. An MBeanServer reference is also required, but it will automatically check for a
bean named "mbeanServer" by default just like the notification-listening-channel-adapter described above.

<jmx:attribute-polling-channel-adapter id="adapter"
channel="channel"
object-name="example.domain:name=someService"
attribute-name="InvocationCount">

<si:poller max-messages-per-poll="1">
<si:interval-trigger interval="5000"/>

</si:poller>
</jmx:attribute-polling-channel-adapter>

27.4. Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation exposed
by an MBean. Each invocation requires the operation name to be invoked and the ObjectName of the target
MBean. In each case, the adapter will first check for header values on the Message itself. The keys for these
headers are defined as JmxHeaders.OPERATION_NAME and JmxHeaders.OBJECT_NAME, respectively. If
relying on those Message headers, the configuration is trivial.

<jmx:operation-invoking-channel-adapter id="adapter"/>

That adapter only needs to be able to discover the "mbeanServer" bean. If a different bean name is required,
then provide the "mbean-server" attribute with a reference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed payload
with String keys is treated as name/value pairs whereas a List or array would be passed as a simple argument
list (with no explicit parameter names). If the operation requires a single parameter value, then the payload can
represent that single value, and if the operation requires no parameters, then the payload would be ignored.

Similar to the behavior described above for the Notification type resoltion, the
operation-invoking-channel-adapter will also fallback to default values if provided:

<jmx:operation-invoking-channel-adapter id="adapter"
default-object-name="example.domain:name=TestBean"
default-operation-name="ping"/>

If you want to expose a channel for a single common operation to be invoked by Messages that need not
contain headers, then that option works well.

JMX Support

Spring-WS (2.0.0.M5) 96

27.5. Control Bus

Spring Integration components themselves may be exposed as MBeans when the Control Bus is configured. As
described in (EIP), the idea behind the Control Bus is that the same messaging system can be used for
monitoring and managing the components within the framework as is used for "application-level" messaging.
In Spring Integration we build upon the adapters described above so that it's possible to send Messages as a
means of invoking exposed operations. Internally, the Control Bus uses a Spring MBeanExporter instance to
expose the various endpoints and channels. To create an instance of the Control Bus, define a bean and provide
a reference to an MBeanServer and a domain name (we will be providing namespace support). The domain can
be left out in which case the default domain is "org.springframework.integration".

<bean id="controlBus" class="org.springframework.integration.control.ControlBus">
<constructor-arg ref="mbeanServer"/>
<constructor-arg value="example.domain"/>

</bean>

<bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean">
<property name="locateExistingServerIfPossible" value="true"/>

</bean>

The Control Bus has an "operationChannel" that can be accessed for invoking operations on the MBeans that it
has exported. This will also be covered by namespace support soon to make it easier to configure references to
that channel for other producers. We will likely add some other channels for notifications and attribute polling
as well.

The Control Bus functionality is a work in progress. At this time, one can perform some basic monitoring of
Message Channels and/or invoke Lifecycle operations (start/stop) on Message Endpoints. Now that the
foundation is available, however, we will be able to extend the attributes and operations that are being exposed.

JMX Support

Spring-WS (2.0.0.M5) 97

http://www.eaipatterns.com/ControlBus.html

Chapter 28. XMPP Support
Spring Integration provides Channel Adapters for XMPP.

28.1. Inbound Channel Adapter

TODO

<xmpp:foo/>

Tip
Don't forget, it's not actually "foo"!

Note
Really... that won't work.

28.2. XMPP Samples

We really should have some samples...

Spring-WS (2.0.0.M5) 98

Chapter 29. Stream Support

29.1. Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to a Stream
as a message payload to a consumer. Instead messages are created from data that is read from an input stream
and message payloads are written to an output stream one by one.

29.2. Reading from streams

Spring Integration provides two adapters for streams. Both ByteStreamReadingMessageSource and
CharacterStreamReadingMessageSource implement MessageSource. By configuring one of these within a
channel-adapter element, the polling period can be configured, and the Message Bus can automatically detect
and schedule them. The byte stream version requires an InputStream, and the character stream version requires
a Reader as the single constructor argument. The ByteStreamReadingMessageSource also accepts the
'bytesPerMessage' property to determine how many bytes it will attempt to read into each Message. The default
value is 1024

<bean class="org.springframework.integration.stream.ByteStreamReadingMessageSource">
<constructor-arg ref="someInputStream"/>
<property name="bytesPerMessage" value="2048"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamReadingMessageSource">
<constructor-arg ref="someReader"/>

</bean>

29.3. Writing to streams

For target streams, there are also two implementations: ByteStreamWritingMessageHandler and
CharacterStreamWritingMessageHandler. Each requires a single constructor argument - OutputStream for
byte streams or Writer for character streams, and each provides a second constructor that adds the optional
'bufferSize'. Since both of these ultimately implement the MessageHandler interface, they can be referenced
from a channel-adapter configuration as described in more detail in Chapter 6, Channel Adapter.

<bean class="org.springframework.integration.stream.ByteStreamWritingMessageHandler">
<constructor-arg ref="someOutputStream"/>
<constructor-arg value="1024"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamWritingMessageHandler">
<constructor-arg ref="someWriter"/>

</bean>

29.4. Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined. The
following schema locations are needed to use it.

<?xml version="1.0" encoding="UTF-8"?>

Spring-WS (2.0.0.M5) 99

<beans:beans xmlns="http://www.springframework.org/schema/integration/stream"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-integration-stream-1.0.xsd">

To configure the inbound channel adapter the following code snippet shows the different configuration options
that are supported.

<stdin-channel-adapter id="adapterWithDefaultCharset"/>

<stdin-channel-adapter id="adapterWithProvidedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound channel adapters.

<stdout-channel-adapter id="stdoutAdapterWithDefaultCharset" channel="testChannel"/>

<stdout-channel-adapter id="stdoutAdapterWithProvidedCharset" charset="UTF-8" channel="testChannel"/>

<stderr-channel-adapter id="stderrAdapter" channel="testChannel"/>

<stdout-channel-adapter id="newlineAdapter" append-newline="true" channel="testChannel"/>

Stream Support

Spring-WS (2.0.0.M5) 100

Chapter 30. Spring ApplicationEvent Support
Spring Integration provides support for inbound and outbound ApplicationEvents as defined by the
underlying Spring Framework. For more information about the events and listeners, refer to the Spring
Reference Manual.

30.1. Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
ApplicationEventListeningChannelAdapter. This class is an implementation of Spring's
ApplicationListener interface. By default it will pass all received events as Spring Integration Messages. To
limit based on the type of event, configure the list of event types that you want to receive with the 'eventTypes'
property.

30.2. Sending Spring ApplicationEvents

To send Spring ApplicationEvents, create an instance of the ApplicationEventPublishingMessageHandler

and register it within an endpoint. This implementation of the MessageHandler interface also implements
Spring's ApplicationEventPublisherAware interface and thus acts as a bridge between Spring Integration
Messages and ApplicationEvents.

Spring-WS (2.0.0.M5) 101

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Chapter 31. Dealing with XML Payloads

31.1. Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of splitter,
transformer, selector and router designed to make working with xml messages in Spring Integration simple.
The provided messaging components are designed to work with xml represented in a range of formats including
instances of java.lang.String, org.w3c.dom.Document and javax.xml.transform.Source. It should be
noted however that where a DOM representation is required, for example in order to evaluate an XPath
expression, the String payload will be converted into the required type and then converted back again to
String. Components that require an instance of DocumentBuilder will create a namespace aware instance if
one is not provided. Where greater control of the document being created is required an appropriately
configured instance of DocumentBuilder should be provided.

31.2. Transforming xml payloads

This section will explain the workings of UnmarshallingTransformer, MarshallingTransformer,
XsltPayloadTransformer and how to configure them as beans. All of the provided xml transformers extend
AbstractTransformer or AbstractPayloadTransformer and therefore implement Transformer. When
configuring xml transformers as beans in Spring Integration you would normally configure the transformer in
conjunction with either a MessageTransformingChannelInterceptor or a MessageTransformingHandler. This
allows the transformer to be used as either an interceptor, which transforms the message as it is sent or received
to the channel, or as an endpoint. Finally the namespace support will be discussed which allows for the simple
configuration of the transformers as elements in XML.

