Spring Integration Reference Manual

2.0.0.M5

Copyright © 2005-2007 Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg
Zhurakousky, Gary Russell

© SpringSource Inc., 2010

1. SPring INtEQration OVEIVIEWiciiiiiiiii e ea e a s nsaaaansanasasnsnsnsnsnsnnnsssnsnsnsnsnnnnnnnsnnnnns 1

O 2 7= (o | {011 o PRSPPI 1
1.2. GOAlIS AN PriNCIPIES ...ttt e e e e e s e e e e es 1
1.3, Ma@IN COMPONENES ...vvieiieeeeiiiitiieie e e e e e e e e e e e e e e e e e s e et b e e e e e eeeessaaaabraeeeeaeeessasasstereeeeeeessannnsrnes 2
L3 L IMIBSSA0E e ettt ettt ettt e e e e e e ettt e e e e e e Errr e e e e e e e e e rreeaaaeeaaa 2
1.3.2. Message Chann@l ... nnnnnnas 2
1.3.3. MeSSAE ENCPOINT ...ttt e 3

1.4. MESSAE ENUPOINTSeeeeieeeiiiiiieiee ettt e e e ettt e e e e e e e e st e e e e e e e e e aaansnteeeeeeaeeeeannnneees 3
O I I =0 1 1= PP PPRTP 4
0 T (= 4
O T 0 T 4
LA SPILEN ..ottt ettt n st n et en s 4
N 0o | (= = (0] 5
146, SENVICE ACHVALON ..veveiiieei ittt ettt e e e e r e e e e e s s st ae e e e e e e s sesnsnbareeaaaeeeaans 5
O O =g o Y 0 7= o SO PPERRR 5

2. MESSAPE CONSLIUCLIONvveiiieeeeiiiiiiiee e e e e e e et e e e e e e e s et r e e e e e e s sa et baeeeeaeeesessntaaeeeeaeeesaansrraeeeeens 7
2.1. TR MESSA0E INLEITACEeeieeiiiiie ettt e e e e e e nees 7
2.2. MESSAPE HEAEN'Suviieiiiii e e e e e e e s e e e e e e e s s e san b e a e e e e e e e s e ennreees 7
2.3. MeSSage IMPIEMENTALIONSciuveeieiiiiiie ettt e st e e et e e e e e b e e e e e nees 8
2.4. The MessageBuilder Helper Class ..., 8
3. MESSAGE CRANNEIS ...ttt ettt e et e e e sttt e e e abb et e e e e b e e e e e anbreeeean 11
3.1. The MessageChannel INTEITACEcooviiii i 11
3.1.1. POHADIECNANNELeiiiiieiie e 11
3.1.2. SUBSCIbADIECANNELoiiiee e 11

3.2. Message Channel IMplemMENtaLioNSccoveiiiiiiiiieeie e e e 12
3.2.1. PublishSubscribeChannelc..uviiiiiiiee e 12

G I @ [1= U 1= @ 7= L= 12
3.2.3. PriorityChanneloeoeiiiiiiiiee e 12
3.2.4. ReNdezVOUSCNANNELoiiiiiiiiiee e a e e 12
3.2.5. DITECLCNANNEL ...t e e e e e s e e e e nnraeeeeans 13
3.2.6. EXECULOICRNANNE]eiiiiiiiiee ettt e annneees 14
3.2.7. ThreadLocal ChannElcooiiiiieiiiiie e ereee e 14

3.3, ChannEl INTEICEPLOISeiuieeee ettt ettt e st e e e e st e e e e ebbe e e e e nnbneeeean 15
3.4. MessageChannel TEMPIALEoovvviviiiiiieiieeeee ettt e e e e e e e e e e e eeeeeees 16
3.5. Configuring Message ChannElSuveiiiieiiiiiceee e 16
3.5.1. DirectChannel ConfiguIaLioNc..eveeiiiiieeiiiiee e 17
3.5.2. QueueChannel ConfigUIalioneeieeiiiiiiiiiiee e 17
3.5.3. PublishSubscribeChannel Configurationccccooiiiieeiiiieee i 17
3.5.4. EXECULOrCRNANNE]ottt e e e e e e e e e e e e e e e e 18
3.5.5. PriorityChannel ConfigUIationcooiueieiiiiiiie i 18
3.5.6. RendezvousChannel Configurationcceevvviiiiiiiiiiiiiiicieeeeeeeeeeeeeeeeeee e 19
3.5.7. ThreadL ocalChannel Configurationcccuuieiieeeiiiiiiiieee e 19
3.5.8. Channel Interceptor CONfiQUIAIONcuveeiiiiiieee et 19
3.5.9. Global Channel Interceptor Configurationcccceeeviiiiiiiieeiee e 19

ORI LAY = "o PP PP OP PP PPPRPPPPPPRP 20

Y eSS o L= = |] 1 21
4.1, MESSAGE HANAIET ...ttt et e e st e e e e e e e e s nnbreeeeans 21
4.2. EVENE DITVEN CONSUMEYeiiiiieei ittt e aee e e e aeetteeeeeaaaeessaaaneteeeeaaaeesaaanssaneeeeeaeessaansnneeeeeens 21
4.3. POHING CONSUMETcciiieiiiieieee e e e e eeeit e e e e e s s st eeaae e s s saaat e b e e eeaeeessasassaaaeeaeaeessannnranneeeens 22
4.4. NaMESPACE SUPPOITeeeieieeiiee e e st et e e e e s e e e e e e e s s r e e e e e s s s s nn e e ee e e e e e s e annrrnneeeeeas 23
SIS = AV To sl o V7= o] SRR SUPRROPRPRPN 26
o300 I 1 1o [N o 1 o o SRS 26

Spring-WS (2.0.0.M5)

Spring Integration 2.0.0.M5

5.2. The <service-activator/> EIEBMENToooii i senee e e e e e e 26

Ot gT= o= N 0 = o (= PP 28
6.1. The <inbound-channel-adapter> element ... 28

6.2. The <outbound-channel-adapter/> elementccc 28

A 5 (010 L= S TP 30
7.1. Router IMPlemMENTaiONScoiiieiiieiii et e ettt e e e e e e e s e e e e e e e e e e eennneneeeeaaeeeans 30
7.1.1. PaylOadTYPEROULEYeceiiiiiiiiei e e e e et e e e e e e e s s et r e e e e e s e nntrraaeeaeas 30

7.1.2. HEADEVAUBROULEYcoiiiiiiiiiiiiieeee ettt e e e e et e e e e e e s e nneneeeeeeeas 30

7.1.3. RECIPIENILISIROULENceiiiiiiiiiiiiieecee e e e e e e s e e e e e e s e ntrraeeeaeas 31

7.2. The <router> €l@mMENt ..o, 32

7.3. THe @ROULET ANNOLAEION ...eeueeeeeeet e e ettt e et et e et e e e et e et e e e s e e eenresaereerreeaeeesnns 32

ST 1 1 ST 34
S 300 I 1 1o L o1 o o USRS 34

8.2. The <FIlter> EIOMENTceeiiii et e e s snae e e ans 34

S I = 0 1 1= PP 36
&0 I [11 T [o1 o o OSSPSR 36

9.2. The<transformer> Element ..., 36

9.3. The @TransfOrMEr ANNOLALIONvveeeieiee et e et e et e et e e e et s e eearerereerereeaeeeenns 37

O o 1 (= SRR UPPPP 39
0 80 T 1 o [1 o SRR 39
10.2. Programming MOGEcocciiiiiiiie e e e e e s e s e e e e e e e st e e e e e e e e s annnenes 39
10.3. Configuring a Splitter USING XMLcoiiiiiiieeiie e 40

10.4. Configuring a Splitter With ANNOLELIONSccccoiiiiiiiiiieicee e 40

T0. AGOEOBION ... e 41
0 T 1 T [o 1 o SRR 41
2 o ¥ 1o =Y REPRR 41

11.3. Programming MOGE]cooiiiiiiiiiiie et e e 41
11.3.1. CorrelatingMessageHaNdIErccoiiiiiiiiiiii e 41

11.3.2. REIGASESIIAEOIY ...eeiiuvveeeeiauitiieeeaiieee e e sttt e e e ettt e e ettt e e st e e e e b e e e s s n e e e e e e e e e nees 43

11.3.3. COrrelatioNSIIALEUY ..oeeeeeeieiiieiee e e e e e e e e e e e e e e s e et e e e e e e e s s ennnrrreeeeeens 43

11.4. Configuring an Aggregator With XIMLcooiiiiiiiiiii e 44

11.5. Managing State in an Aggregator: MessageGroUPSIOreuuerururmrmrnmnnnnnnnnnnnnnnnnnnnnnnnnnnns 46

11.6. Configuring an Aggregator with ANNOLaLIONSc..vvveiiveeii i 47

12, RESEQUENCES ...ciiiieeeeeeeeeee e e st e e e e e e e s s e e et e e e e s s e e e e e et e e e e e s s s R R R R e e et e e e e e e e R R rnnr e e e e e e e e e nnrreeeas 49
02 T 1 T [F o1 o o I RSP PRT 49
12.2. FUNCHONEIITY ettt et et e e e e e e e e e e e e e e e e 49
12.3. Configuring a Resequencer With XIML e 49

RS B = b Y PP PTOPPPP 51
G 50 T 1 1T [o 1 o o SRR 51
13.2. The <delayer=> EIEMENToviiiiieeeie e e e e e e r e e e e e s e nneees 51

14. Message Handler CREINueiiiiiiiie ettt e e e e 52
I T g1 [F o1 o o I PRSP PRR 52
14.2. The <Chain> BIEBMENT ... e e e e e e e aaaees 52

STV =SS o] o T =g o (o T 54
00 T 1 T [o SRR 54
15.2. The <bridge> EIEMENT ..ot e e e e e e e e e e e e nneees 54

16. INboUNd M ESSAGING GALEWEY'Svvvveeieeeeiiiciittieieee e e s e eeitbtae e e e e e e e s s saab it e e eeaaeessassstaaereeaeeseaanssanreeeens 55
16.1. SIMPIEMESSAGINGGEIEWEYeeeeeuereeeeeiieeee e et e e et e e s et e e e e e e s e e e s ann e e e e e annreeeeeanes 55

16.2. GatewayProxXyFaCtOrYBEaNuuuiiiiiiiiieeiiiis st e e e et e e e e e e e et e e e e e e enanes 55

17. MESSA0E PUDITISNING ..ot e e e st e s e e 58
17.1. Message Publishing ConfigUIationccccccccciiiiiiiiii s nsssnennnsnnnnnnnnnnnnnnns 58
17.1.1. Annotation-driven approach via @Publisher annotationcccccoveveeeeiiiiveneennne 58

Spring-WS (2.0.0.M5)

Spring Integration 2.0.0.M5

17.1.2. XML-based approach via<publisher> elementccccoviiiiiiiie 59

T Lo U o] oo AP EETR P PP 61
IS 50 T 1 T [1 oo SRR 61
18.2. REAAING FIIESueiiiiii s a s nnaansnsnsnsnsnnnnnnnnnnnnnnns 61
18.3. WIHTING TIES .ttt e s e et e s e e e e e 62

18.4. FIlE TIaNSFOMMIESoeiiieeeiiiiieeii e e e e e ettt e e e e e e ettt e e e e e e e e et e e e e e eeeeeeanneeeeeeeaeeeeannnneees 63

19, IDBC QU0 ...t nnnnnnnnnnnnnnnn 65
19.1. Inbound Channel AdBPLENcoiiiiieeee e 65
19.2.1. Polling and TranSaCtiONScceieeiiiiiiiiiiieeeee e e e s citrree e e e e e e s s s stnrar e e e e e e e s s ennrbrneeeeeas 65

19.2. Outbound Channel AdBPLETocueeiieie e 66

1.3, MESSA0E SEOME ... ccieeeeetiie e e e ettt e et ettt s e e e e e e e e e et e e e e e e e eaetna e e e e eeeeeetnanreeaeaennnnes 66
19.3.1. Initializing the DataDaseccoiuiiiiiiiiii e 67

19.3.2. Partitioning aMESSAgE SIOMEceeiiiiiiiiiiii ettt e e e e eeeens 67

PO Y SR SH o o o g PSPPSR 68
20.1. Inbound Channel AGBPLENeiieiiiii e 68
20.2. Message-Driven Channel Aapterooocieiiiiiiie et 69
20.3. Outbound Channel AGEPLESoooiiiiie e e e 69
20.4. 1nboUNd GALEWEYcceeeeeeeeee e, 70
20.5. OULDOUNT GBLEWEYvvvereeeeeiiiiiiiieeieeeeeese st taeeeeee e et e ssatbbaeeeaaaessasssntsaeeeeaeeesaasnsrraneeeaaeesaans 71
20.6. IMS Backed Message ChanNElSoooiiiiiiiiiiiec e 71

20.7. IMS SAMPIES ..ottt ettt e e ettt e e e be e e e e st e e e e e nbbe e e e e nntaeeeeans 72

21 WED SEIVICES SUPPONT ..tieeeeiiteee e ettt e sttt e ettt e e ettt e e e et e e e e e s e e e e e s be e e e e anne e e e e annr e e e e annbnneeeans 73
21.1. Outbound WED SErVICE GALEWEYSceeeeeeieiiiiiiieeee e e e ettt e e e e e e e st e e e e e e e e e eatbbaaeeaaaeeaans 73

21.2. INbOUNd WED SErVICE GaLEWEY'Svvveeeiierieeeiiiiieeesieeeeessiiseeeesibeeeesssaeeeesssneeeesnnbneeeeans 73

21.3. Web Service Namespate SUPPOITcoeeeeeee e 73

22. RMI SUPPOIT <. 76
22728 N 1 11 oo 1o o o USRS 76
22.2. OULDOUNT RMI ..ttt ettt e e et e e st e e e e snnte e e e e nntneeeeans 76
2272 T 1 g1 7 T8 0 I OSSR 76
22.4. RMI NaMESPACE SUPPOIT ... eieeeeieiiiie s e e e e e e ettt s e e e e e e e e ettt s e e e e e e e e eatta s e s eeeeeeeaesnanneeeaaaeennnes 76

23, HIEPINVOKE! SUDPOIT ..ttt ettt et e ekt e e e st e e e ennb e e e e e anbneeeean 78
P20 T I 1 11 a0 1o ' o SRS 78
23.2. Httplnvoker INDOUNG GBLEWEYcceviieeiiiiiiiieiee e e st e e s st e e e e e e e e st anneeaaaeeeans 78
23.3. HttpInvoker Outbound GaLEWAYcoocueiieiiiiiiee e 78
23.4. Httplnvoker NameSpate SUPPOITeeeeeeiiiiciiiiee e e e e e s s ettt e e e e e e e s s st e e e e e e e e s ssatrraeeeeaaeeaans 79

24, HTTP SUPPOIT ...ttt e e ettt e e e e e e s bttt e e e e e s s s bbb e e et e e e e e s s asnb b e e e e e e e e e s s nnbbnnneeeeas 80
P22 N 1 L e o 1o o o PSPPSR 80
24.2. HEtP INDOUNT GALEWAYeeeiiiiiie ettt et e e e e snbaeeeeans 80
24.3. Hitp OULDOUNI GALEWEY ... ieeeiieieee e e e et e ettt e e e e e e e s st eeeeeeeeeeantnnneeeaaaeeeans 81

24.4. HTTP NaMESPACE SUPPOIT «..cceeeeeeeeee ettt 81

25. TCP and UDP SUPPOITcieiieiiiieteeai it ee ettt e st e et e et e e e e e e st e e e s asn e e e e s annr e e e e aanbrneeeans 83
P25 300 I 1 g 1 oo (1 (o o I PSPPSRI 83
25.2. UDP AGGPEEIS ...ttt ettt e et e e e e e e e e e e e e e e e e e e an 83
25.3. TCP AGADIENS .eiiie ettt et e e ettt e e e st e e e e s nsb e e e e e nbe e e e e snsaeeeeeansaeeeeennraeeeeans 85

25,4, TCP GELBWEY'S ...ceeeeeeeeeeee e ettt e e e e e s ettt e e e e e s s a bbb e ettt e e e e s s ab bbb eeeeeeeeeaaanbbbneeeeaeeeaaans 86

25.5. IP ENdPOint ATIHDULESeoiiiieieeiie e e e e e e e e e e e e e e s e neneneeeeaaeeeaans 86

ST Y = IS W oo AP EPRPP 92
26.1. Mail-Sending Channel AGBPLENeeiiiiiiiee et 92
26.2. Mail-Receiving Channel AdapLercoooi i 92
26.3. Mail NaMESPECE SUPPOMT ..iieieieeiiieeee ettt ettt e et e e s st e e s sbne e e e e nnnneeeean 93

B Y QS T oo S 95
27.1. Notification Listening Channel AdapLercccueviiiiiiiieeiiee e 95

Spring-WS (2.0.0.M5)

Spring Integration 2.0.0.M5

27.2. Notification Publishing Channel Adapterc.ooooiiiiiiiiii e 95
27.3. Attribute Polling Channel AapLercoociiiiiiiee e 96
27.4. Operation INVoking Channel AdaPLENoeiiiiiiiiee e 96
27.5. CONLIOI BUS ...coiiiiiiieeeie ettt ettt e e e e e ettt e e e e e e e e e snabe e e e eeaeeeesantbbneeeaaaeeaaans 97

28. XIMPP SUDPONT ...ttt ettt e e e e e st et e e e e s e bbb e e et e e e e e e s annbb b e et e e e e e e e nnbreeeeeeas 98
28.1. Inbound Channel AGapLESeiiiiiiiee et e e e e e e e e e e et eeeaaeeean 98
28.2. XMPP SAMPIES ...ttt e e e e e e e e e e e aaaeaaans 98

29. SEIEAIM SUPPOIT ..ttt e e e ettt e e e s e e e e e s e s e e e e e e e e e s s b b e e et e e e e e s s e nnrer e e e e e e e e s aannnnnneeeeeas 99
pZAS I I 1 g 1 oo (1 1 o o IR OUPRPUPTPRRN 99
29.2. ReadiNg frOM SITEAIMISeiiiiiiiiee ittt ettt e e e e e e nnbreeeean 99
29.3. WHITINGTO SEFEAIMSceee e 99

29.4. Stream NamMESPACE SUPPOITeeeiieieee e e e ettt e e e e et e e e e e e s s bbb e e e e e e e e s asnbbbrreeeaaeeeaans 99

30. Spring ApplicatiONEVENT SUPPOIToiiiieeeiiiiiiiee et e e e e e et e e e e e e e e s e e e e e e e e e e ennneeees 101
30.1. Receiving Spring ApPliCatiONEVENEScooiiiiiiiiie e 101
30.2. Sending Spring APPHICALIONEVENTSccoiiiiiiiiiiiiiiee et 101

31. Dealing With XML PaylOadscc.cvvviiiiieiiiicieec ettt e e 102
0 31 00 O 11 oo o £ o o S 102

G I I = 1 o a0 T a0 (g o 7= Y 0 7= o 102
31.3. Namespace support for Xml transformerscoooooiiiiiiiiiiee e 103

31.4. SPlIttiNG XMl MESSAGESeeeiiiiiiieiiiiiie ettt e e s e e s e e e s nnnneees 104
31.5. Routing Xml messages using XPath ... 105
31.6. Selecting Xxml Messages USING XPathc.vvviiiiiiiieii e 105
31.7. XPath components NAamMESPACcE SUPPOMcoeiuriiierieeeeeeeiititeeeeeee e e e s einrrreeeeeeessesnrrreeeeeeas 106

32. Security in SPring INTEOraliONcooiiiiiiiieiiii et e e sbe e e s snneeeas 108
G 7728 I 11 oo o i o] o IS 108
32.2. SECUNNQG CRANNELSuiiiiiii e e e e e e e e e e e s st eeaaaeeaaa 108

A. SPring INegration SAMPIEScooiiiiiie e e e e e e e e e e e e nnes 109
AL The Caf@ SAMPIE .ooiii e e e e e e e et e e e e e e s e enneeees 109

A.2. The XML MeSSaging SAMPIEvveiiiiiiiiee ettt e e 112
A.3. The OSGI SAMPIESeeieieiiiiie ettt s e et e e e st e e e s nbe e e e s esaeeeeaannneeeeenees 113

B. CONFIQUIBLION ...ttt ettt e e e ettt e e e st e e e st e e e e s aabbe e e e e annb e e e e annbnneeeans 117
= O g1 0o 1 o o o SRR 117

B.2. NAMESPECE SUPPOIT ... sssssssssssssssssnsnsnsnnnnnsnnns 117

B.3. Configuring the Task SChEdUIENccoiiiiiiiie e 118

o g ol o =T | T o S PSRPRR 119

B.5. ANNOLELION SUPPOITeeiieeeiiiiee ettt e e e et e e s st e e s e nnb e e e e e anbeeeeeans 120

B.6. Message Mapping rules and CONVENLIONSciiiumumuininiiinnnnennenannnnnnnrnnnsnnannnnnane 122
B.6.1. SIMPIE SCENAIOSeveiieiiiiiie ettt e st e e s e e e e nees 122

B.6.2. COMPIEX SCENAINOS ...eeeeeiiiiieiiiee ettt e e e e e e e e e e e e e e s e e nneeeeeeeeas 124

C. AQTItIONGl RESOUITESvveieeiiiieiee ettt e sttt e e sttt e e et e e e e bt et e e e nb e e e e asbeeeesnnbneeeeans 127
C.1. Spring INtegration HOIMEuiiiiiiiiie ettt e e anee e e e 127

Spring-WS (2.0.0.M5)

Chapter 1. Spring Integration Overview

1.1. Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means that
the framework handles responsibilities on behalf of the components that are managed within its context. The
components themselves are simplified since they are relieved of those responsibilities. For example,
dependency injection relieves the components of the responsibility of locating or creating their dependencies.
Likewise, aspect-oriented programming relieves business components of generic cross-cutting concerns by
modularizing them into reusable aspects. In each case, the end result is a system that is easier to test,
understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for building
enterprise applications. Developers benefit from the consistency of this model and especially the fact that it is
based upon well-established best practices such as programming to interfaces and favoring composition over
inheritance. Spring's simplified abstractions and powerful support libraries boost developer productivity while
simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles. It
extends the Spring programming model into the messaging domain and builds upon Spring's existing enterprise
integration support to provide an even higher level of abstraction. It supports message-driven architectures
where inversion of control applies to runtime concerns, such as when certain business logic should execute and
where the response should be sent. It supports routing and transformation of messages so that different
transports and different data formats can be integrated without impacting testability. In other words, the
messaging and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and devel opers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of configuration
options including annotations, XML with namespace support, XML with generic "bean" elements, and of
course direct usage of the underlying API. That APl is based upon well-defined strategy interfaces and
non-invasive, delegating adapters. Spring Integration's design is inspired by the recognition of a strong affinity
between common patterns within Spring and the well-known Enterprise Integration Patterns as described in the
book of the same name by Gregor Hohpe and Bobby Woolf (Addison Wesley, 2004). Developers who have
read that book should be immediately comfortable with the Spring Integration concepts and terminology.

1.2. Goals and Principles

Spring Integration is mativated by the following goals:

» Provide asimple model for implementing complex enterprise integration solutions.
* Facilitate asynchronous, message-driven behavior within a Spring-based application.
» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

« Components should be loosely coupled for modularity and testability.

Spring-WS (2.0.0.M5) 1

http://www.eaipatterns.com

Spring Integration Overview

« The framework should enforce separation of concerns between business logic and integration logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3. Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-based
contracts between layers promote loose coupling. Spring-based applications are typically designed this way,
and the Spring framework and portfolio provide a strong foundation for following this best practice for the
full-stack of an enterprise application. Message-driven architectures add a horizontal perspective, yet these
same goals are till relevant. Just as "layered architecture" is an extremely generic and abstract paradigm,
messaging systems typically follow the similarly abstract "pipes-and-filters' model. The "filters" represent any
component that is capable of producing and/or consuming messages, and the "pipes" transport the messages
between filters so that the components themselves remain loosely-coupled. It isimportant to note that these two
high-level paradigms are not mutually exclusive. The underlying messaging infrastructure that supports the
"pipes’ should still be encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters'
themselves would typically be managed within a layer that is logically above the application's service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

1.3.1. Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used by the
framework while handling that object. It consists of a payload and headers. The payload can be of any type and
the headers hold commonly required information such as id, timestamp, expiration, and return address. Headers
are also used for passing values to and from connected transports. For example, when creating a Message from
areceived File, the file name may be stored in a header to be accessed by downstream components. Likewise, if
aMessage's content is ultimately going to be sent by an outbound Mail adapter, the various properties (to, from,
cc, subject, etc.) may be configured as Message header values by an upstream component. Developers can aso
store any arbitrary key-value pairs in the headers.

Message

Header

Payload

1.3.2. Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to a
channel, and consumers receive Messages from a channel. The Message Channel therefore decouples the
messaging components, and also provides a convenient point for interception and monitoring of Messages.

Spring-WS (2.0.0.M5) 2

Spring Integration Overview

send(Message) receive()
Producer Consumer

Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-Point
channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe channels, on
the other hand, will attempt to broadcast each Message to all of its subscribers. Spring Integration supports both
of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer messages?
In Spring Integration, Pollable Channels are capable of buffering Messages within a queue. The advantage of
buffering is that it allows for throttling the inbound Messages and thereby prevents overloading a consumer.
However, as the name suggests, this also adds some complexity, since a consumer can only receive the
Messages from such a channel if a poller is configured. On the other hand, a consumer connected to a
Subscribable Channel is simply Message-driven. The variety of channel implementations available in Spring
Integration will be discussed in detail in Section 3.2, “Message Channel Implementations”.

1.3.3. Message Endpoint

One of the primary goals of Spring Integration isto simplify the development of enterprise integration solutions
through inversion of control. This means that you should not have to implement consumers and producers
directly, and you should not even have to build Messages and invoke send or receive operations on a Message
Channel. Instead, you should be able to focus on your specific domain model with an implementation based on
plain Objects. Then, by providing declarative configuration, you can "connect” your domain-specific code to
the messaging infrastructure provided by Spring Integration. The components responsible for these connections
are Message Endpoints. This does not mean that you will necessarily connect your existing application code
directly. Any real-world enterprise integration solution will require some amount of code focused upon
integration concerns such as routing and transformation. The important thing is to achieve separation of
concerns between such integration logic and business logic. In other words, as with the Model-View-Controller
paradigm for web applications, the goal should be to provide a thin but dedicated layer that translates inbound
requests into service layer invocations, and then trandlates service layer return values into outbound replies. The
next section will provide an overview of the Message Endpoint types that handle these responsibilities, and in
upcoming chapters, you will see how Spring Integration's declarative configuration options provide a
non-invasive way to use each of these.

1.4. Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a
non-invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as a
Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are mapped to
URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same in both cases; isolate
application code from the infrastructure. These concepts are discussed at length along with al of the patterns
that follow in the Enterprise Integration Patterns book. Here, we provide only a high-level description of the
main endpoint types supported by Spring Integration and their roles. The chapters that follow will elaborate and
provide sample code as well as configuration examples.

Spring-WS (2.0.0.M5) 3

http://www.eaipatterns.com

Spring Integration Overview

1.4.1. Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning the
modified Message. Probably the most common type of transformer is one that converts the payload of the
Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a transformer
may be used to add, remove, or modify the Message's header values.

1.4.2. Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This simply
requires a boolean test method that may check for a particular payload content type, a property value, the
presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if not it will be
dropped (or for a more severe implementation, an Exception could be thrown). Message Filters are often used
in conjunction with a Publish Subscribe channel, where multiple consumers may receive the same Message and
use the filter to narrow down the set of Messages to be processed based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring
Integration's Message Endpoint: any component that can be connected to Message Channel(s) in
order to send and/or receive Messages.

1.4.3. Router

A Message Router is responsible for deciding what channel or channels should receive the Message next (if
any). Typically the decision is based upon the Message's content and/or metadata available in the Message
Headers. A Message Router is often used as a dynamic alternative to a statically configured output channel on a
Service Activator or other endpoint capable of sending reply Messages. Likewise, a Message Router provides a
proactive alternative to the reactive Message Filters used by multiple subscribers as described above.

Channel A

" Eb" Message
g Router
Channel B
1.4.4. Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel. Thisis
typically used for dividing a "composite" payload object into a group of Messages containing the sub-divided
payloads.

Spring-WS (2.0.0.M5) 4

Spring Integration Overview

1.4.5. Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives multiple
Messages and combines them into a single Message. In fact, Aggregators are often downstream consumersin a
pipeline that includes a Splitter. Technically, the Aggregator is more complex than a Splitter, because it is
required to maintain state (the Messages to-be-aggregated), to decide when the complete group of Messagesis
available, and to timeout if necessary. Furthermore, in case of atimeout, the Aggregator needs to know whether
to send the partia results or to discard them to a separate channel. Spring Integration provides a
Conpl eti onSt rat egy aswell as configurable settings for timeout, whether to send partial results upon timeout,
and the discard channel.

1.4.6. Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system. The input
Message Channel must be configured, and if the service method to be invoked is capable of returning a value,
an output Message Channel may also be provided.

Note
The output channel is optional, since each Message may also provide its own 'Return Address
header. This same rule applies for al consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message, extracting
the request Message's payload and converting if necessary (if the method does not expect a Message-typed
parameter). Whenever the service object's method returns a value, that return value will likewise be converted
to areply Message if necessary (if it's not already a Message). That reply Message is sent to the output channel.
If no output channel has been configured, then the reply will be sent to the channel specified in the Message's
"return address’ if available.

handle(Message) M:’P“‘

- Service | : - Message

e Activator Clulputb" Handler

Message
Channel
Output
Channel

A request-reply "Service Activator" endpoint connects a target object's method to input and output Message

Channels.

1.4.7. Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport. Channel
Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some mapping between
the Message and whatever object or resource is received-from or sent-to the other system (File, HTTP Request,
JMS Message, etc). Depending on the transport, the Channel Adapter may also populate or extract Message
header values. Spring Integration provides a number of Channel Adapters, and they will be described in
upcoming chapters.

Spring-WS (2.0.0.M5) 5

Spring Integration Overview

[
o |—~ @D

Message
Channel

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.
Message

=N
Message ——»| Target
Channel

An outbound "Channel Adapter" endpoint connects a MessageChannel to atarget system.

Spring-WS (2.0.0.M5)

Chapter 2. Message Construction

The Spring Integration Message is a generic container for data. Any object can be provided as the payload, and
each Message also includes headers containing user-extensible properties as key-value pairs.

2.1. The Message Interface

Hereisthe definition of the Message interface:

public interface Message<T> {
T get Payl oad() ;

MessageHeader s get Headers();

The Message is obviously avery important part of the API. By encapsulating the data in a generic wrapper, the
messaging system can pass it around without any knowledge of the data's type. As an application evolves to
support new types, or when the types themselves are modified and/or extended, the messaging system will not
be affected by such changes. On the other hand, when some component in the messaging system does require
access to information about the mMessage, such metadata can typically be stored to and retrieved from the
metadata in the M essage Headers.

2.2. Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports any Object
types as header values. In fact, the MessageHeader s class implements the java.util.Map interface:

public final class MessageHeaders inplenments Map<String, Object>, Serializable {

}

Note

Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an Unsupport edQper at i onExcept i on. The
same applies for remove and clear. Since Messages may be passed to multiple consumers, the
structure of the Map cannot be modified. Likewise, the Message's payload Object can not be set
after the initial creation. However, the mutability of the header values themselves (or the payload
Object) isintentionally left as adecision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name of the
header. Alternatively, you can provide the expected Class as an additional parameter. Even better, when
retrieving one of the pre-defined values, convenient getters are available. Here is an example of each of these
three options:

hj ect soneVal ue = nessage. get Headers(). get ("sonmeKey");

Custonerld custonerld = nessage. get Headers() . get ("custonerld", Custonerld.class);

Long timestanp = nessage. get Headers(). get Ti mest anp();

Spring-WS (2.0.0.M5) 7

Message Construction

The following Message headers are pre-defined:

Table 2.1. Pre-defined M essage Header s

Header Name Header Type
ID java.util.UUID
TIMESTAMP javalang.Long
EXPIRATION_DATE javalang.Long
CORRELATION_ID javalang.Object
REPLY_CHANNEL javalang.Object (can be a String or MessageChannel)
ERROR_CHANNEL java.lang.Object (can be a String or MessageChannel)
SEQUENCE_NUMBER javalang.Integer
SEQUENCE_SIZE javalang.Integer
PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers, and
additional user-defined headers can aso be configured.

2.3. Message Implementations

The base implementation of the Message interfaceis Generi cMessage<T>, and it provides two constructors:

new Ceneri cMessage<T>(T payl oad);

new Ceneri cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map of
headers will copy the provided headers to the newly created Message.

There are also two convenient subclasses available: stringMessage and Error Message. The former accepts a
String as its payload:

StringMessage nessage = new StringMessage("hello world");

String s = nmessage. get Payl oad();
And, the latter accepts any Thr owabl e object asits payload:

Error Message nessage = new Error Message(soneThr owabl e) ;

Throwabl e t = nessage. get Payl oad();

Notice that these implementations take advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the Message
payload Object.

