Spring Batch - Reference
Documentation

Version 4.0.4.RELEASE

Table of Contents

1. Spring Batch Introduction
1.1. Background
1.2. Usage Scenarios
1.3. Spring Batch Architecture
1.4. General Batch Principles and Guidelines
1.5. Batch Processing Strategies
2. What’s New in Spring Batch 4.0
2.1.Java 8 Requirement
2.2. Dependencies Re-baseline

2.3. Provide builders for the ItemReaders, ItemProcessors, and ItemWriters

3. The Domain Language of Batch
3.1. Job
3.1.1. JobInstance
3.1.2. JobParameters
3.1.3. JobExecution
3.2. Step
3.2.1. StepExecution
3.3. ExecutionContext
3.4. JobRepository
3.5.JobLauncher
3.6. Item Reader
3.7. Item Writer
3.8. Item Processor
3.9. Batch Namespace
4. Configuring and Running a Job
4.1. Configuring a Job
4.1.1. Restartability
4.1.2. Intercepting Job Execution
4.1.3. Inheriting from a Parent Job
4.1.4. JobParametersValidator
4.2. Java Config
4.3. Configuring a JobRepository

4.3.1. Transaction Configuration for the JobRepository

4.3.2. Changing the Table Prefix

4.3.3. In-Memory Repository

4.3.4. Non-standard Database Types in a Repository
4.4. Configuring a JobLauncher
4.5. Running a Job

AR W N R

12
12
12
12
14
14
16
16
17
19
20
21
23
23
23
24
24
24
25
25
26
27
28
29
30
31
32
34
34
35
36
38

4.5.1. Running Jobs from the Command Line
The CommandLineJobRunner
ExitCodes

4.5.2. Running Jobs from within a Web Container

4.6. Advanced Meta-Data Usage

4.6.1. Querying the Repository

4.6.2. JobRegistry
JobRegistryBeanPostProcessor
AutomaticjobRegistrar

4.6.3. JobOperator

4.6.4. JobParametersIncrementer

4.6.5. Stopping a Job

4.6.6. Aborting a Job

5. Configuring a Step
5.1. Chunk-oriented Processing

5.1.1. Configuring a Step

5.1.2. Inheriting from a Parent Step
Abstract Step
Merging Lists

5.1.3. The Commit Interval

5.1.4. Configuring a Step for Restart
Setting a Start Limit
Restarting a Completed Step
Step Restart Configuration Example

5.1.5. Configuring Skip Logic

5.1.6. Configuring Retry Logic

5.1.7. Controlling Rollback
Transactional Readers

5.1.8. Transaction Attributes

5.1.9. Registering ItemStream with a Step

5.1.10. Intercepting Step Execution

StepExecutionListener
ChunkListener
ItemReadListener
ItemProcessListener
ItemWritelistener
SkipListener

5.2. TaskletStep

5.2.1. TaskletAdapter

5.2.2. Example Tasklet Implementation
5.3. Controlling Step Flow

5.3.1. Sequential Flow

38
38
40
41
42
43
44
45
45
47
48
50
50
51
51
52
54
54
35
35
56
56
57
58
60
62
63
64
64
65
67

68
69
69
70
71
71
72

73
73
75
75

5.3.2. Conditional Flow
Batch Status Versus EXit Status
5.3.3. Configuring for Stop
Ending at a Step
Failing a Step
Stopping a Job at a Given Step
5.3.4. Programmatic Flow Decisions
5.3.5. Split Flows
5.3.6. Externalizing Flow Definitions and Dependencies Between Jobs
5.4. Late Binding of Job and Step Attributes
5.4.1. Step Scope
5.4.2. Job Scope
6. ItemReaders and ItemWriters
6.1. ItemReader
6.2. ItemWriter
6.3. ItemProcessor
6.3.1. Chaining ItemProcessors
6.3.2. Filtering Records
6.3.3. Fault Tolerance
6.4. ItemStream
6.5. The Delegate Pattern and Registering with the Step
6.6. Flat Files
6.6.1. The FieldSet
6.6.2. FlatFileItemReader
LineMapper
LineTokenizer
FieldSetMapper
DefaultLineMapper
Simple Delimited File Reading Example
Mapping Fields by Name
Automapping FieldSets to Domain Objects
Fixed Length File Formats
Multiple Record Types within a Single File
Exception Handling in Flat Files
6.6.3. FlatFileItemWriter
LineAggregator
Simplified File Writing Example
FieldExtractor
Delimited File Writing Example
Fixed Width File Writing Example

Handling File Creation

77
79
81
82
82
83
84
85
86
89
91
92
95
95
96
96
99
102
103
103
103
105
105
106
107
108
108
108
109
111
112
112
114
116
118
118
118
119
121
122
123

6.7. XML Item Readers and Writers
6.7.1. StaxEventltemReader
6.7.2. StaxEventItemWriter
6.8. Multi-File Input
6.9. Database
6.9.1. Cursor-based ItemReader Implementations

JdbcCursorltemReader

HibernateCursorItemReader
StoredProcedureltemReader

6.9.2. Paging ItemReader Implementations
JdbcPagingltemReader
JpaPagingltemReader

6.9.3. Database ItemWriters

6.10. Reusing Existing Services

6.11. Validating Input

6.12. Preventing State Persistence

6.13. Creating Custom ItemReaders and ItemWriters

6.13.1. Custom ItemReader Example
Making the ItemReader Restartable

6.13.2. Custom ItemWriter Example
Making the ItemWriter Restartable

6.14. Item Reader and Writer Implementations

6.14.1. Decorators
SynchronizedItemStreamReader
SingleItemPeekableltemReader
MultiResourceltemWriter
(lassifierCompositeltemWriter

ClassifierCompositeltemProcessor

6.14.2. Messaging Readers And Writers
AmgpItemReader
AmgpItemWriter
JmsItemReader
JmsItemWriter

6.14.3. Database Readers
Neod4jItemReader
MongoItemReader
HibernateCursorItemReader
HibernatePagingItemReader
RepositoryItemReader

6.14.4. Database Writers
NeodjItemWriter
MongoItemWriter
RepositoryltemWriter
HibernateItemWriter
JdbcBatchItemWriter

124
125
128
131
132
132
133

136
138
142

142
144
145
147
148
149
150
151
151
153
154
154
154

154
154
155
155
155

155

155
155
156
156
156

156
156
156
156
156
157

157
157
157
157
157

JpaltemWriter 157

GemfireltemWriter 157
6.14.5. Specialized Readers 158
LdifReader 158
MappingLdifReader 158
6.14.6. Specialized Writers 158
SimpleMailMessageIltemWriter 158
6.14.7. Specialized Processors 158
ScriptItemProcessor 158

7. Scaling and Parallel Processing 159
7.1. Multi-threaded Step 159
7.2. Parallel Steps 161
7.3. Remote Chunking 163
7.4. Partitioning 164
7.4.1. PartitionHandler 166
7.4.2. Partitioner 167
7.4.3. Binding Input Data to Steps 168

8. Repeat 170
8.1. RepeatTemplate 170
8.1.1. RepeatContext 171
8.1.2. RepeatStatus 171

8.2. Completion Policies 172
8.3. Exception Handling 172
8.4. Listeners 172
8.5. Parallel Processing 173
8.6. Declarative Iteration 173

9. Retry 175
9.1. RetryTemplate 175
9.1.1. RetryContext 176
9.1.2. RecoveryCallback 176
9.1.3. Stateless Retry 177
9.1.4. Stateful Retry 177

9.2. Retry Policies 178
9.3. Backoff Policies 179
9.4. Listeners 179
9.5. Declarative Retry 180
10. Unit Testing 182
10.1. Creating a Unit Test Class 182
10.2. End-To-End Testing of Batch Jobs 182
10.3. Testing Individual Steps 184
10.4. Testing Step-Scoped Components 184

10.5. Validating Output Files 186

10.6. Mocking Domain Objects
11. Common Batch Patterns
11.1. Logging Item Processing and Failures
11.2. Stopping a Job Manually for Business Reasons
11.3. Adding a Footer Record
11.3.1. Writing a Summary Footer
11.4. Driving Query Based ItemReaders
11.5. Multi-Line Records
11.6. Executing System Commands
11.7. Handling Step Completion When No Input is Found
11.8. Passing Data to Future Steps
12.JSR-352 Support
12.1. General Notes about Spring Batch and JSR-352
12.2. Setup
12.2.1. Application Contexts
12.2.2. Launching a JSR-352 based job
12.3. Dependency Injection
12.4. Batch Properties
12.4.1. Property Support
12.4.2. @BatchProperty annotation
12.4.3. Property Substitution
12.5. Processing Models
12.5.1. Item based processing
12.5.2. Custom checkpointing
12.6. Running a job
12.7. Contexts
12.8. Step Flow
12.9. Scaling a JSR-352 batch job
12.9.1. Partitioning
12.10. Testing
13. Spring Batch Integration
13.1. Spring Batch Integration Introduction
13.1.1. Namespace Support
13.1.2. Launching Batch Jobs through Messages
Transforming a file into a JobLaunchRequest
The JobExecution Response
Spring Batch Integration Configuration
Example ItemReader Configuration
13.2. Available Attributes of the Job-Launching Gateway
13.3. Sub-Elements

13.3.1. Providing Feedback with Informational Messages

186
188
188
189
191
192
194
195
199
200
200
204
204
204
204
204
206
207
207
208
208
209
209
209
210
210
211
211
212
213
214
214
214
215
216
217
218
219
220
221
221

13.3.2. Asynchronous Processors 223

13.3.3. Externalizing Batch Process Execution 224
Remote Chunking 225
Remote Partitioning 231

Appendix A: List of ItemReaders and ItemWriters 236
A.1. Item Readers 236
A.2. Item Writers 237

Appendix B: Meta-Data Schema 239
B.1. Overview 239

B.1.1. Example DDL Scripts 239

B.1.2. Version 239

B.1.3. Identity 240

B.2. BATCH_JOB_INSTANCE 240
B.3. BATCH_JOB_EXECUTION_PARAMS 241
B.4. BATCH_JOB_EXECUTION 242
B.5. BATCH_STEP_EXECUTION 243
B.6. BATCH_JOB_EXECUTION_CONTEXT 244
B.7. BATCH_STEP_EXECUTION_CONTEXT 245
B.8. Archiving 245
B.9. International and Multi-byte Characters 245
B.10. Recommendations for Indexing Meta Data Tables 246

Appendix C: Batch Processing and Transactions 247
C.1. Simple Batching with No Retry 247
C.2. Simple Stateless Retry 247
C.3. Typical Repeat-Retry Pattern 248
C.4. Asynchronous Chunk Processing 249
C.5. Asynchronous Item Processing 249
C.6. Interactions Between Batching and Transaction Propagation 250
C.7. Special Case: Transactions with Orthogonal Resources 251
C.8. Stateless Retry Cannot Recover 252

Appendix D: Glossary 254

D.1. Spring Batch Glossary 254

Chapter 1. Spring Batch Introduction

Many applications within the enterprise domain require bulk processing to perform business
operations in mission critical environments. These business operations include:

* Automated, complex processing of large volumes of information that is most efficiently
processed without user interaction. These operations typically include time-based events (such
as month-end calculations, notices, or correspondence).

* Periodic application of complex business rules processed repetitively across very large data sets
(for example, insurance benefit determination or rate adjustments).

* Integration of information that is received from internal and external systems that typically
requires formatting, validation, and processing in a transactional manner into the system of
record. Batch processing is used to process billions of transactions every day for enterprises.

Spring Batch is a lightweight, comprehensive batch framework designed to enable the development
of robust batch applications vital for the daily operations of enterprise systems. Spring Batch builds
upon the characteristics of the Spring Framework that people have come to expect (productivity,
POJO-based development approach, and general ease of use), while making it easy for developers to
access and leverage more advance enterprise services when necessary. Spring Batch is not a
scheduling framework. There are many good enterprise schedulers (such as Quartz, Tivoli, Control-
M, etc.) available in both the commercial and open source spaces. It is intended to work in
conjunction with a scheduler, not replace a scheduler.

Spring Batch provides reusable functions that are essential in processing large volumes of records,
including logging/tracing, transaction management, job processing statistics, job restart, skip, and
resource management. It also provides more advanced technical services and features that enable
extremely high-volume and high performance batch jobs though optimization and partitioning
techniques. Spring Batch can be used in both simple use cases (such as reading a file into a database
or running a stored procedure) as well as complex, high volume use cases (such as moving high
volumes of data between databases, transforming it, and so on). High-volume batch jobs can
leverage the framework in a highly scalable manner to process significant volumes of information.

1.1. Background

While open source software projects and associated communities have focused greater attention on
web-based and microservices-based architecture frameworks, there has been a notable lack of
focus on reusable architecture frameworks to accommodate Java-based batch processing needs,
despite continued needs to handle such processing within enterprise IT environments. The lack of a
standard, reusable batch architecture has resulted in the proliferation of many one-off, in-house
solutions developed within client enterprise IT functions.

SpringSource (now Pivotal) and Accenture collaborated to change this. Accenture’s hands-on
industry and technical experience in implementing batch architectures, SpringSource’s depth of
technical experience, and Spring’s proven programming model together made a natural and
powerful partnership to create high-quality, market-relevant software aimed at filling an important
gap in enterprise Java. Both companies worked with a number of clients who were solving similar
problems by developing Spring-based batch architecture solutions. This provided some useful

additional detail and real-life constraints that helped to ensure the solution can be applied to the
real-world problems posed by clients.

Accenture contributed previously proprietary batch processing architecture frameworks to the
Spring Batch project, along with committer resources to drive support, enhancements, and the
existing feature set. Accenture’s contribution was based upon decades of experience in building
batch architectures with the last several generations of platforms: COBOL/Mainframe, C++/Unix,
and now Java/anywhere.

The collaborative effort between Accenture and SpringSource aimed to promote the
standardization of software processing approaches, frameworks, and tools that can be consistently
leveraged by enterprise users when creating batch applications. Companies and government
agencies desiring to deliver standard, proven solutions to their enterprise IT environments can
benefit from Spring Batch.

1.2. Usage Scenarios

A typical batch program generally:

* Reads a large number of records from a database, file, or queue.

* Processes the data in some fashion.

* Writes back data in a modified form.
Spring Batch automates this basic batch iteration, providing the capability to process similar
transactions as a set, typically in an offline environment without any user interaction. Batch jobs

are part of most IT projects, and Spring Batch is the only open source framework that provides a
robust, enterprise-scale solution.

Business Scenarios

* Commit batch process periodically

* Concurrent batch processing: parallel processing of a job

 Staged, enterprise message-driven processing

» Massively parallel batch processing

* Manual or scheduled restart after failure

* Sequential processing of dependent steps (with extensions toworkflow-driven batches)
* Partial processing: skip records (for example, on rollback)

* Whole-batch transaction, for cases with a small batch size or existing stored procedures/scripts
Technical Objectives

» Batch developers use the Spring programming model: Concentrate on business logic and let the
framework take care of infrastructure.

* Clear separation of concerns between the infrastructure, the batch execution environment, and
the batch application.

* Provide common, core execution services as interfaces that all projects can implement.

* Provide simple and default implementations of the core execution interfaces that can be used
'out of the box'.

» Easy to configure, customize, and extend services, by leveraging the spring framework in all
layers.

» All existing core services should be easy to replace or extend, without any impact to the
infrastructure layer.

* Provide a simple deployment model, with the architecture JARs completely separate from the
application, built using Maven.

1.3. Spring Batch Architecture

Spring Batch is designed with extensibility and a diverse group of end users in mind. The figure
below shows the layered architecture that supports the extensibility and ease of use for end-user
developers.

Batch Infrastructure

Figure 1. Spring Batch Layered Architecture

This layered architecture highlights three major high-level components: Application, Core, and
Infrastructure. The application contains all batch jobs and custom code written by developers using
Spring Batch. The Batch Core contains the core runtime classes necessary to launch and control a
batch job. It includes implementations for JobLauncher, Job, and Step. Both Application and Core are
built on top of a common infrastructure. This infrastructure contains common readers and writers
and services (such as the RetryTemplate), which are used both by application developers(readers
and writers, such as ItemReader and ItemWriter) and the core framework itself (retry, which is its
own library).

1.4. General Batch Principles and Guidelines

The following key principles, guidelines, and general considerations should be considered when
building a batch solution.

* Remember that a batch architecture typically affects on-line architecture and vice versa. Design
with both architectures and environments in mind using common building blocks when
possible.

» Simplify as much as possible and avoid building complex logical structures in single batch
applications.

» Keep the processing and storage of data physically close together (in other words, keep your
data where your processing occurs).

* Minimize system resource use, especially I/O. Perform as many operations as possible in
internal memory.

* Review application I/O (analyze SQL statements) to ensure that unnecessary physical I/O is
avoided. In particular, the following four common flaws need to be looked for:

- Reading data for every transaction when the data could be read once and cached or kept in
the working storage.

- Rereading data for a transaction where the data was read earlier in the same transaction.
o Causing unnecessary table or index scans.
> Not specifying key values in the WHERE clause of an SQL statement.

* Do not do things twice in a batch run. For instance, if you need data summarization for
reporting purposes, you should (if possible) increment stored totals when data is being initially
processed, so your reporting application does not have to reprocess the same data.

» Allocate enough memory at the beginning of a batch application to avoid time-consuming
reallocation during the process.

* Always assume the worst with regard to data integrity. Insert adequate checks and record
validation to maintain data integrity.

* Implement checksums for internal validation where possible. For example, flat files should
have a trailer record telling the total of records in the file and an aggregate of the key fields.

* Plan and execute stress tests as early as possible in a production-like environment with realistic
data volumes.

* In large batch systems, backups can be challenging, especially if the system is running
concurrent with on-line on a 24-7 basis. Database backups are typically well taken care of in the
on-line design, but file backups should be considered to be just as important. If the system
depends on flat files, file backup procedures should not only be in place and documented but be
regularly tested as well.

1.5. Batch Processing Strategies

To help design and implement batch systems, basic batch application building blocks and patterns
should be provided to the designers and programmers in the form of sample structure charts and

code shells. When starting to design a batch job, the business logic should be decomposed into a
series of steps that can be implemented using the following standard building blocks:

* Conversion Applications: For each type of file supplied by or generated to an external system, a
conversion application must be created to convert the transaction records supplied into a
standard format required for processing. This type of batch application can partly or entirely
consist of translation utility modules (see Basic Batch Services).

* Validation Applications: Validation applications ensure that all input/output records are correct
and consistent. Validation is typically based on file headers and trailers, checksums and
validation algorithms, and record level cross-checks.

» Extract Applications: An application that reads a set of records from a database or input file,
selects records based on predefined rules, and writes the records to an output file.

» Extract/Update Applications: An application that reads records from a database or an input file
and makes changes to a database or an output file driven by the data found in each input
record.

* Processing and Updating Applications: An application that performs processing on input
transactions from an extract or a validation application. The processing usually involves
reading a database to obtain data required for processing, potentially updating the database
and creating records for output processing.

* Output/Format Applications: Applications that read an input file, restructure data from this
record according to a standard format, and produce an output file for printing or transmission
to another program or system.

Additionally, a basic application shell should be provided for business logic that cannot be built
using the previously mentioned building blocks.

In addition to the main building blocks, each application may use one or more of standard utility
steps, such as:

» Sort: A program that reads an input file and produces an output file where records have been
re-sequenced according to a sort key field in the records. Sorts are usually performed by
standard system utilities.

» Split: A program that reads a single input file and writes each record to one of several output
files based on a field value. Splits can be tailored or performed by parameter-driven standard
system utilities.

* Merge: A program that reads records from multiple input files and produces one output file
with combined data from the input files. Merges can be tailored or performed by parameter-
driven standard system utilities.

Batch applications can additionally be categorized by their input source:

» Database-driven applications are driven by rows or values retrieved from the database.
* File-driven applications are driven by records or values retrieved from a file.

* Message-driven applications are driven by messages retrieved from a message queue.

The foundation of any batch system is the processing strategy. Factors affecting the selection of the

strategy include: estimated batch system volume, concurrency with on-line systems or with other
batch systems, available batch windows. (Note that, with more enterprises wanting to be up and
running 24x7, clear batch windows are disappearing).

Typical processing options for batch are (in increasing order of implementation complexity):

* Normal processing during a batch window in off-line mode.
* Concurrent batch or on-line processing.

* Parallel processing of many different batch runs or jobs at the same time.

Partitioning (processing of many instances of the same job at the same time).

* A combination of the preceding options.
Some or all of these options may be supported by a commercial scheduler.

The following section discusses these processing options in more detail. It is important to notice
that, as a rule of thumb, the commit and locking strategy adopted by batch processes depends on
the type of processing performed and that the on-line locking strategy should also use the same
principles. Therefore, the batch architecture cannot be simply an afterthought when designing an
overall architecture.

The locking strategy can be to use only normal database locks or to implement an additional
custom locking service in the architecture. The locking service would track database locking (for
example, by storing the necessary information in a dedicated db-table) and give or deny
permissions to the application programs requesting a db operation. Retry logic could also be
implemented by this architecture to avoid aborting a batch job in case of a lock situation.

1. Normal processing in a batch window For simple batch processes running in a separate batch
window where the data being updated is not required by on-line users or other batch processes,
concurrency is not an issue and a single commit can be done at the end of the batch run.

In most cases, a more robust approach is more appropriate. Keep in mind that batch systems have a
tendency to grow as time goes by, both in terms of complexity and the data volumes they handle. If
no locking strategy is in place and the system still relies on a single commit point, modifying the
batch programs can be painful. Therefore, even with the simplest batch systems, consider the need
for commit logic for restart-recovery options as well as the information concerning the more
complex cases described later in this section.

2. Concurrent batch or on-line processing Batch applications processing data that can be
simultaneously updated by on-line users should not lock any data (either in the database or in files)
which could be required by on-line users for more than a few seconds. Also, updates should be
committed to the database at the end of every few transactions. This minimizes the portion of data
that is unavailable to other processes and the elapsed time the data is unavailable.

Another option to minimize physical locking is to have logical row-level locking implemented with
either an Optimistic Locking Pattern or a Pessimistic Locking Pattern.

* Optimistic locking assumes a low likelihood of record contention. It typically means inserting a
timestamp column in each database table used concurrently by both batch and on-line

processing. When an application fetches a row for processing, it also fetches the timestamp. As
the application then tries to update the processed row, the update uses the original timestamp
in the WHERE clause. If the timestamp matches, the data and the timestamp are updated. If the
timestamp does not match, this indicates that another application has updated the same row
between the fetch and the update attempt. Therefore, the update cannot be performed.

» Pessimistic locking is any locking strategy that assumes there is a high likelihood of record
contention and therefore either a physical or logical lock needs to be obtained at retrieval time.
One type of pessimistic logical locking uses a dedicated lock-column in the database table. When
an application retrieves the row for update, it sets a flag in the lock column. With the flag in
place, other applications attempting to retrieve the same row logically fail. When the
application that sets the flag updates the row, it also clears the flag, enabling the row to be
retrieved by other applications. Please note that the integrity of data must be maintained also
between the initial fetch and the setting of the flag, for example by using db locks (such as
SELECT FOR UPDATE). Note also that this method suffers from the same downside as physical
locking except that it is somewhat easier to manage building a time-out mechanism that gets the
lock released if the user goes to lunch while the record is locked.

These patterns are not necessarily suitable for batch processing, but they might be used for
concurrent batch and on-line processing (such as in cases where the database does not support
row-level locking). As a general rule, optimistic locking is more suitable for on-line applications,
while pessimistic locking is more suitable for batch applications. Whenever logical locking is used,
the same scheme must be used for all applications accessing data entities protected by logical locks.

Note that both of these solutions only address locking a single record. Often, we may need to lock a
logically related group of records. With physical locks, you have to manage these very carefully in
order to avoid potential deadlocks. With logical locks, it is usually best to build a logical lock
manager that understands the logical record groups you want to protect and that can ensure that
locks are coherent and non-deadlocking. This logical lock manager usually uses its own tables for
lock management, contention reporting, time-out mechanism, and other concerns.

3. Parallel Processing Parallel processing allows multiple batch runs or jobs to run in parallel to
minimize the total elapsed batch processing time. This is not a problem as long as the jobs are not
sharing the same files, db-tables, or index spaces. If they do, this service should be implemented
using partitioned data. Another option is to build an architecture module for maintaining
interdependencies by using a control table. A control table should contain a row for each shared
resource and whether it is in use by an application or not. The batch architecture or the application
in a parallel job would then retrieve information from that table to determine if it can get access to
the resource it needs or not.

If the data access is not a problem, parallel processing can be implemented through the use of
additional threads to process in parallel. In the mainframe environment, parallel job classes have
traditionally been used, in order to ensure adequate CPU time for all the processes. Regardless, the
solution has to be robust enough to ensure time slices for all the running processes.

Other key issues in parallel processing include load balancing and the availability of general system
resources such as files, database buffer pools, and so on. Also note that the control table itself can
easily become a critical resource.

4. Partitioning Using partitioning allows multiple versions of large batch applications to run

concurrently. The purpose of this is to reduce the elapsed time required to process long batch jobs.
Processes that can be successfully partitioned are those where the input file can be split and/or the
main database tables partitioned to allow the application to run against different sets of data.

In addition, processes which are partitioned must be designed to only process their assigned data
set. A partitioning architecture has to be closely tied to the database design and the database
partitioning strategy. Note that database partitioning does not necessarily mean physical
partitioning of the database, although in most cases this is advisable. The following picture
illustrates the partitioning approach:

Split Process Partitioned Merge Process
Process

- - -

Figure 2. Partitioned Process

The architecture should be flexible enough to allow dynamic configuration of the number of

partitions. Both automatic and user controlled configuration should be considered. Automatic

configuration may be based on parameters such as the input file size and the number of input

records.

4.1 Partitioning Approaches Selecting a partitioning approach has to be done on a case-by-case
basis. The following list describes some of the possible partitioning approaches:

1. Fixed and Even Break-Up of Record Set

This involves breaking the input record set into an even number of portions (for example, 10,
where each portion has exactly 1/10th of the entire record set). Each portion is then processed by
one instance of the batch/extract application.

In order to use this approach, preprocessing is required to split the recordset up. The result of this
split will be a lower and upper bound placement number which can be used as input to the
batch/extract application in order to restrict its processing to only its portion.

Preprocessing could be a large overhead, as it has to calculate and determine the bounds of each
portion of the record set.

2. Break up by a Key Column

This involves breaking up the input record set by a key column, such as a location code, and
assigning data from each key to a batch instance. In order to achieve this, column values can be
either:

* Assigned to a batch instance by a partitioning table (described later in this section).

» Assigned to a batch instance by a portion of the value (such as 0000-0999, 1000 - 1999, and so
on).

Under option 1, adding new values means a manual reconfiguration of the batch/extract to ensure
that the new value is added to a particular instance.

Under option 2, this ensures that all values are covered via an instance of the batch job. However,
the number of values processed by one instance is dependent on the distribution of column values
(there may be a large number of locations in the 0000-0999 range, and few in the 1000-1999 range).
Under this option, the data range should be designed with partitioning in mind.

Under both options, the optimal even distribution of records to batch instances cannot be realized.
There is no dynamic configuration of the number of batch instances used.

3. Breakup by Views

This approach is basically breakup by a key column but on the database level. It involves breaking
up the recordset into views. These views are used by each instance of the batch application during
its processing. The breakup is done by grouping the data.

With this option, each instance of a batch application has to be configured to hit a particular view
(instead of the master table). Also, with the addition of new data values, this new group of data has
to be included into a view. There is no dynamic configuration capability, as a change in the number
of instances results in a change to the views.

4. Addition of a Processing Indicator

This involves the addition of a new column to the input table, which acts as an indicator. As a
preprocessing step, all indicators are marked as being non-processed. During the record fetch stage
of the batch application, records are read on the condition that that record is marked as being non-
processed, and once they are read (with lock), they are marked as being in processing. When that
record is completed, the indicator is updated to either complete or error. Many instances of a batch
application can be started without a change, as the additional column ensures that a record is only
processed once. sentence or two on the order of "On completion, indicators are marked as being
complete."”)

With this option, I/O on the table increases dynamically. In the case of an updating batch
application, this impact is reduced, as a write must occur anyway.

5. Extract Table to a Flat File

This involves the extraction of the table into a file. This file can then be split into multiple segments
and used as input to the batch instances.

With this option, the additional overhead of extracting the table into a file and splitting it may
cancel out the effect of multi-partitioning. Dynamic configuration can be achieved by changing the
file splitting script.

6. Use of a Hashing Column

This scheme involves the addition of a hash column (key/index) to the database tables used to
retrieve the driver record. This hash column has an indicator to determine which instance of the
batch application processes this particular row. For example, if there are three batch instances to
be started, then an indicator of 'A' marks a row for processing by instance 1, an indicator of 'B'
marks a row for processing by instance 2, and an indicator of 'C' marks a row for processing by
instance 3.

The procedure used to retrieve the records would then have an additional WHERE clause to select all
rows marked by a particular indicator. The inserts in this table would involve the addition of the
marker field, which would be defaulted to one of the instances (such as 'A").

A simple batch application would be used to update the indicators, such as to redistribute the load
between the different instances. When a sufficiently large number of new rows have been added,
this batch can be run (anytime, except in the batch window) to redistribute the new rows to other
instances.

Additional instances of the batch application only require the running of the batch application as
described in the preceding paragraphs to redistribute the indicators to work with a new number of
instances.

4.2 Database and Application Design Principles

An architecture that supports multi-partitioned applications which run against partitioned
database tables using the key column approach should include a central partition repository for
storing partition parameters. This provides flexibility and ensures maintainability. The repository
generally consists of a single table, known as the partition table.

Information stored in the partition table is static and, in general, should be maintained by the DBA.
The table should consist of one row of information for each partition of a multi-partitioned
application. The table should have columns for Program ID Code, Partition Number (logical ID of
the partition), Low Value of the db key column for this partition, and High Value of the db key
column for this partition.

On program start-up, the program id and partition number should be passed to the application
from the architecture (specifically, from the Control Processing Tasklet). If a key column approach
is used, these variables are used to read the partition table in order to determine what range of
data the application is to process. In addition the partition number must be used throughout the
processing to:

* Add to the output files/database updates in order for the merge process to work properly.

* Report normal processing to the batch log and any errors to the architecture error handler.
4.3 Minimizing Deadlocks

When applications run in parallel or are partitioned, contention in database resources and
deadlocks may occur. It is critical that the database design team eliminates potential contention
situations as much as possible as part of the database design.

Also, the developers must ensure that the database index tables are designed with deadlock
prevention and performance in mind.

10

Deadlocks or hot spots often occur in administration or architecture tables, such as log tables,
control tables, and lock tables. The implications of these should be taken into account as well. A
realistic stress test is crucial for identifying the possible bottlenecks in the architecture.

To minimize the impact of conflicts on data, the architecture should provide services such as wait-
and-retry intervals when attaching to a database or when encountering a deadlock. This means a
built-in mechanism to react to certain database return codes and, instead of issuing an immediate
error, waiting a predetermined amount of time and retrying the database operation.

4.4 Parameter Passing and Validation

The partition architecture should be relatively transparent to application developers. The
architecture should perform all tasks associated with running the application in a partitioned
mode, including:

* Retrieving partition parameters before application start-up.
 Validating partition parameters before application start-up.

* Passing parameters to the application at start-up.
The validation should include checks to ensure that:

» The application has sufficient partitions to cover the whole data range.

* There are no gaps between partitions.

If the database is partitioned, some additional validation may be necessary to ensure that a single
partition does not span database partitions.

Also, the architecture should take into consideration the consolidation of partitions. Key questions
include:

* Must all the partitions be finished before going into the next job step?

* What happens if one of the partitions aborts?

11

Chapter 2. What’s New in Spring Batch 4.0

The Spring Batch 4.0 release has three major themes:

* Java 8 Requirement
* Dependencies Re-baseline

e Builders for ItemReaders and ItemWriters

2.1. Java 8 Requirement

Spring Batch has historically followed Spring Framework’s baselines for both java version and
third party dependencies. With Spring Batch 4, the Spring Framework version is being upgraded to
Spring Framework 5. As a result, the Java version requirement for Spring Batch is also increasing to
Java 8. This should be mainly an internal change, in that most of the framework has supported
things like functional interfaces and lambdas since they were released.

2.2. Dependencies Re-baseline

In order to continue to integrate with supported versions of the third party libraries Spring Batch
uses, Spring Batch 4 is updating the dependencies across the board. The new dependency versions
align with Spring Framework 5.