UnmarshallingTransformer allows an xml Source to be unmarshalled using implementations of Spring OXM
Unmarshaller. Spring OXM provides several implementations supporting marshalling and unmarshalling using
JAXB, Castor and JiBX amongst others. Since the unmarshaller requires an instance of Source where the
message payload is not currently an instance of Source, conversion will be attempted. Currently String and
org.w3c.dom.Document payloads are supported. Custom conversion to a Source is also supported by injecting
an implementation of SourceFactory.

<bean id="unmarshallingTransformer"
class="org.springframework.integration.xml.transformer.UnmarshallingTransformer">

<constructor-arg>
<bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

<property name="contextPath" value="org.example" />
</bean>

</constructor-arg>
</bean>

The MarshallingTransformer allows an object graph to be converted into xml using a Spring OXM
Marshaller. By default the MarshallingTransformer will return a DomResult. However the type of result can
be controlled by configuring an alternative ResultFactory such as StringResultFactory. In many cases it
will be more convenient to transform the payload into an alternative xml format. To achieve this configure a
ResultTransformer. Two implementations are provided, one which converts to String and another which
converts to Document.

<bean id="marshallingTransformer"
class="org.springframework.integration.xml.transformer.MarshallingTransformer">

<constructor-arg>
<bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

<property name="contextPath" value="org.example" />

Spring-WS (2.0.0.M5) 102

</bean>
</constructor-arg>
<constructor-arg>

<bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />
</constructor-arg>

</bean>

By default, the MarshallingTransformer will pass the payload Object to the Marshaller, but if its boolean
"extractPayload" property is set to "false", the entire Message instance will be passed to the Marshaller

instead. That may be useful for certain custom implementations of the Marshaller interface, but typically the
payload is the appropriate source Object for marshalling when delegating to any of the various out-of-the-box
Marshaller implementations.

XsltPayloadTransformer transforms xml payloads using xsl. The transformer requires an instance of either
Resource or Templates. Passing in a Templates instance allows for greater configuration of the
TransformerFactory used to create the template instance. As in the case of
XmlPayloadMarshallingTransformer by default XsltPayloadTransformer will create a message with a
Result payload. This can be customised by providing a ResultFactory and/or a ResultTransformer.

<bean id="xsltPayloadTransformer"
class="org.springframework.integration.xml.transformer.XsltPayloadTransformer">

<constructor-arg value="classpath:org/example/xsl/transform.xsl" />
<constructor-arg>

<bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />
</constructor-arg>

</bean>

31.3. Namespace support for xml transformers

Namespace support for all xml transformers is provided in the Spring Integration xml namespace, a template
for which can be seen below. The namespace support for transformers creates an instance of either
EventDrivenConsumer or PollingConsumer according to the type of the provided input channel. The
namespace support is designed to reduce the amount of xml configuration by allowing the creation of an
endpoint and transformer using one element.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:si-xml="http://www.springframework.org/schema/integration/xml"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/xml
http://www.springframework.org/schema/integration/xml/spring-integration-xml-1.0.xsd">

</beans>

The namespace support for UnmarshallingTransformer is shown below. Since the namespace is now creating
an endpoint instance rather than a transformer, a poller can also be nested within the element to control the
polling of the input channel.

<si-xml:unmarshalling-transformer id="defaultUnmarshaller"
input-channel="input"
output-channel="output"
unmarshaller="unmarshaller"/>

<si-xml:unmarshalling-transformer id="unmarshallerWithPoller"
input-channel="input"
output-channel="output"
unmarshaller="unmarshaller">
<si:poller>

Dealing with XML Payloads

Spring-WS (2.0.0.M5) 103

<si:interval-trigger interval="2000"/>
</si:poller>

<si-xml:unmarshalling-transformer/>

The namespace support for the marshalling transformer requires an input channel, output channel and a
reference to a marshaller. The optional result-type attribute can be used to control the type of result created,
valid values are StringResult or DomResult (the default). Where the provided result types are not sufficient a
reference to a custom implementation of ResultFactory can be provided as an alternative to setting the
result-type attribute using the result-factory attribute. An optional result-transformer can also be specified in
order to convert the created Result after marshalling.

<si-xml:marshalling-transformer
input-channel="marshallingTransformerStringResultFactory"
output-channel="output"
marshaller="marshaller"
result-type="StringResult" />

<si-xml:marshalling-transformer
input-channel="marshallingTransformerWithResultTransformer"
output-channel="output"
marshaller="marshaller"
result-transformer="resultTransformer" />

<bean id="resultTransformer"
class="org.springframework.integration.xml.transformer.ResultToStringTransformer"/>

Namespace support for the XsltPayloadTransformer allows either a resource to be passed in in order to create
the Templates instance or alternatively a precreated Templates instance can be passed in as a reference. In
common with the marshalling transformer the type of the result output can be controlled by specifying either
the result-factory or result-type attribute. A result-transfomer attribute can also be used to reference an
implementation of ResultTransfomer where conversion of the result is required before sending.

<si-xml:xslt-transformer id="xsltTransformerWithResource"
input-channel="withResourceIn"
output-channel="output"
xsl-resource="org/springframework/integration/xml/config/test.xsl"/>

<si-xml:xslt-transformer id="xsltTransformerWithTemplatesAndResultTransformer"
input-channel="withTemplatesAndResultTransformerIn"
output-channel="output"
xsl-templates="templates"
result-transformer="resultTransformer"/>

31.4. Splitting xml messages

XPathMessageSplitter supports messages with either String or Document payloads. The splitter uses the
provided XPath expression to split the payload into a number of nodes. By default this will result in each Node

instance becoming the payload of a new message. Where it is preferred that each message be a Document the
createDocuments flag can be set. Where a String payload is passed in the payload will be converted then split
before being converted back to a number of String messages. The XPath splitter implements MessageHandler

and should therefore be configured in conjunction with an appropriate endpoint (see the namespace support
below for a simpler configuration alternative).

<bean id="splittingEndpoint"
class="org.springframework.integration.endpoint.EventDrivenConsumer">

<constructor-arg ref="orderChannel" />
<constructor-arg>

<bean class="org.springframework.integration.xml.splitter.XPathMessageSplitter">
<constructor-arg value="/order/items" />
<property name="documentBuilder" ref="customisedDocumentBuilder" />
<property name="outputChannel" ref="orderItemsChannel" />

Dealing with XML Payloads

Spring-WS (2.0.0.M5) 104

</bean>
</constructor-arg>

</bean>

31.5. Routing xml messages using XPath

Two Router implementations based on XPath are provided XPathSingleChannelRouter and
XPathMultiChannelRouter. The implementations differ in respect to how many channels any given message
may be routed to, exactly one in the case of the single channel version or zero or more in the case of the
multichannel router. Both evaluate an XPath expression against the xml payload of the message, supported
payload types by default are Node, Document and String. For other payload types a custom implementation of
XmlPayloadConverter can be provided. The router implementations use ChannelResolver to convert the
result(s) of the XPath expression to a channel name. By default a BeanFactoryChannelResolver strategy will
be used, this means that the string returned by the XPath evaluation should correspond directly to the name of a
channel. Where this is not the case an alternative implementation of ChannelResolver can be used. Where
there is a simple mapping from Xpath result to channel name the provided MapBasedChannelResolver can be
used.

