Reactor Netty Reference Guide

Stephane Maldini, Violeta Georgieva

Version 1.0.5

Table of Contents

1. About the Documentation
1.1. Latest Version and Copyright Notice
1.2. Contributing to the Documentation
1.3. Getting Help
2. Getting Started
2.1. Introducing Reactor Netty
2.2. Prerequisites
2.3. Understanding the BOM and versioning scheme
2.4. Getting Reactor Netty
2.5. Support and policies
3. TCP Server
3.1. Starting and Stopping
3.2. Eager Initialization
3.3. Writing Data
3.4. Consuming Data
3.5. Lifecycle Callbacks
3.6. TCP-level Configurations
3.7.SSL and TLS
3.8. Metrics
3.9. Unix Domain Sockets
4. TCP Client
4.1. Connect and Disconnect
4.2. Eager Initialization
4.3. Writing Data
4.4. Consuming Data
4.5. Lifecycle Callbacks
4.6. TCP-level Configurations
4.7. Connection Pool
4.8. SSL and TLS
4.9. Proxy Support
4.10. Metrics
4.11. Unix Domain Sockets
4.12. Host Name Resolution
5. HTTP Server
5.1. Starting and Stopping
5.2. Eager Initialization
5.3. Routing HTTP
5.4. Writing Data

O 00 00 O W DN DN N N == =

g1 U1 U1 U1 U1 o b bk R W W N DNDNDNDNDNDN R R e
N W N R RO WN O U OO0 oyl U WO 0 W N e, o

5.5. Consuming Data 59

5.6. Lifecycle Callbacks 65
5.7. TCP-level Configuration 66
5.8.SSL and TLS 69
5.9. HTTP Access Log 71
5.10. HTTP/2 74
5.11. Metrics 77
5.12. Unix Domain Sockets 81
6. HTTP Client 82
6.1. Connect 82
6.2. Eager Initialization 84
6.3. Writing Data 85
6.4. Consuming Data 89
6.5. Lifecycle Callbacks 92
6.6. TCP-level Configuration 94
6.7. SSL and TLS 97
6.8. Retry Strategies 99
6.9. HTTP/2 99
6.10. Metrics 102
6.11. Unix Domain Sockets 106
6.12. Host Name Resolution 107
6.13. Timeout Configuration 110
7. UDP Server 121
7.1. Starting and Stopping 121
7.2. Eager Initialization 122
7.3. Writing Data 123
7.4. Consuming Data 124
7.5. Lifecycle Callbacks 125
7.6. Connection Configuration 126
7.7. Metrics 131
8. UDP Client 134
8.1. Connecting and Disconnecting 134
8.2. Eager Initialization 135
8.3. Writing Data 136
8.4. Consuming Data 137
8.5. Lifecycle Callbacks 138
8.6. Connection Configuration 139

8.7. Metrics 144

Chapter 1. About the Documentation

This section provides a brief overview of Reactor Netty reference documentation. You do not need
to read this guide in a linear fashion. Each piece stands on its own, though they often refer to other
pieces.

1.1. Latest Version and Copyright Notice

The Reactor Netty reference guide is available as HTML documents. The latest copy is available at
https://projectreactor.io/docs/netty/release/reference/index.html

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

1.2. Contributing to the Documentation

The reference guide is written in Asciidoc, and you can find its sources at https://github.com/
reactor/reactor-netty/tree/master/docs/asciidoc.

If you have an improvement, we will be happy to get a pull request from you!

We recommend that you check out a local copy of the repository so that you can generate the
documentation by using the asciidoctor Gradle task and checking the rendering. Some of the
sections rely on included files, so GitHub rendering is not always complete.

1.3. Getting Help

There are several ways to reach out for help with Reactor Netty. You can:

* Get in touch with the community on Gitter.
* Ask a question on stackoverflow.com at reactor-netty.

* Report bugs in Github issues. The repository is the following: reactor-netty.

o All of Reactor Netty is open source, including this documentation.

https://projectreactor.io/docs/netty/release/reference/index.html
https://asciidoctor.org/docs/asciidoc-writers-guide/
https://github.com/reactor/reactor-netty/tree/master/docs/asciidoc
https://github.com/reactor/reactor-netty/tree/master/docs/asciidoc
https://gitter.im/reactor/reactor-netty
https://stackoverflow.com/tags/reactor-netty
https://github.com/reactor/reactor-netty/issues
https://github.com/reactor/reactor-netty/tree/master/docs/asciidoc

Chapter 2. Getting Started

This section contains information that should help you get going with Reactor Netty. It includes the
following information:

* Introducing Reactor Netty

* Prerequisites

* Understanding the BOM and versioning scheme

* Getting Reactor Netty

2.1. Introducing Reactor Netty

Suited for Microservices Architecture, Reactor Netty offers backpressure-ready network engines for
HTTP (including Websockets), TCP, and UDP.

2.2. Prerequisites

Reactor Netty runson Java 8 and above.
It has transitive dependencies on:

¢ Reactive Streams v1.0.3
¢ Reactor Core v3.x

* Netty v4.1.X

2.3. Understanding the BOM and versioning scheme

Reactor Netty is part of the Project Reactor BOM (since the Aluminium release train). This curated list
groups artifacts that are meant to work well together, providing the relevant versions despite
potentially divergent versioning schemes in these artifacts.

o The versioning scheme has changed between 0.9.x and 1.0.x (Dysprosium and
Europium).

Artifacts follow a versioning scheme of MAJOR.MINOR.PATCH-QUALIFIER while the BOM is versioned
using a CalVer inspired scheme of YYYY.MINOR.PATCH-QUALIFIER, where:

* MAJOR is the current generation of Reactor, where each new generation can bring fundamental
changes to the structure of the project (which might imply a more significant migration effort)

* YYYY is the year of the first GA release in a given release cycle (like 1.0.0 for 1.0.x)

* .MINORis a 0-based number incrementing with each new release cycle

o in the case of projects, it generally reflects wider changes and can indicate a moderate
migration effort

o in the case of the BOM it allows discerning between release cycles in case two get first

released the same year
* .PATCH is a 0-based number incrementing with each service release

* -QUALIFIER is a textual qualifier, which is omitted in the case of GA releases (see below)

The first release cycle to follow that convention is thus 2020.0.x, codename Europium. The scheme
uses the following qualifiers (note the use of dash separator), in order:

» -M1..-M9: milestones (we don’t expect more than 9 per service release)
* -RC1..-RC9: release candidates (we don’t expect more than 9 per service release)
» -SNAPSHOT: snapshots

* no qualifier for GA releases

Snapshots appear higher in the order above because, conceptually, they’re always
"the freshest pre-release" of any given PATCH. Even though the first deployed

o artifact of a PATCH cycle will always be a -SNAPSHOT, a similarly named but more
up-to-date snapshot would also get released after eg. a milestone or between
release candidates.

Each release cycle is also given a codename, in continuity with the previous codename-based
scheme, which can be used to reference it more informally (like in discussions, blog posts, etc...).
The codenames represent what would traditionally be the MAJOR.MINOR number. They (mostly)
come from the Periodic Table of Elements, in increasing alphabetical order.

Up until Dysprosium, the BOM was versioned using a release train scheme with a
codename followed by a qualifier, and the qualifiers were slightly different. For
example: Aluminium-RELEASE (first GA release, would now be something like

o YYYY.0.0), Bismuth-M1, Californium-SR1 (service release would now be something
like YYYY.0.1), Dysprosium-RC1, Dysprosium-BUILD-SNAPSHOT (after each patch,
we’d go back to the same snapshot version. would now be something like YYYY.0.X-
SNAPSHOT so we get 1 snapshot per PATCH)

2.4. Getting Reactor Netty

As mentioned earlier, the easiest way to use Reactor Netty in your core is to use the BOM and add the
relevant dependencies to your project. Note that, when adding such a dependency, you must omit
the version so that the version gets picked up from the BOM.

However, if you want to force the use of a specific artifact’s version, you can specify it when adding
your dependency as you usually would. You can also forego the BOM entirely and specify
dependencies by their artifact versions.

2.4.1. Maven Installation

The BOM concept is natively supported by Maven. First, you need to import the BOM by adding the
following snippet to your pom.xml. If the top section (dependencyManagement) already exists in your
pom, add only the contents.

https://en.wikipedia.org/wiki/Periodic_table#Overview

<dependencyManagement> @
<dependencies>
<dependency>
<groupld>io.projectreactor</groupIld>
<artifactId>reactor-bom</artifactId>
<version>Dysprosium-SR10</version> @
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

@ Notice the dependencyManagement tag. This is in addition to the regular dependencies section.

@ As of this writing, Dysprosium-SR10 is the latest version of the BOM. Check for updates at
https://github.com/reactor/reactor/releases.

Next, add your dependencies to the relevant reactor projects, as usual (except without a <version>).
The following listing shows how to do so:

<dependencies>
<dependency>
<groupld>io.projectreactor.netty</groupld>
<artifactId>reactor-netty-core</artifactId> @
@
</dependency>
</dependencies>
<dependencies>
<dependency>
<groupld>io.projectreactor.netty</groupld>
<artifactId>reactor-netty-http</artifactId>
</dependency>
</dependencies>

@ Dependency on Reactor Netty

@ No version tag here

2.4.2. Gradle Installation

The BOM concept is supported in Gradle since version 5. The following listing shows how to import
the BOM and add a dependency to Reactor Netty:

https://github.com/reactor/reactor/releases

dependencies {
// import a BOM
implementation platform('io.projectreactor:reactor-bom:Dysprosium-SR10') @

// define dependencies without versions
implementation 'io.projectreactor.netty:reactor-netty-core' @
implementation 'io.projectreactor.netty:reactor-netty-http'

@ As of this writing, Dysprosium-SR10 is the latest version of the BOM. Check for updates at
https://github.com/reactor/reactor/releases.

@ There is no third : separated section for the version. It is taken from the BOM.

2.4.3. Milestones and Snapshots

Milestones and developer previews are distributed through the Spring Milestones repository rather
than Maven Central. To add it to your build configuration file, use the following snippet:

Milestones in Maven

<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones Repository</name>
<url>https://repo.spring.io/milestone</url>
</repository>
</repositories>

For Gradle, use the following snippet:

Milestones in Gradle

repositories {
maven { url 'https://repo.spring.io/milestone’ }
mavenCentral()

}

Similarly, snapshots are also available in a separate dedicated repository (for both Maven and
Gradle):

https://github.com/reactor/reactor/releases

-SNAPSHOTS in Maven

<repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshot Repository</name>
<url>https://repo.spring.io/snapshot</url>
</repository>
</repositories>

-SNAPSHOTs in Gradle

repositories {
maven { url "https://repo.spring.io/snapshot’ }
mavenCentral()

}

2.5. Support and policies

The entries below are mirroring https://github.com/reactor/.github/blob/master/SUPPORT.adoc

2.5.1. Do you have a question?

(r) Search Stack Overflow first; discuss if necessary
w

If you’re unsure why something isn’t working or wondering if there is a better way of doing it
please check on Stack Overflow first and if necessary start a discussion. Use relevant tags among
the ones we monitor for that purpose:

* reactor-netty for specific reactor-netty questions

» project-reactor for generic reactor questions
If you prefer real-time discussion, we also have a few Gitter channels:

* reactor is the historic most active one, where most of the community can help

* reactor-core is intended for more advanced pinpointed discussions around the inner workings
of the library

* reactor-netty is intended for netty-specific questions
Refer to each project’s README for potential other sources of information.

We generally discourage opening GitHub issues for questions, in favor of the two channels above.

https://github.com/reactor/.github/blob/master/SUPPORT.adoc
https://stackoverflow.com/questions/tagged/reactor-netty
https://stackoverflow.com/questions/tagged/project-reactor
https://gitter.im/reactor/reactor
https://gitter.im/reactor/reactor-core
https://gitter.im/reactor/reactor-netty

2.5.2. Our policy on deprecations
When dealing with deprecations, given a version A.B.(, we’ll ensure that:

* deprecations introduced in version A.B.0 will be removed no sooner than version A.B+1.0
* deprecations introduced in version A.B.1+ will be removed no sooner than version A.B+2.0
» we’ll strive to mention the following in the deprecation javadoc:

o target minimum version for removal

o pointers to replacements for the deprecated method

o version in which method was deprecated

7 This policy is officially in effect as of January 2021, for all modules in 2020.0 BOMs
- and newer release trains, as well as Dysprosium releases after Dysprosium-SR15.

Deprecation removal targets are not a hard commitment, and the deprecated
methods could live on further than these minimum target GA versions (ie. only
the most problematic deprecated methods will be removed aggressively).

That said, deprecated code that has outlived its minimum removal target version

A may be removed in any subsequent release (including patch releases, aka service
releases) without further notice. So users should still strive to update their code as
early as possible.

Chapter 3. TCP Server

Reactor Netty provides an easy to use and configure TcpServer. It hides most of the Netty
functionality that is needed to create a TCP server and adds Reactive Streams backpressure.

3.1. Starting and Stopping

To start a TCP server, you must create and configure a TcpServer instance. By default, the host is
configured for any local address, and the system picks up an ephemeral port when the bind
operation is invoked. The following example shows how to create and configure a TcpServer
instance:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/create/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {
public static void main(String[] args) {
DisposableServer server =
TepServer.create() @
.bindNow(); @

server.onDispose()
.block();

@ Creates a TcpServer instance that is ready for configuring.

@ Starts the server in a blocking fashion and waits for it to finish initializing.

The returned DisposableServer offers a simple server API, including disposeNow(), which shuts the
server down in a blocking fashion.

3.1.1. Host and Port

To serve on a specific host and port, you can apply the following configuration to the TCP server:

https://projectreactor.io/docs/netty/release/api/reactor/netty/tcp/TcpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/tcp/TcpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/tcp/TcpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/DisposableServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/address/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
TepServer.create()
.host("localhost") @
.port(8080) @
.bindNow();

server.onDispose()
.block();

@ Configures the TCP server host

@ Configures the TCP server port

3.2. Eager Initialization

By default, the initialization of the TcpServer resources happens on demand. This means that the
bind operation absorbs the extra time needed to initialize and load:

* the event loop groups
* the native transport libraries (when native transport is used)

* the native libraries for the security (in case of OpenSs1)

When you need to preload these resources, you can configure the TcpServer as follows:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/warmup/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {
public static void main(String[] args) {
TcpServer tcpServer =
TepServer.create()

.handle((inbound, outbound) -> inbound.receive().then());

tepServer.warmup() @
.block();

DisposableServer server = tcpServer.bindNow();

server.onDispose()
.block();

@ Initialize and load the event loop groups, the native transport libraries and the native
libraries for the security

3.3. Writing Data

In

order to send data to a connected client, you must attach an I/O handler. The I/O handler has

access to NettyOutbound to be able to write data. The following example shows how to attach an I/O
handler:

10

https://projectreactor.io/docs/netty/release/api/reactor/netty/NettyOutbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.handle((inbound, outbound) ->
outbound.sendString(Mono.just("hello"))) @
.bindNow();

server.onDispose()
.block();

@ Sends hello string to the connected clients

3.4. Consuming Data

In order to receive data from a connected client, you must attach an I/O handler. The I/O handler
has access to NettyInbound to be able to read data. The following example shows how to use it:

11

https://projectreactor.io/docs/netty/release/api/reactor/netty/NettyInbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/read/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {
public static void main(String[] args) {
DisposableServer server =
TepServer.create()
.handle((inbound, outbound) -> inbound.receive().then())

.bindNow();

server.onDispose()
.block();

@ Receives data from the connected clients

3.5. Lifecycle Callbacks

The following lifecycle callbacks are provided to let you extend the TcpServer:

Callback Description

doOnBind Invoked when the server channel is about to
bind.

doOnBound Invoked when the server channel is bound.

doOnChannellnit Invoked when initializing the channel.

doOnConnection Invoked when a remote client is connected

doOnUnbound Invoked when the server channel is unbound.