2.3. Provide builders for the ItemReaders,
ItemProcessors, and ItemWriters

Spring Batch 4 is providing a collection of builders for all of the ItemReader implementations and
ItemWriter implementations that come with the framework. As of this release, builders for the
following components (as well as some related utility builders) are available:

* AmgpItemReader - AmgpItemReaderBuilder

e (lassifierCompositeItemProcessor - ClassifierCompositeltemProcessorBuilder

* (lassifierCompositeltemWriter - ClassifierCompositeltemWriterBuilder

* CompositeltemWriter - CompositeltemWriterBuilder

* FlatFileltemReader - FlatFileItemReaderBuilder

* FlatFileltemWriter - FlatFileItemWriterBuilder

o GemfireltemWriter - GemfireItemWriterBuilder

* HibernateCursorItemReader - HibernateCursorItemReaderBuilder

* HibernateltemWriter - HibernateItemWriterBuilder

* HibernatePagingItemReader - HibernatePagingItemReaderBuilder

* JdbcBatchItemWriter - JdbcBatchItemWriterBuilder

e JdbcCursorItemReader - JdbcCursorItemReaderBuilder

12

JdbcPagingItemReader - JdbcPagingItemReaderBuilder
JmsItemReader - JmsItemReaderBuilder
ImsItemWriter - JnsItemWriterBuilder
JpaPagingItemReader - JpaPagingltemReaderBuilder
MongoItemReader - MongoItemReaderBuilder
MultiResourceltemReader - MultiResourceltemReaderBuilder
MultiResourceltemWriter - MultiResourceltemWriterBuilder
Neod4jItemWriter - NeodjItemWriterBuilder
RepositoryltemReader - RepositoryItemReaderBuilder
RepositoryItemWriter - RepositoryItemWriterBuilder
ScriptItemProcessor - ScriptItemProcessorBuilder
SimpleMailMessageltemWriter - SimpleMailMessageItemWriterBuilder
SingleItemPeekableIltemReader - SingleItemPeekableItemReaderBuilder
StaxEventItemReader - StaxEventItemReaderBuilder
StaxEventItemWriter - StaxEventItemWriterBuilder

SynchronizedItemStreamReader - SynchronizedItemStreamReaderBuilder

13

Chapter 3. The Domain Language of Batch

To any experienced batch architect, the overall concepts of batch processing used in Spring Batch
should be familiar and comfortable. There are "Jobs" and "Steps" and developer-supplied
processing units called ItemReader and ItemWriter. However, because of the Spring patterns,
operations, templates, callbacks, and idioms, there are opportunities for the following:

« Significant improvement in adherence to a clear separation of concerns.
* Clearly delineated architectural layers and services provided as interfaces.

» Simple and default implementations that allow for quick adoption and ease of use out-of-the-
box.

+ Significantly enhanced extensibility.

The following diagram is a simplified version of the batch reference architecture that has been
used for decades. It provides an overview of the components that make up the domain language of
batch processing. This architecture framework is a blueprint that has been proven through decades
of implementations on the last several generations of platforms (COBOL/Mainframe, C/Unix, and
now Java/anywhere). JCL and COBOL developers are likely to be as comfortable with the concepts
as C, C#, and Java developers. Spring Batch provides a physical implementation of the layers,
components, and technical services commonly found in the robust, maintainable systems that are
used to address the creation of simple to complex batch applications, with the infrastructure and
extensions to address very complex processing needs.

ItemReader

ItemProcessor

/1N

ItemWriter

e =
I N

Figure 3. Batch Stereotypes

The preceding diagram highlights the key concepts that make up the domain language of Spring
Batch. A Job has one to many steps, each of which has exactly one ItemReader, one ItemProcessor,
and one ItemWriter. A job needs to be launched (with JoblLauncher), and metadata about the
currently running process needs to be stored (in JobRepository).

3.1.Job

This section describes stereotypes relating to the concept of a batch job. A Job is an entity that
encapsulates an entire batch process. As is common with other Spring projects, a Job is wired
together with either an XML configuration file or Java-based configuration. This configuration may
be referred to as the "job configuration". However, Job is just the top of an overall hierarchy, as
shown in the following diagram:

14

_ / The EndeDay Job
\
Joblnstance

\ \ The EndOfDay Job
*

for 2007/05/05

The first attempt at
JobExecution EndOfDay Job
for 2007/05/05

Figure 4. Job Hierarchy

In Spring Batch, a Job is simply a container for Step instances. It combines multiple steps that
belong logically together in a flow and allows for configuration of properties global to all steps,
such as restartability. The job configuration contains:

* The simple name of the job.
* Definition and ordering of Step instances.

* Whether or not the job is restartable.

A default simple implementation of the Job interface is provided by Spring Batch in the form of the
SimpleJob class, which creates some standard functionality on top of Job. When using java based
configuration, a collection of builders are made available for the instantiation of a Job, as shown in
the following example:

@Bean
public Job footballJob() {
return this.jobBuilderFactory.get("footballlob")

.start(playerLoad())
.next(gameLoad())
.next(playerSummarization())
.end()
.build();

However, when using XML configuration, the batch namespace abstracts away the need to
instantiate it directly. Instead, the <job> tag can be used as shown in the following example:

<job id="footballJob">
<step id="playerload" next="gameload"/>
<step id="gamelLoad" next="playerSummarization"/>
<step id="playerSummarization"/>

</job>

15

3.1.1. JobInstance

A JobInstance refers to the concept of a logical job run. Consider a batch job that should be run once
at the end of the day, such as the 'EndOfDay' Job from the preceding diagram. There is one
'EndOfDay’ job, but each individual run of the Job must be tracked separately. In the case of this job,
there is one logical JobInstance per day. For example, there is a January 1st run, a January 2nd run,
and so on. If the January 1st run fails the first time and is run again the next day, it is still the
January 1st run. (Usually, this corresponds with the data it is processing as well, meaning the
January 1st run processes data for January 1st). Therefore, each JobInstance can have multiple
executions (JobExecution is discussed in more detail later in this chapter), and only one JobInstance
corresponding to a particular Job and identifying JobParameters can run at a given time.

The definition of a JobInstance has absolutely no bearing on the data to be loaded. It is entirely up
to the ItemReader implementation to determine how data is loaded. For example, in the EndOfDay
scenario, there may be a column on the data that indicates the 'effective date' or 'schedule date' to
which the data belongs. So, the January 1st run would load only data from the 1st, and the January
2nd run would use only data from the 2nd. Because this determination is likely to be a business
decision, it is left up to the ItemReader to decide. However, using the same JobInstance determines
whether or not the 'state' (that is, the ExecutionContext, which is discussed later in this chapter)
from previous executions is used. Using a new JobInstance means 'start from the beginning', and
using an existing instance generally means 'start from where you left off".

3.1.2. JobParameters

Having discussed JobInstance and how it differs from Job, the natural question to ask is: "How is
one JobInstance distinguished from another?" The answer is: JobParameters. A JobParameters object
holds a set of parameters used to start a batch job. They can be used for identification or even as
reference data during the run, as shown in the following image:

/ The EndOfDay Job
_ schedule.date = 2007/05/05
\ /

Jobinstance

\ \ The EndOfDay Job
*

for 2007/05/05

The first attempt at
JobE i EndOfDay Job
for 2007/05/05

Figure 5. Job Parameters

In the preceding example, where there are two instances, one for January 1st, and another for
January 2nd, there is really only one Job, but it has two JobParameter objects: one that was started
with a job parameter of 01-01-2017 and another that was started with a parameter of 01-02-2017.
Thus, the contract can be defined as: JobInstance = Job + identifying JobParameters. This allows a
developer to effectively control how a JobInstance is defined, since they control what parameters
are passed in.

16

Not all job parameters are required to contribute to the identification of a

0 JobInstance. By default, they do so. However, the framework also allows the
submission of a Job with parameters that do not contribute to the identity of a
JobInstance.
3.1.3. JobExecution

A JobExecution refers to the technical concept of a single attempt to run a Job. An execution may
end in failure or success, but the JobInstance corresponding to a given execution is not considered
to be complete unless the execution completes successfully. Using the EndOfDay Job described
previously as an example, consider a JobInstance for 01-01-2017 that failed the first time it was run.
If it is run again with the same identifying job parameters as the first run (01-01-2017), a new
JobExecution is created. However, there is still only one JobInstance.

A Job defines what a job is and how it is to be executed, and a JobInstance is a purely organizational
object to group executions together, primarily to enable correct restart semantics. A JobExecution,
however, is the primary storage mechanism for what actually happened during a run and contains
many more properties that must be controlled and persisted, as shown in the following table:

Table 1. JobExecution Properties
Property Definition

Status A BatchStatus object that indicates the status of
the execution. While running, it is
BatchStatus#STARTED. If it fails, it is
BatchStatus#FAILED. If it finishes successfully, it is
BatchStatus#COMPLETED

startTime A java.util.Date representing the current
system time when the execution was started.
This field is empty if the job has yet to start.

endTime A java.util.Date representing the current
system time when the execution finished,
regardless of whether or not it was successful.
The field is empty if the job has yet to finish.

exitStatus The ExitStatus, indicating the result of the run.
It is most important, because it contains an exit
code that is returned to the caller. See chapter 5
for more details. The field is empty if the job has
yet to finish.

createTime A java.util.Date representing the current
system time when the JobExecution was first
persisted. The job may not have been started yet
(and thus has no start time), but it always has a
createTime, which is required by the framework
for managing job level ExecutionContexts.

lastUpdated A java.util.Date representing the last time a
JobExecution was persisted. This field is empty if
the job has yet to start.

17

executionContext The "property bag" containing any user data that
needs to be persisted between executions.

failureExceptions The list of exceptions encountered during the
execution of a Job. These can be useful if more
than one exception is encountered during the
failure of a Job.

These properties are important because they are persisted and can be used to completely
determine the status of an execution. For example, if the EndOfDay job for 01-01 is executed at 9:00
PM and fails at 9:30, the following entries are made in the batch metadata tables:

Table 2. BATCH_JOB_INSTANCE
JOB_INST_ID JOB_NAME
1 EndOfDay]Job

Table 3. BATCH_JOB_EXECUTION_PARAMS

JOB_EXECUTION_I TYPE_CD KEY_NAME DATE_VAL IDENTIFYING
D
1 DATE schedule.Date 2017-01-01 TRUE

Table 4. BATCH_JOB_EXECUTION

JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS
1 1 2017-01-01 21:00 2017-01-01 21:30 FAILED
9 Column names may have been abbreviated or removed for the sake of clarity and
formatting.

Now that the job has failed, assume that it took the entire night for the problem to be determined,
so that the 'batch window' is now closed. Further assuming that the window starts at 9:00 PM, the
job is kicked off again for 01-01, starting where it left off and completing successfully at 9:30.
Because it is now the next day, the 01-02 job must be run as well, and it is kicked off just afterwards
at 9:31 and completes in its normal one hour time at 10:30. There is no requirement that one
JobInstance be kicked off after another, unless there is potential for the two jobs to attempt to
access the same data, causing issues with locking at the database level. It is entirely up to the
scheduler to determine when a Job should be run. Since they are separate JobInstances, Spring
Batch makes no attempt to stop them from being run concurrently. (Attempting to run the same
JobInstance while another is already running results in a JobExecutionAlreadyRunningException
being thrown). There should now be an extra entry in both the JobInstance and JobParameters tables
and two extra entries in the JobExecution table, as shown in the following tables:

Table 5. BATCH_JOB_INSTANCE

JOB_INST_ID JOB_NAME
1 EndOfDay]Job
2 EndOfDay]Job

Table 6. BATCH_JOB_EXECUTION_PARAMS

18

JOB_EXECUTION_I TYPE_CD KEY_NAME DATE_VAL IDENTIFYING

D

1 DATE schedule.Date 2017-01-01 TRUE
00:00:00

2 DATE schedule.Date 2017-01-01 TRUE
00:00:00

3 DATE schedule.Date 2017-01-02 TRUE
00:00:00

Table 7. BATCH_JOB_EXECUTION

JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS

1 1 2017-01-01 21:00 2017-01-01 21:30 FAILED

2 1 2017-01-02 21:00 2017-01-02 21:30 COMPLETED

3 2 2017-01-02 21:31 2017-01-02 22:29 COMPLETED

9 Column names may have been abbreviated or removed for the sake of clarity and
formatting.
3.2. Step

A Step is a domain object that encapsulates an independent, sequential phase of a batch job.
Therefore, every Job is composed entirely of one or more steps. A Step contains all of the
information necessary to define and control the actual batch processing. This is a necessarily vague
description because the contents of any given Step are at the discretion of the developer writing a
Job. A Step can be as simple or complex as the developer desires. A simple Step might load data
from a file into the database, requiring little or no code (depending upon the implementations
used). A more complex Step may have complicated business rules that are applied as part of the
processing. As with a Job, a Step has an individual StepExecution that correlates with a unique
JobExecution, as shown in the following image:

\
* _
Joblnstance

*

JobExecution \
StepExecution

Figure 6. Job Hierarchy With Steps

19

3.2.1. StepExecution

A StepExecution represents a single attempt to execute a Step. A new StepExecution is created each
time a Step is run, similar to JobExecution. However, if a step fails to execute because the step before
it fails, no execution is persisted for it. A StepExecution is created only when its Step is actually
started.

Step executions are represented by objects of the StepExecution class. Each execution contains a
reference to its corresponding step and JobExecution and transaction related data, such as commit
and rollback counts and start and end times. Additionally, each step execution contains an
ExecutionContext, which contains any data a developer needs to have persisted across batch runs,
such as statistics or state information needed to restart. The following table lists the properties for
StepExecution:

Table 8. StepExecution Properties
Property Definition

Status A BatchStatus object that indicates the status of
the execution. While running, the status is
BatchStatus.STARTED. If it fails, the status is
BatchStatus.FAILED. If it finishes successfully, the
status is BatchStatus.COMPLETED.

startTime A java.util.Date representing the current
system time when the execution was started.
This field is empty if the step has yet to start.

endTime A java.util.Date representing the current
system time when the execution finished,
regardless of whether or not it was successful.
This field is empty if the step has yet to exit.

exitStatus The ExitStatus indicating the result of the
execution. It is most important, because it
contains an exit code that is returned to the
caller. See chapter 5 for more details. This field
is empty if the job has yet to exit.

executionContext The "property bag" containing any user data that
needs to be persisted between executions.

readCount The number of items that have been successfully
read.

writeCount The number of items that have been successfully
written.

commitCount The number of transactions that have been

committed for this execution.

rollbackCount The number of times the business transaction
controlled by the Step has been rolled back.

readSkipCount The number of times read has failed, resulting in
a skipped item.

20

processSkipCount The number of times process has failed,
resulting in a skipped item.

filterCount The number of items that have been 'filtered' by
the ItemProcessor.

writeSkipCount The number of times write has failed, resulting
in a skipped item.

3.3. ExecutionContext

An ExecutionContext represents a collection of key/value pairs that are persisted and controlled by
the framework in order to allow developers a place to store persistent state that is scoped to a
StepExecution object or a JobExecution object. For those familiar with Quartz, it is very similar to
JobDataMap. The best usage example is to facilitate restart. Using flat file input as an example,
while processing individual lines, the framework periodically persists the ExecutionContext at
commit points. Doing so allows the ItemReader to store its state in case a fatal error occurs during
the run or even if the power goes out. All that is needed is to put the current number of lines read
into the context, as shown in the following example, and the framework will do the rest:

executionContext.putLong(getKey(LINES_READ_COUNT), reader.getPosition());

Using the EndOfDay example from the Job Stereotypes section as an example, assume there is one
step, 'loadData’, that loads a file into the database. After the first failed run, the metadata tables
would look like the following example:

Table 9. BATCH_JOB_INSTANCE

JOB_INST_ID JOB_NAME

1 EndOfDay]Job

Table 10. BATCH_JOB_EXECUTION_PARAMS

JOB_INST_ID TYPE_CD KEY_NAME DATE_VAL
1 DATE schedule.Date 2017-01-01

Table 11. BATCH_JOB_EXECUTION

JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS
1 1 2017-01-01 21:00 2017-01-01 21:30 FAILED

Table 12. BATCH_STEP_EXECUTION

STEP_EXEC_ID JOB_EXEC_ID STEP_NAME START _TIME END_TIME STATUS

1 1 loadData 2017-01-01 2017-01-01 FAILED
21:00 21:30

Table 13. BATCH_STEP_EXECUTION_CONTEXT
STEP_EXEC_ID SHORT_CONTEXT

21

1 {piece.count=40321}

In the preceding case, the Step ran for 30 minutes and processed 40,321 'pieces', which would
represent lines in a file in this scenario. This value is updated just before each commit by the
framework and can contain multiple rows corresponding to entries within the ExecutionContext.
Being notified before a commit requires one of the various SteplListener implementations (or an
ItemStream), which are discussed in more detail later in this guide. As with the previous example, it
is assumed that the Job is restarted the next day. When it is restarted, the values from the
ExecutionContext of the last run are reconstituted from the database. When the ItemReader is
opened, it can check to see if it has any stored state in the context and initialize itself from there, as
shown in the following example:

if (executionContext.containsKey(getKey(LINES_READ_COUNT))) {
log.debug("Initializing for restart. Restart data is: " + executionContext);

long lineCount = executionContext.getLong(getKey(LINES_READ_COUNT));

LineReader reader = getReader();

Object record = "";
while (reader.getPosition() < lineCount && record != null) {
record = readlLine();

}

In this case, after the above code runs, the current line is 40,322, allowing the Step to start again
from where it left off. The ExecutionContext can also be used for statistics that need to be persisted
about the run itself. For example, if a flat file contains orders for processing that exist across
multiple lines, it may be necessary to store how many orders have been processed (which is much
different from the number of lines read), so that an email can be sent at the end of the Step with the
total number of orders processed in the body. The framework handles storing this for the
developer, in order to correctly scope it with an individual JobInstance. It can be very difficult to
know whether an existing ExecutionContext should be used or not. For example, using the
'EndOfDay’ example from above, when the 01-01 run starts again for the second time, the
framework recognizes that it is the same JobInstance and on an individual Step basis, pulls the
ExecutionContext out of the database, and hands it (as part of the StepExecution) to the Step itself.
Conversely, for the 01-02 run, the framework recognizes that it is a different instance, so an empty
context must be handed to the Step. There are many of these types of determinations that the
framework makes for the developer, to ensure the state is given to them at the correct time. It is
also important to note that exactly one ExecutionContext exists per StepExecution at any given time.
Clients of the ExecutionContext should be careful, because this creates a shared keyspace. As a
result, care should be taken when putting values in to ensure no data is overwritten. However, the
Step stores absolutely no data in the context, so there is no way to adversely affect the framework.

It is also important to note that there is at least one ExecutionContext per JobExecution and one for
every StepExecution. For example, consider the following code snippet:

22

ExecutionContext ecStep = stepExecution.getExecutionContext();
ExecutionContext ecJob = jobExecution.getExecutionContext();
//ecStep does not equal ecJob

As noted in the comment, ecStep does not equal ecJob. They are two different ExecutionContexts.
The one scoped to the Step is saved at every commit point in the Step, whereas the one scoped to the
Job is saved in between every Step execution.

3.4. JobRepository

JobRepository is the persistence mechanism for all of the Stereotypes mentioned above. It provides
CRUD operations for JobLauncher, Job, and Step implementations. When a Job is first launched, a
JobExecution is obtained from the repository, and, during the course of execution, StepExecution and
JobExecution implementations are persisted by passing them to the repository.

The batch namespace provides support for configuring a JobRepository instance with the <job-
repository> tag, as shown in the following example:

<job-repository id="jobRepository"/>

When using java configuration, @EnableBatchProcessing annotation provides a JobRepository as one
of the components automatically configured out of the box.

3.5. JobLauncher

JobLauncher represents a simple interface for launching a Job with a given set of JobParameters, as
shown in the following example:

public interface JobLauncher {

public JobExecution run(Job job, JobParameters jobParameters)
throws JobExecutionAlreadyRunningException, JobRestartException,
JobInstanceAlreadyCompleteException, JobParametersInvalidException;

It is expected that implementations obtain a valid JobExecution from the JobRepository and execute
the Job.

3.6. Item Reader

ItemReader is an abstraction that represents the retrieval of input for a Step, one item at a time.
When the ItemReader has exhausted the items it can provide, it indicates this by returning null.
More details about the ItemReader interface and its various implementations can be found in
Readers And Writers.

23

3.7. Item Writer

ItemWriter is an abstraction that represents the output of a Step, one batch or chunk of items at a
time. Generally, an ItemWriter has no knowledge of the input it should receive next and knows only
the item that was passed in its current invocation. More details about the Itemiiriter interface and
its various implementations can be found in Readers And Writers.

3.8. Item Processor

ItemProcessor is an abstraction that represents the business processing of an item. While the
ItemReader reads one item, and the ItemWriter writes them, the ItemProcessor provides an access
point to transform or apply other business processing. If, while processing the item, it is
determined that the item is not valid, returning null indicates that the item should not be written
out. More details about the ItemProcessor interface can be found in Readers And Writers.

3.9. Batch Namespace

Many of the domain concepts listed previously need to be configured in a Spring
ApplicationContext. While there are implementations of the interfaces above that can be used in a
standard bean definition, a namespace has been provided for ease of configuration, as shown in the
following example:

<beans:beans xmlns="http://www.springframework.org/schema/batch"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/batch
https://www.springframework.org/schema/batch/spring-batch.xsd">

<job id="ioSampleJob">
<step id="step1">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>
</tasklet>
</step>
</job>

</beans:beans>

As long as the batch namespace has been declared, any of its elements can be used. More
information on configuring a Job can be found in Configuring and Running a Job. More information
on configuring a Step can be found in Configuring a Step.

24

Chapter 4. Configuring and Running a Job

In the domain section , the overall architecture design was discussed, using the following diagram
as a guide:

ItemReader

ItemProcessor

/1N

ItemWriter

e =
I N

Figure 7. Batch Stereotypes

While the Job object may seem like a simple container for steps, there are many configuration
options of which a developer must be aware. Furthermore, there are many considerations for how
a Job will be run and how its meta-data will be stored during that run. This chapter will explain the
various configuration options and runtime concerns of a Job.

4.1. Configuring a Job

There are multiple implementations of the Job interface, however this is abstracted behind either
the builders provided for java configuration or the XML namespace when using XML based
configuration.

Java Configuration

@Bean
public Job footballJob() {
return this.jobBuilderFactory.get("footballJob")

.start(playerlLoad())
.next(gameLoad())
.next(playerSummarization())
.end()
.build();

XML Configuration

<job id="footballlob">

<step id="playerload" parent="s1" next="gamelLoad"/>
<step id="gameload" parent="s2" next="playerSummarization"/>
<step id="playerSummarization" parent="s3"/>

</job>

The examples here use a parent bean definition to create the steps; see the section on step
configuration for more options declaring specific step details inline. The XML namespace defaults

25

to referencing a repository with an id of 'jobRepository', which is a sensible default. However, this
can be overridden explicitly:

<job id="footballJob" job-repository="specialRepository">

<step id="playerload" parent="s1" next="gamelLoad"/>
<step id="gamelLoad" parent="s3" next="playerSummarization"/>
<step id="playerSummarization" parent="s3"/>

</job>

In addition to steps a job configuration can contain other elements that help with parallelisation
(<split>), declarative flow control (<decision>) and externalization of flow definitions (<flow/>).

4.1.1. Restartability

One key issue when executing a batch job concerns the behavior of a Job when it is restarted. The
launching of a Job is considered to be a 'restart' if a JobExecution already exists for the particular
JobInstance. Ideally, all jobs should be able to start up where they left off, but there are scenarios
where this is not possible. It is entirely up to the developer to ensure that a new JobInstance is
created in this scenario. However, Spring Batch does provide some help. If a Job should never be
restarted, but should always be run as part of a new JobInstance, then the restartable property may
be set to 'false":

XML Configuration
<job id="footballJob" restartable="false">
</job>

Java Configuration
public Job footballJob() {

return this.jobBuilderFactory.get("footballlob")
.preventRestart()

.build();

To phrase it another way, setting restartable to false means "this Job does not support being started
again". Restarting a Job that is not restartable will cause a JobRestartException to be thrown:

26

Job job = new Simplelob();
job.setRestartable(false);

JobParameters jobParameters = new JobParameters();

JobExecution firstExecution = jobRepository.createJobExecution(job, jobParameters);
jobRepository.saveOrUpdate(firstExecution);

try {
jobRepository.createJobExecution(job, jobParameters);
fail();

}

catch (JobRestartException e) {
// expected

}

This snippet of JUnit code shows how attempting to create a JobExecution the first time for a non
restartable job will cause no issues. However, the second attempt will throw a JobRestartException.

4.1.2. Intercepting Job Execution

During the course of the execution of a Job, it may be useful to be notified of various events in its
lifecycle so that custom code may be executed. The SimpleJob allows for this by calling a JobListener
at the appropriate time:

public interface JobExecutionListener {
void beforeJob(JobExecution jobExecution);

void afterJob(JobExecution jobExecution);

JobListeners can be added to a SimpleJob via the listeners element on the job:

XML Configuration

<job id="footballJob">

<step id="playerload" parent="s1" next="gamelLoad"/>
<step id="gameload" parent="s2" next="playerSummarization"/>
<step id="playerSummarization" parent="s3"/>
<listeners>
<listener ref="samplelistener"/>
</listeners>
</job>

27

Java Configuration

public Job footballJob() {
return this.jobBuilderFactory.get("footballlob")
.listener(samplelListener())

.build();

It should be noted that afterJob will be called regardless of the success or failure of the Job. If
success or failure needs to be determined it can be obtained from the JobExecution:

public void afterJob(JobExecution jobExecution){
if(jobExecution.getStatus() == BatchStatus.COMPLETED){
//job success

}
else if(jobExecution.getStatus() == BatchStatus.FAILED){
//job failure

}

The annotations corresponding to this interface are:
« @Beforelob
o @AfterJob

4.1.3. Inheriting from a Parent Job

If a group of Jobs share similar, but not identical, configurations, then it may be helpful to define a
"parent” Job from which the concrete Jobs may inherit properties. Similar to class inheritance in
Java, the "child" Job will combine its elements and attributes with the parent’s.

In the following example, "baseJob" is an abstract Job definition that defines only a list of listeners.
The Job "job1" is a concrete definition that inherits the list of listeners from "baseJob" and merges it
with its own list of listeners to produce a Job with two listeners and one Step, "step1".

28

<job id="baselob" abstract="true">
<listeners>
<listener ref="listenerOne"/>
<listeners>
</job>

<job id="job1" parent="baseJob">
<step id="step1" parent="standaloneStep"/>

<listeners merge="true">
<listener ref="listenerTwo"/>
<listeners>
</job>

Please see the section on Inheriting from a Parent Step for more detailed information.

This section only applies to XML based configuration as java configuration provides better reuse
capabilities.

4.1.4. JobParametersValidator

A job declared in the XML namespace or using any subclass of AbstractJob can optionally declare a
validator for the job parameters at runtime. This is useful when for instance you need to assert that
a job is started with all its mandatory parameters. There is a DefaultJobParametersValidator that can
be used to constrain combinations of simple mandatory and optional parameters, and for more
complex constraints you can implement the interface yourself.

The configuration of a validator is supported through the java builders, e.g:

@Bean
public Job job1() {
return this.jobBuilderFactory.get("job1")
.validator(parametersValidator())

.build();

XML namespace support is also available for configuration of a JobParametersValidator:

<job id="job1" parent="baseJob3">
<step id="step1" parent="standaloneStep"/>
<validator ref="parametersValidator"/>
</job>

The validator can be specified as a reference (as above) or as a nested bean definition in the beans
namespace.

29

4.2. Java Config

Spring 3 brought the ability to configure applications via java in addition to XML. As of Spring
Batch 2.2.0, batch jobs can be configured using the same java config. There are two components for
the java based configuration: the @EnableBatchProcessing annotation and two builders.

The @EnableBatchProcessing works similarly to the other @Enable* annotations in the Spring family.
In this case, @EnableBatchProcessing provides a base configuration for building batch jobs. Within
this base configuration, an instance of StepScope is created in addition to a number of beans made
available to be autowired:

* JobRepository - bean name "jobRepository"

* JobLauncher - bean name "jobLauncher"

* JobRegistry - bean name "jobRegistry"

* PlatformTransactionManager - bean name "transactionManager"

* JobBuilderFactory - bean name "jobBuilders"

* StepBuilderFactory - bean name "stepBuilders"
The core interface for this configuration is the BatchConfigurer. The default implementation

provides the beans mentioned above and requires a DataSource as a bean within the context to be
provided. This data source will be used by the JobRepository.

ﬁ Only one configuration class needs to have the @EnableBatchProcessing annotation.
Once you have a class annotated with it, you will have all of the above available.

With the base configuration in place, a user can use the provided builder factories to configure a

job. Below is an example of a two step job configured via the JobBuilderFactory and the
StepBuilderFactory.

30

(DataSourceConfiguration.class)
public class AppConfig {

private JobBuilderFactory jobs;
private StepBuilderFactory steps;

public Job job(("step1") Step stept, ("step2") Step step2) {
return jobs.get("myJob").start(step1).next(step2).build();
}

protected Step step1(ItemReader<Person> reader,
ItemProcessor<Person, Person> processor,
ItemWriter<Person> writer) {
return steps.get("step1")

.<Person, Person> chunk(10)

.reader(reader)

.processor(processor)

writer(writer)

.build();

protected Step step2(Tasklet tasklet) {
return steps.get("step2")
.tasklet(tasklet)
.build();

4.3. Configuring a JobRepository

When using @EnableBatchProcessing, a JobRepository is provided out of the box for you. This section
addresses configuring your own.

As described in earlier, the JobRepository is used for basic CRUD operations of the various persisted
domain objects within Spring Batch, such as JobExecution and StepExecution. It is required by many
of the major framework features, such as the JobLauncher, Job, and Step.

The batch namespace abstracts away many of the implementation details of the JobRepository
implementations and their collaborators. However, there are still a few configuration options
available:

31

XML Configuration

<job-repository id="jobRepository"
data-source="dataSource"
transaction-manager="transactionManager"
isolation-level-for-create="SERIALIZABLE"
table-prefix="BATCH_"
max-varchar-length="1000"/>

None of the configuration options listed above are required except the id. If they are not set, the
defaults shown above will be used. They are shown above for awareness purposes. The max-
varchar-length defaults to 2500, which is the length of the long VARCHAR columns in the sample
schema scripts

When using java configuration, a JobRepository is provided for you. A JDBC based one is provided
out of the box if a DataSource is provided, the Map based one if not. However you can customize the
configuration of the JobRepository via an implementation of the BatchConfigurer interface.

Java Configuration

// This would reside in your BatchConfigurer implementation

protected JobRepository createJobRepository() throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory.setDataSource(dataSource);
factory.setTransactionManager(transactionManager);
factory.setIsolationLevelForCreate("ISOLATION_SERIALIZABLE");
factory.setTablePrefix("BATCH_");
factory.setMaxVarCharLength(1000);
return factory.getObject();

None of the configuration options listed above are required except the dataSource and
transactionManager. If they are not set, the defaults shown above will be used. They are shown
above for awareness purposes. The max varchar length defaults to 2500, which is the length of the
long VARCHAR columns in the sample schema scripts

4.3.1. Transaction Configuration for the JobRepository

If the namespace or the provided FactoryBean is used, transactional advice will be automatically
created around the repository. This is to ensure that the batch meta data, including state that is
necessary for restarts after a failure, is persisted correctly. The behavior of the framework is not
well defined if the repository methods are not transactional. The isolation level in the create*
method attributes is specified separately to ensure that when jobs are launched, if two processes
are trying to launch the same job at the same time, only one will succeed. The default isolation level
for that method is SERIALIZABLE, which is quite aggressive: READ_COMMITTED would work just as
well; READ_UNCOMMITTED would be fine if two processes are not likely to collide in this way.

32

However, since a call to the create* method is quite short, it is unlikely that the SERIALIZED will
cause problems, as long as the database platform supports it. However, this can be overridden:

XML Configuration

<job-repository id="jobRepository"
isolation-level-for-create="REPEATABLE READ" />

Java Configuration

// This would reside in your BatchConfigurer implementation

@override

protected JobRepository createJobRepository() throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory.setDataSource(dataSource);
factory.setTransactionManager(transactionManager);
factory.setIsolationLevelForCreate("ISOLATION_REPEATABLE_READ");
return factory.getObject();

If the namespace or factory beans aren’t used then it is also essential to configure the transactional
behavior of the repository using AOP:

XML Configuration

<aop:config>
<aop:advisor
pointcut="execution(* org.springframework.batch.core..*Repository+.*(..))
“/>
<advice-ref="txAdvice" />
</aop:config>

<tx:advice id="txAdvice" transaction-manager="transactionManager">
<tx:attributes>
<tx:method name="*" />
</tx:attributes>
</tx:advice>

This fragment can be used as is, with almost no changes. Remember also to include the appropriate
namespace declarations and to make sure spring-tx and spring-aop (or the whole of spring) are on
the classpath.