<!-- Expects a channel for each value of order type to exist -->
<bean id="singleChannelRoutingEndpoint"

class="org.springframework.integration.endpoint.EventDrivenConsumer">
<constructor-arg ref="orderChannel" />
<constructor-arg>

<bean class="org.springframework.integration.xml.router.XPathSingleChannelRouter">
<constructor-arg value="/order/@type" />

</bean>
</constructor-arg>

</bean>

<!-- Multi channel router which uses a map channel resolver to resolve the channel name
based on the XPath evaluation result Since the router is multi channel it may deliver
message to one or both of the configured channels -->

<bean id="multiChannelRoutingEndpoint"
class="org.springframework.integration.endpoint.EventDrivenConsumer">

<constructor-arg ref="orderChannel" />
<constructor-arg>

<bean class="org.springframework.integration.xml.router.XPathMultiChannelRouter">
<constructor-arg value="/order/recipient" />
<property name="channelResolver">

<bean class="org.springframework.integration.channel.MapBasedChannelResolver">
<constructor-arg>

<map>
<entry key="accounts"

value-ref="accountConfirmationChannel" />
<entry key="humanResources"

value-ref="humanResourcesConfirmationChannel" />
</map>

</constructor-arg>
</bean>

</property>
</bean>

</constructor-arg>
</bean>

31.6. Selecting xml messages using XPath

Two MessageSelector implementations are provided, BooleanTestXPathMessageSelector and
StringValueTestXPathMessageSelector. BooleanTestXPathMessageSelector requires an XPathExpression
which evaluates to a boolean, for example boolean(/one/two) which will only select messages which have an
element named two which is a child of a root element named one. StringValueTestXPathMessageSelector

Dealing with XML Payloads

Spring-WS (2.0.0.M5) 105

evaluates any XPath expression as a String and compares the result with the provided value.

<!-- Interceptor which rejects messages that do not have a root element order -->
<bean id="orderSelectingInterceptor"

class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">
<constructor-arg>

<bean class="org.springframework.integration.xml.selector.BooleanTestXPathMessageSelector">
<constructor-arg value="boolean(/order)" />

</bean>
</constructor-arg>

</bean>

<!-- Interceptor which rejects messages that are not version one orders -->
<bean id="versionOneOrderSelectingInterceptor"

class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">
<constructor-arg>

<bean class="org.springframework.integration.xml.selector.StringValueTestXPathMessageSelector">
<constructor-arg value="/order/@version" index="0"/>
<constructor-arg value="1" index="1"/>

</bean>
</constructor-arg>

</bean>

31.7. XPath components namespace support

All XPath based components have namespace support allowing them to be configured as Message Endpoints
with the exception of the XPath selectors which are not designed to act as endpoints. Each component allows
the XPath to either be referenced at the top level or configured via a nested xpath-expression element. So the
following configurations of an xpath-selector are all valid and represent the general form of XPath namespace
support. All forms of XPath expression result in the creation of an XPathExpression using the Spring
XPathExpressionFactory

<si-xml:xpath-selector id="xpathRefSelector"
xpath-expression="refToXpathExpression"
evaluation-result-type="boolean" />

<si-xml:xpath-selector id="selectorWithNoNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/name"/>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithOneNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name"

ns-prefix="ns1" ns-uri="www.example.org" />
</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithTwoNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name/ns2:type">

<map>
<entry key="ns1" value="www.example.org/one" />
<entry key="ns2" value="www.example.org/two" />

</map>
</si-xml:xpath-expression>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithNamespaceMapRef" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name/ns2:type"

namespace-map="defaultNamespaces"/>
</si-xml:xpath-selector>

<util:map id="defaultNamespaces">
<util:entry key="ns1" value="www.example.org/one" />
<util:entry key="ns2" value="www.example.org/two" />

</util:map>

XPath splitter namespace support allows the creation of a Message Endpoint with an input channel and output
channel.

<!-- Split the order into items creating a new message for each item node -->

Dealing with XML Payloads

Spring-WS (2.0.0.M5) 106

<si-xml:xpath-splitter id="orderItemSplitter"
input-channel="orderChannel"
output-channel="orderItemsChannel">

<si-xml:xpath-expression expression="/order/items"/>
</si-xml:xpath-splitter>

<!-- Split the order into items creating a new document for each item-->
<si-xml:xpath-splitter id="orderItemDocumentSplitter"

input-channel="orderChannel"
output-channel="orderItemsChannel"
create-documents="true">

<si-xml:xpath-expression expression="/order/items"/>
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

</si-xml:xpath-splitter>

XPath router namespace support allows for the creation of a Message Endpoint with an input channel but no
output channel since the output channel is determined dynamically. The multi-channel attribute causes the
creation of a multi channel router capable of routing a single message to many channels when true and a single
channel router when false.

<!-- route the message according to exactly one order type channel -->
<si-xml:xpath-router id="orderTypeRouter" input-channel="orderChannel" multi-channel="false">

<si-xml:xpath-expression expression="/order/type"/>
</si-xml:xpath-router>

<!-- route the order to all responders-->
<si-xml:xpath-router id="responderRouter" input-channel="orderChannel" multi-channel="true">

<si-xml:xpath-expression expression="/request/responders"/>
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

</si-xml:xpath-router>

Dealing with XML Payloads

Spring-WS (2.0.0.M5) 107

Chapter 32. Security in Spring Integration

32.1. Introduction

Spring Integration provides integration with the Spring Security project to allow role based security checks to
be applied to channel send and receive invocations.

32.2. Securing channels

Spring Integration provides the interceptor ChannelSecurityInterceptor, which extends
AbstractSecurityInterceptor and intercepts send and receive calls on the channel. Access decisions are then
made with reference to ChannelInvocationDefinitionSource which provides the definition of the send and
receive security constraints. The interceptor requires that a valid SecurityContext has been established by
authenticating with Spring Security, see the Spring Security reference documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists of the secured
channels tag which allows definition of one or more channel name patterns in conjunction with a definition of
the security configuration for send and receive. The pattern is a java.util.regexp.Pattern.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:si-security="http://www.springframework.org/schema/integration/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:security="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-2.0.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/security
http://www.springframework.org/schema/integration/security/spring-integration-security-1.0.xsd">

<si-security:secured-channels>
<si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</si-security:secured-channels>

By default the secured-channels namespace element expects a bean named authenticationManager which
implements AuthenticationManager and a bean named accessDecisionManager which implements
AccessDecisionManager. Where this is not the case references to the appropriate beans can be configured as
attributes of the secured-channels element as below.

<si-security:secured-channels access-decision-manager="customAccessDecisionManager"
authentication-manager="customAuthenticationManager">

<si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</si-security:secured-channels>

Spring-WS (2.0.0.M5) 108

http://static.springframework.org/spring-security/site/

Appendix A. Spring Integration Samples
Note
Starting with the current release of Spring Integration the samples are distributed as independent
Maven-based projects (http://maven.apache.org/) to minimize the setup time. Since each project is
also an Eclipse-based project, they can be imported as is using the Eclipse Import wizard. If you
prefer another IDE, configuration should be very trivial, since a special Maven profile was setup to
download all of the required dependencies for all samples. Detailed instructions on how to build
and run the samples are provided in the README.txt file located in the samples directory of the
main distribution.

A.1. The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration distribution. This
sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings.

The domain is that of a Cafe, and the basic flow is depicted in the following diagram:

The Order object may contain multiple OrderItems. Once the order is placed, a Splitter will break the
composite order message into a single message per drink. Each of these is then processed by a Router that
determines whether the drink is hot or cold (checking the OrderItem object's 'isIced' property). The Barista

prepares each drink, but hot and cold drink preparation are handled by two distinct methods: 'prepareHotDrink'
and 'prepareColdDrink'. The prepared drinks are then sent to the Waiter where they are aggregated into a
Delivery object.