The following example uses the doOnConnection and doOnChannelInit callbacks:

12

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/servery/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.DisposableServer;

import reactor.netty.tcp.TcpServer;

import java.util.concurrent.TimeUnit;

public class Application {

public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.doOnConnection(conn ->
conn.addHandler (new ReadTimeoutHandler(10,
TimeUnit.SECONDS))) @
.doOnChannelInit((observer, channel, remoteAddress) ->
channel.pipeline()
.addFirst(new
LoggingHandler ("reactor.netty.examples")))®@
.bindNow();

server.onDispose()
.block();

@ Netty pipeline is extended with ReadTimeoutHandler when a remote client is connected.

@ Netty pipeline is extended with LoggingHandler when initializing the channel.

3.6. TCP-level Configurations
This section describes three kinds of configuration that you can use at the TCP level:

 Setting Channel Options
* Using a Wire Logger
* Using an Event Loop Group
3.6.1. Setting Channel Options

By default, the TCP server is configured with the following options:

13

/../../reactor-netty-core/src/main/java/reactor/netty/tcp/TcpServerBind.java

TepServerBind() {

Map<ChannelOption<?>, Boolean> childOptions = new HashMap<>(2);

childOptions.put(ChannelOption.AUTO_READ, false);

childOptions.put(ChannelOption.TCP_NODELAY, true);

this.config = new TcpServerConfig(
Collections.singletonMap(ChannelOption.SO_REUSEADDR, true),
childOptions,
() -> new InetSocketAddress(DEFAULT_PORT));

If additional options are necessary or changes to the current options are needed, you can apply the
following configuration:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/channeloptions/Application.
java

import io.netty.channel.ChannelOption;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
TepServer.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.bindNow();

server.onDispose()
.block();

You can find more about Netty channel options at the following links:

* Common ChannelOption
* Epoll ChannelOption
* KQueue ChannelOption

» Socket Options

14

https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html

3.6.2. Using a Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers has to be inspected. By
default, wire logging is disabled. To enable it, you must set the logger reactor.netty.tcp.TcpServer
level to DEBUG and apply the following configuration;

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/wiretap/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
TepServer.create()
.wiretap(true) @
.bindNow();

server.onDispose()
.block();

@ Enables the wire logging

By default, the wire logging uses AdvancedByteBufFormat#HEX DUMP when printing the content.

When you need to change this to AdvancedByteBufFormat#SIMPLE or
AdvancedByteBufFormat#TEXTUAL, you can configure the TcpServer as follows:

15

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/wiretap/custom/Application
Java

import io.netty.handler.logging.Loglevel;

import reactor.netty.DisposableServer;

import reactor.netty.tcp.TcpServer;

import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.wiretap("logger-name", LoglLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) @D
.bindNow();

server.onDispose()
.block();

@ Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the
content.

3.6.3. Using an Event Loop Group

By default, the TCP server uses an “Event Loop Group,” where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResource#create
methods.

The default configuration for the Event Loop Group is the following:

16

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/LoopResources.html

/../../reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

/**

* Default worker thread count, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String I0_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**

* Default selector thread count, fallback to -1 (no selector thread)

*/

public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**

* Default worker thread count for UDP, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";

/**

* Default quiet period that guarantees that the disposal of the underlying
LoopResources

* will not happen, fallback to 2 seconds.

*/

public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";

/*'k

* Default maximum amount of time to wait until the disposal of the underlying
LoopResources

* regardless if a task was submitted during the quiet period, fallback to 15
seconds.

*/

public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

/**

* Default value whether the native transport (epoll, kqueue) will be preferred,
* fallback it will be preferred when available
*/

If changes to the these settings are needed, you can apply the following configuration:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/eventloop/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.resources.LoopResources;
import reactor.netty.tcp.TcpServer;

public class Application {

public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

DisposableServer server =
TcpServer.create()
.runOn(loop)
.bindNow();

server.onDispose()
.block();

3.7. SSL and TLS

When you need SSL or TLS, you can apply the configuration shown in the next listing. By default, if
OpenSSL is available, Ss1Provider.0PENSSL provider is used as a provider. Otherwise Ss1Provider.JDK
is used. Switching the provider can be done through SslContextBuilder or by setting
-Dio.netty.handler.ss1l.noOpenSsl=true.

The following example uses Ss1ContextBuilder:

18

https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/security/Application.java

import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;

import reactor.netty.tcp.TcpServer;

import java.io.File;

public class Application {
public static void main(String[] args) {
File cert = new File("certificate.crt");

File key = new File("private.key");

Ss1ContextBuilder ss1ContextBuilder = SslContextBuilder.forServer(cert,

key);
DisposableServer server =
TcpServer.create()
.secure(spec -> spec.sslContext(sslContextBuilder))
.bindNow();
server.onDispose()
.block();
}
}

3.7.1. Server Name Indication

You can configure the TCP server with multiple Ss1Context mapped to a specific domain. An exact
domain name or a domain name containing a wildcard can be used when configuring the SNI
mapping.

The following example uses a domain name containing a wildcard:

19

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/sni/Application.java

import io.netty.handler.ssl.Ss1Context;

import io.netty.handler.ssl.Ss1ContextBuilder;
import reactor.netty.DisposableServer;

import reactor.netty.tcp.TcpServer;

import java.io.File;
public class Application {

public static void main(String[] args) throws Exception {
File defaultCert = new File("default certificate.crt");
File defaultKey = new File("default_private.key");

File testDomainCert = new File("default_certificate.crt");
File testDomainKey = new File("default_private.key");

Ss1Context defaultSslContext = SslContextBuilder.forServer(defaultCert,
defaultKey).build();

Ss1Context testDomainSslContext =
Ss1ContextBuilder.forServer(testDomainCert, testDomainKey).build();

DisposableServer server =
TcpServer.create()
.secure(spec -> spec.sslContext(defaultSs1Context)
.addSniMapping("*.test.com",
testDomainSpec ->
testDomainSpec.sslContext(testDomainSs1Context)))
.bindNow();

server.onDispose()
.block();

3.8. Metrics

The TCP server supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.tcp.server.

The following table provides information for the TCP server metrics:

metric name type description
reactor.netty.tcp.server.data.rec DistributionSummary Amount of the data received, in
eived bytes

20

https://micrometer.io/

metric name type

reactor.netty.tcp.server.data.se DistributionSummary
nt

reactor.netty.tcp.server.errors Counter

reactor.netty.tcp.server.tls.hand Timer
shake.time

These additional metrics are also available:

ByteBufAllocator metrics

metric name type

reactor.netty.bytebuf.allocator. Gauge
used.heap.memory

reactor.netty.bytebuf.allocator. Gauge
used.direct.memory

reactor.netty.bytebuf.allocator. Gauge
used.heap.arenas

reactor.netty.bytebuf.allocator. Gauge
used.direct.arenas

reactor.netty.bytebuf.allocator. Gauge
used.threadlocal.caches

reactor.netty.bytebuf.allocator. Gauge
used.tiny.cache.size

reactor.netty.bytebuf.allocator. Gauge
used.small.cache.size

reactor.netty.bytebuf.allocator. Gauge
used.normal.cache.size

reactor.netty.bytebuf.allocator. Gauge
used.chunk.size

The following example enables that integration:

description

Amount of the data sent, in
bytes

Number of errors that occurred

Time spent for TLS handshake

description

The number of the bytes of the
heap memory

The number of the bytes of the
direct memory

The number of heap arenas
(when PooledByteBufAllocator)

The number of direct arenas
(when PooledByteBufAllocator)

The number of thread local
caches (when
PooledByteBufAllocator)

The size of the tiny cache (when
PooledByteBufAllocator)

The size of the small cache
(when PooledByteBufAllocator)

The size of the normal cache
(when PooledByteBufAllocator)

The chunk size for an arena
(when PooledByteBufAllocator)

21

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/metrics/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
TepServer.create()
.metrics(true) @
.bindNow();

server.onDispose()
.block();

@ Enables the built-in integration with Micrometer

When TCP server metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

22

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/metrics/custom/Application.
java

import reactor.netty.DisposableServer;

import reactor.netty.channel.ChannelMetricsRecorder;

import reactor.netty.tcp.TcpServer;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {
public static void main(String[] args) {
DisposableServer server =
TepServer.create()
.metrics(true, CustomChannelMetricsRecorder::new) @

.bindNow();

server.onDispose()
.block();

@ Enables TCP server metrics and provides ChannelMetricsRecorder implementation.

3.9. Unix Domain Sockets
The TCP server supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

23

https://projectreactor.io/docs/netty/release/api/reactor/netty/channel/ChannelMetricsRecorder.html

24

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/server/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.bindAddress(() -> new
DomainSocketAddress("/tmp/test.sock")) @
.bindNow();

server.onDispose()
.block();

@ Specifies DomainSocketAddress that will be used

Chapter 4. TCP Client

Reactor Netty provides the easy-to-use and easy-to-configure TcpClient. It hides most of the Netty
functionality that is needed in order to create a TCP client and adds Reactive Streams backpressure.

4.1. Connect and Disconnect

To connect the TCP client to a given endpoint, you must create and configure a TcpClient instance.
By default, the host is localhost and the port is 12012. The following example shows how to create a
TepClient:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/create/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {
public static void main(String[] args) {
Connection connection =
TepClient.create() ©)
.connectNow(); @

connection.onDispose()
.block();

@ Creates a TcpClient instance that is ready for configuring.

@ Connects the client in a blocking fashion and waits for it to finish initializing.

The returned Connection offers a simple connection API, including disposeNow(), which shuts the
client down in a blocking fashion.

4.1.1. Host and Port

To connect to a specific host and port, you can apply the following configuration to the TCP client.
The following example shows how to do so:

25

https://projectreactor.io/docs/netty/release/api/reactor/netty/tcp/TcpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/tcp/TcpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/tcp/TcpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/Connection.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/address/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com") @
.port(80) @
.connectNow();

connection.onDispose()
.block();

@ Configures the TCP host
@ Configures the TCP port

4.2. Eager Initialization

By default, the initialization of the TcpClient resources happens on demand. This means that the
connect operation absorbs the extra time needed to initialize and load:

the event loop group
e the host name resolver

* the native transport libraries (when native transport is used)

the native libraries for the security (in case of OpenSs1)

When you need to preload these resources, you can configure the TcpClient as follows:

26

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/warmup/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
TepClient tepClient =
TepClient.create()
.host("example.com")
.port(80)
.handle((inbound, outbound) ->
outbound.sendString(Mono. just("hello")));

tepClient.warmup() @
.block();

Connection connection = tcpClient.connectNow(); @

connection.onDispose()
.block();

@ Initialize and load the event loop group, the host name resolver, the native transport
libraries and the native libraries for the security

@ Host name resolution happens when connecting to the remote peer

4.3. Writing Data

To send data to a given endpoint, you must attach an I/O handler. The I/O handler has access to
NettyOutbound to be able to write data.

27

https://projectreactor.io/docs/netty/release/api/reactor/netty/NettyOutbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)
.handle((inbound, outbound) ->
outbound.sendString(Mono.just("hello"))) @

.connectNow();

connection.onDispose()
.block();

@ Sends hello string to the endpoint.

4.4. Consuming Data

To receive data from a given endpoint, you must attach an I/O handler. The I/O handler has access
to NettyInbound to be able to read data. The following example shows how to do so:

28

https://projectreactor.io/docs/netty/release/api/reactor/netty/NettyInbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/read/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)
.handle((inbound, outbound) -> inbound.receive().then())

®
.connectNow();
connection.onDispose()
.block();
}
}

@ Receives data from a given endpoint

4.5. Lifecycle Callbacks

The following lifecycle callbacks are provided to let you extend the TcpClient.

Callback Description

doAfterResolve Invoked after the remote address has been
resolved successfully.

doOnChannelInit Invoked when initializing the channel.

doOnConnect Invoked when the channel is about to connect.

doOnConnected Invoked after the channel has been connected.

doOnDisconnected Invoked after the channel has been
disconnected.

doOnResolve Invoked when the remote address is about to be
resolved.

doOnResolveError Invoked in case the remote address hasn’t been

resolved successfully.

The following example uses the doOnConnected and doOnChannelInit callbacks:

29

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.Connection;

import reactor.netty.tcp.TcpClient;

import java.util.concurrent.TimeUnit;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)
.doOnConnected(conn ->
conn.addHandler (new ReadTimeoutHandler(10,
TimeUnit.SECONDS))) @
.doOnChannelInit((observer, channel, remoteAddress) ->
channel.pipeline()
.addFirst(new
LoggingHandler("reactor.netty.examples")))®@
.connectNow();

connection.onDispose()
.block();

@ Netty pipeline is extended with ReadTimeoutHandler when the channel has been connected.

@ Netty pipeline is extended with LoggingHandler when initializing the channel.

4.6. TCP-level Configurations
This section describes three kinds of configuration that you can use at the TCP level:

* Channel Options
* Wire Logger

* Event Loop Group

4.6.1. Channel Options

By default, the TCP client is configured with the following options:

30

/../../reactor-netty-core/src/main/java/reactor/netty/tcp/TcpClientConnect.java

TcpClientConnect(ConnectionProvider provider) {
this.config = new TcpClientConfig(
provider,
Collections.singletonMap(ChannelOption.AUTO_READ, false),
() ->
AddressUtils.createUnresolved(NetUtil.LOCALHOST.getHostAddress(), DEFAULT_PORT));
}

If additional options are necessary or changes to the current options are needed, you can apply the
following configuration:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/channeloptions/Application.j
ava

import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.connectNow();

connection.onDispose()
.block();

You can find more about Netty channel options at the following links:

* Common ChannelOption
* Epoll ChannelOption
* KQueue ChannelOption

» Socket Options

31

https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html

4.6.2. Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers has to be inspected. By
default, wire logging is disabled. To enable it, you must set the logger reactor.netty.tcp.TepClient
level to DEBUG and apply the following configuration:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/wiretap/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.wiretap(true) @
.host("example.com")
.port(80)
.connectNow();

connection.onDispose()
.block();

@ Enables the wire logging

By default, the wire logging uses AdvancedByteBufFormat#HEX_DUMP when printing the content.
When you need to change this to AdvancedByteBufFormat#SIMPLE or
AdvancedByteBufFormat#TEXTUAL, you can configure the TcpClient as follows:

32

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/wiretap/custom/Application.
java

import io.netty.handler.logging.Loglevel;

import reactor.netty.Connection;

import reactor.netty.tcp.TcpClient;

import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.wiretap("logger-name", LoglLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) @D
.host("example.com")
.port(80)
.connectNow();

connection.onDispose()
.block();

@ Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the
content.

4.6.3. Event Loop Group

By default the TCP client uses an “Event Loop Group”, where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResource#create
methods.

The following listing shows the default configuration for the Event Loop Group:

33

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/LoopResources.html

/../../reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

/**

* Default worker thread count, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String I0_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**

* Default selector thread count, fallback to -1 (no selector thread)

*/

public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**

* Default worker thread count for UDP, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";

/**

* Default quiet period that guarantees that the disposal of the underlying
LoopResources

* will not happen, fallback to 2 seconds.

*/

public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";

/*'k

* Default maximum amount of time to wait until the disposal of the underlying
LoopResources

* regardless if a task was submitted during the quiet period, fallback to 15
seconds.

*/

public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

/**

* Default value whether the native transport (epoll, kqueue) will be preferred,
* fallback it will be preferred when available
*/

If you need changes to the these settings, you can apply the following configuration:

34

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/eventloop/Application.java

import reactor.netty.Connection;
import reactor.netty.resources.LoopResources;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

Connection connection =
TepClient.create()
.host("example.com")
.port(80)
.runOn(loop)
.connectNow();

connection.onDispose()
.block();

4.7. Connection Pool

By default, the TCP client uses a “fixed” connection pool with 500 as the maximum number of
channels and 1000 as the maximum number of the registered requests for acquire to keep in the
pending queue (for the rest of the configurations check the system properties below). This means
that the implementation creates a new channel if someone tries to acquire a channel but none is in
the pool. When the maximum number of the channels in the pool is reached, new tries to acquire a
channel are delayed until a channel is returned to the pool again.