33

Java Configuration

public TransactionProxyFactoryBean baseProxy() {
TransactionProxyFactoryBean transactionProxyFactoryBean = new
TransactionProxyFactoryBean();
Properties transactionAttributes = new Properties();
transactionAttributes.setProperty("*", "PROPAGATION_REQUIRED");
transactionProxyFactoryBean.setTransactionAttributes(transactionAttributes);
transactionProxyFactoryBean.setTarget(jobRepository());
transactionProxyFactoryBean.setTransactionManager(transactionManager());
return transactionProxyFactoryBean;

4.3.2. Changing the Table Prefix

Another modifiable property of the JobRepository is the table prefix of the meta-data tables. By
default they are all prefaced with BATCH_. BATCH_JOB_EXECUTION and BATCH_STEP_EXECUTION
are two examples. However, there are potential reasons to modify this prefix. If the schema names
needs to be prepended to the table names, or if more than one set of meta data tables is needed
within the same schema, then the table prefix will need to be changed:

XML Configuration

<job-repository id="jobRepository"
table-prefix="SYSTEM.TEST_" />

Java Configuration
// This would reside in your BatchConfigurer implementation

protected JobRepository createJobRepository() throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory.setDataSource(dataSource);
factory.setTransactionManager (transactionManager);
factory.setTablePrefix("SYSTEM.TEST_");
return factory.getObject();

Given the above changes, every query to the meta data tables will be prefixed with
"SYSTEM.TEST_". BATCH_JOB_EXECUTION will be referred to as SYSTEM.TEST_JOB_EXECUTION.

o Only the table prefix is configurable. The table and column names are not.

4.3.3. In-Memory Repository

There are scenarios in which you may not want to persist your domain objects to the database. One
reason may be speed; storing domain objects at each commit point takes extra time. Another reason

34

may be that you just don’t need to persist status for a particular job. For this reason, Spring batch
provides an in-memory Map version of the job repository:

XML Configuration

<bean id="jobRepository"
class="
org.springframework.batch.core.repository.support.MapJobRepositoryFactoryBean">
<property name="transactionManager" ref="transactionManager"/>
</bean>

Java Configuration
// This would reside in your BatchConfigurer implementation

protected JobRepository createJobRepository() throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory.setDataSource(dataSource);
factory.setTransactionManager (transactionManager);
factory.setIsolationLevelForCreate("ISOLATION_REPEATABLE_READ");
return factory.getObject();

Note that the in-memory repository is volatile and so does not allow restart between JVM instances.
It also cannot guarantee that two job instances with the same parameters are launched
simultaneously, and is not suitable for use in a multi-threaded Job, or a locally partitioned Step. So
use the database version of the repository wherever you need those features.

However it does require a transaction manager to be defined because there are rollback semantics
within the repository, and because the business logic might still be transactional (e.g. RDBMS
access). For testing purposes many people find the ResourcelessTransactionManager useful.

4.3.4. Non-standard Database Types in a Repository

If you are using a database platform that is not in the list of supported platforms, you may be able
to use one of the supported types, if the SQL variant is close enough. To do this you can use the raw
JobRepositoryFactoryBean instead of the namespace shortcut and use it to set the database type to
the closest match:

XML Configuration

<bean id="jobRepository" class="org...JobRepositoryFactoryBean">
<property name="databaseType" value="db2"/>
<property name="dataSource" ref="dataSource"/>

</bean>

35

Java Configuration
// This would reside in your BatchConfigurer implementation

protected JobRepository createJobRepository() throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory.setDataSource(dataSource);
factory.setDatabaseType("db2");
factory.setTransactionManager (transactionManager);
return factory.getObject();

(The JobRepositoryFactoryBean tries to auto-detect the database type from the DataSource if it is not
specified.) The major differences between platforms are mainly accounted for by the strategy for
incrementing primary keys, so often it might be necessary to override the incrementerFactory as
well (using one of the standard implementations from the Spring Framework).

If even that doesn’t work, or you are not using an RDBMS, then the only option may be to
implement the various Dao interfaces that the SimpleJobRepository depends on and wire one up
manually in the normal Spring way.

4.4. Configuring a JobLauncher

When using @EnableBatchProcessing, a JobRegistry is provided out of the box for you. This section
addresses configuring your own.

The most basic implementation of the JobLauncher interface is the SimplelobLauncher. Its only
required dependency is a JobRepository, in order to obtain an execution:

XML Configuration

<bean id="joblLauncher"
class="org.springframework.batch.core.launch.support.SimpleJobLauncher">
<property name="jobRepository" ref="jobRepository" />
</bean>

Java Configuration

// This would reside in your BatchConfigurer implementation

protected JobLauncher createJoblLauncher() throws Exception {
SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
jobLauncher.setJobRepository(jobRepository);
jobLauncher.afterPropertiesSet();
return jobLauncher;

36

Once a JobExecution is obtained, it is passed to the execute method of Job, ultimately returning the
JobExecution to the caller:

rung) _i_ i

1

1

1

i

: execute()

i

1

1

! .

! >

i

i ExitStatus " ;
|) | i
tJobBExecutione | i '
R — ST With ExitStatus. FINISHED or FAILED 1

28

Figure 8. Job Launcher Sequence

The sequence is straightforward and works well when launched from a scheduler. However, issues
arise when trying to launch from an HTTP request. In this scenario, the launching needs to be done
asynchronously so that the SimpleJobLauncher returns immediately to its caller. This is because it is
not good practice to keep an HTTP request open for the amount of time needed by long running
processes such as batch. An example sequence is below:

E rung)

] |

] 1

| |

] I

[JobExecution ; |
" !]

: / l l 1

] 1 1 1

1 X | 1

Starts fith : executef) ! i

ExitStatus LR NOWN

ExitStatus "

20

Figure 9. Asynchronous Job Launcher Sequence

The SimplelobLauncher can easily be configured to allow for this scenario by configuring a
TaskExecutor:

37

XML Configuration

<bean id="jobLauncher"
class="org.springframework.batch.core.launch.support.SimpleJobLauncher">
<property name="jobRepository" ref="jobRepository" />
<property name="taskExecutor">
<bean class="org.springframework.core.task.SimpleAsyncTaskExecutor" />
</property>
</bean>

Java Configuration

public JobLauncher jobLauncher() {
SimpleJobLauncher jobLauncher = new SimpleJoblLauncher();
jobLauncher.setJobRepository(jobRepository());
jobLauncher.setTaskExecutor(new SimpleAsyncTaskExecutor());
jobLauncher.afterPropertiesSet();
return jobLauncher;

Any implementation of the spring TaskExecutor interface can be used to control how jobs are
asynchronously executed.

4.5. Running a Job

At a minimum, launching a batch job requires two things: the Job to be launched and a JobLauncher.
Both can be contained within the same context or different contexts. For example, if launching a
job from the command line, a new JVM will be instantiated for each Job, and thus every job will
have its own JobLauncher. However, if running from within a web container within the scope of an
HttpRequest, there will usually be one JoblLauncher, configured for asynchronous job launching, that
multiple requests will invoke to launch their jobs.

4.5.1. Running Jobs from the Command Line

For users that want to run their jobs from an enterprise scheduler, the command line is the
primary interface. This is because most schedulers (with the exception of Quartz unless using the
NativeJob) work directly with operating system processes, primarily kicked off with shell scripts.
There are many ways to launch a Java process besides a shell script, such as Perl, Ruby, or even
'build tools' such as ant or maven. However, because most people are familiar with shell scripts,
this example will focus on them.

The CommandLineJobRunner

Because the script launching the job must kick off a Java Virtual Machine, there needs to be a class
with a main method to act as the primary entry point. Spring Batch provides an implementation
that serves just this purpose: CommandLineJobRunner. It’s important to note that this is just one way to
bootstrap your application, but there are many ways to launch a Java process, and this class should

38

in no way be viewed as definitive. The CommandLineJobRunner performs four tasks:

* Load the appropriate ApplicationContext
* Parse command line arguments into JobParameters
* Locate the appropriate job based on arguments

» Use the JobLauncher provided in the application context to launch the job.

All of these tasks are accomplished using only the arguments passed in. The following are required
arguments:

Table 14. CommandLineJobRunner arguments

jobPath The location of the XML file that will be used to
create an ApplicationContext. This file should
contain everything needed to run the complete
Job

jobName The name of the job to be run.

These arguments must be passed in with the path first and the name second. All arguments after
these are considered to be JobParameters and must be in the format of 'name=value":

<bash$ java CommandLineJobRunner end0fDayJob.xml endOfDay
schedule.date(date)=2007/05/05

<bash$ java CommandLineJobRunner io.spring.End0fDayJobConfiguration end0fDay
schedule.date(date)=2007/05/05

In most cases you would want to use a manifest to declare your main class in a jar, but for
simplicity, the class was used directly. This example is using the same 'EndOfDay' example from the
domainLanguageOfBatch. The first argument is where your job is configured (either an XML file or
a fully qualified class name). The second argument, 'endOfDay' represents the job name. The final
argument, 'schedule.date(date)=2007/05/05' will be converted into JobParameters. An example of the
configuration is below:

XML Configuration

<job id="end0fDay">
<step id="step1" parent="simpleStep" />
</job>

<!-- Launcher details removed for clarity -->

<beans:bean id="jobLauncher"
class="org.springframework.batch.core.launch.support.SimpleJobLauncher" />

39

Java Configuration

public class EndOfDayJobConfiguration {

private JobBuilderFactory jobBuilderFactory;

private StepBuilderFactory stepBuilderFactory;

public Job endOfDay() {
return this.jobBuilderFactory.get("endOfDay")
.start(step1())
.build();

public Step step1() {
return this.stepBuilderFactory.get("step1")
.tasklet((contribution, chunkContext) -> null)
.build();

This example is overly simplistic, since there are many more requirements to a run a batch job in
Spring Batch in general, but it serves to show the two main requirements of the
CommandLineJobRunner: Job and JobLauncher

ExitCodes

When launching a batch job from the command-line, an enterprise scheduler is often used. Most
schedulers are fairly dumb and work only at the process level. This means that they only know
about some operating system process such as a shell script that they’re invoking. In this scenario,
the only way to communicate back to the scheduler about the success or failure of a job is through
return codes. A return code is a number that is returned to a scheduler by the process that indicates
the result of the run. In the simplest case: 0 is success and 1 is failure. However, there may be more
complex scenarios: If job A returns 4 kick off job B, and if it returns 5 kick off job C. This type of
behavior is configured at the scheduler level, but it is important that a processing framework such
as Spring Batch provide a way to return a numeric representation of the 'Exit Code' for a particular
batch job. In Spring Batch this is encapsulated within an ExitStatus, which is covered in more detail
in Chapter 5. For the purposes of discussing exit codes, the only important thing to know is that an
ExitStatus has an exit code property that is set by the framework (or the developer) and is returned
as part of the JobExecution returned from the JobLauncher. The CommandLineJobRunner converts this
string value to a number using the ExitCodeMapper interface:

40

public interface ExitCodeMapper {

public int intValue(String exitCode);

The essential contract of an ExitCodeMapper is that, given a string exit code, a number representation
will be returned. The default implementation used by the job runner is the SimpleJvmExitCodeMapper
that returns 0 for completion, 1 for generic errors, and 2 for any job runner errors such as not
being able to find a Job in the provided context. If anything more complex than the 3 values above
is needed, then a custom implementation of the ExitCodeMapper interface must be supplied. Because
the CommandLineJobRunner is the class that creates an ApplicationContext, and thus cannot be 'wired
together', any values that need to be overwritten must be autowired. This means that if an
implementation of ExitCodeMapper is found within the BeanFactory, it will be injected into the runner
after the context is created. All that needs to be done to provide your own ExitCodeMapper is to
declare the implementation as a root level bean and ensure that it is part of the ApplicationContext
that is loaded by the runner.

4.5.2. Running Jobs from within a Web Container

Historically, offline processing such as batch jobs have been launched from the command-line, as
described above. However, there are many cases where launching from an HttpRequest is a better
option. Many such use cases include reporting, ad-hoc job running, and web application support.
Because a batch job by definition is long running, the most important concern is ensuring to launch
the job asynchronously:

runi)

execute()

JobExecution

Figure 10. Asynchronous Job Launcher Sequence From Web Container

The controller in this case is a Spring MVC controller. More information on Spring MVC can be
found here: https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc.
The controller launches a Job using a JobLauncher that has been configured to launch
asynchronously, which immediately returns a JobExecution. The Job will likely still be running,
however, this nonblocking behaviour allows the controller to return immediately, which is
required when handling an HttpRequest. An example is below:

41

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc

@Controller
public class JobLauncherController {

@Autowired
JobLauncher joblauncher;

@Autowired
Job job;

@RequestMapping("/jobLauncher.html")
public void handle() throws Exception{
jobLauncher.run(job, new JobParameters());

}

4.6. Advanced Meta-Data Usage

So far, both the JoblLauncher and JobRepository interfaces have been discussed. Together, they
represent simple launching of a job, and basic CRUD operations of batch domain objects:

/

CRUD operations l

runiJob)

A JobLauncher uses the JobRepository to create new JobExecution objects and run them. Job and Step
implementations later use the same JobRepository for basic updates of the same executions during
the running of a Job. The basic operations suffice for simple scenarios, but in a large batch
environment with hundreds of batch jobs and complex scheduling requirements, more advanced
access of the meta data is required:

Figure 11. Job Repository

42

Combings all

run Job} ‘ \

CRUD operations

N

get” operations

Figure 12. Advanced Job Repository Access

The JobExplorer and JobOperator interfaces, which will be discussed below, add additional
functionality for querying and controlling the meta data.

4.6.1. Querying the Repository

The most basic need before any advanced features is the ability to query the repository for existing
executions. This functionality is provided by the JobExplorer interface:

public interface JobExplorer {
List<JobInstance> getJobInstances(String jobName, int start, int count);
JobExecution getJobExecution(Long executionId);
StepExecution getStepExecution(Long jobExecutionId, Long stepExecutionld);
JobInstance getJobInstance(Long instanceld);
List<JobExecution> getJobExecutions(JobInstance jobInstance);

Set<JobExecution> findRunningJobExecutions(String jobName);

As is evident from the method signatures above, JobExplorer is a read-only version of the
JobRepository, and like the JobRepository, it can be easily configured via a factory bean:

43

XML Configuration

<bean id="jobExplorer" class="org.spr...JobExplorerFactoryBean"
p:dataSource-ref="dataSource" />

Java Configuration

// This would reside in your BatchConfigurer implementation

@0verride

public JobExplorer getJobExplorer() throws Exception {
JobExplorerFactoryBean factoryBean = new JobExplorerFactoryBean();
factoryBean.setDataSource(this.dataSource);
return factoryBean.getObject();

Earlier in this chapter, it was mentioned that the table prefix of the JobRepository can be modified
to allow for different versions or schemas. Because the JobExplorer is working with the same tables,
it too needs the ability to set a prefix:

XML Configuration

<bean id="jobExplorer" class="org.spr...JobExplorerFactoryBean"
p:tablePrefix="SYSTEM."/>

Java Configuration

// This would reside in your BatchConfigurer implementation

@0verride

public JobExplorer getJobExplorer() throws Exception {
JobExplorerFactoryBean factoryBean = new JobExplorerFactoryBean();
factoryBean.setDataSource(this.dataSource);
factoryBean.setTablePrefix("SYSTEM.");
return factoryBean.getObject();

4.6.2. JobRegistry

A JobRegistry (and its parent interface JobLocator) is not mandatory, but it can be useful if you want
to keep track of which jobs are available in the context. It is also useful for collecting jobs centrally
in an application context when they have been created elsewhere (e.g. in child contexts). Custom
JobRegistry implementations can also be used to manipulate the names and other properties of the
jobs that are registered. There is only one implementation provided by the framework and this is
based on a simple map from job name to job instance.

44

<bean id="jobRegistry" class=
"org.springframework.batch.core.configuration.support.MapJobRegistry" />

When using @EnableBatchProcessing, a JobRegistry is provided out of the box for you. If you want to
configure your own:

// This is already provided via the @EnableBatchProcessing but can be customized via
// overriding the getter in the SimpleBatchConfiguration
@0verride
@Bean
public JobRegistry jobRegistry() throws Exception {
return new MapJobRegistry();
}

There are two ways to populate a JobRegistry automatically: using a bean post processor and using
a registrar lifecycle component. These two mechanisms are described in the following sections.

JobRegistryBeanPostProcessor

This is a bean post-processor that can register all jobs as they are created:

XML Configuration

<bean id="jobRegistryBeanPostProcessor" class="org.spr...JobRegistryBeanPostProcessor
||>

<property name="jobRegistry" ref="jobRegistry"/>
</bean>

Java Configuration

@Bean

public JobRegistryBeanPostProcessor jobRegistryBeanPostProcessor() {
JobRegistryBeanPostProcessor postProcessor = new JobRegistryBeanPostProcessor();
postProcessor.setJobRegistry(jobRegistry());
return postProcessor;

Although it is not strictly necessary, the post-processor in the example has been given an id so that
it can be included in child contexts (e.g. as a parent bean definition) and cause all jobs created there
to also be registered automatically.

AutomaticJobRegistrar

This is a lifecycle component that creates child contexts and registers jobs from those contexts as
they are created. One advantage of doing this is that, while the job names in the child contexts still

45

have to be globally unique in the registry, their dependencies can have "natural" names. So for
example, you can create a set of XML configuration files each having only one Job, but all having
different definitions of an ItemReader with the same bean name, e.g. "reader". If all those files were
imported into the same context, the reader definitions would clash and override one another, but
with the automatic registrar this is avoided. This makes it easier to integrate jobs contributed from
separate modules of an application.

XML Configuration

<bean class="org.spr...AutomaticJobRegistrar">
<property name="applicationContextFactories">
<bean class="org.spr...ClasspathXmlApplicationContextsFactoryBean">
<property name="resources" value="classpath*:/config/job*.xml" />
</bean>
</property>
<property name="joblLoader">
<bean class="org.spr...DefaultJoblLoader">
<property name="jobRegistry" ref="jobRegistry" />
</bean>
</property>
</bean>

Java Configuration

public AutomaticJobRegistrar registrar() {

AutomaticJobRegistrar registrar = new AutomaticJobRegistrar();
registrar.setJoblLoader(jobLoader());
registrar.setApplicationContextFactories(applicationContextFactories());
registrar.afterPropertiesSet();

return registrar;

The registrar has two mandatory properties, one is an array of ApplicationContextFactory (here
created from a convenient factory bean), and the other is a JobLoader. The JobLoader is responsible
for managing the lifecycle of the child contexts and registering jobs in the JobRegistry.

The ApplicationContextFactory is responsible for creating the child context and the most common
usage would be as above using a ClassPathXmlApplicationContextFactory. One of the features of this
factory is that by default it copies some of the configuration down from the parent context to the
child. So for instance you don’t have to re-define the PropertyPlaceholderConfigurer or AOP
configuration in the child, if it should be the same as the parent.

The AutomaticJobRegistrar can be used in conjunction with a JobRegistryBeanPostProcessor if
desired (as long as the DefaultJobLoader is used as well). For instance this might be desirable if there
are jobs defined in the main parent context as well as in the child locations.

46

4.6.3. JobOperator

As previously discussed, the JobRepository provides CRUD operations on the meta-data, and the
JobExplorer provides read-only operations on the meta-data. However, those operations are most
useful when used together to perform common monitoring tasks such as stopping, restarting, or
summarizing a Job, as is commonly done by batch operators. Spring Batch provides these types of
operations via the JobOperator interface:

public interface JobOperator {
List<Long> getExecutions(long instanceld) throws NoSuchJobInstanceException;

List<Long> getJobInstances(String jobName, int start, int count)
throws NoSuchJobException;

Set<Long> getRunningExecutions(String jobName) throws NoSuchJobException;
String getParameters(long executionId) throws NoSuchJobExecutionException;

Long start(String jobName, String parameters)
throws NoSuchJobException, JobInstanceAlreadyExistsException;

Long restart(long executionId)
throws JobInstanceAlreadyCompleteException, NoSuchJobExecutionException,
NoSuchJobException, JobRestartException;

Long startNextInstance(String jobName)
throws NoSuchJobException, JobParametersNotFoundException,
JobRestartException,
JobExecutionAlreadyRunningException,
JobInstanceAlreadyCompleteException;

boolean stop(long executionId)
throws NoSuchJobExecutionException, JobExecutionNotRunningException;

String getSummary(long executionId) throws NoSuchJobExecutionException;

Map<Long, String> getStepExecutionSummaries(long executionId)
throws NoSuchJobExecutionException;

Set<String> getJobNames();

The above operations represent methods from many different interfaces, such as JoblLauncher,
JobRepository, JobExplorer, and JobRegistry. For this reason, the provided implementation of
JobOperator, SimpleJobOperator, has many dependencies:

47

<bean id="jobOperator" class="org.spr...SimpleJobOperator">
<property name="jobExplorer">
<bean class="org.spr...JobExplorerFactoryBean">
<property name="dataSource" ref="dataSource" />
</bean>
</property>
<property name="jobRepository" ref="jobRepository" />
<property name="jobRegistry" ref="jobRegistry" />
<property name="jobLauncher" ref="jobLauncher" />
</bean>

/**

* ALl injected dependencies for this bean are provided by the @EnableBatchProcessing
* infrastructure out of the box.
*/
@Bean
public SimpleJobOperator jobOperator(JobExplorer jobExplorer,
JobRepository jobRepository,
JobRegistry jobRegistry) {

SimpleJobOperator jobOperator = new SimpleJobOperator();

jobOperator.setJobExplorer(jobExplorer);
jobOperator.setJobRepository(jobRepository);
jobOperator.setJobRegistry(jobRegistry);
jobOperator.setJobLauncher(jobLauncher);

return jobOperator;

ﬂ If you set the table prefix on the job repository, don’t forget to set it on the job
explorer as well.

4.6.4. JobParametersincrementer

Most of the methods on JobOperator are self-explanatory, and more detailed explanations can be
found on the javadoc of the interface. However, the startNextInstance method is worth noting. This
method will always start a new instance of a Job. This can be extremely useful if there are serious
issues in a JobExecution and the Job needs to be started over again from the beginning. Unlike
JobLauncher though, which requires a new JobParameters object that will trigger a new JobInstance if
the parameters are different from any previous set of parameters, the startNextInstance method
will use the JobParametersIncrementer tied to the Job to force the Job to a new instance:

48

https://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/launch/JobOperator.html

public interface JobParametersIncrementer {

JobParameters getNext(JobParameters parameters);

The contract of JobParametersIncrementer is that, given a JobParameters object, it will return the
‘next' JobParameters object by incrementing any necessary values it may contain. This strategy is
useful because the framework has no way of knowing what changes to the JobParameters make it
the 'next' instance. For example, if the only value in JobParameters is a date, and the next instance
should be created, should that value be incremented by one day? Or one week (if the job is weekly
for instance)? The same can be said for any numerical values that help to identify the Job, as shown
below:

public class Samplelncrementer implements JobParametersIncrementer {

public JobParameters getNext(JobParameters parameters) {
if (parameters==null || parameters.isEmpty()) {
return new JobParametersBuilder().addLong("run.id", 1L).toJobParameters();

}
long id = parameters.getLong("run.id",1L) + 1;
return new JobParametersBuilder().addLong("run.id", id).toJobParameters();

In this example, the value with a key of 'run.id' is used to discriminate between JobInstances. If the
JobParameters passed in is null, it can be assumed that the Job has never been run before and thus
its initial state can be returned. However, if not, the old value is obtained, incremented by one, and
returned.

An incrementer can be associated with Job via the 'incrementer' attribute in the namespace:

<job id="footballJob" incrementer="sampleIncrementer">
</job>

The java config builders also provide facilities for the configuration of an incrementer:
public Job footballJob() {

return this.jobBuilderFactory.get("footballlob")
.incrementer(sampleIncrementer())

.build();

49

4.6.5. Stopping a Job

One of the most common use cases of JobOperator is gracefully stopping a Job:

Set<Long> executions = jobOperator.getRunningExecutions("sampleJob");
jobOperator.stop(executions.iterator().next());

The shutdown is not immediate, since there is no way to force immediate shutdown, especially if
the execution is currently in developer code that the framework has no control over, such as a
business service. However, as soon as control is returned back to the framework, it will set the
status of the current StepExecution to BatchStatus.STOPPED, save it, then do the same for the
JobExecution before finishing.

4.6.6. Aborting a Job

A job execution which is FAILED can be restarted (if the Job is restartable). A job execution whose
status is ABANDONED will not be restarted by the framework. The ABANDONED status is also used in step
executions to mark them as skippable in a restarted job execution: if a job is executing and
encounters a step that has been marked ABANDONED in the previous failed job execution, it will move
on to the next step (as determined by the job flow definition and the step execution exit status).

If the process died ("kill -9" or server failure) the job is, of course, not running, but the
JobRepository has no way of knowing because no-one told it before the process died. You have to
tell it manually that you know that the execution either failed or should be considered aborted
(change its status to FAILED or ABANDONED) - it’s a business decision and there is no way to automate it.
Only change the status to FAILED if it is not restartable, or if you know the restart data is valid. There
is a utility in Spring Batch Admin JobService to abort a job execution.

50

Chapter 5. Configuring a Step

As discussed in the domain chapter, a Step is a domain object that encapsulates an independent,
sequential phase of a batch job and contains all of the information necessary to define and control
the actual batch processing. This is a necessarily vague description because the contents of any
given Step are at the discretion of the developer writing a Job. A Step can be as simple or complex as
the developer desires. A simple Step might load data from a file into the database, requiring little or
no code (depending upon the implementations used). A more complex Step might have complicated
business rules that are applied as part of the processing, as shown in the following image:

ltemReader

¥
- <= | temProcessor
N

ItemWriter

Figure 13. Step

5.1. Chunk-oriented Processing

Spring Batch uses a 'Chunk-oriented' processing style within its most common implementation.
Chunk oriented processing refers to reading the data one at a time and creating 'chunks' that are
written out within a transaction boundary. One item is read in from an ItemReader, handed to an
ItemProcessor, and aggregated. Once the number of items read equals the commit interval, the
entire chunk is written out by the ItemWriter, and then the transaction is committed. The following
image shows the process:

- | ltemReader | | IlzemPrclucassor | | ItemWriter

execute()
read()
item)
process(item)
iten]
read() :
ftem —.‘ process(itern)
item]
! write(items) D
ExitStatus : !

Figure 14. Chunk-oriented Processing

The following code shows the same concepts shown:

51

List items = new Arraylist();

for(int i = 0; i < commitInterval; i++){
Object item = itemReader.read()
Object processedItem = itemProcessor.process(item);
items.add(processedItem);

}

itemWriter.write(items);

5.1.1. Configuring a Step

Despite the relatively short list of required dependencies for a Step, it is an extremely complex class
that can potentially contain many collaborators.

In order to ease configuration, the Spring Batch namespace can be used, as shown in the following
example:

XML Configuration

<job id="sampleJob" job-repository="jobRepository">
<step id="step1">
<tasklet transaction-manager="transactionManager">
<chunk reader="1itemReader" writer="itemWriter" commit-interval="10"/>
</tasklet>
</step>
</job>

When using java configuration, the Spring Batch builders can be used, as shown in the following
example:

52

Java Configuration

/**
* Note the JobRepository is typically autowired in and not needed to be explicitly
* configured
*/
@Bean
public Job sampleJob(JobRepository jobRepository, Step sampleStep) {
return this.jobBuilderFactory.get("sampleJob")
.repository(jobRepository)
.start(sampleStep)
.build();

/**
* Note the TransactionManager is typically autowired in and not needed to be
explicitly
* configured
*/
@Bean
public Step sampleStep(PlatformTransactionManager transactionManager) {
return this.stepBuilderFactory.get("sampleStep")
.transactionManager (transactionManager)
.<String, String>chunk(10)
.reader(itemReader())
writer(itemWriter())
.build();

The configuration above includes the only required dependencies to create a item-oriented step:

* reader: The ItemReader that provides items for processing.
e writer: The ItemWriter that processes the items provided by the ItemReader.

* transaction-manager/transactionManager: Spring’s PlatformTransactionManager that begins and
commits transactions during processing.

* job-repository/repository: The JobRepository that periodically stores the StepExecution and
ExecutionContext during processing (just before committing). In XML, for an in-line <step/> (one
defined within a <job/>), it is an attribute on the <job/> element. For a standalone step, it is
defined as an attribute of the <tasklet/>.

» commit-interval/chunk: The number of items to be processed before the transaction is

committed.

It should be noted that job-repository/repository defaults to jobRepository and transaction-manager
/transactionManager defaults to transactionManager. Also, the ItemProcessor is optional, since the
item could be directly passed from the reader to the writer.

53

5.1.2. Inheriting from a Parent Step

If a group of Steps share similar configurations, then it may be helpful to define a "parent" Step
from which the concrete Steps may inherit properties. Similar to class inheritance in Java, the
"child" Step combines its elements and attributes with the parent’s. The child also overrides any of
the parent’s Steps.

In the following example, the Step, "concreteStep1", inherits from "parentStep". It is instantiated
with 'itemReader', 'itemProcessor', 'itemWriter', startlLimit=5, and allowStartIfComplete=true.
Additionally, the commitInterval is '5', since it is overridden by the "concreteStep1” Step, as shown in
the following example:

<step id="parentStep">
<tasklet allow-start-if-complete="true">
<chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
</tasklet>
</step>

<step id="concreteStep1" parent="parentStep">
<tasklet start-limit="5">
<chunk processor="1itemProcessor" commit-interval="5"/>
</tasklet>
</step>

The id attribute is still required on the step within the job element. This is for two reasons:

* The id is used as the step name when persisting the StepExecution. If the same standalone step is
referenced in more than one step in the job, an error occurs.

* When creating job flows, as described later in this chapter, the next attribute should be
referring to the step in the flow, not the standalone step.

Abstract Step

Sometimes, it may be necessary to define a parent Step that is not a complete Step configuration. If,
for instance, the reader, writer, and tasklet attributes are left off of a Step configuration, then
initialization fails. If a parent must be defined without these properties, then the abstract attribute
should be used. An abstract Step is only extended, never instantiated.

In the following example, the Step abstractParentStep would not be instantiated if it were not
declared to be abstract. The Step, "concreteStep2", has 'itemReader’, 'itemWriter', and commit-
interval=10.

54

<step id="abstractParentStep" abstract="true">
<tasklet>
<chunk commit-interval="10"/>
</tasklet>
</step>

<step id="concreteStep2" parent="abstractParentStep">
<tasklet>
<chunk reader="itemReader" writer="itemWriter"/>
</tasklet>
</step>

Merging Lists

Some of the configurable elements on Steps are lists, such as the <listeners/> element. If both the
parent and child Steps declare a <listeners/> element, then the child’s list overrides the parent’s. In
order to allow a child to add additional listeners to the list defined by the parent, every list element
has a merge attribute. If the element specifies that merge="true", then the child’s list is combined with
the parent’s instead of overriding it.

In the following example, the Step "concreteStep3", is created with two listeners: listenerOne and
listenerTwo:

<step id="listenersParentStep" abstract="true">
<listeners>
<listener ref="listenerOne"/>
<listeners>
</step>

<step id="concreteStep3" parent="listenersParentStep">
<tasklet>
<chunk reader="1itemReader" writer="itemWriter" commit-interval="5"/>
</tasklet>
<listeners merge="true">
<listener ref="listenerTwo"/>
<listeners>
</step>

5.1.3. The Commit Interval

As mentioned previously, a step reads in and writes out items, periodically committing using the
supplied PlatformTransactionManager. With a commit-interval of 1, it commits after writing each
individual item. This is less than ideal in many situations, since beginning and committing a
transaction is expensive. Ideally, it is preferable to process as many items as possible in each
transaction, which is completely dependent upon the type of data being processed and the
resources with which the step is interacting. For this reason, the number of items that are
processed within a commit can be configured. The following example shows a step whose tasklet

55

has a commit-interval value of 10.

XML Configuration

<job id="sampleJob">
<step id="step1">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
</tasklet>
</step>
</job>

Java Configuration

public Job samplelob() {
return this.jobBuilderFactory.get("sampleJob")
.start(step1())
.end()
.build();

public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(itemReader())
Mwriter(itemWriter())
.build();

In the preceding example, 10 items are processed within each transaction. At the beginning of
processing, a transaction is begun. Also, each time read is called on the ItemReader, a counter is
incremented. When it reaches 10, the list of aggregated items is passed to the Itemliriter, and the
transaction is committed.

5.1.4. Configuring a Step for Restart

In the "Configuring and Running a Job" section , restarting a Job was discussed. Restart has
numerous impacts on steps, and, consequently, may require some specific configuration.