Here is the XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:stream="http://www.springframework.org/schema/integration/stream"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-integration-stream-1.0.xsd">

<gateway id="cafe" service-interface="org.springframework.integration.samples.cafe.Cafe"/>

<channel id="orders"/>
<splitter input-channel="orders" ref="orderSplitter" method="split" output-channel="drinks"/>

<channel id="drinks"/>
<router input-channel="drinks" ref="drinkRouter" method="resolveOrderItemChannel"/>

<channel id="coldDrinks">
<queue capacity="10"/>

</channel>

Spring-WS (2.0.0.M5) 109

http://maven.apache.org/
http://www.eaipatterns.com/ramblings.html

<service-activator input-channel="coldDrinks" ref="barista"
method="prepareColdDrink" output-channel="preparedDrinks"/>

<channel id="hotDrinks">
<queue capacity="10"/>

</channel>
<service-activator input-channel="hotDrinks" ref="barista"

method="prepareHotDrink" output-channel="preparedDrinks"/>

<channel id="preparedDrinks"/>
<aggregator input-channel="preparedDrinks" ref="waiter"

method="prepareDelivery" output-channel="deliveries"/>

<stream:stdout-channel-adapter id="deliveries"/>

<beans:bean id="orderSplitter"
class="org.springframework.integration.samples.cafe.xml.OrderSplitter"/>

<beans:bean id="drinkRouter"
class="org.springframework.integration.samples.cafe.xml.DrinkRouter"/>

<beans:bean id="barista" class="org.springframework.integration.samples.cafe.xml.Barista"/>

<beans:bean id="waiter" class="org.springframework.integration.samples.cafe.xml.Waiter"/>

<poller id="poller" default="true">
<interval-trigger interval="1000"/>

</poller>

</beans:beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint will
manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent that add the
"auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are simple POJOs
with strongly typed method arguments. For example, here is the Splitter:

public class OrderSplitter {

public List<OrderItem> split(Order order) {
return order.getItems();

}
}

In the case of the Router, the return value does not have to be a MessageChannel instance (although it can be).
As you see in this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {

public String resolveOrderItemChannel(OrderItem orderItem) {
return (orderItem.isIced()) ? "coldDrinks" : "hotDrinks";

}
}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Barista instance but different methods: 'prepareHotDrink' or 'prepareColdDrink'
corresponding to the two channels where order items have been routed.

public class Barista {

private long hotDrinkDelay = 5000;
private long coldDrinkDelay = 1000;

private AtomicInteger hotDrinkCounter = new AtomicInteger();
private AtomicInteger coldDrinkCounter = new AtomicInteger();

public void setHotDrinkDelay(long hotDrinkDelay) {
this.hotDrinkDelay = hotDrinkDelay;

}

public void setColdDrinkDelay(long coldDrinkDelay) {
this.coldDrinkDelay = coldDrinkDelay;

Spring Integration Samples

Spring-WS (2.0.0.M5) 110

}

public Drink prepareHotDrink(OrderItem orderItem) {
try {

Thread.sleep(this.hotDrinkDelay);
System.out.println(Thread.currentThread().getName()

+ " prepared hot drink #" + hotDrinkCounter.incrementAndGet()
+ " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),
orderItem.isIced(), orderItem.getShots());

}
catch (InterruptedException e) {

Thread.currentThread().interrupt();
return null;

}
}

public Drink prepareColdDrink(OrderItem orderItem) {
try {

Thread.sleep(this.coldDrinkDelay);
System.out.println(Thread.currentThread().getName()

+ " prepared cold drink #" + coldDrinkCounter.incrementAndGet()
+ " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),
orderItem.isIced(), orderItem.getShots());

}
catch (InterruptedException e) {

Thread.currentThread().interrupt();
return null;

}
}

}

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks take 5
times as long to prepare). This simulates work being completed at different rates. When the CafeDemo 'main'
method runs, it will loop 100 times sending a single hot drink and a single cold drink each time. It actually
sends the messages by invoking the 'placeOrder' method on the Cafe interface. Above, you will see that the
<gateway> element is specified in the configuration file. This triggers the creation of a proxy that implements
the given 'service-interface' and connects it to a channel. The channel name is provided on the @Gateway
annotation of the Cafe interface.

public interface Cafe {

@Gateway(requestChannel="orders")
void placeOrder(Order order);

}

Finally, have a look at the main() method of the CafeDemo itself.

public static void main(String[] args) {
AbstractApplicationContext context = null;
if (args.length > 0) {

context = new FileSystemXmlApplicationContext(args);
}
else {

context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo.class);
}
Cafe cafe = (Cafe) context.getBean("cafe");
for (int i = 1; i <= 100; i++) {

Order order = new Order(i);
order.addItem(DrinkType.LATTE, 2, false);
order.addItem(DrinkType.MOCHA, 3, true);
cafe.placeOrder(order);

}
}

Tip

Spring Integration Samples

Spring-WS (2.0.0.M5) 111

To run this sample as well as 8 others, refer to the README.txt within the "samples" directory of
the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds. However,
by configuring a poller with a concurrent task executor, you can dramatically change the results. For example,
you could use a thread pool executor with 5 workers for the hot drink barista while keeping the cold drink
barista as it is:

<service-activator input-channel="hotDrinks"
ref="barista"
method="prepareHotDrink"
output-channel="preparedDrinks"/>

<service-activator input-channel="hotDrinks"
ref="barista"
method="prepareHotDrink"
output-channel="preparedDrinks">

<poller task-executor="pool">
<interval-trigger interval="1000"/>

</poller>
</service-activator>

<task:executor id="pool" pool-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. You will see that the hot drinks are
prepared by the task-executor threads. If you provide a much shorter poller interval (such as 100 milliseconds),
then you will notice that occasionally it throttles the input by forcing the task-scheduler (the caller) to invoke
the operation.

Note
In addition to experimenting with the poller's concurrency settings, you can also add the
'transactional' sub-element and then refer to any PlatformTransactionManager instance within the
context.

A.2. The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how to use some of
the provided components which deal with xml payloads. The sample uses the idea of processing an order for
books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the XPath
splitter component.

<si-xml:xpath-splitter id="orderItemSplitter" input-channel="ordersChannel"
output-channel="stockCheckerChannel" create-documents="true">

<si-xml:xpath-expression expression="/orderNs:order/orderNs:orderItem" namespace-map="orderNamespaceMap" />
</si-xml:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item document is
enriched with information from the stock checker about order item stock level. This enriched order item
message is then used to route the message. In the case where the order item is in stock the message is routed to
the warehouse. The XPath router makes use of a MapBasedChannelResolver which maps the XPath evaluation
result to a channel reference.

Spring Integration Samples

Spring-WS (2.0.0.M5) 112

<si-xml:xpath-router id="instockRouter" channel-resolver="mapChannelResolver"
input-channel="orderRoutingChannel" resolution-required="true">

<si-xml:xpath-expression expression="/orderNs:orderItem/@in-stock" namespace-map="orderNamespaceMap" />
</si-xml:xpath-router>

<bean id="mapChannelResolver"
class="org.springframework.integration.channel.MapBasedChannelResolver">
<property name="channelMap">

<map>
<entry key="true" value-ref="warehouseDispatchChannel" />
<entry key="false" value-ref="outOfStockChannel" />

</map>
</property>

</bean>

Where the order item is not in stock the message is transformed using xslt into a format suitable for sending to
the supplier.

<si-xml:xslt-transformer input-channel="outOfStockChannel" output-channel="resupplyOrderChannel"
xsl-resource="classpath:org/springframework/integration/samples/xml/bigBooksSupplierTransformer.xsl"/>

A.3. The OSGi Samples

This release of Spring Integration includes several samples that are OSGi enabled as well as samples that were
specifically designed to show some of the other benefits of OSGi and Spring Integration when used together.
First lets look at the two familiar examples that are also configured to be valid OSGi bundles. These are Hello
World and Cafe. All you need to do to see these samples work in an OSGi environment is deploy the generated
JAR into such an environment.

Use Maven to generate the JAR by executing the 'mvn install' command on either of these projects. This will
generate the JAR file in the target directory. Now you can simply drop that JAR file into the deployment
directory of your OSGi platform. For example, if you are using SpringSource dm Server, drop the files into the
'pickup' directory within the dm Server home directory.

Note
Prior to deploying and testing Spring Integration samples in the dm Server or any other OSGi
server platform, you must have the Spring Integration and Spring bundles installed on that
platform. For example, to install Spring Integration into SpringSource dm Server, copy all JAR
files that are located in the 'dist' directory of your Spring Integration distribution into the
'repository/bundles/usr' directory of your dm Server instance (see the dm Server User Guide for
more detail on how to install bundles).