2.4. The MessageBuilder Helper Class

Spring-WS (2.0.0.M5) 8

Message Construction

Y ou may natice that the Message interface defines retrieval methods for its payload and headers but no setters.
The reason for this is that a Message cannot be modified after itsinitial creation. Therefore, when a Message
instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of those consumers
needs to send a reply with a different payload type, it will need to create a new Message. As a result, the other
consumers are not affected by those changes. Keep in mind, that multiple consumers may access the same
payload instance or header value, and whether such an instance is itself immutable is a decision left to the
developer. In other words, the contract for Messages is similar to that of an unmodifiable Collection, and the
MessageHeaders map further exemplifies that; even though the MessageHeaders class implements
java. util.Map, any attempt to invoke a put operation (or 'remove' or 'clear’) on the MessageHeaders will result
in an Unsuppor t edQper at i onExcept i on.

Rather than requiring the creation and population of a Map to pass into the GenericM essage constructor, Spring
Integration does provide a far more convenient way to construct Messages: MessageBuil der. The
MessageBuilder provides two factory methods for creating Messages from either an existing Message or with a
payload Object. When building from an existing Message, the headers and payload of that Message will be
copied to the new Message:

Message<Stri ng> nmessagel = MessageBuil der. wit hPayl oad("test")
. set Header ("fo0", "bar")
Lbuild();

Message<Stri ng> nmessage2 = MessageBui | der. fromVessage(nmessagel) . buil d();

assert Equal s("test", nessage2. get Payl oad());
assert Equal s("bar", nessage2. get Headers().get("fo00"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Message<Stri ng> nmessage3 = MessageBui | der. wi t hPayl oad("t est 3")
. copyHeader s(nessagel. get Headers())
Lbuild();

Message<Stri ng> nmessage4 = MessageBui |l der. w t hPayl oad("t est 4")
. set Header ("fo0", 123)
. copyHeader sl f Absent (messagel. get Headers())
Lbui I d();

assert Equal s("bar", nessage3. get Headers().get("foo"));
assert Equal s(123, message4. get Headers().get ("foo"));

Notice that the copyHeader sI f Absent does not overwrite existing values. Also, in the second example above,
you can see how to set any user-defined header with set Header . Finally, there are set methods available for the
predefined headers as well as a non-destructive method for setting any header (MessageHeaders also defines
constants for the pre-defined header names).

Message<I| nt eger > i nport ant Message = MessageBui |l der. wi t hPayl oad(99)
.setPriority(MessagePriority.H GHEST)
Lbuild();
assert Equal s(MessagePriority. H GHEST, i nportant Message. get Headers().getPriority());
Message<I| nt eger > anot her Message = MessageBui | der. fromVessage(i nport ant Message)
. set Header | f Absent (MessageHeaders. PRI ORI TY, MessagePriority. LON
Lbuild();

assert Equal s(MessagePriority. H GHEST, anot her Message. get Headers().getPriority());

The MessagePriority isonly considered when using a Pri ori t yChannel (as described in the next chapter). It
is defined as an enumwith five possible values:

public enum MessagePriority {

Spring-WS (2.0.0.M5) 9

Message Construction

HI GHEST,

HI GH,
NORMAL,
Low
LOVEST

Spring-WS (2.0.0.M5)

10

Chapter 3. Message Channels

While the message plays the crucia role of encapsulating data, it is the MessageChannel that decouples
message producers from message consumers.

3.1. The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {
String get Name();
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

}

When sending a message, the return value will be true if the message is sent successfully. If the send call times
out or isinterrupted, then it will return false.

3.1.1. PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are two
sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior. Here is the
definition of Pol | abl eChannel .
public interface Poll abl eChannel extends MessageChannel {
Message<?> recei ve();
Message<?> recei ve(long tinmeout);
Li st <Message<?>> clear();

Li st <Message<?>> pur ge(MessageSel ect or sel ector);

}

Similar to the send methods, when receiving a message, the return value will be null in the case of atimeout or
interrupt.

3.1.2. SubscribableChannel

The subscri babl eChannel base interface is implemented by channels that send Messages directly to their
subscribed MessageHand! er . Therefore, they do not provide receive methods for polling, but instead define
methods for managing those subscribers:
public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Spring-WS (2.0.0.M5) 11

Message Channels

3.2. Message Channel Implementations

Spring Integration provides severa different Message Channel implementations. Each is briefly described in
the sections below.

3.2.1. PublishSubscribeChannel

The publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its subscribed
handlers. Thisis most often used for sending Event Messages whose primary role is notification as opposed to
Document Messages which are generally intended to be processed by a single handler. Note that the
Publ i shSubscri beChannel isintended for sending only. Since it broadcasts to its subscribers directly when its
send(Message) method is invoked, consumers cannot poll for Messages (it does not implement
Pol | abl eChannel and therefore has no recei ve() method). Instead, any subscriber must be a MessageHandl er
itself, and the subscriber's handl eMessage(Message) method will be invoked in turn.

3.2.2. QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the QueueChannel
has point-to-point semantics. In other words, even if the channel has multiple consumers, only one of them
should receive any Message sent to that channel. It provides a default no-argument constructor (providing an
essentially unbounded capacity of | nt eger . MAX_VALUE) as well as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the send()
method will return immediately even if no receiver is ready to handle the message. If the queue has reached
capacity, then the sender will block until room is available. Or, if using the send call that accepts a timeout, it
will block until either room is available or the timeout period elapses, whichever occurs first. Likewise, a
receive call will return immediately if a message is available on the queue, but if the queue is empty, then a
receive call may block until either a message is available or the timeout elapses. In either case, it is possible to
force an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that
callsto the no-arg versions of send() andrecei ve() will block indefinitely.

3.2.3. PriorityChannel

Whereas the QueueChannel enforces first-inffirst-out (FIFO) ordering, the Pri ori t yChannel is an aternative
implementation that allows for messages to be ordered within the channel based upon a priority. By default the
priority is determined by the 'priority' header within each message. However, for custom priority
determination logic, a comparator of type Conpar at or <Message<?>> can be provided to the Pri ori t yChannel 's
constructor.

3.2.4. RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until another party
invokes the channel's recei ve() method or vice-versa. Internally, this implementation is quite similar to the
QueueChannel except that it uses a Synchr onousQueue (a zero-capacity implementation of Bl ocki ngQueue).
This works well in situations where the sender and receiver are operating in different threads but simply
dropping the message in a queue asynchronously is not appropriate. In other words, with a RendezvousChannel
at least the sender knows that some receiver has accepted the message, whereas with a QueueChannel , the
message would have been stored to the internal queue and potentially never received.

Spring-WS (2.0.0.M5) 12

Message Channels

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only. When
persistence is required, you can either invoke a database operation within a handler or use Spring
Integration's support for IMS-based Channel Adapters. The latter option allows you to take
advantage of any JMS provider's implementation for message persistence, and it will be discussed
in Chapter 20, JIMS Support. However, when buffering in a queue is not necessary, the simplest
approach isto rely upon the bi r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can create a
temporary, anonymous instance of RendezvousChannel which it then sets as the 'replyChannel’ header when
building a Message. After sending that Message, the sender can immediately call receive (optionally providing
atimeout value) in order to block while waiting for areply Message. Thisis very similar to the implementation
used internally by many of Spring Integration's request-reply components.

3.2.5. DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more smilar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described above. It
implements the Subscri babl eChannel interface instead of the Pol | abl eChannel interface, so it dispatches
Messages directly to a subscriber. As a point-to-point channel, however, it differs from the
Publ i shSubscri beChannel inthat it will only send each Message to a single subscribed MessageHand! er .

In addition to being the simplest point-to-point channel option, one of its most important features is that it
enables a single thread to perform the operations on "both sides' of the channel. For example, if a handler is
subscribed to a Di r ect Channel , then sending a Message to that channel will trigger invocation of that handler's
handl eMessage(Message) method directly in the sender's thread, before the send() method invocation can
return.

The key motivation for providing a channel implementation with this behavior is to support transactions that
must span across the channel while still benefiting from the abstraction and loose coupling that the channel
provides. If the send call is invoked within the scope of a transaction, then the outcome of the handler's
invocation (e.g. updating a database record) will play a role in determining the ultimate result of that
transaction (commit or rollback).

Note

Since the Di rect Channel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify
those to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages, it
should not be a bi r ect Channel but rather a Publ i shSubscri beChannel . Below you will see how
each of these can be configured.

The Di rect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message Handlers,
and that dispatcher can have a load-balancing strategy. The load-balancer determines how invocations will be
ordered in the case that there are multiple handlers subscribed to the same channel. When using the namespace
support described below, the default strategy is "round-robin" which essentially load-balances across the
handlersin rotation.

Spring-WS (2.0.0.M5) 13

Message Channels

Note

The "round-robin" strategy is currently the only implementation available out-of-the-box in Spring
Integration. Other strategy implementations may be added in future versions.

The load-balancer also works in combination with a boolean failover property. If the "failover" vaue is true
(the default), then the dispatcher will fall back to any subsequent handlers as necessary when preceding
handlers throw Exceptions. The order is determined by an optional order value defined on the handlers
themselves or, if no such value exists, the order in which the handlers are subscribed.

If acertain situation requires that the dispatcher always try to invoke the first handler, then fallback in the same
fixed order sequence every time an error occurs, no load-balancing strategy should be provided. In other words,
the dispatcher till supports the failover boolean property even when no load-balancing is enabled. Without
load-balancing, however, the invocation of handlers will always begin with the first according to their order.
For example, this approach works well when there is a clear definition of primary, secondary, tertiary, and so
on. When using the namespace support, the "order" attribute on any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than one
endpoint shares the same channel reference in the "input-channel” attribute.

3.2.6. ExecutorChannel

The Executor Channel is a point-to-point channel that supports the same dispatcher configuration as
Di rect Channel (load-balancing strategy and the failover boolean property). The key difference between these
two dispatching channel types is that the Execut or Channel delegates to an instance of TaskExecutor tO
perform the dispatch. This means that the send method typically will not block, but it also means that the
handler invocation may not occur in the sender's thread. It therefore does not support transactions spanning the
sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using a
TaskExecutor with a reection-policy that throttles back on the client (such as the
Thr eadPool Execut or . Cal | er RunsPol i cy), the sender's thread will execute the method directly
anytime the thread pool is at its maximum capacity and the executor's work queue isfull. Since that
situation would only occur in a non-predictable way, that obviously cannot be relied upon for
transactions.

3.2.7. ThreadLocalChannel

The final channel implementation type is ThreadLocal Channel . This channel also delegates to a queue
internally, but the queue is bound to the current thread. That way the thread that sends to the channel will later
be able to receive those same Messages, but no other thread would be able to access them. While probably the
least common type of channel, this is useful for situations where Di r ect Channel s are being used to enforce a
single thread of operation but any reply Messages should be sent to a "termina” channel. If that terminal
channel isaThr eadLocal Channel , the original sending thread can collect its replies from it.

Spring-WS (2.0.0.M5) 14

Message Channels

3.3. Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannel s, those channels provide an opportunity for
intercepting the send and receive operations. The Channel I nt er cept or strategy interface provides methods for
each of those operations:

public interface Channellnterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

}
After implementing the interface, registering the interceptor with achannel isjust a matter of calling:
channel . addl nt er cept or (someChannel | nt erceptor);

The methods that return a Message instance can be used for transforming the Message or can return 'null’ to
prevent further processing (of course, any of the methods can throw a RuntimeException). Also, the
pr eRecei ve method can return 'f al se' to prevent the receive operation from proceeding.

Note

Keep in mind that receive() cals are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface does not even define arecei ve() method. The reason for thisis
that when a Message is sent to a Subscri babl eChannel it will be sent directly to one or more
subscribers depending on the type of channel (e.g. a PublishSubscribeChannel sends to all of its
subscribers). Therefore, the preRecei ve(..) and post Recei ve(..) interceptor methods are only
invoked when the interceptor is applied to aPol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor that sends
the Message to another channel without otherwise atering the existing flow. It can be very useful for
debugging and monitoring. An example is shown in Section 3.5.10, “Wire Tap”.

Because it israrely necessary to implement all of the interceptor methods, a Channel I nt er cept or Adapt er class
is also available for sub-classing. It provides no-op methods (the voi d method is empty, the Message returning
methods return the Message as-is, and the bool ean method returnst r ue). Therefore, it is often easiest to extend
that class and just implement the method(s) that you need as in the following example.

public class CountingChannel I nterceptor extends Channel | nterceptor Adapter {

private final Atom clnteger sendCount = new Atom clnteger();

@verride

publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncrenent AndGet () ;
return nessage;

Tip
The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted in the

Spring-WS (2.0.0.M5) 15

http://eaipatterns.com/WireTap.html

Message Channels

first place. Additionally, the relationship between send and receive interception depends on the
timing of separate sender and receiver threads. For example, if areceiver is already blocked while
waiting for a message the order could be: preSend, preReceive, postReceive, postSend. However, if
a receiver polls after the sender has placed a message on the channel and already returned, the
order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive. The time that
elapses in such a case depends on a number of factors and is therefore generally unpredictable (in
fact, the receive may never happen!). Obvioudly, the type of queue also plays a role (eg.
rendezvous vs. priority). The bottom line is that you cannot rely on the order beyond the fact that
preSend will precede postSend and preReceive will precede postReceive.

3.4. MessageChannelTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring Integration
provides a foundation for messaging components that enables non-invasive invocation of your application code
from the messaging system. However, sometimes it is necessary to invoke the messaging system from your
application code. For convenience when implementing such use-cases, Spring Integration provides a
MessageChannel Tenpl ate that supports a variety of operations across the Message Channels, including
request/reply scenarios. For example, it is possible to send arequest and wait for areply.

MessageChannel Tenpl ate tenpl ate = new MessageChannel Tenpl at e();
Message reply = tenpl at e. sendAndRecei ve(new Stri ngMessage("test"), soneChannel)
In that example, a temporary anonymous channel would be created internally by the template. The

'sendTimeout' and 'receiveTimeout’ properties may also be set on the template, and other exchange types are
also supported.

public bool ean send(final Message<?> message, final MessageChannel channel) { ... }
publ i c Message<?> sendAndRecei ve(fi nal Message<?> request, final MessageChannel channel) { .. }
publ i c Message<?> receive(final Pollabl eChannel <?> channel) { ... }

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or header
valuesinstead of Message instances is described in Section 16.2, “ GatewayProxyFactoryBean”.

3.5. Configuring Message Channels

To create a Message Channel instance, you can use the 'channel' element:

<channel id="exanpl eChannel "/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the
"publish-subscribe-channel” element:

<publ i sh- subscri be- channel id="exanpl eChannel "/ >

To create a Datatype Channel that only accepts messages containing a certain payload type, provide the

Spring-WS (2.0.0.M5) 16

http://www.eaipatterns.com/DatatypeChannel.html

Message Channels

fully-qualified class name in the channel element's dat at ype attribute:
<channel id="nunber Channel" datatype="java. | ang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words, the
"numberChannel" above would accept messages whose payload isj ava. | ang. | nt eger Of j ava. | ang. Doubl e.
Multiple types can be provided as a comma-delimited list:

<channel id="stringO Nunber Channel" datatype="java.lang. String,java. | ang. Nunber"/>

When using the "channel" element without any sub-elements, it will create a Direct Channel instance (a
Subscri babl eChannel).

However, you can alternatively provide a variety of "queue" sub-elements to create any of the pollable channel
types (as described in Section 3.2, “Message Channel Implementations’). Examples of each are shown below.

3.5.1. DirectChannel Configuration

As mentioned above, bi r ect Channel isthe default type.

<channel i d="directChannel"/>

A default channel will have around-robin load-balancer and will aso have failover enabled (See the discussion
in Section 3.2.5, “DirectChannel” for more detail). To disable one or both of these, add a <dispatcher/>
sub-element and configure the attributes:

<channel id="fail Fast Channel ">
<di spat cher failover="fal se"/>
</ channel >

<channel id="channel Wt hFi xedOr der SequenceFai | over" >
<di spat cher | oad- bal ancer="none"/ >
</ channel >

3.5.2. QueueChannel Configuration

To create a ueueChannel , use the "queue” sub-element. Y ou may specify the channel's capacity:

<channel id="queueChannel ">
<queue capacity="25"/>
</ channel >

Note

If you do not provide a value for the 'capacity’ attribute on this <queue/> sub-element, the resulting
queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

3.5.3. PublishSubscribeChannel Configuration

To create aPubl i shSubscri beChannel , use the "publish-subscribe-channel" element. When using this element,
you can aso specify the "task-executor” used for publishing Messages (if none is specified it simply publishes
in the sender's thread):

Spring-WS (2.0.0.M5) 17

Message Channels

<publ i sh-subscri be-channel id="pubsubChannel" task-executor="soneExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel , then you
can set the 'apply-sequence’ property on the channel to t r ue. That will indicate that the channel should set the
sequence-size and sequence-number Message headers as well as the correlation id prior to passing the
Messages along. For example, if there are 5 subscribers, the sequence-size would be set to 5, and the Messages
would have sequence-number header values ranging from 1 to 5.

<publ i sh-subscri be- channel id="pubsubChannel" appl y-sequence="true"/>

Note

The "apply-sequence’ value is f al se by default so that a Publish Subscribe Channel can send the
exact same Message instances to multiple outbound channels. Since Spring Integration enforces
immutability of the payload and header references, the channel creates new Message instances with
the same payload reference but different header values when theflag issetto t r ue.

3.5.4. ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a 'task-executor' attribute. Its
value can reference any TaskExecut or within the context. For example, this enables configuration of a
thread-pool for dispatching messages to subscribed handlers. As mentioned above, this does break the
"single-threaded" execution context between sender and receiver so that any active transaction context will not
be shared by the invocation of the handler (i.e. the handler may throw an Exception, but the send invocation has
already returned successfully).

<channel i d="execut or Channel ">
<di spat cher task-executor="soneExecutor"/>
</ channel >

Note

The "load-balancer" and "failover" options are also both available on the dispatcher sub-element as
described above in Section 3.5.1, “DirectChannel Configuration”. The same defaults apply as well.
So, the channel will have a round-robin load-balancing strategy with failover enabled unless
explicit configuration is provided for one or both of those attributes.

<channel i d="execut or Channel Wt hout Fai | over ">
<di spat cher task-executor="soneExecutor" failover="fal se"/>
</ channel >

3.5.5. PriorityChannel Configuration

Tocreate aPriori t yChannel , use the "priority-queue" sub-element:

<channel id="priorityChannel">
<priority-queue capacity="20"/>
</ channel >

By default, the channel will consult the MessagePriority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the other types) does
support the "datatype" attribute. As with the QueueChannel, it also supports a "capacity" attribute. The
following example demonstrates all of these:

Spring-WS (2.0.0.M5) 18

Message Channels

<channel id="priorityChannel" datatype="exanpl e. Wdget">
<priority-queue conparator="w dget Conpar at or"
capaci ty="10"/>
</ channel >

3.5.6. RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not provide any
additional configuration options to those described above, and its queue does not accept any capacity value
sinceit is a0-capacity direct handoff queue.

<channel id="rendezvousChannel"/>
<rendezvous- queue/ >
</ channel >

3.5.7. ThreadLocalChannel Configuration

The Thr eadLocal Channel does not provide any additional configuration options.

<t hread- | ocal - channel id="t hreadLocal Channel "/>

3.5.8. Channel Interceptor Configuration

Message channels may also have interceptors as described in Section 3.3, “Channel Interceptors’. The
<interceptors> sub-element can be added within <channel> (or the more specific element types). Provide the
"ref" attribute to reference any Spring-managed object that implements the Channel | nt er cept or interface:

<channel id="exanpl eChannel ">
<i nterceptors>
<ref bean="trafficMnitoringlnterceptor"/>
</interceptors>
</ channel >

In genera, it is a good idea to define the interceptor implementations in a separate location since they usually
provide common behavior that can be reused across multiple channels.

3.5.9. Global Channel Interceptor Configuration

Channel Interceptors allow you for a clean and concise way of applying cross-cutting behavior per individual
channel. But what if the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. The better way would be to configure
interceptors globally and apply them on multiple channels in one shot. Spring Integration provides capabilities
to configure Global Interceptors and apply them on multiple channels. Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo" order="3">
<bean cl ass="f 0o. bar Sanpl el nt erceptor"/>
</int:channel -interceptor>

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo" order="3"/>

<bean i d="nyl nterceptor" class="foo. bar Sanpl el nterceptor"/>

<channel-interceptor> element allows you to define a global interceptor which will be applied on al channels

Spring-WS (2.0.0.M5) 19

Message Channels

that match patterns defined via pattern attribute. 1n the above case the global interceptor will be applied on 'foo'
channel and all other channels that begin with 'bar' and 'input’. The order attribute allows you to manage the
place where this interceptor will be injected. For example, channel ‘inputChannel’ could have individual
interceptors configured locally (see below):

<i nt:channel id="inputChannel">
<int:interceptors>
<int:wre-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

The reasonable question would be how global interceptor will be injected in relation to other interceptors
configured locally or through other global interceptor definitions? Current implementation provides a very
simple and clever mechanism of handling this. Positive number in the order attribute will ensure interceptor
injection after existing interceptors and negative number will ensure that such interceptors injected before. This
means that in the above example global interceptor will be injected AFTER (since its order is greater then 0)
'wire-tap' interceptor configured locally. If there was another global interceptor with matching pattern their
order would be determined based on who's got the higher or lower value in order attribute. To inject global
interceptor BEFORE the existing interceptors use negative value for the order attribute.

Note
Note that order and pattern attributes are optional. The default value for order will be 0 and for
patternis "'

3.5.10. Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an ‘interceptors element. This is especially useful for debugging,
and can be used in conjunction with Spring Integration's logging Channel Adapter as follows:

<channel id="in">
<i nterceptors>
<wi re-tap channel ="1 ogger"/>
</interceptors>
</ channel >

<l oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/ >

Tip

The 'logging-channel-adapter' also accepts a boolean attribute: 'log-full-message’. That is false by
default so that only the payload is logged. Setting that to true enables logging of all headers in
addition to the payload.

Note

If namespace support is enabled, there are also two special channels defined within the context by
default: error Channel and nul | Channel . The 'nullChannel’ acts like / dev/ nul I, simply logging
any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for a reply that you don't care about, you can set the affected component's
‘output-channel’ to reference 'nullChannel’ (the name 'nullChannel’ is reserved within the context).
The 'errorChannel’ is used internally for sending error messages, and it can be overridden with a
custom configuration. It is discussed in greater detail in Section B.4, “Error Handling”.

Spring-WS (2.0.0.M5) 20

Chapter 4. Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying API
that drives Spring Integration's various messaging components. This information can be helpful if you want to
really understand what's going on behind the scenes. However, if you want to get up and running with the
simplified namespace-based configuration of the various elements, feel free to skip ahead to Section 4.4,
“Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various messaging
components to channels. Over the next several chapters, you will see a number of different components that
consume Messages. Some of these are also capable of sending reply Messages. Sending Messages is quite
straightforward. As shown above in Chapter 3, Message Channels, it's easy to send a Message to a Message
Channel. However, receiving is a bit more complicated. The main reason is that there are two types of
consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a separate
poller thread, they are essentially just listeners with a callback method. When connecting to one of Spring
Integration's subscribable Message Channels, this simple option works great. However, when connecting to a
buffering, pollable Message Channel, some component has to schedule and manage the polling thread(s).
Spring Integration provides two different endpoint implementations to accommodate these two types of
consumers. Therefore, the consumers themselves can simply implement the callback interface. When polling is
required, the endpoint acts as a "container" for the consumer instance. The benefit is similar to that of using a
container for hosting Message Driven Beans, but since these consumers are simply Spring-managed Objects
running within an ApplicationContext, it more closely resembles Spring's own MessageL istener containers.

4.1. Message Handler

Spring Integration's MessageHandl er interface is implemented by many of the components within the
framework. In other words, this is not part of the public API, and a developer would not typically implement
MessageHandl er directly. Nevertheless, it is used by a Message Consumer for actually handling the consumed
Messages, and so being aware of this strategy interface does help in terms of understanding the overall role of a
consumer. The interface is defined as follows:

public interface MessageHandl er {
voi d handl eMessage(Message<?> nessage) ;

}

Despite its simplicity, this provides the foundation for most of the components that will be covered in the
following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc). Those components
each perform very different functionality with the Messages they handle, but the requirements for actually
receiving a Message are the same, and the choice between polling and event-driven behavior is also the same.
Spring Integration provides two endpoint implementations that "host" these callback-based handlers and allow
them to be connected to Message Channels.

4.2. Event Driven Consumer

Because it is the smpler of the two, we will cover the Event Driven Consumer endpoint first. You may recall
that the Subscri babl eChannel interface provides a subscribe() method and that the method accepts a
MessageHandl er parameter (as shown in Section 3.1.2, “ SubscribableChannel”):

Spring-WS (2.0.0.M5) 21

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Message Endpoints

subscri babl eChannel . subscri be(messageHandl er) ;

Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an Event
Driven Consumer, and the implementation provided by Spring Integration accepts a a Subscri babl eChannel
and a MessageHandl er :

Subscri babl eChannel channel = (Subscribabl eChannel) context.getBean("subscribabl eChannel ");

Event Dri venConsuner consuner = new Event Dri venConsuner (channel , exanpl eHandl er);

4.3. Polling Consumer

Spring Integration also provides a Pol | i ngConsurnrer , and it can be instantiated in the same way except that the
channel must implement Pol | abl eChannel :
Pol | abl eChannel channel = (Pol | abl eChannel) context. getBean("pol | abl eChannel ");

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , exanpl eHandl er);

There are many other configuration options for the Polling Consumer. For example, the trigger is a required
property:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);
consuner. set Tri gger (new I nterval Tri gger (30, Ti nmeUnit.SECONDS));
Spring Integration currently provides two implementations of the Tri gger interface: I nterval Trigger and

CronTrigger. The I nterval Trigger is typicaly defined with a simple interval (in milliseconds), but also
supports an 'initial Delay' property and a boolean 'fixedRate' property (the default isfalse, i.e. fixed delay):

Interval Trigger trigger = new Interval Tri gger (1000);
trigger.setlnitial Del ay(5000);
trigger.setFi xedRate(true);

The cronTri gger simply requires avalid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MONNFRI ") ;

In addition to the trigger, several other polling-related configuration properties may be specified:

Pol I i ngConsuner consumer = new Pol | i ngConsuner (channel , handl er);
consuner . set MaxMessagesPer Pol | (10);

consuner . set Recei veTi meout (5000) ;

The 'maxM essagesPerPoll' property specifies the maximum number of messages to receive within a given poll
operation. This means that the poller will continue calling receive() without waiting until either nul I isreturned
or that max is reached. For example, if a poller has a 10 second interval trigger and a 'maxM essagesPerPoll’
setting of 25, and it is polling a channel that has 100 messages in its queue, al 100 messages can be retrieved
within 40 seconds. It grabs 25, waits 10 seconds, grabs the next 25, and so on.

The 'receiveTimeout' property specifies the amount of time the poller should wait if no messages are available
when it invokes the receive operation. For example, consider two options that seem similar on the surface but

Spring-WS (2.0.0.M5) 22

Message Endpoints

are actualy quite different: the first has an interval trigger of 5 seconds and a receive timeout of 50
milliseconds while the second has an interval trigger of 50 milliseconds and a receive timeout of 5 seconds. The
first one may receive a message up to 4950 milliseconds later than it arrived on the channel (if that message
arrived immediately after one of its poll calls returned). On the other hand, the second configuration will never
miss a message by more than 50 milliseconds. The difference is that the second option requires a thread to wait,
but as aresult it is able to respond much more quickly to arriving messages. This technique, known as "long
polling", can be used to emulate event-driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or, and it can be configured to participate in
Spring-managed transactions. The following example shows the configuration of both:

Pol I i ngConsuner consumer = new Pol | i ngConsuner (channel , handl er);

TaskExecut or taskExecutor = (TaskExecutor) context.getBean("exanpl eExecutor");
consuner . set TaskExecut or (t askExecut or) ;

Pl at f or mr ansact i onManager txManager = (Pl atfornfransati onManager) context. get Bean("exanpl eTxManager!);
consuner . set Transact i onManager (t xManager) ;

The examples above show dependency lookups, but keep in mind that these consumers will most often be
configured as Spring bean definitions. In fact, Spring Integration also provides a Fact or yBean that creates the
appropriate consumer type based on the type of channel, and there is full XML namespace support to even
further hide those details. The namespace-based configuration will be featured as each component type is
introduced.

Note

Many of the MessageHandl er implementations are also capable of generating reply Messages. As
mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless, when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as a
downstream consumer for a Splitter which may generate multiple replies for each Message it
handles. When using the namespace configuration, you do not strictly need to know al of the
details, but it still might be worth knowing that several of these components share a common base
class, the Abstract Repl yProduci ngMessageHandl er, and it provides a set Qut put Channel (. .)
method.

4.4, Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements, such as
router, transformer, service-activator, and so on. Most of these will support an "input-channel" attribute and
many will support an "output-channel” attribute. After being parsed, these endpoint elements produce an
instance of either the PollingConsumer or the EventDrivenConsurmer depending on the type of the
"input-channel" that is referenced: Pol I abl eChannel OfF Subscri babl eChannel respectively. When the channel
is pollable, then the polling behavior is determined based on the endpoint element’s "poller” sub-element. For
example, asimple interval-based poller with a 1-second interval would be configured like this:

<transforner input-channel ="poll abl e"
ref="transforner"
out put - channel =" out put " >

<pol | er >
<interval -trigger interval ="1000"/>
</ pol | er >

</ transf or ner >

For apoller based on a Cron expression, use the "cron-trigger" child element instead:

Spring-WS (2.0.0.M5) 23

Message Endpoints

<transformer input-channel ="pol | abl e"
ref="transforner"
out put - channel =" out put " >
<pol | er >
<cron-trigger expression="*/10 * * * * NON-FRI"/>
</ pol | er >
</ transformer>

If the input channel is a Pol | abl eChannel , then the poller configuration is required. Specificaly, as mentioned
above, the 'trigger' is a required property of the PollingConsumer class. Therefore, if you omit the "poller”
sub-element for a Polling Consumer endpoint's configuration, an Exception may be thrown. However, it isaso
possible to create top-level pollersin which case only a"ref" isrequired:

<pol | er id="weekdayPol | er">
<cron-trigger expression="*/10 * * * * NMON-FRI"/>
</ pol | er >

<transforner input-channel ="pol | abl e"
ref ="transforner"
out put - channel =" out put " >
<pol I er ref="weekdayPol | er"/>
</ transfornmer>

In fact, to simplify the configuration, you can define a global default poller. A single top-level poller within an
ApplicationContext may have the def aul t attribute with a value of "true". In that case, any endpoint with a
PollableChannel for its input-channel that is defined within the same ApplicationContext and has no explicitly
configured 'poller' sub-element will use that default.

<poll er id="defaultPoller" default="true" nax-nessages-per-poll="5">
<interval -trigger interval ="3" time-unit="SECONDS"/>

</ pol | er >

<l-- No <poller/> sub-elenment is necessary since there is a default -->

<transforner input-channel ="poll abl e"
ref ="transf orner"
out put - channel =" out put "/ >

Spring Integration also provides transaction support for the pollers so that each receive-and-forward operation
can be performed as an atomic unit-of-work. To configure transactions for a poller, ssmply add the
<transactional/> sub-element. The attributes for this element should be familiar to anyone who has experience
with Spring's Transaction management:

<pol | er >
<interval -trigger interval ="1000"/>
<transactional transaction-manager="txManager"
pr opagat i on="REQUI RED"
i sol at i on=" REPEATABLE_READ"
ti meout =" 10000"
read-onl y="fal se"/>
</ pol | er >

The polling threads may be executed by any instance of Spring's TaskExecut or abstraction. This enables
concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a "task" namespace in the core
Spring Framework, and its <executor/> element supports the creation of a ssimple thread pool executor. That
element accepts attributes for common concurrency settings such as pool-size and queue-capacity. Configuring
a thread-pooling executor can make a substantial difference in how the endpoint performs under load. These
settings are available per-endpoint since the performance of an endpoint is one of the magjor factors to consider
(the other major factor being the expected volume on the channel to which the endpoint subscribes). To enable
concurrency for a polling endpoint that is configured with the XML namespace support, provide the
'task-executor' reference on its <poller/> element and then provide one or more of the properties shown below:

<pol | er task-executor="pool"/>

Spring-WS (2.0.0.M5) 24

Message Endpoints

<interval -trigger interval ="5" tinme-unit="SECONDS"/>
</ pol | er>

<t ask: execut or id="pool"
pool - si ze="5- 25"
gueue- capaci ty="20"
keep-al i ve="120"/>

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note that the
"caller" is usually the default TaskSchedul er (See Section B.3, “Configuring the Task Scheduler”). Also, keep
in mind that the 'task-executor' attribute can provide a reference to any implementation of Spring's
TaskExecut or interface by specifying the bean name. The "executor" element above is simply provided for
convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message source.
Note that this will only apply to sources that have a blocking wait call with a timeout. For example, the File
poller does not block, each receive() call returns immediately and either contains new files or not. Therefore,
even if a poller contains a long receive-timeout, that value would never be usable in such a scenario. On the
other hand when using Spring Integration's own queue-based channels, the timeout val ue does have a chance to
participate. The following example demonstrates how a Polling Consumer will receive Messages nearly
instantaneously.

<servi ce-activator input-channel ="someQueueChannel "
out put - channel =" out put " >
<pol |l er receive-tinmeout="30000">
<interval -trigger interval ="10"/>
</ pol | er>
</ servi ce-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait thread
which does not require nearly as much CPU resource usage as a thrashing, infinite while loop for example.