Setting a Start Limit

There are many scenarios where you may want to control the number of times a Step may be
started. For example, a particular Step might need to be configured so that it only runs once
because it invalidates some resource that must be fixed manually before it can be run again. This is
configurable on the step level, since different steps may have different requirements. A Step that
may only be executed once can exist as part of the same Job as a Step that can be run infinitely. The
following code fragment shows an example of a start limit configuration:

56

XML Configuration

<step id="step1">
<tasklet start-limit="1">
<chunk reader="1itemReader" writer="itemWriter" commit-interval="10"/>
</tasklet>
</step>

Java Configuration

@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")

.<String, String>chunk(10)
.reader(itemReader())
writer(itemWriter())
.startLimit(1)
.build();

The step above can be run only once. Attempting to run it again causes a
StartLimitExceededException to be thrown. Note that the default value for the start-limit is
Integer.MAX_VALUE

Restarting a Completed Step

In the case of a restartable job, there may be one or more steps that should always be run,
regardless of whether or not they were successful the first time. An example might be a validation
step or a Step that cleans up resources before processing. During normal processing of a restarted
job, any step with a status of '"COMPLETED', meaning it has already been completed successfully, is
skipped. Setting allow-start-if-complete to "true" overrides this so that the step always runs, as
shown in the following example:

XML Configuration

<step id="step1">
<tasklet allow-start-if-complete="true">
<chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
</tasklet>
</step>

57

Java Configuration

@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")

.<String, String>chunk(10)
.reader (itemReader())
writer(itemWriter())
.allowStartIfComplete(true)
.build();

Step Restart Configuration Example
The following example shows how to configure a job to have steps that can be restarted:

XML Configuration

<job id="footballJob" restartable="true">
<step id="playerload" next="gamelLoad">
<tasklet>
<chunk reader="playerFileltemReader" writer="playerWriter"
commit-interval="10" />
</tasklet>
</step>
<step id="gamelLoad" next="playerSummarization">
<tasklet allow-start-if-complete="true">
<chunk reader="gameFileItemReader" writer="gameWriter"
commit-interval="10"/>
</tasklet>
</step>
<step id="playerSummarization">
<tasklet start-limit="2">
<chunk reader="playerSummarizationSource" writer="summaryWriter"
commit-interval="10"/>
</tasklet>
</step>
</job>

58

Java Configuration

public Job footballJob() {
return this.jobBuilderFactory.get("footballJob")
.start(playerLoad())
.next(gamelLoad())
.next(playerSummarization())
.end()
.build();

public Step playerLoad() {
return this.stepBuilderFactory.get("playerLoad")
.<String, String>chunk(10)
.reader(playerFileItemReader())
writer(playerWriter())
.build();

public Step gamelLoad() {
return this.stepBuilderFactory.get("gameLoad")
.allowStartIfComplete(true)
.<String, String>chunk(10)
.reader(gameFileItemReader())
.writer(qgameWriter())
.build();

public Step playerSummarization() {
return this.stepBuilderFactor.get("playerSummarization")
.startLimit(2)
.<String, String>chunk(10)
.reader(playerSummarizationSource())
writer(summaryWriter())
.build();

The preceding example configuration is for a job that loads in information about football games
and summarizes them. It contains three steps: playerlLoad, gamelLoad, and playerSummarization. The
playerLoad step loads player information from a flat file, while the gamelLoad step does the same for
games. The final step, playerSummarization, then summarizes the statistics for each player, based
upon the provided games. It is assumed that the file loaded by playerLoad must be loaded only once,
but that gamelLoad can load any games found within a particular directory, deleting them after they
have been successfully loaded into the database. As a result, the playerLoad step contains no
additional configuration. It can be started any number of times, and, if complete, is skipped. The
gameload step, however, needs to be run every time in case extra files have been added since it last

59

ran. It has 'allow-start-if-complete’ set to 'true’ in order to always be started. (It is assumed that the
database tables games are loaded into has a process indicator on it, to ensure new games can be
properly found by the summarization step). The summarization step, which is the most important
in the job, is configured to have a start limit of 2. This is useful because if the step continually fails,
a new exit code is returned to the operators that control job execution, and it can not start again
until manual intervention has taken place.

0 This job provides an example for this document and is not the same as the
footballlob found in the samples project.

The remainder of this section describes what happens for each of the three runs of the footballJob
example.

Run 1:

1. playerlLoad runs and completes successfully, adding 400 players to the 'PLAYERS' table.

2. gamelLoad runs and processes 11 files worth of game data, loading their contents into the 'GAMES'
table.

3. playerSummarization begins processing and fails after 5 minutes.
Run 2:

1. playerLoad does not run, since it has already completed successfully, and allow-start-if-
complete is 'false' (the default).

2. gameload runs again and processes another 2 files, loading their contents into the 'GAMES' table
as well (with a process indicator indicating they have yet to be processed).

3. playerSummarization begins processing of all remaining game data (filtering using the process
indicator) and fails again after 30 minutes.

Run 3:

1. playerLoad does not run, since it has already completed successfully, and allow-start-if-
complete is 'false' (the default).

2. gameload runs again and processes another 2 files, loading their contents into the 'GAMES' table
as well (with a process indicator indicating they have yet to be processed).

3. playerSummarization is not started and the job is immediately Kkilled, since this is the third
execution of playerSummarization, and its limit is only 2. Either the limit must be raised or the
Job must be executed as a new JobInstance.

5.1.5. Configuring Skip Logic

There are many scenarios where errors encountered while processing should not result in Step
failure, but should be skipped instead. This is usually a decision that must be made by someone
who understands the data itself and what meaning it has. Financial data, for example, may not be
skippable because it results in money being transferred, which needs to be completely accurate.
Loading a list of vendors, on the other hand, might allow for skips. If a vendor is not loaded because
it was formatted incorrectly or was missing necessary information, then there probably are not

60

issues. Usually, these bad records are logged as well, which is covered later when discussing
listeners.

The following example shows an example of using a skip limit:

XML Configuration

<step id="step1">
<tasklet>
<chunk reader="flatFileltemReader" writer="itemWriter"
commit-interval="10" skip-limit="10">
<skippable-exception-classes>
<include class="
org.springframework.batch.item.file.FlatFileParseException"/>
</skippable-exception-classes>
</chunk>
</tasklet>
</step>

Java Configuration

public Step step1() {
return this.stepBuilderFactory.get("step1")

.<String, String>chunk(10)
.reader(flatFileItemReader())
writer(itemWriter())
.faultTolerant()
.skipLimit(10)
.skip(FlatFileParseException.class)
.build();

In the preceding example, a FlatFileItemReader is used. If, at any point, a FlatFileParseException is
thrown, the item is skipped and counted against the total skip limit of 10. Exceptions (and their
subclasses) that are declared might be thrown during any phase of the chunk processing (read,
process, write) but separate counts are made of skips on read, process, and write inside the step
execution, but the limit applies across all skips. Once the skip limit is reached, the next exception
found causes the step to fail. In other words, the eleventh skip triggers the exception, not the tenth.

One problem with the preceding example is that any other exception besides a
FlatFileParseException causes the Job to fail. In certain scenarios, this may be the correct behavior.
However, in other scenarios, it may be easier to identify which exceptions should cause failure and
skip everything else, as shown in the following example:

61

XML Configuration

<step id="step1">
<tasklet>
<chunk reader="flatFileItemReader" writer="itemWriter"
commit-interval="10" skip-limit="10">
<skippable-exception-classes>
<include class="java.lang.Exception"/>
<exclude class="java.io.FileNotFoundException"/>
</skippable-exception-classes>
</chunk>
</tasklet>
</step>

Java Configuration

public Step step1() {
return this.stepBuilderFactory.get("step1")

.<String, String>chunk(10)
.reader(flatFileItemReader())
writer(itemWriter())
.faultTolerant()
.skipLimit(10)
.skip(Exception.class)
.noSkip(FileNotFoundException.class)
.build();

By identifying java.lang.Exception as a skippable exception class, the configuration indicates that
all Exceptions are skippable. However, by 'excluding' java.io.FileNotFoundException, the
configuration refines the list of skippable exception classes to be all Exceptions except
FileNotFoundException. Any excluded exception classes is fatal if encountered (that is, they are not
skipped).

For any exception encountered, the skippability is determined by the nearest superclass in the class
hierarchy. Any unclassified exception is treated as 'fatal’.

The order of specifying include vs exclude (by using either the XML tags or skip and noSkip method
calls) does not matter.

5.1.6. Configuring Retry Logic

In most cases, you want an exception to cause either a skip or a Step failure. However, not all
exceptions are deterministic. If a FlatFileParseException is encountered while reading, it is always
thrown for that record. Resetting the ItemReader does not help. However, for other exceptions, such
as a DeadlockLoserDataAccessException, which indicates that the current process has attempted to
update a record that another process holds a lock on, waiting and trying again might result in
success. In this case, retry should be configured as follows:

62

<step id="step1">
<tasklet>
<chunk reader="itemReader" writer="1itemWriter"
commit-interval="2" retry-limit="3">
<retryable-exception-classes>
<include class="org.springframework.dao.DeadlockLoserDataAccessException
"/>
</retryable-exception-classes>
</chunk>
</tasklet>
</step>

@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")

.<String, String>chunk(2)
.reader (itemReader())
writer(itemWriter())
.faultTolerant()
.retrylimit(3)
.retry(DeadlockLoserDataAccessException.class)
.build();

The Step allows a limit for the number of times an individual item can be retried and a list of
exceptions that are 'retryable'. More details on how retry works can be found in retry.

5.1.7. Controlling Rollback

By default, regardless of retry or skip, any exceptions thrown from the ItemWriter cause the
transaction controlled by the Step to rollback. If skip is configured as described earlier, exceptions
thrown from the ItemReader do not cause a rollback. However, there are many scenarios in which
exceptions thrown from the ItemWriter should not cause a rollback, because no action has taken
place to invalidate the transaction. For this reason, the Step can be configured with a list of
exceptions that should not cause rollback, as shown in the following example:

XML Configuration

<step id="step1">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>
<no-rollback-exception-classes>
<include class="org.springframework.batch.item.validator.ValidationException
"/>
</no-rollback-exception-classes>
</tasklet>
</step>

63

Java Configuration

public Step step1() {
return this.stepBuilderFactory.get("step1")

.<String, String>chunk(2)
.reader (itemReader())
writer(itemWriter())
.faultTolerant()
.noRol1lback(ValidationException.class)
.build();

Transactional Readers

The basic contract of the ItemReader is that it is forward only. The step buffers reader input, so that
in the case of a rollback, the items do not need to be re-read from the reader. However, there are
certain scenarios in which the reader is built on top of a transactional resource, such as a JMS
queue. In this case, since the queue is tied to the transaction that is rolled back, the messages that
have been pulled from the queue are put back on. For this reason, the step can be configured to not
buffer the items, as shown in the following example:

XML Configuration

<step id="step1">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="2"
is-reader-transactional-queue="true"/>
</tasklet>
</step>

Java Configuration

public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(itemReader())
writer(itemWriter())
.readerIsTransactionalQueue()
.build();

5.1.8. Transaction Attributes

Transaction attributes can be used to control the isolation, propagation, and timeout settings. More
information on setting transaction attributes can be found in the Spring core documentation. The
following example sets the isolation, propagation, and timeout transaction attributes:

64

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction

XML Configuration

<step id="step1">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>
<transaction-attributes isolation="DEFAULT"
propagation="REQUIRED"
timeout="30"/>
</tasklet>
</step>

Java Configuration

public Step step1() {
DefaultTransactionAttribute attribute = new DefaultTransactionAttribute();
attribute.setPropagationBehavior(Propagation.REQUIRED.value());
attribute.setIsolationlLevel(Isolation.DEFAULT.value());
attribute.setTimeout(30);

return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader (itemReader())
writer(itemWriter())
.transactionAttribute(attribute)
.build();

5.1.9. Registering ItemStream with a Step

The step has to take care of ItemStream callbacks at the necessary points in its lifecycle (For more
information on the ItemStream interface, see ItemStream). This is vital if a step fails and might need
to be restarted, because the ItemStream interface is where the step gets the information it needs
about persistent state between executions.

If the ItemReader, ItemProcessor, or ItemiWriter itself implements the ItemStream interface, then these
are registered automatically. Any other streams need to be registered separately. This is often the
case where indirect dependencies, such as delegates, are injected into the reader and writer. A
stream can be registered on the Step through the 'streams' element, as illustrated in the following
example:

65

XML Configuration

<step id="step1">

<tasklet>
<chunk reader="1itemReader" writer="compositeWriter" commit-interval="2">
<streams>
<stream ref="fileItemWriter1"/>
<stream ref="fileItemWriter2"/>
</streams>
</chunk>
</tasklet>
</step>

<beans:bean id="compositeWriter"
class="org.springframework.batch.item.support.CompositeItemWriter">
<beans:property name="delegates">
<beans:list>
<beans:ref bean="fileItemWriter1" />
<beans:ref bean="fileltemWriter2" />
</beans:list>
</beans:property>
</beans:bean>

66

Java Configuration

public Step step1() {

return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader (itemReader())
.writer(compositeltemWriter())
.stream(fileItemWriter1())
.stream(fileltemWriter2())
.build();

/**
* In Spring Batch 4, the CompositeltemWriter implements ItemStream so this isn't

* necessary, but used for an example.
*/

public CompositeltemWriter compositeltemWriter() {
List<ItemWriter> writers = new ArraylList<>(2);
writers.add(fileItemWriter1());
writers.add(fileItemWriter2());

CompositeltemWriter itemWriter = new CompositeltemWriter();
itemWriter.setDelegates(writers);

return itemWriter;

In the example above, the CompositeItemWriter is not an ItemStream, but both of its delegates are.
Therefore, both delegate writers must be explicitly registered as streams in order for the
framework to handle them correctly. The ItemReader does not need to be explicitly registered as a
stream because it is a direct property of the Step. The step is now restartable, and the state of the
reader and writer is correctly persisted in the event of a failure.

5.1.10. Intercepting Step Execution

Just as with the Job, there are many events during the execution of a Step where a user may need to
perform some functionality. For example, in order to write out to a flat file that requires a footer,
the ItemWriter needs to be notified when the Step has been completed, so that the footer can be
written. This can be accomplished with one of many Step scoped listeners.

Any class that implements one of the extensions of StepListener (but not that interface itself since it
is empty) can be applied to a step through the listeners element. The listeners element is valid
inside a step, tasklet, or chunk declaration. It is recommended that you declare the listeners at the
level at which its function applies, or, if it is multi-featured (such as StepExecutionListener and
ItemReadListener), then declare it at the most granular level where it applies. The following example
shows a listener applied at the chunk level:

67

XML Configuration

<step id="step1">
<tasklet>
<chunk reader="reader" writer="writer" commit-interval="10"/>
<listeners>
<listener ref="chunkListener"/>
</listeners>
</tasklet>
</step>

Java Configuration

public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(reader())
writer(writer())
.Listener(chunkListener())
.build();

An ItemReader, ItemWriter or ItemProcessor that itself implements one of the SteplListener interfaces
is registered automatically with the Step if using the namespace <step> element or one of the the
*StepFactoryBean factories. This only applies to components directly injected into the Step. If the
listener is nested inside another component, it needs to be explicitly registered (as described
previously under Registering ItemStream with a Step).

In addition to the SteplListener interfaces, annotations are provided to address the same concerns.
Plain old Java objects can have methods with these annotations that are then converted into the
corresponding SteplListener type. It is also common to annotate custom implementations of chunk
components such as ItemReader or ItemWriter or Tasklet. The annotations are analyzed by the XML
parser for the <listener/> elements as well as registered with the listener methods in the builders,
so all you need to do is use the XML namespace or builders to register the listeners with a step.

StepExecutionListener

StepExecutionListener represents the most generic listener for Step execution. It allows for
notification before a Step is started and after it ends, whether it ended normally or failed, as shown
in the following example:

68

public interface StepExecutionListener extends StepListener {
void beforeStep(StepExecution stepExecution);

ExitStatus afterStep(StepExecution stepExecution);

ExitStatus is the return type of afterStep in order to allow listeners the chance to modify the exit
code that is returned upon completion of a Step.

The annotations corresponding to this interface are:

« @BeforeStep
o QAfterStep

ChunkListener

A chunk is defined as the items processed within the scope of a transaction. Committing a
transaction, at each commit interval, commits a 'chunk'. A ChunkListener can be used to perform
logic before a chunk begins processing or after a chunk has completed successfully, as shown in the
following interface definition:

public interface ChunkListener extends SteplListener {

void beforeChunk(ChunkContext context);
void afterChunk(ChunkContext context);
void afterChunkError(ChunkContext context);

The beforeChunk method is called after the transaction is started but before read is called on the
ItemReader. Conversely, afterChunk is called after the chunk has been committed (and not at all if
there is a rollback).

The annotations corresponding to this interface are:

o @BeforeChunk
o @AfterChunk
o @AfterChunkError

A ChunkListener can be applied when there is no chunk declaration. The TaskletStep is responsible
for calling the ChunkListener, so it applies to a non-item-oriented tasklet as well (it is called before
and after the tasklet).

ItemReadListener

When discussing skip logic previously, it was mentioned that it may be beneficial to log the skipped
records, so that they can be dealt with later. In the case of read errors, this can be done with an

69

ItemReaderListener, as shown in the following interface definition:

public interface ItemReadlListener<T> extends StepListener {

void beforeRead();
void afterRead(T item);
void onReadError(Exception ex);

The beforeRead method is called before each call to read on the ItemReader. The afterRead method is
called after each successful call to read and is passed the item that was read. If there was an error
while reading, the onReadError method is called. The exception encountered is provided so that it
can be logged.

The annotations corresponding to this interface are:

« @BeforeRead
o @AfterRead
o @0nReadError

ItemProcesslListener

Just as with the ItemReadlListener, the processing of an item can be 'listened' to, as shown in the
following interface definition:

public interface ItemProcessListener<T, S> extends SteplListener {

void beforeProcess(T item);
void afterProcess(T item, S result);
void onProcessError(T item, Exception e);

The beforeProcess method is called before process on the ItemProcessor and is handed the item that
is to be processed. The afterProcess method is called after the item has been successfully processed.
If there was an error while processing, the onProcessError method is called. The exception
encountered and the item that was attempted to be processed are provided, so that they can be
logged.

The annotations corresponding to this interface are:

« @BeforeProcess
o GAfterProcess

o @0nProcessError

70

ItemWritelistener

The writing of an item can be 'listened' to with the ItemWritelListener, as shown in the following
interface definition:

public interface ItemWritelListener<S> extends SteplListener {

void beforeWrite(List<? extends S> items);
void afterWrite(List<? extends S> items);
void onWriteError(Exception exception, List<? extends S> items);

The beforeWrite method is called before write on the ItemWriter and is handed the list of items that
is written. The afterWrite method is called after the item has been successfully written. If there was
an error while writing, the onWriteError method is called. The exception encountered and the item
that was attempted to be written are provided, so that they can be logged.

The annotations corresponding to this interface are:

o @Beforelrite
o OAfterWrite

e @OnWriteError

SkipListener

ItemReadlListener, ItemProcessListener, and ItemWritelListener all provide mechanisms for being
notified of errors, but none informs you that a record has actually been skipped. onliriteError, for
example, is called even if an item is retried and successful. For this reason, there is a separate
interface for tracking skipped items, as shown in the following interface definition:

public interface SkipListener<T,S> extends StepListener {

void onSkipInRead(Throwable t);
void onSkipInProcess(T item, Throwable t);
void onSkipInWrite(S item, Throwable t);

onSkipInRead is called whenever an item is skipped while reading. It should be noted that rollbacks
may cause the same item to be registered as skipped more than once. onSkipInWrite is called when
an item is skipped while writing. Because the item has been read successfully (and not skipped), it
is also provided the item itself as an argument.

The annotations corresponding to this interface are:

« @0nSkipInRead
o @0nSkipInWrite
« @0nSkipInProcess

71

SkipListeners and Transactions

One of the most common use cases for a SkipListener is to log out a skipped item, so that another
batch process or even human process can be used to evaluate and fix the issue leading to the skip.
Because there are many cases in which the original transaction may be rolled back, Spring Batch
makes two guarantees:

1. The appropriate skip method (depending on when the error happened) is called only once per
item.

2. The SkipListener is always called just before the transaction is committed. This is to ensure that
any transactional resources call by the listener are not rolled back by a failure within the
TtemWriter.

5.2. TaskletStep

Chunk-oriented processing is not the only way to process in a Step. What if a Step must consist of a
simple stored procedure call? You could implement the call as an ItemReader and return null after
the procedure finishes. However, doing so is a bit unnatural, since there would need to be a no-op
ItemWriter. Spring Batch provides the TaskletStep for this scenario.

Tasklet is a simple interface that has one method, execute, which is called repeatedly by the
TaskletStep until it either returns RepeatStatus.FINISHED or throws an exception to signal a failure.
Each call to a Tasklet is wrapped in a transaction. Tasklet implementors might call a stored
procedure, a script, or a simple SQL update statement.

To create a TaskletStep the bean associated with the step (through the ref attribute when using the
namespace or passed to the tasklet method when using java config), should be a bean that
implements the interface Tasklet. The following example shows a simple tasklet:

XML Configuration

<step id="step1">
<tasklet ref="myTasklet"/>
</step>

Java Configuration

public Step step1() {
return this.stepBuilderFactory.get("step1")
.tasklet(myTasklet())
.build();

0 TaskletStep automatically registers the tasklet as a SteplListener if it implements
the SteplListener interface.

72

5.2.1. TaskletAdapter

As with other adapters for the ItemReader and ItemWriter interfaces, the Tasklet interface contains
an implementation that allows for adapting itself to any pre-existing class: TaskletAdapter. An
example where this may be useful is an existing DAO that is used to update a flag on a set of
records. The TaskletAdapter can be used to call this class without having to write an adapter for the
Tasklet interface, as shown in the following example:

XML Configuration

<bean id="myTasklet" class="o.s.b.core.step.tasklet.MethodInvokingTaskletAdapter">
<property name="targetObject">
<bean class="org.mycompany.FooDao"/>
</property>
<property name="targetMethod" value="updateFoo" />
</bean>

Java Configuration

public MethodInvokingTaskletAdapter myTasklet() {
MethodInvokingTaskletAdapter adapter = new MethodInvokingTaskletAdapter();

adapter.setTargetObject(fooDao());
adapter.setTargetMethod("updateFoo");

return adapter;

5.2.2. Example Tasklet Implementation

Many batch jobs contain steps that must be done before the main processing begins in order to set
up various resources or after processing has completed to cleanup those resources. In the case of a
job that works heavily with files, it is often necessary to delete certain files locally after they have
been uploaded successfully to another location. The following example (taken from the Spring
Batch samples project) is a Tasklet implementation with just such a responsibility:

73

https://github.com/spring-projects/spring-batch/tree/master/spring-batch-samples
https://github.com/spring-projects/spring-batch/tree/master/spring-batch-samples

public class FileDeletingTasklet implements Tasklet, InitializingBean {
private Resource directory;

public RepeatStatus execute(StepContribution contribution,
ChunkContext chunkContext) throws Exception {
File dir = directory.getFile();
Assert.state(dir.isDirectory());

File[] files = dir.listFiles();
for (int i = 0; i < files.length; i++) {
boolean deleted = files[i].delete();
if (ldeleted) {
throw new UnexpectedJobExecutionException("Could not delete file
files[i].qgetPath());

+

}
}
return RepeatStatus.FINISHED;

}

public void setDirectoryResource(Resource directory) {
this.directory = directory;

}

public void afterPropertiesSet() throws Exception {
Assert.notNull(directory, "directory must be set");

}

The preceding Tasklet implementation deletes all files within a given directory. It should be noted
that the execute method is called only once. All that is left is to reference the Tasklet from the Step:

XML Configuration

<job id="taskletJob">
<step id="deleteFilesInDir">
<tasklet ref="fileDeletingTasklet"/>
</step>
</job>

<beans:bean id="fileDeletingTasklet"
class="org.springframework.batch.sample.tasklet.FileDeletingTasklet">
<beans:property name="directoryResource">
<beans:bean id="directory"
class="org.springframework.core.io.FileSystemResource">
<beans:constructor-arg value="target/test-outputs/test-dir" />
</beans:bean>
</beans:property>
</beans:bean>

74

Java Configuration

public Job taskletJob() {
return this.jobBuilderFactory.get("taskletJob")
.start(deleteFilesInDir())
.build();

public Step deleteFilesInDir() {
return this.stepBuilderFactory.get("deleteFilesInDir")
.tasklet(fileDeletingTasklet())
.build();

public FileDeletingTasklet fileDeletingTasklet() {
FileDeletingTasklet tasklet = new FileDeletingTasklet();

tasklet.setDirectoryResource(new FileSystemResource("target/test-outputs/test-dir

"N

return tasklet;

5.3. Controlling Step Flow

With the ability to group steps together within an owning job comes the need to be able to control
how the job "flows" from one step to another. The failure of a Step does not necessarily mean that
the Job should fail. Furthermore, there may be more than one type of 'success' that determines
which Step should be executed next. Depending upon how a group of Steps is configured, certain
steps may not even be processed at all.

5.3.1. Sequential Flow

The simplest flow scenario is a job where all of the steps execute sequentially, as shown in the
following image:

75

Figure 15. Sequential Flow

This can be achieved by using the 'next' attribute of the step element, as shown in the following
example:

76

XML Configuration

<job id="job">
<step id="stepA" parent="s1" next="stepB" />
<step id="stepB" parent="s2" next="stepC"/>
<step id="stepC" parent="s3" />

</job>

Java Configuration

public Job job() {
return this.jobBuilderFactory.get("job")
.start(stepA())
.next(stepB())
.next(stepC())
.build();

In the scenario above, 'step A' runs first because it is the first Step listed. If 'step A' completes
normally, then 'step B' runs, and so on. However, if 'step A' fails, then the entire Job fails and 'step B'
does not execute.

With the Spring Batch namespace, the first step listed in the configuration is
always the first step run by the Job. The order of the other step elements does not
matter, but the first step must always appear first in the xml.

5.3.2. Conditional Flow
In the example above, there are only two possibilities:

1. The Step is successful and the next Step should be executed.

2. The Step failed and, thus, the Job should fail.

In many cases, this may be sufficient. However, what about a scenario in which the failure of a Step
should trigger a different Step, rather than causing failure? The following image shows such a flow:

77

Yes/ ’ \No
s

Figure 16. Conditional Flow

In order to handle more complex scenarios, the Spring Batch namespace allows transition elements
to be defined within the step element. One such transition is the next element. Like the next
attribute, the next element tells the Job which Step to execute next. However, unlike the attribute,
any number of next elements are allowed on a given Step, and there is no default behavior in the
case of failure. This means that, if transition elements are used, then all of the behavior for the Step
transitions must be defined explicitly. Note also that a single step cannot have both a next attribute
and a transition element.

The next element specifies a pattern to match and the step to execute next, as shown in the
following example:

XML Configuration

<job id="job">
<step id="stepA" parent="s1">
<next on="*" to="stepB" />
<next on="FAILED" to="stepC" />
</step>
<step id="stepB" parent="s2" next="stepC" />
<step id="stepC" parent="s3" />
</job>

Java Configuration

public Job job() {
return this.jobBuilderFactory.get("job")
.start(stepA())
.on("*").to(stepB())
.from(stepA()).on("FAILED").to(stepC())
.end()
.build();

When using XML configuration, the on attribute of a transition element uses a simple pattern-
matching scheme to match the ExitStatus that results from the execution of the Step.

When using java configuration the on method uses a simple pattern-matching scheme to match the
ExitStatus that results from the execution of the Step.

Only two special characters are allowed in the pattern:

« "*" matches zero or more characters

* "?" matches exactly one character
For example, "c*t" matches "cat" and "count”, while "c?t" matches "cat" but not "count".

While there is no limit to the number of transition elements on a Step, if the Step execution results
in an ExitStatus that is not covered by an element, then the framework throws an exception and
the Job fails. The framework automatically orders transitions from most specific to least specific.
This means that, even if the ordering were swapped for "stepA" in the example above, an ExitStatus
of "FAILED" would still go to "stepC".

Batch Status Versus Exit Status

When configuring a Job for conditional flow, it is important to understand the difference between
BatchStatus and ExitStatus. BatchStatus is an enumeration that is a property of both JobExecution
and StepExecution and is used by the framework to record the status of a Job or Step. It can be one
of the following values: COMPLETED, STARTING, STARTED, STOPPING, STOPPED, FAILED, ABANDONED, or UNKNOWN.
Most of them are self explanatory: COMPLETED is the status set when a step or job has completed
successfully, FAILED is set when it fails, and so on.

The following example contains the next' element when using XML configuration:

<next on="FAILED" to="stepB" />

The following example contains the 'on' element when using Java Configuration:

79

fron(stepA()).on("FATLED"). to(step8())

At first glance, it would appear that 'on' references the BatchStatus of the Step to which it belongs.
However, it actually references the ExitStatus of the Step. As the name implies, ExitStatus
represents the status of a Step after it finishes execution.

More specifically, when using XML configuration, the 'next' element shown in the preceding XML
configuration example references the exit code of ExitStatus.

When using Java configuration, the 'on' method shown in the preceding Java configuration example
references the exit code of ExitStatus.

In English, it says: "go to stepB if the exit code is FAILED ". By default, the exit code is always the
same as the BatchStatus for the Step, which is why the entry above works. However, what if the exit
code needs to be different? A good example comes from the skip sample job within the samples
project:

XML Configuration

<step id="step1" parent="s1">
<end on="FAILED" />
<next on="COMPLETED WITH SKIPS" to="errorPrint1" />
<next on="*" to="step2" />

</step>

Java Configuration

public Job job() {
return this.jobBuilderFactory.get("job")
.start(step1()).on("FAILED").end()
.from(step1()).on("COMPLETED WITH SKIPS").to(errorPrint1())
.from(step1()).on("*").to(step2())
.end()
.build();

step1 has three possibilities:

1. The Step failed, in which case the job should fail.
2. The Step completed successfully.

3. The Step completed successfully but with an exit code of 'COMPLETED WITH SKIPS'. In this case,
a different step should be run to handle the errors.

The above configuration works. However, something needs to change the exit code based on the

80

condition of the execution having skipped records, as shown in the following example:

public class SkipCheckinglListener extends StepExecutionlListenerSupport {
public ExitStatus afterStep(StepExecution stepExecution) {
String exitCode = stepExecution.getExitStatus().getExitCode();
if (lexitCode.equals(ExitStatus.FAILED.getExitCode()) &&
stepExecution.getSkipCount() > 0) {
return new ExitStatus("COMPLETED WITH SKIPS");

}
else {

return null;
}

The above code is a StepExecutionListener that first checks to make sure the Step was successful
and then checks to see if the skip count on the StepExecution is higher than 0. If both conditions are
met, a new ExitStatus with an exit code of COMPLETED WITH SKIPS is returned.

5.3.3. Configuring for Stop

After the discussion of BatchStatus and ExitStatus, one might wonder how the BatchStatus and
ExitStatus are determined for the Job. While these statuses are determined for the Step by the code
that is executed, the statuses for the Job are determined based on the configuration.

So far, all of the job configurations discussed have had at least one final Step with no transitions.
For example, after the following step executes, the Job ends, as shown in the following example:

<step id="stepC" parent="s3"/>

public Job job() {
return this.jobBuilderFactory.get("job")
.start(step1())
.build();

If no transitions are defined for a Step, then the status of the Job is defined as follows:

o If the Step ends with ExitStatus FAILED, then the BatchStatus and ExitStatus of the Job are both
FAILED.

e Otherwise, the BatchStatus and ExitStatus of the Job are both COMPLETED.

While this method of terminating a batch job is sufficient for some batch jobs, such as a simple
sequential step job, custom defined job-stopping scenarios may be required. For this purpose,
Spring Batch provides three transition elements to stop a Job (in addition to the next element that

81

we discussed previously). Each of these stopping elements stops a Job with a particular BatchStatus.
It is important to note that the stop transition elements have no effect on either the BatchStatus or
ExitStatus of any Steps in the Job. These elements affect only the final statuses of the Job. For
example, it is possible for every step in a job to have a status of FAILED but for the job to have a
status of COMPLETED.

Ending at a Step

Configuring a step end instructs a Job to stop with a BatchStatus of COMPLETED. A Job that has finished
with status COMPLETED cannot be restarted (the framework throws a
JobInstanceAlreadyCompleteException).

When using XML configuration, the 'end' element is used for this task. The end element also allows
for an optional 'exit-code' attribute that can be used to customize the ExitStatus of the Job. If no
'exit-code' attribute is given, then the ExitStatus is COMPLETED by default, to match the BatchStatus.

When using Java configuration, the 'end' method is used for this task. The end method also allows
for an optional 'exitStatus' parameter that can be used to customize the ExitStatus of the Job. If no
'exitStatus' value is provided, then the ExitStatus is COMPLETED by default, to match the BatchStatus.

In the following scenario, if step2 fails, then the Job stops with a BatchStatus of COMPLETED and an
ExitStatus of COMPLETED and step3 does not run. Otherwise, execution moves to step3. Note that if
step2 fails, the Job is not restartable (because the status is COMPLETED).

<step id="step1" parent="s1" next="step2">

<step id="step2" parent="s2">
<end on="FAILED"/>
<next on="*" to="step3"/>
</step>

<step id="step3" parent="s3">

public Job job() {
return this.jobBuilderFactory.qget("job")

.start(step1())
.next(step2())
.on("FAILED").end()
.from(step2()).on("*").to(step3())
.end()
.build();

Failing a Step

Configuring a step to fail at a given point instructs a Job to stop with a BatchStatus of FAILED. Unlike
end, the failure of a Job does not prevent the Job from being restarted.

82

When using XML configuration, the 'fail' element also allows for an optional 'exit-code' attribute
that can be used to customize the ExitStatus of the Job. If no 'exit-code' attribute is given, then the
ExitStatus is FAILED by default, to match the BatchStatus.

In the following scenario, if step? fails, then the Job stops with a BatchStatus of FAILED and an
ExitStatus of EARLY TERMINATION and step3 does not execute. Otherwise, execution moves to step3.
Additionally, if step? fails and the Job is restarted, then execution begins again on step?2.