The Spring Integration samples require a few other bundles to be installed. For the 1.0.3 release, the full list
including transitive dependencies is:

• org.apache.commons.codec-1.3.0.jar

• org.apache.commons.collections-3.2.0.jar

• org.apache.commons.httpclient-3.1.0.jar

• org.apache.ws.commons.schema-1.3.2.jar

• org.springframework.oxm-1.5.5.A.jar

Spring Integration Samples

Spring-WS (2.0.0.M5) 113

http://www.springsource.com/products/dmserver
http://static.springsource.com/projects/dm-server/1.0.x/user-guide/htmlsingle/user-guide.html

• org.springframework.security-2.0.4.A.jar

• org.springframework.ws-1.5.5.A.jar

• org.springframework.xml-1.5.5.A.jar

These are all located within the 'lib' directory of the Spring Integration distribution. So, you can simply copy
those JARs into the dm Server 'repository/bundles/usr' directory as well.

Note
The Spring Framework bundles (aop, beans, context, etc.) are also included in the 'lib' directory of
the Spring Integration distribution, but they do not need to be installed since they are already part
of the dm Server infrastructure. Also, note that the versions listed above are those included with the
Spring Integration 1.0.3 release. Newer versions of individual JARs may be used as long as they
are within the range specified in the MANIFEST.MF files of those bundles that depend upon them.

Tip
The bundles listed above are appropriate for a SpringSource dm Server 1.0.x deployment
environment with a Spring Framework 2.5.x foundation. That is the version against which Spring
Integration 1.0.3 has been developed and tested. However, as of the time of the Spring Integration
1.0.3 release, the Spring Framework 3.0 release candidates are about to be available, and the dm
Server 2.0.x milestones are available. If you want to try running these samples in that environment,
then you will need to replace the Spring Security and Spring Web Services bundles with versions
that support Spring 3.0. The OXM functionality is moving into the Spring Framework itself for the
3.0 release. Otherwise, Spring Integration 1.0.3 has been superficially tested against the Spring 3.0
snapshots available at the time of its release. In fact, some internal changes were made in the 1.0.3
release specifically to support Spring 3.0 (whereas 1.0.2 does not). Spring Integration 2.0 will be
built upon a Spring 3.0 foundation.

To demonstrate some of the benefits of running Spring Integration projects in an OSGi environment (e.g.
modularity, OSGi service dynamics, etc.), we have included a couple new samples that are dedicated to
highlighting those benefits. In the 'samples' directory, you will find the following two projects:

• osgi-inbound (producer bundle)

• osgi-outbound (consumer bundle)

Unlike the other samples in the distribution, these are not Maven enabled. Instead, we have simply configured
them as valid dm Server Bundle projects. That means you can import these projects directly into an STS
workspace using the "Existing Projects into Workspace" option from the Eclipse Import wizard. Then, you can
take advantage of the STS dm Server tools to deploy them into a SpringSource dm Server instance.

Note
A simple Ant 'build.xml' file has been included within each of these projects as well. The build
files contain a single 'jar' target. Therefore, after these projects have been built within Eclipse/STS,
you can generate the bundle (JAR) directly and deploy it manually.

The structure of these projects is very simple, yet the concepts they showcase are quite powerful. The
'osgi-inbound' module enables sending a Message to a Publish-Subscribe Channel using a Spring Integration
Gateway proxy. The interesting part, however, is that the Publish-Subscribe Channel is exported as an OSGi
service via the <osgi:service/> element. As a result, any other bundles can be developed, deployed, and
maintained independently yet still subscribe to that channel.

Spring Integration Samples

Spring-WS (2.0.0.M5) 114

The 'osgi-outbound' module is an example of such a subscribing consumer bundle. It uses the corresponding
<osgi:reference/> element to locate the channel exported by the 'osgi-inbound' bundle. It also contains
configuration for a <file:outbound-gateway/> which is a subscriber to that channel and will write the Message
content to a file once it arrives. It then sends a response Message with the name of the file and its location.

To make it easy to run, we've exposed a command-line interface where you can type in the command, the
message, and the file name to execute the demo. This is exposed through the OSGi console. Likewise, the
response that provides the name and location of the resulting file will also be visible within the OSGi console.

To run these samples, make sure your OSGi environment is properly configured to host Spring Integration
bundles (as described in the note above). Deploy the producer bundle (osgi-inbound) first, and then deploy the
consumer bundle (osgi-outbound). After you have deployed these bundles, open the OSGi console and type the
following command:

osgi> help

You will see the following amidst the output:

---Spring Integration CLI-based OSGi Demo---
siSend <message> <filename> - send text to be written to a file

As you can see, that describes the command that you will be able to use to send messages. If you are interested
in how it is implemented or want to customize message sending logic or even create a new command look at
InboundDemoBundleActivator.java in the consumer bundle.

Tip
When using the SpringSource Tool Suite, you can open the OSGi console by first opening the dm
Server view and then choosing the 'Server Console' tab at the bottom (to open the dm Server view,
navigate to the dm Server instance listed in the 'Servers' view and either double-click or hit F3).
Alternatively, you can open the OSGi console by connecting to port 2401 via telnet (as long as that
is enabled, and for dm Server, it is enabled by default):

telnet localhost 2401

Now send a message by typing:

osgi> siSend "Hello World" hello.txt

You will see something similar to the following in the OSGi console:

Sending message: 'Hello World'
Message sent and its contents were written to:
/usr/local/dm-server/work/tmp/spring-integration-samples/output/hello.txt

Note
It is not necessary to wrap the message in quotes if it does not contain spaces. Go ahead and open
up the file and verify that the message content was written to it.

Let's assume you wanted to change the directory to which the files are written or make any other change to the
consumer bundle (osgi-outboud). You only need to update the consumer bundle and not the producer bundle.
So, go ahead and change the directory in the 'osgi-outbound.xml' file located within 'src/META-INF/spring' and
refresh the consumer bundle.

Spring Integration Samples

Spring-WS (2.0.0.M5) 115

Tip
If using STS to deploy to dm Server, the refresh will happen automatically. If replacing bundles
manually, you can issue the command 'refresh n' in the OSGi console (where n would be the ID of
the bundle as displayed at any point after issuing the 'ss' command to see the short status output).

You will see that the change takes affect immediately. Not only that, you could even start developing and
deploying new bundles that subscribe to the messages produced by the producer bundle the same way as the
existing consumer bundle (osgi-outbound) does. With a publish-subscribe-channel any newly deployed bundles
would start receiving each Message as well.

Note
If you also want to modify and refresh the producer bundle, be sure to refresh the consumer bundle
afterwards as well. This is necessary because the consumer's subscription must be explicitly
re-enabled after the producer's channel disappears. You could alternatively deploy a relatively
static bundle that defines channels so that producers and consumers can be completely dynamic
without affecting each other at all. In Spring Integration 2.0, we plan to support automatic
re-subscription and more through the use of a Control Bus.

That pretty much wraps up this very simple example. Hopefully it has successfully demonstrated the benefits of
modularity and OSGi service dynamics while working with Spring Integration. Feel free to experiment by
following some of the suggestions mentioned above. For deeper coverage of the applicability of OSGi when
used with Spring Integration, read this blog by Spring Integration team member Iwein Fuld.

Spring Integration Samples

Spring-WS (2.0.0.M5) 116

http://blog.springsource.com/2009/02/27/spring-integration-on-dm-server/

Appendix B. Configuration

B.1. Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is also
possible to mix and match the various techniques according to the particular problem at hand. For example, you
may choose the XSD-based namespace for the majority of configuration combined with a handful of objects
that are configured with annotations. As much as possible, the two provide consistent naming. XML elements
defined by the XSD schema will match the names of annotations, and the attributes of those XML elements
will match the names of annotation properties. Direct usage of the API is of course always an option, but we
expect that most users will choose one of the higher-level options, or a combination of the namespace-based
and annotation-driven configuration.

B.2. Namespace Support

Spring Integration components can be configured with XML elements that map directly to the terminology and
concepts of enterprise integration. In many cases, the element names match those of the Enterprise Integration
Patterns.