35

36

/../../reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

/**

* Default max connections. Fallback to

* available number of processors (but with a minimum value of 16)

*/

public static final String POOL_MAX_CONNECTIONS =
"reactor.netty.pool.maxConnections";
/**

* Default acquisition timeout (milliseconds) before error. If -1 will never wait
to

* acquire before opening a new

* connection in an unbounded fashion. Fallback 45 seconds

*/

public static final String POOL_ACQUIRE_TIMEOUT =
"reactor.netty.pool.acquireTimeout";

/**

* Default max idle time, fallback - max idle time is not specified.

*/

public static final String POOL_MAX_IDLE_TIME = "reactor.netty.pool.maxIdleTime";
/**

* Default max life time, fallback - max life time is not specified.

*/

public static final String POOL_MAX_LIFE_TIME = "reactor.netty.pool.maxLifeTime";
/*'k

* Default leasing strategy (fifo, lifo), fallback to fifo.

fifo - The connection selection is first in, first out</1li>
lifo - The connection selection is last in, first out</1li>

L I

*/

public static final String POOL_LEASING_STRATEGY =
"reactor.netty.pool.leasingStrategy";
/**

* Default {@code getPermitsSamplingRate} (between @d and 1d (percentage))

* to be used with a {@link SamplingAllocationStrategy}.

* This strategy wraps a {@link PoolBuilder#sizeBetween(int, int) sizeBetween}
{@link AllocationStrategy}

* and samples calls to {@link AllocationStrategy#getPermits(int)}.

* Fallback - sampling is not enabled.

*/

public static final String POOL_GET_PERMITS_SAMPLING_RATE =
"reactor.netty.pool.getPermitsSamplingRate";

/**

* Default {@code returnPermitsSamplingRate} (between @d and 1d (percentage))
* to be used with a {@link SamplingAllocationStrategy}.

* This strategy wraps a {@link PoolBuilder#sizeBetween(int, int) sizeBetween}
{@link AllocationStrategy}

* and samples calls to {@link AllocationStrategy#returnPermits(int)}.

* Fallback - sampling is not enabled.

*/

37

If you need to disable the connection pool, you can apply the following configuration:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.newConnection()
.host("example.com")
.port(80)
.connectNow();

connection.onDispose()
.block();

If you need to specify an idle time for the channels in the connection pool, you can apply the
following configuration:

38

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/config/Application.java

import reactor.netty.Connection;

import reactor.netty.resources.ConnectionProvider;
import reactor.netty.tcp.TcpClient;

import java.time.Duration;

public class Application {

public static void main(String[] args) {
ConnectionProvider provider =
ConnectionProvider.builder("fixed")
.maxConnections(50)
.pendingAcquireTimeout(Duration.ofMillis(30000))
.maxIdleTime(Duration.ofMillis(60))
.build();

Connection connection =
TepClient.create(provider)
.host("example.com")
.port(80)
.connectNow();

connection.onDispose()
.block();

When you expect a high load, be cautious with a connection pool with a very high
o value for maximum connections. You might experience

reactor.netty.http.client.PrematureCloseException exception with a root cause

"Connect Timeout" due to too many concurrent connections opened/acquired.

4.7.1. Metrics

The pooled ConnectionProvider supports built-in integration with Micrometer. It exposes all metrics
with a prefix of reactor.netty.connection.provider.

Pooled ConnectionProvider metrics

metric name type description
reactor.netty.connection.provid Gauge The number of all connections,
er.total.connections active or idle

39

https://micrometer.io/

metric name type description

reactor.netty.connection.provid Gauge The number of the connections
er.active.connections that have been successfully
acquired and are in active use

reactor.netty.connection.provid Gauge The number of the idle
er.idle.connections connections
reactor.netty.connection.provid Gauge The number of requests that
er.pending.connections are waiting for a connection

The following example enables that integration:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/metrics/Application.jav
a

import reactor.netty.Connection;
import reactor.netty.resources.ConnectionProvider;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
ConnectionProvider provider =
ConnectionProvider.builder("fixed")
.maxConnections(50)
.metrics(true) @
.build();

Connection connection =
TepClient.create(provider)
.host("example.com")
.port(80)
.connectNow();

connection.onDispose()
.block();

@ Enables the built-in integration with Micrometer

4.8. SSL and TLS

When you need SSL or TLS, you can apply the following configuration. By default, if OpenSSL is
available, the SslProvider.OPENSSL provider is used as a provider. Otherwise, the provider is
SslProvider.JDK. You can switch the provider by wusing SslContextBuilder or by setting

40

https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-

-Dio.netty.handler.ssl.noOpenSsl=true.

The following example uses Ss1ContextBuilder:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/security/Application.java

import io.netty.handler.ssl.Ss1ContextBuilder;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Ss1ContextBuilder sslContextBuilder = SslContextBuilder.forClient();

Connection connection =
TepClient.create()
.host("example.com")
.port(443)
.secure(spec -> spec.sslContext(sslContextBuilder))
.connectNow();

connection.onDispose()
.block();

4.8.1. Server Name Indication

By default, the TCP client sends the remote host name as SNI server name. When you need to change
this default setting, you can configure the TCP client as follows:

41

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/sni/Application.java

import io.netty.handler.ssl.Ss1Context;

import io.netty.handler.ssl.Ss1ContextBuilder;
import reactor.netty.Connection;

import reactor.netty.tcp.TcpClient;

import javax.net.ssl.SNIHostName;
public class Application {

public static void main(String[] args) throws Exception {
Ss1lContext sslContext = SslContextBuilder.forClient().build();

Connection connection =
TepClient.create()
.host("127.0.0.1")

.port(8080)
.secure(spec -> spec.sslContext(ss1Context)
.serverNames(new
SNIHostName("test.com")))
.connectNow();

connection.onDispose()
.block();

4.9. Proxy Support

The TCP client supports the proxy functionality provided by Netty and provides a way to specify
“non proxy hosts” through the ProxyProvider builder. The following example uses ProxyProvider:

42

https://projectreactor.io/docs/netty/release/api/reactor/netty/tcp/ProxyProvider.html

J../../reactor-netty-

examples/src/main/java/reactor/netty/examples/documentation/tcp/client/proxy/Application.java

import reactor.netty.Connection;
import reactor.netty.transport.ProxyProvider;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)

.proxy(spec -> spec.type(ProxyProvider.Proxy.S0CKS4)
.host("proxy")

.port(8080)

.nonProxyHosts("localhost"))

.connectNow();

connection.onDispose()
.block();

4.10. Metrics

The TCP client supports built-in integration with Micrometer. It exposes all metrics with a prefix of

reactor.netty.tcp.client.

The following table provides information for the TCP client metrics:

metric name type

reactor.netty.tcp.client.data.rec DistributionSummary
eived

reactor.netty.tcp.client.data.sent DistributionSummary

reactor.netty.tcp.client.errors Counter

reactor.netty.tcp.client.tls.hands Timer
hake.time

reactor.netty.tcp.client.connect.t Timer
ime

reactor.netty.tcp.client.address. Timer
resolver

description

Amount of the data received, in
bytes

Amount of the data sent, in
bytes

Number of errors that occurred

Time spent for TLS handshake

Time spent for connecting to
the remote address

Time spent for resolving the
address

43

https://micrometer.io/

These additional metrics are also available:

Pooled ConnectionProvider metrics

metric name

reactor.netty.connection.provid
er.total.connections

reactor.netty.connection.provid
er.active.connections

reactor.netty.connection.provid
er.idle.connections

reactor.netty.connection.provid
er.pending.connections

ByteBufAllocator metrics

metric name

reactor.netty.bytebuf.allocator.
used.heap.memory

reactor.netty.bytebuf.allocator.
used.direct.memory

reactor.netty.bytebuf.allocator.
used.heap.arenas

reactor.netty.bytebuf.allocator.
used.direct.arenas

reactor.netty.bytebuf.allocator.
used.threadlocal.caches

reactor.netty.bytebuf.allocator.
used.tiny.cache.size

reactor.netty.bytebuf.allocator.
used.small.cache.size

reactor.netty.bytebuf.allocator.
used.normal.cache.size

reactor.netty.bytebuf.allocator.
used.chunk.size

The following example enables that integration:

44

type
Gauge

Gauge

Gauge

Gauge

type
Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

description

The number of all connections,
active or idle

The number of the connections
that have been successfully
acquired and are in active use

The number of the idle
connections

The number of requests that
are waiting for a connection

description

The number of the bytes of the
heap memory

The number of the bytes of the
direct memory

The number of heap arenas
(when PooledByteBufAllocator)

The number of direct arenas
(when PooledByteBufAllocator)

The number of thread local
caches (when
PooledByteBufAllocator)

The size of the tiny cache (when
PooledByteBufAllocator)

The size of the small cache
(when PooledByteBufAllocator)

The size of the normal cache
(when PooledByteBufAllocator)

The chunk size for an arena
(when PooledByteBufAllocator)

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/metrics/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)
.metrics(true) @
.connectNow();

connection.onDispose()
.block();

@ Enables the built-in integration with Micrometer

When TCP client metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

45

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/metrics/custom/Application.j
ava

import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.tcp.TcpClient;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {
public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)

.metrics(true, CustomChannelMetricsRecorder::new) @
.connectNow();

connection.onDispose()
.block();

@ Enables TCP client metrics and provides ChannelMetricsRecorder implementation.

4.11. Unix Domain Sockets

The TCP client supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

46

https://projectreactor.io/docs/netty/release/api/reactor/netty/channel/ChannelMetricsRecorder.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {
public static void main(String[] args) {
Connection connection =
TepClient.create()
.remoteAddress(() -> new

DomainSocketAddress("/tmp/test.sock")) @
.connectNow();

connection.onDispose()
.block();

@ Specifies DomainSocketAddress that will be used

4.12. Host Name Resolution

By default, the TcpClient uses Netty’s domain name lookup mechanism that resolves a domain
name asynchronously. This is as an alternative of the JVM’s built-in blocking resolver.

When you need to change the default settings, you can configure the TcpClient as follows:

47

J../../reactor-netty-

examples/src/main/java/reactor/netty/examples/documentation/tcp/client/resolver/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()

.host("example.com")
.port(80)
.resolver(spec ->

spec.queryTimeout(Duration.ofMillis(500))) @
.connectNow();

connection.onDispose()
.block();

@ The timeout of each DNS query performed by this resolver will be 500ms.

The following listing shows the available configurations:

Configuration name

cacheMaxTimeTolLive

cacheMinTimeTolLive

cacheNegativeTimeTolLive

48

Description

The max time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is greater than this max time to live, this
resolver ignores the time to live from the DNS
server and uses use this max time to live.
Default to Integer.MAX_VALUE.

The min time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is less than this min time to live, this
resolver ignores the time to live from the DNS
server and uses this min time to live. Default: 0.

The time to live of the cache for the failed DNS
queries (resolution: seconds). Default: 0.

Configuration name Description

disableOptionalRecord Disables the automatic inclusion of an optional
record that tries to give a hint to the remote DNS
server about how much data the resolver can
read per response. By default, this setting is
enabled.

disableRecursionDesired Specifies whether this resolver has to send a
DNS query with the recursion desired (RD) flag
set. By default, this setting is enabled.

maxPayloadSize Sets the capacity of the datagram packet buffer
(in bytes). Default: 4096.

maxQueriesPerResolve Sets the maximum allowed number of DNS
queries to send when resolving a host name.
Default: 16.

ndots Sets the number of dots that must appear in a

name before an initial absolute query is made.
Default: -1 (to determine the value from the OS
on Unix or use a value of 1 otherwise).

queryTimeout Sets the timeout of each DNS query performed
by this resolver (resolution: milliseconds).
Default: 5000.

resolvedAddressTypes The list of the protocol families of the resolved
address.
roundRobinSelection Enables an AddressResolverGroup of

DnsNameResolver that supports random selection
of destination addresses if multiple are provided
by the nameserver. See

RoundRobinDnsAddressResolverGroup. Default:
DnsAddressResolverGroup

runOn Performs the communication with the DNS
servers on the given LoopResources. By default,
the LoopResources specified on the client level
are used.

searchDomains The list of search domains of the resolver. By
default, the effective search domain list is
populated by using the system DNS search
domains.

trace A specific logger and log level to be used by this
resolver when generating detailed trace
information in case of resolution failure.

Sometimes, you may want to switch to the JVM built-in resolver. To do so, you can configure the
TepClient as follows:

49

https://netty.io/4.1/api/io/netty/resolver/AddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsNameResolver.html
https://netty.io/4.1/api/io/netty/resolver/dns/RoundRobinDnsAddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsAddressResolverGroup.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/LoopResources.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/tcp/client/resolver/custom/Application.
java

import io.netty.resolver.DefaultAddressResolverGroup;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

public static void main(String[] args) {
Connection connection =
TepClient.create()
.host("example.com")
.port(80)
.resolver (DefaultAddressResolverGroup.INSTANCE) ®
.connectNow();

connection.onDispose()
.block();

@ Sets the JVM built-in resolver.

50

Chapter 5. HTTP Server

Reactor Netty provides the easy-to-use and easy-to-configure HttpServer class. It hides most of the
Netty functionality that is needed in order to create a HTTP server and adds Reactive Streams
backpressure.

5.1. Starting and Stopping

To start an HTTP server, you must create and configure a HttpServer instance. By default, the host
is configured for any local address, and the system picks up an ephemeral port when the bind
operation is invoked. The following example shows how to create an HttpServer instance:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/create/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create() @
.bindNow(); @

server.onDispose()
.block();

@ Creates an HttpServer instance ready for configuring.

@ Starts the server in a blocking fashion and waits for it to finish initializing.

The returned DisposableServer offers a simple server API, including disposeNow(), which shuts the
server down in a blocking fashion.

5.1.1. Host and Port

To serve on a specific host and port, you can apply the following configuration to the HTTP server:

31

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/DisposableServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/address/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.host("localhost") @
.port(8080) @
.bindNow();

server.onDispose()
.block();

@ Configures the HTTP server host

@ Configures the HTTP server port

5.2. Eager Initialization

By default, the initialization of the HttpServer resources happens on demand. This means that the
bind operation absorbs the extra time needed to initialize and load:

* the event loop groups
* the native transport libraries (when native transport is used)

* the native libraries for the security (in case of OpenSs1)

When you need to preload these resources, you can configure the HttpServer as follows:

32

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/warmup/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {
public static void main(String[] args) {
HttpServer httpServer =
HttpServer.create()
.handle((request, response) ->

request.receive().then());

httpServer.warmup() @
.block();

DisposableServer server = httpServer.bindNow();

server.onDispose()
.block();

@ Initialize and load the event loop groups, the native transport libraries and the native
libraries for the security

5.3. Routing HTTP

Defining routes for the HTTP server requires configuring the provided HttpServerRoutes builder. The
following example shows how to do so:

33

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServerRoutes.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/routing/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes ->
routes.get("/hello", ©)
(request, response) ->
response.sendString(Mono.just("Hello World!")))
.post("/echo", @
(request, response) ->
response.send(request.receive().retain()))
.get("/path/{param}", ®
(request, response) ->
response.sendString(Mono.just(request.param("param"))))
ws("/ws", @
(wsInbound, wsOutbound) ->
wsOutbound.send(wsInbound.receive().retain())))
.bindNow();

server.onDispose()
.block();

@ Serves a GET request to /hello and returns Hello World!
@ Serves a POST request to /echo and returns the received request body as a response.
® Serves a GET request to /path/{param} and returns the value of the path parameter.

@ Serves websocket to /ws and returns the received incoming data as outgoing data.

o The server routes are unique and only the first matching in order of declaration is
invoked.