Spring-WS (2.0.0.M5) 25

Chapter 5. Service Activator

5.1. Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel so
that it may play the role of a service. If the service produces output, it may also be connected to an output
channel. Alternatively, an output producing service may be located at the end of a processing pipeline or
message flow in which case, the inbound Message's "replyChanndl" header can be used. This is the default
behavior if no output channel is defined, and as with most of the configuration options you'll see here, the same
behavior actually applies for most of the other components we have seen.

5.2. The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the ‘input-channel’ and 'ref' attributes:

<servi ce-activator input-channel ="exanpl eChannel " ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated with the
@ServiceActivator annotation or that it contains only one public method at all. To delegate to an explicitly
defined method of any object, smply add the "method" attribute.

<service-activator input-channel ="exanpl eChannel" ref="sonePoj 0" net hod="soneMet hod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the reply
message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel” was provided in the endpoint configuration:

<servi ce-activator input-channel ="exanpl eChannel" out put-channel ="repl yChannel "
ref =" sonePoj 0" net hod="soneMet hod"/ >

If no "output-channel” is available, it will then check the Message's REPLY_CHANNEL header value. If that value
isavailable, it will then check itstype. If it isaMessageChannel , the reply message will be sent to that channel.
If itisastring, then the endpoint will attempt to resolve the channel name to a channel instance. If the channel
cannot be resolved, then a channel Resol ut i onExcept i on will be thrown.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then it will be
assumed that it is a Message payload, which will be extracted from the message and injected into such service
method. Thisis generally the recommended approach as it follows and promotes a POJO model when working
with Spring Integration. Arguments may also have @Header, @Headers or @M essageM apping annotations as
described in Section B.5, “ Annotation Support”

Note

Since v1.0.3 of Spring Integration, the service method is not required to have an argument at al,
which means you can now implement event-style Service Activators, where al you care about is an
invocation of the service method, not worrying about the contents of the message. Think of it as a
NULL JMS message. An example use-case for such an implementation could be a simple
counter/monitor of messages deposited on the input channel.

Using a "ref" attribute is generally recommended if the custom Service Activator handler implementation can

Spring-WS (2.0.0.M5) 26

Service Activator

be reused in other <service-activator> definitions. However if the custom Service Activator handler
implementation should be scoped to asingle definition of the <ser vi ce- act i vat or >, you can use an inner bean
definition:

<servi ce-activator id="exanpleServiceActivator" input-channel ="inChannel"
out put - channel = "out Channel " net hod="f 00" >

<beans: bean cl ass="org. f 00. Exanpl eServi ceActivator"/>
</ servi ce-acti vator >

Note

Using both the "ref" attribute and an inner handler definition in the same <ser vi ce- act i vat or >
configuration is not alowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Spring-WS (2.0.0.M5) 27

Chapter 6. Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a Message
Channel. Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, and Mail. Those will be discussed in upcoming chapters of this reference
guide. However, this chapter focuses on the simple but flexible Method-invoking Channel Adapter support.
There are both inbound and outbound adapters, and each may be configured with XML elements provided in
the core namespace.

6.1. The <inbound-channel-adapter> element

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send a
non-null return value to a MessageChannel after converting it to a Message. When the adapter's subscription is
activated, a poller will attempt to receive messages from the source. The poller will be scheduled with the
TaskSchedul er according to the provided configuration. To configure the polling interval or cron expression
for an individua channel-adapter, provide a 'poller' element with either an 'interval-trigger' (in milliseconds) or
‘cron-trigger' sub-element.

<i nbound- channel - adapt er ref="sourcel" nethod="nethodl" channel ="channel 1">

<pol | er >
<interval -trigger interval ="5000"/>
</ pol | er>

</i nbound- channel - adapt er >

<i nbound- channel - adapt er ref="source2" nethod="net hod2" channel ="channel 2">
<pol | er >
<cron-trigger expression="30 * 9-17 * * MON-FRI"/>
</ pol | er>
</ channel - adapt er >

Note

If no poller is provided, then a single default poller must be registered within the context. See
Section 4.4, “Namespace Support” for more detail.

6.2. The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer method
that should be invoked with the payload of Messages sent to that channel.

<out bound- channel - adapt er channel ="channel 1" ref="target1" nethod="nmet hodl"/>

If the channel being adapted isaPol | abl eChannel , provide a poller sub-element:

<out bound- channel - adapt er channel ="channel 2" ref="target 2" met hod="net hod2" >

<pol | er >
<interval -trigger interval ="3000"/>
</ pol l er>

</ out bound- channel - adapt er >
<beans: bean id="target1" cl ass="org. bar. Foo"/>

Using a"ref" attribute is generally recommended if the POJO consumer implementation can be reused in other
<out bound- channel - adapt er > definitions. However if the consumer implementation should be scoped to a

Spring-WS (2.0.0.M5) 28

Channel Adapter

single definition of the <out bound- channel - adapt er >, you can define it as inner bean:

<out bound- channel - adapt er channel =" channel 2" net hod="net hod2" >
<beans: bean cl ass="org. bar. Foo"/ >

</ out bound- channel - adapt er >

Note

Using both the "ref" attribute and an inner handler definition in the same
<out bound- channel - adapt er > configuration is not allowed, as it creates an ambiguous condition
and will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly create an
instance of DirectChannel. The created channel's name will match the "id" attribute of the
<inbound-channel-adapter/> or <outbound-channel-adapter element. Therefore, if the "channel" is not
provided, the "id" is required.

Spring-WS (2.0.0.M5) 29

Chapter 7. Router

7.1. Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require Spring
Integration's options for delegating to POJOs using the XML namespace support and/or Annotations. Both of
these are discussed below, but first we present a couple implementations that are avail able out-of-the-box since
they fulfill generic, but common, requirements.

7.1.1. PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

<bean i d="payl oadTypeRout er" cl ass="org. spri ngfranework.integration.router.Payl oadTypeRout er">
<property nanme="payl oadTypeChannel Map" >
<n’ap>
<entry key="java.lang. String" val ue-ref="stringChannel "/ >
<entry key="java.lang.|nteger" val ue-ref="integerChannel "/ >
</ map>
</ property>
</ bean>

Configuration of Payl oadTypeRout er is aso supported via the namespace provided by Spring Integration (see
Section B.2, “Namespace Support™), which essentially simplifies configuration by combining <router/>
configuration and its corresponding implementation defined using <bean/ > element into a single and more
concise configuration element. The example below demonstrates Payl oadTypeRout er configuration which is
equivalent to the one above using Spring Integration's namespace support:

<payl oad-type-rout er input-channel ="routi ngChannel ">
<mappi ng type="java.lang. String" channel ="stringChannel" />
<mappi ng type="java.l ang. | nteger" channel ="i nt eger Channel " />
</ payl oad-t ype-rout er>

7.1.2. HeaderValueRouter

A Header Val ueRout er Will send Messages to the channel based on the individual header value mappings.
When Header Val ueRout er IS created it is initialized with the name of the header to be evaluated, using
const ruct or - ar g. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary value, then a channel Resol ver should be provided to map header values to channel names. The
example below uses MapBasedChannel Resol ver t0 set up amap of header values to channel names.

<bean i d="nyHeader Val ueRout er "
cl ass="org. spri ngfranmework.integration.router.Header Val ueRout er" >
<constructor-arg val ue="sonmeHeader Nane" />
<property nanme="channel Resol ver" >
<bean cl ass="org. springfranmework.integration.channel . MapBasedChannel Resol ver" >
<property nanme="channel Map" >
<n’ap>
<entry key="soneHeader Val ue" val ue-ref="channel A" />
<entry key="someQ her Header Val ue" val ue-ref="channel B" />

Spring-WS (2.0.0.M5) 30

Router

</ map>
</ property>
</ bean>
</ property>
</ bean>

If channel Resol ver is not specified, then the header value will be treated as a channel name making
configuration much simpler, where no channel Resol ver needsto be specified.

<bean i d="nyHeader Val ueRout er"
cl ass="org. spri ngfranmework.integration.router.Header Val ueRout er" >
<constructor-arg val ue="sonmeHeader Nane" />

</ bean>

Similar to the Payl oadTypeRout er, configuration of Header Val ueRouter is aso supported via namespace
support provided by Spring Integration (see Section B.2, “Namespace Support”). The example below
demonstrates two types of namespace-based configuration of Header val ueRout er which are equivalent to the
ones above using Spring Integration namespace support:

1. Configuration where mapping of header values to channelsis required

<header - val ue-rout er i nput-channel ="routi ngChannel " header - nane="t est Header " >
<mappi ng val ue="someHeader Val ue" channel ="channel A" />
<mappi ng val ue="someQ her Header Val ue" channel =" channel B* />

</ header - val ue-rout er >

2. Configuration where mapping of header values is not required if header values themselves represent the
channel names

<header - val ue-rout er i nput-channel ="routi ngChannel " header - nane="t est Header "/ >

Note

The two router implementations shown above share some common properties, such as
"defaultOutputChannel” and "resolutionRequired”. If "resolutionRequired” is set to "true”, and the
router is unable to determine a target channel (e.g. there is no matching payload for a
PayloadTypeRouter and no "defaultOutputChannel" has been specified), then an Exception will be
thrown.

7.1.3. RecipientListRouter

A Reci pi ent Li st Rout er Will send each received Message to a statically-defined list of Message Channels:

<bean i d="recipi entListRouter" class="org.springframework.integration.router.RecipientListRouter">
<property nanme="channel s">
<list>
<ref bean="channel 1"/>
<ref bean="channel 2"/ >
<ref bean="channel 3"/ >
</list>
</ property>
</ bean>

Configuration for RecipientListRouter iS aso supported via namespace support provided by Spring
Integration (see Section B.2, “Namespace Support”). The example below demonstrates namespace-based

Spring-WS (2.0.0.M5) 31

Router

configuration of Reci pi ent Li st Router and all the supported attributes using Spring Integration namespace
support:

<recipient-list-router id="custonRouter" input-channel ="routingChannel"
ti meout ="1234"
i gnore-send-failures="true"
appl y- sequence="true">
<reci pi ent channel ="channel 1"/ >
<reci pi ent channel =" channel 2"/ >
</recipient-list-router>

Note

The 'apply-sequence’ flag here has the same affect as it does for a publish-subscribe-channel, and
like publish-subscribe-channel it is disabled by default on the recipient-list-router. Refer to
Section 3.5.3, “ PublishSubscribeChannel Configuration” for more information.

7.2. The <router> element

The "router" element provides a simple way to connect a router to an input channel, and also accepts the
optional default output channel. The "ref" may provide the bean name of a custom Router implementation
(extending AbstractM essageRouter):

<router ref="payl oadTypeRouter" input-channel ="i nput1" defaul t - out put - channel =" def aul t Qut put 1"/ >
<router ref="recipientListRouter" input-channel ="input2" default-output-channel ="defaul t Qut put 2"/ >
<router ref="custonRouter" input-channel ="input3" default-output-channel ="defaul t Qut put 3"/ >

<beans: bean i d="cust onRout er Bean cl ass="org. f oo. MyCust onRout er"/ >

Alternatively, the "ref" may point to a simple Object that contains the @Router annotation (see below), or the
"ref" may be combined with an explicit "method" name. When specifying a "method", the same behavior
applies as described in the @Router annotation section below.

<rout er input-channel ="input" ref="sonePojo" nethod="soneMethod"/>

Using a "ref" attribute is generally recommended if the custom router implementation can be reused in other
<rout er > definitions. However if the custom router implementation should be scoped to a concrete definition
of the <r out er >, you can provide an inner bean definition:;

<rout er met hod="someMet hod" i nput-channel ="i nput 3" def aul t - out put - channel ="def aul t Qut put 3" >
<beans: bean cl ass="org. f oo. MyCust onRouter"/ >
</router>
Note

Using both the "ref" attribute and an inner handler definition in the same <r out er > configuration is
not allowed, asit creates an ambiguous condition and will result in an Exception being thrown.

7.3. The @Router Annotation

When using the @rout er annotation, the annotated method can return either the MessageChannel or String
type. In the case of the latter, the endpoint will resolve the channel name as it does for the default output.

Spring-WS (2.0.0.M5) 32

Router

Additionally, the method can return either a single value or a collection. When a collection is returned, the
reply message will be sent to multiple channels. To summarize, the following method signatures are all valid.

@Rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er

public List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available within the
message header as either a property or attribute. Rather than requiring use of the Message type as the method
parameter, the @out er annotation may also use the @Header parameter annotation that is documented in

Section B.5, “ Annotation Support”.

@Rout er
public List<String> route(@leader("orderStatus") OrderStatus status)

Note
For routing of XML-based Messages, including X Path support, see Chapter 31, Dealing with XML
Payloads.

Spring-WS (2.0.0.M5) 33

Chapter 8. Filter

8.1. Introduction

Message Filters are used to decide whether a Message should be passed aong or dropped based on some
criteria such as a Message Header value or even content within the Message itself. Therefore, a Message Filter
is similar to a router, except that for each Message received from the filter's input channel, that same Message
may or may not be sent to the filter's output channel. Unlike the router, it makes no decision regarding which
Message Channel to send to but only decides whether to send.

Note

As you will see momentarily, the Filter does also support a discard channel, so in certain cases it
can play therole of avery simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to some
implementation of the vessageSel ect or interface. That interface isitself quite smple:
public interface MessageSel ector {

bool ean accept (Message<?> nessage) ;

}
The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector);

In combination with the namespace and SpEL very powerful filters can be configured with very little java code.

8.2. The <filter> Element

The <filter> element is used to create a Message-selecting endpoint. In addition to "input-channel” and
"output-channel" attributes, it requiresa"ref". The "ref" may point to a MessageSel ector implementation:

<filter input-channel ="input" ref="selector" output-channel ="output"/>

<bean i d="sel ector" cl ass="exanpl e. MessageSel ectorl npl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages. The return
value of the method must be a boolean value. Any time the method returns 'true’, the Message will be passed
along to the output-channel.

<filter input-channel ="input" output-channel ="output"
ref =" exanpl eCbj ect” met hod="sonmeBool eanRet ur ni ngMet hod" / >

<bean i d="exanpl eObj ect" cl ass="exanpl e. SoneCbj ect "/ >

If the selector or adapted POJO method returns f al se, there are a few settings that control the fate of the
rejected Message. By default (if configured like the example above), the rejected Messages will be silently
dropped. If rejection should instead indicate an error condition, then set the 'throw-exception-on-rejection’ flag
totrue:

Spring-WS (2.0.0.M5) 34

Filter

<filter input-channel ="input" ref="selector"
out put - channel =" out put" t hrow exception-on-rejection="true"/>

If you want the rejected messages to go to a specific channel, provide that reference as the 'discard-channel":

<filter input-channel="input" ref="selector"
out put - channel ="out put" di scard- channel ="r ej ect edMessages"/ >

Note

A common usage for Message Filters is in conjunction with a Publish Subscribe Channel. Many
filter endpoints may be subscribed to the same channel, and they decide whether or not to pass the
Message for the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router with
a single Point-to-Point input channel and multiple output channels.

Using a "ref" attribute is generally recommended if the custom filter implementation can be reused in other
<filter> definitions. However if the custom filter implementation should be scoped to a single <filter>
element, provide an inner bean definition:

<filter method="someMet hod" input-channel ="i nChannel " out put-channel =" out Channel ">
<beans: bean cl ass="org.foo. MyCustonFilter"/>
</filter>
Note

Using both the "ref" attribute and an inner handler definition in the same <fi | t er > configuration is
not allowed, as it creates an ambiguous condition, and it will therefore result in an Exception being
thrown.

With the introduction of SpEL Spring Integration has added the expr essi on attribute to the filter element. It
can be used to avoid Java entirely for simplefilters.

<filter input-channel="input" expression="payl oad. equal s(nonsense)"/>

The string passed as the expression attribute will be evaluated as a SpEL expression in the context of the
message. If it is needed to include the result of an expression in the scope of the application context you can use
the#{} notation as defined in the SpEL reference documentation SpEL reference documentation .

<filter input-channel="input" expression="payl oad. matches(#{filterPatterns. nonsensePattern})"/>

Spring-WS (2.0.0.M5) 35

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

Chapter 9. Transformer

9.1. Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers and
Message Consumers. Rather than requiring every Message-producing component to know what type is
expected by the next consumer, Transformers can be added between those components. Generic transformers,
such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration aims to
provide the simplest possible model for extension. As with the other endpoint types, the use of declarative
configuration in XML and/or Annotations enables simple POJOs to be adapted for the role of Message
Transformers. These configuration options will be described below.

Note

For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see Chapter 31, Dealing with XML Payloads.

9.2. The <transformer> Element

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-channel”
and "output-channel” attributes, it requires a "ref". The "ref" may either point to an Object that contains the
@Transformer annotation on a single method (see below) or it may be combined with an explicit method name
value provided viathe "method" attribute.

<transforner id="testTransforner" ref="testTransfornmerBean" input-channel ="inChannel "
net hod="transf orn out put - channel =" out Channel "/ >
<beans: bean i d="t est Transf or mer Bean" cl ass="org. foo. Test Transfornmer" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation can be
reused in other <t r ansf or ner > definitions. However if the custom transformer handler implementation should
be scoped to a single definition of the <t r ansf or ner >, you can define an inner bean definition:

<transforner id="testTransforner" input-channel ="i nChannel" met hod="transf ornf
out put - channel =" out Channel " >
<beans: bean cl ass="org. f 0o. Test Transfornmer"/>
</ transformer >

Note

Using both the "ref" attribute and an inner handler definition in the same <transforner>
configuration is not alowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

The method that is used for transformation may expect either the Message type or the payload type of inbound
Messages. It may also accept Message header values either individually or as a full map by using the @Header

Spring-WS (2.0.0.M5) 36

http://www.eaipatterns.com/CanonicalDataModel.html

Transformer

and @Headers parameter annotations respectively. The return value of the method can be any type. If the return
value is itself a Message, that will be passed aong to the transformer's output channel. If the return type is a
Map, and the original Message payload was not a Map, the entries in that Map will be added to the Message
headers of the original Message (the keys must be Strings). If the return value is null, then no reply Message
will be sent (effectively the same behavior as a Message Filter returning false). Otherwise, the return value will
be sent as the payload of an outbound reply Message.

There are a also a few Transformer implementations available out of the box. Because, it is fairly common to
use the tostring() representation of an Object, Spring Integration provides an bj ect ToSt ri ngTr ansf or mer
whose output is a Message with a String payload. That String is the result of invoking the toString operation on
the inbound Message's payload.

<obj ect-to-string-transformer input-channel="in" output-channel ="out"/>

A potential example for this would be sending some arbitrary object to the 'outbound-channel-adapter' in the
file namespace. Whereas that Channel Adapter only supports String, byte-array, or j ava. i o. Fi | e payloads by
default, adding this transformer immediately before the adapter will handle the necessary conversion. Of
course, that works fine as long as the result of thet oSt ri ng() cal iswhat you want to be written to the File.
Otherwise, you can just provide a custom POJO-based Transformer viathe generic ‘transformer’ element shown
previously.

Tip
When debugging, this transformer is not typically necessary since the 'logging-channel-adapter' is
capable of logging the Message payload. Refer to Section 3.5.10, “Wire Tap” for more detail.

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers.

<payl oad- seri al i zi ng-transf ornmer input-channel ="objectsln" output-channel ="bytesQut"/>

<payl oad- deseri al i zi ng-transfornmer input-channel ="bytesln" output-channel ="objectsCQut"/>

If you only need to add headers to a Message, and they are not dynamically determined by Message content,
then referencing a custom implementation may be overkill. For that reason, Spring Integration provides the
'header-enricher' element.

<header - enri cher input-channel ="in" output-channel ="out">
<header nane="foo" val ue="123"/>
<header nane="bar" ref="soneBean"/>

</ header - enri cher >

9.3. The @Transformer Annotation

The @ ansf or mer annotation can also be added to methods that expect either the Message type or the message
payload type. The return value will be handled in the exact same way as described above in the section
describing the <transformer> element.

@r ansf or mer

Order generateOrder(String productld) {
return new Order(productld);

}

Transformer methods may aso accept the @Header and @Headers annotations that is documented in
Section B.5, “ Annotation Support”

Spring-WS (2.0.0.M5) 37

Transformer

@ ansf or mer

Order generateOrder(String productld, @deader("custonmerNanme") String custoner) {
return new Order(productld, custoner);

}

Spring-WS (2.0.0.M5)

38

Chapter 10. Splitter

10.1. Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that includes an
Aggregator.

10.2. Programming model

The API for performing splitting consists from one base class, AbstractMessageSplitter, which is a
MessageHandler implementation, encapsulating features which are common to splitters, such as filling in the
appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER on the
messages that are produced. This allows to track down the messages and the results of their processing (in a
typical scenario, these headers would be copied over to the messages that are produced by the various
transforming endpoints), and use them, for example, in a Composed M essage Processor scenario.

An excerpt from AbstractM essageSplitter can be seen below:

public abstract class Abstract MessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Object splitMssage(Message<?> nessage);

For implementing a specific Splitter in an application, a developer can extend AbstractMessageSplitter and
implement the splitM essage method, thus defining the actual logic for splitting the messages. The return value
can be one of the following:

« aCaoallection (or subclass thereof) or an array of Message objects - in this case the messages will be sent as
such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER are populated). Using
this approach gives more control to the developer, for example for populating custom message headers as
part of the splitting process.

« aCallection (or subclass thereof) or an array of non-Message objects - works like the prior case, except that
each collection element will be used as a Message payload. Using this approach allows devel opers to focus
on the domain objects without having to consider the Messaging system and produces code that is easier to
test.

« aMessage or non-Message object (but not a Collection or an Array) - it works like the previous cases, except
that there is a single message to be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method that
accepts a single argument and has areturn value. In this case, the return value of the method will be interpreted
as described above. The input argument might either be a Message or a simple POJO. In the latter case, the
splitter will receive the payload of the incoming message. Since this decouples the code from the Spring
Integration API and will typically be easier to test, it is the recommended approach.

Spring-WS (2.0.0.M5) 39

Splitter

10.3. Configuring a Splitter using XML

A splitter can be configured through XML asfollows:

<channel id="input Channel "/>

<splitter id="splitter" O
ref="splitterBean" O
net hod="split" O
i nput - channel ="i nput Channel * 0O
out put - channel =" out put Channel " [0/ >

<channel id="out put Channel "/ >

<beans: bean id="splitterBean" class="sanple.PojoSplitter"/>

O Theid of the splitter is optional.

O A reference to a bean defined in the application context. The bean must implement the splitting logic as
described in the section above. Optional. If reference to a bean is not provided, then it is assumed that the
payload of the Message that arrived on the i nput - channel is an implementation of java.util.Collection
and the default splitting logic will be applied on such Collection, incorporating each individual element
into a Message and depositing it on the out put - channel .

O Themethod (defined on the bean specified above) that implements the splitting logic. Optional.

O Theinput channel of the splitter. Required.

O The channel where the splitter will send the results of splitting the incoming message. Optional (because
incoming messages can specify a reply channel themselves).

Using a"ref" attribute is generally recommended if the custom splitter handler implementation can be reused in
other <splitter> definitions. However if the custom splitter handler implementation should be scoped to a
single definition of the<spl i t t er >, you can configure an inner bean definition:

<splitter id="testSplitter" input-channel="inChannel" nethod="split"
out put - channel =" out Channel " >
<beans: bean cl ass="org.foo. TestSplitter"/>
</spliter>

Note

Using both a"ref" attribute and an inner handler definition in the same <spl i t t er > configuration is
not allowed, asit creates an ambiguous condition and will result in an Exception being thrown.

10.4. Configuring a Splitter with Annotations

The @pl i tter annotation is applicable to methods that expect either the Message type or the message payload
type, and the return values of the method should be a collection of any type. If the returned values are not actual
Message objects, then each of them will be sent as the payload of a message. Those messages will be sent to the
output channel as designated for the endpoint on which the @pl i tt er isdefined.

@plitter
Li st<Linelten> extractltens(Order order) {
return order.getltens()

}

Spring-WS (2.0.0.M5) 40

Chapter 11. Aggregator

11.1. Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives multiple
Messages and combines them into a single Message. In fact, Aggregators are often downstream consumersin a
pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain state (the
Messages to be aggregated), to decide when the complete group of Messages is available. In order to do this it
requires a MessageStore

11.2. Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group is
deemed complete. At that point, the Aggregator will create a single message by processing the whole group,
and will send that aggregated message as outpui.

An main aspect of implementing an Aggregator is providing the logic that has to be executed when the
aggregation (creation of a single message out of many) takes place. The other two aspects are correlation and
release

In Spring Integration, the grouping of the messages for aggregation (correlation) is done by default based on
their CORRELATION_ID message header (i.e. the messages with the same CORRELATION_ID will be
grouped together). However, this can be customized, and the users can opt for other ways of specifying how the
messages should be grouped together, by using a CorrelationStrategy (see below).

To determine whether or not a group of messages may be processed, a ReleaseStrategy is consulted. The
default release strategy for aggregator will release groups that have all messages from the sequence, but this can
be entirely customized

11.3. Programming model

The Aggregation APl consists of a number of classes:

* The interface MessageG oupPr ocessor and related base class
Abst r act Aggr egat i ngMessage& oupPr ocessor and its subclass
Met hodl nvoki ngAggr egat i ngMessageGr oupPr ocessor

e TheRel easeStrat egy interface and its default implementation SequenceSi zeRel easeSt r at egy

e ThecCorrel ati onStrat egy interface and its default implementation Header At t ri but eCorr el at i onSt r at egy

11.3.1. CorrelatingMessageHandler

The Correl atingMessageHandl er iS a MessageHandl er implementation, encapsulating the common
functionalities of an Aggregator (and other correlating use cases), which are:

Spring-WS (2.0.0.M5) 41

Aggregator

« correlating messages into a group to be aggregated

* maintaining those messages in a MessageStore until the group may be released
 deciding when the group isin fact may be released

 processing the released group into a single aggregated message

* recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ationStrategy instance. The responsibility of deciding whether the message group can be released is
delegated to aRel easeSt r at egy instance.

Here is a brief highlight of the base Abstract Aggr egat i ngMessageG oupPr ocessor (the responsibility of
implementing the aggregateM essages method is | eft to the devel oper):

public abstract class Abstract Aggregati ngMessageG oupProcessor
i npl enents MessageG oupProcessor {

protected Map<String, Object> aggregat eHeaders(MessageG oup group) {
}
protected abstract Object aggregatePayl oads(MessageG oup group);

}

The CorrelationStrategy is owned by the Correl at i ngMessageHand! er and it has a default value based on the
correlation |D message header:

private volatile CorrelationStrategy correl ationStrategy =
new Header Attri buteCorrel ati onStrat egy(MessageHeader s. CORRELATI ON_I D) ;

When appropriate, the simplest option is the Def aul t Aggr egat i ngMessageG oupPr ocessor . It creates a single
Message whose payload is a List of the payloads received for a given group. It uses the default
Correl ationStrategy and Conpl eti onStrat egy as shown above. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario, be sure
to enable the flag to apply-sequence. That will add the necessary headers (correlation id, sequence
number and sequence size). That behavior is enabled by default for Splitters in Spring Integration,
but it is not enabled for the Publish Subscribe Channel or Recipient List Router because those
components may be used in avariety of contexts where those headers are not necessary.

When implementing a specific aggregator object for an application, a developer can extend
Abst r act Aggr egat i ngMessageG oupProcessor and implement the aggr egat ePayl oads method. However,
there are better suited (which reads, less coupled to the API) solutions for implementing the aggregation logic,
which can be configured easily either through XML or through annotations.

In general, any ordinary Java class (i.e. POJO) can implement the aggregation algorithm. For doing so, it must
provide a method that accepts as an argument a single java.util.List (parametrized lists are supported as well).
This method will be invoked for aggregating messages, as follows:

« if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the

Spring-WS (2.0.0.M5) 42

Aggregator

whole list of messages accumulated for aggregation will be sent to the aggregator

« if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message, then
the method will receive the payloads of the accumulated messages

« if the return type is not assignable to Message, then it will be treated as the payload for a Message that will
be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for setting it up in the application.

11.3.2. ReleaseStrategy

The Rel easeStr at egy interface is defined as follows:

public interface Rel easeStrategy {

bool ean canRel ease(MessageG oup nmessages);

In general, any ordinary Java class (i.e. POJO) can implement the completion decision mechanism. For doing
so, it must provide a method that accepts as an argument a single java.util.List (parametrized lists are supported
as well), and returns a boolean value. This method will be invoked after the arrival of a new message, to decide
whether the group is complete or not, as follows:

« if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the
whole list of messages accumulated in the group will be sent to the method

« if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message, then
the method will receive the payloads of the accumulated messages

* the method must return true if the message group is ready for aggregation, and fal se otherwise.

When the group is released for aggregation, all its unmarked messages are processed and then marked so they
will not be processed again. If the group is aso complete (i.e. if all messages from a sequence have arrived or if
there is no sequence defined) then the group is removed from the message store. Partial sequences can be
released, in which case the next time the Rel easeSt r at egy iscalled it will be presented with a group containing
marked messages (already processed) and unmarked messages (a potential new partial sequence)

Spring Integration provides an out-of-the box implementation for Rel easeStrategy, the
SequenceSi zer Rel easeStrategy. This implementation uses the SEQUENCE NUMBER and
SEQUENCE_SIZE of the arriving messages for deciding when a message group is complete and ready to be
aggregated. As shown above, it is also the default strategy.

11.3.3. CorrelationStrategy

Thecorrel ati onStrat egy interface is defined as follows:

public interface CorrelationStrategy {

Spring-WS (2.0.0.M5) 43

Aggregator

hj ect get Correl ati onKey(Message<?> nessage) ;

The method shall return an Object which represents the correlation key used for grouping messages together.
The key must satisfy the criteria used for a key in a Map with respect to the implementation of equals() and
hashCode().

In general, any ordinary Javaclass (i.e. POJO) can implement the correlation decision mechanism, and the rules
for mapping a message to a method's argument (or arguments) are the same as for a Servi ceActi vat or
(including support for @Header annotations). The method must return avalue, and the value must not be nul 1 .

Spring Integration provides an out-of-the box implementation for CorrelationStrategy, the
Header Attri but eCorrel ati onStrat egy. Thisimplementation returns the value of one of the message headers
(whose name is specified by a constructor argument) as the correlation key. By default, the correlation strategy
is a HeaderAttributeCorrelationStrategy returning the value of the CORRELATION_ID header attribute.

11.4. Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/> element.
Below you can see an example of an aggregator with all optional parameters defined.

<channel id="input Channel "/>

<aggregat or id="conpl etel yDefi nedAggregator"” 0O

i nput - channel ="i nput Channel " O
out put - channel =" out put Channel " 0O
di scard- channel ="di scardChannel " [

ref ="aggr egat or Bean" 0O

met hod="add" 0O

rel ease-strategy="rel easeStrat egyBean" 0O

rel ease-strat egy- net hod="canRel ease" [

correl ation-strategy="correl ati onStrat egyBean" O

correl ati on-strategy- nmet hod="groupNunbersBylLastDigit" O
nmessage- st or e="nessagesSt or e"

send-partial -result-on-expiry="true"

send-ti meout =" 86420000" />

<channel id="out put Channel "/>
<bean i d="aggregat or Bean" cl ass="sanpl e. Poj oAggr egat or"/ >
<bean id="rel easeStrat egyBean" cl ass="sanpl e. Poj oRel easeStrat egy"/>

<bean i d="correl ati onStrat egyBean" cl ass="sanpl e. Poj oCorrel ati onStrategy"/>

O Theid of the aggregator is optional.

O Theinput channel of the aggregator. Required.

O The channel where the aggregator will send the aggregation results. Optional (because incoming
messages can specify a reply channel themselves).

O The channel where the aggregator will send the messages that timed out (if
send- partial -resul ts-on-tineout isfalse). Optional.

O A reference to a bean defined in the application context. The bean must implement the aggregation logic
as described above. Required.

O A method defined on the bean referenced by ref, that implements the message aggregation algorithm.
Optional, with restrictions (see above).

O A reference to a bean that implements the decision algorithm as to whether a given message group is
complete. The bean can be an implementation of the CompletionStrategy interface or a POJO. In the latter

Spring-WS (2.0.0.M5) 44

Aggregator

case the completion-strategy-method attribute must be defined as well. Optional (by default, the
aggregator will use sequence size) .

A method defined on the bean referenced by r el ease- st r at egy, that implements the completion decision
algorithm. Optional, with restrictions (requires conpl et i on- st r at egy to be present).

A reference to a bean that implements the correlation strategy. The bean can be an implementation of the
CorrelationStrategy interface or a POJO. In the latter case the correlation-strategy-method attribute must
be defined as well. Optional (by default, the aggregator will use the correlation id header attribute) .

A method defined on the bean referenced by correl ati on- st r at egy, that implements the correlation key
algorithm. Optional, with restrictions (requirescorrel ati on- st r at egy to be present).

A reference to a MessageG oupSt or e that can be used to store groups of messages under their correlation
key until they are complete. Optional with default avolatile in-memory store.

Whether upon the expiration of the message group, the aggregator will try to aggregate the messages that
have already arrived. Optional (false by default).

The timeout for sending the aggregated messages to the output or reply channel. Optional.