To enable Spring Integration's core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

You can choose any name after "xmlns:"; integration is used here for clarity, but you might prefer a shorter
abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of auto-completion
may convince you to keep the longer name for clarity. Alternatively, you can create configuration files that use
the Spring Integration schema as the primary namespace:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other hand, if
you want to define a generic Spring "bean" within the same configuration file, then a prefix would be required
for the bean element (<beans:bean ... />). Since it is generally a good idea to modularize the configuration files
themselves based on responsibility and/or architectural layer, you may find it appropriate to use the latter
approach in the integration-focused configuration files, since generic beans are seldom necessary within those
same files. For purposes of this documentation, we will assume the "integration" namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter type

Spring-WS (2.0.0.M5) 117

http://www.eaipatterns.com
http://www.eaipatterns.com

(JMS, File, etc.) that provides namespace support defines its elements within a separate schema. In order to use
these elements, simply add the necessary namespaces with an "xmlns" entry and the corresponding
"schemaLocation" mapping. For example, the following root element shows several of these namespace
declarations:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:file="http://www.springframework.org/schema/integration/file"
xmlns:jms="http://www.springframework.org/schema/integration/jms"
xmlns:mail="http://www.springframework.org/schema/integration/mail"
xmlns:rmi="http://www.springframework.org/schema/integration/rmi"
xmlns:ws="http://www.springframework.org/schema/integration/ws"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-integration-file-1.0.xsd
http://www.springframework.org/schema/integration/jms
http://www.springframework.org/schema/integration/jms/spring-integration-jms-1.0.xsd
http://www.springframework.org/schema/integration/mail
http://www.springframework.org/schema/integration/mail/spring-integration-mail-1.0.xsd
http://www.springframework.org/schema/integration/rmi
http://www.springframework.org/schema/integration/rmi/spring-integration-rmi-1.0.xsd
http://www.springframework.org/schema/integration/ws
http://www.springframework.org/schema/integration/ws/spring-integration-ws-1.0.xsd">

...
</beans>

The reference manual provides specific examples of the various elements in their corresponding chapters. Here,
the main thing to recognize is the consistency of the naming for each namespace URI and schema location.

B.3. Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only a
couple configuration options to be aware of. First, you may want to control the central TaskScheduler instance.
You can do so by providing a single bean with the name "taskScheduler". This is also defined as a constant:

IntegrationContextUtils.TASK_SCHEDULER_BEAN_NAME

By default Spring Integration uses the SimpleTaskScheduler implementation. That in turn just delegates to any
instance of Spring's TaskExecutor abstraction. Therefore, it's rather trivial to supply your own configuration.
The "taskScheduler" bean is then responsible for managing all pollers. The TaskScheduler will startup
automatically by default. If you provide your own instance of SimpleTaskScheduler however, you can set the
'autoStartup' property to false instead.

When Polling Consumers provide an explicit task-executor reference in their configuration, the invocation of
the handler methods will happen within that executor's thread pool and not the main scheduler pool. However,
when no task-executor is provided for an endpoint's poller, it will be invoked by one of the main scheduler's
threads.

Note
An endpoint is a Polling Consumer if its input channel is one of the queue-based (i.e. pollable)
channels. On the other hand, Event Driven Consumers are those whose input channels have
dispatchers instead of queues (i.e. they are subscribable). Such endpoints have no poller
configuration since their handlers will be invoked directly.

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

Configuration

Spring-WS (2.0.0.M5) 118

B.4. Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components. The
Message Channel plays an important role in that producers and consumers do not have to know about each
other. However, the advantages also have some drawbacks. Some things become more complicated in a very
loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or may not be
operating within the same thread as the sender. If using a simple default DirectChannel (with the <channel>
element that has no <queue> sub-element and no 'task-executor' attribute), the Message-handling will occur in
the same thread as the Message-sending. In that case, if an Exception is thrown, it can be caught by the sender
(or it may propagate past the sender if it is an uncaught RuntimeException). So far, everything is fine. This is
the same behavior as an Exception-throwing operation in a normal call stack. However, when adding the
asynchronous aspect, things become much more complicated. For instance, if the 'channel' element does
provide a 'queue' sub-element, then the component that handles the Message will be operating in a different
thread than the sender. The sender may have dropped the Message into the channel and moved on to other
things. There is no way for the Exception to be thrown directly back to that sender using standard Exception
throwing techniques. Instead, to handle errors for asynchronous processes requires an asynchronous
error-handling mechanism as well.

Spring Integration supports error handling for its components by publishing errors to a Message Channel.
Specifically, the Exception will become the payload of a Spring Integration Message. That Message will then
be sent to a Message Channel that is resolved in a way that is similar to the 'replyChannel' resolution. First, if
the request Message being handled at the time the Exception occurred contains an 'errorChannel' header (the
header name is defined in the constant: MessageHeaders.ERROR_CHANNEL), the ErrorMessage will be sent
to that channel. Otherwise, the error handler will send to a "global" channel whose bean name is "errorChannel"
(this is also defined as a constant: IntegrationContextUtils.ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel" bean will be
created behind the scenes. However, you can just as easily define your own if you want to control the settings.

<channel id="errorChannel">
<queue capacity="500"/>

</channel>

Note
The default "errorChannel" is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply to
Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This does not
apply to Exceptions thrown by a handler that is operating within the same thread as the sender (e.g. through a
DirectChannel as described above).

Note
When Exceptions occur in a scheduled poller task's execution, those exceptions will be wrapped in
ErrorMessages and sent to the 'errorChannel' as well.

To enable global error handling, simply register a handler on that channel. For example, you can configure
Spring Integration's ErrorMessageExceptionTypeRouter as the handler of an endpoint that is subscribed to the

Configuration

Spring-WS (2.0.0.M5) 119

'errorChannel'. That router can then spread the error messages across multiple channels based on Exception

type.

B.5. Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to use
annotations. First, Spring Integration provides the class-level @MessageEndpoint as a stereotype annotation
meaning that is itself annotated with Spring's @Component annotation and therefore is recognized
automatically as a bean definition when using Spring component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated method is capable
of handling a message. The following example demonstrates both:

@MessageEndpoint
public class FooService {

@ServiceActivator
public void processMessage(Message message) {

...
}

}

Exactly what it means for the method to "handle" the Message depends on the particular annotation. The
following are available with Spring Integration, and the behavior of each is described in its own chapter or
section within this reference: @Transformer, @Router, @Splitter, @Aggregator, @ServiceActivator, and
@ChannelAdapter.

Note
The @MessageEndpoint is not required if using XML configuration in combination with
annotations. If you want to configure a POJO reference from the "ref" attribute of a
<service-activator/> element, it is sufficient to provide the method-level annotations. In that case,
the annotation prevents ambiguity even when no "method" attribute exists on the
<service-activator/> element.

In most cases, the annotated handler method should not require the Message type as its parameter. Instead, the
method parameter type can match the message's payload type.

public class FooService {

@ServiceActivator
public void bar(Foo foo) {

...
}

}

When the method parameter should be mapped from a value in the MessageHeaders, another option is to use
the parameter-level @Header annotation. In general, methods annotated with the Spring Integration annotations
can either accept the Message itself, the message payload, or a header value (with @Header) as the parameter.
In fact, the method can accept a combination, such as:

public class FooService {

@ServiceActivator
public void bar(String payload, @Header("x") int valueX, @Header("y") int valueY) {

...
}

Configuration

Spring-WS (2.0.0.M5) 120

}

There is also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

@ServiceActivator
public void bar(String payload, @Headers Map<String, Object> headerMap) {

...
}

}

A more powerful and flexible way to map Messages to method arguments is to use @MessageMapping

annotation which allows you to define expression via Spring 3.0 Expression Language support to help parse the
message payload and/or header and map the parsed values to method arguments.