5.3.1. SSE

The following code shows how you can configure the HTTP server to serve Server-Sent Events:

54

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/sse/Application.java

import com.fasterxml.jackson.databind.ObjectMapper;

import io.netty.buffer.ByteBuf;

import io.netty.buffer.ByteBufAllocator;

import org.reactivestreams.Publisher;

import reactor.core.publisher.Flux;

import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;

import reactor.netty.http.server.HttpServerRequest;

import reactor.netty.http.server.HttpServerResponse;

import java.io.ByteArrayOutputStream;
import java.nio.charset.Charset;
import java.time.Duration;

import java.util.function.BiFunction;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes -> routes.get("/sse", serveSse()))
.bindNow();

server.onDispose()
.block();

}

/**
* Prepares SSE response
* The "Content-Type" is "text/event-stream"
* The flushing strategy is "flush after every element" emitted by the
provided Publisher
*/
private static BiFunction<HttpServerRequest, HttpServerResponse,
Publisher<Void>> serveSse() {
Flux<Long> flux = Flux.interval(Duration.ofSeconds(10));
return (request, response) ->
response.sse()
.send(flux.map(Application::toByteBuf), b -> true);
}

/**
* Transforms the Object to ByteBuf following the expected SSE format.
*/
private static ByteBuf toByteBuf(Object any) {
ByteArrayOutputStream out = new ByteArrayQutputStream();
try {

55

out.write("data: ".getBytes(Charset.defaultCharset()));
MAPPER.writeValue(out, any);
out.write("\n\n".getBytes(Charset.defaultCharset()));
}
catch (Exception e) {
throw new RuntimeException(e);
}
return ByteBufAllocator.DEFAULT
.buffer()
.writeBytes(out.toByteArray());

}

private static final ObjectMapper MAPPER = new ObjectMapper();

5.3.2. Static Resources

The following code shows how you can configure the HTTP server to serve static resources:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/staticresources/Applicatio
njava

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

import java.net.URISyntaxException;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Application {

public static void main(String[] args) throws URISyntaxException {
Path file =
Paths.get(Application.class.getResource("/logback.xml").toURI());
DisposableServer server =
HttpServer.create()
.route(routes -> routes.file("/index.html", file))
.bindNow();

server.onDispose()
.block();

36

5.4. Writing Data

To send data to a connected client, you must attach an I/O handler by using either handle(::-) or
route(-++). The I/O handler has access to HttpServerResponse, to be able to write data. The following
example uses the handle(::+) method:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.handle((request, response) ->
response.sendString(Mono.just("hello"))) ®
.bindNow();

server.onDispose()
.block();

@ Sends hello string to the connected clients

5.4.1. Adding Headers and Other Metadata

When you send data to the connected clients, you may need to send additional headers, cookies,
status code, and other metadata. You can provide this additional metadata by using
HttpServerResponse. The following example shows how to do so:

57

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServer.html#handle-java.util.function.BiFunction-
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServer.html#route-java.util.function.Consumer-
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServerResponse.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServerResponse.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/send/headers/Application.j
ava

import io.netty.handler.codec.http.HttpHeaderNames;
import io.netty.handler.codec.http.HttpResponseStatus;
import reactor.core.publisher.Mono;

import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes ->
routes.get("/hello",
(request, response) ->
response.status(HttpResponseStatus.0K)

.header (HttpHeaderNames.CONTENT_LENGTH, "12")
.sendString(Mono.just("Hello
World!"))))
.bindNow();

server.onDispose()
.block();

5.4.2. Compression

You can configure the HTTP server to send a compressed response, depending on the request header
Accept-Encoding

Reactor Netty provides three different strategies for compressing the outgoing data:

» compress(boolean): Depending on the boolean that is provided, the compression is enabled (true)
or disabled (false).

» compress(int): The compression is performed once the response size exceeds the given value (in

bytes).

» compress(BiPredicate<HttpServerRequest, HttpServerResponse>): The compression is performed
if the predicate returns true.

The following example uses the compress method (set to true) to enable compression:

38

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/compression/Application.j
ava

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

import java.net.URISyntaxException;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Application {

public static void main(String[] args) throws URISyntaxException {
Path file =
Paths.get(Application.class.getResource("/logback.xml").toURI());
DisposableServer server =
HttpServer.create()

.compress(true)
.route(routes -> routes.file("/index.html", file))
.bindNow();

server.onDispose()
.block();

5.5. Consuming Data

To receive data from a connected client, you must attach an I/O handler by using either handle(::-)
or route(::+). The I/O handler has access to HttpServerRequest, to be able to read data.

The following example uses the handle(::*) method:

39

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServer.html#handle-java.util.function.BiFunction-
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServer.html#route-java.util.function.Consumer-
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServerRequest.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/read/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.handle((request, response) -> request.receive().then())

.bindNow();

server.onDispose()
.block();

@ Receives data from the connected clients

5.5.1. Reading Headers, URI Params, and other Metadata

When you receive data from the connected clients, you might need to check request headers,
parameters, and other metadata. You can obtain this additional metadata by using
HttpServerRequest. The following example shows how to do so:

60

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServerRequest.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/read/headers/Application.j
ava

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes ->
routes.get("/{param}",
(request, response) -> {
if (request.requestHeaders().contains("Some-

Header")) {
return
response.sendString(Mono.just(request.param("param")));
}
return response.sendNotFound();
)
.bindNow();

server.onDispose()
.block();

Obtaining the Remote (Client) Address

In addition to the metadata that you can obtain from the request, you can also receive the host
(server) address, the remote (client) address and the scheme. Depending on the chosen factory
method, you can retrieve the information directly from the channel or by using the Forwarded or X-
Forwarded-* HTTP request headers. The following example shows how to do so:

61

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/clientaddress/Application.j
ava

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.forwarded(true) @
.route(routes ->
routes.get("/clientip",
(request, response) ->

response.sendString(Mono.just(request.remoteAddress() @

.getHostString()))))
.bindNow();

server.onDispose()
.block();

@ Specifies that the information about the connection is to be obtained from the Forwarded
and X-Forwarded-* HTTP request headers, if possible.

@ Returns the address of the remote (client) peer.

It is also possible to customize the behavior of the Forwarded or X-Forwarded-* header handler. The
following example shows how to do so:

62

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/clientaddress/CustomForw
ardedHeaderHandlerApplication.java

import java.net.InetSocketAddress;

import reactor.core.publisher.Mono;

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.transport.AddressUtils;

public class CustomForwardedHeaderHandlerApplication {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.forwarded((connectionInfo, request) -> { @
String hostHeader = request.headers().get("X-
Forwarded-Host");
if (hostHeader != null) {
String[] hosts = hostHeader.split(",", 2);
InetSocketAddress hostAddress =
AddressUtils.createUnresolved(
hosts[hosts.length - 1].trim(),
connectionInfo.getHostAddress().getPort());
connectionInfo =
connectionInfo.withHostAddress(hostAddress);
}
return connectionInfo;
b
.route(routes ->
routes.get("/clientip",
(request, response) ->

response.sendString(Mono.just(request.remoteAddress() @

.getHostString()))))
.bindNow();

server.onDispose()
.block();

@M Add a custom header handler.

@ Returns the address of the remote (client) peer.

5.5.2. HTTP Request Decoder
By default, Netty configures some restrictions for the incoming requests, such as:

* The maximum length of the initial line.
* The maximum length of all headers.

* The maximum length of the content or each chunk.
For more information, see HttpRequestDecoder and HttpServerUpgradeHandler

By default, the HTTP server is configured with the following settings:

/../../reactor-netty-http/src/main/java/reactor/netty/http/HttpDecoderSpec.java

public static final int DEFAULT_MAX_INITIAL_LINE_LENGTH = 4096;
public static final int DEFAULT_MAX_HEADER_SIZE = 8192;
public static final int DEFAULT_MAX_CHUNK_SIZE = 8192;
public static final boolean DEFAULT_VALIDATE_HEADERS = true;
public static final int DEFAULT_INITIAL_BUFFER_SIZE = 128;

/../../reactor-netty-http/src/main/java/reactor/netty/http/server/HttpRequestDecoderSpec.java

/**

* The maximum length of the content of the HTTP/2.0 clear-text upgrade request.
* By default the server will reject an upgrade request with non-empty content,
* because the upgrade request is most likely a GET request.

*/

public static final int DEFAULT_H2C_MAX_CONTENT_LENGTH = 0;

When you need to change these default settings, you can configure the HTTP server as follows:

64

https://netty.io/4.1/api/io/netty/handler/codec/http/HttpRequestDecoder.html
https://netty.io/4.1/api/io/netty/handler/codec/http/HttpServerUpgradeHandler.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/requestdecoder/Applicatio
njava

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.httpRequestDecoder(spec -> spec.maxHeaderSize(16384))

@

.handle((request, response) ->
response.sendString(Mono.just("hello")))
.bindNow();

server.onDispose()
.block();

® The maximum length of all headers will be 16384. When this value is exceeded, a
TooLongFrameException is raised.

5.6. Lifecycle Callbacks

The following lifecycle callbacks are provided to let you extend the HttpServer:

Callback Description

doOnB1ind Invoked when the server channel is about to
bind.

doOnBound Invoked when the server channel is bound.

doOnChannellnit Invoked when initializing the channel.

doOnConnection Invoked when a remote client is connected

doOnUnbound Invoked when the server channel is unbound.

The following example uses the doOnConnection and doOnChannelInit callbacks:

65

https://netty.io/4.1/api/io/netty/handler/codec/TooLongFrameException.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;

import java.util.concurrent.TimeUnit;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.doOnConnection(conn ->
conn.addHandler (new ReadTimeoutHandler(10,
TimeUnit.SECONDS))) @
.doOnChannelInit((observer, channel, remoteAddress) ->
channel.pipeline()
.addFirst(new
LoggingHandler ("reactor.netty.examples")))®@
.bindNow();

server.onDispose()
.block();

@ Netty pipeline is extended with ReadTimeoutHandler when a remote client is connected.

@ Netty pipeline is extended with LoggingHandler when initializing the channel.

5.7. TCP-level Configuration

When you need to change configuration on the TCP level, you can use the following snippet to
extend the default TCP server configuration:

66

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/channeloptions/Applicatio
njava

import io.netty.channel.ChannelOption;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.bindNow();

server.onDispose()
.block();

See TCP Server for more detail about TCP-level configuration.

5.7.1. Wire Logger

Reactor Netty provides wire logging for when you need to inspect the traffic between the peers. By
default, wire logging is disabled. To enable it, you must set the logger
reactor.netty.http.server.HttpServer level to DEBUG and apply the following configuration:

67

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/wiretap/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.wiretap(true) @
.bindNow();

server.onDispose()
.block();

@ Enables the wire logging

By default, the wire logging uses AdvancedByteBufFormat#HEX DUMP when printing the content.
When you need to change this to AdvancedByteBufFormat#SIMPLE or
AdvancedByteBufFormat#TEXTUAL, you can configure the HttpServer as follows:

68

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/wiretap/custom/Applicatio
njava

import io.netty.handler.logging.Loglevel;

import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;

import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.wiretap("logger-name", LoglLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) @D
.bindNow();

server.onDispose()
.block();

@ Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the
content.

5.8. SSL and TLS

When you need SSL or TLS, you can apply the configuration shown in the next example. By default,
if OpenSSL 1is available, SslProvider.0OPENSSL provider is used as a provider. Otherwise
Ss1Provider.JDK is used. You can switch the provider by using SslContextBuilder or by setting
-Dio.netty.handler.ssl.noOpenSsl=true.

The following example uses Ss1ContextBuilder:

69

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/security/Application.java

import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;
import java.io.File;

public class Application {
public static void main(String[] args) {
File cert = new File("certificate.crt");

File key = new File("private.key");

Ss1ContextBuilder ss1ContextBuilder = SslContextBuilder.forServer(cert,

key);
DisposableServer server =
HttpServer.create()
.secure(spec -> spec.sslContext(sslContextBuilder))
.bindNow();
server.onDispose()
.block();
}
}

5.8.1. Server Name Indication

You can configure the HTTP server with multiple Ss1Context mapped to a specific domain. An exact
domain name or a domain name containing a wildcard can be used when configuring the SNI
mapping.

The following example uses a domain name containing a wildcard:

70

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/sni/Application.java

import io.netty.handler.ssl.Ss1Context;

import io.netty.handler.ssl.Ss1ContextBuilder;
import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;

import java.io.File;
public class Application {

public static void main(String[] args) throws Exception {
File defaultCert = new File("default certificate.crt");
File defaultKey = new File("default_private.key");

File testDomainCert = new File("default_certificate.crt");
File testDomainKey = new File("default_private.key");

Ss1Context defaultSslContext = SslContextBuilder.forServer(defaultCert,
defaultKey).build();

Ss1Context testDomainSslContext =
Ss1ContextBuilder.forServer(testDomainCert, testDomainKey).build();

DisposableServer server =
HttpServer.create()
.secure(spec -> spec.sslContext(defaultSs1Context)
.addSniMapping("*.test.com",
testDomainSpec ->
testDomainSpec.sslContext(testDomainSs1Context)))
.bindNow();

server.onDispose()
.block();

5.9. HTTP Access Log

You can enable the HTTP access log either programmatically or by configuration. By default, it is
disabled.

You can use -Dreactor.netty.http.server.accessLogEnabled=true to enable the HTTP access log by
configuration.

You can use the following configuration (for Logback or similar logging frameworks) to have a
separate HTTP access log file:

71

<appender name="accesslLog" class="ch.qos.logback.core.FileAppender">
<file>access_log.log</file>
<encoder>
<pattern>%msg%n</pattern>
</encoder>
</appender>
<appender name="async" class="ch.qos.logback.classic.AsyncAppender">
<appender-ref ref="accesslLog" />
</appender>

<logger name="reactor.netty.http.server.AccessLog" level="INF0"
additivity="false">

<appender-ref ref="async"/>
</logger>

The following example enables it programmatically:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/Application.jav
a

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.accesslLog(true)
.bindNow();

server.onDispose()
.block();

Calling this method takes precedence over the system property configuration.

By default, the logging format is Common Log Format, but you can specify a custom one as a
parameter, as in the following example:

72

https://en.wikipedia.org/wiki/Common_Log_Format

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/CustomLogAcce
ssFormatApplication.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.logging.Accesslog;

public class CustomLogAccessFormatApplication {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.accessLog(true, x -> Accesslog.create("method={},
uri={}", x.method(), x.uri()))
.bindNow();

server.onDispose()
.block();

You can also filter HTTP access logs by using the AccesslLogFactoryficreateFilter method, as in the
following example:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/FilterLogAccess
Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.logging.AccesslLogFactory;

public class FilterLogAccessApplication {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.accesslLog(true, AccesslLogFactory.createFilter(p ->
IString.valueOf(p.uri()).startsWith("/health/")))
.bindNow();

server.onDispose()
.block();

73

Note that this method can take a custom format parameter too, as in this example:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/CustomFormat
AndFilterAccessLogApplication.java.java

import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;

import reactor.netty.http.server.logging.AccesslLog;

import reactor.netty.http.server.logging.AccesslLogFactory;

public class CustomFormatAndFilterAccessLogApplication {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.accesslLog(true, AccesslLogFactory.createFilter(p ->
IString.valueOf(p.uri()).startsWith("/health/"), @
X -> Accesslog.create("method={}, uri={}",

x.method(), x.uri()))) @
.bindNow();

server.onDispose()
.block();

@ Specifies the filter predicate to use

@ Specifies the custom format to apply

5.10. HTTP/2

By default, the HTTP server supports HTTP/1.1. If you need HTTP/2, you can get it through
configuration. In addition to the protocol configuration, if you need H2 but not H2C (cleartext), you
must also configure SSL.