XML Configuration
<step id="step1" parent="s1" next="step2">

<step id="step2" parent="s2">
<fail on="FAILED" exit-code="EARLY TERMINATION"/>
<next on="*" to="step3"/>

</step>

<step id="step3" parent="s3">

Java Configuration

public Job job() {
return this.jobBuilderFactory.get("job")
.start(step1())
.next(step2()).on("FAILED").fail()
.from(step2()).on("*").to(step3())
.end()
.build();

Stopping a Job at a Given Step

Configuring a job to stop at a particular step instructs a Job to stop with a BatchStatus of STOPPED.
Stopping a Job can provide a temporary break in processing, so that the operator can take some
action before restarting the Job.

When using XML configuration 'stop' element requires a 'restart' attribute that specifies the step
where execution should pick up when the "Job is restarted".

When using java configuration, the stopAndRestart method requires a 'restart’ attribute that
specifies the step where execution should pick up when the "Job is restarted".

In the following scenario, if step1 finishes with COMPLETE, then the job stops. Once it is restarted,
execution begins on step?2.

83

<step id="step1" parent="s1">
<stop on="COMPLETED" restart="step2"/>
</step>

<step id="step2" parent="s2"/>

public Job job() {
return this.jobBuilderFactory.get("job")
.start(step1()).on("COMPLETED").stopAndRestart(step2())
.end()
.build();

5.3.4. Programmatic Flow Decisions

In some situations, more information than the ExitStatus may be required to decide which step to
execute next. In this case, a JobExecutionDecider can be used to assist in the decision, as shown in
the following example:

public class MyDecider implements JobExecutionDecider {
public FlowExecutionStatus decide(JobExecution jobExecution, StepExecution
stepExecution) {
String status;
if (someCondition()) {
status = "FAILED";

}
else {

status = "COMPLETED";
}

return new FlowExecutionStatus(status);

In the following sample job configuration, a decision specifies the decider to use as well as all of the
transitions:

84

XML Configuration

<job id="job">
<step id="step1" parent="s1" next="decision" />

<decision id="decision" decider="decider">
<next on="FAILED" to="step2" />
<next on="COMPLETED" to="step3" />
</decision>

<step id="step2" parent="s2" next="step3"/>
<step id="step3" parent="s3" />
</job>

<beans:bean id="decider" class="com.MyDecider"/>

In the following example, a bean implementing the JobExecutionDecider is passed directly to the
next call when using Java configuration.

Java Configuration

@Bean
public Job job() {
return this.jobBuilderFactory.get("job")
.start(step1())
.next(decider()).on("FAILED").to(step2())
.from(decider()).on("COMPLETED").to(step3())

.end()
.build();
}
5.3.5. Split Flows

Every scenario described so far has involved a Job that executes its steps one at a time in a linear
fashion. In addition to this typical style, Spring Batch also allows for a job to be configured with
parallel flows.

The XML namespace allows you to use the 'split' element. As the following example shows, the 'split'
element contains one or more 'flow' elements, where entire separate flows can be defined. A 'split’
element may also contain any of the previously discussed transition elements, such as the next'
attribute or the next', 'end’ or 'fail' elements.

85

<split id="split1" next="step4">
<flow>
<step id="step1" parent="s1" next="step2"/>
<step id="step2" parent="s2"/>
</flow>
<flow>
<step id="step3" parent="s3"/>
</flow>
</split>
<step id="step4" parent="s4"/>

Java based configuration lets you configure splits through the provided builders. As the following
example shows, the 'split' element contains one or more 'flow' elements, where entire separate
flows can be defined. A 'split' element may also contain any of the previously discussed transition
elements, such as the 'next' attribute or the next', 'end’ or 'fail' elements.

public Job job() {

Flow flowl = new FlowBuilder<SimpleFlow>("flow1")
.start(step1())
.next(step2())
.build();

Flow flow2 = new FlowBuilder<SimpleFlow>("flow2")
.start(step3())
.build();

return this.jobBuilderFactory.get("job")
.start(flowl)
.split(new SimpleAsyncTaskExecutor())
.add(flow2)
.next(step4())
.end()
.build();

5.3.6. Externalizing Flow Definitions and Dependencies Between Jobs

Part of the flow in a job can be externalized as a separate bean definition and then re-used. There
are two ways to do so. The first is to simply declare the flow as a reference to one defined
elsewhere, as shown in the following example:

86

XML Configuration

<job id="job">
<flow id="job1.flow1" parent="flow1" next="step3"/>
<step id="step3" parent="s3"/>

</job>

<flow id="flow1">
<step id="step1" parent="s1" next="step2"/>
<step id="step2" parent="s2"/>

</flow>

Java Configuration

public Job job() {
return this.jobBuilderFactory.get("job")
.start(flow1())
.next(step3())
.end()
.build();

public Flow flow1() {
return new FlowBuilder<SimpleFlow>("flow1")
.start(step1())
.next(step2())
.build();

The effect of defining an external flow as shown in the preceding example is to insert the steps
from the external flow into the job as if they had been declared inline. In this way, many jobs can
refer to the same template flow and compose such templates into different logical flows. This is also
a good way to separate the integration testing of the individual flows.

The other form of an externalized flow is to use a JobStep. A JobStep is similar to a FlowStep but
actually creates and launches a separate job execution for the steps in the flow specified.

The following XML snippet shows an example of a JobStep:

87

XML Configuration

<job id="jobStepJob" restartable="true">
<step id="jobStepJob.step1">
<job ref="job" job-launcher="jobLauncher"
job-parameters-extractor="jobParametersExtractor"/>
</step>
</job>

<job id="job" restartable="true">...</job>

<bean id="jobParametersExtractor" class="org.spr...DefaultJobParametersExtractor">
<property name="keys" value="input.file"/>
</bean>

The following Java snippet shows an example of a JobStep:

Java Configuration

@Bean
public Job jobStepJob() {
return this.jobBuilderFactory.get("jobStepJob")
.start(jobStepJobStep1(null))
.build();
+

@Bean
public Step jobStepJobStep1(JobLauncher joblLauncher) {
return this.stepBuilderFactory.get("jobStepJobStep1")

.job(job())
.launcher (jobLauncher)
.parametersExtractor(jobParameterskExtractor())
.build();

}

@Bean
public Job job() {
return this.jobBuilderFactory.get("job")
.start(step1())
.build();
}

@Bean
public DefaultJobParametersExtractor jobParametersExtractor() {
DefaultJobParametersExtractor extractor = new DefaultJobParametersExtractor();

extractor.setKeys(new String[]{"input.file"});

return extractor;

88

The job parameters extractor is a strategy that determines how the ExecutionContext for the Step is
converted into JobParameters for the Job that is run. The JobStep is useful when you want to have
some more granular options for monitoring and reporting on jobs and steps. Using JobStep is also
often a good answer to the question: "How do I create dependencies between jobs?" It is a good way
to break up a large system into smaller modules and control the flow of jobs.

5.4. Late Binding of Job and Step Attributes

Both the XML and flat file examples shown earlier use the Spring Resource abstraction to obtain a
file. This works because Resource has a getFile method, which returns a java.io.File. Both XML
and flat file resources can be configured using standard Spring constructs, as shown in the
following example:

XML Configuration

<bean id="flatFileItemReader"
class="org.springframework.batch.item.file.FlatFileltemReader">
<property name="resource"
value="file://outputs/file.txt" />
</bean>

Java Configuration

public FlatFileItemReader flatFileItemReader() {
FlatFileItemReader<Foo> reader = new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource("file://outputs/file.txt"))

The preceding Resource loads the file from the specified file system location. Note that absolute
locations have to start with a double slash (//). In most Spring applications, this solution is good
enough, because the names of these resources are known at compile time. However, in batch
scenarios, the file name may need to be determined at runtime as a parameter to the job. This can
be solved using '-D' parameters to read a system property.

The following XML snippet shows how to read a file name from a property:

XML Configuration

<bean id="flatFileItemReader"
class="org.springframework.batch.item.file.FlatFileltemReader">
<property name="resource" value="${input.file.name}" />
</bean>

The following Java snippet shows how to read a file name from a property:

89

Java Configuration

@Bean
public FlatFileItemReader flatFileItemReader(@Value("${input.file.name}") String name)

{

return new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource(name))

All that would be required for this solution to work would be a system argument (such as
-Dinput.file.name="file://outputs/file.txt").

Although a PropertyPlaceholderConfigurer can be used here, it is not necessary if
the system property is always set because the ResourceEditor in Spring already
filters and does placeholder replacement on system properties.

Often, in a batch setting, it is preferable to parametrize the file name in the JobParameters of the job,
instead of through system properties, and access them that way. To accomplish this, Spring Batch
allows for the late binding of various Job and Step attributes, as shown in the following snippet:

XML Configuration

<bean id="flatFileItemReader" scope="step"
class="org.springframework.batch.item.file.FlatFileItemReader">
<property name="resource" value="#{jobParameters['input.file.name']}" />
</bean>

Java Configuration

@StepScope
@Bean
public FlatFileItemReader flatFileltemReader(@Value(
"#{jobParameters["input.file.name']}") String name) {
return new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource(name))

Both the JobExecution and StepExecution level ExecutionContext can be accessed in the same way, as
shown in the following examples:

90

XML Configuration

<bean id="flatFileItemReader" scope="step"
class="org.springframework.batch.item.file.FlatFileltemReader">
<property name="resource" value="#{jobExecutionContext['input.file.name']}" />
</bean>

XML Configuration

<bean id="flatFileItemReader" scope="step"
class="org.springframework.batch.item.file.FlatFileItemReader">
<property name="resource" value="#{stepExecutionContext['input.file.name']}" />
</bean>

Java Configuration

@StepScope
@Bean
public FlatFileItemReader flatFileltemReader(@Value(
"#{jobExecutionContext["input.file.name']}") String name) {
return new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource(name))

Java Configuration

@StepScope
@Bean
public FlatFileItemReader flatFileItemReader(@Value(
"#{stepExecutionContext['input.file.name']}") String name) {
return new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource(name))

}
9 Any bean that uses late-binding must be declared with scope="step". See Step
Scope for more information.
5.4.1. Step Scope

All of the late binding examples from above have a scope of "step" declared on the bean definition,
as shown in the following example:

91

XML Configuration

<bean id="flatFileItemReader" scope="step"
class="org.springframework.batch.item.file.FlatFileltemReader">
<property name="resource" value="#{jobParameters[input.file.name]}" />
</bean>

Java Configuration

@StepScope
@Bean
public FlatFileItemReader flatFileItemReader(@Value("
#{jobParameters[input.file.name]}") String name) {
return new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource(name))

Using a scope of Step is required in order to use late binding, because the bean cannot actually be
instantiated until the Step starts, to allow the attributes to be found. Because it is not part of the
Spring container by default, the scope must be added explicitly, by using the batch namespace or by
including a bean definition explicitly for the StepScope, or by using the @EnableBatchProcessing
annotation. Use only one of those methods. The following example uses the batch namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:batch="http://www.springframework.org/schema/batch"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="...">

<batch:job .../>

</beans>
The following example includes the bean definition explicitly:

<bean class="org.springframework.batch.core.scope.StepScope" />

5.4.2. Job Scope

Job scope, introduced in Spring Batch 3.0, is similar to Step scope in configuration but is a Scope for
the Job context, so that there is only one instance of such a bean per running job. Additionally,
support is provided for late binding of references accessible from the JobContext using #{..}
placeholders. Using this feature, bean properties can be pulled from the job or job execution
context and the job parameters, as shown in the following examples:

92

XML Configuration

<bean id="..." class="..." scope="job">
<property name="name" value="#{jobParameters[input]}" />
</bean>

XML Configuration

<bean id="..." class="..." scope="job">
<property name="name" value="#{jobExecutionContext['input.name']}.txt" />
</bean>

Java Configuration

@JobScope
@Bean
public FlatFileItemReader flatFileItemReader(@Value("#{jobParameters[input]}") String
name) {
return new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource(name))

Java Configuration

@JobScope
@Bean
public FlatFileItemReader flatFileItemReader(@Value(
"#{jobExecutionContext["input.name']}") String name) {
return new FlatFileItemReaderBuilder<Foo>()
.name("flatFileItemReader")
.resource(new FileSystemResource(name))

Because it is not part of the Spring container by default, the scope must be added explicitly, by using
the batch namespace, by including a bean definition explicitly for the JobScope, or using the
@EnableBatchProcessing annotation (but not all of them). The following example uses the batch
namespace:

93

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:batch="http://www.springframework.org/schema/batch"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"”
xsi:schemalocation="...">
<batch:job .../>
</beans>
The following example includes a bean that explicitly defines the JobScope:

<bean class="org.springframework.batch.core.scope.JobScope" />

94

Chapter 6. ItemReaders and ItemWriters

All batch processing can be described in its most simple form as reading in large amounts of data,
performing some type of calculation or transformation, and writing the result out. Spring Batch
provides three key interfaces to help perform bulk reading and writing: ItemReader, ItemProcessor,
and ItemWriter.

6.1. ItemReader

Although a simple concept, an ItemReader is the means for providing data from many different
types of input. The most general examples include:

* Flat File: Flat-file item readers read lines of data from a flat file that typically describes records
with fields of data defined by fixed positions in the file or delimited by some special character
(such as a comma).

o XML: XML ItemReaders process XML independently of technologies used for parsing, mapping
and validating objects. Input data allows for the validation of an XML file against an XSD
schema.

* Database: A database resource is accessed to return resultsets which can be mapped to objects
for processing. The default SQL ItemReader implementations invoke a RowMapper to return
objects, keep track of the current row if restart is required, store basic statistics, and provide
some transaction enhancements that are explained later.

There are many more possibilities, but we focus on the basic ones for this chapter. A complete list
of all available ItemReader implementations can be found in Appendix A.

ItemReader is a basic interface for generic input operations, as shown in the following interface
definition:

public interface ItemReader<T> {

T read() throws Exception, UnexpectedInputException, ParseException,
NonTransientResourceException;

}

The read method defines the most essential contract of the ItemReader. Calling it returns one item or
null if no more items are left. An item might represent a line in a file, a row in a database, or an
element in an XML file. It is generally expected that these are mapped to a usable domain object
(such as Trade, Foo, or others), but there is no requirement in the contract to do so.

It is expected that implementations of the ItemReader interface are forward only. However, if the
underlying resource is transactional (such as a JMS queue) then calling read may return the same
logical item on subsequent calls in a rollback scenario. It is also worth noting that a lack of items to
process by an ItemReader does not cause an exception to be thrown. For example, a database
ItemReader that is configured with a query that returns 0 results returns null on the first invocation

95

of read.

6.2. ItemWriter

ItemWriter is similar in functionality to an ItemReader but with inverse operations. Resources still
need to be located, opened, and closed but they differ in that an ItemWriter writes out, rather than
reading in. In the case of databases or queues, these operations may be inserts, updates, or sends.
The format of the serialization of the output is specific to each batch job.

As with ItemReader, ItemWiriter is a fairly generic interface, as shown in the following interface
definition:

public interface ItemWriter<T> {

void write(List<? extends T> items) throws Exception;

As with read on ItemReader, write provides the basic contract of Itemlriter. It attempts to write out
the list of items passed in as long as it is open. Because it is generally expected that items are
'batched' together into a chunk and then output, the interface accepts a list of items, rather than an
item by itself. After writing out the list, any flushing that may be necessary can be performed
before returning from the write method. For example, if writing to a Hibernate DAO, multiple calls
to write can be made, one for each item. The writer can then call flush on the hibernate session
before returning.

6.3. ItemProcessor

The ItemReader and ItemWriter interfaces are both very useful for their specific tasks, but what if
you want to insert business logic before writing? One option for both reading and writing is to use
the composite pattern: Create an ItemWriter that contains another Itemlriter or an ItemReader that
contains another ItemReader. The following code shows an example:

96

public class CompositeltemWriter<T> implements ItemWriter<T> {
TtemWriter<T> itemWriter;

public CompositeltemWriter(ItemWriter<T> itemWriter) {
this.itemWriter = itemWriter;

}

public void write(List<? extends T> items) throws Exception {
//Add business logic here
itemWriter.write(items);

public void setDelegate(ItemWriter<T> itemWriter){
this.itemWriter = itemWriter;

}

The preceding class contains another ItemWriter to which it delegates after having provided some
business logic. This pattern could easily be used for an ItemReader as well, perhaps to obtain more
reference data based upon the input that was provided by the main ItemReader. It is also useful if
you need to control the call to write yourself. However, if you only want to 'transform' the item
passed in for writing before it is actually written, you need not write yourself. You can just modify
the item. For this scenario, Spring Batch provides the ItemProcessor interface, as shown in the
following interface definition:

public interface ItemProcessor<I, 0> {

0 process(I item) throws Exception;

An ItemProcessor is simple. Given one object, transform it and return another. The provided object
may or may not be of the same type. The point is that business logic may be applied within the
process, and it is completely up to the developer to create that logic. An ItemProcessor can be wired
directly into a step. For example, assume an ItemReader provides a class of type Foo and that it needs
to be converted to type Bar before being written out. The following example shows an ItemProcessor
that performs the conversion:

97

public class Foo {}

public class Bar {
public Bar(Foo foo) {}
}

public class FooProcessor implements ItemProcessor<Foo,Bar>{
public Bar process(Foo foo) throws Exception {
//Perform simple transformation, convert a Foo to a Bar
return new Bar(foo);

}

public class BarWriter implements ItemWriter<Bar>{
public void write(List<? extends Bar> bars) throws Exception {
//write bars

}

In the preceding example, there is a class Foo, a class Bar, and a class FooProcessor that adheres to
the ItemProcessor interface. The transformation is simple, but any type of transformation could be
done here. The BarlWiriter writes Bar objects, throwing an exception if any other type is provided.
Similarly, the FooProcessor throws an exception if anything but a Foo is provided. The FooProcessor
can then be injected into a Step, as shown in the following example:

XML Configuration

<job id="ioSampleJob">
<step name="step1">
<tasklet>
<chunk reader="fooReader" processor="fooProcessor" writer="barWriter"
commit-interval="2"/>
</tasklet>
</step>
</job>

98

Java Configuration

public Job ioSampleJob() {
return this.jobBuilderFactory.get("ioSamplelOb")
.start(step1())
.end()
.build();

public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(fooReader())
.processor (fooProcessor())
writer(barWriter())
.build();

6.3.1. Chaining ItemProcessors

Performing a single transformation is useful in many scenarios, but what if you want to 'chain’

together multiple ItemProcessor implementations? This can be accomplished using the composite

pattern mentioned previously. To update the previous, single transformation, example, Foo is
transformed to Bar, which is transformed to Foobar and written out, as shown in the following

example:

99

public class Foo {}

public class Bar {
public Bar(Foo foo) {}
}

public class Foobar {
public Foobar(Bar bar) {}
}

public class FooProcessor implements ItemProcessor<Foo,Bar>{
public Bar process(Foo foo) throws Exception {
//Perform simple transformation, convert a Foo to a Bar
return new Bar(foo);

}

public class BarProcessor implements ItemProcessor<Bar,Foobar>{
public Foobar process(Bar bar) throws Exception {
return new Foobar(bar);
}
+

public class FoobarWriter implements ItemWriter<Foobar>{
public void write(List<? extends Foobar> items) throws Exception {
//write items

}

A FooProcessor and a BarProcessor can be 'chained' together to give the resultant Foobar, as shown in
the following example:

CompositeItemProcessor<Foo,Foobar> compositeProcessor =

new CompositeltemProcessor<Foo,Foobar>();
List itemProcessors = new ArraylList();
itemProcessors.add(new FooTransformer());
itemProcessors.add(new BarTransformer());
compositeProcessor.setDelegates(itemProcessors);

Just as with the previous example, the composite processor can be configured into the Step:

100

XML Configuration

<job id="ioSampleJob">
<step name="step1">

<tasklet>
<chunk reader="fooReader" processor="compositeltemProcessor" writer=
"foobarWriter"
commit-interval="2"/>
</tasklet>
</step>

</job>

<bean id="compositeItemProcessor"
class="org.springframework.batch.item.support.CompositeItemProcessor">
<property name="delegates">
<list>
<bean class="..FooProcessor" />
<bean class="..BarProcessor" />
</list>
</property>
</bean>

101

Java Configuration

public Job ioSampleJob() {
return this.jobBuilderFactory.get("ioSampleJob")
.start(step1())
.end()
.build();

public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(fooReader())
.processor (compositeProcessor())
.writer(foobarWriter())
.build();

public CompositeItemProcessor compositeProcessor() {
List<ItemProcessor> delegates = new ArraylList<>(2);
delegates.add(new FooProcessor());
delegates.add(new BarProcessor());

CompositeltemProcessor processor = new CompositeltemProcessor();
processor.setDelegates(delegates);

return processor,

6.3.2. Filtering Records

One typical use for an item processor is to filter out records before they are passed to the
ItemWriter. Filtering is an action distinct from skipping. Skipping indicates that a record is invalid,
while filtering simply indicates that a record should not be written.

For example, consider a batch job that reads a file containing three different types of records:
records to insert, records to update, and records to delete. If record deletion is not supported by the
system, then we would not want to send any "delete" records to the ItemWriter. But, since these
records are not actually bad records, we would want to filter them out rather than skip them. As a
result, the ItemWriter would receive only "insert” and "update" records.

To filter a record, you can return null from the ItemProcessor. The framework detects that the result
is null and avoids adding that item to the list of records delivered to the ItemWriter. As usual, an
exception thrown from the ItemProcessor results in a skip.

102

6.3.3. Fault Tolerance

When a chunk is rolled back, items that have been cached during reading may be reprocessed. If a
step is configured to be fault tolerant (typically by using skip or retry processing), any ItemProcessor
used should be implemented in a way that is idempotent. Typically that would consist of
performing no changes on the input item for the ItemProcessor and only updating the instance that
is the result.

6.4. ItemStream

Both ItemReaders and ItemWriters serve their individual purposes well, but there is a common
concern among both of them that necessitates another interface. In general, as part of the scope of a
batch job, readers and writers need to be opened, closed, and require a mechanism for persisting
state. The ItemStream interface serves that purpose, as shown in the following example:

public interface ItemStream {
void open(ExecutionContext executionContext) throws ItemStreamException;
void update(ExecutionContext executionContext) throws ItemStreamException;

void close() throws ItemStreamException;

Before describing each method, we should mention the ExecutionContext. Clients of an ItemReader
that also implement ItemStream should call open before any calls to read, in order to open any
resources such as files or to obtain connections. A similar restriction applies to an ItemWriter that
implements ItemStream. As mentioned in Chapter 2, if expected data is found in the
ExecutionContext, it may be used to start the ItemReader or ItemWiriter at a location other than its
initial state. Conversely, close is called to ensure that any resources allocated during open are
released safely. update is called primarily to ensure that any state currently being held is loaded into
the provided ExecutionContext. This method is called before committing, to ensure that the current
state is persisted in the database before commit.

In the special case where the client of an ItemStream is a Step (from the Spring Batch Core), an
ExecutionContext is created for each StepExecution to allow users to store the state of a particular
execution, with the expectation that it is returned if the same JobInstance is started again. For those
familiar with Quartz, the semantics are very similar to a Quartz JobDataMap.

6.5. The Delegate Pattern and Registering with the Step

Note that the CompositeltemWriter is an example of the delegation pattern, which is common in
Spring Batch. The delegates themselves might implement callback interfaces, such as StepListener.
If they do and if they are being used in conjunction with Spring Batch Core as part of a Step in a Job,
then they almost certainly need to be registered manually with the Step. A reader, writer, or
processor that is directly wired into the Step gets registered automatically if it implements
ItemStream or a SteplListener interface. However, because the delegates are not known to the Step,

103

they need to be injected as listeners or streams (or both if appropriate), as shown in the following
example:

XML Configuration

<job id="ioSampleJob">
<step name="step1">

<tasklet>
<chunk reader="fooReader" processor="fooProcessor" writer=
"compositeltemWriter"
commit-interval="2">
<streams>
<stream ref="barWriter" />
</streams>
</chunk>
</tasklet>
</step>
</job>
<bean id="compositeItemWriter" class="...CustomCompositeItemWriter">
<property name="delegate" ref="barWriter" />
</bean>
<bean id="barWriter" class="...BarWriter" />

104

Java Configuration

public Job ioSampleJob() {
return this.jobBuilderFactory.get("ioSampleJob")
.start(step1())
.end()
.build();

public Step step1() {

return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(fooReader())
.processor (fooProcessor())
.writer(compositeltemWriter())
.stream(barWriter())
.build();

public CustomCompositeItemWriter compositeltemWriter() {
CustomCompositeltemWriter writer = new CustomCompositeltemWriter();
writer.setDelegate(barWriter());

return writer;

public BarWriter barWriter() {
return new BarWriter();

}

6.6. Flat Files

One of the most common mechanisms for interchanging bulk data has always been the flat file.
Unlike XML, which has an agreed upon standard for defining how it is structured (XSD), anyone
reading a flat file must understand ahead of time exactly how the file is structured. In general, all
flat files fall into two types: delimited and fixed length. Delimited files are those in which fields are
separated by a delimiter, such as a comma. Fixed Length files have fields that are a set length.

6.6.1. The FieldSet

When working with flat files in Spring Batch, regardless of whether it is for input or output, one of
the most important classes is the FieldSet. Many architectures and libraries contain abstractions
for helping you read in from a file, but they usually return a String or an array of String objects.

105

This really only gets you halfway there. A FieldSet is Spring Batch’s abstraction for enabling the
binding of fields from a file resource. It allows developers to work with file input in much the same
way as they would work with database input. A FieldSet is conceptually similar to a JDBC ResultSet.
A FieldSet requires only one argument: a String array of tokens. Optionally, you can also configure
the names of the fields so that the fields may be accessed either by index or name as patterned after
ResultSet, as shown in the following example:

String[] tokens = new String[]{"foo", "1", "true"};
FieldSet fs = new DefaultFieldSet(tokens);

String name = fs.readString(0);

int value = fs.readInt(1);

boolean booleanValue = fs.readBoolean(2);

There are many more options on the FieldSet interface, such as Date, long, BigDecimal, and so on.
The biggest advantage of the FieldSet is that it provides consistent parsing of flat file input. Rather
than each batch job parsing differently in potentially unexpected ways, it can be consistent, both
when handling errors caused by a format exception, or when doing simple data conversions.

6.6.2. FlatFileItemReader

A flat file is any type of file that contains at most two-dimensional (tabular) data. Reading flat files
in the Spring Batch framework is facilitated by the class called FlatFileItemReader, which provides
basic functionality for reading and parsing flat files. The two most important required
dependencies of FlatFileltemReader are Resource and LineMapper. The LineMapper interface is
explored more in the next sections. The resource property represents a Spring Core Resource.
Documentation explaining how to create beans of this type can be found in Spring Framework,
Chapter 5. Resources. Therefore, this guide does not go into the details of creating Resource objects
beyond showing the following simple example:

Resource resource = new FileSystemResource("resources/trades.csv");

In complex batch environments, the directory structures are often managed by the EAI
infrastructure, where drop zones for external interfaces are established for moving files from FTP
locations to batch processing locations and vice versa. File moving utilities are beyond the scope of
the Spring Batch architecture, but it is not unusual for batch job streams to include file moving
utilities as steps in the job stream. The batch architecture only needs to know how to locate the files
to be processed. Spring Batch begins the process of feeding the data into the pipe from this starting
point. However, Spring Integration provides many of these types of services.

The other properties in FlatFileItemReader let you further specify how your data is interpreted, as
described in the following table:

Table 15. FlatFileItemReader Properties

Property Type Description

comments String|] Specifies line prefixes that
indicate comment rows.

106

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#resources
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#resources
https://projects.spring.io/spring-integration/

Property Type Description

encoding String Specifies what text encoding to
use. The default is the value of
Charset.defaultCharset().

lineMapper LineMapper Converts a String to an Object
representing the item.

linesToSkip int Number of lines to ignore at the
top of the file.

recordSeparatorPolicy RecordSeparatorPolicy Used to determine where the

line endings are and do things
like continue over a line ending
if inside a quoted string.

resource Resource The resource from which to
read.
skippedLinesCallback LineCallbackHandler Interface that passes the raw

line content of the lines in the
file to be skipped. If 1inesToSkip
is set to 2, then this interface is
called twice.

strict boolean In strict mode, the reader
throws an exception on
ExecutionContext if the input
resource does not exist.
Otherwise, it logs the problem
and continues.

LineMapper

As with RowMapper, which takes a low-level construct such as ResultSet and returns an Object, flat
file processing requires the same construct to convert a String line into an Object, as shown in the
following interface definition:

public interface LineMapper<T> {

T mapLine(String line, int lineNumber) throws Exception;

The basic contract is that, given the current line and the line number with which it is associated, the
mapper should return a resulting domain object. This is similar to RowMapper, in that each line is
associated with its line number, just as each row in a ResultSet is tied to its row number. This
allows the line number to be tied to the resulting domain object for identity comparison or for
more informative logging. However, unlike RowMapper, the LineMapper is given a raw line which, as
discussed above, only gets you halfway there. The line must be tokenized into a FieldSet, which can
then be mapped to an object, as described later in this document.

107

LineTokenizer

An abstraction for turning a line of input into a FieldSet is necessary because there can be many
formats of flat file data that need to be converted to a FieldSet. In Spring Batch, this interface is the
LineTokenizer:

public interface LineTokenizer {

FieldSet tokenize(String line);

The contract of a LineTokenizer is such that, given a line of input (in theory the String could
encompass more than one line), a FieldSet representing the line is returned. This FieldSet can then
be passed to a FieldSetMapper. Spring Batch contains the following LineTokenizer implementations:

* DelimitedLineTokenizer: Used for files where fields in a record are separated by a delimiter. The
most common delimiter is a comma, but pipes or semicolons are often used as well.

* FixedLengthTokenizer: Used for files where fields in a record are each a "fixed width". The width
of each field must be defined for each record type.

» PatternMatchingCompositeLineTokenizer: Determines which LineTokenizer among a list of
tokenizers should be used on a particular line by checking against a pattern.

FieldSetMapper

The FieldSetMapper interface defines a single method, mapFieldSet, which takes a FieldSet object
and maps its contents to an object. This object may be a custom DTO, a domain object, or an array,
depending on the needs of the job. The FieldSetMapper is used in conjunction with the LineTokenizer
to translate a line of data from a resource into an object of the desired type, as shown in the
following interface definition:

public interface FieldSetMapper<T> {

T mapFieldSet(FieldSet fieldSet) throws BindException;

The pattern used is the same as the RowMapper used by JdbcTemplate.

DefaultLineMapper

Now that the basic interfaces for reading in flat files have been defined, it becomes clear that three
basic steps are required:

1. Read one line from the file.

2. Pass the String line into the LineTokenizer#tokenize() method to retrieve a FieldSet.

108

3. Pass the FieldSet returned from tokenizing to a FieldSetMapper, returning the result from the
ItemReader#read() method.

The two interfaces described above represent two separate tasks: converting a line into a FieldSet
and mapping a FieldSet to a domain object. Because the input of a LineTokenizer matches the input
of the LineMapper (a line), and the output of a FieldSetMapper matches the output of the LineMapper, a
default implementation that uses both a LineTokenizer and a FieldSetMapper is provided. The
DefaultLineMapper, shown in the following class definition, represents the behavior most users
need:

public class DefaultLineMapper<T> implements LineMapper<>, InitializingBean {
private LineTokenizer tokenizer;
private FieldSetMapper<T> fieldSetMapper;

public T mapLine(String line, int lineNumber) throws Exception {
return fieldSetMapper.mapFieldSet(tokenizer.tokenize(line));
}

public void setLineTokenizer(LineTokenizer tokenizer) {
this.tokenizer = tokenizer;

}

public void setFieldSetMapper(FieldSetMapper<T> fieldSetMapper) {
this.fieldSetMapper = fieldSetMapper;
}

The above functionality is provided in a default implementation, rather than being built into the
reader itself (as was done in previous versions of the framework) to allow users greater flexibility
in controlling the parsing process, especially if access to the raw line is needed.

Simple Delimited File Reading Example

The following example illustrates how to read a flat file with an actual domain scenario. This
particular batch job reads in football players from the following file:

ID,1astName, firstName,position,birthYear,debutYear
"AbduKa0®,Abdul-Jabbar,Karim,rb,1974,1996",
"AbduRa@@,Abdullah,Rabih,rb,1975,1999",
"AberWa0®,Abercrombie,Walter,rb,1959,1982",
"AbraDa®@,Abramowicz,Danny,wr,1945,1967",
"AdamBo0@,Adams,Bob, te,1946,1969",
"AdamCh0@,Adams,Charlie,wr,1979,2003"

The contents of this file are mapped to the following Player domain object:

109

public class Player implements Serializable {

private String ID;
private String lastName;
private String firstName;
private String position;
private int birthYear;
private int debutYear;

public String toString() {
return "PLAYER:ID=" + ID + ",Last Name=" + lastName +
", First Name=" + firstName + ",Position=" + position +
",Birth Year=" + birthYear + ",DebutYear=" +
debutYear;

}

// setters and getters...