For example:

public void fromMessageToMethod(@MessageMapping("headers.day") String argA,
@MessageMapping("#this") Message message,
@MessageMapping("payload") Employee payloadArg,
@MessageMapping("payload.fname") String value,
@MessageMapping("headers") Map headers) { ... }

As you can see, the above method takes 5 arguments where:

• First - will be mapped to the value of 'day' header

• Second - will be mapped to the Message itself

• Third - will be mapped to the Payload

• Fourth - will be mapped to the 'fname' property of a Payload object

• Fifth - will be mapped to MessageHeaders

Tip
A Map-typed argument does not strictly require the use of the @Headers annotation. In other
words the following is also valid:

public void bar(String payload, Map<String, Object> headerMap)

However this can lead to unresolvable ambiguities if the payload is itself a Map. For that reason,
we highly recommend using the annotation whenever expecting the headers. For a much more
detailed description, see the javadoc for MethodParameterMessageMapper.

For several of these annotations, when a Message-handling method returns a non-null value, the endpoint will
attempt to send a reply. This is consistent across both configuration options (namespace and annotations) in that
such an endpoint's output channel will be used if available, and the REPLY_CHANNEL message header value
will be used as a fallback.

Tip
The combination of output channels on endpoints and the reply channel message header enables a
pipeline approach where multiple components have an output channel, and the final component
simply allows the reply message to be forwarded to the reply channel as specified in the original

Configuration

Spring-WS (2.0.0.M5) 121

request message. In other words, the final component depends on the information provided by the
original sender and can dynamically support any number of clients as a result. This is an example
of Return Address.

In addition to the examples shown here, these annotations also support inputChannel and outputChannel
properties.

public class FooService {

@ServiceActivator(inputChannel="input", outputChannel="output")
public void bar(String payload, @Headers Map<String, Object> headerMap) {

...
}

}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generally
recommended to use XML for the endpoints, since it is easier to keep track of the overall configuration in a
single, external location (and besides the namespace-based XML configuration is not very verbose). If you do
prefer to provide channels with the annotations however, you just need to enable a SI Annotations
BeanPostProcessor. The following element should be added:

<int:annotation-config/>

Note
When configuring the "inputChannel" and "outputChannel" with annotations, the "inputChannel"
must be a reference to a SubscribableChannel instance. Otherwise, it would be necessary to also
provide the full poller configuration via annotations, and those settings (e.g. the trigger for
scheduling the poller) should be externalized rather than hard-coded within an annotation. If the
input channel that you want to receive Messages from is indeed a PollableChannel instance, one
option to consider is the Messaging Bridge. Spring Integration's "bridge" element can be used to
connect a PollableChannel directly to a SubscribableChannel. Then, the polling metadata is
externally configured, but the annotation option is still available. For more detail see Chapter 15,
Messaging Bridge.

B.6. Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments without
providing extra configuration by relying on some default rules as well as defining certain conventions.

B.6.1. Simple Scenarios

Single un-annotated parameter (object or primitive) which is not a Map/Properties with non-void return type;

public String foo(Object o);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an attempt will
be made to convert it using Conversion Service provided by Spring 3.0. The return value will be incorporated
as a Payload of the returned Message

Configuration

Spring-WS (2.0.0.M5) 122

http://eaipatterns.com/ReturnAddress.html

Single un-annotated parameter (object or primitive) which is not a Map/Properties with Message return type;

public Message foo(Object o);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an attempt will
be made to convert it using Conversion Service provided by Spring 3.0. The return value is a newly constructed
Message that will be sent to the next destination.

Single parameter which is a Message or its subclass with arbitrary object/primitive return type;

public int foo(Message msg);

Details:

Input parameter is Message itself. The return value will become a payload of the Message that will be sent to
the next destination.

Single parameter which is a Message or its subclass with Message or its subclass as a return type;

public Message foo(Message msg);

Details:

Input parameter is Message itself. The return value is a newly constructed Message that will be sent to the next
destination.

Single parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map m);

Details:

This one is a bit interesting. Although at first it might seem like an easy mapping straight to Message Headers,
the preference is always given to a Message Payload. This means that if Message Payload is of type Map, this
input argument will represent Message Payload. However if Message Payload is not of type Map, then no
conversion via Conversion Service will be attempted and the input argument will be mapped to Message
Headers.

Two parameters where one of them is arbitrary non-Map/Properties type object/primitive and another is
Map/Properties type object (regardless of the return)

public Message foo(Map h, <T> t);

Details:

This combination contains two input parameters where one of them is of type Map. Naturally the non-Map
parameters (regardless of the order) will be mapped to a Message Payload and the Map/Properties (regardless
of the order) will be mapped to Message Headers giving you a nice POJO way of interacting with Message
structure.

No parameters (regardless of the return)

Configuration

Spring-WS (2.0.0.M5) 123

public String foo();

Details:

This Message Handler method will be invoked based on the Message sent to the input channel this handler is
hooked up to, however no Message data will be mapped, thus making Message act as event/trigger to invoke
such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Details:

Same as above, but no output

Annotation based mappings

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods. There wil
be many pointers to annotation based mapping throughout this manual, however here are couple of examples:

public String foo(@Payload String s, @Header("foo") String b)

Very simple and explicite way of mapping Messages to method. As you'll see later on without annotation this
signature would result in the ambiguous condition, however by explicitly mapping first argument to a Message
Payload and second argument to a value of the 'foo' Message Header we have avoided ambiguity.

public String foo(@Payload String s, @RequestParam("foo") String b)

Looks almost identical to the previous example, however @RequestMapping or any other non-SI mapping
annotation is irrelevant and therefore will be ignored leaving the second parameter unmapped. And although
the second parameters could easily be mapped to a Payload, there can only be one Payload, therefore this
method becomes ambiguous.

public String foo(String s, @Header("foo") String b)

The same as above. The only difference is that the first argument will be mapped to Message Payload
implicitly.

public String foo(@Headers Map m, @Header("foo")Map f, @Header("bar") String bar)

Yet another signature that would definitely be treated as ambiguous because it has more then 2 arguments, plus
two of them are Maps, however with annotation-based mapping ambiguity is easily avoided. In this example
the first argument is mapped to all the Message Headers, while second and third argument map to the values of
Message Headers 'foo' and 'bar'.

B.6.2. Complex Scenarios

Multiple parameters:

Multiple parameters could create a lot of ambiguity with regards to determining the appropriate mappings. The
general advice is to annotate your method parameters with @Payload and/or @Header/@Headers Below are

Configuration

Spring-WS (2.0.0.M5) 124

some of the examples of ambiguous conditions which result in exception being raised.

public String foo(String s, int i)

- the two parameters are equal in weight, therefore no way to determine which one is a payload and what to do
with another.

public String foo(String s, Map m, String b)

- almost the same as above. Although Map could be easily mapped to Message Headers, there is no way to
determine what to do with two Strings.

public String foo(Map m, Map f)

- although one might argue that one Map could be mapped to Message Payload and another one to Message
Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second Headers)

Tip
Basically any method signature with more then one method argument which is not (Map, <T>) and
those parameters are not annotated will result in the ambiguous condition thus triggering an
exception.

Multiple methods:

Message Handlers with multiple methods are mapped based on the same rules that are described above,
however some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo{
public String foo(String str, Map m);

public String foo(Map m)
}

As you can see, the Message could be mapped to either method. The first method would be invoked where
Message Payload could be mapped to 'str' and Message Headers could be mapped to 'm'. The second method
could easily also be a candidate where only Message Headers are mapped to 'm'. To make meters worse both
methods have the same name which at first might look very ambiguous considering the following
configuration:

<si:service-activator input-channel="input" output-channel="output" method="foo">
<bean class="org.bar.Foo"/>

</si:service-activator>

At this point it would be important to understand Spring Integration mapping Conventions where at the very
core, mappings are based on Payload first and everything else next. In other words the method whose argument
could be mapped to a Payload will take precedence over all other methods.

On the other hand let's look at slightly different example:

public class Foo{
public String foo(String str, Map m);

Configuration

Spring-WS (2.0.0.M5) 125

public String foo(String str)
}

If you look at it you can probably see a truly an ambiguous condition. In this example since both methods have
signatures that could be mapped to a Message Payload. They also have the same name. Such handler will
trigger an exception. However if method names were different you could influence the mapping with 'method'
attribute (see below):

public class Foo{
public String foo(String str, Map m);

public String bar(String str)
}

<si:service-activator input-channel="input" output-channel="output" method="bar">
<bean class="org.bar.Foo"/>

</si:service-activator>

Now there is no ambiguity since the configuration explicitly maps to 'bar' method which has no name conflicts.