As Application-Layer Protocol Negotiation (ALPN) is not supported “out-of-the-box”
o by JDK8 (although some vendors backported ALPN to JDK8), you need an
additional dependency to a native library that supports it— for example, netty-

tenative-boringssl-static

The following listing presents a simple H2 example:

74

https://netty.io/wiki/forked-tomcat-native.html
https://netty.io/wiki/forked-tomcat-native.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/http2/H2Application.java

import io.netty.handler.ssl.SslContextBuilder;
import reactor.core.publisher.Mono;

import reactor.netty.DisposableServer;

import reactor.netty.http.HttpProtocol;

import reactor.netty.http.server.HttpServer;
import java.io.File;

public class H2Application {

public static void main(String[] args) {
File cert = new File("certificate.crt");
File key = new File("private.key");

Ss1ContextBuilder sslContextBuilder = SslContextBuilder.forServer(cert,
key);

DisposableServer server =
HttpServer.create()

.port(8080)

.protocol(HttpProtocol.H2) D
.secure(spec -> spec.sslContext(sslContextBuilder)) @
.handle((request, response) ->

response.sendString(Mono.just("hello")))
.bindNow();

server.onDispose()
.block();

@ Configures the server to support only HTTP/2
@ Configures SSL

The application should now behave as follows:

$ curl --http2 https://localhost:8080 -i
HTTP/2 200

hello

The following listing presents a simple H2C example:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/http2/H2CApplication.java

import reactor.core.publisher.Mono;

import reactor.netty.DisposableServer;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.server.HttpServer;

public class H2CApplication {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.port(8080)
.protocol(HttpProtocol.H2()
.handle((request, response) ->
response.sendString(Mono.just("hello")))
.bindNow();

server.onDispose()
.block();

The application should now behave as follows:

$ curl --http2-prior-knowledge http://localhost:8080 -i
HTTP/2 200

hello

5.10.1. Protocol Selection

76

J../../reactor-netty-http/src/main/java/reactor/netty/http/HttpProtocol.java

public enum HttpProtocol {

/**

* The default supported HTTP protocol by HttpServer and HttpClient
*/

HTTP11,

/**

* HTTP/2.0 support with TLS

* <p>If used along with HTTP/1.1 protocol, HTTP/2.0 will be the preferred
protocol.

* While negotiating the application level protocol, HTTP/2.0 or HTTP/1.1 can
be chosen.

* <p>If used without HTTP/1.1 protocol, HTTP/2.0 will always be offered as a
protocol

* for communication with no fallback to HTTP/1.1.

*/

H2,

/**
* HTTP/2.0 support with clear-text.
* <p>If used along with HTTP/1.1 protocol, will support H2C "upgrade":
* Request or consume requests as HTTP/1.1 first, looking for HTTP/2.0 headers
* and {@literal Connection: Upgrade}. A server will typically reply a
successful
* 101 status if upgrade is successful or a fallback HTTP/1.1 response. When
* successful the client will start sending HTTP/2.0 traffic.
* <p>If used without HTTP/1.1 protocol, will support H2C "prior-knowledge":
Doesn't
* require {@literal Connection: Upgrade} handshake between a client and
server but
* fallback to HTTP/1.1 will not be supported.
*/
H2C

5.11. Metrics

The HTTP server supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.http.server.

The following table provides information for the HTTP server metrics:

77

https://micrometer.io/

metric name

reactor.netty.http.server.data.re
ceived

reactor.netty.http.server.data.se
nt

reactor.netty.http.server.errors

reactor.netty.http.server.data.re
ceived.time

reactor.netty.http.server.data.se
nt.time

reactor.netty.http.server.respon
se.time

type

DistributionSummary

DistributionSummary

Counter

Timer

Timer

Timer

These additional metrics are also available:

ByteBufAllocator metrics

metric name

reactor.netty.bytebuf.allocator.
used.heap.memory

reactor.netty.bytebuf.allocator.
used.direct.memory

reactor.netty.bytebuf.allocator.
used.heap.arenas

reactor.netty.bytebuf.allocator.
used.direct.arenas

reactor.netty.bytebuf.allocator.
used.threadlocal.caches

reactor.netty.bytebuf.allocator.
used.tiny.cache.size

reactor.netty.bytebuf.allocator.
used.small.cache.size

reactor.netty.bytebuf.allocator.
used.normal.cache.size

reactor.netty.bytebuf.allocator.
used.chunk.size

type
Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

The following example enables that integration:

78

description

Amount of the data received, in
bytes

Amount of the data sent, in
bytes

Number of errors that occurred

Time spent in consuming
incoming data

Time spent in sending outgoing
data

Total time for the
request/response

description

The number of the bytes of the
heap memory

The number of the bytes of the
direct memory

The number of heap arenas
(when PooledByteBufAllocator)

The number of direct arenas
(when PooledByteBufAllocator)

The number of thread local
caches (when
PooledByteBufAllocator)

The size of the tiny cache (when
PooledByteBufAllocator)

The size of the small cache
(when PooledByteBufAllocator)

The size of the normal cache
(when PooledByteBufAllocator)

The chunk size for an arena
(when PooledByteBufAllocator)

J../../reactor-netty-

examples/src/main/java/reactor/netty/examples/documentation/http/server/metrics/Application.java

import io.micrometer.core.instrument.Metrics;

import io.micrometer.core.instrument.config.MeterFilter;
import reactor.core.publisher.Mono;

import reactor.netty.DisposableServer;

import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
Metrics.globalRegistry @
.config()

.meterFilter(MeterFilter.maximumAllowableTags("reactor.netty.http.server", "URI",
100, MeterFilter.deny()));

DisposableServer server =
HttpServer.create()
.metrics(true, s -> {
if (s.startsWith("/stream/")) { @
return "/stream/{n}";
}
else if (s.startsWith("/bytes/")) {
return "/bytes/{n}";
}
return s;
H®
.route(r ->
r.get("/stream/{n}",
(req, res) ->
res.sendString(Mono.just(req.param("n"))))
.get("/bytes/{n}",
(req, res) ->
res.sendString(Mono.just(req.param("n")))))
.bindNow();

server.onDispose()
.block();

@ Applies upper limit for the meters with URI tag
@ Templated URIs will be used as an URI tag value when possible

® Enables the built-in integration with Micrometer

79

In order to avoid a memory and CPU overhead of the enabled metrics, it is

o important to convert the real URIs to templated URIs when possible. Without a
conversion to a template-like form, each distinct URI leads to the creation of a
distinct tag, which takes a lot of memory for the metrics.

Always apply an upper limit for the meters with URI tags. Configuring an upper
o limit on the number of meters can help in cases when the real URIs cannot be
templated. You can find more information at maximumAllowableTags.

When HTTP server metrics are needed for an integration with a system other than Micrometer or
you want to provide your own integration with Micrometer, you can provide your own metrics
recorder, as follows:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/metrics/custom/Applicatio
njava

import reactor.core.publisher.Mono;

import reactor.netty.DisposableServer;

import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.http.server.HttpServer;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.metrics(true, CustomHttpServerMetricsRecorder::new) @
.route(r ->
r.get("/stream/{n}",
(req, res) ->
res.sendString(Mono.just(req.param("n"))))
.get("/bytes/{n}",
(req, res) ->
res.sendString(Mono.just(req.param("n")))))
.bindNow();

server.onDispose()
.block();

@ Enables HTTP server metrics and provides HttpServerMetricsRecorder implementation.

80

https://micrometer.io/docs/concepts#_denyaccept_meters
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/server/HttpServerMetricsRecorder.html

5.12. Unix Domain Sockets

The HTTP server supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.bindAddress(() -> new
DomainSocketAddress("/tmp/test.sock")) @
.bindNow();

server.onDispose()
.block();

@ Specifies DomainSocketAddress that will be used

81

Chapter 6. HTTP Client

Reactor Netty provides the easy-to-use and easy-to-configure HttpClient. It hides most of the Netty
functionality that is required to create an HTTP client and adds Reactive Streams backpressure.

6.1. Connect

To connect the HTTP client to a given HTTP endpoint, you must create and configure a HttpClient
instance. The following example shows how to do so:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/connect/Application.java

import reactor.netty.http.client.HttpClient;
public class Application {

public static void main(String[] args) {
HttpClient client = HttpClient.create(); @

client.get() @
.uri("https://example.com/") @
.response() @
.block();

@ Creates a HttpClient instance ready for configuring.
@ Specifies that GET method will be used.
® Specifies the path.

@ Obtains the response HttpClientResponse

The following example uses WebSocket:

82

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClientResponse.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/websocket/Application.java

import io.netty.buffer.Unpooled;

import io.netty.util.CharsetUtil;

import reactor.core.publisher.Flux;

import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
HttpClient client = HttpClient.create();

client.websocket()
.uri("wss://echo.websocket.org")
.handle((inbound, outbound) -> {
inbound.receive()
.asString()
.take(1)
.subscribe(System.out::println);

final byte[] msgBytes =
"hello".getBytes(CharsetUtil.IS0_8859_1);
return outbound.send(Flux.just(Unpooled.wrappedBuffer(msgBytes),
Unpooled.wrappedBuffer(msgBytes)))
.neverComplete();

3]
.blockLast();

6.1.1. Host and Port

In order to connect to a specific host and port, you can apply the following configuration to the HTTP
client:

83

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/address/Application.java

import reactor.netty.http.client.HttpClient;
public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.host("example.com") @
.port(80); @

client.get()
uri("/")
.response()
.block();

@ Configures the HTTP host
@ Configures the HTTP port

6.2. Eager Initialization

By default, the initialization of the HttpClient resources happens on demand. This means that the
first request absorbs the extra time needed to initialize and load:

the event loop group
e the host name resolver

* the native transport libraries (when native transport is used)

the native libraries for the security (in case of OpenSs1)

When you need to preload these resources, you can configure the HttpClient as follows:

84

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/warmup/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.ByteBufFlux;
import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
HttpClient client = HttpClient.create();

client.warmup() @
.block();

client.post()
.uri("https://example.com/")
.send(ByteBufFlux.fromString(Mono.just("hello")))
.response()
.block(); @

@ Initialize and load the event loop group, the host name resolver, the native transport
libraries and the native libraries for the security

@ Host name resolution happens with the first request. In this example, a connection pool is
used, so with the first request the connection to the URL is established, the subsequent
requests to the same URL reuse the connections from the pool.

6.3. Writing Data

To send data to a given HTTP endpoint, you can provide a Publisher by using the send(Publisher)
method. By default, Transfer-Encoding: chunked is applied for those HTTP methods for which a
request body is expected. Content-Length provided through request headers disables Transfer-
Encoding: chunked, if necessary. The following example sends hello:

85

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClient.RequestSender.html#send-org.reactivestreams.Publisher-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.ByteBufFlux;
import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
HttpClient client = HttpClient.create();

client.post()
.uri("https://example.com/")
.send(ByteBufFlux.fromString(Mono.just("hello"))) @
.response()
.block();

@ Sends a hello string to the given HTTP endpoint

6.3.1. Adding Headers and Other Metadata

When sending data to a given HTTP endpoint, you may need to send additional headers, cookies and
other metadata. You can use the following configuration to do so:

86

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/send/headers/Application.ja
va

import io.netty.handler.codec.http.HttpHeaderNames;
import reactor.core.publisher.Mono;

import reactor.netty.ByteBufFlux;

import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.headers(h -> h.set(HttpHeaderNames.CONTENT_LENGTH, 5));

@®
client.post()
.uri("https://example.com/")
.send(ByteBufFlux.fromString(Mono.just("hello")))
.response()
.block();
}
}

@ Disables Transfer-Encoding: chunked and provides Content-Length header.

Compression

You can enable compression on the HTTP client, which means the request header Accept-Encoding is
added to the request headers. The following example shows how to do so:

87

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/compression/Application.ja
va

import reactor.netty.http.client.HttpClient;
public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.compress(true);

client.get()
.uri("https://example.com/")
.response()
.block();

Auto-Redirect Support

You can configure the HTTP client to enable auto-redirect support.
Reactor Netty provides two different strategies for auto-redirect support:

» followRedirect(boolean): Specifies whether HTTP auto-redirect support is enabled for statuses
301]302|307|308.

o followRedirect(BiPredicate<HttpClientRequest, HttpClientResponse>): Enables auto-redirect
support if the supplied predicate matches.

The following example uses followRedirect(true):

88

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/redirect/Application.java

import reactor.netty.http.client.HttpClient;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.followRedirect(true);
client.get()
.uri("https://example.com/")

.response()
.block();

6.4. Consuming Data

To receive data from a given HTTP endpoint, you can use one of the methods from
HttpClient.ResponseReceiver. The following example uses the responseContent method:

89

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClient.ResponseReceiver.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/read/Application.java

import reactor.netty.http.client.HttpClient;
public class Application {

public static void main(String[] args) {
HttpClient client = HttpClient.create();

client.qget()
.uri("https://example.com/")
.responseContent() @

.aggregate() @
.asString() ®
.block();

@ Receives data from a given HTTP endpoint
@ Aggregates the data

® Transforms the data as string

6.4.1. Reading Headers and Other Metadata

When receiving data from a given HTTP endpoint, you can check response headers, status code, and
other metadata. You can obtain this additional metadata by using HttpClientResponse. The following
example shows how to do so.

90

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClientResponse.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/read/status/Application.jav
a

import reactor.netty.http.client.HttpClient;
public class Application {

public static void main(String[] args) {
HttpClient client = HttpClient.create();

client.get()
.uri("https://example.com/")
.responseSingle((resp, bytes) -> {
System.out.println(resp.status()); @
return bytes.asString();

3]
.block();

@ Obtains the status code.

6.4.2. HTTP Response Decoder
By default, Netty configures some restrictions for the incoming responses, such as:

* The maximum length of the initial line.
* The maximum length of all headers.

* The maximum length of the content or each chunk.
For more information, see HttpResponseDecoder

By default, the HTTP client is configured with the following settings:

/-./../reactor-netty-http/src/main/java/reactor/netty/http/HttpDecoderSpec.java

public static final int DEFAULT_MAX_INITIAL_LINE_LENGTH = 4096;
public static final int DEFAULT_MAX_HEADER_SIZE = 8192;
public static final int DEFAULT_MAX_CHUNK_SIZE = 8192;
public static final boolean DEFAULT_VALIDATE_HEADERS = true;
public static final int DEFAULT_INITIAL_BUFFER_SIZE = 128;

91

https://netty.io/4.1/api/io/netty/handler/codec/http/HttpResponseDecoder.html

J../../reactor-netty-http/src/main/java/reactor/netty/http/client/HttpResponseDecoderSpec.java

public static final boolean DEFAULT_FAIL_ON_MISSING_RESPONSE
public static final boolean DEFAULT_PARSE_HTTP_AFTER_CONNECT_REQUEST

false;
false;

/**

* The maximum length of the content of the HTTP/2.0 clear-text upgrade request.
* By default the client will allow an upgrade request with up to 65536 as

* the maximum length of the aggregated content.

*/

public static final int DEFAULT_H2C_MAX_CONTENT_LENGTH = 65536;

When you need to change these default settings, you can configure the HTTP client as follows:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/responsedecoder/Applicatio
njava

import reactor.netty.http.client.HttpClient;
public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.httpResponseDecoder(spec -> spec.maxHeaderSize(16384));

client.qget()
.uri("https://example.com/")
.responseContent()

.aggregate()
.asString()
.block();

® The maximum length of all headers will be 16384. When this value is exceeded, a
TooLongFrameException is raised.

6.5. Lifecycle Callbacks

The following lifecycle callbacks are provided to let you extend the HttpClient.

92

https://netty.io/4.1/api/io/netty/handler/codec/TooLongFrameException.html

Callback
doAfterRequest

doAfterResolve

doAfterResponseSuccess

doOnChannelInit
doOnConnect
doOnConnected

doOnDisconnected

doOnError

doOnRedirect

doOnRequest

doOnRequestError

doOnResolve

doOnResolveError

doOnResponse

doOnResponseError

Description
Invoked when the request has been sent.

Invoked after the remote address has been
resolved successfully.

Invoked after the response has been fully
received.

Invoked when initializing the channel.
Invoked when the channel is about to connect.
Invoked after the channel has been connected.

Invoked after the channel has been
disconnected.

Invoked when the request has not been sent and
when the response has not been fully received.

Invoked when the response headers have been
received, and the request is about to be
redirected.

Invoked when the request is about to be sent.
Invoked when the request has not been sent.

Invoked when the remote address is about to be
resolved.

Invoked in case the remote address hasn’t been
resolved successfully.

Invoked after the response headers have been
received.

Invoked when the response has not been fully
received.

The following example uses the doOnConnected and doOnChannelInit callbacks:

93

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.http.client.HttpClient;

import java.util.concurrent.TimeUnit;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.doOnConnected(conn ->
conn.addHandler (new ReadTimeoutHandler(10,
TimeUnit.SECONDS))) @
.doOnChannelInit((observer, channel, remoteAddress) ->
channel.pipeline()
.addFirst(new
LoggingHandler("reactor.netty.examples"))); @

client.get()
.uri("https://example.com/")

.response()
.block();

@ Netty pipeline is extended with ReadTimeoutHandler when the channel has been connected.