To map a FieldSet into a Player object, a FieldSetMapper that returns players needs to be defined, as
shown in the following example:

protected static class PlayerFieldSetMapper implements FieldSetMapper<Player> {
public Player mapFieldSet(FieldSet fieldSet) {
Player player = new Player();

player.setID(fieldSet.readString(9));
player.setlLastName(fieldSet.readString(1));
player.setFirstName(fieldSet.readString(2));
player.setPosition(fieldSet.readString(3));
player.setBirthYear(fieldSet.readInt(4));
player.setDebutYear(fieldSet.readInt(5));

return player;

The file can then be read by correctly constructing a FlatFileItemReader and calling read, as shown
in the following example:

110

FlatFileItemReader<Player> itemReader = new FlatFileltemReader<Player>();
itemReader.setResource(new FileSystemResource("resources/players.csv"));
//DelimitedLineTokenizer defaults to comma as its delimiter
DefaultLineMapper<Player> lineMapper = new DefaultlLineMapper<Player>();
lineMapper.setLineTokenizer(new DelimitedLineTokenizer());
lineMapper.setFieldSetMapper(new PlayerFieldSetMapper());
itemReader.setLineMapper(1lineMapper);

itemReader.open(new ExecutionContext());

Player player = itemReader.read();

Each call to read returns a new Player object from each line in the file. When the end of the file is
reached, null is returned.

Mapping Fields by Name

There is one additional piece of functionality that is allowed by both DelimitedLineTokenizer and
FixedLengthTokenizer and that is similar in function to a JDBC ResultSet. The names of the fields can
be injected into either of these LineTokenizer implementations to increase the readability of the
mapping function. First, the column names of all fields in the flat file are injected into the tokenizer,
as shown in the following example:

tokenizer.setNames(new String[] {"ID", "lastName","firstName","position","birthYear",
"debutYear"});

A FieldSetMapper can use this information as follows:

public class PlayerMapper implements FieldSetMapper<Player> {
public Player mapFieldSet(FieldSet fs) {

if(fs == null){
return null;

}

Player player = new Player();
player.setID(fs.readString("ID"));
player.setLastName(fs.readString("lastName"));
player.setFirstName(fs.readString("firstName"));
player.setPosition(fs.readString("position"));
player.setDebutYear(fs.readInt("debutYear"));
player.setBirthYear(fs.readInt("birthYear"));

return player;

111

Automapping FieldSets to Domain Objects

For many, having to write a specific FieldSetMapper is equally as cumbersome as writing a specific
RowMapper for a JdbcTemplate. Spring Batch makes this easier by providing a FieldSetMapper that
automatically maps fields by matching a field name with a setter on the object using the JavaBean
specification. Again using the football example, the BeanWrapperFieldSetMapper configuration looks
like the following snippet:

XML Configuration

<bean id="fieldSetMapper"
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper">
<property name="prototypeBeanName" value="player" />
</bean>

<bean id="player"
class="org.springframework.batch.sample.domain.Player"
scope="prototype" />

Java Configuration

public FieldSetMapper fieldSetMapper() {
BeanWrapperFieldSetMapper fieldSetMapper = new BeanWrapperFieldSetMapper();

fieldSetMapper.setPrototypeBeanName("player");

return fieldSetMapper;

("prototype")
public Player player() {
return new Player();

}

For each entry in the FieldSet, the mapper looks for a corresponding setter on a new instance of the
Player object (for this reason, prototype scope is required) in the same way the Spring container
looks for setters matching a property name. Each available field in the FieldSet is mapped, and the
resultant Player object is returned, with no code required.

Fixed Length File Formats

So far, only delimited files have been discussed in much detail. However, they represent only half
of the file reading picture. Many organizations that use flat files use fixed length formats. An
example fixed length file follows:

112

UK21341EAH4121131.11customer
UK21341EAH4221232.11customer?2
UK21341EAH4321333.11customer3
UK21341EAH4421434 . 11customer4
UK21341EAH4521535.11customer5

While this looks like one large field, it actually represent 4 distinct fields:

1. ISIN: Unique identifier for the item being ordered - 12 characters long.
2. Quantity: Number of the item being ordered - 3 characters long.
3. Price: Price of the item - 5 characters long.

4. Customer: ID of the customer ordering the item - 9 characters long.

When configuring the FixedLengthLineTokenizer, each of these lengths must be provided in the form
of ranges, as shown in the following example:

XML Configuration

<bean id="fixedLengthLineTokenizer"
class="org.springframework.batch.io.file.transform.FixedLengthTokenizer">
<property name="names" value="ISIN,Quantity,Price,Customer" />
<property name="columns" value="1-12, 13-15, 16-20, 21-29" />
</bean>

Because the FixedLengthLineTokenizer uses the same LineTokenizer interface as discussed above, it
returns the same FieldSet as if a delimiter had been used. This allows the same approaches to be
used in handling its output, such as using the BeanWrapperFieldSetMapper.

Supporting the above syntax for ranges requires that a specialized property editor,

0 RangeArrayPropertyEditor, be configured in the ApplicationContext. However, this
bean is automatically declared in an ApplicationContext where the batch
namespace is used.

113

Java Configuration

public FixedLengthTokenizer fixedLengthTokenizer() {
FixedLengthTokenizer tokenizer = new FixedLengthTokenizer();

tokenizer.setNames("ISIN", "Quantity", "Price", "Customer");
tokenizer.setColumns(new Range(1-12),

new Range(13-15),

new Range(16-20),

new Range(21-29));

return tokenizer;

Because the FixedLengthLineTokenizer uses the same LineTokenizer interface as discussed above, it
returns the same FieldSet as if a delimiter had been used. This lets the same approaches be used in
handling its output, such as using the BeanWrapperFieldSetMapper.

Multiple Record Types within a Single File

All of the file reading examples up to this point have all made a key assumption for simplicity’s
sake: all of the records in a file have the same format. However, this may not always be the case. It
is very common that a file might have records with different formats that need to be tokenized
differently and mapped to different objects. The following excerpt from a file illustrates this:

USER;Smith;Peter;;T;20014539;F
LINEA;1044391041ABC037.49G201XX1383.12H
LINEB;2134776319DEF422.99M00O5LI

In this file we have three types of records, "USER", "LINEA", and "LINEB". A "USER" line corresponds
to a User object. "LINEA" and "LINEB" both correspond to Line objects, though a "LINEA" has more
information than a "LINEB".

The ItemReader reads each line individually, but we must specify different LineTokenizer and
FieldSetMapper objects so that the ItemWriter receives the correct items. The
PatternMatchingCompositelineMapper makes this easy by allowing maps of patterns to LineTokenizer
instances and patterns to FieldSetMapper instances to be configured, as shown in the following
example:

114

XML Configuration

<bean id="orderFileLineMapper"
class="org.spr...PatternMatchingCompositelLineMapper">
<property name="tokenizers">
<map>
<entry key="USER*" value-ref="userTokenizer" />
<entry key="LINEA*" value-ref="lineATokenizer" />
<entry key="LINEB*" value-ref="lineBTokenizer" />
</map>
</property>
<property name="fieldSetMappers">
<map>
<entry key="USER*" value-ref="userFieldSetMapper" />
<entry key="LINE*" value-ref="lineFieldSetMapper" />
</map>
</property>
</bean>

Java Configuration

@Bean
public PatternMatchingCompositelLineMapper orderFilelLineMapper() {
PatternMatchingCompositelineMapper lineMapper =
new PatternMatchingCompositelineMapper();

Map<String, LineTokenizer> tokenizers = new HashMap<>(3);
tokenizers.put("USER*", userTokenizer());
tokenizers.put("LINEA*", lineATokenizer());
tokenizers.put("LINEB*", lineBTokenizer());

lineMapper.setTokenizers(tokenizers);

Map<String, FieldSetMapper> mappers = new HashMap<>(2);
mappers.put("USER*", userFieldSetMapper());
mappers.put("LINE*", lineFieldSetMapper());
lineMapper.setFieldSetMappers(mappers);

return lineMapper;

In this example, "LINEA" and "LINEB" have separate LineTokenizer instances, but they both use the
same FieldSetMapper.

The PatternMatchingCompositelineMapper uses the PatternMatcher#imatch method in order to select the
correct delegate for each line. The PatternMatcher allows for two wildcard characters with special
meaning: the question mark ("?") matches exactly one character, while the asterisk ("*") matches
zero or more characters. Note that, in the preceding configuration, all patterns end with an asterisk,

115

making them effectively prefixes to lines. The PatternMatcher always matches the most specific
pattern possible, regardless of the order in the configuration. So if "LINE*" and "LINEA*" were both
listed as patterns, "LINEA" would match pattern "LINEA*", while "LINEB" would match pattern
"LINE*". Additionally, a single asterisk ("*") can serve as a default by matching any line not matched
by any other pattern, as shown in the following example.

XML Configuration

<entry key="*" value-ref="defaultLineTokenizer" />

Java Configuration

tokenizers.put("*", defaultLineTokenizer());

There is also a PatternMatchingCompositeLineTokenizer that can be used for tokenization alone.

It is also common for a flat file to contain records that each span multiple lines. To handle this
situation, a more complex strategy is required. A demonstration of this common pattern can be
found in the multilineRecords sample.

Exception Handling in Flat Files

There are many scenarios when tokenizing a line may cause exceptions to be thrown. Many flat
files are imperfect and contain incorrectly formatted records. Many users choose to skip these
erroneous lines while logging the issue, the original line, and the line number. These logs can later
be inspected manually or by another batch job. For this reason, Spring Batch provides a hierarchy
of exceptions for handling parse exceptions: FlatFileParseException and FlatFileFormatException.
FlatFileParseException is thrown by the FlatFileItemReader when any errors are encountered while
trying to read a file. FlatFileFormatException is thrown by implementations of the LineTokenizer
interface and indicates a more specific error encountered while tokenizing.

IncorrectTokenCountException

Both DelimitedLineTokenizer and FixedlLengthLineTokenizer have the ability to specify column
names that can be used for creating a FieldSet. However, if the number of column names does not
match the number of columns found while tokenizing a line, the FieldSet cannot be created, and an
IncorrectTokenCountException is thrown, which contains the number of tokens encountered, and the
number expected, as shown in the following example:

116

tokenizer.setNames(new String[] {"A", "B", "C", "D"});

try {
tokenizer.tokenize("a,b,c");

}

catch(IncorrectTokenCountException e){
assertEquals(4, e.getExpectedCount());
assertEquals(3, e.getActualCount());

Because the tokenizer was configured with 4 column names but only 3 tokens were found in the
file, an IncorrectTokenCountException was thrown.

IncorrectLineLengthException

Files formatted in a fixed-length format have additional requirements when parsing because,
unlike a delimited format, each column must strictly adhere to its predefined width. If the total line
length does not equal the widest value of this column, an exception is thrown, as shown in the
following example:

tokenizer.setColumns(new Range[] { new Range(1, 5),
new Range(6, 10),
new Range(11, 15) });

try {
tokenizer.tokenize("12345");
fail("Expected IncorrectLinelLengthException");

}

catch (IncorrectlLinelLengthException ex) {
assertEquals(15, ex.getExpectedLength());
assertEquals(5, ex.getActuallength());

The configured ranges for the tokenizer above are: 1-5, 6-10, and 11-15. Consequently, the total
length of the line is 15. However, in the preceding example, a line of length 5 was passed in, causing
an IncorrectlLinelLengthException to be thrown. Throwing an exception here rather than only
mapping the first column allows the processing of the line to fail earlier and with more information
than it would contain if it failed while trying to read in column 2 in a FieldSetMapper. However,
there are scenarios where the length of the line is not always constant. For this reason, validation of
line length can be turned off via the 'strict’ property, as shown in the following example:

tokenizer.setColumns(new Range[] { new Range(1, 5), new Range(6, 10) });
tokenizer.setStrict(false);

FieldSet tokens = tokenizer.tokenize("12345");

assertEquals("12345", tokens.readString(0));

assertEquals("", tokens.readString(1));

The preceding example is almost identical to the one before it, except that

117

tokenizer.setStrict(false) was called. This setting tells the tokenizer to not enforce line lengths
when tokenizing the line. A FieldSet is now correctly created and returned. However, it contains
only empty tokens for the remaining values.

6.6.3. FlatFileItemWriter

Writing out to flat files has the same problems and issues that reading in from a file must
overcome. A step must be able to write either delimited or fixed length formats in a transactional
manner.

LineAggregator

Just as the LineTokenizer interface is necessary to take an item and turn it into a String, file writing
must have a way to aggregate multiple fields into a single string for writing to a file. In Spring
Batch, this is the LineAggregator, shown in the following interface definition:

public interface LineAggregator<T> {

public String aggregate(T item);

The LineAggregator is the logical opposite of LineTokenizer. LineTokenizer takes a String and returns
a FieldSet, whereas LineAggregator takes an item and returns a String.

PassThroughLineAggregator

The most basic implementation of the LineAggregator interface is the PassThroughlLineAggregator,
which assumes that the object is already a string or that its string representation is acceptable for
writing, as shown in the following code:

public class PassThroughLineAggregator<T> implements LineAggregator<T> {

public String aggregate(T item) {
return item.toString();

}

The preceding implementation is useful if direct control of creating the string is required but the
advantages of a FlatFileltemWriter, such as transaction and restart support, are necessary.

Simplified File Writing Example

Now that the LineAggregator interface and its most basic implementation,
PassThroughLineAggregator, have been defined, the basic flow of writing can be explained:

1. The object to be written is passed to the LineAggregator in order to obtain a String.

2. The returned String is written to the configured file.

118

The following excerpt from the FlatFileltemWriter expresses this in code:

public void write(T item) throws Exception {
write(lineAggregator.aggregate(item) + LINE_SEPARATOR);
}

A simple configuration might look like the following:

XML Configuration

<bean id="itemWriter" class="org.spr...FlatFileltemWriter">
<property name="resource" value="file:target/test-outputs/output.txt" />
<property name="1lineAggregator">
<bean class="org.spr...PassThroughLineAggregator"/>
</property>
</bean>

Java Configuration

public FlatFileItemWriter itemWriter() {
return new FlatFileItemWriterBuilder<Foo>()
.name("itemWriter")
.resource(new FileSystemResource("target/test-outputs/output.txt"

))
.LlineAggregator (new PassThroughLineAggregator<>())
.build();
}
FieldExtractor

The preceding example may be useful for the most basic uses of a writing to a file. However, most
users of the FlatFileItemWriter have a domain object that needs to be written out and, thus, must
be converted into a line. In file reading, the following was required:
1. Read one line from the file.
2. Pass the line into the LineTokenizer#tokenize() method, in order to retrieve a FieldSet.
3. Pass the FieldSet returned from tokenizing to a FieldSetMapper, returning the result from the
ItemReader#iread() method.

File writing has similar but inverse steps:

1. Pass the item to be written to the writer.
2. Convert the fields on the item into an array.

3. Aggregate the resulting array into a line.

Because there is no way for the framework to know which fields from the object need to be written

119

out, a FieldExtractor must be written to accomplish the task of turning the item into an array, as
shown in the following interface definition:

public interface FieldExtractor<T> {

Object[] extract(T item);

Implementations of the FieldExtractor interface should create an array from the fields of the
provided object, which can then be written out with a delimiter between the elements or as part of
a fixed-width line.

PassThroughFieldExtractor

There are many cases where a collection, such as an array, Collection, or FieldSet, needs to be
written out. "Extracting" an array from one of these collection types is very straightforward. To do
so, convert the collection to an array. Therefore, the PassThroughFieldExtractor should be used in
this scenario. It should be noted that, if the object passed in is not a type of collection, then the
PassThroughFieldExtractor returns an array containing solely the item to be extracted.

BeanWrapperFieldExtractor

As with the BeanWrapperFieldSetMapper described in the file reading section, it is often preferable to
configure how to convert a domain object to an object array, rather than writing the conversion
yourself. The BeanWrapperFieldExtractor provides this functionality, as shown in the following
example:

BeanWrapperFieldExtractor<Name> extractor = new BeanWrapperFieldExtractor<Name>();
extractor.setNames(new String[] { "first", "last", "born" });

String first = "Alan";
String last = "Turing";
int born = 1912;

Name n = new Name(first, last, born);
Object[] values = extractor.extract(n);

assertEquals(first, values[0]);
assertEquals(last, values[1]);
assertEquals(born, values[Z]);

This extractor implementation has only one required property: the names of the fields to map. Just
as the BeanWrapperFieldSetMapper needs field names to map fields on the FieldSet to setters on the
provided object, the BeanWrapperFieldExtractor needs names to map to getters for creating an object
array. It is worth noting that the order of the names determines the order of the fields within the
array.

120

Delimited File Writing Example

The most basic flat file format is one in which all fields are separated by a delimiter. This can be
accomplished using a DelimitedLineAggregator. The following example writes out a simple domain
object that represents a credit to a customer account:

public class CustomerCredit {

private int id;
private String name;
private BigDecimal credit;

//getters and setters removed for clarity

Because a domain object is being used, an implementation of the FieldExtractor interface must be
provided, along with the delimiter to use, as shown in the following example:

XML Configuration

<bean id="itemWriter" class="org.springframework.batch.item.file.FlatFileItemWriter">
<property name="resource" ref="outputResource" />
<property name="1lineAggregator">
<bean class="org.spr...DelimitedLineAggregator">
<property name="delimiter" value=",b"/>
<property name="fieldExtractor">
<bean class="org.spr...BeanWrapperFieldExtractor">
<property name="names" value="name,credit"/>
</bean>
</property>
</bean>
</property>
</bean>

121

Java Configuration

public FlatFileItemWriter<CustomerCredit> itemWriter(Resource outputResource) throws
Exception {

BeanWrapperFieldExtractor<CustomerCredit> fieldExtractor = new
BeanWrapperFieldExtractor<>();

fieldExtractor.setNames(new String[] {"name", "credit"});

fieldExtractor.afterPropertiesSet();

DelimitedLineAggregator<CustomerCredit> lineAggregator = new
DelimitedLineAggregator<>();

lineAggregator.setDelimiter(",");

lineAggregator.setFieldExtractor(fieldExtractor);

return new FlatFileItemWriterBuilder<CustomerCredit>()
.name("customerCreditWriter")
.resource(outputResource)
.lineAggregator(lineAggregator)
.build();

In the previous example, the BeanWrapperFieldExtractor described earlier in this chapter is used to
turn the name and credit fields within CustomerCredit into an object array, which is then written out
with commas between each field.

Fixed Width File Writing Example

Delimited is not the only type of flat file format. Many prefer to use a set width for each column to
delineate between fields, which is usually referred to as 'fixed width'. Spring Batch supports this in
file writing with the FormatterLineAggregator. Using the same CustomerCredit domain object
described above, it can be configured as follows:

XML Configuration

<bean id="itemWriter" class="org.springframework.batch.item.file.FlatFileItemWriter">
<property name="resource" ref="outputResource" />
<property name="lineAggregator">
<bean class="org.spr...FormatterLineAggregator">
<property name="fieldExtractor">
<bean class="org.spr...BeanWrapperFieldExtractor">
<property name="names" value="name,credit" />
</bean>
</property>
<property name="format" value="%-9s%-2.0f" />
</bean>
</property>
</bean>

122

Java Configuration

public FlatFileItemWriter<CustomerCredit> itemWriter(Resource outputResource) throws
Exception {

BeanWrapperFieldExtractor<CustomerCredit> fieldExtractor = new
BeanWrapperFieldExtractor<>();

fieldExtractor.setNames(new String[] {"name", "credit"});

fieldExtractor.afterPropertiesSet();

FormatterLineAggregator<CustomerCredit> lineAggregator = new
FormatterLineAggregator<>();

lineAggregator.setFormat("%-9s%-2.0f");

lineAggregator.setFieldExtractor(fieldExtractor);

return new FlatFileItemWriterBuilder<CustomerCredit>()
.name("customerCreditWriter")
.resource(outputResource)
.lineAggregator(lineAggregator)
.build();

Most of the preceding example should look familiar. However, the value of the format property is
new and is shown in the following element:

<property name="format" value="%-9s%-2.0f" />

FormatterLineAggregator<CustomerCredit> lineAggregator = new FormatterlLineAggregator<

>();
lineAggregator.setFormat("%-9s%-2.0f");

The underlying implementation is built using the same Formatter added as part of Java 5. The Java
Formatter is based on the printf functionality of the C programming language. Most details on how
to configure a formatter can be found in the Javadoc of Formatter.

Handling File Creation

FlatFileItemReader has a very simple relationship with file resources. When the reader is
initialized, it opens the file (if it exists), and throws an exception if it does not. File writing isn’t
quite so simple. At first glance, it seems like a similar straightforward contract should exist for
FlatFileItemWriter: If the file already exists, throw an exception, and, if it does not, create it and
start writing. However, potentially restarting a Job can cause issues. In normal restart scenarios,
the contract is reversed: If the file exists, start writing to it from the last known good position, and,
if it does not, throw an exception. However, what happens if the file name for this job is always the
same? In this case, you would want to delete the file if it exists, unless it’s a restart. Because of this

123

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

possibility, the FlatFileItemWriter contains the property, shouldDeleteIfExists. Setting this property
to true causes an existing file with the same name to be deleted when the writer is opened.

6.7. XML Item Readers and Writers

Spring Batch provides transactional infrastructure for both reading XML records and mapping
them to Java objects as well as writing Java objects as XML records.

Constraints on streaming XML

O The StAX API is used for I/O, as other standard XML parsing APIs do not fit batch
processing requirements (DOM loads the whole input into memory at once and
SAX controls the parsing process by allowing the user to provide only callbacks).

We need to consider how XML input and output works in Spring Batch. First, there are a few
concepts that vary from file reading and writing but are common across Spring Batch XML
processing. With XML processing, instead of lines of records (FieldSet instances) that need to be
tokenized, it is assumed an XML resource is a collection of 'fragments' corresponding to individual
records, as shown in the following image:

- <trade>

<jsin>XYZ0001</isin>

=quantity>5</quantity>

<price>11.39</price>

<customer>Customeri</customer>

</trade>

<trade>

<isin>XYZ0002</isin>
<guantity>2</quantity>

Fragment 2| — <Price>72.90<Iprice>.

<customer>Customer2c</customer>

</trade>

<trade>

<jsin>XYZ0003</isin>
<guantity>9</quantity>

Fragment 3| < <rice>99,99<)price>.

<customer>Customer3</customer>

_ </trade>

Fragment 1| =

\(

A

Figure 17. XML Input

The 'trade’ tag is defined as the 'root element' in the scenario above. Everything between '<trade>"'
and '</trade>' is considered one 'fragment’. Spring Batch uses Object/XML Mapping (OXM) to bind
fragments to objects. However, Spring Batch is not tied to any particular XML binding technology.
Typical use is to delegate to Spring OXM, which provides uniform abstraction for the most popular
OXM technologies. The dependency on Spring OXM is optional and you can choose to implement
Spring Batch specific interfaces if desired. The relationship to the technologies that OXM supports is
shown in the following image:

124

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#oxm

Fragment 1 “

Any binding framework
supported by Spring OXM

Figure 18. OXM Binding

With an introduction to OXM and how one can use XML fragments to represent records, we can
now more closely examine readers and writers.

6.7.1. StaxEventItemReader

The StaxEventItemReader configuration provides a typical setup for the processing of records from
an XML input stream. First, consider the following set of XML records that the StaxEventItemReader
can process:

<?xml version="1.0" encoding="UTF-8"7>

<records>
<trade xmlns="https://springframework.org/batch/sample/io/oxm/domain">
<isin>XYZ0001</isin>

<quantity>5</quantity>
<price>11.39</price>
<customer>Customer1</customer>

</trade>
<trade xmlns="https://springframework.org/batch/sample/io/oxm/domain">
<isin>XYZ0002</isin>

<quantity>2</quantity>
<price>72.99</price>
<customer>Customer2c</customer>

</trade>
<trade xmlns="https://springframework.org/batch/sample/io/oxm/domain">
<isin>XYZ0003</isin>

<quantity>9</quantity>
<price>99.99</price>
<customer>Customer3</customer>
</trade>
</records>

To be able to process the XML records, the following is needed:

* Root Element Name: The name of the root element of the fragment that constitutes the object to

125

be mapped. The example configuration demonstrates this with the value of trade.
* Resource: A Spring Resource that represents the file to be read.

* Unmarshaller: An unmarshalling facility provided by Spring OXM for mapping the XML fragment
to an object.

The following example shows how to define a StaxEventItemReader that works with a root element
named trade, a resource of org/springframework/batch/item/xml/domain/trades.xml, and an
unmarshaller called tradeMarshaller.

XML Configuration

<bean id="itemReader" class="org.springframework.batch.item.xml.StaxEventItemReader">
<property name="fragmentRootElementName" value="trade" />
<property name="resource" value=
"org/springframework/batch/item/xml/domain/trades.xml" />
<property name="unmarshaller" ref="tradeMarshaller" />
</bean>

Java Configuration

@Bean
public StaxEventItemReader itemReader() {
return new StaxEventItemReaderBuilder<Trade>()
.name("itemReader")

.resource(new FileSystemResource(
"org/springframework/batch/item/xml/domain/trades.xml"))
.addFragmentRootElements("trade")
.unmarshaller(tradeMarshaller())

.build();

Note that, in this example, we have chosen to use an XStreamMarshaller, which accepts an alias
passed in as a map with the first key and value being the name of the fragment (that is, a root
element) and the object type to bind. Then, similar to a FieldSet, the names of the other elements
that map to fields within the object type are described as key/value pairs in the map. In the
configuration file, we can use a Spring configuration utility to describe the required alias, as
follows:

126

XML Configuration

<bean id="tradeMarshaller"
class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="aliases">
<util:map id="aliases">
<entry key="trade"
value="org.springframework.batch.sample.domain.trade.Trade" />
<entry key="price" value="java.math.BigDecimal" />
<entry key="isin" value="java.lang.String" />
<entry key="customer" value="java.lang.String" />
<entry key="quantity" value="java.lang.lLong" />
</util:map>
</property>
</bean>

Java Configuration

@Bean

public XStreamMarshaller tradeMarshaller() {
Map<String, Class> aliases = new HashMap<>();
aliases.put("trade", Trade.class);
aliases.put("price", BigDecimal.class);
aliases.put("isin", String.class);
aliases.put("customer", String.class);
aliases.put("quantity", Long.class);

XStreamMarshaller marshaller = new XStreamMarshaller();
marshaller.setAliases(aliases);

return marshaller;

On input, the reader reads the XML resource until it recognizes that a new fragment is about to
start. By default, the reader matches the element name to recognize that a new fragment is about to
start. The reader creates a standalone XML document from the fragment and passes the document
to a deserializer (typically a wrapper around a Spring OXM Unmarshaller) to map the XML to a Java
object.

In summary, this procedure is analogous to the following Java code, which uses the injection
provided by the Spring configuration:

127

StaxEventItemReader<Trade> xmlStaxEventItemReader = new StaxEventItemReader<>();
Resource resource = new ByteArrayResource(xmlResource.getBytes());

Map aliases = new HashMap();
aliases.put("trade","org.springframework.batch.sample.domain.trade.Trade");
aliases.put("price","java.math.BigDecimal");

aliases.put("customer","java.lang.String");
aliases.put("isin","java.lang.String");
aliases.put("quantity","java.lang.Long");

XStreamMarshaller unmarshaller = new XStreamMarshaller();
unmarshaller.setAliases(aliases);
xmlStaxEventItemReader.setUnmarshaller(unmarshaller);
xmlStaxEventItemReader.setResource(resource);
xmlStaxEventItemReader.setFragmentRootElementName("trade");

xmlStaxEventItemReader.open(new ExecutionContext());
boolean hasNext = true;
Trade trade = null;
while (hasNext) {
trade = xmlStaxEventItemReader.read();

if (trade == null) {
hasNext = false;

}

else {
System.out.println(trade);

}

6.7.2. StaxEventItemWriter

Output works symmetrically to input. The StaxEventItemWriter needs a Resource, a marshaller, and
a rootTagName. A Java object is passed to a marshaller (typically a standard Spring OXM Marshaller)
which writes to a Resource by using a custom event writer that filters the StartDocument and
EndDocument events produced for each fragment by the OXM tools. The following example uses the
StaxEventItemWriter:

XML Configuration

<bean id="itemWriter" class="org.springframework.batch.item.xml.StaxEventItemWriter">
<property name="resource" ref="outputResource" />
<property name="marshaller" ref="tradeMarshaller" />
<property name="rootTagName" value="trade" />
<property name="overwriteOutput" value="true" />
</bean>

128

Java Configuration

@Bean
public StaxEventItemWriter itemWriter(Resource outputResource) {
return new StaxEventItemWriterBuilder<Trade>()

.name("tradesWriter")
.marshaller(tradeMarshaller())
.resource(outputResource)
.rootTagName("trade")
.overwriteQutput(true)
.build();

The preceding configuration sets up the three required properties and sets the optional
overwriteOutput=true attribute, mentioned earlier in this chapter for specifying whether an existing
file can be overwritten. It should be noted the marshaller used for the writer in the following
example is the exact same as the one used in the reading example from earlier in the chapter:

XML Configuration

<bean id="customerCreditMarshaller"
class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="aliases">
<util:map id="aliases">
<entry key="customer"
value="org.springframework.batch.sample.domain.trade.Trade" />
<entry key="price" value="java.math.BigDecimal" />
<entry key="isin" value="java.lang.String" />
<entry key="customer" value="java.lang.String" />
<entry key="quantity" value="java.lang.lLong" />
</util:map>
</property>
</bean>

129

Java Configuration

public XStreamMarshaller customerCreditMarshaller() {
XStreamMarshaller marshaller = new XStreamMarshaller();

Map<String, Class> aliases = new HashMap<>();
aliases.put("trade", Trade.class);
aliases.put("price", BigDecimal.class);
aliases.put("isin", String.class);
aliases.put("customer", String.class);
aliases.put("quantity", Long.class);

marshaller.setAliases(aliases);

return marshaller;

To summarize with a Java example, the following code illustrates all of the points discussed,
demonstrating the programmatic setup of the required properties:

130

FileSystemResource resource = new FileSystemResource("data/outputFile.xml")

Map aliases = new HashMap();

aliases.put("trade","org.springframework.batch.sample.domain.trade.Trade");

aliases.put("price","java.math.BigDecimal");

aliases.put("customer","java.lang.String");

aliases.put("isin","java.lang.String");
aliases.put("quantity","java.lang.Long");
Marshaller marshaller = new XStreamMarshaller();

marshaller.setAliases(aliases);

StaxEventItemWriter staxItemWriter =
new StaxEventItemWriterBuilder<Trade>()

.name("tradesWriter")
.marshaller(marshaller)
.resource(resource)
.rootTagName("trade")
.overwriteQutput(true)
.build();

staxItemWriter.afterPropertiesSet();

ExecutionContext executionContext = new ExecutionContext();
staxItemWriter.open(executionContext);

Trade trade = new Trade();

trade.setPrice(11.39);

trade.setIsin("XYZ0001");

trade.setQuantity(5L);

trade.setCustomer("Customer1");
staxItemWriter.write(trade);

6.8. Multi-File Input

It is a common requirement to process multiple files within a single Step. Assuming the files all
have the same formatting, the MultiResourceltemReader supports this type of input for both XML and
flat file processing. Consider the following files in a directory:

file-1.txt file-2.txt 1ignored.txt

file-1.txt and file-2.txt are formatted the same and, for business reasons, should be processed
together. The MultiResourceltemReader can be used to read in both files by using wildcards, as
shown in the following example:

131

XML Configuration

<bean id="multiResourceReader" class="org.spr...MultiResourceltemReader">
<property name="resources" value="classpath:data/input/file-*.txt" />
<property name="delegate" ref="flatFileItemReader" />

</bean>

Java Configuration

public MultiResourceltemReader multiResourceReader() {
return new MultiResourceIltemReaderBuilder<Foo>()
.delegate(flatFileItemReader())
.resources(resources())
.build();

The referenced delegate is a simple FlatFileItemReader. The above configuration reads input from
both files, handling rollback and restart scenarios. It should be noted that, as with any ItemReader,
adding extra input (in this case a file) could cause potential issues when restarting. It is
recommended that batch jobs work with their own individual directories until completed
successfully.

Input resources are ordered by using
0 MultiResourceltemReader#setComparator(Comparator) to make sure resource
ordering is preserved between job runs in restart scenario.

6.9. Database

Like most enterprise application styles, a database is the central storage mechanism for batch.
However, batch differs from other application styles due to the sheer size of the datasets with
which the system must work. If a SQL statement returns 1 million rows, the result set probably
holds all returned results in memory until all rows have been read. Spring Batch provides two
types of solutions for this problem:

* Cursor-based ItemReader Implementations

* Paging ItemReader Implementations

6.9.1. Cursor-based ItemReader Implementations

Using a database cursor is generally the default approach of most batch developers, because it is
the database’s solution to the problem of 'streaming' relational data. The Java ResultSet class is
essentially an object oriented mechanism for manipulating a cursor. A ResultSet maintains a cursor
to the current row of data. Calling next on a ResultSet moves this cursor to the next row. The Spring
Batch cursor-based ItemReader implementation opens a cursor on initialization and moves the
cursor forward one row for every call to read, returning a mapped object that can be used for
processing. The close method is then called to ensure all resources are freed up. The Spring core

132

JdbcTemplate gets around this problem by using the callback pattern to completely map all rows in a
ResultSet and close before returning control back to the method caller. However, in batch, this
must wait until the step is complete. The following image shows a generic diagram of how a cursor-
based ItemReader works. Note that, while the example uses SQL (because SQL is so widely known),
any technology could implement the basic approach.