Using a "ref" attribute is generally recommended if a custom aggregator handler implementation can be reused
in other <aggr egat or > definitions. However if a custom aggregator handler implementation should be scoped
to a concrete definition of the <aggr egat or >, you can use an inner bean definition (starting with version 1.0.3)
for custom aggregator handlers within the <aggr egat or > element:

<aggregat or input-channel ="input" met hod="suni out put-channel ="out put">

<beans: bean cl ass="org. f 00. Exanpl eAggr egat or "/ >

</ aggr egat or >

Note

Using both a"ref" attribute and an inner bean definition in the same <aggr egat or > configuration is
not allowed, asit creates an ambiguous condition. In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public cl ass Poj oAggregator {

public Long add(List<Long> results) {

}

long total = 0l;
for (long partial Result: results) {
total += partial Result;

}

return total;

An implementation of the completion strategy bean for the example above may be as follows:

public cl ass Poj oRel easeStrategy {

publ i ¢ bool ean canRel ease(Li st<Long> nunbers) {

}

}

int sum= 0;
for (long nunmber: nunbers) {
sum += nunber;

}

return sum >= maxVal ue;

Note

Spring-WS (2.0.0.M5) 45

Aggregator

Wherever it makes sense, the release strategy method and the aggregator method can be combined
in asingle bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrel ationStrategy {

public Long groupNunmbersBylLastDigit(Long nunber) {
return nunber % 10;

}
}

For example, this aggregator would group numbers by some criterion (in our case the remainder after dividing
by 10) and will hold the group until the sum of the numbers which represents the payload exceeds a certain
value.

Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in asingle bean (all of them or any two).

11.5. Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions to be
made based on a group of messages that have arrived over a period of time, al with the same correlation key.
The design of the interfaces in the stateful patterns (e.9. Rel easeStrat egy) is driven by the principle that the
components (framework and user) should be to remain stateless. All state is carried by the MessageG oup and
its management is delegated to the MessageG oupSt or e.

The MessageG oupSt ore accumulates state information in MessageG oups, potentialy forever. So to prevent
stale state from hanging around, and for volatile stores to provide a hook for cleaning up when the application
shots down, the MessageG oupSt or e allows the user to register callbacks to apply to MessageG oups when they
expire. Theinterface is very straighforward:

public interface MessageG oupCal | back {

voi d execut e(MessageG oupSt ore nessageG oupStore, MessageG oup group);

The callback has access directly to the store and the message group so it can manage the persistent state (e.g. by
removing the group from the store entirely).

The MessageGroupStore maintains a list of these callbacks which it applies when asked to al messages whose
timestamp is earlier than atime supplied as a parameter:

public interface MessageG oupStore {
voi d regi ster MessageG oupExpi ryCal | back(MessageG oupCal | back cal | back);
i nt expireMessageG oups(long tineout);

}

The expireM essageGroups method can be called with atimeout value: any message older than the current time

Spring-WS (2.0.0.M5) 46

Aggregator

minus this value wiull be expired, and have the calbacks applied. Thus it is the user of the store that defines
what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form of a
Message@ oupSt or eReaper .

<bean id="reaper" class="org...MssageG oupSt or eReaper ">
<property name="nessageG oupStore" ref="nessageStore"/>
<property nanme="tinmeout" val ue="10"/>

</ bean>

<t ask: schedul ed-t asks schedul er ="schedul er">
<t ask: schedul ed ref="reaper" nethod="run" fixed-rate="10000"/>
</t ask: schedul ed-t asks>

The reaper is a Runnable, and al that is happening is that the message group store's expire method is being
called in the sample above once every 10 seconds. In addition to the reaper, the expiry callbacks are invoked
when the application shuts down viaalifecycle callback in the Cor r el at i ngMessageHandl er .

The Correl ati ngMessageHandl er registers its own expiry callback, and this is the link with the boolean flag
send-partial -resul t-on-expiry in the XML configuration of the aggregator. If the flag is set to true, then
when the expiry callback isinvoked then any unmarked messages in groups that are not yet released can be sent
on to the downstream channel.

11.6. Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.

public class Waiter {

@\ggr egator [
public Delivery aggregati ngMet hod(Li st<Orderltenm> itens) {

i

@Rel easeStrategy O
publi ¢ bool ean rel easeChecker (Li st <Message<?>> nessages) {

i

@orrel ationStrategy O
public String correlateBy(Oderltemitem {

i

O An annotation indicating that this method shall be used as an aggregator. Must be specified if this class
will be used as an aggregator.

O An annotation indicating that this method shall be used as the release strategy of an aggregator. If not
present on any method, the aggregator will use the SequenceSizeCompletionStrategy.

O Anannotation indicating that this method shall be used as the correlation strategy of an aggregator. If no
correlation strategy is indicated, the aggregator will use the HeaderAttributeCorrelationStrategy based on
CORRELATION _ID.

All of the configuration options provided by the xml element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @M essageEndpoint is defined on the

Spring-WS (2.0.0.M5) 47

Aggregator

class, detected automatically through classpath scanning.

Spring-WS (2.0.0.M5)

48

Chapter 12. Resequencer

12.1. Introduction

Related to the Aggregator, albeit different from a functional standpoint, isthe Resequencer.

12.2. Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the CORRELATION_ID to
store messages in groups, the difference being that the Resequencer does not process the messages in any way.
It smply releases them in the order of their SEQUENCE_NUMBER header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence, according to
the SEQUENCE_SIZE, has been released), or as soon as avalid sequenceis available.

12.3. Configuring a Resequencer with XML

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="input Channel "/>
<channel id="out put Channel "/>

<resequencer id="conpl et el yDefi nedResequencer" [
i nput - channel ="i nput Channel * O
out put - channel =" out put Channel " O
di scar d- channel ="di scardChannel * 0O
rel ease-partial -sequences="true" 0
nmessage- st ore="nmessageStore" 0O
send-partial -result-on-expiry="true" 0O
send-ti neout =" 86420000" 0O />

O Theid of the resequencer is optional.

O Theinput channel of the resequencer. Required.

O Thechannel where the resequencer will send the reordered messages. Optional.

O The channel where the resequencer will send the messages that timed out (if
send-partial -resul t-on-ti neout isfalse). Optional.

0 Whether to send out ordered sequences as soon as they are available, or only after the whole message

group arrives. Optional (false by default).
If this flag is not specified (so a complete sequence is defined by the sequence headers) then it can make
sense to provide a custom Conpar at or t0 be used to order the messages when sending (use the XML
attribute conpar at or to point to a bean definition). If rel ease- parti al - sequences istrue then thereis no
way with a custom comparator to define a partial sequence. To do that you would have to provide a
rel ease- strat egy (also areference to another bean definition, either a POJO or aRel easeSt r at egy).

O A reference to a MessageG oupSt or e that can be used to store groups of messages under their correlation
key until they are complete. Optional with default avolatile in-memory store.

O Whether, upon the expiration of the group, the ordered group should be sent out (even if some of the
messages are missing). Optional (false by default). See Section 11.5, “Managing State in an Aggregator:
MessageGroupStore”.

Spring-WS (2.0.0.M5) 49

Resequencer

O Thetimeout for sending out messages. Optional.

Note
Since there is no custom behavior to be implemented in Java classes for resequencers, there is no
annotation support for it.

Spring-WS (2.0.0.M5) 50

Chapter 13. Delayer

13.1. Introduction

A Delayer is asimple endpoint that allows a Message flow to be delayed by a certain interval. When a Message
is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled with an instance
of java. util.concurrent. Schedul edExecut or Servi ce to be sent to the output channel after the delay has
passed. This approach is scalable even for rather long delays, since it does not result in a large number of
blocked sender Threads. On the contrary, in the typical case athread pool will be used for the actual execution
of releasing the Messages. Below you will find several examples of configuring a Delayer.

13.2. The <delayer> Element

The <delayer> element is used to delay the Message flow between two Message Channels. As with the other
endpoints, you can provide the "input-channgl" and "output-channel" attributes, but the delayer also requires at
least the 'default-delay’ attribute with the number of milliseconds that each Message should be delayed.

<del ayer input-channel ="input" default-del ay="3000" out put-channel ="out put"/>

If you need per-Message determination of the delay, then you can also provide the name of a header within the
'delay-header-name' attribute:

<del ayer i nput-channel ="i nput" out put-channel =" out put"
def aul t - del ay="3000" del ay- header - nane="del ay"/ >

In the example above the 3 second delay would only apply in the case that the header value is not present for a
given inbound Message. If you only want to apply a delay to Messages that have an explicit header value, then
you can set the 'default-delay’ to 0. For any Message that has a delay of O (or less), the Message will be sent
directly. In fact, if there is not a positive delay value for a Message, it will be sent to the output channel on the
caling Thread.

Tip

The delay handler actually supports header values that represent an interval in milliseconds (any
Object whose tostring() method produces a value that can be parsed into a Long) as well as
java. util . Date instances representing an absolute time. In the former case, the milliseconds will
be counted from the current time (e.g. a value of 5000 would delay the Message for at least 5
seconds from the time it is received by the Delayer). In the latter case, with an actual Date instance,
the Message will not be released until that Date occurs. In either case, a value that equates to a
non-positive delay, or a Date in the past, will not result in any delay. Instead, it will be sent directly
to the output channel in the original sender's Thread.

The delayer delegates to an instance of Spring's TaskSchedul er abstraction. The default scheduler is a
Thr eadPool TaskSchedul er instance with a pool size of 1. If you want to delegate to a different scheduler, you
can provide areference through the delayer element’s 'scheduler' attribute:

<del ayer input-channel ="i nput" out put-channel =" out put"
def aul t - del ay="0" del ay- header - nane="del ay"
schedul er =" exanpl eTaskSchedul er"/ >

<t ask: schedul er id="exanpl eTaskSchedul er" pool -si ze="3"/>

Spring-WS (2.0.0.M5) 51

Chapter 14. Message Handler Chain

14.1. Introduction

The MessageHandl er Chai n IS an implementation of MessageHandl er that can be configured as a single
Message Endpoint while actually delegating to a chain of other handlers, such as Filters, Transformers,
Splitters, and so on. This can lead to a much simpler configuration when several handlers need to be connected
in a fixed, linear progression. For example, it is fairly common to provide a Transformer before other
components. Similarly, when providing a Filter before some other component in a chain, you are essentially
creating a Selective Consumer. In either case, the chain only requires a single input-channel and a single
output-channel as opposed to the configuration of channels for each individual component.

Tip

Spring Integration's Filter provides a boolean property 'throwExceptionOnRejection’. When
providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true’ (the default is false) so that the dispatcher will
know that the Message was rejected and as a result will attempt to pass the Message on to other
subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if the
Message had been passed on successfully even though the Filter had dropped the Message to
prevent further processing.

The handler chain ssimplifies configuration while internally maintaining the same degree of loose coupling
between components, and it is trivial to modify the configuration if at some point a non-linear arrangement is
required.

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by direct channels.
The reply channel header will not be taken into account within the chain: only after the last handler is invoked
will the resulting message be forwarded on to the reply channel or the chain's output channel. Because of this
setup al handlers except the last require a set Qut put Channel implementation. The last handler only needs an
output channel if the outputChannel on the MessageHandlerChain is set.

Note

Aswith other endpoints, the output-channel is optional. If there is areply Message at the end of the
chain, the output-channel takes precedence, but if not available, the chain handler will check for a
reply channel header on the inbound Message.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators and
Transformers, are suitable for use within a MessageHand! er Chai n.

14.2. The <chain> Element

The <chain> element provides an 'input-channel' attribute, and if the last element in the chain is capable of
producing reply messages (optional), it also supports an ‘output-channel’ attribute. The sub-elements are then
filters, transformers, splitters, and service-activators. The last element may also be arouter.

<chai n input-channel ="i nput" out put - channel =" out put ">
<filter ref="someSel ector" throw exception-on-rejection="true"/>

Spring-WS (2.0.0.M5) 52

http://www.eaipatterns.com/MessageSelector.html

Message Handler Chain

<header - enri cher error-channel =" cust ontrror Channel ">
<header nane="foo" val ue="bar"/>
</ header - enri cher>
<servi ce-activator ref="sonmeService" nethod="soneMethod"/>
</ chai n>

The <header-enricher> element used in the above example will set a message header with name "foo" and
value "bar" on the message. A header enricher is a speciaization of Transformer that touches only header
values. Y ou could obtain the same result by implementing a MessageHandler that did the header modifications
and wiring that as a bean.

Some time you need to make a nested call to another chain from within the chain and then come back and
continue execution within the origina chain. To accomplish this you can utilize Messaging Gateway by
including light-configuration via <gateway> element. For example:

<si:chai n id="main-chain" input-channel ="i nput A" out put - channel ="i nput B" >
<si : header-enri cher >
<si : header nanme="nane" val ue="Many" />
</ si: header-enricher>
<si:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</si:service-activator>
<si:gateway request-channel ="inputC'/>
</ si : chai n>
<si:chain id="nested-chain-a" input-channel ="inputC'>
<si : header-enri cher >
<si : header nane="nane" val ue="Me" />
</ si : header-enri cher >
<si : gateway request-channel ="i nputD'/>
<si :service-activator>
<bean cl ass="org. f oo. Sanpl eServi ce" />
</ si:service-activator>
</ si : chai n>
<si:chain id="nested-chai n-b" input-channel ="i nput D'>
<si : header-enri cher >
<si : header nane="nanme" val ue="Jack" />
</ si : header-enri cher>
<si :service-activator>
<bean cl ass="org. f 0o. Sanpl eServi ce" />
</ si :service-activator>
</ si : chai n>

In the above example the nested-chain-a will be called at the end of main-chain processing by the 'gateway’
element configured there. While in nested-chain-a a call to a nested-chain-b will be made after header
enrichment and then it will come back to finish execution in nested-chain-b finaly getting back to the
main-chain. When light version of <gateway> element is defined in the chain Sl will construct an instance
Si npl eMessagi ngGat eway (N0 heed to provide 'service-interface’ configuration) which will take the message in
its current state and will place it on the channel defined via 'request-channel’ attribute. Upon processing
Message Will be returned to the gateway and continue its journey within the current chain.

Spring-WS (2.0.0.M5) 53

Chapter 15. Messaging Bridge

15.1. Introduction

A Messaging Bridge is a relatively trivia endpoint that simply connects two Message Channels or Channel
Adapters. For example, you may want to connect a Pol | abl eChannel t0 @ Subscri babl eChannel SO that the
subscribing endpoints do not have to worry about any polling configuration. Instead, the Messaging Bridge
provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle inbound
Messages. The poller's trigger will determine the rate at which messages arrive on the second channel, and the
poller's "maxM essagesPerPoll" property will enforce alimit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a poller if
necessary. It is probably more common to have at least a Transformer between the two systems to transate
between their formats, and in that case, the channels would be provided as the ‘input-channel' and
‘output-channel’ of a Transformer endpoint. If data format translation is not required, the Messaging Bridge
may indeed be sufficient.

15.2. The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<bridge i nput-channel ="i nput" out put-channel =" out put"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a Pol | abl eChannel to a
Subscri babl eChannel , and when performing this role, the Messaging Bridge may also serve as athrottler:

<bri dge i nput-channel ="pol | abl e" out put - channel ="subscri babl e" >

<pol | er max- messages- per-pol | =" 10" >
<interval -trigger interval ="5" time-unit="SECONDS"/>
</ pol | er >
</ bri dge>

Connecting Channel Adaptersis just as easy. Here is a simple echo example between the "stdin" and "stdout"
adapters from Spring Integration's "stream" namespace.

<stream stdi n- channel - adapt er id="stdin"/>

<stream st dout - channel - adapt er i d="stdout"/>

<bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges, such
asFileto IMS, or Mail to File. The various Channel Adapterswill be discussed in upcoming chapters.

Note

If no 'output-channel’ is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be
thrown.

Spring-WS (2.0.0.M5) 54

Chapter 16. Inbound Messaging Gateways

16.1. SimpleMessagingGateway

Even though the MessageChannel Tenpl at e is fairly straightforward, it does not hide the details of messaging
from your application code. To support working with plain Objects instead of messages, Spring Integration
provides Si npl eMessagi ngGat eway With the following methods:

public void send(Object object) { ... }
public Object receive() { ... }
public Object sendAndRecei ve(Object object) { ... }

Message<?> sendAndRecei veMessage(Obj ect obj ect);

It enables configuration of a request and/or reply channel and delegates to instances of the
I nboundMessageMapper and Qut boundMessageMapper Strategy interfaces.

Si npl eMessagi ngGat eway gateway = new Si npl eMessagi ngGat eway (i nboundMapper, out boundMapper);
gat eway. set Request Channel (r equest Channel) ;

gat eway. set Repl yChannel (repl yChannel) ;

oj ect result = gateway. sendAndRecei ve("test");

16.2. GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better to have no
dependency on the Spring Integration APl at al - including the gateway class. For that reason, Spring
Integration also provides a Gat ewayPr oxyFact or yBean that generates a proxy for any interface and internally
invokes the gateway methods shown above. Namespace support is also provided as demonstrated by the
following example.

<gat eway i d="fooService"
servi ce-interface="org. exanpl e. FooServi ce"
def aul t - r equest - channel ="r equest Channel "
def aul t - repl y- channel ="r epl yChannel "/ >

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that proxied
instance of the FooService interface has no awareness of the Spring Integration API. The genera approach is
similar to that of Spring Remoting (RMI, Httplnvoker, etc.). See the "Samples' Appendix for an example that
uses this "gateway" element (in the Cafe demo).

The reason that the attributes on the ‘'gateway’ element are named ‘default-request-channe’ and
'default-reply-channel’ is that you may also provide per-method channel references by using the @Gateway
annotation.

public interface Cafe {

@zat eway(r equest Channel =" or ders")
voi d pl aceOrder (Order order);

It is also possible to pass values to be interpreted as Message headers on the Message that is created and sent to
the request channel by using the @Header annotation:

Spring-WS (2.0.0.M5) 55

Inbound Messaging Gateways

public interface FileWiter {

@zat eway (r equest Channel ="fil esQut")
void wite(byte[] content, @Header(Fil eHeaders.FILENAME) String fil enane);

If you prefer XML way of configuring Gateway methods, you can provide method sub-elements to the gateway
configuration (see below)

<si:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat eway"

def aul t -request - channel ="i nput C' >
<si :nmet hod nanme="echo" request-channel ="i nput A" reply-tineout="2" request-tinmeout="200"/>
<si : net hod nanme="echoUpper Case" request-channel ="i nputB"/>

<si : nmet hod nanme="echoVi aDef aul t"/>
</ si : gat eway>

Y ou can also provide individual headers per method invocation via XML. This could be very useful if headers
you want to set are static in nature and you don't want to embed them in the gateway's method signature via
@eader annotation. For example; in the Loan Broker example we want to influence how aggregation of the
Loan guotes will be done based on what type of request was initiated (single quote or all quotes). Determining
the type of the request by evaluating what gateway's method was invoked, although possible would violate the
separation of concerns paradigm (method is a java artifact), but expressing your intention (meta information)
viaMessage headersis natural to Messaging architecture.

<int:gateway id="|oanBroker Gat eway"
servi ce-interface="org.springframework.integration.| oanbroker.LoanBroker Gat enway" >

<int: method nanme="get LoanQuot e" request-channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE TYPE" val ue="BEST"/ >
</int:method>
<int: method name="get Al | LoanQuot es" request-channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<i nt:header nane="RESPONSE TYPE" val ue="ALL"/>
</i nt: met hod>
</int:gat eway>

In the above case you can clearly see how a different header value will be set for the 'RESPONSE_TY PE'
header based on the gateway's method.

As with anything else, Gateway invocation might result in error. By default al error that have occurred
downstream will be re-thrown as MessagingExeption (RuntimeException) upon Gateway's method invocation.
However there are times when you may want to treat Exception as a valid reply, by mapping it to a Message.
To accomplish this Gateway provides support for Exception mappers via exception-mapper attribute.

<si : gateway i d="sanpl eGat enay"
def aul t - request - channel =" gat ewayChannel "
servi ce-interface="foo0. bar. Si npl eGat eway"
excepti on- mapper =" except i onMapper"/ >

<bean i d="excepti onMapper" cl ass="f o00. bar. Sanpl eExcepti onMapper"/ >

foo.bar.Sampl eExceptionMapper is the implementation of
org.springframework.integration.message.InboundMessageMapper which only defines one method

t oMessage(Obj ect object).

public static class Sanpl eExcepti onMapper inplenents | nboundMessageMapper <Thr owabl e>{
publ i c Message<?> t oMessage(Throwabl e obj ect) throws Exception {
MessageHandl i ngExcepti on ex = (MessageHandl i ngExcepti on) object;
return MessageBui |l der.w t hPayl oad("Error happened in nmessage: " +
ex. get Fai | edMessage() . get Payl oad()). buil d();

Spring-WS (2.0.0.M5) 56

Inbound Messaging Gateways

Spring-WS (2.0.0.M5)

57

Chapter 17. Message Publishing

The AOP Message Publishing feature allows you to construct and send a message as a by-product of method
invocation. For example, imagine you have a component and every time the state of this component changes
you would like to be notified via a Message. The easiest way to send such notifications would be to send a
message to a dedicated channel, but how would you connect the method invocation that changes the state of the
object to a message sending process, and how should the notification Message be structured? The AOP
Message Publishing feature handles these responsibilities with a configuration-driven approach.

17.1. Message Publishing Configuration

Spring Integration provides two approaches; XML and Annotation-driven.

17.1.1. Annotation-driven approach via @Publisher annotation

The annotation-driven approach allows you to annotate any method with the @ubl i sher annotation and
provide configuration attributes which will dictate the structure of a Message. The invocation of the annotated
method will be proxied through Publ i sher Annot at i onAdvi sor which will construct a Message and send it to a
Message Channel.

Internally Publ i sher Annot at i onAdvi sor uses the Spring 3.0 Expression Language support, giving you
considerable flexibility and control over the structure of the Message it will build. Here's an example:

@Publ i sher (payl oad="#return", channel ="t est Channel", headers="bar="'123", f nanme=#ar gs. f nane")
public String setName(String fname, String | nane){
return fname + " " + | name,;

}

Publ i sher Annot at i onAdvi sor defines and binds the following variables:

« #return - will bind to areturn value alowing you to reference it or its attributes (e.g., #return.foo where 'foo'
is an attribute of the object bound to #return)

« #Hexception - will bind to an exception if one is thrown by the method invocation.

e #args - will bind to method arguments, so individual arguments could be extracted by name (e.g.,
#args.fname as in the above method)

In the above exampl e the Message will be constructed with the following structure:

» Message payload - will be of type String and contain the value returned by the method.

» Message headers will contain 'bar' with a value of "123" and 'fname' with the value of the 'fname' argument
passed to the method at runtime.

As with most other annotation-driven features in Spring, you will need to register a post-processor
(Publ i sher Annot at i onBeanPost Pr ocessor).

<bean cl ass="org. springframework.integration.aop. PublisherAnnot ati onBeanPost Processor"/ >

Spring-WS (2.0.0.M5) 58

Message Publishing

17.1.2. XML-based approach via <publisher> element

The XML-based approach allows you to configure the same AOP-based Message Publishing functionality with
simple namespace-based configuration of a MessagePubl i shi ngl nterceptor. It certainly has some benefits
over the annotation-driven approach since it alows you to use AOP pointcut expressions, thus possibly
intercepting multiple methods at once or intercepting and publishing methods to which you don't have the
source code.

To configure Message Publishing via XML, you only need to do the following two things:

» Provide configuration for MessagePubl i shi ngl nt er cept or viathe <publ i sher > XML element.

* Provide AOP configuration to apply the MessagePubl i shi ngl nt er cept or 10 managed objects.

<beans: bean i d="testBean" cl ass="org.foo. bar. Test Bean" />
<aop: confi g>

<aop: advi sor advice-ref="interceptor" pointcut="bean(testBean)" />
</ aop: confi g>

<publ i sher id="interceptor" default-channel ="defaul t Channel ">
<met hod pattern="echo" payl oad=""'Echoing: ' + #return" headers="foo='bar'" channel ="echoChannel "/ >
<met hod pattern="echoDef*" payl oad="#return"/>
<met hod pattern="foo*"/>

</ publ i sher >

As you can see the <publ i sher > element expects the same variables as the Publ i sher Annot at i onAdvi sor and
also utilizes the power of the Spring 3.0 Expression Language.

In the above example the execution of the echo method of at est Bean will render a Message with the following
structure:

e The Message payload will be of type String and value of "Echoing: [value]" where val ue is the value
returned by an executed method.

* The Message headers will contain the key "foo™" with avalue of "bar".
» The Message will be sent to echoChannel .

The second method, mapping the execution of any method that begins with echoDef of t est Bean, will produce
a Message with the following structure.

* The Message payload will be the value returned by an executed method.

¢ Since the channel attribute is not provided explicitly, the Message will be sent to the def aul t Channel
defined by the publisher.

The third mapping is aimost identical to the previous one (with the exception of method pattern), since the
return value will be mapped to the Message payload by default if nothing elseis specified.

For simple mapping rules you can rely on the publisher defaults. For example:

<publ i sher id="anotherlnterceptor"/>

Spring-WS (2.0.0.M5) 59

Message Publishing

This will map the return value of every method that matches the pointcut expression to a payload and will be
sent to a default-channel. If the defaultChannelis not specified (as above) the messages will be sent to the
global nullChannel.

Spring-WS (2.0.0.M5) 60

Chapter 18. File Support

18.1. Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary to deal with
reading, writing, and transforming files. It provides a namespace that enables elements defining Channel
Adapters dedicated to files and support for Transformers that can read file contents into strings or byte arrays.

This section will explain the workings of Fi | eReadi ngMessageSour ce and Fi | eWiti ngMessageHand! er and
how to configure them as beans. Also the support for dealing with files through file specific implementations of
Transf or mer Will be discussed. Finaly the file specific namespace will be explained.

18.2. Reading Files

A Fi | eReadi ngMessageSour ce can be used to consume files from the filesystem. This is an implementation of
MessageSour ce that creates messages from afile system directory.

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.FileReadi ngMessageSour ce"
p:inputDirectory="file:${input.directory}"/>

To prevent creating messages for certain files, you may supply a FilelListFilter. By default, an
Accept OnceFi | eLi st Fi | ter isused. Thisfilter ensuresfiles are picked up only once from the directory.

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.FileReadi ngMessageSour ce"
p:inputDirectory="file:${input.directory}"
p:filter-ref="custonFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
Accept OnceFi | eLi st Fi l ter does not prevent this. In most cases, this can be prevented if the file-writing
process renames each file as soon asit is ready for reading. A pattern-matching filter that accepts only files that
are ready (e.g. based on a known suffix), composed with the default Accept OnceFi | eLi stFil ter alows for
this. The Conposi t eFi | eLi st Fi | t er enablesthe composition.

<bean i d="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file:${input.directory}"
p:filter-ref="conpositeFilter"/>
<bean i d="conpositeFilter" class="org.springframework.integration.file.ConpositeFilelListFilter">
<constructor - ar g>
<list>
<bean cl ass="org. springframework.integration.file.AcceptOnceFilelListFilter" />
<bean cl ass="org. springframework.integration.file.PatternMatchingFileListFilter">
<constructor-arg val ue=""test.*$"/>

</ bean>
</list>
</ constructor-arg>

</ bean>

The configuration can be smplified using the file specific namespace. To do this use the following template.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springfranmework. org/schema/integration”
xm ns: file="http://ww.springframework. org/schema/integration/file"

Spring-WS (2.0.0.M5) 61

File Support

xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ schenma/ beans
http://ww. springframework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ i ntegration
http://ww. spri ngfranework. org/ schena/ i ntegration/spring-integration-1.0.xsd
http://ww. springframework. org/ schema/integration/file
http://ww. springfranework. org/ schena/integration/file/spring-integration-file-1.0.xsd">
</ beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound Channel
Adapter likethis:

<file:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true"/>

<fil e:inbound-channel -adapter id="filesln"
directory="file: ${input.directory}"
filter="custonFilterBean" />

<file:inbound-channel - adapter id="filesln"
directory="file: ${input.directory}"
fil ename-pattern=""test.*$" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is using a
custom filter, and the third is using the filename-pattern attribute to add a Pattern based filter to the
Fi | eReadi ngMessageSour ce. The file-name-pattern and filter attributes are mutually exclusive, but you can use
a Conposi teFileListFilter to use any combination of filters, including a pattern based filter to fit your
particular needs.

When multiple processes are reading from the same directory it can be desirable to lock files to prevent them
from being picked up concurrently. To do this you can use a Fil eLocker. There is a javanio based
implementation available out of the box, but it is also possible to implement your own locking scheme. The nio
locker can be injected as follows

<fil e:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<file:nio-Ilocker/>
</file:inbound-channel - adapt er >

A custom locker you can configure like this:

<fil e:inbound-channel - adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<file:locker ref="custonmlocker"/>
</fil e:inbound-channel - adapt er >

When filtering and locking files is not enough it might be needed to control the way files are listed entirely. To
implement this type of requirement you can use an implementation of Di r ect or yScanner . This scanner allows
you to determine entirely what files are listed each poll. This is also the interface that Spring Integration uses
internally to wire FileListFilters FileL ocker to the FileReadingMessageSource. A custom DirectoryScanner can
be injected into the <file:inbound-channel-adapter/> on the scanner attribute.

<fil e:inbound-channel -adapter id="filesln"

directory="file:${input.directory}" prevent-duplicates="true" scanner="custonDirectoryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

18.3. Writing files

Spring-WS (2.0.0.M5) 62

File Support

To write messages to the file system you can use aFi | ewiti ngMessageHand! er . This class can dea with File,
String, or byte array payloads. In its simplest form the FilewitingMessageHandl er only requires a
destination directory for writing the files. The name of the file to be written is determined by the handler's
Fi | eNameGener at or . The default implementation looks for a Message header whose key matches the constant
defined asFi | eHeader s. FI LENANE.

Additionally, you can configure the encoding and the charset that will be used in case of a String payload.

To make things easier you can configure the FileWritingMessageHandler as part of an outbound channel
adapter using the namespace.

<fil e: out bound- channel - adapter id="filesQut" directory="file:${input.directory.property}"/>

The namespace based configuration also supports a del et e-source-fil es attribute. If set to true, it will
trigger deletion of the original source files after writing to a destination. The default value for that flag isf al se.

<fil e: out bound- channel - adapter id="filesQut"
directory="file:${output.directory}"
del et e-source-files="true"/>

Note

The del et e-source-fil es attribute will only have an effect if the inbound Message has a File
payload or if the FileHeaders. ORI G NAL_FI LE header value contains either the source File
instance or a String representing the original file path.

In cases where you want to continue processing messages based on the written File you can use the
out bound- gat enay instead. It plays a very similar role as the out bound- channel - adapt er. However after
writing the File, it will also send it to the reply channel as the payload of a Message.

<fil e: out bound- gat eway i d="nover" request-channel =" novel nput"
repl y- channel =" out put "
di rectory="%${out put.directory}"
del et e-source-files="true"/>

Note

The 'outbound-gateway' works well in cases where you want to first move a File and then send it
through a processing pipeline. In such cases, you may connect the file namespace's
‘inbound-channel-adapter' element to the 'outbound-gateway' and then connect that gateway's
reply-channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be converted to
file content you could extend the FileWritingMessageHandler, but a much better option is to rely on a
Transf or ner.

18.4. File Transformers

To transform data read from the file system to objects and the other way around you need to do some work.
Contrary to Fi | eReadi ngMessageSour ce and to a lesser extent Fi | ewiti ngMessageHandl er, it is very likely
that you will need your own mechanism to get the job done. For this you can implement the Tr ansf or ner
interface. Or extend the AbstractFil ePayl oadTransformer for inbound messages. Some obvious

Spring-WS (2.0.0.M5) 63

File Support

implementations have been provided.

Fi | eToByt eArrayTransf or mer transforms Files into byte[]s using Spring's Fi | eCopyUti | s. It is often better to
use a sequence of transformers than to put all transformations in a single class. In that case the File to byte]]
conversion might be alogical first step.

Fi l eToSt ri ngTransfor mer will convert Filesto Strings as the name suggests. If nothing else, this can be useful
for debugging (consider using with aWire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<file-to-bytes-transforner input-channel ="input" output-channel ="out put"”
delete-files="true"/>

<file:file-to-string-transforner input-channel ="input" output-channel ="out put
del ete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File after the transformation
is complete. This is in no way a replacement for using the AcceptOnceFilelistFilter when the
FileReadingM essageSource is being used in a multi-threaded environment (e.g. Spring Integration in general).

Spring-WS (2.0.0.M5) 64

Chapter 19. JDBC Support

Spring Integration provides Channel Adapters for receiving and sending messages via database queries.

19.1. Inbound Channel Adapter

The main function of an inbound Channel Adapter isto execute a SQL SELECT query and turn the result set into
a message. The message payload is the whole result set, expressed as a Li st , and the types of the items in the
list depends on the row-mapping strategy that is used. The default strategy is a generic mapper that just returns
anap for each row i nthe query. Optionally this can be changed by adding a reference to requires a reference to
aRowMapper instance (see the Spring JDBC documentation for more detailed information about row mapping).

Note

If you want to convert rows in the SELECT query result to individual messages you can use a
downstream splitter.

The inbound adapter also requires a reference to either JdbcTenpl at e instance or Dat aSour ce. The following
example defines an inbound Channel Adapter with a Dat aSour ce reference.