@ Netty pipeline is extended with LoggingHandler when initializing the channel.

6.6. TCP-level Configuration

When you need configurations on a TCP level, you can use the following snippet to extend the
default TCP client configuration (add an option, bind address etc.):

94

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/channeloptions/Application
Java

import io.netty.channel.ChannelOption;

import io.netty.channel.epoll.EpollChannelOption;
import reactor.netty.http.client.HttpClient;
import java.net.InetSocketAddress;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.bindAddress(() -> new InetSocketAddress("host", 1234))
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000) @
.option(ChannelOption.SO_KEEPALIVE, true) @
// The options below are available only when Epoll
transport is used
.option(Epol1ChannelOption.TCP_KEEPIDLE, 300) ®
.option(Epol1ChannelOption.TCP_KEEPINTVL, 60) @
.option(Epol1ChannelOption.TCP_KEEPCNT, 8); ®

String response =
client.get()
.uri("https://example.com/")
.responseContent()

.aggregate()
.asString()
.block();

System.out.println("Response " + response);

@ Configures the connection establishment timeout to 10 seconds.

@ Enables TCP keepalive. This means that TCP starts sending keepalive probes when a
connection is idle for some time.

® The connection needs to remain idle for 5 minutes before TCP starts sending keepalive
probes.

@ Configures the time between individual keepalive probes to 1 minute.

® Configures the maximum number of TCP keepalive probes to 8.

See TCP Client for more about TCP level configurations.

95

6.6.1. Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging 1is disabled. To enable it, you must set the logger
reactor.netty.http.client.HttpClient level to DEBUG and apply the following configuration:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/wiretap/Application.java

import reactor.netty.http.client.HttpClient;
public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.wiretap(true); @

client.get()
.uri("https://example.com/")

.response()
.block();

@ Enables the wire logging

By default, the wire logging uses AdvancedByteBufFormat#HEX DUMP when printing the content.
When you need to change this to AdvancedByteBufFormat#SIMPLE or
AdvancedByteBufFormat#TEXTUAL, you can configure the HttpClient as follows:

96

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/wiretap/custom/Application
Java

import io.netty.handler.logging.Loglevel;
import reactor.netty.http.client.HttpClient;
import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.wiretap("logger-name", LoglLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL); @D

client.get()
.uri("https://example.com/")
.response()
.block();

@ Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the
content.

6.7. SSL and TLS

When you need SSL or TLS, you can apply the configuration shown in the next example. By default,
if OpenSSL is available, a SslProvider.OPENSSL provider is used as a provider. Otherwise, a
SslProvider.JDK provider is used You can switch the provider by using SslContextBuilder or by
setting -Dio.netty.handler.ss1l.noOpenSsl=true. The following example uses Ss1ContextBuilder:

97

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/security/Application.java

import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
Ss1ContextBuilder sslContextBuilder = SslContextBuilder.forClient();

HttpClient client =
HttpClient.create()
.secure(spec -> spec.sslContext(sslContextBuilder));

client.get()
.uri("https://example.com/")
.response()
.block();

6.7.1. Server Name Indication

By default, the HTTP client sends the remote host name as SNI server name. When you need to
change this default setting, you can configure the HTTP client as follows:

98

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/sni/Application.java

import io.netty.handler.ssl.Ss1Context;
import io.netty.handler.ssl.Ss1ContextBuilder;
import reactor.netty.http.client.HttpClient;

import javax.net.ssl.SNIHostName;
public class Application {

public static void main(String[] args) throws Exception {
Ss1Context sslContext = Ss1ContextBuilder.forClient().build();

HttpClient client =
HttpClient.create()
.secure(spec -> spec.sslContext(sslContext)
.serverNames(new
SNIHostName("test.com")));

client.get()
.uri("https://127.0.0.1:8080/")
.response()
.block();

6.8. Retry Strategies

By default, the HTTP client retries the request once if it was aborted on the TCP level.

6.9. HTTP/2

By default, the HTTP client supports HTTP/1.1. If you need HTTP/2, you can get it through
configuration. In addition to the protocol configuration, if you need H2 but not H2C (cleartext), you
must also configure SSL.

As Application-Layer Protocol Negotiation (ALPN) is not supported “out-of-the-box”
o by JDK8 (although some vendors backported ALPN to]JDKS8), you need an
additional dependency to a native library that supports it— for example, netty-

tenative-boringssl-static

The following listing presents a simple H2 example:

99

https://netty.io/wiki/forked-tomcat-native.html
https://netty.io/wiki/forked-tomcat-native.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/http2/H2Application.java

import io.netty.handler.codec.http.HttpHeaders;
import reactor.core.publisher.Mono;

import reactor.netty.http.HttpProtocol;

import reactor.netty.http.client.HttpClient;
import reactor.util.function.Tuple2;

public class H2Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.protocol(HttpProtocol.H2) @®
.secure(); @

Tuple2<String, HttpHeaders> response =
client.get()
.uri("https://example.com/")
.responseSingle((res, bytes) -> bytes.asString()

.zipWith(Mono.just(res.responseHeaders())))
.block();
System.out.println("Used stream ID: "
stream-id"));
System.out.println("Response:

+ response.getT2().get("x-http2-

+ response.getT1());
}

@ Configures the client to support only HTTP/2
@ Configures SSL

The following listing presents a simple H2C example:

100

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/http2/H2CApplication.java

import io.netty.handler.codec.http.HttpHeaders;
import reactor.core.publisher.Mono;

import reactor.netty.http.HttpProtocol;

import reactor.netty.http.client.HttpClient;
import reactor.util.function.Tuple2;

public class H2CApplication {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.protocol(HttpProtocol.H2C);

Tuple2<String, HttpHeaders> response =
client.get()
.uri("http://localhost:8080/")
.responseSingle((res, bytes) -> bytes.asString()

.zipWith(Mono.just(res.responseHeaders())))
.block();
System.out.println("Used stream ID: "
stream-id"));
System.out.println("Response: " + response.getT1());

+ response.getT2().get("x-http2-

}

6.9.1. Protocol Selection

101

J../../reactor-netty-http/src/main/java/reactor/netty/http/HttpProtocol.java

public enum HttpProtocol {

/**

* The default supported HTTP protocol by HttpServer and HttpClient
*/
HTTP11,

/**

* HTTP/2.0 support with TLS

* <p>If used along with HTTP/1.1 protocol, HTTP/2.0 will be the preferred
protocol.

* While negotiating the application level protocol, HTTP/2.0 or HTTP/1.1 can
be chosen.

* <p>If used without HTTP/1.1 protocol, HTTP/2.0 will always be offered as a
protocol

* for communication with no fallback to HTTP/1.1.

*/

H2,

/**

* HTTP/2.0 support with clear-text.

* <p>If used along with HTTP/1.1 protocol, will support H2C "upgrade":

* Request or consume requests as HTTP/1.1 first, looking for HTTP/2.0 headers

* and {@literal Connection: Upgrade}. A server will typically reply a
successful

* 101 status if upgrade is successful or a fallback HTTP/1.1 response. When

* successful the client will start sending HTTP/2.0 traffic.

* <p>If used without HTTP/1.1 protocol, will support H2C "prior-knowledge":

Doesn't

* require {@literal Connection: Upgrade} handshake between a client and
server but

* fallback to HTTP/1.1 will not be supported.

*/

H2C
}

6.10. Metrics

The HTTP client supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.http.client

The following table provides information for the HTTP client metrics:

102

https://micrometer.io/

metric name

reactor.netty.http.client.data.rec
eived

reactor.netty.http.client.data.se
nt

reactor.netty.http.client.errors

reactor.netty.http.client.tls.hand
shake.time

reactor.netty.http.client.connect
.time

reactor.netty.http.client.address
.resolver

reactor.netty.http.client.data.rec
eived.time

reactor.netty.http.client.data.se
nt.time

reactor.netty.http.client.respons
e.time

type

DistributionSummary

DistributionSummary

Counter

Timer

Timer

Timer

Timer

Timer

Timer

These additional metrics are also available:

Pooled ConnectionProvider metrics

metric name

reactor.netty.connection.provid
er.total.connections

reactor.netty.connection.provid
er.active.connections

reactor.netty.connection.provid
er.idle.connections

reactor.netty.connection.provid
er.pending.connections

ByteBufAllocator metrics

metric name

reactor.netty.bytebuf.allocator.
used.heap.memory

reactor.netty.bytebuf.allocator.
used.direct.memory

type
Gauge

Gauge

Gauge

Gauge

type
Gauge

Gauge

description

Amount of the data received, in
bytes

Amount of the data sent, in
bytes

Number of errors that occurred

Time spent for TLS handshake

Time spent for connecting to
the remote address

Time spent for resolving the
address

Time spent in consuming
incoming data

Time spent in sending outgoing
data

Total time for the
request/response

description

The number of all connections,
active or idle

The number of the connections
that have been successfully
acquired and are in active use

The number of the idle
connections

The number of requests that
are waiting for a connection

description

The number of the bytes of the
heap memory

The number of the bytes of the
direct memory

103

metric name

reactor.netty.bytebuf.allocator.

used.heap.arenas

reactor.netty.bytebuf.allocator.

used.direct.arenas

reactor.netty.bytebuf.allocator.

used.threadlocal.caches

reactor.netty.bytebuf.allocator.

used.tiny.cache.size

reactor.netty.bytebuf.allocator.

used.small.cache.size

reactor.netty.bytebuf.allocator.

used.normal.cache.size

reactor.netty.bytebuf.allocator.

used.chunk.size

The following example enables that integration:

104

type
Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

description

The number of heap arenas
(when PooledByteBufAllocator)

The number of direct arenas
(when PooledByteBufAllocator)

The number of thread local
caches (when
PooledByteBufAllocator)

The size of the tiny cache (when
PooledByteBufAllocator)

The size of the small cache
(when PooledByteBufAllocator)

The size of the normal cache
(when PooledByteBufAllocator)

The chunk size for an arena
(when PooledByteBufAllocator)

J../../reactor-netty-

examples/src/main/java/reactor/netty/examples/documentation/http/client/metrics/Application.java

import io.micrometer.core.instrument.Metrics;
import io.micrometer.core.instrument.config.MeterFilter;
import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
Metrics.globalRegistry @
.config()

.meterFilter(MeterFilter.maximumAllowableTags("reactor.netty.http.client", "URI",
100, MeterFilter.deny()));

HttpClient client =
HttpClient.create()
.metrics(true, s -> {

if (s.startsWith("/stream/")) { @
return "/stream/{n}";

}

else if (s.startsWith("/bytes/")) {
return "/bytes/{n}";

}

return s;

D ®

client.get()
.uri("https://httpbin.org/stream/2")
.responseContent()
.blockLast();

client.get()
.uri("https://httpbin.org/bytes/1024")
.responseContent()
.blockLast();

@ Applies upper limit for the meters with URI tag
@ Templated URIs will be used as a URI tag value when possible

® Enables the built-in integration with Micrometer

105

In order to avoid a memory and CPU overhead of the enabled metrics, it is

o important to convert the real URIs to templated URIs when possible. Without a
conversion to a template-like form, each distinct URI leads to the creation of a
distinct tag, which takes a lot of memory for the metrics.

Always apply an upper limit for the meters with URI tags. Configuring an upper
o limit on the number of meters can help in cases when the real URIs cannot be
templated. You can find more information at maximumAllowableTags.

When HTTP client metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/metrics/custom/Application
Java

import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.http.client.HttpClient;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {
public static void main(String[] args) {
HttpClient client =

HttpClient.create()
.metrics(true, CustomHttpClientMetricsRecorder::new); @®

client.qget()
.uri("https://httpbin.org/stream/2")

.response()
.block();

@ Enables HTTP client metrics and provides HttpClientMetricsRecorder implementation.

6.11. Unix Domain Sockets

The HTTP client supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

106

https://micrometer.io/docs/concepts#_denyaccept_meters
https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClientMetricsRecorder.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.remoteAddress(() -> new
DomainSocketAddress("/tmp/test.sock")); @

client.get()
uri("/")
.response()
.block();

@ Specifies DomainSocketAddress that will be used

6.12. Host Name Resolution

By default, the HttpClient uses Netty’s domain name lookup mechanism that resolves a domain
name asynchronously. This is as an alternative of the JVM’s built-in blocking resolver.

When you need to change the default settings, you can configure the HttpClient as follows:

107

J../../reactor-netty-

examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/Application.java

import reactor.netty.http.client.HttpClient;

import java.time.Duration;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()

.resolver(spec ->

spec.queryTimeout(Duration.ofMillis(500))); @

String response

client.get()

.uri("https://example.com/")
.responseContent()
.aggregate()

.asString()

.block();

System.out.println("Response " + response);

@ The timeout of each DNS query performed by this resolver will be 500ms.

The following listing shows the available configurations:

Configuration name

cacheMaxTimeTolLive

cacheMinTimeToLive

cacheNegativeTimeTolLive

108

Description

The max time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is greater than this max time to live, this
resolver ignores the time to live from the DNS
server and uses this max time to live. Default to
Integer.MAX_VALUE.

The min time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is less than this min time to live, this
resolver ignores the time to live from the DNS
server and uses this min time to live. Default: 0.

The time to live of the cache for the failed DNS
queries (resolution: seconds). Default: 0.

Configuration name Description

disableOptionalRecord Disables the automatic inclusion of an optional
record that tries to give a hint to the remote DNS
server about how much data the resolver can
read per response. By default, this setting is
enabled.

disableRecursionDesired Specifies whether this resolver has to send a
DNS query with the recursion desired (RD) flag
set. By default, this setting is enabled.

maxPayloadSize Sets the capacity of the datagram packet buffer
(in bytes). Default: 4096.

maxQueriesPerResolve Sets the maximum allowed number of DNS
queries to send when resolving a host name.
Default: 16.

ndots Sets the number of dots that must appear in a

name before an initial absolute query is made.
Default: -1 (to determine the value from the OS
on Unix or use a value of 1 otherwise).

queryTimeout Sets the timeout of each DNS query performed
by this resolver (resolution: milliseconds).
Default: 5000.

resolvedAddressTypes The list of the protocol families of the resolved
address.
roundRobinSelection Enables an AddressResolverGroup of

DnsNameResolver that supports random selection
of destination addresses if multiple are provided
by the nameserver. See

RoundRobinDnsAddressResolverGroup. Default:
DnsAddressResolverGroup

runOn Performs the communication with the DNS
servers on the given LoopResources. By default,
the LoopResources specified on the client level
are used.

searchDomains The list of search domains of the resolver. By
default, the effective search domain list is
populated by using the system DNS search
domains.

trace A specific logger and log level to be used by this
resolver when generating detailed trace
information in case of resolution failure.

Sometimes, you may want to switch to the JVM built-in resolver. To do so, you can configure the
HttpClient as follows:

109

https://netty.io/4.1/api/io/netty/resolver/AddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsNameResolver.html
https://netty.io/4.1/api/io/netty/resolver/dns/RoundRobinDnsAddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsAddressResolverGroup.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/LoopResources.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/custom/Applicatio
njava

import io.netty.resolver.DefaultAddressResolverGroup;
import reactor.netty.http.client.HttpClient;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.resolver(DefaultAddressResolverGroup.INSTANCE); @

String response =
client.get()
.uri("https://example.com/")
.responseContent()

.aggregate()
.asString()
.block();

System.out.println("Response " + response);

@ Sets the JVM built-in resolver.

6.13. Timeout Configuration

This section describes various timeout configuration options that can be used in HttpClient.
Configuring a proper timeout may improve or solve issues in the communication process. The
configuration options can be grouped as follows:
* Connection Pool Timeout
» HttpClient Timeout
o Response Timeout
o Connection Timeout
o SSL/TLS Timeout
o Proxy Timeout

o Host Name Resolution Timeout

6.13.1. Connection Pool Timeout

By default, HttpClient uses a connection pool. When a request is completed successfully and if the

110

connection is not scheduled for closing, the connection is returned to the connection pool and can
thus be reused for processing another request. The connection may be reused immediately for
another request or may stay idle in the connection pool for some time.