FOO 2 Select * from FOO

id=2 where id > 1 and id < 7

name=foo?2

bar=bar? D NAME |BAR
1 foo1 bar1

Foos 2 foo2 | bar2

id=3

name=foo3 3 foo3 bar3

bar=bar3 4 food bard
5 food barb

Foo4 6 f006 | baré

id=4

name=food 7 foo7 bar?

bar=bar4 8 foo8 bar8

Figure 19. Cursor Example

This example illustrates the basic pattern. Given a 'FOO' table, which has three columns: ID, NAME,
and BAR, select all rows with an ID greater than 1 but less than 7. This puts the beginning of the
cursor (row 1) on ID 2. The result of this row should be a completely mapped Foo object. Calling
read() again moves the cursor to the next row, which is the Foo with an ID of 3. The results of these
reads are written out after each read, allowing the objects to be garbage collected (assuming no
instance variables are maintaining references to them).

JdbcCursorItemReader

JdbcCursorItemReader is the JDBC implementation of the cursor-based technique. It works directly
with a ResultSet and requires an SQL statement to run against a connection obtained from a
DataSource. The following database schema is used as an example:

CREATE TABLE CUSTOMER (
ID BIGINT IDENTITY PRIMARY KEY,
NAME VARCHAR(45),
CREDIT FLOAT

)

Many people prefer to use a domain object for each row, so the following example uses an
implementation of the RowMapper interface to map a CustomerCredit object:

133

public class CustomerCreditRowMapper implements RowMapper<CustomerCredit> {

public static final String ID_COLUMN = "id";
public static final String NAME_COLUMN = "name";
public static final String CREDIT_COLUMN = "credit";

public CustomerCredit mapRow(ResultSet rs, int rowNum) throws SQLException {
CustomerCredit customerCredit = new CustomerCredit();

customerCredit.setId(rs.getInt(ID_COLUMN));
customerCredit.setName(rs.getString(NAME_COLUMN));
customerCredit.setCredit(rs.qgetBigDecimal(CREDIT_COLUMN));

return customerCredit;

Because JdbcCursorItemReader shares key interfaces with JdbcTemplate, it is useful to see an example
of how to read in this data with JdbcTemplate, in order to contrast it with the ItemReader. For the
purposes of this example, assume there are 1,000 rows in the CUSTOMER database. The first example
uses JdbcTemplate:

//For simplicity sake, assume a dataSource has already been obtained

JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

List customerCredits = jdbcTemplate.query("SELECT ID, NAME, CREDIT from CUSTOMER",
new CustomerCreditRowMapper());

After running the preceding code snippet, the customerCredits list contains 1,000 CustomerCredit
objects. In the query method, a connection is obtained from the DataSource, the provided SQL is run
against it, and the mapRow method is called for each row in the ResultSet. Contrast this with the
approach of the JdbcCursorItemReader, shown in the following example:

JdbcCursorItemReader itemReader = new JdbcCursorItemReader();
itemReader.setDataSource(dataSource);
itemReader.setSql("SELECT ID, NAME, CREDIT from CUSTOMER");
itemReader.setRowMapper (new CustomerCreditRowMapper());
int counter = 0;
ExecutionContext executionContext = new ExecutionContext();
itemReader.open(executionContext);
Object customerCredit = new Object();
while(customerCredit !'= null){

customerCredit = itemReader.read();

counter++;

}

itemReader.close();

After running the preceding code snippet, the counter equals 1,000. If the code above had put the

134

returned customerCredit into a list, the result would have been exactly the same as with the
JdbcTemplate example. However, the big advantage of the ItemReader is that it allows items to be
'streamed’. The read method can be called once, the item can be written out by an ItemWriter, and
then the next item can be obtained with read. This allows item reading and writing to be done in
'chunks' and committed periodically, which is the essence of high performance batch processing.
Furthermore, it is very easily configured for injection into a Spring Batch Step, as shown in the
following example:

XML Configuration

<bean id="itemReader" class="org.spr...JdbcCursorItemReader">

<property name="dataSource" ref="dataSource"/>

<property name="sql" value="select ID, NAME, CREDIT from CUSTOMER"/>

<property name="rowMapper">

<bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper

/>

</property>
</bean>

Java Configuration

public JdbcCursorItemReader<CustomerCredit> itemReader() {
return new JdbcCursorItemReaderBuilder<CustomerCredit>()
.dataSource(this.dataSource)
.name("creditReader")
.sql("select ID, NAME, CREDIT from CUSTOMER")
.rowMapper (new CustomerCreditRowMapper())
.build();

Additional Properties

Because there are so many varying options for opening a cursor in Java, there are many properties
on the JdbcCursorItemReader that can be set, as described in the following table:

Table 16. JdbcCursorItemReader Properties

ignoreWarnings Determines whether or not SQLWarnings are
logged or cause an exception. The default is true
(meaning that warnings are logged).

fetchSize Gives the JDBC driver a hint as to the number of
rows that should be fetched from the database
when more rows are needed by the ResultSet
object used by the ItemReader. By default, no hint
is given.

135

maxRows Sets the limit for the maximum number of rows
the underlying ResultSet can hold at any one
time.

queryTimeout Sets the number of seconds the driver waits for
a Statement object to run. If the limit is exceeded,
a DataAccessException is thrown. (Consult your
driver vendor documentation for details).

verifyCursorPosition Because the same ResultSet held by the
I'temReader is passed to the RowMapper, it is
possible for users to call ResultSet.next()
themselves, which could cause issues with the
reader’s internal count. Setting this value to true
causes an exception to be thrown if the cursor
position is not the same after the RowMapper call
as it was before.

saveState Indicates whether or not the reader’s state
should be saved in the ExecutionContext
provided by
ItemStream#fupdate(ExecutionContext). The
default is true.

driverSupportsAbsolute Indicates whether the JDBC driver supports
setting the absolute row on a ResultSet. It is
recommended that this is set to true for JDBC
drivers that support ResultSet.absolute(), as it
may improve performance, especially if a step
fails while working with a large data set.
Defaults to false.

setUseSharedExtendedConnection Indicates whether the connection used for the
cursor should be used by all other processing,
thus sharing the same transaction. If this is set to
false, then the cursor is opened with its own
connection and does not participate in any
transactions started for the rest of the step
processing. If you set this flag to true then you
must wrap the DataSource in an
ExtendedConnectionDataSourceProxy to prevent
the connection from being closed and released
after each commit. When you set this option to
true, the statement used to open the cursor is
created with both 'READ_ONLY' and
'HOLD_CURSORS_OVER_COMMIT" options. This
allows holding the cursor open over transaction
start and commits performed in the step
processing. To use this feature, you need a
database that supports this and a JDBC driver
supporting JDBC 3.0 or later. Defaults to false.

HibernateCursorItemReader

Just as normal Spring users make important decisions about whether or not to use ORM solutions,

136

which affect whether or not they use a JdbcTemplate or a HibernateTemplate, Spring Batch users have
the same options. HibernateCursorItemReader is the Hibernate implementation of the cursor
technique. Hibernate’s usage in batch has been fairly controversial. This has largely been because
Hibernate was originally developed to support online application styles. However, that does not
mean it cannot be used for batch processing. The easiest approach for solving this problem is to use
a StatelessSession rather than a standard session. This removes all of the caching and dirty
checking Hibernate employs and that can cause issues in a batch scenario. For more information on
the differences between stateless and normal hibernate sessions, refer to the documentation of
your specific hibernate release. The HibernateCursorItemReader lets you declare an HQL statement
and pass in a SessionFactory, which will pass back one item per call to read in the same basic
fashion as the JdbcCursorItemReader. The following example configuration uses the same 'customer
credit' example as the JDBC reader:

HibernateCursorItemReader itemReader = new HibernateCursorItemReader();
itemReader.setQueryString("from CustomerCredit");
//For simplicity sake, assume sessionFactory already obtained.
itemReader.setSessionFactory(sessionFactory);
itemReader.setUseStatelessSession(true);
int counter = 0;
ExecutionContext executionContext = new ExecutionContext();
itemReader.open(executionContext);
Object customerCredit = new Object();
while(customerCredit != null){

customerCredit = itemReader.read();

counter++;
+

itemReader.close();

This configured ItemReader returns CustomerCredit objects in the exact same manner as described
by the JdbcCursorItemReader, assuming hibernate mapping files have been created correctly for the
Customer table. The 'useStatelessSession' property defaults to true but has been added here to draw
attention to the ability to switch it on or off. It is also worth noting that the fetch size of the
underlying cursor can be set via the setFetchSize property. As with JdbcCursorItemReader,
configuration is straightforward, as shown in the following example:

XML Configuration

<bean id="1itemReader"
class="org.springframework.batch.item.database.HibernateCursorItemReader">
<property name="sessionFactory" ref="sessionFactory" />
<property name="queryString" value="from CustomerCredit" />
</bean>

137

Java Configuration

public HibernateCursorItemReader itemReader(SessionFactory sessionFactory) {
return new HibernateCursorItemReaderBuilder<CustomerCredit>()
.name("creditReader")
.sessionFactory(sessionFactory)
.queryString("from CustomerCredit")
.build();

StoredProcedureltemReader

Sometimes it is necessary to obtain the cursor data by using a stored procedure. The
StoredProcedureltemReader works like the JdbcCursorItemReader, except that, instead of running a
query to obtain a cursor, it runs a stored procedure that returns a cursor. The stored procedure can
return the cursor in three different ways:

* As areturned ResultSet (used by SQL Server, Sybase, DB2, Derby, and MySQL).

* As aref-cursor returned as an out parameter (used by Oracle and PostgreSQL).

* As the return value of a stored function call.
The following example configuration uses the same 'customer credit' example as earlier examples:

XML Configuration

<bean id="reader" class="o.s.batch.item.database.StoredProcedureltemReader">

<property name="dataSource" ref="dataSource"/>

<property name="procedureName" value="sp_customer_credit"/>

<property name="rowMapper">

<bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper

/>

</property>
</bean>

Java Configuration
@Bean
public StoredProcedureltemReader reader(DataSource dataSource) {
StoredProcedureltemReader reader = new StoredProcedureltemReader();
reader.setDataSource(dataSource);
reader.setProcedureName("sp_customer_credit");

reader.setRowMapper(new CustomerCreditRowMapper());

return reader;

The preceding example relies on the stored procedure to provide a ResultSet as a returned result

138

(option 1 from earlier).

If the stored procedure returned a ref-cursor (option 2), then we would need to provide the
position of the out parameter that is the returned ref-cursor. The following example shows how to
work with the first parameter being a ref-cursor:

XML Configuration

<bean id="reader" class="o.s.batch.item.database.StoredProcedureltemReader">

<property name="dataSource" ref="dataSource"/>

<property name="procedureName" value="sp_customer_credit"/>

<property name="refCursorPosition" value="1"/>

<property name="rowMapper">

<bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper

“/>

</property>
</bean>

Java Configuration

@Bean
public StoredProcedureltemReader reader(DataSource dataSource) {
StoredProcedureltemReader reader = new StoredProcedureltemReader();

reader.setDataSource(dataSource);
reader.setProcedureName("sp_customer_credit");
reader.setRowMapper (new CustomerCreditRowMapper());
reader.setRefCursorPosition(1);

return reader;

If the cursor was returned from a stored function (option 3), we would need to set the property
"function” to true. It defaults to false. The following example shows what that would look like:

XML Configuration

<bean id="reader" class="o.s.batch.item.database.StoredProcedureItemReader">

<property name="dataSource" ref="dataSource"/>

<property name="procedureName" value="sp_customer_credit"/>

<property name="function" value="true"/>

<property name="rowMapper">

<bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper

“/>

</property>
</bean>

139

Java Configuration

public StoredProcedureltemReader reader(DataSource dataSource) {
StoredProcedureltemReader reader = new StoredProcedureltemReader();

reader.setDataSource(dataSource);
reader.setProcedureName("sp_customer_credit");
reader.setRowMapper (new CustomerCreditRowMapper());
reader.setFunction(true);

return reader;

In all of these cases, we need to define a RowMapper as well as a DataSource and the actual procedure
name.

If the stored procedure or function takes in parameters, then they must be declared and set via the
parameters property. The following example, for Oracle, declares three parameters. The first one is
the out parameter that returns the ref-cursor, and the second and third are in parameters that takes
a value of type INTEGER.

140

XML Configuration

<bean id="reader" class="o.s.batch.item.database.StoredProcedureltemReader">
<property name="dataSource" ref="dataSource"/>
<property name="procedureName" value="spring.cursor_func"/>
<property name="parameters">
<list>
<bean class="org.springframework.jdbc.core.SqlOutParameter">
<constructor-arg index="0" value="newid"/>
<constructor-arg index="1">
<util:constant static-field="oracle.jdbc.OracleTypes.CURSOR"/>
</constructor-arg>
</bean>
<bean class="org.springframework.jdbc.core.SqlParameter">
<constructor-arg index="0" value="amount"/>
<constructor-arg index="1">
<util:constant static-field="java.sql.Types.INTEGER"/>
</constructor-arg>
</bean>
<bean class="org.springframework.jdbc.core.SqlParameter">
<constructor-arg index="0" value="custid"/>
<constructor-arg index="1">
<util:constant static-field="java.sql.Types.INTEGER"/>
</constructor-arg>
</bean>
</list>
</property>
<property name="refCursorPosition" value="1"/>
<property name="rowMapper" ref="rowMapper"/>
<property name="preparedStatementSetter" ref="parameterSetter"/>
</bean>

141

Java Configuration

public StoredProcedureltemReader reader(DataSource dataSource) {
List<SqlParameter> parameters = new ArraylList<>();
parameters.add(new SqlOutParameter("newId", OracleTypes.CURSOR));
parameters.add(new SqlParameter("amount", Types.INTEGER);
parameters.add(new SqlParameter("custId", Types.INTEGER);

StoredProcedureltemReader reader = new StoredProcedureltemReader();

reader.setDataSource(dataSource);
reader.setProcedureName("spring.cursor_func");
reader.setParameters(parameters);
reader.setRefCursorPosition(1);

reader.setRowMapper (rowMapper());
reader.setPreparedStatementSetter(parameterSetter());

return reader;

In addition to the parameter declarations, we need to specify a PreparedStatementSetter
implementation that sets the parameter values for the call. This works the same as for the
JdbcCursorItemReader above. All the additional properties listed in Additional Properties apply to the
StoredProcedureltemReader as well.

6.9.2. Paging ItemReader Implementations

An alternative to using a database cursor is running multiple queries where each query fetches a
portion of the results. We refer to this portion as a page. Each query must specify the starting row
number and the number of rows that we want returned in the page.

JdbcPagingItemReader

One implementation of a paging ItemReader is the JdbcPagingItemReader. The JdbcPagingItemReader
needs a PagingQueryProvider responsible for providing the SQL queries used to retrieve the rows
making up a page. Since each database has its own strategy for providing paging support, we need
to use a different PagingQueryProvider for each supported database type. There is also the
SqlPagingQueryProviderFactoryBean that auto-detects the database that is being used and determine
the appropriate PagingQueryProvider implementation. This simplifies the configuration and is the
recommended best practice.

The SqlPagingQueryProviderFactoryBean requires that you specify a select clause and a from clause.
You can also provide an optional where clause. These clauses and the required sortKey are used to
build an SQL statement.

0 It is important to have a unique key constraint on the sortKey to guarantee that no
data is lost between executions.

142

After the reader has been opened, it passes back one item per call to read in the same basic fashion
as any other ItemReader. The paging happens behind the scenes when additional rows are needed.

The following example configuration uses a similar 'customer credit' example as the cursor-based
ItemReaders shown previously:

XML Configuration

<bean id="itemReader" class="org.spr...JdbcPagingItemReader">
<property name="dataSource" ref="dataSource"/>
<property name="queryProvider">
<bean class="org.spr...SqlPagingQueryProviderFactoryBean">
<property name="select(Clause" value="select id, name, credit"/>
<property name="fromClause" value="from customer"/>
<property name="whereClause" value="where status=:status"/>
<property name="sortKey" value="id"/>
</bean>
</property>
<property name="parameterValues">
<map>
<entry key="status" value="NEW"/>
</map>
</property>
<property name="pageSize" value="1000"/>
<property name="rowMapper" ref="customerMapper"/>
</bean>

143

Java Configuration

public JdbcPagingItemReader itemReader(DataSource dataSource) {
Map<String, Object> parameterValues = new HashMap<>();
parameterValues.put("status", "NEW");

return new JdbcPagingItemReaderBuilder<CustomerCredit>()
.name("creditReader")
.dataSource(dataSource)
.queryProvider(queryProvider())
.parameterValues(parameterValues)
.rowMapper (customerCreditMapper())
.pageSize(1000)
.build();

public SqlPagingQueryProviderFactoryBean queryProvider() {
SqlPagingQueryProviderFactoryBean provider = new
SqlPagingQueryProviderFactoryBean();

provider.setSelectClause("select id, name, credit");
provider.setFromClause("from customer");
provider.setWhereClause("where status=:status");
provider.setSortKey("id");

return provider;

This configured ItemReader returns Customer(Credit objects using the RowMapper, which must be
specified. The 'pageSize' property determines the number of entities read from the database for
each query run.

The 'parameterValues' property can be used to specify a Map of parameter values for the query. If
you use named parameters in the where clause, the key for each entry should match the name of the
named parameter. If you use a traditional '?' placeholder, then the key for each entry should be the
number of the placeholder, starting with 1.

JpaPagingltemReader

Another implementation of a paging ItemReader is the JpaPagingItemReader. JPA does not have a
concept similar to the Hibernate StatelessSession, so we have to use other features provided by the
JPA specification. Since JPA supports paging, this is a natural choice when it comes to using JPA for
batch processing. After each page is read, the entities become detached and the persistence context
is cleared, to allow the entities to be garbage collected once the page is processed.

The JpaPagingItemReader lets you declare a JPQL statement and pass in a EntityManagerFactory. It
then passes back one item per call to read in the same basic fashion as any other ItemReader. The
paging happens behind the scenes when additional entities are needed. The following example

144

configuration uses the same 'customer credit' example as the JDBC reader shown previously:

XML Configuration

<bean id="itemReader" class="org.spr...JpaPagingltemReader">
<property name="entityManagerFactory" ref="entityManagerFactory"/>
<property name="queryString" value="select ¢ from CustomerCredit c"/>
<property name="pageSize" value="1000"/>

</bean>

Java Configuration

public JpaPagingltemReader itemReader() {
return new JpaPagingItemReaderBuilder<CustomerCredit>()
.name("creditReader")
.entityManagerFactory(entityManagerFactory())
.queryString("select ¢ from CustomerCredit c")
.pageSize(1000)
.build();

This configured ItemReader returns CustomerCredit objects in the exact same manner as described
for the JdbcPagingItemReader above, assuming the CustomerCredit object has the correct JPA
annotations or ORM mapping file. The 'pageSize’ property determines the number of entities read
from the database for each query execution.

6.9.3. Database ItemWriters

While both flat files and XML files have a specific Itemliriter instance, there is no exact equivalent
in the database world. This is because transactions provide all the needed functionality. ItemWriter
implementations are necessary for files because they must act as if they’re transactional, keeping
track of written items and flushing or clearing at the appropriate times. Databases have no need for
this functionality, since the write is already contained in a transaction. Users can create their own
DAOs that implement the ItemWriter interface or use one from a custom ItemWriter that’s written
for generic processing concerns. Either way, they should work without any issues. One thing to look
out for is the performance and error handling capabilities that are provided by batching the
outputs. This is most common when using hibernate as an ItemWriter but could have the same
issues when using JDBC batch mode. Batching database output does not have any inherent flaws,
assuming we are careful to flush and there are no errors in the data. However, any errors while
writing can cause confusion, because there is no way to know which individual item caused an
exception or even if any individual item was responsible, as illustrated in the following image:

145

execute() i
E—

|____________

i |

5 begin() . '
write(iterns) i J—L:—l

- J%.E:I :

Update i

| |

1

| |

]]

% !

— :
rollbacky) ! : 'I:II

e ! H

Figure 20. Error On Flush

If items are buffered before being written, any errors are not thrown until the buffer is flushed just
before a commit. For example, assume that 20 items are written per chunk, and the 15th item
throws a DatalntegrityViolationException. As far as the Step is concerned, all 20 item are written
successfully, since there is no way to know that an error occurs until they are actually written. Once
Session#iflush() is called, the buffer is emptied and the exception is hit. At this point, there is
nothing the Step can do. The transaction must be rolled back. Normally, this exception might cause
the item to be skipped (depending upon the skip/retry policies), and then it is not written again.
However, in the batched scenario, there is no way to know which item caused the issue. The whole
buffer was being written when the failure happened. The only way to solve this issue is to flush
after each item, as shown in the following image:

TransacionManager
I

—
:

executs() ' begin)

1
]
]
]
]
1
:
writefitermn) |

> update .
flush(} ::l

» Update .
o

wiritefitern)

rollback()

Figure 21. Error On Write

This is a common use case, especially when using Hibernate, and the simple guideline for
implementations of ItemWriter is to flush on each call to write(). Doing so allows for items to be
skipped reliably, with Spring Batch internally taking care of the granularity of the calls to
ItemWriter after an error.

146

6.10. Reusing Existing Services

Batch systems are often used in conjunction with other application styles. The most common is an
online system, but it may also support integration or even a thick client application by moving
necessary bulk data that each application style uses. For this reason, it is common that many users
want to reuse existing DAOs or other services within their batch jobs. The Spring container itself
makes this fairly easy by allowing any necessary class to be injected. However, there may be cases
where the existing service needs to act as an ItemReader or ItemWriter, either to satisfy the
dependency of another Spring Batch class or because it truly is the main ItemReader for a step. It is
fairly trivial to write an adapter class for each service that needs wrapping, but because it is such a
common concern, Spring Batch provides implementations: ItemReaderAdapter and
ItemWriterAdapter. Both classes implement the standard Spring method by invoking the delegate
pattern and are fairly simple to set up. The following example uses the ItemReaderAdapter:

XML Configuration

<bean id="itemReader" class="org.springframework.batch.item.adapter.ItemReaderAdapter
I|>

<property name="targetObject" ref="fooService" />

<property name="targetMethod" value="generateFoo" />
</bean>

<bean id="fooService" class="org.springframework.batch.item.sample.FooService" />

Java Configuration

public ItemReaderAdapter itemReader() {
ItemReaderAdapter reader = new ItemReaderAdapter();

reader.setTargetObject(fooService());
reader.setTargetMethod("generateFoo");

return reader;

public FooService fooService() {
return new FooService();

}

One important point to note is that the contract of the targetMethod must be the same as the
contract for read: When exhausted, it returns null. Otherwise, it returns an Object. Anything else
prevents the framework from knowing when processing should end, either causing an infinite loop
or incorrect failure, depending upon the implementation of the Itemliriter. The following example
uses the ItemWriterAdapter:

147

XML Configuration

<bean id="itemWriter" class="org.springframework.batch.item.adapter.ItemWriterAdapter
||>

<property name="targetObject" ref="fooService" />

<property name="targetMethod" value="processFoo" />
</bean>

<bean id="fooService" class="org.springframework.batch.item.sample.FooService" />

Java Configuration

public ItemWriterAdapter itemWriter() {
ItemWriterAdapter writer = new ItemWriterAdapter();

writer.setTargetObject(fooService());
writer.setTargetMethod("processFoo");

return writer;

public FooService fooService() {
return new FooService();

}

6.11. Validating Input

During the course of this chapter, multiple approaches to parsing input have been discussed. Each
major implementation throws an exception if it is not 'well-formed'. The FixedLengthTokenizer
throws an exception if a range of data is missing. Similarly, attempting to access an index in a
RowMapper or FieldSetMapper that does not exist or is in a different format than the one expected
causes an exception to be thrown. All of these types of exceptions are thrown before read returns.
However, they do not address the issue of whether or not the returned item is valid. For example, if
one of the fields is an age, it obviously cannot be negative. It may parse correctly, because it exists
and is a number, but it does not cause an exception. Since there are already a plethora of validation
frameworks, Spring Batch does not attempt to provide yet another. Rather, it provides a simple
interface, called Validator, that can be implemented by any number of frameworks, as shown in the
following interface definition:

public interface Validator<T> {

void validate(T value) throws ValidationException;

148

The contract is that the validate method throws an exception if the object is invalid and returns
normally if it is valid. Spring Batch provides an out of the box ValidatingItemProcessor, as shown in
the following bean definition:

XML Configuration

<bean class="org.springframework.batch.item.validator.ValidatingItemProcessor">
<property name="validator" ref="validator" />
</bean>

<bean id="validator" class="org.springframework.batch.item.validator.SpringValidator">
<property name="validator">
<bean class=
"org.springframework.batch.sample.domain.trade.internal.validator.TradeValidator"/>
</property>
</bean>

Java Configuration

public ValidatingItemProcessor itemProcessor() {
ValidatingItemProcessor processor = new ValidatingItemProcessor();

processor.setValidator(validator());

return processor;

public SpringValidator validator() {
SpringValidator validator = new SpringValidator();

validator.setValidator(new TradeValidator());

return validator;

6.12. Preventing State Persistence

By default, all of the ItemReader and Itemliriter implementations store their current state in the
ExecutionContext before it is committed. However, this may not always be the desired behavior. For
example, many developers choose to make their database readers rerunnable’ by using a process
indicator. An extra column is added to the input data to indicate whether or not it has been
processed. When a particular record is being read (or written) the processed flag is flipped from
false to true. The SQL statement can then contain an extra statement in the where clause, such as
where PROCESSED_IND = false, thereby ensuring that only unprocessed records are returned in the
case of a restart. In this scenario, it is preferable to not store any state, such as the current row
number, since it is irrelevant upon restart. For this reason, all readers and writers include the

149

'saveState' property, as shown in the following example:

XML Configuration

<bean id="playerSummarizationSource" class="org.spr...JdbcCursorItemReader">
<property name="dataSource" ref="dataSource" />
<property name="rowMapper">
<bean class="org.springframework.batch.sample.PlayerSummaryMapper" />
</property>
<property name="saveState" value="false" />
<property name="sql">
<value>
SELECT games.player_id, games.year_no, SUM(COMPLETES),
SUM(ATTEMPTS), SUM(PASSING_YARDS), SUM(PASSING_TD),
SUM(INTERCEPTIONS), SUM(RUSHES), SUM(RUSH_YARDS),
SUM(RECEPTIONS), SUM(RECEPTIONS_YARDS), SUM(TOTAL_TD)
from games, players where players.player_id =
games.player_id group by games.player_id, games.year_no
</value>
</property>
</bean>

Java Configuration

public JdbcCursorItemReader playerSummarizationSource(DataSource dataSource) {
return new JdbcCursorItemReaderBuilder<PlayerSummary>()
.dataSource(dataSource)
.rowMapper (new PlayerSummaryMapper())
.saveState(false)
.SqQL("SELECT games.player_id, games.year_no, SUM(COMPLETES),"
+ "SUM(ATTEMPTS), SUM(PASSING_YARDS), SUM(PASSING_TD),"
+ "SUM(INTERCEPTIONS), SUM(RUSHES), SUM(RUSH_YARDS),"
+ "SUM(RECEPTIONS), SUM(RECEPTIONS_YARDS), SUM(TOTAL_TD)"
+ "from games, players where players.player_id ="
+ "games.player_id group by games.player_id, games.year_no")
.build();

The ItemReader configured above does not make any entries in the ExecutionContext for any
executions in which it participates.

6.13. Creating Custom ItemReaders and ItemWriters

So far, this chapter has discussed the basic contracts of reading and writing in Spring Batch and
some common implementations for doing so. However, these are all fairly generic, and there are
many potential scenarios that may not be covered by out-of-the-box implementations. This section
shows, by using a simple example, how to create a custom ItemReader and ItemWriter

150

implementation and implement their contracts correctly. The ItemReader also implements
ItemStream, in order to illustrate how to make a reader or writer restartable.

6.13.1. Custom ItemReader Example

For the purpose of this example, we create a simple ItemReader implementation that reads from a
provided list. We start by implementing the most basic contract of ItemReader, the read method, as
shown in the following code:

public class CustomItemReader<T> implements ItemReader<T>{
List<T> items;

public CustomItemReader(List<T> items) {
this.items = items;

}

public T read() throws Exception, UnexpectedInputException,
NonTransientResourceException, ParseException {

if (litems.isEmpty()) {
return items.remove(0);

}

return null;

The preceding class takes a list of items and returns them one at a time, removing each from the
list. When the list is empty, it returns null, thus satisfying the most basic requirements of an
ItemReader, as illustrated in the following test code:

List<String> items = new ArraylList<String>();
items.add("1");
items.add("2");
items.add("3");

ItemReader itemReader = new CustomItemReader<String>(items);
assertEquals("1", itemReader.read());

assertEquals("2", itemReader.read());

assertEquals("3", itemReader.read());
assertNull(itemReader.read());

Making the ItemReader Restartable

The final challenge is to make the ItemReader restartable. Currently, if processing is interrupted and
begins again, the ItemReader must start at the beginning. This is actually valid in many scenarios,
but it is sometimes preferable that a batch job restarts where it left off. The key discriminant is
often whether the reader is stateful or stateless. A stateless reader does not need to worry about

151

restartability, but a stateful one has to try to reconstitute its last known state on restart. For this
reason, we recommend that you keep custom readers stateless if possible, so you need not worry
about restartability.

If you do need to store state, then the ItemStream interface should be used:

public class CustomItemReader<T> implements ItemReader<T>, ItemStream {

();

List<T> items;
int currentIndex = 0;
private static final String CURRENT_INDEX = "current.index";

public CustomItemReader(List<T> items) {
this.items = items;

}

public T read() throws Exception, UnexpectedInputException,
ParseException, NonTransientResourceException {

if (currentIndex < items.size()) {
return items.get(currentIndex++);

}

return null;

}

public void open(ExecutionContext executionContext) throws ItemStreamException {
if(executionContext.containsKey(CURRENT_INDEX)){
currentIndex = new Long(executionContext.getLong(CURRENT_INDEX)).intValue

}
else{
currentIndex = 0;
}
}

public void update(ExecutionContext executionContext) throws ItemStreamException {
executionContext.putLong(CURRENT_INDEX, new Long(currentIndex).longValue());

}

public void close() throws ItemStreamException {}

On each call to the ItemStream update method, the current index of the ItemReader is stored in the
provided ExecutionContext with a key of 'current.index'. When the ItemStream open method is called,
the ExecutionContext is checked to see if it contains an entry with that key. If the key is found, then
the current index is moved to that location. This is a fairly trivial example, but it still meets the
general contract:

152

ExecutionContext executionContext = new ExecutionContext();
((ItemStream)itemReader).open(executionContext);
assertEquals("1", itemReader.read());
((ItemStream)itemReader).update(executionContext);

List<String> items = new ArraylList<String>();
items.add("1");

items.add("2");

items.add("3");

itemReader = new CustomItemReader<String>(items);

((ItemStream)itemReader).open(executionContext);
assertEquals("2", itemReader.read());

Most ItemReaders have much more sophisticated restart logic. The JdbcCursorItemReader, for
example, stores the row ID of the last processed row in the cursor.

It is also worth noting that the key used within the ExecutionContext should not be trivial. That is
because the same ExecutionContext is used for all ItemStreams within a Step. In most cases, simply
prepending the key with the class name should be enough to guarantee uniqueness. However, in
the rare cases where two of the same type of ItemStream are used in the same step (which can
happen if two files are needed for output), a more unique name is needed. For this reason, many of
the Spring Batch ItemReader and ItemWriter implementations have a setName() property that lets
this key name be overridden.

6.13.2. Custom ItemWriter Example

Implementing a Custom ItemWriter is similar in many ways to the ItemReader example above but
differs in enough ways as to warrant its own example. However, adding restartability is essentially
the same, so it is not covered in this example. As with the ItemReader example, a List is used in
order to keep the example as simple as possible:

public class CustomItemWriter<T> implements ItemWriter<T> {
List<T> output = TransactionAwareProxyFactory.createTransactionallist();

public void write(List<? extends T> items) throws Exception {
output.addAll(items);
}

public List<T> getOutput() {
return output;

}

153

Making the ItemWriter Restartable

To make the Itemliriter restartable, we would follow the same process as for the ItemReader, adding
and implementing the ItemStream interface to synchronize the execution context. In the example,
we might have to count the number of items processed and add that as a footer record. If we
needed to do that, we could implement ItemStream in our ItemWriter so that the counter was
reconstituted from the execution context if the stream was re-opened.