<j dbc: i nbound- channel - adapt er query="select * fromitem where status=2"
channel ="target" dat a- sour ce="dat aSour ce"
updat e="update item set status=10 where id in (:idList)" />

Note
The parameters in the update query are specified with a colon (:) prefix to the name of a map key.
Thisis a standard feature of the named parameter JDBC support in Spring JDBC.

Aswell as the SELECT statement to generate the messages, the adapter above also has an UPDATE statement that
is being used to mark the records as processed, so they don't show up in the next poll. The update is
parameterised by the list of ids from the original select. Thisis done through a naming convention by default (a
column in the input result set called "id" is trandated into a list in the parameter map for the update called
"idLigt"). To change the parameter generation strategy you can inject a Sgl Par anet er Sour ceFact ory into the
adapter to override the default behaviour (the adapter has asql - par anet er - sour ce- f act or y atribute).

19.1.1. Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a sub element, so for instance the frequency
of the polling can be controlled. A very important feature of the poller for JDBC usage is the option to wrap the
poll operation in atransaction, for example:

<j dbc: i nbound- channel - adapt er query="..."
channel ="t arget" dat a- sour ce="dat aSour ce"
update="...">
<pol | er >
<interval -trigger interval ="1000"/>
<transactional / >
</ pol |l er>
</ j dbc: i nbound- channel - adapt er >

Spring-WS (2.0.0.M5) 65

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html

JDBC Support

Note

If apoller is not explicitly specified a default value will be used (and as per normal with Spring
Integration can be defined as atop level bean)

In this example the database is polled every 1000 milliseconds, and the update and select queries are both
executed in the same transaction. The transaction manager configuration is not shown, but aslong asit is aware
of the data source then the poll istransactional. A common use case is for the downstream channels to be direct
channels (the default), so that the endpoints are invoked in the same thread, and hence the same transaction.
then if any of them fails, the transaction rolls back and the input data are reverted to their original state.

19.2. Outbound Channel Adapter

The outbound Channel Adapter is the inverse of the inbound: its role is to handle a message and use it to
execute a SQL query. The message payload and headers are available by default as input parameters to the
query, for instance:

<j dbc: out bound- channel - adapt er
query="insert into foos (id, status, name) values (:headers[$id], 0, :payload[foo])"
channel ="i nput" dat a- sour ce="dat aSour ce"/ >

In the example above, messages arriving on the channel "input" have a payload of a map with key "foo", so the
[1 operator dereferences that value from the map. The headers are also accessed as a map.

Note

The parameters in the query above are bean paths in the incoming message (they are not Spring EL
expressions). This behaviour is part of the MapSgl Par anet er Sour ce in Spring JDBC, which is the
default source created by the outbound adapter. Other behaviour is possible in the adapter, and only
requires the user to inject adifferent sql Par anet er Sour ceFactory .

The outbound adapter requires a reference to either a DataSource or a JdbcTemplate. It can also have a
Sql Par anet er Sour ceFact or y injected to control the binding of incoming message to the query.

If the input channel is adirect channel then the outbound adapter runs its query in the same thread, and therefor
ethe same transaction (if thereis one) as the sender of the message.

19.3. Message Store

The JDBC module provides an implementation of the Spring Integration MessageSt or e (important in the Claim
Check pattern) and MessageG oupSt or e (important in stateful patterns like Aggregator) backed by a database.
Both interfaces are implemented by the JdbcMessageStore and there is also support for configuring store
instancesin XML. For example:

<j dbc: message-store i d="nessageSt ore" dat a- sour ce="dat aSour ce"/>

A JdbcTenpl at e can be specified instead of a Dat aSour ce.

Other optional attributes are show in the next example:

<j dbc: message-store i d="nessageSt ore" dat a- sour ce="dat aSour ce"
| ob- handl er ="1 obHandl er" tabl e-prefix="MY_INT_"/>

Spring-WS (2.0.0.M5) 66

JDBC Support

Here we have specified a LobHandl er for dealing with messages as large objects (e.g. often necessary if using
Oracle) and a prefix for the table names in the queries generated by the store. The table name prefix defaults to
"INT_".

19.3.1. Initializing the Database

Spring Integration ships with some sample scripts that can be used to initidize a database. In the
spring-integration-jdbc JAR file you will find scripts in the org. springframework.integration.|dbc
package: there is a create and a drop script example for arange of common database platforms. A common way
to use these scripts is to reference them in a Spring JDBC data source initidlizer. Note that the scripts are
provided as samples or specifications of the the required table and column names. Y ou may find that you need
to enhance them for production use (e.g. with index declarations).

19.3.2. Partitioning a Message Store

It is common to use a JdbcMessageSt ore as a global store for a group of applications, or nodes in the same
application. To provide some portection against name clashes, and to give control over the database meta-data
configuration, the message store allows the tables to be partitioned in two ways. One is to use separate table
names, by changing the prefix as described above, and the other is to specify a "region” name for partitioning
datawithin asingle table. An important use case for this is using the store to manage persistent queues backing
a Spring Integration channel. The message data for a persistent channel is keyed in the store on the channel
name, so if the channel names are not globally unique then there is the danger of channels picking up data that
was not intended for them. To avoid this the message store region can be used to keep data separate for
different physical channels that happen to have the same logical hame.

Spring-WS (2.0.0.M5) 67

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182

Chapter 20. JMS Support

Spring Integration provides Channel Adapters for receiving and sending JM S messages. There are actually two
IJMS-based inbound Channel Adapters. The first uses Spring's JnsTenpl at e to receive based on a polling
period. The second is "message-driven” and relies upon a Spring Messagel istener container. There is also an
outbound Channel Adapter which usesthe JnsTenpl at e to convert and send a IMS Message on demand.

Whereas the IMS Channel Adapters are intended for unidirectional Messaging (send-only or receive-only),
Spring Integration also provides inbound and outbound JMS Gateways for request/reply operations. The
inbound gateway relies on one of Spring's MessageListener container implementations for Message-driven
reception that is also capable of sending a return value to the "reply-to" Destination as provided by the received
Message. The outbound Gateway sends a IMS Message to a "request-destination” and then receives a reply
Message. The "reply-destination” reference (or "reply-destination-name") can be configured explicitly or else
the outbound gateway will use a JIM S TemporaryQueue.

20.1. Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JnsTenpl ate instance or both
ConnectionFactory and Destination (a 'destinationName can be provided in place of the 'destination’
reference). The following example defines an inbound Channel Adapter with aDest i nati on reference.

<j ms: i nbound- channel - adapter id="jnmsln" destination="i nQueue" channel =" exanpl eChannel ">
<integration:poller>
<integration:interval-trigger interval ="30" time-unit="SECONDS"/>
</integration:poller>
</ j ms: i nbound- channel - adapt er >

Tip

Notice from the configuration that the inbound-channel-adapter is a Polling Consumer. That means
that it invokes receive() when triggered. This should only be used in situations where polling is
done relatively infrequently and timeliness is not important. For all other situations (a vast magjority
of IMS-based use-cases), the message-driven-channel-adapter described below is a better option.

Note

All of the IMS adapters that require a reference to the ConnectionFactory will automatically ook
for abean named "connectionFactory” by default. That is why you don't see a " connection-factory”
attribute in many of the examples. However, if your JIMS ConnectionFactory has a different bean
name, then you will need to provide that attribute.

If 'extract-payload' is set to true (which is the default), the received IMS Message will be passed through the
MessageConverter. When relying on the default SimpleM essageConverter, this means that the resulting Spring
Integration Message will have the IMS Message's body as its payload. A IMS TextMessage will produce a
String-based payload, a IMS BytesMessage will produce a byte array payload, and a IMS ObjectMessage's
Serializable instance will become the Spring Integration Message's payload. If instead you prefer to have the
raw JM S Message as the Spring Integration Message's payload, then set 'extract-payload to false.

<j ms: i nbound- channel - adapter id="jnsln"
desti nati on="i nQueue"
channel =" exanpl eChannel "
extract - payl oad="f al se"/>
<i ntegration:poller>
<integration:interval-trigger interval ="30" time-unit="SECONDS"/>

Spring-WS (2.0.0.M5) 68

JMS Support

</integration:poller>
</ j ms: i nbound- channel - adapt er >

20.2. Message-Driven Channel Adapter

The "message-driven-channel-adapter" requires a reference to either an instance of a Spring Messagelistener
container (any subclass of Abstract MessagelistenerContainer) or both ConnectionFactory and
Destination (a 'destinationName' can be provided in place of the 'destination’ reference). The following
example defines a message-driven Channel Adapter with aDest i nat i on reference.

<j ms: message- dri ven- channel - adapter i d="jnsln" destination="i nQueue" channel =" exanpl eChannel "/ >

Note

The Message-Driven adapter also accepts severa properties that pertain to the Messagel istener
container. These values are only considered if you do not provide an actua 'container’ reference. In
that case, an instance of DefaultMessagel istenerContainer will be created and configured based on
these properties. For example, you can specify the "transaction-manager" reference, the
"concurrent-consumers’ value, and several other property references and values. Refer to the
JavaDoc and Spring Integration's JIM S Schema (spring-integration-jms-1.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default value is 'true’.
The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be actively invoked.
For most usage scenarios, the message-driven approach is better since the Messages will be passed along to the
MessageChannel assoon asthey are received from the underlying IMS consumer.

20.3. Outbound Channel Adapter

The JnsSendi ngMessageHandl er implements the MessageHandl er interface and is capable of converting
Spring Integration Messages to JMS messages and then sending to a JMS destination. It requires either a
'imsTemplate’ reference or both 'connectionFactory' and 'destination’ references (again, the 'destinationName'
may be provided in place of the 'destination’). As with the inbound Channel Adapter, the easiest way to
configure this adapter is with the namespace support. The following configuration will produce an adapter that
receives Spring Integration Messages from the "exampleChannel” and then converts those into IMS Messages
and sends them to the IM S Destination reference whose bean name is " outQueue”.

<j ms: out bound- channel - adapter id="jnsQut" desti nati on="out Queue" channel ="exanpl eChannel "/ >

Aswith the inbound Channel Adapters, thereis an 'extract-payload’ property. However, the meaning is reversed
for the outbound adapter. Rather than applying to the IMS Message, the boolean property applies to the Spring
Integration Message payload. In other words, the decision is whether to pass the Spring Integration Message
itself as the IMS Message body or whether to pass the Spring Integration Message's payload as the IMS
Message body. The default value is once again 'true’. Therefore, if you pass a Spring Integration Message
whose payload is a String, a IMS TextMessage will be created. If on the other hand you want to send the actual
Spring Integration Message to another system via M S, then simply set thisto 'false'.

Note

Regardless of the boolean value for payload extraction, the Spring Integration MessageHeaders
will map to JMS properties as long as you are relying on the default converter or provide a

Spring-WS (2.0.0.M5) 69

JMS Support

reference to another instance of HeaderMappingMessageConverter (the same holds true for
'inbound’ adapters except that in those cases, it's the IMS properties mapping to Spring Integration
M essageHeaders).

20.4. Inbound Gateway

Spring Integration's message-driven JM S inbound-gateway delegatesto a MessagelLi st ener container, supports
dynamically adjusting concurrent consumers, and can also handle replies. The inbound gateway requires
references to a Connect i onFact ory, and a request Dest i nat i on (Or 'requestDestinationName’). The following
example defines a JMS "inbound-gateway" that receives from the JMS queue referenced by the bean id
"inQueue" and sends to the Spring Integration channel named "exampleChannel".

<j ms: i nbound- gat eway i d="j nsl nGat eway"
request - desti nati on="i nQueue"
r equest - channel =" exanpl eChannel "/ >

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also have two
distinct properties for the "payload extraction” (as discussed above for the Channel Adapters' ‘extract-payload'
setting). For an inbound-gateway, the 'extract-request-payload’ property determines whether the received IMS
Message body will be extracted. If ‘false’, the IMS Message itself will become the Spring Integration Message
payload. The default is 'true’.

Similarly, for an inbound-gateway the ‘extract-reply-payload’ property applies to the Spring Integration
Message that is going to be converted into a reply JIMS Message. If you want to pass the whole Spring
Integration Message (as the body of a IMS ObjectMessage) then set this to 'false’. By default, it is aso 'true
such that the Spring Integration Message payload will be converted into a IMS Message (e.g. String payload
becomes a IMS TextM essage).

As with anything else, Gateway invocation might result in error. By default Producer will not be notified of the
errors thta might have occurredon ythe consumer side and will time out waiting for the reply. However there
might be times when you to communicate error condition back to the consumer, in other words treat the
Exception as a valid reply valid reply by mapping it to a Message. To accomplish this IMS Inbound Gateway
provides support for Exception mappers via exception-mapper attribute.

<int-jms:inbound-gateway request-destination="requestQeue"
r equest - channel =" nsi nput channel "
excepti on- mapper ="err or MessageMapper "/ >

<bean i d="excepti onMapper" cl ass="f00. bar. Sanpl eExcepti onMapper"/ >

foo.bar.SampleExceptionMapper is the implementation of
org.springframework.integration.message.lnboundMessageMapper which only defines one method
t oMessage(Obj ect object).

public static class Sanpl eExcepti onMapper inplenents | nboundMessageMapper <Thr owabl e>{
publ i c Message<?> toMessage(Throwabl e obj ect) throws Exception {
MessageHandl i ngExcepti on ex = (MessageHandl i ngExcepti on) object;
return MessageBuil der.w t hPayl oad("Error happened in nmessage: " +
ex. get Fai | edMessage() . get Payl oad()). build();

Spring-WS (2.0.0.M5) 70

JMS Support

20.5. Outbound Gateway

The outbound Gateway creates IMS Messages from Spring Integration Messages and then sends to a
'request-destination'’. It will then handle the IMS reply Message either by using a selector to receive from the
'reply-destination’ that you configure, or if no 'reply-destination’ is provided, it will create JMS
TemporaryQueues. Notice that the "reply-channel" is also provided.

<j ms: out bound- gat eway i d="j msQut Gat eway"
request - desti nati on="out Queue"
r equest - channel =" out boundJnsRequest s"
repl y-channel ="j nsRepl i es"/ >

The 'outbound-gateway' payload extraction properties are inversely related to those of the ‘inbound-gateway'
(see the discussion above). That means that the 'extract-request-payload' property value applies to the Spring
Integration Message that is being converted into a JMS Message to be sent as a request, and the
‘extract-reply-payload' property value applies to the IMS Message that is received as a reply and then converted
into a Spring Integration Message to be subsequently sent to the 'reply-channel’ as shown in the example
configuration above.

Note

For al of these IMS adapters, you can also specify your own "message-converter” reference.
Simply provide the bean name of an instance of MessageConverter that is available within the
same ApplicationContext. Note, however, that when you provide your own MessageConverter
instance, it will still be wrapped within the HeaderM appingM essageConverter. This means that the
‘extract-request-payload’ and 'extract-reply-payload' properties may effect what actual objects are
passed to your converter. The HeaderM appingM essageConverter itself simply delegates to atarget
MessageConverter while also mapping the Spring Integration MessageHeaders to IMS Message
properties and vice-versa.

20.6. JMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applications that are integrating with
other external systems. The inbound options assume that some other system is sending IMS Messages to the
JMS Destination and the outbound options assume that some other system is receiving from the Destination.
The other system may or may not be a Spring Integration application. Of course, when sending the Spring
Integration Message instance as the body of the IMS Message itself (with the 'extract-payload’ value set to
false), it is assumed that the other system is based on Spring Integration. However, that is by no means a
requirement. That flexibility is one of the benefits of using a Message-based integration option with the
abstraction of "channels' or Destinationsin the case of IMS.

There are cases where both the producer and consumer for a given JMS Destination are intended to be part of
the same application, running within the same process. This could be accomplished by using a pair of inbound
and outbound Channel Adapters. The problem with that approach is that two adapters are required even though
conceptually the goal is to have asingle Message Channel. A better option is supported as of Spring Integration
version 2.0. Now it is possible to define a single "channel" when using the IMS namespace.

<j ms: channel id="jnmsChannel" queue="exanpl eQueue"/>

The channel in the above example will behave much like a normal <channel/> element from the main Spring
Integration namespace. It can be referenced by both "input-channel” and "output-channel" attributes of any

Spring-WS (2.0.0.M5) 71

JMS Support

endpoint. The difference is that this channel is backed by a IMS Queue instance named "exampleQueue'. This
means that asynchronous messaging is possible between the producing and consuming endpoints, but unlike the
simpler asynchronous Message Channels created by adding a <queue/> sub-element within a non-JMS
<channel/> element, the Messages are not just stored in an in-memory queue. Instead those Messages are
passed within a JM S Message body, and the full power of the underlying JIMS provider is then available for that
channel. Probably the most common rationale for using this aternative would be to take advantage of the
persistence made available by the store and forward approach of IMS messaging. If configured properly, the
IM S-backed Message Channel also supports transactions. In other words, a producer would not actually write
to a transactional JM S-backed channel if its send operation is part of a transaction that rolls back. Likewise, a
consumer would not physically remove a IMS Message from the channel if the reception of that Message is
part of a transaction that rolls back. Note that the producer and consumer transactions are separate in such a
scenario. This is significantly different than the propagation of a transactional context across the simple,
synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a IMS Queue instance, it will act as a point-to-point channel. If on the
other hand, publish/subscribe behavior is needed, then a separate element can be used, and a IMS Topic can be
referenced instead.

<j ms: publ i sh- subscri be-channel id="jnsChannel" topic="exanpl eTopic"/>

For either type of IMS-backed channel, the name of the destination may be provided instead of areference.

<j ms: channel id="j msQueueChannel " queue-nane="exanpl eQueueNane"/ >

<j ms: publ i sh-subscri be-channel id="jnsTopi cChannel " topic-nanme="exanpl eTopi cNane"/>

In the examples above, the Destination names would be resolved by Spring's default
Dynani cDest i nat i onResol ver implementation, but any implementation of the Dest i nati onResol ver interface
could be provided. Also, the IMS Connect i onFact ory is arequired property of the channel, but by default the
expected bean name would be "connectionFactory". The example below provides both a custom instance for
resolution of the JM S Destination names and a different name for the ConnectionFactory.

<j ms: channel id="jnsChannel" queue- nane="exanpl eQueueNane"
destinati on-resol ver ="cust onDest i nati onResol ver"
connecti on-factory="cust onConnecti onFactory"/>

20.7. JIMS Samples

To experiment with these IMS adapters, check out the samples available within the "samples/jms" directory in
the distribution. There are two samples included. One provides inbound and outbound Channel Adapters, and
the other provides inbound and outbound Gateways. They are configured to run with an embedded ActiveMQ
process, but the "common.xml" file can easily be modified to support either a different IMS provider or a
standalone ActiveM Q process. In other words, you can split the configuration so that the inbound and outbound
adapters are running in separate JVMs. If you have ActiveMQ installed, ssmply modify the "brokerURL"
property within the configuration to use "tcp://localhost:61616" for example (instead of "vm://localhost"). Both
of the samples accept input via stdin and then echo back to stdout. Look at the configuration to see how these
messages are routed over JIMS.

Spring-WS (2.0.0.M5) 72

Chapter 21. Web Services Support

21.1. Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of which build
upon the Spring Web Services project: Si npl eWebSer vi ceQut boundGat eway and
Mar shal | i ngWebSer vi ceQut boundGat eway. The former will accept either a sString or
javax. xni . transf orm Sour ce as the message payload. The latter provides support for any implementation of
the mar shal | er and Unmar shal | er interfaces. Both require a Spring Web Services Dest i nat i onProvi der for
determining the URI of the Web Service to be called.

si npl eGat eway = new Si npl eWebSer vi ceQut boundGat eway(desti nati onProvi der);

mar shal | i ngGat eway = new Marshal | i ng\WebSer vi ceQut boundGat eway(desti nati onProvi der, marshaller);

Note

When using the namespace support described below, you will only need to set a URI. Internally,
the parser will configure afixed URI DestinationProvider implementation. If you do need dynamic
resolution of the URI at runtime, however, then the DestinationProvider can provide such behavior
as looking up the URI from aregistry. See the Spring Web Services javadoc for more information
about the DestinationProvider strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering client
access as well as the chapter covering Object/ XML mapping.

21.2. Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options again:
Si mpl eWebSer vi cel nboundGat eway and Mar shal | i ngWebSer vi cel nboundGat eway. The former will extract a
javax. xm . transform Source from the webServi ceMessage and set it as the message payload. The latter
provides support for implementation of the Marshal | er and Unmarshal | er interfaces. If the incoming web
service message is a SOAP message the SOAP Action header will be added to the headers of the Message that
is forwarded onto the request channel.

si npl eGat eway = new Si npl eWebSer vi cel nboundGat eway() ;
si npl eGat eway. set Request Channel (f or war dOnt oThi sChannel) ;
si npl eGat eway. set Repl yChannel (| i st enFor ResponseHere); //Opti onal

mar shal | i ngGat eway = new Marshal | i ng\WebSer vi cel nboundGat eway(mar shal | er);
/I set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoi nt interface, so they can be configured with
aMessageDi spat cher Ser vl et as per standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's chapter
covering creating a Web Service. The chapter covering Object/XML mapping is also applicable again.

21.3. Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway” element from the "ws"

Spring-WS (2.0.0.M5) 73

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Web Services Support

namespace:

<ws: out bound- gat eway i d="si npl eGat eway"

r equest - channel ="i nput Channel "
uri="http://exanple.org"/>

Note

Notice that this example does not provide a 'reply-channel’. If the Web Service were to return a
non-empty response, the Message containing that response would be sent to the reply channel
provided in the request Message's REPLY _CHANNEL header, and if that were not available a
channel resolution Exception would be thrown. If you want to send the reply to another channel
instead, then provide a 'reply-channel’ attribute on the ‘outbound-gateway' element.

Tip

When invoking a Web Service that returns an empty response after using a String payload for the
request Message, no reply Message will be sent by default. Therefore you don't need to set a
'reply-channel’ or have aREPLY _CHANNEL header in the request Message. If for any reason you
actually do want to receive the empty response as a Message, then provide the
'ignore-empty-responses attribute with a value of false (this only applies for Strings, because using
a Source or Document object simply leads to a NULL response and will therefore never generate a

reply Message).

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<ws: i nbound- gat eway i d="si npl eGat eway"

request - channel ="i nput Channel "/ >

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<ws: out bound- gat eway i d="marshal | i ngGat eway"

request - channel ="r equest Channel "
uri="http://exanple.org"

mar shal | er =" soneMar shal | er"

unnar shal | er =" soneUnnar shal l er"/ >

And for inbound:

<ws: i nbound- gat eway i d="marshal | i ngGat eway"

request - channel ="r equest Channel "
mar shal | er =" someMar shal | er"
unmar shal | er =" someUnmar shal | er"/ >

Note

Most mar shal | er implementations also implement the unnar shal | er interface. When using such a
Mar shal | er, only the "marshaller” attribute is necessary. Even when using a Mar shal | er, you may
also provide areference for the "request-callback™ on the outbound gateways.

For either outbound gateway type, a "destination-provider" attribute can be specified instead of the "uri"
(exactly one of them is required). You can then reference any Spring Web Services DestinationProvider
implementation (e.g. to lookup the URI at runtime from aregistry).

For either outbound gateway type, the "message-factory" attribute can also be configured with a reference to
any Spring Web Services WwebSer vi ceMessageFact ory implementation.

For the simple inbound gateway type, the "extract-payload" attribute can be set to false to forward the entire

Spring-WS (2.0.0.M5) 74

Web Services Support

WebsSer vi ceMessage instead of just its payload as a Message to the request channel. This might be useful, for
example, when a custom Transformer works against the WebSer vi ceMessage directly.

Spring-WS (2.0.0.M5) 75

Chapter 22. RMI Support

22.1. Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple JVMs.
The first section will deal with sending messages over RMI. The second section shows how to receive
messages over RMI. The last section shows how to define rmi channel adapters through the namespace support.

22.2. Outbound RMI

To send messages from a channel over RMI, simply define an Rni Qut boundGat eway. This gateway will use
Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that to invoke a remote
interface that doesn't use Spring Integration you should use a service activator in combination with Spring's
RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean i d="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rm Qut boundGat eway>
<constructor-arg value="rm ://host"/>
<property nanme="repl yChannel " val ue="replies"/>

</ bean>

22.3. Inbound RMI

To receive messages over RMI you need to use aRni | nboundGat eway . This gateway can be configured like this

<bean i d="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rm | nboundGat eway>
<property name="request Channel " val ue="requests"/>
</ bean>

22.4. RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following code
snippet shows the different configuration options that are supported.
<rm :i nbound- gat eway i d="gat ewayWt hDef aul ts" request-channel ="t est Channel "/ >

<rm :i nbound- gat eway i d="gat ewayW t hCust onProperti es" request-channel ="t est Channel "
expect-reply="fal se" request-tinmeout="123" reply-tinmeout="456"/>

<rm : i nbound- gat eway i d="gatewayWthHost" request-channel ="t est Channel "
regi stry-host ="1 ocal host"/>

<rm :i nbound- gat eway i d="gatewayWthPort" request-channel ="t est Channel "
regi stry-port="1234"/>

<rm :i nbound- gat eway i d="gat ewayW t hExecut or Ref" request-channel ="t est Channel "
renot e- i nvocat i on- execut or ="i nvocat i onExecut or "/ >

To configure the outbound gateway you can use the namespace support as well. The following code snippet

Spring-WS (2.0.0.M5) 76

RMI Support

shows the different configuration for an outbound rmi gateway.

<rm : out bound- gat eway i d="gat eway"
request - channel ="1 ocal Channel "
r enot e- channel ="t est Channel "
host ="1 ocal host "/ >

Spring-WS (2.0.0.M5)

77

Chapter 23. HttpInvoker Support

23.1. Introduction

Httplnvoker is a Spring-specific remoting option that essentialy enables Remote Procedure Calls (RPC) over
HTTP. In order to accomplish this, an outbound representation of a method invocation is serialized using
standard Java serialization and then passed within an HTTP POST request. After being invoked on the target
system, the method's return value is then serialized and written to the HTTP response. There are two main
requirements. First, you must be using Spring on both sides since the marshalling to and from HTTP requests
and responses is handled by the client-side invoker and server-side exporter. Second, the Objects that you are
passing must implement Seri al i zabl e and be available on both the client and server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of logical
decoupling as a messaging-based system. In other words, both participants in an RPC-based invocation must be
aware of a specific interface and specific argument types. Interestingly, in Spring Integration, the "parameter”
being sent is a Spring Integration Message, and the interface is an internal detail of Spring Integration's
implementation. Therefore, the RPC mechanism is being used as a transport so that from the end user's
perspective, it is hot necessary to consider the interface and argument types. It's just another adapter to enable
messaging between two systems.

23.2. HttpInvoker Inbound Gateway

To receive messages over http you can use an Httpl nvoker | nboundGat eway. Here is an example bean
definition:
<bean i d="i nboundGat eway"
cl ass="org. springframework.integration. httpi nvoker. H t pl nvoker | nboundGat eway" >
<property nanme="request Channel " ref="request Channel "/ >
<property name="repl yChannel " ref="repl yChannel "/>
<property name="request Ti meout" val ue="30000"/>

<property name="repl yTi neout” val ue="10000"/>
</ bean>

Because the inbound gateway must be able to receive HTTP requests, it must be configured within a Servlet
container. The easiest way to do thisisto provide a servlet definition in web.xml:

<servl et >

<ser vl et - nanme>i nboundGat eway</ ser vl et - nane>

<servl et - cl ass>or g. spri ngf ramewor k. web. cont ext . support. Ht t pRequest Handl er Servl et </ servl et - cl ass>
</ servlet>

Notice that the servlet name matches the bean name.

Note

If you are running within a Spring MV C application and using the BeanNameHandlerMapping,
then the servlet definition is not necessary. In that case, the bean name for your gateway can be
matched against the URL path just like a Spring MV C Controller bean.

23.3. HttpInvoker Outbound Gateway

Spring-WS (2.0.0.M5) 78

Httplnvoker Support

To configure the Ht t pl nvoker Qut boundGat eway Write a bean definition like this:

<bean i d="out boundGat eway"
cl ass="org. springframework.integration. httpinvoker. Ht t pl nvoker Qut boundGat eway" >
<property nanme="repl yChannel " ref="repl yChannel "/ >
</ bean>

The outbound gateway is a MessageHandl er and can therefore be registered with either a Pol I i ngConsuner or
Event Dri venConsuner . The URL must match that defined by an inbound Httplnvoker Gateway as described in
the previous section.

23.4. Httplnvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To include it in your
configuration, simply provide the following URI within a namespace declaration:
"http://www.springframework.org/schemalintegration/httpinvoker'. The schema location should then map to
‘http://www.springframework.org/schema/integrati on/httpinvoker/spring-integration-httpinvoker-1.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The following code
snippet shows the different configuration options that are supported.

<ht t pi nvoker : i nbound- gat eway i d="i nboundGat eway"
r equest - channel ="r equest Channel "
request -ti meout =" 10000"
expect-reply="fal se"
reply-timeout="30000"/>

Note
A 'reply-channel’ may also be provided, but it is recommended to rely on the temporary anonymous
channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following code snippet
shows the different configuration for an outbound Httplnvoker gateway. Only the 'url' and 'request-channel' are
required.

<ht t pi nvoker : out bound- gat eway i d="out boundGat eway"
url ="http://1 ocal host: 8080/ exanpl e"
r equest - channel ="r equest Channel "
request -ti meout =" 5000"
repl y- channel ="r epl yChannel "
reply-timeout="10000"/>

Spring-WS (2.0.0.M5) 79

Chapter 24. HTTP Support

24.1. Introduction

The HTTP support alows for the execution of HTTP requests and the processing of inbound HTTP requests.
Because interaction over HTTP is always synchronous, even if al that is returned is a 200 status code, the
HTTP support consists of two gateway implementations. Httpl nboundEndpoi nt and
Ht t pRequest Execut i ngMessageHandl er .

24.2. Http Inbound Gateway

To receive messages over HTTP you need to use an Ht t pl nboundEndpoi nt . In common with the Httplnvoker
support the Http Inbound Gateway needs to be deployed within a servlet container. The easiest way to do thisis
to provide a servlet definition in web.xml, see Section 23.2, “Httplnvoker Inbound Gateway” for further details.
Below is an example bean definition for asimple H t pl nboundEndpoi nt

<bean id="httpl nbound" class="org. springframework.integration. http. HtplnboundEndpoi nt">
<property name="request Channel " ref="httpRequest Channel" />
<property name="repl yChannel " ref="httpRepl yChannel " />

</ bean>

The Ht t pl nboundEndpoi nt accepts an instance of | nboundRequest Mapper Which allows customisation of the
mapping from HtpServl et Request tO0 Message. If none is provided an instance of
Def aul t | nboundRequest Mapper Will be used. This encapsulates a simple strategy, which for example will
create a String message for a POST request where the content type starts with "text", see the Javadoc for full
details.

Starting with this release MultiPart File support was implemented. If the request has been wrapped as a
MultipartHttpServietRequest, then the ‘content type' can be checked. If it is known, and begins with "text", then
the MultipartFile will be copied to a String in the parameter map. If the content type does not begin with "text",
then the MultipartFile will be copied to a byte array within the parameter map instead.

Note

The HttplnboundEndpoint will locate a MultipartResolver in the context if one exists with the bean
name "multipartResolver" (the same name expected by Spring's DispatcherServlet). If it does in
fact locate that bean, then the support for MultipartFiles will be enabled on the inbound request
mapper. Otherwise, it will fail when trying to map a multipart-file request to a Spring Integration
Message. For more on Spring's support for MultipartResolvers, refer to the Spring Reference
Manual.

In sending a response to the client there are a number of ways to customize the behavior of the gateway. By
default the gateway will ssmply acknowledge that the request was received by sending a 200 status code back.
It is possible to customize this response by providing an implementation of the Spring MV C vi ew which will be
invoked with the created Message. In the case that the gateway should expect areply to the Message then setting
the expectReply flag will cause the gateway to wait for a response Message before creating an Http response.
Below is an example of a gateway configured to use a custom view and to wait for a response. It also shows
how to customize the Http methods accepted by the gateway, which are POST and GET by defaullt.

<bean id="httpl nbound" class="org. springframework.integration.http.HtplnboundEndpoi nt">
<property name="request Channel " ref="httpRequest Channel" />
<property name="repl yChannel " ref="httpRepl yChannel " />
<property name="view' ref="jsonView' />

Spring-WS (2.0.0.M5) 80

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

HTTP Support

<property nanme="supportedMet hods" >
<list>
<val ue>CGET</ val ue>
<val ue>DELETE</ val ue>
</list>
</ property>
<property name="expect Reply" val ue="true" />
<property name="request Mapper" ref="cust onRequest Mapper" />
</ bean>

The message created from the request will be available in the Model map. The key that is used for that map
entry by default is 'requestMessage’, but this can be overridden by setting the 'requestKey' property on the
endpoint's configuration.