The following list describes the available timeout configuration options:

* maxIdleTime - The maximum time (resolution: ms) that this connection stays idle in the
connection pool. By default, maxIdleTime is not specified.

When you configure maxIdleTime, you should consider the idle timeout

o configuration on the target server. Choose a configuration that is equal to or less
than the one on the target server. By doing so, you can reduce the I/O issues caused
by a connection closed by the target server.

* maxLifeTime - The maximum time (resolution: ms) that this connection stays alive. By default,
maxLifeTime is not specified.

* pendingAcquireTimeout - The maximum time (resolution: ms) after which a pending acquire

operation must complete, or a PoolAcquireTimeoutException is thrown. Default: 45s.

By default, these timeouts are checked on connection release or acquire operations and, if some
timeout is reached, the connection is closed and removed from the connection pool. However, you
can also configure the connection pool, by setting evictInBackground, to perform periodic checks on
connections.

To customize the default settings, you can configure HttpClient as follows:

111

https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/ConnectionProvider.ConnectionPoolSpec.html#maxIdleTime-java.time.Duration-
https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/ConnectionProvider.ConnectionPoolSpec.html#maxLifeTime-java.time.Duration-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.resources.ConnectionProvider;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
ConnectionProvider provider =
ConnectionProvider.builder("custom")
.maxConnections(50)
.maxIdleTime(Duration.ofSeconds(20))

®
.maxLifeTime(Duration.ofSeconds(60))
@
.pendingAcquireTimeout(Duration.ofSeconds(60))
®
.evictInBackground(Duration.ofSeconds(120))
@
.build();
HttpClient client = HttpClient.create(provider);
String response =
client.get()
.uri("https://example.com/")
.responseContent()
.aggregate()
.asString()
.block();
System.out.println("Response " + response);
provider.disposelLater()
.block();
}
}

@ Configures the maximum time for a connection to stay idle to 20 seconds.
@ Configures the maximum time for a connection to stay alive to 60 seconds.
® Configures the maximum time for the pending acquire operation to 60 seconds.

@ Every two minutes, the connection pool is regularly checked for connections that are
applicable for removal.

112

6.13.2. HttpClient Timeout

This section provides information for the various timeout configuration options at the HttpClient
level.

Reactor Netty uses Reactor Core as its Reactive Streams implementation, and you
may want to use the timeout operator that Mono and Flux provide. Keep in mind,
however, that it is better to use the more specific timeout configuration options

o available in Reactor Netty, since they provide more control for a specific purpose
and use case. By contrast, the timeout operator can only apply to the operation as a
whole, from establishing the connection to the remote peer to receiving the
response.

Response Timeout

HttpClient provides an API for configuring a default response timeout for all requests. You can
change this default response timeout through an API for a specific request. By default,
responseTimeout is not specified.

o It is always a good practice to configure a response timeout.

To customize the default settings, you can configure HttpClient as follows:

113

https://projectreactor.io/docs/netty/release/api/reactor/netty/http/client/HttpClient.html#responseTimeout-java.time.Duration-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/read/timeout/Application.ja
va

import reactor.core.publisher.Mono;
import reactor.netty.http.client.HttpClient;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.responseTimeout(Duration.ofSeconds(1)); ©)

String responsel =
client.post()

.uri("https://example.com/")

.send((req, out) -> {
req.responseTimeout(Duration.ofSeconds(2)); @
return out.sendString(Mono.just("body1"));

1))

.responseContent()

.aggregate()

.asString()

.block();

System.out.println("Response " + responsel);
String response? =
client.post()
.uri("https://example.com/")
.send((req, out) -> out.sendString(Mono.just("body2")))
.responseContent()
.aggregate()
.asString()
.block();

System.out.println("Response " + response?);

@ Configures the default response timeout to 1 second.

@ Configures a response timeout for a specific request to 2 seconds.

114

Connection Timeout

The following listing shows all available connection timeout configuration options, but some of
them may apply only to a specific transport.

o CONNECT_TIMEOUT_MILLIS - If the connection establishment attempt to the remote peer does not
finish within the configured connect timeout (resolution: ms), the connection establishment
attempt fails. Default: 30s.

» SO_KEEPALIVE - When the connection stays idle for some time (the time is implementation
dependent, but the default is typically two hours), TCP automatically sends a keepalive probe to
the remote peer. By default, SO_KEEPALIVE is not enabled. When you run with Epoll transport,
you may also configure:

o TCP_KEEPIDLE - The maximum time (resolution: seconds) that this connection stays idle before
TCP starts sending keepalive probes, if SO_KEEPALIVE has been set. The maximum time is
implementation dependent, but the default is typically two hours.

o TCP_KEEPINTVL - The time (resolution: seconds) between individual keepalive probes.

o TCP_KEEPCNT - The maximum number of keepalive probes TCP should send before dropping
the connection.

Sometimes, between the client and the server, you may have a network
component that silently drops the idle connections without sending a response.

o From the Reactor Netty point of view, in this use case, the remote peer just does
not respond. To be able to handle such a use case you may consider configuring
SO_KEEPALIVE.

To customize the default settings, you can configure HttpClient as follows:

115

https://docs.oracle.com/javase/8/docs/api/java/net/SocketOptions.html#SO_KEEPALIVE
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/channeloptions/Application
Java

import io.netty.channel.ChannelOption;

import io.netty.channel.epoll.EpollChannelOption;
import reactor.netty.http.client.HttpClient;
import java.net.InetSocketAddress;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.bindAddress(() -> new InetSocketAddress("host", 1234))
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000) @
.option(ChannelOption.SO_KEEPALIVE, true) @
// The options below are available only when Epoll
transport is used
.option(Epol1ChannelOption.TCP_KEEPIDLE, 300) ®
.option(Epol1ChannelOption.TCP_KEEPINTVL, 60) @
.option(Epol1ChannelOption.TCP_KEEPCNT, 8); ®

String response =
client.get()
.uri("https://example.com/")
.responseContent()

.aggregate()
.asString()
.block();

System.out.println("Response " + response);

@ Configures the connection establishment timeout to 10 seconds.

@ Enables TCP keepalive. This means that TCP starts sending keepalive probes when a
connection is idle for some time.

® The connection needs to remain idle for 5 minutes before TCP starts sending keepalive
probes.

@ Configures the time between individual keepalive probes to 1 minute.

® Configures the maximum number of TCP keepalive probes to 8.

SSL/TLS Timeout

HttpClient supports the SSL/TLS functionality provided by Netty.

116

The following list describes the available timeout configuration options:

* handshakeTimeout - Use this option to configure the SSL handshake timeout (resolution: ms).
Default: 10s.

o You should consider increasing the SSL handshake timeout when expecting slow
network connections.

* closeNotifyFlushTimeout - Use this option to configure the SSL close_notify flush timeout
(resolution: ms). Default: 3s.

* closeNotifyReadTimeout - Use this option to configure the SSL close_notify read timeout
(resolution: ms). Default: 0s.

To customize the default settings, you can configure HttpClient as follows:

117

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/security/custom/Applicatio
njava

import io.netty.handler.ssl.Ss1ContextBuilder;
import reactor.netty.http.client.HttpClient;
import reactor.netty.tcp.Ss1Provider;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Ss1ContextBuilder sslContextBuilder = SslContextBuilder.forClient();

HttpClient client =
HttpClient.create()
.secure(spec -> spec.sslContext(ss1ContextBuilder)

.defaultConfiguration(Ss1Provider.DefaultConfigurationType.TCP)
.handshakeTimeout(Duration.ofSeconds(30)) O)
.closeNotifyFlushTimeout(Duration.ofSeconds(10)) @
.closeNotifyReadTimeout(Duration.ofSeconds(10))); ®

String response =
client.get()
.uri("https://example.com/")
.responseContent()

.aggregate()
.asString()
.block();

System.out.println("Response " + response);

@ Configures the SSL handshake timeout to 30 seconds.
@ Configures the SSL close_notify flush timeout to 10 seconds.

® Configures the SSL close_notify read timeout to 10 seconds.

Proxy Timeout

HttpClient supports the proxy functionality provided by Netty and provides a way to specify the
connection establishment timeout. If the connection establishment attempt to the remote peer does
not finish within the timeout, the connection establishment attempt fails. Default: 10s.

118

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/ProxyProvider.Builder.html#connectTimeoutMillis-long-

To customize the default settings, you can configure HttpClient as follows:

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/proxy/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.transport.ProxyProvider;

public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.proxy(spec -> spec.type(ProxyProvider.Proxy.HTTP)
.host("proxy")
.port(8080)
.connectTimeoutMillis(20_000)); @

String response =
client.get()
.uri("https://example.com/")
.responseContent()

.aggregate()
.asString()
.block();

System.out.println("Response " + response);

@ Configures the connection establishment timeout to 20 seconds.

Host Name Resolution Timeout

By default, the HttpClient uses Netty’s domain name lookup mechanism to resolve a domain name
asynchronously.

The following list describes the available timeout configuration options:

* cacheMaxTimeTolLive - The maximum time to live of the cached DNS resource records (resolution:
seconds). If the time to live of the DNS resource record returned by the DNS server is greater
than this maximum time to live, this resolver ignores the time to live from the DNS server and
uses this maximum time to live. Default: Integer.MAX_VALUE.

e cacheMinTimeTolLive - The minimum time to live of the cached DNS resource records (resolution:
seconds). If the time to live of the DNS resource record returned by the DNS server is less than
this minimum time to live, this resolver ignores the time to live from the DNS server and uses
this minimum time to live. Default: Os.

 cacheNegativeTimeTolLive - The time to live of the cache for the failed DNS queries (resolution:

119

seconds). Default: Os.

* queryTimeout - Sets the timeout of each DNS query performed by this resolver (resolution:
milliseconds). Default: 5s.

To customize the default settings, you can configure HttpClient as follows:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/Application.java

import reactor.netty.http.client.HttpClient;
import java.time.Duration;
public class Application {

public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.resolver(spec ->
spec.queryTimeout(Duration.ofMillis(500))); @

String response =
client.get()
.uri("https://example.com/")
.responseContent()
.aggregate()
.asString()
.block();

System.out.println("Response " + response);

@ The timeout of each DNS query performed by this resolver will be 500ms.

120

Chapter 7. UDP Server

Reactor Netty provides the easy-to-use and easy-to-configure UdpServer. It hides most of the Netty
functionality that is required to create a UDP server and adds Reactive Streams backpressure.

7.1. Starting and Stopping

To start a UDP server, a UdpServer instance has to be created and configured. By default, the host is
configured to be localhost and the port is 12012. The following example shows how to create and
start a UDP server:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/create/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create() ©)
.bindNow(Duration.ofSeconds(30)); @

server.onDispose()
.block();

@ Creates a UdpServer instance that is ready for configuring.

@ Starts the server in a blocking fashion and waits for it to finish initializing.

The returned Connection offers a simple server APIL including disposeNow(), which shuts the server
down in a blocking fashion.

7.1.1. Host and Port

In order to serve on a specific host and port, you can apply the following configuration to the UDP
server:

121

https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpServer.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/Connection.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/address/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection server =
UdpServer.create()
.host("localhost") @
.port(8080) @
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

® Configures the UDP server host

@ Configures the UDP server port

7.2. Eager Initialization

By default, the initialization of the UdpServer resources happens on demand. This means that the
bind operation absorbs the extra time needed to initialize and load:

* the event loop group

* the native transport libraries (when native transport is used)

When you need to preload these resources, you can configure the UdpServer as follows:

122

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/warmup/Application.java

import io.netty.channel.socket.DatagramPacket;
import reactor.core.publisher.Mono;

import reactor.netty.Connection;

import reactor.netty.udp.UdpServer;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
UdpServer udpServer =
UdpServer.create()
.handle((in, out) ->
out.sendObject(
in.receiveObject()
.map(o -> {
if (o instanceof DatagramPacket) {
DatagramPacket p = (DatagramPacket) o;
return new
DatagramPacket(p.content().retain(), p.sender());
}
else {
return Mono.error(new
Exception("Unexpected type of the message: " + 0));
}
)i

udpServer.warmup() @®
.block();

Connection server = udpServer.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Initialize and load the event loop group and the native transport libraries

7.3. Writing Data

To send data to the remote peer, you must attach an I/O handler. The I/O handler has access to
UdpOutbound, to be able to write data. The following example shows how to send hello:

123

https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpOutbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/send/Application.java

import io.netty.buffer.ByteBuf;

import io.netty.buffer.Unpooled;

import io.netty.channel.socket.DatagramPacket;
import io.netty.util.CharsetUtil;

import reactor.core.publisher.Mono;

import reactor.netty.Connection;

import reactor.netty.udp.UdpServer;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Connection server =
UdpServer.create()
.handle((in, out) ->
out.sendObject(
in.receiveObject()
.map(o -> {
if (o instanceof DatagramPacket) {
DatagramPacket p = (DatagramPacket) o;
ByteBuf buf =
Unpooled.copiedBuffer("hello", CharsetUtil.UTF_8);
return new DatagramPacket(buf,
p.sender()); ®
}
else {
return Mono.error(new
Exception("Unexpected type of the message: " + 0));
}

)
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Sends a hello string to the remote peer

7.4. Consuming Data

To receive data from a remote peer, you must attach an I/O handler. The I/O handler has access to
UdpInbound, to be able to read data. The following example shows how to consume data:

124

https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpInbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/read/Application.java

import io.netty.channel.socket.DatagramPacket;
import reactor.core.publisher.Mono;

import reactor.netty.Connection;

import reactor.netty.udp.UdpServer;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Connection server =
UdpServer.create()
.handle((in, out) ->
out.sendObject(
in.receiveObject()
.map(o -> {
if (o instanceof DatagramPacket) {
DatagramPacket p = (DatagramPacket) o;
return new
DatagramPacket(p.content().retain(), p.sender()); @
}
else {
return Mono.error(new
Exception("Unexpected type of the message: " + 0));
}

D))
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Receives data from the remote peer

7.5. Lifecycle Callbacks

The following lifecycle callbacks are provided to let you extend the UdpServer:

Callback Description

doOnB1ind Invoked when the server channel is about to
bind.

doOnBound Invoked when the server channel is bound.

doOnChannellnit Invoked when initializing the channel.

125

Callback Description

doOnUnbound Invoked when the server channel is unbound.

The following example uses the doOnBound and doOnChannelInit callbacks:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/lifecycle/Application.java

import io.netty.handler.codec.LineBasedFrameDecoder;
import io.netty.handler.logging.LoggingHandler;
import reactor.netty.Connection;

import reactor.netty.udp.UdpServer;

import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection server =
UdpServer.create()

.doOnBound(conn -> conn.addHandler (new
LineBasedFrameDecoder(8192))) @

.doOnChannelInit((observer, channel, remoteAddress) ->

channel.pipeline()
.addFirst(new

LoggingHandler("reactor.netty.examples"))) @

.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Netty pipeline is extended with LineBasedFrameDecoder when the server channel is bound.

@ Netty pipeline is extended with LoggingHandler when initializing the channel.