Configuration

Spring-WS (2.0.0.M5) 126

Appendix C. Additional Resources

C.1. Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at
http://www.springsource.org. That site serves as a hub of information and is the best place to find up-to-date
announcements about the project as well as links to articles, blogs, and new sample applications.

Spring-WS (2.0.0.M5) 127

http://www.springsource.org/spring-integration
http://www.springsource.org

	Spring Integration Reference Manual
	Table of Contents
	Chapter 1. Spring Integration Overview
	1.1. Background
	1.2. Goals and Principles
	1.3. Main Components
	1.3.1. Message
	1.3.2. Message Channel
	1.3.3. Message Endpoint

	1.4. Message Endpoints
	1.4.1. Transformer
	1.4.2. Filter
	1.4.3. Router
	1.4.4. Splitter
	1.4.5. Aggregator
	1.4.6. Service Activator
	1.4.7. Channel Adapter

	Chapter 2. Message Construction
	2.1. The Message Interface
	2.2. Message Headers
	2.3. Message Implementations
	2.4. The MessageBuilder Helper Class

	Chapter 3. Message Channels
	3.1. The MessageChannel Interface
	3.1.1. PollableChannel
	3.1.2. SubscribableChannel

	3.2. Message Channel Implementations
	3.2.1. PublishSubscribeChannel
	3.2.2. QueueChannel
	3.2.3. PriorityChannel
	3.2.4. RendezvousChannel
	3.2.5. DirectChannel
	3.2.6. ExecutorChannel
	3.2.7. ThreadLocalChannel

	3.3. Channel Interceptors
	3.4. MessageChannelTemplate
	3.5. Configuring Message Channels
	3.5.1. DirectChannel Configuration
	3.5.2. QueueChannel Configuration
	3.5.3. PublishSubscribeChannel Configuration
	3.5.4. ExecutorChannel
	3.5.5. PriorityChannel Configuration
	3.5.6. RendezvousChannel Configuration
	3.5.7. ThreadLocalChannel Configuration
	3.5.8. Channel Interceptor Configuration
	3.5.9. Global Channel Interceptor Configuration
	3.5.10. Wire Tap

	Chapter 4. Message Endpoints
	4.1. Message Handler
	4.2. Event Driven Consumer
	4.3. Polling Consumer
	4.4. Namespace Support

	Chapter 5. Service Activator
	5.1. Introduction
	5.2. The <service-activator/> Element

	Chapter 6. Channel Adapter
	6.1. The <inbound-channel-adapter> element
	6.2. The <outbound-channel-adapter/> element

	Chapter 7. Router
	7.1. Router Implementations
	7.1.1. PayloadTypeRouter
	7.1.2. HeaderValueRouter
	7.1.3. RecipientListRouter

	7.2. The <router> element
	7.3. The @Router Annotation

	Chapter 8. Filter
	8.1. Introduction
	8.2. The <filter> Element

	Chapter 9. Transformer
	9.1. Introduction
	9.2. The <transformer> Element
	9.3. The @Transformer Annotation

	Chapter 10. Splitter
	10.1. Introduction
	10.2. Programming model
	10.3. Configuring a Splitter using XML
	10.4. Configuring a Splitter with Annotations

	Chapter 11. Aggregator
	11.1. Introduction
	11.2. Functionality
	11.3. Programming model
	11.3.1. CorrelatingMessageHandler
	11.3.2. ReleaseStrategy
	11.3.3. CorrelationStrategy

	11.4. Configuring an Aggregator with XML
	11.5. Managing State in an Aggregator: MessageGroupStore
	11.6. Configuring an Aggregator with Annotations

	Chapter 12. Resequencer
	12.1. Introduction
	12.2. Functionality
	12.3. Configuring a Resequencer with XML

	Chapter 13. Delayer
	13.1. Introduction
	13.2. The <delayer> Element

	Chapter 14. Message Handler Chain
	14.1. Introduction
	14.2. The <chain> Element

	Chapter 15. Messaging Bridge
	15.1. Introduction
	15.2. The <bridge> Element

	Chapter 16. Inbound Messaging Gateways
	16.1. SimpleMessagingGateway
	16.2. GatewayProxyFactoryBean

	Chapter 17. Message Publishing
	17.1. Message Publishing Configuration
	17.1.1. Annotation-driven approach via @Publisher annotation
	17.1.2. XML-based approach via <publisher> element

	Chapter 18. File Support
	18.1. Introduction
	18.2. Reading Files
	18.3. Writing files
	18.4. File Transformers

	Chapter 19. JDBC Support
	19.1. Inbound Channel Adapter
	19.1.1. Polling and Transactions

	19.2. Outbound Channel Adapter
	19.3. Message Store
	19.3.1. Initializing the Database
	19.3.2. Partitioning a Message Store

	Chapter 20. JMS Support
	20.1. Inbound Channel Adapter
	20.2. Message-Driven Channel Adapter
	20.3. Outbound Channel Adapter
	20.4. Inbound Gateway
	20.5. Outbound Gateway
	20.6. JMS Backed Message Channels
	20.7. JMS Samples

	Chapter 21. Web Services Support
	21.1. Outbound Web Service Gateways
	21.2. Inbound Web Service Gateways
	21.3. Web Service Namespace Support

	Chapter 22. RMI Support
	22.1. Introduction
	22.2. Outbound RMI
	22.3. Inbound RMI
	22.4. RMI namespace support

	Chapter 23. HttpInvoker Support
	23.1. Introduction
	23.2. HttpInvoker Inbound Gateway
	23.3. HttpInvoker Outbound Gateway
	23.4. HttpInvoker Namespace Support

	Chapter 24. HTTP Support
	24.1. Introduction
	24.2. Http Inbound Gateway
	24.3. Http Outbound Gateway
	24.4. HTTP Namespace Support

	Chapter 25. TCP and UDP Support
	25.1. Introduction
	25.2. UDP Adapters
	25.3. TCP Adapters
	25.4. TCP Gateways
	25.5. IP Endpoint Attributes

	Chapter 26. Mail Support
	26.1. Mail-Sending Channel Adapter
	26.2. Mail-Receiving Channel Adapter
	26.3. Mail Namespace Support

	Chapter 27. JMX Support
	27.1. Notification Listening Channel Adapter
	27.2. Notification Publishing Channel Adapter
	27.3. Attribute Polling Channel Adapter
	27.4. Operation Invoking Channel Adapter
	27.5. Control Bus

	Chapter 28. XMPP Support
	28.1. Inbound Channel Adapter
	28.2. XMPP Samples

	Chapter 29. Stream Support
	29.1. Introduction
	29.2. Reading from streams
	29.3. Writing to streams
	29.4. Stream namespace support

	Chapter 30. Spring ApplicationEvent Support
	30.1. Receiving Spring ApplicationEvents
	30.2. Sending Spring ApplicationEvents

	Chapter 31. Dealing with XML Payloads
	31.1. Introduction
	31.2. Transforming xml payloads
	31.3. Namespace support for xml transformers
	31.4. Splitting xml messages
	31.5. Routing xml messages using XPath
	31.6. Selecting xml messages using XPath
	31.7. XPath components namespace support

	Chapter 32. Security in Spring Integration
	32.1. Introduction
	32.2. Securing channels

	Appendix A. Spring Integration Samples
	A.1. The Cafe Sample
	A.2. The XML Messaging Sample
	A.3. The OSGi Samples

	Appendix B. Configuration
	B.1. Introduction
	B.2. Namespace Support
	B.3. Configuring the Task Scheduler
	B.4. Error Handling
	B.5. Annotation Support
	B.6. Message Mapping rules and conventions
	B.6.1. Simple Scenarios
	B.6.2. Complex Scenarios

	Appendix C. Additional Resources
	C.1. Spring Integration Home