24.3. Http Outbound Gateway

To configure the Ht t pRequest Execut i ngMessageHand| er write a bean definition like this:

<bean i d="htt pQut bound" cl ass="org. springframework.integration.http.HttpRequest Executi ngMessageHandl er" >
<constructor-arg value="http://| ocal host: 8080/ exanpl e" />
<property nanme="out put Channel " ref="responseChannel " />

</ bean>

This bean definition will execute HTTP requests by delegating to a Rest Tenpl ate. That template in turn
delegates to a list of HttpMessageConverters to generate the HTTP request body from the Message payload.
Y ou can configure those converters as well as the ClientHttpRequestFactory instance to use:

<bean i d="htt pQut bound" cl ass="org. springframework.integration.http.HttpRequest Executi ngMessageHandl er" >
<constructor-arg value="http://I| ocal host: 8080/ exanpl e" />
<property name="out put Channel " ref="responseChannel " />
<property nanme="nessageConverters" ref="nessageConverterlList" />
<property nanme="request Factory" ref="custonRequest Factory" />
</ bean>

By default the HTTP request will be generated using an instance of Si npl ed i ent Ht t pRequest Fact ory Which
uses the JDK Ht t pURLConnect i on. Use of the Apache Commons HTTP Client is also supported through the
provided Conmonsd i ent Ht t pRequest Fact or y Which can be injected as shown above.

24.4. HTTP Namespace Support

Spring Integration provides an "http" namespace and schema definition. To include it in your configuration,
simply provide the following URI within a namespace declaration:
‘http://wvww.springframework.org/schemal/integration/http’. The schema location should then map to
"http://www.springframework.org/schema/i ntegrati on/http/spring-integrati on-http.xsd'.

To configure an inbound http channel adapter which is an instance of Ht t pl nboundEndpoi nt configured not to
expect aresponse.

<htt p: i nbound- channel - adapt er i d="httpChannel Adapter" channel ="requests" supported- net hods="PUT, DELETE"/>

To configure an inbound http gateway which expects a response.

<ht t p: i nbound- gat eway i d="i nboundGat eway" request-channel ="requests" reply-channel ="responses"/>

To configure the outbound gateway you can use the namespace support as well. The following code snippet
shows the different configuration options for an outbound Http gateway. Most importantly, notice that the

Spring-WS (2.0.0.M5) 81

HTTP Support

'http-method' and ‘expected-response-type’ are provided. Those are two of the most commonly configured
values. The default http-method is POST, and the default response type is null. With a null response type, the
payload of the reply Message would only contain the status code (e.g. 200) as long as it's a successful status
(non-successful status codes will throw Exceptions). If you are expecting a different type, such as a Stri ng,
then provide that fully-qualified class name as shown below.

<ht t p: out bound- gat eway i d="exanpl e"
request - channel ="r equest s"
url="http://local host/test"
ht t p- net hod=" POST"
extract -request - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
charset =" UTF- 8"
request - fact ory="request Fact ory"
request -t i neout =" 1234"
repl y-channel ="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-channel-adapter
instead. This means that a successful response will simply execute without sending any Messages to a reply
channel. In the case of any non-successful response status code, it will throw an exception. The configuration
looks very similar to the gateway:

<ht t p: out bound- channel - adapt er i d="exanpl e"
url ="http://1ocal host/exanpl e"
ht t p- net hod="GET"
channel ="request s"
char set =" UTF- 8"
extract - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
request - f act ory="soneRequest Fact ory"
order="3"
aut o-startup="fal se"/>

Spring-WS (2.0.0.M5) 82

Chapter 25. TCP and UDP Support

Spring Integration provides Channel Adapters for receiving and sending messages over internet protocols. Both
UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are provided. Each adapter
provides for one-way communication over the underlying protocol. In addition, a simple inbound tcp gateway
is provided.

25.1. Introduction

Two flavors each of UDP inbound and outbound adapters are provided uni cast Sendi ngMessageHand! er sends
a datagram packet to a single destination. Uni cast Recei vi ngChannel Adapt er receives incoming datagram
packets. Mul ti cast Sendi ngMessageHandl er sends (broadcasts) datagram packets to a multicast address.
Mul ti cast Recei vi ngChannel Adapt er receivesincoming datagram packets by joining to a multicast address.

Two flavors each of TCP inbound and outbound adapters are provided TcpNet Sendi ngMessageHandl er and
TcpNi oSendi ngMessageHandl er send messages over TCP. They are functionally equivalent, but use different
underlying technology for socket communication. Similarly, TcpNet Recei vi ngChannel Adapter and
TcpNi oRecei vi ngChannel Adapt er are the equivalent inbound channel adapters. The choice of which to use in
what circumstances is described below.

A simple inbound TCP gateway is provided; this allows for simple request/response processing. While the
gateway can support any number of connections, each connection can only process serially. The thread that
reads from the socket waits for, and sends, the response before reading again.

A simple outbound TCP gateway is provided; this allows for simple request/response processing. Each request
is processed serially. The calling thread blocks on the socket until either a response is received or an /O error
occurs. Requests are single-threaded over the socket.

25.2. UDP Adapters

<i p: out bound- channel - adapt er i d="udpQut"
pr ot ocol =" udp"
host =" sonehost "
port="11111"
mul ti cast="fal se"
channel =" exanpl eChannel " />

A simple UDP outbound channel adapter.

Tip
When setting multicast to true, provide the multicast address in the host attribute.

UDP s an efficient, but unreliable protocol. Two attributes are added to improve reliability. When check-length
is set to true, the adapter precedes the message data with a length field (4 bytes in network byte order). This
enables the receiving side to verify the length of the packet received. If areceiving system uses a buffer that is
too short the contain the packet, the packet can be truncated. The length header provides a mechanism to detect
this.

<i p: out bound- channel - adapt er i d="udpQut"
pr ot ocol =" udp"
host =" sonehost "

Spring-WS (2.0.0.M5) 83

TCP and UDP Support

port="11111"

mul ti cast="fal se"
check-1 engt h="true"
channel =" exanpl eChannel " />

An outbound channel adapter that adds length checking to the datagram packets.

Tip
The recipient of the packet must also be configured to expect a length to precede the actual data.
For a Spring Integration UDP inbound channel adapter, set its check- | engt h attribute.

The second reliability improvement alows an application-level acknowledgment protocol to be used. The
receiver must send an acknowledgment to the sender within a specified time.

<i p: out bound- channel - adapt er i d="udpQut"
pr ot ocol =" udp"
host =" sonehost "
port="11111"
mul ti cast="fal se"
check-1 engt h="true"
acknow edge="true"
ack- host ="t hi shost"
ack- port ="22222"
ack-ti meout ="10000"
channel =" exanpl eChannel " />

An outbound channel adapter that adds length checking to the datagram packets and waits for an
acknowledgment.

Tip

Setting acknowledge to true implies the recipient of the packet can interpret the header added to the
packet containing acknowledgment data (host and port). Most likely, the recipient will be a Spring
Integration inbound channel adapter.

Tip
When multicast is true, an additional attribute min-acks-for-success specifies how many
acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

<i p: i nbound- channel - adapt er i d="udpRecei ver"
channel =" udpQut Channel "
pr ot ocol =" udp"
port="11111"
recei ve- buf f er - si ze="500"
mul ti cast="fal se"
check-1ength="true" />

A basic unicast inbound udp channel adapter.

<i p: i nbound- channel - adapt er i d="udpRecei ver"
channel =" udpQut Channel "
pr ot ocol =" udp"
port="11111"
recei ve- buf f er - si ze="500"
mul ti cast="true"
mul ti cast - address="225.6.7. 8"
check-1ength="true" />

Spring-WS (2.0.0.M5) 84

TCP and UDP Support

A basic multicast inbound udp channel adapter.

25.3. TCP Adapters

Two versions of TCP inbound and outbound channel adapters are provided; these adapters use either
java.net.Socket 10, or java.nio.channels.SocketChannel 10. The choice of which to use depends on the
application. The TcpNet* adapters use javanet.Socket and the TcpNio* adapters use
javanio.channels.Channel Socket. It is not anticipated that much difference in performance, if any, would exist
between these technologies on the outbound side. This is because each outbound adapter sends data over only
one socket. On the receiving side however, consideration should be given to the number of connections. For the
TcpNet Recei vi ngChannel Adapt er a thread is dedicated to receiving data on each connected socket; the pool
size must therefore be set large enough to handle the expected number of connections. For the
TcpNi oRecei vi ngChannel Adapt er threads are used on an as-needed basis and it is likely that many fewer
threads would be needed. If a small number of connections is expected, we expect that the the
TcpNetReceivingChannel Adapter will give the best performance. For large number of connections, the
TcpNioReceivingChannelAdapter will likely give the best performance. In addition, the
TcpNioReceivingChannel Adapter provides an attribute usi ng- di rect - buf f ers which attempts to use direct
buffers. Seej ava. ni 0. Byt eBuf f er for more information about direct buffers.

Tip

It is not expected that direct buffers will offer much, if any, performance difference. Y ou should
experiment with the use of TcpNxx* adapters, and direct buffers when using TcpNio* adapters to
determine the best performance in your environment.

TCP is a streaming protocol; this means that some structure has to be provided to data transported over TCP, so
the receiver can demarcate the data into discrete messages. Four standard message formats are provided for this
purpose; you can also provide code for your own custom format. The first of the four standard formats is
'length-header’, in which case a 4 byte length header precedes the data; thisis the default. The second is 'stx-etx’
in which the message data is preceded by an STX (0x02) character and terminated with an ETX (0x03)
character. The third is'crlf' in which the message is terminated with a carriage return and line feed (\r\n). These
three formats require a byte array or String payload outbound endpoints; inbound endpoints produce messages
with byte array payloads. The fourth format is 'serialized’ wherby standard java serialization is used; payloads
must implement Seri ali zabl e. For the simple formats, the first (the default) is likely to be the most
performant. This is because we can determine exactly how many bytes to read to obtain the complete message.
The other two formats require examining each byte to determine if the end of the message has been received.
The length-header format can also handle binary data. The other two formats can only handle text data
(specifcally, data that does not contain characters 0x02 and 0x03 for stx-etx and 0xOd and OxQOa for crif). This
limitation can be avoided by appropriate character escaping techniques in the application layer. No such
escaping is provided by the adapters; therefore it is not recommened that these formats be used without some
transformation if the data may contain these characters.

<i p: out bound- channel - adapt er id="tcpQut"
channel ="i nChannel "
protocol ="t cp"
host =" sonehost "
port="11111"
nessage- f or mat =" | engt h- header "
usi ng- ni o="true"
usi ng-di rect-buffers="fal se"
so- keep-al i ve="true"
so-ti meout =" 10000"
/>

A basic outbound tcp channel adapter. This adapter uses javanio.channels.SocketChannel. To use a

Spring-WS (2.0.0.M5) 85

TCP and UDP Support

java.net.Socket, set usi ng- ni o to false and usi ng- di rect - buf f er s is not relevant.

<i p: i nbound- channel - adapter id="tcpl"
channel =" channel "
protocol ="tcp"
port="11111"
nessage- f or nat =" 1 engt h- header "
usi ng- ni o="true"
usi ng-di rect-buffers="fal se"
pool - si ze="2"
so- keep-al i ve="true"
so-ti meout =" 10000"
/>

A basic inbound tcp channel adapter. This adapter uses java.nio.channels.SocketChannel. To use a
java.net.Socket, set usi ng- ni o to false and usi ng- di rect - buf f er s isnot relevant.

25.4. TCP Gateways

The simple inbound TCP gateway Sinpl eTcpNet | nboundGateway and simple oubound TCP gateway
Si npl eTcpNet Qut boundGat eway USE j ava. net . Socket for communications. Each connection can process a
single request/response at atime.

The inbound gateway delegates to a subclass of the TcpNet Recei vi ngChannel Adapt er described above, so
please read that section for more information. After constructing a message with the incoming payload and
sending it to the requestChannel, it waits for a response and sends the payload from the response message by
writing it to the socket, using the same message format configured for the incoming message.

The outbound gateway delegates to a TcpNet Sendi ngMessageHand! er described above, so please read that
section for more information. After sending a message over the socket, the thread waits for a response and
constructs a response message with a byte[] payload The incoming response is decoded using the same message
format configured for the outgoing message. Communications over the socket are single-threaded. Users should
be aware that only one message can be handled at a time and if another thread attempts to send a message
before the current response has been received, it will block. Only when the inprocess message receives a
response (or times out based on the socket timeout option) will it proceed. If an error occurs while reading the
response, the socket will be closed, regardless of the close attribute.

<i p: i nbound- gat eway i d="gat ewayCr Lf"
port="1234"
request - channel =" soneChannel "
nessage-format="crl f"
/>

A simple inbound TCP gateway; it uses '/r/n' delimited data and can be used by a simple client such astelnet.

<i p: out bound- gat eway i d="si npl eCut Gat eway"
request - channel ="t cpChannel "
nessage-format="crl f"
host ="1 ocal host "
port="1234"
/>

A simple oubound TCP gateway; it uses '/r/n' delimited data.

25.5. IP Endpoint Attributes

Spring-WS (2.0.0.M5) 86

TCP and UDP Support

Table 25.1. |P Outbound Channel Adapter Attributes

Attribute Name

protocol

host

port

TCP? UDP?

Y

Y

Allowed Values

tcp, udp

Attribute Description

Determines whether the adapter uses TCP or
UDP, over |P.

The host name or ip address of the destination.
For multicast udp adapters, the multicast
address.

The port on the destination.

multicast

acknowledge

ack-host

true, false

true, false

Whether or not the udp adapter uses multicast.

Whether or not a udp adapter requires an
acknowledgment from the destination. when
enabled, requires setting the following 4
attributes.

When acknowledge is true, indicates the host
or ip address to which the acknowledgment
should be sent. Usually the current host, but
may be different, for example when Network
Address Transation (NAT) is being used.

ack-port

ack-timeout

min-acks-for- success

check-length

time-to-live

using-nio

using-direct-buffers

true, false

true, false

true, false

When acknowledge is true, indicates the port
to which the acknowledgment should be sent.
The adapter listens on this port for
acknowledgments.

When acknowledge is true, indicates the time
in milliseconds that the adapter will wait for
an acknowlegment. If an acknowlegment is
not received in time, the adapter will throw an
exception.

Defaults to 1. For multicast adapters, you can
set this to a larger vaue, requiring
acknowlegments from multiple destinations.

Whether or not a udp adapter includes a data
length field in the packet sent to the
destination.

For multicast adapters, specifies the time to
live attribute for the MilticastSocket;
controls the scope of the multicasts. Refer to
the Java APl documentation for more
information.

Whether or not the tcp adapter is using NIO.
Refer to the javanio package for more
information.

When using NIO, whether or not the tcp
adapter uses direct buffers. Refer to

Spring-WS (2.0.0.M5) 87

TCP and UDP Support

Attribute Name

message-format

custom-socket-
writer-class-name

TCP? UDP?
Y N
Y N

Allowed Values

length-header, stx-etx,
crif, serialized,
custom

Subclass of
TcpNetSocket- Writer
or TcpNioSocket-
Writer

Attribute Description

java. nio. ByteBuffer documentation for
more information.

The formatting that the tcp adapter uses so the
receiver can demarcate messages. Defaults to
length-header. See the discussion above for
detail s about each format.

When message-format is 'custom’ the name of
the class that implements the custom format.
Must be a subclass of the
TcpNxxSocketWriter, depending on whether
using-nio isfalse or true.

so-timeout Y Y See j ava. net . Socket and
j ava. net . Dat agr anBocket setSoTimeout()
methods for more information.

so-send-buffer-size Y Y See j ava. net . Socket and
j ava. net . Dat agr anSocket
setSendBufferSize() methods for more
information.

so-receive-buffer- N Y Used for udp acknowlegment packets. See

size j ava. net . Dat agr anmSocket
setReceiveBufferSize() methods for more
information.

so-keep-dive Y N true, fase Seej ava. net. Socket. set KeepAlive().

so-linger Y N Sets linger to true with supplied value. See
j ava. net. Socket . set SolLi nger ().

so-tcp-no-delay Y N true, fase Seej ava. net. Socket. set TcpNoDel ay() .

so-traffic-class Y N Seej ava. net. Socket. setTrafficd ass().

local-address N Y On a multi-homed system, for the UDP

Table 25.2. IP Inbound Channel Adapter Attributes

adapter, specifies an IP address for the
interface to which the socket will be bound for
reply messages. For a multicast adapter it is
also used to determine which interface the
multicast packets will be sent over. Not
applicable to the TCP adapter.

AttributeName TCP? UDP? Allowed Values Attribute Description
protocol Y Y tcp, udp Determines whether the adapter uses TCP or
UDP, over IP.
port Y Y The port on which the adapter listens.
multicast N Y true fase Whether or not the udp adapter uses multicast.

Spring-WS (2.0.0.M5) 88

TCP and UDP Support

Attribute Name

multi cast-address

pool-size

receive-buffer-size

check-length

using-nio

TCP? UDP?

N

Y

Allowed Values

true, false

true, false

Attribute Description

When multicast is true, the multicast address
to which the adapter joins.

Specifies the concurrency. For udp, specifies
how many packets can be handled
concurrently. For tcp, not using nio, specifies
the number of concurrent connections
supported by the adapter. For tcp, using nio,
specifies the number of tcp fragments that are
concurrently reassembled into complete

messages.

For udp, the size of the buffer used to receive
DatagramPackets. Usually set to the MTU
size. If asmaller buffer is used than the size of
the sent packet, truncation can occur. This can
be detected by means of the check-length
attribute.For tcp, the size of the buffer used to
reassemble incoming messages. Effectively
the maximum message size that can be
received.

Whether or not a udp adapter expects a data
length field in the packet received. Used to
detect packet truncation.

Whether or not the tcp adapter is using NIO.
Refer to the javanio package for more
information.

using-direct-buffers

message-format

custom-socket-
reader-class-name

So-timeout

true, false

length-header, stx-etx,
crif, seridlized,

custom

Subclass
TcpNetSocket-
Reader
TcpNioSocket-
Reader

of

or

When using NIO, whether or not the tcp
adapter uses direct buffers. Refer to
java.nio.ByteBuffer documentation for more
information.

The formatting that the tcp adapter uses so the
adapter can demarcate messages. Defaults to
length-header. See the discussion above for
details about each format.

When message-format is 'custom' the name of
the class that implements the custom format.
Must be a subclass of the
TcpNxxSocketReader, depending on whether
using-nio isfalse or true.

See j ava. net . Socket and
j ava. net . Dat agr anBocket setSoTimeout()
methods for more information.

s0-send-buffer-size

Used for udp acknowlegment packets. See

j ava. net . Dat agr anSocket

setSendBufferSize() methods for more
information.

Spring-WS (2.0.0.M5) 89

TCP and UDP Support

Attribute Name

so-receive-buffer-
size
so-keep-dlive

|local-address

close

TCP? UDP? Allowed Values Attribute Description

Y Y See j ava. net . Socket and
j ava. net . Dat agr anSocket
setReceiveBufferSize() for more information.

Y N true, false Seej ava. net. Socket. set KeepAlive().

Y Y On a multi-homed system, specifies an IP
address for the interface to which the socket
will be bound.

Y N If set to true, instructs the adapter to close the
socket after receiving a message. Defaults to
false.

Table 25.3. TCP Inbound Gateway Attributes

Attribute Name
port

pool-size

receive-buffer-size

Allowed Values Attribute Description
The port on which the gateway listens.

Specifies the number of concurrent connections supported by the
gateway.

The size of the buffer used to reassemble incoming messages.
Effectively the maximum message size that can be received.

message-format length-header, The formatting that the tcp gateway uses for demarcating
stx-etx, crif, incoming requests and formatting responses. Defaults to
seridlized, custom length-header. See the discussion above for details about each

format.

custom-socket- Subclass of When message-format is 'custom' the name of the class that

reader-class-sname | TcpNetSocket- implements the custom format. Must be a subclass of the
Reader TcpNetSocketReader.

custom-socket- Subclass of When message-format is 'custom' the name of the class that

writer-class-name TcpNetSocket- implements the custom format. Must be a subclass of the
Writer TcpNetSocketWriter.

s0-timeout

Seej ava. net. Socket setSoTimeout() for more information.

s0-send-buffer-size

so-receive-buffer-

See j ava. net. Socket setSendBufferSize() methods for more
information.

See java.net.Socket setReceiveBufferSize() for more

size information.

so-keep-dive true, false Seej ava. net. Socket. setKeepAlive().

local-address On a multi-homed system, specifies an IP address for the
interface to which the socket will be bound.

close If set to true, instructs the gateway to close the socket after

sending the reply to a message. Defaultsto false.

Spring-WS (2.0.0.M5) 90

TCP and UDP Support

Table 25.4. TCP Outbound Gateway Attributes

Attribute Name | Allowed Values Attribute Description
host The host name or ip address of the destination.
port The port to which the gateway connects.
receive-buffer-size The size of the buffer used to reassemble incoming messages.
Effectively the maximum message size that can be received.
message-format length-header, The formatting that the tcp gateway uses for formating requests
stx-etx, crlf, | and demarcating incoming responses. Defaults to length-header.

serialized, custom

See the discussion above for details about each format.

custom-socket- Subclass of When message-format is 'custom' the name of the class that

reader-class-name TcpNetSocket- implements the custom format. Must be a subclass of the
Reader TcpNetSocketReader.

custom-socket- Subclass of When message-format is 'custom' the name of the class that

writer-class-name TcpNetSocket- implements the custom format. Must be a subclass of the
Writer TcpNetSocketWriter.

So-timeout Seej ava. net . Socket setSoTimeout() for more information.

so-send-buffer-size See java. net. Socket SetSendBufferSize() methods for more

information.

so-receive-buffer- See java.net.Socket setReceiveBufferSize() for more

size information.

so-keep-dive true, false Seej ava. net. Socket. set KeepAlive().

close If set to true, instructs the adapter to close the socket after

receiving the reply to amessage. Defaults to false.

Spring-WS (2.0.0.M5) o1

Chapter 26. Mail Support

26.1. Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the Mai | Sendi ngMessageHand! er . It delegatesto a
configured instance of Spring's JavaMai | Sender :

JavaMai | Sender mai |l Sender = (JavaMai |l Sender) context.get Bean("mail Sender");

Mai | Sendi ngMessageHandl er nai | Sendi ngHandl er = new Mai | Sendi ngMessageHand! er (mai | Sender) ;

Mai | Sendi ngMessageHandl er has various mapping strategies that use Spring's mai | Message abstraction. If the
received Message's payload is already a Mai | Message instance, it will be sent directly. Therefore, it is generally
recommended to precede this consumer with a Transformer for non-trivial MailMessage construction
requirements. However, a few simple Message mapping strategies are supported out-of-the-box. For example,
if the message payload is a byte array, then that will be mapped to an attachment. For simple text-based emails,
you can provide a String-based Message payload. In that case, a MailMessage will be created with that String
as the text content. If you are working with a Message payload type whose toString() method returns
appropriate mail text content, then consider adding Spring Integration's ObjectToStringTransformer prior to the
outbound Mail adapter (see the example within Section 9.2, “ The <transformer> Element” for more detail).

The outbound MailMessage may also be configured with certain values from the vessageHeader s. If available,
values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and BCC), the
from/reply-to, and the subject. The header names are defined by the following constants:

Mai | Header s. SUBJECT
Mai | Headers. TO

Mai | Header s. CC

Mai | Header s. BCC

Mai | Header s. FROM

Mai | Header s. REPLY_TO

Note

Mai | Headers also allows you to override corresponding mai | Message values. For example: If
Mai | Message. t o IS Set to ‘foo@bar.com' and Mai | Header s. TO Message header is provided it will
take precedence and override the corresponding value in Mai | Message

26.2. Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the Mai | Recei vi ngMessageSour ce. It delegates
to a configured instance of Spring Integration's own Mail Recei ver interface, and there are two
implementations. Pop3Mai | Recei ver and | mapMai | Recei ver. The easiest way to instantiate either of these is
by passing the 'uri’ for a Mail store to the receiver's constructor. For example:

Mai | Recei ver receiver = new Pop3Mai | Recei ver (" pop3://usr: pwd@ ocal host/ |1 NBOX") ;

Another option for receiving mail isthe IMAP "idle" command (if supported by the mail server you are using).
Spring Integration provides the | mapl dl eChannel Adapt er which is itself a Message-producing endpoint. It
delegates to an instance of the | mapMai | Recei ver but enables asynchronous reception of Mail Messages. There
are examples in the next section of configuring both types of inbound Channel Adapter with Spring

Spring-WS (2.0.0.M5) 92

Mail Support

Integration's namespace support in the 'mail’ schema.

26.3. Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schema/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: mai | ="http://ww. spri ngframework. org/ schema/ i ntegrati on/ mail '
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schena/ i nt egrati on/ nai
http://ww. springframework. org/ schema/integration/mail/spring-integration-mail-1.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the Mail Sender:

<mai | : out bound- channel - adapt er channel =" out boundMai | "
mai | - sender =" mai | Sender "/ >

Alternatively, provide the host, username, and password:

<mai | : out bound- channel - adapt er channel =" out boundMai | "
host =" sonehost " user nane="soneuser" passwor d="sonepassword"/>

Note

Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or
cron-trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven (assuming
your mail server supports IMAP IDLE - if not, then polling is the only option). A polling Channel Adapter
simply requires the store URI and the channel to send inbound Messages to. The URI may begin with "pop3" or

"imap":

<mai | : i nbound- channel - adapt er channel ="mai | | n"
store-uri="imap://usr: pwd@ map. exanpl e. conf | NBOX" >
<pol | er max- messages- per-pol | ="3">
<interval -trigger interval ="30" time-unit="SECONDS"/>
</ pol | er >
</ mai | : i nbound- channel - adapt er >

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter" element
instead. Since the "idle" command enables event-driven notifications, no poller is necessary for this adapter. It
will send a Message to the specified channel as soon as it receives the notification that new mail is available:

<mai | : i map-i dl e-channel - adapt er channel ="mail | n"
store-uri="inmaps://usr:pwd@ map. exanpl e. com 993/ | NBOX"/ >

When using the namespace support, a header-enricher Message Transformer is also available. This simplifies
the application of the headers mentioned above to any Message prior to sending to the Mail-sending Channel
Adapter.

<mai | : header - enricher subject="Exanple Mil"
to="t o@xanpl e. org"
cc="cc@xanpl e. org"
bcc="bcc@xanpl e. org"

Spring-WS (2.0.0.M5) 93

Mail Support

from="fromaxanpl e. org"
reply-to="repl yTo@xanpl e. org"
overwite="fal se"/>

Spring-WS (2.0.0.M5)

94

Chapter 27. JIMX Support

Spring Integration provides Channel Adapters for receiving and publishing IMX Notifications. There is also an
inbound Channel Adapter for polling JIMX MBean attribute values, and an outbound Channel Adapter for
invoking JIMX MBean operations.

27.1. Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JIMX ObjectName for the MBean that publishes
Notifications to which this listener should be registered. A very simple configuration might look like this:

<jmx:notification-listening-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. donai n: nane=publ i sher"/>

Tip

The notification-listening-channel-adapter registers with an MBeanServer at startup, and the
default bean name is "mbeanServer" which happens to be the same bean name generated when
using Spring's <context:mbean-server/> element. If you need to use a different name be sure to
include the "mbean-server" attribute.

The adapter can also accept areference to a NotificationFilter and a"handback" Object to provide some context
that is passed back with each Notification. Both of those attributes are optional. Extending the above example
to include those attributes as well as an explicit MBeanServer bean name would produce the following:

<jnmx:notification-Ilistening-channel -adapter id="adapter"
channel ="channel "
nbean- server ="sonmeSer ver"
obj ect - nanme="exanpl e. domai n: nane=sonePubl i sher"
notification-fliter="notificationFilter"
handback="nyHandback"/ >

Since the notification-listening adapter is registered with the MBeanServer directly, it is event-driven and does
not require any poller configuration.

27.2. Notification Publishing Channel Adapter

The Notification-publishing Channel Adapter is relatively simple. It only requires a IMX ObjectName in its
configuration as shown below.

<cont ext : nbean: export/>

<jnx:notification-publishing-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. donai n: nane=publ i sher"/>

It does also require that an M BeanExporter be present in the context. That is why the <context:mbean-export/>
element is shown above as well.

When Messages are sent to the channel for this adapter, the Notification is created from the Message content. If
the payload is a String it will be passed as the "message" text for the Notification. Any other payload type will
be passed asthe "userData’ of the Notification.

JMX Notifications also have a "type", and it should be a dot-delimited String. There are two ways to provide

Spring-WS (2.0.0.M5) %

JMX Support

the type. Precedence will aways be given to a Message header value associated with the
JmxHeaders NOTIFICATION_TYPE key. On the other hand, you can rey on a fallback
"default-notification-type" attribute provided in the configuration.

<cont ext : nbean: export/>

<j mx:notification-publishing-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. domai n: nane=publ i sher"
defaul t-notification-type="sone.default.type"/>

27.3. Attribute Polling Channel Adapter

The attribute polling adapter is useful when you have a requirement to periodically check on some vaue that is
available through an MBean as a managed attribute. The poller can be configured in the same way as any other
polling adapter in Spring Integration (or it's possible to rely on the default poller). The "object-name" and
"attribute-name” are required. An MBeanServer reference is also required, but it will automatically check for a
bean named "mbeanServer" by default just like the notification-listening-channel -adapter described above.

<jnx:attribute-polling-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. domai n: nane=soneSer vi ce"
attribute-nanme="Invocati onCount ">
<si:pol |l er max-nessages-per-poll="1">
<si:interval -trigger interval ="5000"/>
</ si:poller>
</jnx:attribute-polling-channel -adapter>

27.4. Operation Invoking Channel Adapter

The operation-invoking-channel -adapter enables Message-driven invocation of any managed operation exposed
by an MBean. Each invocation requires the operation name to be invoked and the ObjectName of the target
MBean. In each case, the adapter will first check for header values on the Message itself. The keys for these
headers are defined as ImxHeaders. OPERATION_NAME and JmxHeaders. OBJECT _NAME, respectively. If
relying on those M essage headers, the configuration is trivial.

<j nx: oper ati on-i nvoki ng- channel - adapt er i d="adapter"/>

That adapter only needs to be able to discover the "mbeanServer" bean. If a different bean name is required,
then provide the "mbean-server" attribute with areference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed payload
with String keys is treated as name/value pairs whereas a List or array would be passed as a simple argument
list (with no explicit parameter names). If the operation requires a single parameter value, then the payload can
represent that single value, and if the operation requires no parameters, then the payload would be ignored.

Similar to the behavior described above for the Notification type resoltion, the
operation-invoking-channel -adapter will also fallback to default values if provided:

<j nx: oper ati on-i nvoki ng- channel - adapt er i d="adapter"
def aul t - obj ect - name="exanpl e. domai n: nane=Test Bean"
def aul t - oper ati on- name="pi ng"/ >

If you want to expose a channel for a single common operation to be invoked by Messages that need not
contain headers, then that option works well.

Spring-WS (2.0.0.M5) %

JMX Support

27.5. Control Bus

Spring Integration components themselves may be exposed as MBeans when the Control Bus is configured. As
described in (EIP), the idea behind the Control Bus is that the same messaging system can be used for
monitoring and managing the components within the framework as is used for "application-level" messaging.
In Spring Integration we build upon the adapters described above so that it's possible to send Messages as a
means of invoking exposed operations. Internally, the Control Bus uses a Spring MBeanExporter instance to
expose the various endpoints and channels. To create an instance of the Control Bus, define a bean and provide
areference to an MBeanServer and a domain name (we will be providing namespace support). The domain can
be left out in which case the default domain is " org.springframework.integration”.

<bean i d="control Bus" class="org. springfranework.integration.control.Control Bus">
<constructor-arg ref="nbeanServer"/>
<constructor-arg val ue="exanpl e. donai n"/ >

</ bean>

<bean i d="nbeanServer" class="org.springfranework.jnx.support.MBeanServer Fact or yBean" >
<property name="| ocat eExi sti ngServerl| f Possi bl e" val ue="true"/>
</ bean>

The Control Bus has an "operationChannel” that can be accessed for invoking operations on the MBeans that it
has exported. This will aso be covered by namespace support soon to make it easier to configure references to
that channel for other producers. We will likely add some other channels for notifications and attribute polling
aswell.

The Control Bus functionality is a work in progress. At this time, one can perform some basic monitoring of
Message Channels and/or invoke Lifecycle operations (start/stop) on Message Endpoints. Now that the
foundation is available, however, we will be able to extend the attributes and operations that are being exposed.

Spring-WS (2.0.0.M5) 97

http://www.eaipatterns.com/ControlBus.html

Chapter 28. XMPP Support

Spring Integration provides Channel Adaptersfor XMPP.

28.1. Inbound Channel Adapter

TODO

<xmpp: f oo/ >

Tip
Don't forget, it's not actually "foo"!

Note
Redlly... that won't work.

28.2. XMPP Samples

We really should have some samples...

Spring-WS (2.0.0.M5)

98

Chapter 29. Stream Support

29.1. Introduction

In many cases application data is obtained from a stream. It is not recommended to send areference to a Stream
as a message payload to a consumer. Instead messages are created from data that is read from an input stream
and message payloads are written to an output stream one by one.