7.6. Connection Configuration

This section describes three kinds of configuration that you can use at the UDP level:

* Channel Options
* Wire Logger

* Event Loop Group

7.6.1. Channel Options

By default, the UDP server is configured with the following options:

126

/../../reactor-netty-core/src/main/java/reactor/netty/udp/UdpServerBind.java

UdpServerBind() {
this.config = new UdpServerConfig(
Collections.singletonMap(ChannelOption.AUTO_READ, false),
() -> new InetSocketAddress(NetUtil.LOCALHOST, DEFAULT_PORT));

If you need additional options or need to change the current options, you can apply the following
configuration:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/channeloptions/Applicatio
njava

import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection server =
UdpServer.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

For more information about Netty channel options, see the following links:

* Common ChannelOption
* Epoll ChannelOption
* KQueue ChannelOption

* Socket Options

7.6.2. Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers has to be inspected. By
default, wire logging is disabled. To enable it, you must set the logger reactor.netty.udp.UdpServer
level to DEBUG and apply the following configuration:

127

https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/wiretap/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection server =
UdpServer.create()
.wiretap(true) @
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Enables the wire logging

By default, the wire logging uses AdvancedByteBufFormat#HEX_DUMP when printing the content.
When you need to change this to AdvancedByteBufFormat#SIMPLE or
AdvancedByteBufFormat#TEXTUAL, you can configure the UdpServer as follows:

128

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/wiretap/custom/Applicatio
njava

import io.netty.handler.logging.Loglevel;

import reactor.netty.Connection;

import reactor.netty.transport.logging.AdvancedByteBufFormat;
import reactor.netty.udp.UdpServer;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Connection server =
UdpServer.create()
.wiretap("logger-name", LoglLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) @
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the
content.

7.6.3. Event Loop Group

By default, the UDP server uses “Event Loop Group,” where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResource#create
methods.

The default configuration for the “Event Loop Group” is the following:

129

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/LoopResources.html

/../../reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

/**

* Default worker thread count, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String I0_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**

* Default selector thread count, fallback to -1 (no selector thread)

*/

public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**

* Default worker thread count for UDP, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";

/**

* Default quiet period that guarantees that the disposal of the underlying
LoopResources

* will not happen, fallback to 2 seconds.

*/

public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";

/*'k

* Default maximum amount of time to wait until the disposal of the underlying
LoopResources

* regardless if a task was submitted during the quiet period, fallback to 15
seconds.

*/

public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

/**

* Default value whether the native transport (epoll, kqueue) will be preferred,
* fallback it will be preferred when available
*/

If you need changes to these settings, you can apply the following configuration:

130

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/eventloop/Application.java

import reactor.netty.Connection;

import reactor.netty.resources.LoopResources;
import reactor.netty.udp.UdpServer;

import java.time.Duration;

public class Application {

public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

Connection server =
UdpServer.create()
.runOn(loop)
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

7.7. Metrics

The UDP server supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.udp.server.

The following table provides information for the UDP server metrics:

metric name type description
reactor.netty.udp.server.data.re DistributionSummary Amount of the data received, in
ceived bytes
reactor.netty.udp.server.data.se DistributionSummary Amount of the data sent, in

nt bytes
reactor.netty.udp.server.errors Counter Number of errors that occurred

These additional metrics are also available:

ByteBufAllocator metrics

metric name type description
reactor.netty.bytebuf.allocator. Gauge The number of the bytes of the
used.heap.memory heap memory

131

https://micrometer.io/

metric name type description

reactor.netty.bytebuf.allocator. Gauge The number of the bytes of the
used.direct.memory direct memory
reactor.netty.bytebuf.allocator. Gauge The number of heap arenas
used.heap.arenas (when PooledByteBufAllocator)
reactor.netty.bytebuf.allocator. Gauge The number of direct arenas
used.direct.arenas (when PooledByteBufAllocator)
reactor.netty.bytebuf.allocator. Gauge The number of thread local
used.threadlocal.caches caches (when

PooledByteBufAllocator)

reactor.netty.bytebuf.allocator. Gauge The size of the tiny cache (when
used.tiny.cache.size PooledByteBufAllocator)
reactor.netty.bytebuf.allocator. Gauge The size of the small cache
used.small.cache.size (when PooledByteBufAllocator)
reactor.netty.bytebuf.allocator. Gauge The size of the normal cache
used.normal.cache.size (when PooledByteBufAllocator)
reactor.netty.bytebuf.allocator. Gauge The chunk size for an arena
used.chunk.size (when PooledByteBufAllocator)

The following example enables that integration:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/metrics/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;

import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.metrics(true) @
.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Enables the built-in integration with Micrometer

When UDP server metrics are needed for an integration with a system other than Micrometer or you

132

want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/server/metrics/custom/Applicatio
njava

import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.udp.UdpServer;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.metrics(true, CustomChannelMetricsRecorder::new) @

.bindNow(Duration.ofSeconds(30));

server.onDispose()
.block();

@ Enables UDP server metrics and provides ChannelMetricsRecorder implementation.

133

https://projectreactor.io/docs/netty/release/api/reactor/netty/channel/ChannelMetricsRecorder.html

Chapter 8. UDP Client

Reactor Netty provides the easy-to-use and easy-to-configure UdpClient. It hides most of the Netty
functionality that is required to create a UDP client and adds Reactive Streams backpressure.

8.1. Connecting and Disconnecting

To connect the UDP client to a given endpoint, you must create and configure a UdpClient instance.
By default, the host is configured for localhost and the port is 12012. The following example shows
how to create and connect a UDP client:

./../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/create/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create() D
.connectNow(Duration.ofSeconds(30)); @

connection.onDispose()
.block();

@ Creates a UdpClient instance that is ready for configuring.

@ Connects the client in a blocking fashion and waits for it to finish initializing.

The returned Connection offers a simple connection API, including disposeNow(), which shuts the
client down in a blocking fashion.

8.1.1. Host and Port

To connect to a specific host and port, you can apply the following configuration to the UDP client:

134

https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpClient.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/Connection.html
https://projectreactor.io/docs/netty/release/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/address/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com") @
.port(80) @)
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

@ Configures the host to which this client should connect

@ Configures the port to which this client should connect

8.2. Eager Initialization

By default, the initialization of the UdpClient resources happens on demand. This means that the
connect operation absorbs the extra time needed to initialize and load:

* the event loop group
¢ the host name resolver

* the native transport libraries (when native transport is used)

When you need to preload these resources, you can configure the UdpClient as follows:

135

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/warmup/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
UdpClient udpClient = UdpClient.create()
.host("example.com")
.port(80)
.handle((udpInbound, udpOutbound) ->
udpOutbound.sendString(Mono.just("hello")));

udpClient.warmup() @
.block();

Connection connection = udpClient.connectNow(Duration.ofSeconds(30)); @

connection.onDispose()
.block();

@ Initialize and load the event loop group, the host name resolver, and the native transport
libraries

@ Host name resolution happens when connecting to the remote peer

8.3. Writing Data

To send data to a given peer, you must attach an I/O handler. The I/O handler has access to
UdpOutbound, to be able to write data.

The following example shows how to send hello:

136

https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpOutbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.handle((udpInbound, udpOutbound) ->
udpOutbound.sendString(Mono.just("hello"))) @
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

@ Sends hello string to the remote peer.

8.4. Consuming Data

To receive data from a given peer, you must attach an I/O handler. The I/O handler has access to
UdpInbound, to be able to read data. The following example shows how to consume data:

137

https://projectreactor.io/docs/netty/release/api/reactor/netty/udp/UdpInbound.html

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/read/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.handle((udpInbound, udpOutbound) ->
udpInbound.receive().then()) @
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

@ Receives data from a given peer

8.5. Lifecycle Callbacks

The following lifecycle callbacks are provided to let you extend the UdpClient:

Callback Description

doAfterResolve Invoked after the remote address has been
resolved successfully.

doOnChannellnit Invoked when initializing the channel.

doOnConnect Invoked when the channel is about to connect.

doOnConnected Invoked after the channel has been connected.

doOnDisconnected Invoked after the channel has been
disconnected.

doOnResolve Invoked when the remote address is about to be
resolved.

doOnResolveError Invoked in case the remote address hasn’t been

resolved successfully.

The following example uses the doOnConnected and doOnChannelInit callbacks:

138

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/lifecycle/Application.java

import io.netty.handler.codec.LineBasedFrameDecoder;
import io.netty.handler.logging.LoggingHandler;
import reactor.netty.Connection;

import reactor.netty.udp.UdpClient;

import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.doOnConnected(conn -> conn.addHandler (new
LineBasedFrameDecoder(8192))) @
.doOnChannelInit((observer, channel, remoteAddress) ->
channel.pipeline()
.addFirst(new
LoggingHandler ("reactor.netty.examples"))) @
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

® Netty pipeline is extended with LineBasedFrameDecoder when the channel has been
connected.

@ Netty pipeline is extended with LoggingHandler when initializing the channel.

8.6. Connection Configuration
This section describes three kinds of configuration that you can use at the UDP level:

* Channel Options
* Wire Logger

* Event Loop Group

8.6.1. Channel Options

By default, the UDP client is configured with the following options:

139

/../../reactor-netty-core/src/main/java/reactor/netty/udp/UdpClientConnect.java

UdpClientConnect() {
this.config = new UdpClientConfig(
ConnectionProvider.newConnection(),
Collections.singletonMap(ChannelOption.AUTO_READ, false),
() -> new InetSocketAddress(NetUtil.LOCALHOST, DEFAULT _PORT));

If you need additional options or need to change the current options, you can apply the following
configuration:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/channeloptions/Application.
java

import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

You can find more about Netty channel options at the following links:

* Common ChannelOption
* Epoll ChannelOption
* KQueue ChannelOption

» Socket Options

140

https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html

8.6.2. Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers has to be inspected. By
default, wire logging is disabled. To enable it, you must set the logger reactor.netty.udp.UdpClient
level to DEBUG and apply the following configuration:

/../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/wiretap/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.wiretap(true) @
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

@ Enables the wire logging

By default, the wire logging uses AdvancedByteBufFormat#HEX DUMP when printing the content.
When you need to change this to AdvancedByteBufFormat#SIMPLE or
AdvancedByteBufFormat#TEXTUAL, you can configure the UdpClient as follows:

141

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/wiretap/custom/Application
Java

import io.netty.handler.logging.Loglevel;

import reactor.netty.Connection;

import reactor.netty.transport.logging.AdvancedByteBufFormat;
import reactor.netty.udp.UdpClient;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.wiretap("logger-name", LoglLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) @
.connectNow(Duration.ofSeconds(30));

® Enables the wire logging, AdvancedByteBufformat#TEXTUAL is used for printing the
content.

8.6.3. Event Loop Group

By default, the UDP client uses “Event Loop Group,” where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResources#create
methods.

The following listing shows the default configuration for the “Event Loop Group”:

142

https://projectreactor.io/docs/netty/release/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/release/api/reactor/netty/resources/LoopResources.html

/../../reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

/**

* Default worker thread count, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String I0_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**

* Default selector thread count, fallback to -1 (no selector thread)

*/

public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**

* Default worker thread count for UDP, fallback to available processor

* (but with a minimum value of 4)

*/

public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";

/**

* Default quiet period that guarantees that the disposal of the underlying
LoopResources

* will not happen, fallback to 2 seconds.

*/

public static final String SHUTDOWN_QUIET_PERIOD =

"reactor.netty.ioShutdownQuietPeriod";
/*'k

* Default maximum amount of time to wait until the disposal of the underlying

LoopResources

* regardless if a task was submitted during the quiet period, fallback to 15

seconds.
*/

public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

/**

* Default value whether the native transport (epoll, kqueue) will be preferred,

* fallback it will be preferred when available
*/

If you need changes to the these settings, you can apply the following configuration:

143

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/eventloop/Application.java

import reactor.netty.Connection;

import reactor.netty.resources.LoopResources;
import reactor.netty.udp.UdpClient;

import java.time.Duration;

public class Application {

public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.run0On(loop)
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

8.7. Metrics

The UDP client supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.udp.client

The following table provides information for the UDP client metrics:

metric name type description
reactor.netty.udp.client.data.rec DistributionSummary Amount of the data received, in
eived bytes
reactor.netty.udp.client.data.se DistributionSummary Amount of the data sent, in

nt bytes
reactor.netty.udp.client.errors Counter Number of errors that occurred
reactor.netty.udp.client.connect Timer Time spent for connecting to
.time the remote address
reactor.netty.udp.client.address Timer Time spent for resolving the
.resolver address

These additional metrics are also available:

144

https://micrometer.io/

ByteBufAllocator metrics

metric name

reactor.netty.bytebuf.allocator.

used.heap.memory

reactor.netty.bytebuf.allocator.

used.direct.memory

reactor.netty.bytebuf.allocator.

used.heap.arenas

reactor.netty.bytebuf.allocator.

used.direct.arenas

reactor.netty.bytebuf.allocator.

used.threadlocal.caches

reactor.netty.bytebuf.allocator.

used.tiny.cache.size

reactor.netty.bytebuf.allocator.

used.small.cache.size

reactor.netty.bytebuf.allocator.

used.normal.cache.size

reactor.netty.bytebuf.allocator.

used.chunk.size

The following example enables that integration:

type
Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

description

The number of the bytes of the
heap memory

The number of the bytes of the
direct memory

The number of heap arenas
(when PooledByteBufAllocator)

The number of direct arenas
(when PooledByteBufAllocator)

The number of thread local
caches (when
PooledByteBufAllocator)

The size of the tiny cache (when
PooledByteBufAllocator)

The size of the small cache
(when PooledByteBufAllocator)

The size of the normal cache
(when PooledByteBufAllocator)

The chunk size for an arena
(when PooledByteBufAllocator)

145

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/metrics/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;

import java.time.Duration;
public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.metrics(true) @
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

@ Enables the built-in integration with Micrometer

When UDP client metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

146

J../../reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/udp/client/metrics/custom/Application.
java

import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.udp.UdpClient;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.metrics(true, CustomChannelMetricsRecorder::new) @
.connectNow(Duration.ofSeconds(30));

connection.onDispose()
.block();

@ Enables UDP client metrics and provides ChannelMetricsRecorder implementation.

147

https://projectreactor.io/docs/netty/release/api/reactor/netty/channel/ChannelMetricsRecorder.html

	Reactor Netty Reference Guide
	Table of Contents
	Chapter 1. About the Documentation
	1.1. Latest Version and Copyright Notice
	1.2. Contributing to the Documentation
	1.3. Getting Help

	Chapter 2. Getting Started
	2.1. Introducing Reactor Netty
	2.2. Prerequisites
	2.3. Understanding the BOM and versioning scheme
	2.4. Getting Reactor Netty
	2.5. Support and policies

	Chapter 3. TCP Server
	3.1. Starting and Stopping
	3.2. Eager Initialization
	3.3. Writing Data
	3.4. Consuming Data
	3.5. Lifecycle Callbacks
	3.6. TCP-level Configurations
	3.7. SSL and TLS
	3.8. Metrics
	3.9. Unix Domain Sockets

	Chapter 4. TCP Client
	4.1. Connect and Disconnect
	4.2. Eager Initialization
	4.3. Writing Data
	4.4. Consuming Data
	4.5. Lifecycle Callbacks
	4.6. TCP-level Configurations
	4.7. Connection Pool
	4.8. SSL and TLS
	4.9. Proxy Support
	4.10. Metrics
	4.11. Unix Domain Sockets
	4.12. Host Name Resolution

	Chapter 5. HTTP Server
	5.1. Starting and Stopping
	5.2. Eager Initialization
	5.3. Routing HTTP
	5.4. Writing Data
	5.5. Consuming Data
	5.6. Lifecycle Callbacks
	5.7. TCP-level Configuration
	5.8. SSL and TLS
	5.9. HTTP Access Log
	5.10. HTTP/2
	5.11. Metrics
	5.12. Unix Domain Sockets

	Chapter 6. HTTP Client
	6.1. Connect
	6.2. Eager Initialization
	6.3. Writing Data
	6.4. Consuming Data
	6.5. Lifecycle Callbacks
	6.6. TCP-level Configuration
	6.7. SSL and TLS
	6.8. Retry Strategies
	6.9. HTTP/2
	6.10. Metrics
	6.11. Unix Domain Sockets
	6.12. Host Name Resolution
	6.13. Timeout Configuration

	Chapter 7. UDP Server
	7.1. Starting and Stopping
	7.2. Eager Initialization
	7.3. Writing Data
	7.4. Consuming Data
	7.5. Lifecycle Callbacks
	7.6. Connection Configuration
	7.7. Metrics

	Chapter 8. UDP Client
	8.1. Connecting and Disconnecting
	8.2. Eager Initialization
	8.3. Writing Data
	8.4. Consuming Data
	8.5. Lifecycle Callbacks
	8.6. Connection Configuration
	8.7. Metrics