29.2. Reading from streams

Spring Integration provides two adapters for streams. Both Byt eStreanReadi ngMessageSource and
Char act er St r eanrReadi ngMessageSour ce implement MessageSour ce. By configuring one of these within a
channel-adapter element, the polling period can be configured, and the Message Bus can automatically detect
and schedule them. The byte stream version requires an | nput St r eam and the character stream version requires
a Reader as the single constructor argument. The Byt eStreanReadi ngMessageSource also accepts the
'bytesPerMessage’ property to determine how many bytes it will attempt to read into each Message. The default
valueis 1024

<bean cl ass="org. springframework.integration.stream Byt eSt reanReadi ngMessageSour ce" >
<constructor-arg ref="sonel nput Streant/>
<property name="byt esPer Message" val ue="2048"/>

</ bean>

<bean cl ass="org. spri ngfranmework. i ntegration.stream Charact er St r eanReadi ngMessageSour ce" >
<constructor-arg ref="sonmeReader"/>
</ bean>

29.3. Writing to streams

For target streams, there are also two implementations: Byt eStreamWiti ngMessageHandl er and
Charact er StreanW i ti ngMessageHandl er . Each requires a single constructor argument - Qut put St r eam for
byte streams or witer for character streams, and each provides a second constructor that adds the optional
‘bufferSize'. Since both of these ultimately implement the MessageHandl er interface, they can be referenced
from a channel-adapter configuration as described in more detail in Chapter 6, Channel Adapter.

<bean cl ass="org. springframework.integration.stream ByteStreanWiti ngMessageHandl er" >
<constructor-arg ref="someQut put Streant'/>
<constructor-arg val ue="1024"/>

</ bean>

<bean cl ass="org. springfranmework.integration.stream CharacterStreanViti ngMessageHandl er">
<constructor-arg ref="someWiter"/>
</ bean>

29.4. Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined. The
following schema locations are needed to use it.

<?xm version="1.0" encodi ng="UTF- 8" ?>

Spring-WS (2.0.0.M5) 99

Stream Support

<beans: beans xm ns="http://ww. springframewor k. org/ schema/i ntegration/streant
xm ns: xsi ="http://ww:. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. spri ngfranework. org/ schena/ i nt egration/stream
http://ww. springframework. org/ schema/ i ntegration/streanm spring-integration-stream 1.0. x

To configure the inbound channel adapter the following code snippet shows the different configuration options
that are supported.
<stdi n- channel - adapt er i d="adapter Wt hDef aul t Charset"/>

<st di n- channel - adapt er i d="adapter Wt hProvi dedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound channel adapters.
<st dout - channel - adapt er i d="st dout Adapt er Wt hDef aul t Charset" channel ="t est Channel "/ >
<st dout - channel - adapt er i d="st dout Adapt er Wt hProvi dedCharset" charset="UTF-8" channel ="t est Channel "/ >
<stderr-channel - adapt er id="stderrAdapter” channel ="t est Channel "/ >

<st dout - channel - adapt er i d="new i neAdapt er" append-new i ne="true" channel ="t est Channel "/ >

Spring-WS (2.0.0.M5) 100

Chapter 30. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound ApplicationEvents as defined by the
underlying Spring Framework. For more information about the events and listeners, refer to the Spring
Reference Manual.

30.1. Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
Appl i cati onEvent Li st eni ngChannel Adapter. This class is an implementation of Spring's
Appl i cati onLi st ener interface. By default it will pass al received events as Spring Integration Messages. To
limit based on the type of event, configure the list of event types that you want to receive with the ‘eventTypes

property.

30.2. Sending Spring ApplicationEvents

To send Spring Appl i cati onEvent s, create an instance of the Appl i cati onEvent Publ i shi ngMessageHand| er
and register it within an endpoint. This implementation of the MessageHandl er interface also implements
Spring's Appl i cati onEvent Publ i sher Avar e interface and thus acts as a bridge between Spring Integration
Messages and Appl i cat i onEvent s.

Spring-WS (2.0.0.M5) 101

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Chapter 31. Dealing with XML Payloads

31.1. Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of splitter,
transformer, selector and router designed to make working with xml messages in Spring Integration simple.
The provided messaging components are designed to work with xml represented in arange of formats including
instances of java.lang. String, org.w3c.dom Docurment and javax. xm .transform Source. It should be
noted however that where a DOM representation is required, for example in order to evaluate an XPath
expression, the string payload will be converted into the required type and then converted back again to
St ri ng. Components that require an instance of Docunment Bui | der will create a namespace aware instance if
one is not provided. Where greater control of the document being created is required an appropriately
configured instance of Docunent Bui | der should be provided.

31.2. Transforming xml payloads

This section will explain the workings of UnnarshallingTransformer, MarshallingTransforner,
Xsl t Payl oadTr ansf or mer and how to configure them as beans. All of the provided xml transformers extend
Abstract Transformer Or Abstract Payl oadTransfornmer and therefore implement Transforner. When
configuring xml transformers as beans in Spring Integration you would normally configure the transformer in
conjunction with either a MessageTr ansf or mi ngChannel | nt er cept or Or a MessageTr ansf or mi ngHandl er . This
allows the transformer to be used as either an interceptor, which transforms the message as it is sent or received
to the channel, or as an endpoint. Finally the namespace support will be discussed which allows for the simple
configuration of the transformers as elementsin XML.

Unmar shal | i ngTr ansf or mer alows an xml Sour ce to be unmarshalled using implementations of Spring OXM
Unmar shal | er . Spring OXM provides several implementations supporting marshalling and unmarshalling using
JAXB, Castor and JiBX amongst others. Since the unmarshaller requires an instance of Source where the
message payload is not currently an instance of Sour ce, conversion will be attempted. Currently Stri ng and
org. wdc. dom Docunent payloads are supported. Custom conversion to a Sour ce is aso supported by injecting
an implementation of Sour ceFact ory.

<bean i d="unmarshal | i ngTr ansf or mer"
cl ass="org. springframework.integration.xm .transforner. Unmarshal | i ngTr ansf or ner" >
<constructor-ar g>
<bean cl ass="org. spri ngframewor k. oxm j axb. JaxblMarshal | er" >
<property name="contextPath" val ue="org. exanple" />
</ bean>
</ constructor-arg>
</ bean>

The Marshal lingTransfornmer alows an object graph to be converted into xml using a Spring OXM
Mar shal | er . By default the var shal 1§ ngTr ansf or mer will return a DonResul t . However the type of result can
be controlled by configuring an aternative Resul t Fact ory such as Stri ngResul t Fact ory. In many cases it
will be more convenient to transform the payload into an alternative xml format. To achieve this configure a
Resul t Transf or mer . TwO implementations are provided, one which converts to string and another which
converts to Documnent .

<bean i d="marshal | i ngTr ansf or ner"
cl ass="org. springframework.integration.xm .transfornmner. Marshal |l i ngTransforner">
<constructor - ar g>
<bean cl ass="org. spri ngf ramewor k. oxm j axb. JaxblMar shal | er ">
<property nanme="context Pat h" val ue="org. exanple" />

Spring-WS (2.0.0.M5) 102

Dealing with XML Payloads

</ bean>
</ constructor-arg>
<constructor-arg>
<bean cl ass="org. springframework.integration.xmn .transforner.Result ToDocunent Tr ansfornmer" />
</ constructor-arg>
</ bean>

By default, the mvar shal i ngTr ansf or mer will pass the payload Object to the Marshal | er, but if its boolean
"extractPayload" property is set to "false", the entire Message instance will be passed to the wmarshal I er
instead. That may be useful for certain custom implementations of the var shal | er interface, but typically the
payload is the appropriate source Object for marshalling when delegating to any of the various out-of-the-box
Mar shal | er implementations.

Xsl t Payl oadTr ansf or mer transforms xml payloads using xsl. The transformer requires an instance of either
Resource Or Tenplates. Passing in a Tenplates instance allows for greater configuration of the
TransformerFactory used to create the template instancee As in the case of
Xm Pay| oadMar shal | i ngTransformer by default XsltPayl oadTransformer will create a message with a
Resul t payload. This can be customised by providing aResul t Fact ory and/or aResul t Tr ansf or mer .

<bean i d="xsl t Payl oadTr ansf or mer"
cl ass="org. springframework.integration.xmn .transforner. Xsl t Payl oadTr ansf or ner" >
<constructor-arg val ue="cl asspat h: or g/ exanpl e/ xsl /transform xsl" />
<constructor - ar g>
<bean cl ass="org. springframework.integration.xmn .transforner.ResultToDocunent Tr ansfornmer" />
</ constructor-arg>
</ bean>

31.3. Namespace support for xml transformers

Namespace support for all xml transformers is provided in the Spring Integration xml namespace, a template
for which can be seen below. The namespace support for transformers creates an instance of either
Event Dri venConsumer OF Pol | i ngConsumer according to the type of the provided input channel. The
namespace support is designed to reduce the amount of xml configuration by alowing the creation of an
endpoint and transformer using one element.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schema/integration”
xm ns: si-xm ="http://ww. springframework. org/ schema/integration/ xm "
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. springframework. org/ schenma/ i ntegration/spring-integration-1.0.xsd
http://ww. springframework. or g/ schema/ i nt egrati on/ xm
http://ww. spri ngfranework. org/ schena/ i ntegration/xm /spring-integration-xm-1.0.xsd">
</ beans>

The namespace support for Unmar shal | i ngTr ansf or mer is shown below. Since the namespace is now creating
an endpoint instance rather than a transformer, a poller can also be nested within the element to control the
polling of the input channel.

<si -xm : unmar shal | i ng-transforner id="defaultUnmarshaller"
i nput - channel ="i nput "
out put - channel =" out put "
unmar shal | er ="unnmar shal | er"/ >

<si -xm : unmar shal | i ng-transforner id="unmarshallerWthPoller"
i nput - channel ="i nput "
out put - channel =" out put "
unmar shal | er ="unnar shal | er ">
<si :poller>

Spring-WS (2.0.0.M5) 103

Dealing with XML Payloads

<si:interval -trigger interval ="2000"/>
</si:poller>
<si -xm : unmar shal | i ng-transf or ner/ >

The namespace support for the marshalling transformer requires an input channel, output channel and a
reference to a marshaller. The optional result-type attribute can be used to control the type of result created,
valid values are StringResult or DomResult (the default). Where the provided result types are not sufficient a
reference to a custom implementation of Resul t Factory can be provided as an alternative to setting the
result-type attribute using the result-factory attribute. An optional result-transformer can also be specified in
order to convert the created Resul t after marshalling.

<si -xm : mar shal | i ng-transf or ner
i nput - channel =" mar shal | i ngTr ansf or mer St ri ngResul t Fact ory"
out put - channel =" out put "
mar shal | er="narshal | er "
result-type="StringResult" />

<si -xm : marshal | i ng-transformer
i nput - channel =" mar shal | i ngTr ansf or mer W t hResul t Tr ansf or ner "
out put - channel =" out put "
mar shal | er ="mar shal | er"
result-transforner="result Transforner" />

<bean id="result Transformer"
cl ass="org. springframework.integration.xm .transformer.ResultToStringTransfornmner"/>

Namespace support for the Xs| t Payl oadTr ansf or ner allows either aresource to be passed in in order to create
the Tenpl at es instance or alternatively a precreated Tenpl at es instance can be passed in as a reference. In
common with the marshalling transformer the type of the result output can be controlled by specifying either
the result-factory or result-type attribute. A result-transfomer attribute can also be used to reference an
implementation of Resul t Tr ansf omrer Where conversion of the result is required before sending.

<si-xm:xslt-transformer id="xsltTransfornerWthResource"

i nput - channel ="w t hResour cel n"

out put - channel =" out put "

xsl -resource="org/ springframework/integration/xnm/config/test.xsl"/>
<si-xm:xslt-transformer id="xsltTransformerWthTenpl at esAndResul t Tr ansf or mer"

i nput - channel =" wi t hTenpl at esAndResul t Tr ansf or ner | n*

out put - channel =" out put "

xsl -t enpl at es="t enpl at es”

resul t-transforner="resultTransforner"/>

31.4. Splitting xml messages

XPat hMessageSpl i tter SUpports messages with either String or Docunent payloads. The splitter uses the
provided XPath expression to split the payload into a number of nodes. By default this will result in each Node
instance becoming the payload of a new message. Where it is preferred that each message be a Document the
cr eat eDocunent s flag can be set. Where a st ri ng payload is passed in the payload will be converted then split
before being converted back to a number of String messages. The XPath splitter implements MessageHandl er
and should therefore be configured in conjunction with an appropriate endpoint (see the namespace support
below for asimpler configuration alternative).

<bean id="splittingEndpoint"
cl ass="org. spri ngframework. i ntegration. endpoi nt. Event Dri venConsurner ">
<constructor-arg ref="order Channel " />
<constructor - ar g>
<bean cl ass="org. springfranmework.integration.xm.splitter.XPathMessageSplitter">

<constructor-arg val ue="/order/itenms" />
<property nanme="docunent Bui |l der" ref="custom sedDocunentBui |l der" />
<property name="out put Channel " ref="orderltenmsChannel" />

Spring-WS (2.0.0.M5) 104

Dealing with XML Payloads

</ bean>
</ constructor-arg>
</ bean>

31.5. Routing xml messages using XPath

Two Router implementations based on XPath are provided XPathSingl eChannel Router and
XPat hMul ti Channel Rout er. The implementations differ in respect to how many channels any given message
may be routed to, exactly one in the case of the single channel version or zero or more in the case of the
multichannel router. Both evaluate an XPath expression against the xml payload of the message, supported
payload types by default are Node, Docurent and St ri ng. For other payload types a custom implementation of
Xm Payl oadConverter can be provided. The router implementations use Channel Resol ver to convert the
result(s) of the XPath expression to a channel name. By default a BeanFact or yChannel Resol ver strategy will
be used, this means that the string returned by the X Path evaluation should correspond directly to the name of a
channel. Where this is not the case an alternative implementation of Channel Resol ver can be used. Where
there is a simple mapping from Xpath result to channel name the provided MapBasedChannel Resol ver can be
used.

<I-- Expects a channel for each value of order type to exist -->
<bean i d="si ngl eChannel Rout i ngEndpoi nt"
cl ass="org. springfranmework.integration. endpoi nt. Event Dri venConsuner ">
<constructor-arg ref="order Channel " />
<constructor - ar g>
<bean cl ass="org. spri ngfranmework.integration.xm .router.XPat hSi ngl eChannel Rout er ">
<constructor-arg val ue="/order/ @ype" />

</ bean>
</ constructor-arg>
</ bean>
<l-- Milti channel router which uses a map channel resolver to resolve the channel nane

based on the XPath evaluation result Since the router is multi channel it may deliver
nessage to one or both of the configured channels -->
<bean i d="nul ti Channel Routi ngEndpoi nt"
cl ass="org. springfranmework. i ntegration. endpoi nt. Event Dri venConsuner" >
<constructor-arg ref="order Channel " />
<constructor - ar g>
<bean cl ass="org. springfranmework.integration.xmn .router.XPat hMil ti Channel Rout er">
<constructor-arg val ue="/order/recipient" />
<property nanme="channel Resol ver" >
<bean cl ass="org. spri ngframework.integration.channel . MapBasedChannel Resol ver" >
<constructor-arg>
<map>
<entry key="accounts"
val ue-ref ="account Confi rmati onChannel " />
<entry key="humanResour ces"
val ue-r ef =" humanResour cesConfi r mat i onChannel " />
</ map>
</ constructor-arg>
</ bean>
</ property>
</ bean>
</ constructor-arg>
</ bean>

31.6. Selecting xml messages using XPath

TwO MessageSel ector implementations are provided, Bool eanTest XPat hMessageSel ector — and
Stri ngVval ueTest XPat hMessageSel ect or . Bool eanTest XPat hMessageSel ect or requires an XPathExpression
which evaluates to a boolean, for example boolean(/one/two) which will only select messages which have an
element named two which is a child of a root element named one. Stri ngVval ueTest XPat hMessageSel ect or

Spring-WS (2.0.0.M5) 105

Dealing with XML Payloads

evaluates any XPath expression asa st ri ng and compares the result with the provided value.

<I-- Interceptor which rejects messages that do not have a root el enent order -->
<bean i d="order Sel ecti ngl nterceptor”
class="org. springframework.integration.channel.interceptor. MessageSel ectingl nterceptor">
<const ructor - ar g>
<bean cl ass="org. spri ngfranmework.integration.xmnl.sel ector.Bool eanTest XPat hMessageSel ect or ">
<constructor-arg val ue="bool ean(/order)" />

</ bean>
</ constructor-arg>
</ bean>
<l-- Interceptor which rejects nessages that are not version one orders -->

<bean i d="versi onOneOr der Sel ecti ngl nterceptor"”
cl ass="org. springfranmework.integration. channel .interceptor. MessageSel ecti ngl nterceptor">
<constructor-arg>
<bean cl ass="org. spri ngfranmework.integration.xmnl.selector. StringVal ueTest XPat hMessageSel ect or">
<constructor-arg val ue="/order/ @ersion" index="0"/>
<constructor-arg val ue="1" index="1"/>
</ bean>
</ constructor-arg>
</ bean>

31.7. XPath components namespace support

All XPath based components have namespace support allowing them to be configured as Message Endpoints
with the exception of the XPath selectors which are not designed to act as endpoints. Each component allows
the XPath to either be referenced at the top level or configured via a nested xpath-expression element. So the
following configurations of an xpath-selector are all valid and represent the general form of XPath namespace
support. All forms of XPath expression result in the creation of an XPat hExpressi on using the Spring
XPat hExpr essi onFact ory

<si -xm : xpat h- sel ect or i d="xpat hRef Sel ect or"
xpat h- expr essi on="r ef ToXpat hExpr essi on"
eval uation-resul t-type="bool ean" />

<si-xm : xpat h-sel ect or i d="sel ect or Wt hNoNS" eval uati on-resul t-type="bool ean" >
<si -xm : xpat h- expr essi on expr essi on="/nane"/ >
</ si-xm : xpat h-sel ect or >

<si-xm : xpat h-sel ector id="sel ector WthOneNS" eval uati on-result-type="bool ean" >
<si - xm : xpat h- expressi on expressi on="/ns1: nane"
ns-prefix="nsl" ns-uri="ww.exanple.org" />
</ si-xm : xpat h- sel ect or >

<si-xm : xpat h-sel ector id="sel ector WthTwoNS" eval uati on-result-type="bool ean" >
<si -xm : xpat h- expr essi on expressi on="/nsl: nane/ ns2:type">
<n’Hp>
<entry key="ns1" val ue="ww. exanpl e. or g/ one" />
<entry key="ns2" val ue="ww\. exanpl e. org/two" />
</ map>
</ si -xm : xpat h- expr essi on>
</ si-xm : xpat h-sel ect or>

<si-xml : xpat h-sel ector id="sel ect or WthNanmespaceMapRef" eval uati on-result-type="bool ean" >
<si -xm : xpat h- expr essi on expressi on="/ns1l: nane/ ns2:type"
nanespace- nap="def aul t Nanespaces"/ >
</ si-xm : xpat h- sel ect or >

<util:map id="defaul t Namespaces" >
<util:entry key="nsl1" val ue="ww\. exanpl e. or g/ one" />
<util:entry key="ns2" val ue="www. exanpl e. org/two" />
</util:map>

XPath splitter namespace support alows the creation of a Message Endpoint with an input channel and output
channel.

<l-- Split the order into items creating a new nmessage for each item node -->

Spring-WS (2.0.0.M5) 106

Dealing with XML Payloads

<si-xm :xpath-splitter id="orderltenSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t emsChannel " >
<si -xm : xpat h- expr essi on expressi on="/order/itens"/>
</si-xm:xpath-splitter>

<l-- Split the order into itens creating a new docunent for each item->
<si-xm : xpath-splitter id="orderltenDocunmentSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t ensChannel "
creat e-docunment s="true">
<si - xml : xpat h- expr essi on expressi on="/order/itens"/>
<si : pol |l er>
<si:interval-trigger interval ="2000"/>
</ si:poller>
</si-xm:xpath-splitter>

XPath router namespace support alows for the creation of a Message Endpoint with an input channel but no
output channel since the output channel is determined dynamically. The multi-channel attribute causes the
creation of amulti channel router capable of routing a single message to many channels when true and a single
channel router when false.

<l-- route the nessage according to exactly one order type channel -->

<si-xm : xpath-router id="orderTypeRouter" input-channel ="orderChannel" nulti-channel ="fal se">
<si -xm : xpat h- expr essi on expressi on="/order/type"/>

</ si-xm : xpat h-rout er >

<I-- route the order to all responders-->
<si-xml : xpath-router id="responderRouter" input-channel ="orderChannel" nulti-channel ="true">
<si -xm : xpat h- expressi on expressi on="/request/responders"/>
<si : poll er>
<si:interval -trigger interval ="2000"/>
</ si:poller>
</ si-xm : xpat h-rout er >

Spring-WS (2.0.0.M5) 107

Chapter 32. Security in Spring Integration

32.1. Introduction

Spring Integration provides integration with the Spring Security project to alow role based security checks to
be applied to channel send and receive invocations.

32.2. Securing channels

Spring Integration provides the interceptor Channel Securitylnterceptor, Which extends
Abstract Securi tyl nterceptor and intercepts send and receive calls on the channel. Access decisions are then
made with reference to Channel | nvocat i onDef i ni ti onSour ce which provides the definition of the send and
receive security constraints. The interceptor requires that a valid SecurityCont ext has been established by
authenticating with Spring Security, see the Spring Security reference documentation for details.

Namespace support is provided to alow easy configuration of security constraints. This consists of the secured
channels tag which allows definition of one or more channel name patterns in conjunction with a definition of
the security configuration for send and receive. The patternisaj ava. util . regexp. Pat t er n.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. spri ngframewor k. org/ schena/integration"
xm ns: si-security="http://ww.springframework. org/schema/integration/security"
xm ns: beans="htt p://ww. spri ngfranmewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: security="http://ww. springframework. org/schenma/security"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ schenma/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. or g/ schema/ security
http://ww. spri ngframework. or g/ schena/ security/spring-security-2.0.xsd
http://ww. springframework. or g/ schema/ i nt egrati on
htt p: // ww. spri ngfranewor k. or g/ schena/ i nt egrati on/ spring-integration-1.0.xsd
http://ww. springframework. org/ schema/integration/security
htt p: // ww. spri ngf ranewor k. or g/ schena/ i nt egrati on/ security/spring-integration-security-1

<si -security: secured- channel s>
<si-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/ >
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER"'/>
</ si-security: secured-channel s>

By default the secured-channels namespace element expects a bean named authenticationManager which
implements Aut henti cati onManager and a bean named accessDecisionManager which implements
AccessDeci si onManager . Where this is not the case references to the appropriate beans can be configured as
attributes of the secured-channels element as below.

<si-security: secured-channel s access-deci si on- manager =" cust omAccessDeci si onManager "
aut henti cat i on- manager =" cust omAut hent i cat i onManager " >
<si-security:access-policy pattern="adm n.*" send-access="ROLE_ ADM N'/ >
<si-security:access-policy pattern="user.*" receive-access="ROLE USER'/ >
</ si-security: secured-channel s>

Spring-WS (2.0.0.M5) 108

http://static.springframework.org/spring-security/site/

Appendix A. Spring Integration Samples

Note

Starting with the current release of Spring Integration the samples are distributed as independent
Maven-based projects (http://maven.apache.org/) to minimize the setup time. Since each project is
also an Eclipse-based project, they can be imported as is using the Eclipse Import wizard. If you
prefer another IDE, configuration should be very trivial, since a special Maven profile was setup to
download all of the required dependencies for all samples. Detailed instructions on how to build
and run the samples are provided in the README. t xt file located in the samples directory of the
main distribution.

A.l. The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration distribution. This
sample isinspired by one of the samples featured in Gregor Hohpe's Ramblings.

The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

hotDrinks

placeOrder

The o der object may contain multiple orderitens. Once the order is placed, a Splitter will break the
composite order message into a single message per drink. Each of these is then processed by a Router that
determines whether the drink is hot or cold (checking the o der 1t em object's 'islced' property). The Bari st a
prepares each drink, but hot and cold drink preparation are handled by two distinct methods: 'prepareHotDrink'
and 'prepareColdDrink’. The prepared drinks are then sent to the Waiter where they are aggregated into a
Del i very object.

Hereisthe XML configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://ww. springframework. org/ schema/i ntegration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //ww. spri ngframewor k. or g/ schenma/ beans"
xm ns: stream="http://ww. springframework. org/ schema/ i nt egrati on/ streant
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
htt p: / / ww. spri ngf ranewor k. or g/ schena/ i nt egrati on
http://ww. springfranework. org/ schema/ i ntegration/spring-integration-1.0.xsd
ht t p: // ww. spri ngf ranewor k. or g/ schena/ i nt egr ati on/ st ream
http://ww. spri ngfranework. org/ schena/ i ntegration/streani spring-integration-stream1.0.xsd">

<gateway id="cafe" service-interface="org.springframework.integration.sanples.cafe.Cafe"/>

<channel id="orders"/>
<splitter input-channel="orders" ref="orderSplitter" method="split" output-channel ="drinks"/>

<channel id="drinks"/>
<router input-channel ="drinks" ref="drinkRouter" nethod="resol veOr derltentChannel "/>

<channel id="col dDri nks">
<queue capacity="10"/>
</ channel >

Spring-WS (2.0.0.M5) 109

http://maven.apache.org/
http://www.eaipatterns.com/ramblings.html

Spring Integration Samples

<servi ce-activator input-channel ="col dDri nks" ref="barista"
nmet hod="pr epar eCol dDr i nk" out put - channel =" pr epar edDri nks"/ >

<channel id="hotDrinks">
<queue capacity="10"/>
</ channel >

<servi ce-activator input-channel ="hotDrinks" ref="barista"
nmet hod=" pr epar eHot Dri nk" out put - channel =" pr epar edDri nks"/ >

<channel id="preparedDrinks"/>
<aggregat or input-channel ="preparedDrinks" ref="waiter"
net hod="pr epar eDel i very" out put - channel ="del i veries"/>

<stream st dout - channel - adapter id="deliveries"/>

<beans: bean id="orderSplitter"
class="org. springframework.integration.sanples.cafe.xm.OderSplitter"/>

<beans: bean i d="dri nkRout er"
cl ass="org. spri ngframework.integration. sanpl es. cafe. xm . Dri nkRouter"/>

<beans: bean i d="barista" class="org.springframework.integration.sanples.cafe.xn.Barista"/>
<beans: bean i d="waiter" class="org.springframework.integration.sanples.cafe.xm.Witer"/>
<poller id="poller" default="true">

<interval -trigger interval ="1000"/>

</ pol | er>

</ beans: beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint will
manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent that add the
"auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are ssimple POJOs
with strongly typed method arguments. For example, here is the Splitter:

public class OrderSplitter {

public List<Orderltenr split(Order order) {
return order.getltens();
}

}

In the case of the Router, the return value does not have to be a MessageChannel instance (although it can be).
Asyou seein this example, a String-val ue representing the channel name is returned instead.
public class DrinkRouter {

public String resol veOrderltentChannel (Orderltemorderlten) {
return (orderltemislced()) ? "coldDrinks" : "hotDrinks";
}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Barista instance but different methods. 'prepareHotDrink’ or ‘prepareColdDrink’
corresponding to the two channels where order items have been routed.

public class Barista {

private | ong hotDrinkDel ay = 5000;
private |ong col dDri nkDel ay = 1000;

private Atom clnteger hotDri nkCounter = new Atom clnteger();
private Atoniclnteger coldDrinkCounter = new Atomi clnteger();

public void setHotDrinkDel ay(l ong hot Dri nkDel ay) {
this. hot Dri nkDel ay = hot Dri nkDel ay;
}

public void setCol dDri nkDel ay(l ong col dDri nkDel ay) {
this.col dDri nkDel ay = col dDri nkDel ay;

Spring-WS (2.0.0.M5) 110

Spring Integration Samples

}

public Drink prepareHotDrink(Orderltemorderlitem {
try {

Thr ead. sl eep(thi s. hot Dri nkDel ay) ;

System out . println(Thread. current Thread(). get Nanme()
+ " prepared hot drink #" + hotDrinkCounter.increnent AndGet ()
+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderlten);

return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());

catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

}

public Drink prepareCol dDrink(Orderltemorderltem {
try {

Thr ead. sl eep(t hi s. col dDri nkDel ay) ;

System out . println(Thread. current Thread(). get Nanme()
+ " prepared cold drink #' + col dDri nkCounter.increnment AndGet ()
+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderlten);

return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());

catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks take 5
times as long to prepare). This simulates work being completed at different rates. When the caf eDeno 'main’
method runs, it will loop 100 times sending a single hot drink and a single cold drink each time. It actually
sends the messages by invoking the 'placeOrder’ method on the Cafe interface. Above, you will see that the
<gateway> element is specified in the configuration file. This triggers the creation of a proxy that implements
the given 'service-interface’ and connects it to a channel. The channel name is provided on the @Gateway
annotation of the caf e interface.

public interface Cafe {

@zat eway(r equest Channel =" or ders")
voi d pl aceOrder (Order order);

}
Finally, have alook at the mai n() method of the Caf eDeno itself.

public static void main(String[] args) {
Abstract Appl i cati onCont ext context = null;
if (args.length > 0) {
context = new Fil eSyst enXm Appl i cati onCont ext (args);
}

el se {
context = new Cl assPat hXm Appl i cati onCont ext (" caf eDeno. xm ", Caf eDenp. cl ass);

Cafe cafe = (Cafe) context.getBean("cafe");
for (int i =1; i <= 100; i++) {
Order order = new Order(i);
order. addl tem(Dri nkType. LATTE, 2, false);
order. addl tem(Dri nkType. MOCHA, 3, true);
caf e. pl aceOrder (order);

Tip

Spring-WS (2.0.0.M5) 111

Spring Integration Samples

To run this sample as well as 8 others, refer to the README. t xt within the "samples® directory of
the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds. However,
by configuring a poller with a concurrent task executor, you can dramatically change the results. For example,
you could use a thread pool executor with 5 workers for the hot drink barista while keeping the cold drink
baristaasitis:

<servi ce-activator input-channel ="hot Dri nks"
ref="barista"
nmet hod="pr epar eHot Dri nk"
out put - channel =" pr epar edDr i nks"/ >

<servi ce-activator input-channel ="hotDri nks"
ref ="bari sta"
nmet hod="pr epar eHot Dri nk"
out put - channel =" pr epar edDr i nks" >
<pol | er task-executor="pool ">
<interval -trigger interval ="1000"/>
</ pol | er>
</ servi ce-activator>

<t ask: execut or id="pool" pool -size="5"/>

Also, notice that the worker thread name is displayed with each invocation. Y ou will see that the hot drinks are
prepared by the task-executor threads. If you provide a much shorter poller interval (such as 100 milliseconds),
then you will notice that occasionaly it throttles the input by forcing the task-scheduler (the caller) to invoke
the operation.

Note

In addition to experimenting with the poller's concurrency settings, you can also add the
‘transactional’ sub-element and then refer to any PlatformTransactionManager instance within the
context.

A.2. The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how to use some of
the provided components which deal with xml payloads. The sample uses the idea of processing an order for
books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the XPath
splitter component.

<si-xm:xpath-splitter id="orderltenBplitter" input-channel ="ordersChannel"
out put - channel =" st ockChecker Channel " creat e- docunent s="true">
<si -xm : xpat h- expr essi on expressi on="/order Ns: order/order Ns: order|tenf nanmespace- nap="order NanmespaceMap" />
</si-xm :xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item document is
enriched with information from the stock checker about order item stock level. This enriched order item
message is then used to route the message. In the case where the order item isin stock the message is routed to
the warehouse. The XPath router makes use of a MapBasedChannel Resol ver which maps the XPath evaluation
result to achannel reference.

Spring-WS (2.0.0.M5) 112

Spring Integration Samples

<si-xm : xpath-router id="instockRouter" channel -resol ver ="mapChannel Resol ver"
i nput - channel =" or der Rout i ngChannel " resol uti on-required="true">
<si -xm : xpat h- expressi on expressi on="/orderNs: order|tem @ n-stock" nanmespace- map="or der NamespaceMap” />
</ si-xm : xpat h-rout er >

<bean i d="nmapChannel Resol ver"
cl ass="org. spri ngframework. i ntegration.channel . MapBasedChannel Resol ver" >
<property nanme="channel Map" >
<n"ap>
<entry key="true" val ue-ref="warehouseD spat chChannel " />
<entry key="fal se" val ue-ref="out Of St ockChannel " />
</ map>
</ property>
</ bean>

Where the order item is not in stock the message is transformed using xslt into a format suitable for sending to
the supplier.

<si-xm :xslt-transformer input-channel ="out O St ockChannel " out put - channel ="r esuppl yOr der Channel "
xsl - resour ce="cl asspat h: or g/ spri ngf ranmewor k/ i nt egr ati on/ sanpl es/ xm / bi gBooksSuppl i er Tr ansf or ner . xsl "/ >

A.3. The OSGi Samples

This release of Spring Integration includes several samples that are OSGi enabled as well as samples that were
specifically designed to show some of the other benefits of OSGi and Spring Integration when used together.
First lets look at the two familiar examples that are also configured to be valid OSGi bundles. These are Hello
World and Cafe. All you need to do to see these samples work in an OSGi environment is deploy the generated
JAR into such an environment.

Use Maven to generate the JAR by executing the 'mvn install' command on either of these projects. This will
generate the JAR file in the target directory. Now you can simply drop that JAR file into the deployment
directory of your OSGi platform. For example, if you are using SpringSource dm Server, drop the files into the
'pickup’ directory within the dm Server home directory.

Note

Prior to deploying and testing Spring Integration samples in the dm Server or any other OSGi
server platform, you must have the Spring Integration and Spring bundles installed on that
platform. For example, to instal Spring Integration into SpringSource dm Server, copy al JAR
files that are located in the 'dist' directory of your Spring Integration distribution into the
‘repository/bundles/usr’ directory of your dm Server instance (see the dm Server User Guide for
more detail on how to install bundles).

The Spring Integration samples require a few other bundles to be installed. For the 1.0.3 release, the full list
including transitive dependenciesis:

* org.apache.commons.codec-1.3.0.jar

« org.apache.commons.collections-3.2.0.jar
* org.apache.commons.httpclient-3.1.0.jar

« org.apache.ws.commons.schema-1.3.2.jar

e org.springframework.oxm-1.5.5.A.jar

Spring-WS (2.0.0.M5) 113

http://www.springsource.com/products/dmserver
http://static.springsource.com/projects/dm-server/1.0.x/user-guide/htmlsingle/user-guide.html

Spring Integration Samples

 org.springframework.security-2.0.4.A jar
* org.springframework.ws-1.5.5.A jar

* org.springframework.xml-1.5.5.A jar
These are al located within the 'lib" directory of the Spring Integration distribution. So, you can simply copy
those JARs into the dm Server 'repository/bundles/usr' directory as well.

Note

The Spring Framework bundles (aop, beans, context, etc.) are also included in the 'lib' directory of
the Spring Integration distribution, but they do not need to be installed since they are aready part
of the dm Server infrastructure. Also, note that the versions listed above are those included with the
Spring Integration 1.0.3 release. Newer versions of individual JARs may be used as long as they
are within the range specified in the MANIFEST.MF files of those bundles that depend upon them.

Tip

The bundles listed above are appropriate for a SpringSource dm Server 1.0.x deployment
environment with a Spring Framework 2.5.x foundation. That is the version against which Spring
Integration 1.0.3 has been developed and tested. However, as of the time of the Spring Integration
1.0.3 release, the Spring Framework 3.0 release candidates are about to be available, and the dm
Server 2.0.x milestones are available. If you want to try running these samples in that environment,
then you will need to replace the Spring Security and Spring Web Services bundles with versions
that support Spring 3.0. The OXM functionality is moving into the Spring Framework itself for the
3.0 release. Otherwise, Spring Integration 1.0.3 has been superficially tested against the Spring 3.0
snapshots available at the time of its release. In fact, some internal changes were made in the 1.0.3
release specifically to support Spring 3.0 (whereas 1.0.2 does not). Spring Integration 2.0 will be
built upon a Spring 3.0 foundation.

To demonstrate some of the benefits of running Spring Integration projects in an OSGi environment (e.g.
modularity, OSGi service dynamics, etc.), we have included a couple new samples that are dedicated to
highlighting those benefits. In the 'samples’ directory, you will find the following two projects:

 0sgi-inbound (producer bundle)

* 0sgi-outbound (consumer bundle)

Unlike the other samples in the distribution, these are not Maven enabled. Instead, we have simply configured
them as valid dm Server Bundle projects. That means you can import these projects directly into an STS
workspace using the "Existing Projects into Workspace" option from the Eclipse Import wizard. Then, you can
take advantage of the STS dm Server tools to deploy them into a SpringSource dm Server instance.

Note

A simple Ant 'build.xml' file has been included within each of these projects as well. The build
files contain asingle 'jar' target. Therefore, after these projects have been built within Eclipse/STS,
you can generate the bundle (JAR) directly and deploy it manually.

The structure of these projects is very simple, yet the concepts they showcase are quite powerful. The
‘osgi-inbound' module enables sending a Message to a Publish-Subscribe Channel using a Spring Integration
Gateway proxy. The interesting part, however, is that the Publish-Subscribe Channel is exported as an OSGi
service via the <osgi:service/> element. As a result, any other bundles can be developed, deployed, and
maintained independently yet still subscribe to that channel.

Spring-WS (2.0.0.M5) 114

Spring Integration Samples

The "osgi-outbound' module is an example of such a subscribing consumer bundle. It uses the corresponding
<osgi:reference/> element to locate the channel exported by the 'osgi-inbound' bundle. It aso contains
configuration for a <file:outbound-gateway/> which is a subscriber to that channel and will write the Message
content to afile once it arrives. It then sends a response M essage with the name of the file and its location.

To make it easy to run, we've exposed a command-line interface where you can type in the command, the
message, and the file name to execute the demo. This is exposed through the OSGi console. Likewise, the
response that provides the name and location of the resulting file will also be visible within the OSGi console.

To run these samples, make sure your OSGi environment is properly configured to host Spring Integration
bundles (as described in the note above). Deploy the producer bundle (osgi-inbound) first, and then deploy the
consumer bundle (osgi-outbound). After you have deployed these bundles, open the OSGi console and type the
following command:

osgi > hel p
Y ou will see the following amidst the output:

---Spring Integration CLI-based OSG Deno---
si Send <nessage> <filename> - send text to be witten to a file

As you can see, that describes the command that you will be able to use to send messages. If you are interested
in how it is implemented or want to customize message sending logic or even create a new command look at
I nboundDenpBundl| eAct i vat or . j ava in the consumer bundle.

Tip

When using the SpringSource Tool Suite, you can open the OSGi console by first opening the dm
Server view and then choosing the 'Server Consol€' tab at the bottom (to open the dm Server view,
navigate to the dm Server instance listed in the 'Servers view and either double-click or hit F3).
Alternatively, you can open the OSGi console by connecting to port 2401 viatelnet (as long as that
is enabled, and for dm Server, it is enabled by default):

tel net |ocal host 2401

Now send a message by typing:
osgi > si Send "Hello World" hello.txt

Y ou will see something similar to the following in the OSGi console:

Sendi ng nmessage: 'Hello Wirld
Message sent and its contents were witten to
/usr/local / dm server/work/tnp/spring-integration-sanpl es/output/hello.txt

Note

It is not necessary to wrap the message in quotes if it does not contain spaces. Go ahead and open
up the file and verify that the message content was written to it.

Let's assume you wanted to change the directory to which the files are written or make any other change to the
consumer bundle (osgi-outboud). You only need to update the consumer bundle and not the producer bundle.
So, go ahead and change the directory in the 'osgi-outbound.xml’ file located within 'src/ META-INF/spring’ and
refresh the consumer bundle.

Spring-WS (2.0.0.M5) 115

Spring Integration Samples

Tip

If using STS to deploy to dm Server, the refresh will happen automatically. If replacing bundles
manually, you can issue the command 'refresh n' in the OSGi console (where n would be the ID of
the bundle as displayed at any point after issuing the 'ss command to see the short status output).

You will see that the change takes affect immediately. Not only that, you could even start developing and
deploying new bundles that subscribe to the messages produced by the producer bundle the same way as the
existing consumer bundle (osgi-outbound) does. With a publish-subscribe-channel any newly deployed bundles
would start receiving each Message as well.

Note

If you also want to modify and refresh the producer bundle, be sure to refresh the consumer bundle
afterwards as well. This is necessary because the consumer's subscription must be explicitly
re-enabled after the producer's channel disappears. You could alternatively deploy a relatively
static bundle that defines channels so that producers and consumers can be completely dynamic
without affecting each other at al. In Spring Integration 2.0, we plan to support automatic
re-subscription and more through the use of a Control Bus.

That pretty much wraps up this very simple example. Hopefully it has successfully demonstrated the benefits of
modularity and OSGi service dynamics while working with Spring Integration. Feel free to experiment by
following some of the suggestions mentioned above. For deeper coverage of the applicability of OSGi when
used with Spring Integration, read this blog by Spring Integration team member Iwein Fuld.

Spring-WS (2.0.0.M5) 116

http://blog.springsource.com/2009/02/27/spring-integration-on-dm-server/

Appendix B. Configuration

B.1. Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in generadl, it is also
possible to mix and match the various techniques according to the particular problem at hand. For example, you
may choose the X SD-based namespace for the majority of configuration combined with a handful of objects
that are configured with annotations. As much as possible, the two provide consistent naming. XML elements
defined by the XSD schema will match the names of annotations, and the attributes of those XML elements
will match the names of annotation properties. Direct usage of the APl is of course always an option, but we
expect that most users will choose one of the higher-level options, or a combination of the namespace-based
and annotation-driven configuration.

B.2. Namespace Support

Spring Integration components can be configured with XML elements that map directly to the terminology and
concepts of enterprise integration. In many cases, the element names match those of the Enterprise Integration
Patterns.

To enable Spring Integration's core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springfranmework. org/schena/integration”
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ schenma/ beans
http://ww. spri ngfranmework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
ht t p: / / ww. spri ngf ranewor k. or g/ schena/ i nt egrati on
http://ww. spri ngfranework. org/ schenma/ i ntegration/spring-integration-1.0.xsd">

You can choose any name after "xmins:"; integration is used here for clarity, but you might prefer a shorter
abbreviation. Of course if you are using an XML -editor or IDE support, then the availability of auto-completion
may convince you to keep the longer name for clarity. Alternatively, you can create configuration files that use
the Spring Integration schema as the primary namespace:

<beans: beans xm ns="http://ww. spri ngframewor k. org/ schema/ i ntegration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/ i nt egration
http://ww. springframework. org/ schema/integration/spring-integration-1.0.xsd">

When using this aternative, no prefix is necessary for the Spring Integration elements. On the other hand, if
you want to define a generic Spring "bean" within the same configuration file, then a prefix would be required
for the bean element (<beans.bean ... />). Since it is generally a good idea to modularize the configuration files
themselves based on responsibility and/or architectural layer, you may find it appropriate to use the latter
approach in the integration-focused configuration files, since generic beans are seldom necessary within those
same files. For purposes of this documentation, we will assume the "integration” namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter type

Spring-WS (2.0.0.M5) 117

http://www.eaipatterns.com
http://www.eaipatterns.com

Configuration

(IMS, File, etc.) that provides namespace support defines its elements within a separate schema. In order to use
these elements, smply add the necessary namespaces with an "xmins' entry and the corresponding
"schemal ocation" mapping. For example, the following root element shows severa of these namespace
declarations:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns:integrati on="http://wwm. springframework. org/ schema/integration”
xm ns: file="http://ww.springframework. org/schenma/integration/file"
xm ns:jns="http://ww. springfranmework. org/ schena/integration/jns"
xm ns: mai | ="http://ww. spri ngframewor k. org/ schena/integrati on/ mail"
xm ns:rm ="http://ww. springframework. org/ schema/integration/rm"
xm ns: ws="http://wwmv. springframework. org/ schema/integration/ws"
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ schenma/ beans
http://ww. spri ngfranmework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
ht t p: / / ww. spri ngf ranewor k. or g/ schena/ i nt egrati on
http://ww. springfranework. org/ schema/ i ntegration/spring-integration-1.0.xsd
http://ww. springframework. org/ schema/integration/file
http://ww. springfranework. org/ schena/integration/file/spring-integration-file-1.0.xsd
http://ww. springframework. org/ schema/integration/jns
http://ww. spri ngfranework. org/ schena/ i ntegration/jns/spring-integration-jns-1.0.xsd
http://ww. springframework. org/ schema/ i ntegrati on/ mai l
http://ww. spri ngfranework. org/ schena/i ntegration/nail/spring-integration-nail-1.0.xsd
http://ww. springframework. org/ schema/ i ntegration/rm
http://ww. springframework. org/ schema/integration/rm/spring-integration-rm-1.0.xsd
http://ww. springframework. org/ schema/ i ntegrati on/ ws
htt p: // ww. spri ngf ranmewor k. or g/ schena/ i nt egrati on/ ws/ spri ng-integration-ws-1.0.xsd">
</ beans>
The reference manual provides specific examples of the various elementsin their corresponding chapters. Here,
the main thing to recognize is the consistency of the naming for each namespace URI and schema location.

B.3. Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only a
couple configuration options to be aware of. First, you may want to control the central TaskScheduler instance.
Y ou can do so by providing a single bean with the name "taskScheduler". Thisis also defined as a constant:

I ntegrationCont ext Uti | s. TASK_SCHEDULER BEAN NAVE

By default Spring Integration uses the Si npl eTaskSchedul er implementation. That in turn just delegates to any
instance of Spring's TaskExecut or abstraction. Therefore, it's rather trivial to supply your own configuration.
The "taskScheduler" bean is then responsible for managing al pollers. The TaskScheduler will startup
automatically by default. If you provide your own instance of SimpleTaskScheduler however, you can set the
‘autoStartup' property to false instead.

When Polling Consumers provide an explicit task-executor reference in their configuration, the invocation of
the handler methods will happen within that executor's thread pool and not the main scheduler pool. However,
when no task-executor is provided for an endpoint's poller, it will be invoked by one of the main scheduler's
threads.

Note

An endpoint is a Polling Consumer if its input channel is one of the queue-based (i.e. pollable)
channels. On the other hand, Event Driven Consumers are those whose input channels have
dispatchers instead of queues (i.e. they are subscribable). Such endpoints have no poller
configuration since their handlers will be invoked directly.

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

Spring-WS (2.0.0.M5) 118

Configuration

B.4. Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components. The
Message Channel plays an important role in that producers and consumers do not have to know about each
other. However, the advantages also have some drawbacks. Some things become more complicated in a very
loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or may not be
operating within the same thread as the sender. If using a simple default DirectChannel (with the <channel>
element that has no <queue> sub-element and no 'task-executor' attribute), the Message-handling will occur in
the same thread as the Message-sending. In that case, if an Exception is thrown, it can be caught by the sender
(or it may propagate past the sender if it is an uncaught RuntimeException). So far, everything is fine. Thisis
the same behavior as an Exception-throwing operation in a normal call stack. However, when adding the
asynchronous aspect, things become much more complicated. For instance, if the 'channel’ element does
provide a 'queue’ sub-element, then the component that handles the Message will be operating in a different
thread than the sender. The sender may have dropped the Message into the channel and moved on to other
things. There is no way for the Exception to be thrown directly back to that sender using standard Exception
throwing techniques. Instead, to handle errors for asynchronous processes requires an asynchronous
error-handling mechanism as well.

Spring Integration supports error handling for its components by publishing errors to a Message Channel.
Specifically, the Exception will become the payload of a Spring Integration Message. That Message will then
be sent to a Message Channel that is resolved in away that is similar to the 'replyChannel’ resolution. First, if
the request Message being handled at the time the Exception occurred contains an ‘errorChannel’ header (the
header name is defined in the constant: MessageHeaders. ERROR_CHANNEL), the ErrorMessage will be sent
to that channel. Otherwise, the error handler will send to a"global" channel whose bean nameis "errorChannel”
(thisis also defined as a constant: IntegrationContextUtils ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel" bean will be
created behind the scenes. However, you can just as easily define your own if you want to control the settings.

<channel i d="error Channel ">
<queue capacity="500"/>
</ channel >

Note
The default "errorChannel” is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply to
Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This does not
apply to Exceptions thrown by a handler that is operating within the same thread as the sender (e.g. through a
DirectChannel as described above).

Note

When Exceptions occur in a scheduled poller task's execution, those exceptions will be wrapped in
Err or Messages and sent to the 'errorChanndl’ as well.

To enable globa error handling, simply register a handler on that channel. For example, you can configure
Spring Integration's Er r or MessageExcept i onTypeRout er as the handler of an endpoint that is subscribed to the

Spring-WS (2.0.0.M5) 119

Configuration

‘errorChannel’. That router can then spread the error messages across multiple channels based on Excepti on
type.

B.5. Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to use
annotations. First, Spring Integration provides the class-level @essageEndpoi nt as a stereotype annotation
meaning that is itself annotated with Spring's @Component annotation and therefore is recognized
automatically as a bean definition when using Spring component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated method is capable
of handling a message. The following example demonstrates both:

@kssageEndpoi nt
public class FooService {

@Ber vi ceAct i vat or
public void processMessage(Message nessage) {

}

Exactly what it means for the method to "handle" the Message depends on the particular annotation. The
following are available with Spring Integration, and the behavior of each is described in its own chapter or
section within this reference: @Transformer, @Router, @Splitter, @Aggregator, @ServiceActivator, and
@Channel Adapter.

Note

The @MessageEndpoint is not required if using XML configuration in combination with
annotations. If you want to configure a POJO reference from the "ref" attribute of a
<service-activator/> element, it is sufficient to provide the method-level annotations. In that case,
the annotation prevents ambiguity even when no "method" attribute exists on the
<service-activator/> element.

In most cases, the annotated handler method should not require the Message type as its parameter. Instead, the
method parameter type can match the message's payload type.
public class FooService {

@Ber vi ceAct i vat or
public void bar(Foo foo) {

}

When the method parameter should be mapped from a value in the MessageHeader s, another option is to use
the parameter-level @eader annotation. In general, methods annotated with the Spring Integration annotations
can either accept the Message itself, the message payload, or a header value (with @Header) as the parameter.
In fact, the method can accept a combination, such as:

public class FooService {

@ver vi ceActi vat or
public void bar(String payl oad, @leader("x") int valueX, @+eader("y") int valueY) {

}

Spring-WS (2.0.0.M5) 120

Configuration

}
There is also a @Headers annotation that provides all of the Message headers as a M ap:

public class FooService {

@ser vi ceAct i vat or
public void bar(String payl oad, @eaders Map<String, bject> header Map) {

}

A more powerful and flexible way to map Messages to method arguments is to use @kssageMappi ng
annotation which allows you to define expression via Spring 3.0 Expression Language support to help parse the
message payload and/or header and map the parsed values to method arguments.

For example:

public void fromvessageToMet hod(@vessageMappi ng(" headers. day") String argA,
@kessageMappi ng("#t hi s") Message nessage,
@kssageMappi ng(" payl oad") Enpl oyee payl oadAr g,
@kessageMappi ng(" payl oad. fnane") String val ue,
@kssageMappi ng(" headers") Map headers) { ... }

Asyou can see, the above method takes 5 arguments where:

First - will be mapped to the value of 'day' header

Second - will be mapped to the Message itself

Third - will be mapped to the Payload

Fourth - will be mapped to the ‘fname' property of a Payload object

Fifth - will be mapped to MessageHeaders

Tip
A Map-typed argument does not strictly require the use of the @Headers annotation. In other
words the following is aso valid:

public void bar(String payl oad, Map<String, Object> header Map)

However this can lead to unresolvable ambiguities if the payload is itself a Map. For that reason,
we highly recommend using the annotation whenever expecting the headers. For a much more
detailed description, see the javadoc for Met hodPar anet er MessageMapper .

For several of these annotations, when a Message-handling method returns a non-null value, the endpoint will
attempt to send areply. Thisis consistent across both configuration options (namespace and annotations) in that
such an endpoint's output channel will be used if available, and the REPLY CHANNEL message header value
will be used as a fallback.

Tip

The combination of output channels on endpoints and the reply channel message header enables a
pipeline approach where multiple components have an output channel, and the final component
simply allows the reply message to be forwarded to the reply channel as specified in the original

Spring-WS (2.0.0.M5) 121

Configuration

request message. In other words, the final component depends on the information provided by the
original sender and can dynamically support any number of clients as a result. Thisis an example
of Return Address.

In addition to the examples shown here, these annotations also support inputChannel and outputChannel
properties.

public class FooService {

@ser vi ceAct i vat or (i nput Channel ="i nput", out put Channel =" out put")
public void bar(String payl oad, @eaders Map<String, Object> header Map) {

}
}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generaly
recommended to use XML for the endpoints, since it is easier to keep track of the overall configuration in a
single, external location (and besides the namespace-based XML configuration is not very verbose). If you do
prefer to provide channels with the annotations however, you just need to enable a SI Annotations
BeanPostProcessor. The following element should be added:

<i nt:annotation-config/>

Note

When configuring the "inputChannel” and "outputChannel” with annotations, the "inputChannel”
must be a reference to a Subscri babl eChannel instance. Otherwise, it would be necessary to also
provide the full poller configuration via annotations, and those settings (e.g. the trigger for
scheduling the poller) should be externalized rather than hard-coded within an annotation. If the
input channel that you want to receive Messages from is indeed a Pol | abl eChannel instance, one
option to consider is the Messaging Bridge. Spring Integration's "bridge" element can be used to
connect a PollableChannel directly to a SubscribableChannel. Then, the polling metadata is
externally configured, but the annotation option is still available. For more detail see Chapter 15,
Messaging Bridge.

B.6. Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments without
providing extra configuration by relying on some default rules as well as defining certain conventions.

B.6.1. Simple Scenarios

Sngle un-annotated parameter (object or primitive) which is not a Map/Properties with non-void return type;

public String foo(Object 0);

Details:;

Input parameter is Message Payload. If parameter type is not compatible with M essage Payload an attempt will
be made to convert it using Conversion Service provided by Spring 3.0. The return value will be incorporated
as a Payload of the returned Message

Spring-WS (2.0.0.M5) 122

http://eaipatterns.com/ReturnAddress.html

Configuration

Sngle un-annotated parameter (object or primitive) which is not a Map/Properties with Message return type;

public Message foo(Ohject 0);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an attempt will
be made to convert it using Conversion Service provided by Spring 3.0. The return value is a newly constructed
Message that will be sent to the next destination.

Sngle parameter which is a Message or its subclass with arbitrary object/primitive return type;

public int foo(Message nsgQ);

Detalls;

Input parameter is Message itself. The return value will become a payload of the Message that will be sent to
the next destination.

Sngle parameter which isa Message or its subclass with Message or its subclass as a return type;

public Message foo(Message nsg);

Details:;

Input parameter is Message itself. The return value is a newly constructed Message that will be sent to the next
destination.

Sngle parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map m;

Details:

This one is a bit interesting. Although at first it might seem like an easy mapping straight to Message Headers,
the preference is always given to a Message Payload. This means that if Message Payload is of type Map, this
input argument will represent Message Payload. However if Message Payload is not of type Map, then no
conversion via Conversion Service will be attempted and the input argument will be mapped to Message
Headers.

Two parameters where one of them is arbitrary non-Map/Properties type object/primitive and another is
Map/Properties type object (regardiess of the return)

public Message foo(Map h, <T> t);

Details;

This combination contains two input parameters where one of them is of type Map. Naturally the non-Map
parameters (regardless of the order) will be mapped to a Message Payload and the Map/Properties (regardiess
of the order) will be mapped to Message Headers giving you a nice POJO way of interacting with Message
structure.

No parameters (regardless of the return)

Spring-WS (2.0.0.M5) 123

Configuration

public String foo();

Details:;

This Message Handler method will be invoked based on the Message sent to the input channel this handler is
hooked up to, however no Message data will be mapped, thus making Message act as event/trigger to invoke
such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Details:
Same as above, but no output
Annotation based mappings

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods. There wil
be many pointers to annotation based mapping throughout this manual, however here are couple of examples:

public String foo(@rayl oad String s, @eader("foo") String b)

Very simple and explicite way of mapping Messages to method. As you'll see later on without annotation this
signature would result in the ambiguous condition, however by explicitly mapping first argument to a Message
Payload and second argument to avalue of the 'foo' Message Header we have avoided ambiguity.

public String foo(@Payl oad String s, @RequestParan("foo") String b)

Looks almost identical to the previous example, however @RequestMapping or any other non-SI mapping
annotation is irrelevant and therefore will be ignored leaving the second parameter unmapped. And although
the second parameters could easily be mapped to a Payload, there can only be one Payload, therefore this
method becomes ambiguous.

public String foo(String s, @Header("foo0") String b)
The same as above. The only difference is that the first argument will be mapped to Message Payload
implicitly.

public String foo(@eaders Map m @Header ("foo0")Map f, @Header("bar") String bar)
Y et another signature that would definitely be treated as ambiguous because it has more then 2 arguments, plus
two of them are Maps, however with annotation-based mapping ambiguity is easily avoided. In this example

the first argument is mapped to all the Message Headers, while second and third argument map to the values of
Message Headers 'foo' and 'bar'.

B.6.2. Complex Scenarios

Multiple parameters:

Multiple parameters could create a lot of ambiguity with regards to determining the appropriate mappings. The
genera advice is to annotate your method parameters with @Payload and/or @Header/@Headers Below are

Spring-WS (2.0.0.M5) 124

Configuration

some of the examples of ambiguous conditions which result in exception being raised.

public String foo(String s, int i)

- the two parameters are equal in weight, therefore no way to determine which one is a payload and what to do
with another.

public String foo(String s, Map m String b)

- almost the same as above. Although Map could be easily mapped to Message Headers, there is no way to
determine what to do with two Strings.

public String foo(Map m Map f)

- athough one might argue that one Map could be mapped to Message Payload and another one to Message
Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second Headers)

Tip

Basically any method signature with more then one method argument which is not (Map, <T>) and
those parameters are not annotated will result in the ambiguous condition thus triggering an
exception.

Multiple methods:

Message Handlers with multiple methods are mapped based on the same rules that are described above,
however some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo{
public String foo(String str, Map m;

public String foo(Map m

As you can see, the Message could be mapped to either method. The first method would be invoked where
Message Payload could be mapped to 'str' and Message Headers could be mapped to 'm'. The second method
could easily also be a candidate where only Message Headers are mapped to 'm'. To make meters worse both
methods have the same name which at first might look very ambiguous considering the following
configuration:

<si:service-activator input-channel="input" output-channel ="output" nethod="fo0">
<bean cl ass="org. bar. Foo"/ >
</ si:service-activator>

At this point it would be important to understand Spring Integration mapping Conventions where at the very
core, mappings are based on Payload first and everything else next. In other words the method whose argument
could be mapped to a Payload will take precedence over al other methods.

On the other hand let'slook at slightly different example:

public class Foo{
public String foo(String str, Map m;

Spring-WS (2.0.0.M5) 125

Configuration

public String foo(String str)

If you look at it you can probably see atruly an ambiguous condition. In this example since both methods have

signatures that could be mapped to a Message Payload. They also have the same name. Such handler will
trigger an exception. However if method names were different you could influence the mapping with ‘'method’

attribute (see below):

public class Foo{
public String foo(String str, Map m;

public String bar(String str)

<si:service-activator input-channel="input" output-channel ="output" nethod="bar">

<bean cl ass="org. bar. Foo"/ >
</ si:service-activator>

Now there is no ambiguity since the configuration explicitly mapsto 'bar’ method which has no name conflicts.

Spring-WS (2.0.0.M5)

126

Appendix C. Additional Resources

C.1. Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at
http://www.springsource.org. That site serves as a hub of information and is the best place to find up-to-date
announcements about the project as well aslinks to articles, blogs, and new sample applications.

Spring-WS (2.0.0.M5) 127

http://www.springsource.org/spring-integration
http://www.springsource.org

	Spring Integration Reference Manual
	Table of Contents
	Chapter 1. Spring Integration Overview
	1.1. Background
	1.2. Goals and Principles
	1.3. Main Components
	1.3.1. Message
	1.3.2. Message Channel
	1.3.3. Message Endpoint

	1.4. Message Endpoints
	1.4.1. Transformer
	1.4.2. Filter
	1.4.3. Router
	1.4.4. Splitter
	1.4.5. Aggregator
	1.4.6. Service Activator
	1.4.7. Channel Adapter

	Chapter 2. Message Construction
	2.1. The Message Interface
	2.2. Message Headers
	2.3. Message Implementations
	2.4. The MessageBuilder Helper Class

	Chapter 3. Message Channels
	3.1. The MessageChannel Interface
	3.1.1. PollableChannel
	3.1.2. SubscribableChannel

	3.2. Message Channel Implementations
	3.2.1. PublishSubscribeChannel
	3.2.2. QueueChannel
	3.2.3. PriorityChannel
	3.2.4. RendezvousChannel
	3.2.5. DirectChannel
	3.2.6. ExecutorChannel
	3.2.7. ThreadLocalChannel

	3.3. Channel Interceptors
	3.4. MessageChannelTemplate
	3.5. Configuring Message Channels
	3.5.1. DirectChannel Configuration
	3.5.2. QueueChannel Configuration
	3.5.3. PublishSubscribeChannel Configuration
	3.5.4. ExecutorChannel
	3.5.5. PriorityChannel Configuration
	3.5.6. RendezvousChannel Configuration
	3.5.7. ThreadLocalChannel Configuration
	3.5.8. Channel Interceptor Configuration
	3.5.9. Global Channel Interceptor Configuration
	3.5.10. Wire Tap

	Chapter 4. Message Endpoints
	4.1. Message Handler
	4.2. Event Driven Consumer
	4.3. Polling Consumer
	4.4. Namespace Support

	Chapter 5. Service Activator
	5.1. Introduction
	5.2. The <service-activator/> Element

	Chapter 6. Channel Adapter
	6.1. The <inbound-channel-adapter> element
	6.2. The <outbound-channel-adapter/> element

	Chapter 7. Router
	7.1. Router Implementations
	7.1.1. PayloadTypeRouter
	7.1.2. HeaderValueRouter
	7.1.3. RecipientListRouter

	7.2. The <router> element
	7.3. The @Router Annotation

	Chapter 8. Filter
	8.1. Introduction
	8.2. The <filter> Element

	Chapter 9. Transformer
	9.1. Introduction
	9.2. The <transformer> Element
	9.3. The @Transformer Annotation

	Chapter 10. Splitter
	10.1. Introduction
	10.2. Programming model
	10.3. Configuring a Splitter using XML
	10.4. Configuring a Splitter with Annotations

	Chapter 11. Aggregator
	11.1. Introduction
	11.2. Functionality
	11.3. Programming model
	11.3.1. CorrelatingMessageHandler
	11.3.2. ReleaseStrategy
	11.3.3. CorrelationStrategy

	11.4. Configuring an Aggregator with XML
	11.5. Managing State in an Aggregator: MessageGroupStore
	11.6. Configuring an Aggregator with Annotations

	Chapter 12. Resequencer
	12.1. Introduction
	12.2. Functionality
	12.3. Configuring a Resequencer with XML

	Chapter 13. Delayer
	13.1. Introduction
	13.2. The <delayer> Element

	Chapter 14. Message Handler Chain
	14.1. Introduction
	14.2. The <chain> Element

	Chapter 15. Messaging Bridge
	15.1. Introduction
	15.2. The <bridge> Element

	Chapter 16. Inbound Messaging Gateways
	16.1. SimpleMessagingGateway
	16.2. GatewayProxyFactoryBean

	Chapter 17. Message Publishing
	17.1. Message Publishing Configuration
	17.1.1. Annotation-driven approach via @Publisher annotation
	17.1.2. XML-based approach via <publisher> element

	Chapter 18. File Support
	18.1. Introduction
	18.2. Reading Files
	18.3. Writing files
	18.4. File Transformers

	Chapter 19. JDBC Support
	19.1. Inbound Channel Adapter
	19.1.1. Polling and Transactions

	19.2. Outbound Channel Adapter
	19.3. Message Store
	19.3.1. Initializing the Database
	19.3.2. Partitioning a Message Store

	Chapter 20. JMS Support
	20.1. Inbound Channel Adapter
	20.2. Message-Driven Channel Adapter
	20.3. Outbound Channel Adapter
	20.4. Inbound Gateway
	20.5. Outbound Gateway
	20.6. JMS Backed Message Channels
	20.7. JMS Samples

	Chapter 21. Web Services Support
	21.1. Outbound Web Service Gateways
	21.2. Inbound Web Service Gateways
	21.3. Web Service Namespace Support

	Chapter 22. RMI Support
	22.1. Introduction
	22.2. Outbound RMI
	22.3. Inbound RMI
	22.4. RMI namespace support

	Chapter 23. HttpInvoker Support
	23.1. Introduction
	23.2. HttpInvoker Inbound Gateway
	23.3. HttpInvoker Outbound Gateway
	23.4. HttpInvoker Namespace Support

	Chapter 24. HTTP Support
	24.1. Introduction
	24.2. Http Inbound Gateway
	24.3. Http Outbound Gateway
	24.4. HTTP Namespace Support

	Chapter 25. TCP and UDP Support
	25.1. Introduction
	25.2. UDP Adapters
	25.3. TCP Adapters
	25.4. TCP Gateways
	25.5. IP Endpoint Attributes

	Chapter 26. Mail Support
	26.1. Mail-Sending Channel Adapter
	26.2. Mail-Receiving Channel Adapter
	26.3. Mail Namespace Support

	Chapter 27. JMX Support
	27.1. Notification Listening Channel Adapter
	27.2. Notification Publishing Channel Adapter
	27.3. Attribute Polling Channel Adapter
	27.4. Operation Invoking Channel Adapter
	27.5. Control Bus

	Chapter 28. XMPP Support
	28.1. Inbound Channel Adapter
	28.2. XMPP Samples

	Chapter 29. Stream Support
	29.1. Introduction
	29.2. Reading from streams
	29.3. Writing to streams
	29.4. Stream namespace support

	Chapter 30. Spring ApplicationEvent Support
	30.1. Receiving Spring ApplicationEvents
	30.2. Sending Spring ApplicationEvents

	Chapter 31. Dealing with XML Payloads
	31.1. Introduction
	31.2. Transforming xml payloads
	31.3. Namespace support for xml transformers
	31.4. Splitting xml messages
	31.5. Routing xml messages using XPath
	31.6. Selecting xml messages using XPath
	31.7. XPath components namespace support

	Chapter 32. Security in Spring Integration
	32.1. Introduction
	32.2. Securing channels

	Appendix A. Spring Integration Samples
	A.1. The Cafe Sample
	A.2. The XML Messaging Sample
	A.3. The OSGi Samples

	Appendix B. Configuration
	B.1. Introduction
	B.2. Namespace Support
	B.3. Configuring the Task Scheduler
	B.4. Error Handling
	B.5. Annotation Support
	B.6. Message Mapping rules and conventions
	B.6.1. Simple Scenarios
	B.6.2. Complex Scenarios

	Appendix C. Additional Resources
	C.1. Spring Integration Home