In many realistic cases, custom Itemliriters also delegate to another writer that itself is restartable
(for example, when writing to a file), or else it writes to a transactional resource and so does not
need to be restartable, because it is stateless. When you have a stateful writer you should probably
be sure to implement ItemStream as well as Itemliriter. Remember also that the client of the writer
needs to be aware of the ItemStream, so you may need to register it as a stream in the configuration.

6.14. Item Reader and Writer Implementations

In this section, we will introduce you to readers and writers that have not already been discussed in
the previous sections.

6.14.1. Decorators

In some cases, a user needs specialized behavior to be appended to a pre-existing ItemReader. Spring
Batch offers some out of the box decorators that can add additional behavior to to your ItemReader
and Itemliriter implementations.

Spring Batch includes the following decorators:

« SynchronizedItemStreamReader
« SingleItemPeekableItemReader
o MultiResourceltemWriter

o ClassifierCompositeltemWriter

ClassifierCompositeltemProcessor

SynchronizedItemStreamReader

When wusing an ItemReader that 1is not thread safe, Spring Batch offers the
SynchronizedItemStreamReader decorator, which can be used to make the ItemReader thread safe.
Spring Batch provides a SynchronizedItemStreamReaderBuilder to construct an instance of the
SynchronizedItemStreamReader.

SingleItemPeekableItemReader

Spring Batch includes a decorator that adds a peek method to an ItemReader. This peek method lets
the user peek one item ahead. Repeated calls to the peek returns the same item, and this is the next
item returned from the read method. Spring Batch provides a SingleItemPeekableItemReaderBuilder
to construct an instance of the SingleItemPeekableItemReader.

154

SingleltemPeekableltemReader’s peek method is not thread-safe, because it would
not be possible to honor the peek in multiple threads. Only one of the threads that
peeked would get that item in the next call to read.

MultiResourceltemWriter

The MultiResourceltemWriter wraps a ResourceAwareItemWriterItemStream and creates a new output
resource when the count of items written in the current resource exceeds the
itemCountLimitPerResource. Spring Batch provides a MultiResourceltemWriterBuilder to construct an
instance of the MultiResourceltemlriter.

(lassifierCompositeltemWriter

The ClassifierCompositeItemWriter calls one of a collection of Itemliriter implementations for each
item, based on a router pattern implemented through the provided Classifier. The implementation
is thread-safe if all delegates are thread-safe. Spring Batch provides a
(lassifierCompositeItemWriterBuilder to construct an instance of the
(lassifierCompositeltemWriter.

ClassifierCompositeItemProcessor

The C(lassifierCompositeltemProcessor is an ItemProcessor that calls one of a collection of
ItemProcessor implementations, based on a router pattern implemented through the provided
(lassifier. Spring Batch provides a (lassifierCompositeItemProcessorBuilder to construct an
instance of the ClassifierCompositeltemProcessor.

6.14.2. Messaging Readers And Writers
Spring Batch offers the following readers and writers for commonly used messaging systems:

o AmgpItemReader
o AmgpItemWriter
o JmsItemReader

o IJmsItemWriter

AmgpItemReader

The AmgpItemReader is an ItemReader that uses an AmgpTemplate to receive or convert messages from
an exchange. Spring Batch provides a AmgpItemReaderBuilder to construct an instance of the
AmgpItemReader.

AmgpItemWriter

The AmgpItemWriter is an ItemWriter that uses an AmgpTemplate to send messages to an AMQP
exchange. Messages are sent to the nameless exchange if the name not specified in the provided
AmgpTemplate. Spring Batch provides an AmgpItemWriterBuilder to construct an instance of the
AmgpItemWriter.

155

IJmsItemReader

The JImsItemReader is an ItemReader for JMS that uses a JmsTemplate. The template should have a
default destination, which is used to provide items for the read() method. Spring Batch provides a
JmsItemReaderBuilder to construct an instance of the JmsItemReader.

IJmsItemWriter

The JImsItemWriter is an ItemWriter for JMS that uses a JmsTemplate. The template should have a
default destination, which is used to send items in write(List). Spring Batch provides a
ImsItemWriterBuilder to construct an instance of the JmsItemWriter.

6.14.3. Database Readers

Spring Batch offers the following database readers:

« Neo4jItemReader
« MongoItemReader
« HibernateCursorItemReader
« HibernatePagingItemReader

« RepositoryItemReader

Neo4jItemReader

The Neo4jItemReader is an ItemReader that reads objects from the graph database Neo4j by using a
paging technique. Spring Batch provides a Neo4jItemReaderBuilder to construct an instance of the
Neo4jItemReader.

MongoItemReader

The MongoItemReader is an ItemReader that reads documents from MongoDB by using a paging
technique. Spring Batch provides a MongoItemReaderBuilder to construct an instance of the
MongoItemReader.

HibernateCursorItemReader

The HibernateCursorItemReader is an ItemStreamReader for reading database records built on top of
Hibernate. It executes the HQL query and then, when initialized, iterates over the result set as the
read() method is called, successively returning an object corresponding to the current row. Spring
Batch provides a HibernateCursorItemReaderBuilder to construct an instance of the
HibernateCursorItemReader.

HibernatePagingItemReader

The HibernatePagingltemReader is an ItemReader for reading database records built on top of
Hibernate and reading only up to a fixed number of items at a time. Spring Batch provides a
HibernatePagingIltemReaderBuilder to construct an instance of the HibernatePagingItemReader.

RepositoryItemReader

The RepositoryIltemReader is an ItemReader that reads records by using a PagingAndSortingRepository.
Spring Batch provides a RepositoryItemReaderBuilder to construct an instance of the

156

RepositoryltemReader.

6.14.4. Database Writers

Spring Batch offers the following database writers:

o NeodjItemWriter

« MongoItemWriter

o RepositoryItemWriter
o HibernateItemWriter
o JdbcBatchItemWriter
o JpaltemWriter

o GemfireltemWriter

NeodjItemWriter

The Neo4jItemWriter is an ItemWriter implementation that writes to a Neo4j database. Spring Batch
provides a Neo4jItemWriterBuilder to construct an instance of the Neo4jItemWriter.

MongoItemWriter

The MongoItemWriter is an ItemWriter implementation that writes to a MongoDB store using an
implementation of Spring Data’s MongoOperations. Spring Batch provides a MongoItemWriterBuilder to
construct an instance of the MongoItemWriter.

RepositoryltemWriter

The RepositoryItemWriter is an ItemWriter wrapper for a CrudRepository from Spring Data. Spring
Batch provides a RepositoryItemiWriterBuilder to construct an instance of the RepositoryItemWriter.

HibernateItemWriter

The HibernateIltemWriter is an ItemWriter that uses a Hibernate session to save or update entities
that are not part of the current Hibernate session. Spring Batch provides a
HibernateItemWriterBuilder to construct an instance of the HibernateItemWriter.

JdbcBatchItemWriter

The JdbcBatchItemWriter is an ItemWriter that wuses the batching features from
NamedParameterJdbcTemplate to execute a batch of statements for all items provided. Spring Batch
provides a JdbcBatchItemWriterBuilder to construct an instance of the JdbcBatchItemWriter.

JpaltemWriter

The JpaltemWriter is an ItemWriter that uses a JPA EntityManagerFactory to merge any entities that
are not part of the persistence context. Spring Batch provides a JpaltemWriterBuilder to construct
an instance of the JpaltemWriter.

GemfireltemWriter

The GemfireltemWriter is an ItemWriter that uses a GemfireTemplate that stores items in GemFire as

157

key/value pairs. Spring Batch provides a GemfireItemWriterBuilder to construct an instance of the
GemfireltemWriter.

6.14.5. Specialized Readers

Spring Batch offers the following specialized readers:

o LdifReader
« MappinglLdifReader

LdifReader

The LdifReader reads LDIF (LDAP Data Interchange Format) records from a Resource, parses them,
and returns a LdapAttribute object for each read executed. Spring Batch provides a
LdifReaderBuilder to construct an instance of the LdifReader.

MappingLdifReader

The MappinglLdifReader reads LDIF (LDAP Data Interchange Format) records from a Resource, parses
them then maps each LDIF record to a POJO (Plain Old Java Object). Each read returns a POJO.
Spring Batch provides a MappingLdifReaderBuilder to construct an instance of the MappinglLdifReader.

6.14.6. Specialized Writers
Spring Batch offers the following specialized writers:
o SimpleMailMessageItemWriter

SimpleMailMessageltemWriter
The SimpleMailMessageltemWriter is an ItemWriter that can send mail messages. It delegates the
actual sending of messages to an instance of MailSender. Spring Batch provides a
SimpleMailMessageltemWriterBuilder to construct an instance of the SimpleMailMessageIltemWriter.
6.14.7. Specialized Processors
Spring Batch offers the following specialized processors:

o ScriptItemProcessor
ScriptItemProcessor

The ScriptItemProcessor is an ItemProcessor that passes the current item to process to the provided
script and the result of the script is returned by the processor. Spring Batch provides a
ScriptItemProcessorBuilder to construct an instance of the ScriptItemProcessor.

158

Chapter 7. Scaling and Parallel Processing

Many batch processing problems can be solved with single threaded, single process jobs, so it is
always a good idea to properly check if that meets your needs before thinking about more complex
implementations. Measure the performance of a realistic job and see if the simplest
implementation meets your needs first. You can read and write a file of several hundred megabytes
in well under a minute, even with standard hardware.

When you are ready to start implementing a job with some parallel processing, Spring Batch offers
a range of options, which are described in this chapter, although some features are covered
elsewhere. At a high level, there are two modes of parallel processing:

 Single process, multi-threaded

* Multi-process

These break down into categories as well, as follows:

Multi-threaded Step (single process)

Parallel Steps (single process)

Remote Chunking of Step (multi process)

 Partitioning a Step (single or multi process)

First, we review the single-process options. Then we review the multi-process options.

7.1. Multi-threaded Step

The simplest way to start parallel processing is to add a TaskExecutor to your Step configuration.

For example, you might add an attribute of the tasklet, as shown in the following example:

<step id="loading">
<tasklet task-executor="taskExecutor">...</tasklet>
</step>

When using java configuration, a TaskExecutor can be added to the step as shown in the following
example:

159

Java Configuration

public TaskExecutor taskExecutor(){
return new SimpleAsyncTaskExecutor("spring_batch");

}

public Step sampleStep(TaskExecutor taskExecutor) {
return this.stepBuilderFactory.get("sampleStep")
.<String, String>chunk(10)
.reader(itemReader())
writer(itemWriter())
.taskExecutor(taskExecutor)
.build();

In this example, the taskExecutor is a reference to another bean definition that implements the
TaskExecutor interface. TaskExecutor is a standard Spring interface, so consult the Spring User Guide
for details of available implementations. The simplest multi-threaded TaskExecutor is a
SimpleAsyncTaskExecutor.

The result of the above configuration is that the Step executes by reading, processing, and writing
each chunk of items (each commit interval) in a separate thread of execution. Note that this means
there is no fixed order for the items to be processed, and a chunk might contain items that are non-
consecutive compared to the single-threaded case. In addition to any limits placed by the task
executor (such as whether it is backed by a thread pool), there is a throttle limit in the tasklet
configuration which defaults to 4. You may need to increase this to ensure that a thread pool is fully
utilized.

For example you might increase the throttle-limit, as shown in the following example:

<step id="loading"> <tasklet
task-executor="taskExecutor"
throttle-1imit="20">...</tasklet>
</step>

When using java configuration, the builders provide access to the throttle limit:

160

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/task/TaskExecutor.html

Java Configuration

public Step sampleStep(TaskExecutor taskExecutor) {
return this.stepBuilderFactory.get("sampleStep")

.<String, String>chunk(10)
.reader (itemReader())
writer(itemWriter())
.taskExecutor(taskExecutor)
.throttleLimit(20)
.build();

Note also that there may be limits placed on concurrency by any pooled resources used in your
step, such as a DataSource. Be sure to make the pool in those resources at least as large as the
desired number of concurrent threads in the step.

There are some practical limitations of using multi-threaded Step implementations for some
common batch use cases. Many participants in a Step (such as readers and writers) are stateful. If
the state is not segregated by thread, then those components are not usable in a multi-threaded
Step. In particular, most of the off-the-shelf readers and writers from Spring Batch are not designed
for multi-threaded use. It is, however, possible to work with stateless or thread safe readers and
writers, and there is a sample (called parallelJob) in the Spring Batch Samples that shows the use of
a process indicator (see Preventing State Persistence) to keep track of items that have been
processed in a database input table.

Spring Batch provides some implementations of ItemWriter and ItemReader. Usually, they say in the
Javadoc if they are thread safe or not or what you have to do to avoid problems in a concurrent
environment. If there is no information in the Javadoc, you can check the implementation to see if
there is any state. If a reader is not thread safe, you can decorate it with the provided
SynchronizedItemStreamReader or use it in your own synchronizing delegator. You can synchronize
the call to read() and as long as the processing and writing is the most expensive part of the chunk,
your step may still complete much faster than it would in a single threaded configuration.

7.2. Parallel Steps

As long as the application logic that needs to be parallelized can be split into distinct responsibilities
and assigned to individual steps, then it can be parallelized in a single process. Parallel Step
execution is easy to configure and use.

For example, executing steps (step1,step2) in parallel with step3 is straightforward, as shown in
the following example:

161

https://github.com/spring-projects/spring-batch/tree/master/spring-batch-samples

<job id="job1">
<split id="split1" task-executor="taskExecutor" next="step4">
<flow>
<step id="step1" parent="s1" next="step2"/>
<step id="step2" parent="s2"/>

</flow>
<flow>
<step id="step3" parent="s3"/>
</flow>
</split>
<step id="step4" parent="s4"/>

</job>

<beans:bean id="taskExecutor" class="org.spr...SimpleAsyncTaskExecutor"/>

When using java configuration, executing steps (stepl,step2) in parallel with step3 is
straightforward, as shown in the following example:

162

Java Configuration

public Job job() {
return jobBuilderFactory.get("job")

.start(splitFlow())

.next(step4())

.build() //builds FlowJobBuilder instance
.build(); //builds Job instance

public Flow splitFlow() {
return new FlowBuilder<SimpleFlow>("splitFlow")
.split(taskExecutor())
.add(flow1(), flow2())
.build();

public Flow flow1() {
return new FlowBuilder<SimpleFlow>("flow1")
.start(step1())
.next(step2())
.build();

public Flow flow2() {
return new FlowBuilder<SimpleFlow>("flow2")
.start(step3())
.build();

public TaskExecutor taskExecutor(){
return new SimpleAsyncTaskExecutor("spring_batch");

}

The configurable task executor is used to specify which TaskExecutor implementation should be
used to execute the individual flows. The default is SyncTaskExecutor, but an asynchronous
TaskExecutor is required to run the steps in parallel. Note that the job ensures that every flow in the
split completes before aggregating the exit statuses and transitioning.

See the section on Split Flows for more detail.

7.3. Remote Chunking

In remote chunking, the Step processing is split across multiple processes, communicating with
each other through some middleware. The following image shows the pattern:

163

Remote Chunking

Master: Slave:
<<Step>> <<Listener>>
- <3
5 |2 @l |s
5| = o |8
S (o sl |E
dzgl™ i) > E
E | I |E
@ |3 cl (&8
= | 2 5
@ O
t —

s

Figure 22. Remote Chunking

The master component is a single process, and the slaves are multiple remote processes. This
pattern works best if the master is not a bottleneck, so the processing must be more expensive than
the reading of items (as is often the case in practice).

The master is an implementation of a Spring Batch Step with the ItemWriter replaced by a generic
version that knows how to send chunks of items to the middleware as messages. The slaves are
standard listeners for whatever middleware is being used (for example, with JMS, they would be
MesssagelListener implementations), and their role is to process the chunks of items using a
standard ItemWriter or ItemProcessor plus ItemWriter, through the ChunkProcessor interface. One of
the advantages of using this pattern is that the reader, processor, and writer components are off-
the-shelf (the same as would be used for a local execution of the step). The items are divided up
dynamically and work is shared through the middleware, so that, if the listeners are all eager
consumers, then load balancing is automatic.

The middleware has to be durable, with guaranteed delivery and a single consumer for each
message. JMS is the obvious candidate, but other options (such as JavaSpaces) exist in the grid
computing and shared memory product space.

See the section on Spring Batch Integration - Remote Chunking for more detail.

7.4. Partitioning

Spring Batch also provides an SPI for partitioning a Step execution and executing it remotely. In this
case, the remote participants are Step instances that could just as easily have been configured and
used for local processing. The following image shows the pattern:

164

Partitioning Overview

Figure 23. Partitioning

Job
‘ v | Slave |
P / Slave |
‘ Ma;ter |é/,”| Slave |
ﬁ Slave |
‘ St‘ep | Slave |
Slave |

The Job runs on the left-hand side as a sequence of Step instances, and one of the Step instances is
labeled as a master. The slaves in this picture are all identical instances of a Step, which could in
fact take the place of the master, resulting in the same outcome for the Job. The slaves are typically
going to be remote services but could also be local threads of execution. The messages sent by the
master to the slaves in this pattern do not need to be durable or have guaranteed delivery. Spring
Batch metadata in the JobRepository ensures that each slave is executed once and only once for

each Job execution.

The SPI in Spring Batch consists of a special implementation of Step (called the PartitionStep) and
two strategy interfaces that need to be implemented for the specific environment. The strategy
interfaces are PartitionHandler and StepExecutionSplitter, and their role is shown in the following

sequence diagram:

|StepExecutionSpIitter |

executed)

| ParitionStep |
i | PartitionHandler |

execute() 1 :

T handley
] split()

-

join

| aggregatk !

- !

Figure 24. Partitioning SPI

} repeat

The Step on the right in this case is the "remote" slave, so, potentially, there are many objects and or

processes playing this role, and the PartitionStep is shown driving the execution.

165

The following example shows the PartitionStep configuration:

<step id="stepl.master">
<partition step="step1" partitioner="partitioner">
<handler grid-size="10" task-executor="taskExecutor"/>
</partition>
</step>

The following example shows the PartitionStep configuration using java configuration:

Java Configuration

public Step steplMaster() {
return stepBuilderFactory.get("stepl.master")
.<String, String>partitioner("step1", partitioner())
.step(step1())
.gridSize(10)
.taskExecutor (taskExecutor())
.build();

Similar to the multi-threaded step’s throttle-limit attribute, the grid-size attribute prevents the
task executor from being saturated with requests from a single step.

There is a simple example that can be copied and extended in the unit test suite for Spring Batch
Samples (see Partition*Job.xml configuration).

Spring Batch creates step executions for the partitions called "stepl:partition0", and so on. Many
people prefer to call the master step "stepl:master” for consistency. You can use an alias for the step
(by specifying the name attribute instead of the id attribute).

7.4.1. PartitionHandler

The PartitionHandler is the component that knows about the fabric of the remoting or grid
environment. It is able to send StepExecution requests to the remote Step instances, wrapped in
some fabric-specific format, like a DTO. It does not have to know how to split the input data or how
to aggregate the result of multiple Step executions. Generally speaking, it probably also does not
need to know about resilience or failover, since those are features of the fabric in many cases. In
any case, Spring Batch always provides restartability independent of the fabric. A failed Job can
always be restarted and only the failed Steps are re-executed.

The PartitionHandler interface can have specialized implementations for a variety of fabric types,
including simple RMI remoting, EJB remoting, custom web service, JMS, Java Spaces, shared
memory grids (like Terracotta or Coherence), and grid execution fabrics (like GridGain). Spring
Batch does not contain implementations for any proprietary grid or remoting fabrics.

Spring Batch does, however, provide a useful implementation of PartitionHandler that executes
Step instances locally in separate threads of execution, using the TaskExecutor strategy from Spring.

166

https://github.com/spring-projects/spring-batch/tree/master/spring-batch-samples/src/main/resources/jobs
https://github.com/spring-projects/spring-batch/tree/master/spring-batch-samples/src/main/resources/jobs

The implementation is called TaskExecutorPartitionHandler.

The TaskExecutorPartitionHandler is the default for a step configured with the XML namespace
shown previously. It can also be configured explicitly, as shown in the following example:

<step id="stepl.master">
<partition step="step1" handler="handler"/>
</step>

<bean class="org.spr...TaskExecutorPartitionHandler">
<property name="taskExecutor" ref="taskExecutor"/>
<property name="step" ref="step1" />
<property name="gridSize" value="10" />

</bean>

The TaskExecutorPartitionHandler can be configured explicitly within java configuration, as shown
in the following example:

Java Configuration

public Step stepIMaster() {
return stepBuilderFactory.get("stepl.master")
.partitioner("step1", partitioner())
.partitionHandler(partitionHandler())
.build();

public PartitionHandler partitionHandler() {
TaskExecutorPartitionHandler retVal = new TaskExecutorPartitionHandler();
retVal.setTaskExecutor(taskExecutor());
retVal.setStep(step1());
retVal.setGridSize(10);
return retVal;

The gridSize attribute determines the number of separate step executions to create, so it can be
matched to the size of the thread pool in the TaskExecutor. Alternatively, it can be set to be larger
than the number of threads available, which makes the blocks of work smaller.

The TaskExecutorPartitionHandler is useful for IO-intensive Step instances, such as copying large
numbers of files or replicating filesystems into content management systems. It can also be used for
remote execution by providing a Step implementation that is a proxy for a remote invocation (such
as using Spring Remoting).

7.4.2. Partitioner

The Partitioner has a simpler responsibility: to generate execution contexts as input parameters

167

for new step executions only (no need to worry about restarts). It has a single method, as shown in
the following interface definition:

public interface Partitioner {
Map<String, ExecutionContext> partition(int gridSize);

The return value from this method associates a unique name for each step execution (the String)
with input parameters in the form of an ExecutionContext. The names show up later in the Batch
metadata as the step name in the partitioned StepExecutions. The ExecutionContext is just a bag of
name-value pairs, so it might contain a range of primary keys, line numbers, or the location of an
input file. The remote Step then normally binds to the context input using #{---} placeholders (late
binding in step scope), as illustrated in the next section.

The names of the step executions (the keys in the Map returned by Partitioner) need to be unique
amongst the step executions of a Job but do not have any other specific requirements. The easiest
way to do this (and to make the names meaningful for users) is to use a prefix+suffix naming
convention, where the prefix is the name of the step that is being executed (which itself is unique in
the Job), and the suffix is just a counter. There is a SimplePartitioner in the framework that uses
this convention.

An optional interface called PartitionNameProvider can be used to provide the partition names
separately from the partitions themselves. If a Partitioner implements this interface, then, on a
restart, only the names are queried. If partitioning is expensive, this can be a useful optimization.
The names provided by the PartitionNameProvider must match those provided by the Partitioner.

7.4.3. Binding Input Data to Steps

It is very efficient for the steps that are executed by the PartitionHandler to have identical
configuration and for their input parameters to be bound at runtime from the ExecutionContext.
This is easy to do with the StepScope feature of Spring Batch (covered in more detail in the section
on Late Binding). For example, if the Partitioner creates ExecutionContext instances with an
attribute key called fileName, pointing to a different file (or directory) for each step invocation, the
Partitioner output might resemble the content of the following table:

Table 17. Example step execution name to execution context provided by Partitioner targeting directory
processing

Step Execution Name (key) ExecutionContext (value)
filecopy:partition0 fileName=/home/data/one
filecopy:partition1 fileName=/home/data/two
filecopy:partition2 fileName=/home/data/three

Then the file name can be bound to a step using late binding to the execution context, as shown in
the following example:

168

XML Configuration

<bean id="itemReader" scope="step"
class="org.spr...MultiResourceltemReader">
<property name="resources" value="#{stepExecutionContext[fileName]}/*"/>
</bean>

Java Configuration

@Bean
public MultiResourceltemReader itemReader (
@Value("#{stepExecutionContext['fileName']}/*") Resource [] resources) {
return new MultiResourceltemReaderBuilder<String>()
.delegate(fileReader())
.name("itemReader")
.resources(resources)
.build();

169

Chapter 8. Repeat

8.1. RepeatTemplate

Batch processing is about repetitive actions, either as a simple optimization or as part of a job. To
strategize and generalize the repetition and to provide what amounts to an iterator framework,
Spring Batch has the RepeatOperations interface. The RepeatOperations interface has the following
definition:

public interface RepeatOperations {

RepeatStatus iterate(RepeatCallback callback) throws RepeatException;

The callback is an interface, shown in the following definition, that lets you insert some business
logic to be repeated:

public interface Repeat(Callback {

RepeatStatus doInIteration(RepeatContext context) throws Exception;

The callback is executed repeatedly until the implementation determines that the iteration should
end. The return value in these interfaces is an enumeration that can either be
RepeatStatus.CONTINUABLE or RepeatStatus.FINISHED. A RepeatStatus enumeration conveys
information to the caller of the repeat operations about whether there is any more work to do.
Generally speaking, implementations of RepeatOperations should inspect the RepeatStatus and use it
as part of the decision to end the iteration. Any callback that wishes to signal to the caller that there
is no more work to do can return RepeatStatus.FINISHED.

The simplest general purpose implementation of RepeatOperations is RepeatTemplate, as shown in
the following example:

170

RepeatTemplate template = new RepeatTemplate();
template.setCompletionPolicy(new SimpleCompletionPolicy(2));
template.iterate(new RepeatCallback() {

public RepeatStatus doInIteration(RepeatContext context) {
// Do stuff in batch...
return RepeatStatus.CONTINUABLE;

H;

In the preceding example, we return RepeatStatus.CONTINUABLE, to show that there is more work to
do. The callback can also return RepeatStatus.FINISHED, to signal to the caller that there is no more
work to do. Some iterations can be terminated by considerations intrinsic to the work being done in
the callback. Others are effectively infinite loops as far as the callback is concerned and the
completion decision is delegated to an external policy, as in the case shown in the preceding
example.

8.1.1. RepeatContext

The method parameter for the RepeatCallback is a RepeatContext. Many callbacks ignore the context.
However, if necessary, it can be used as an attribute bag to store transient data for the duration of
the iteration. After the iterate method returns, the context no longer exists.

If there is a nested iteration in progress, a RepeatContext has a parent context. The parent context is
occasionally useful for storing data that need to be shared between calls to iterate. This is the case,
for instance, if you want to count the number of occurrences of an event in the iteration and
remember it across subsequent calls.

8.1.2. RepeatStatus

RepeatStatus is an enumeration used by Spring Batch to indicate whether processing has finished. It
has two possible RepeatStatus values, described in the following table:

Table 18. RepeatStatus Properties

Value Description
CONTINUABLE There is more work to do.
FINISHED No more repetitions should take place.

RepeatStatus values can also be combined with a logical AND operation by using the and() method
in RepeatStatus. The effect of this is to do a logical AND on the continuable flag. In other words, if
either status is FINISHED, then the result is FINISHED.

171

8.2. Completion Policies

Inside a RepeatTemplate, the termination of the loop in the iterate method is determined by a
CompletionPolicy, which is also a factory for the RepeatContext. The RepeatTemplate has the
responsibility to use the current policy to create a RepeatContext and pass that in to the
RepeatCallback at every stage in the iteration. After a callback completes its doInIteration, the
RepeatTemplate has to make a call to the CompletionPolicy to ask it to update its state (which will be
stored in the RepeatContext). Then it asks the policy if the iteration is complete.

Spring Batch provides some simple general purpose implementations of CompletionPolicy.
SimpleCompletionPolicy allows execution up to a fixed number of times (with RepeatStatus.FINISHED
forcing early completion at any time).

Users might need to implement their own completion policies for more complicated decisions. For
example, a batch processing window that prevents batch jobs from executing once the online
systems are in use would require a custom policy.

8.3. Exception Handling

If there is an exception thrown inside a Repeat(Callback, the RepeatTemplate consults an
ExceptionHandler, which can decide whether or not to re-throw the exception.

The following listing shows the ExceptionHandler interface definition:

public interface ExceptionHandler {

void handleException(RepeatContext context, Throwable throwable)
throws Throwable;

A common use case is to count the number of exceptions of a given type and fail when a limit is
reached. For this purpose, Spring Batch provides the SimpleLimitExceptionHandler and a slightly
more flexible RethrowOnThresholdExceptionHandler. The SimplelLimitExceptionHandler has a limit
property and an exception type that should be compared with the current exception. All subclasses
of the provided type are also counted. Exceptions of the given type are ignored until the limit is
reached, and then they are rethrown. Exceptions of other types are always rethrown.

An important optional property of the SimpleLimitExceptionHandler is the boolean flag called
useParent. It is false by default, so the limit is only accounted for in the current RepeatContext.
When set to true, the limit is kept across sibling contexts in a nested iteration (such as a set of
chunks inside a step).

8.4. Listeners

Often, it is useful to be able to receive additional callbacks for cross-cutting concerns across a
number of different iterations. For this purpose, Spring Batch provides the RepeatListener interface.

172

The RepeatTemplate lets users register RepeatListener implementations, and they are given callbacks
with the RepeatContext and RepeatStatus where available during the iteration.

The RepeatlListener interface has the following definition:

public interface RepeatlListener {
void before(RepeatContext context);
void after(RepeatContext context, RepeatStatus result);
void open(RepeatContext context);
void onError(RepeatContext context, Throwable e);
void close(RepeatContext context);

The open and close callbacks come before and after the entire iteration. before, after, and onError
apply to the individual RepeatCallback calls.

Note that, when there is more than one listener, they are in a list, so there is an order. In this case,
open and before are called in the same order while after, onError, and close are called in reverse
order.

8.5. Parallel Processing

Implementations of RepeatOperations are not restricted to executing the callback sequentially. It is
quite important that some implementations are able to execute their callbacks in parallel. To this
end, Spring Batch provides the TaskExecutorRepeatTemplate, which uses the Spring TaskExecutor
strategy to run the RepeatCallback. The default is to use a SynchronousTaskExecutor, which has the
effect of executing the whole iteration in the same thread (the same as a normal RepeatTemplate).

8.6. Declarative Iteration

Sometimes there is some business processing that you know you want to repeat every time it
happens. The classic example of this is the optimization of a message pipeline. It is more efficient to
process a batch of messages, if they are arriving frequently, than to bear the cost of a separate
transaction for every message. Spring Batch provides an AOP interceptor that wraps a method call
in a RepeatOperations object for just this purpose. The RepeatOperationsInterceptor executes the
intercepted method and repeats according to the CompletionPolicy in the provided RepeatTemplate.

The following example shows declarative iteration using the Spring AOP namespace to repeat a
service call to a method called processMessage (for more detail on how to configure AOP
interceptors, see the Spring User Guide):

173

<aop:config>
<aop:pointcut id="transactional"
expression="execution(* com..*Service.processMessage(..))" />
<aop:advisor pointcut-ref="transactional"
advice-ref="retryAdvice" order="-1"/>
</aop:config>

<bean id="retryAdvice" class="org.spr...RepeatOperationsInterceptor"/>

The following example demonstrates using java configuration to repeat a service call to a method
called processhessage (for more detail on how to configure AOP interceptors, see the Spring User
Guide):

public MyService myService() {
ProxyFactory factory = new ProxyFactory(RepeatOperations.class.getClassLoader());
factory.setInterfaces(MyService.class);
factory.setTarget(new MyService());

MyService service = (MyService) factory.getProxy();
JdkRegexpMethodPointcut pointcut = new JdkRegexpMethodPointcut();
pointcut.setPatterns(".*processMessage.*");

RepeatOperationsInterceptor interceptor = new RepeatOperationsInterceptor();
((Advised) service).addAdvisor(new DefaultPointcutAdvisor(pointcut, interceptor));

return service;

The preceding example uses a default RepeatTemplate inside the interceptor. To change the policies,
listeners, and other details, you can inject an instance of RepeatTemplate into the interceptor.

If the intercepted method returns void, then the interceptor always returns
RepeatStatus.CONTINUABLE (so there is a danger of an infinite loop if the CompletionPolicy does not
have a finite end point). Otherwise, it returns RepeatStatus.CONTINUABLE until the return value from
the intercepted method is null, at which point it returns RepeatStatus.FINISHED. Consequently, the
business logic inside the target method can signal that there is no more work to do by returning
null or by throwing an exception that is re-thrown by the ExceptionHandler in the provided
RepeatTemplate.

174

Chapter 9. Retry

To make processing more robust and less prone to failure, it sometimes helps to automatically retry
a failed operation in case it might succeed on a subsequent attempt. Errors that are susceptible to
intermittent failure are often transient in nature. Examples include remote calls to a web service
that fails because of a network glitch or a DeadlockLoserDataAccessException in a database update.

9.1. RetryTemplate

0 The retry functionality was pulled out of Spring Batch as of 2.2.0. It is now part of a
new library, Spring Retry.

To automate retry operations Spring Batch has the RetryOperations strategy. The following interface
definition for RetryOperations:

public interface RetryOperations {
<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback) throws E;

<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback,
RecoveryCallback<T> recoveryCallback)
throws E;

<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback, RetryState
retryState)
throws E, ExhaustedRetryException;

<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback,

RecoveryCallback<T> recovery(Callback,
RetryState retryState) throws E;

The basic callback is a simple interface that lets you insert some business logic to be retried, as
shown in the following interface definition:

public interface RetryCallback<T, E extends Throwable> {

T doWithRetry(RetryContext context) throws E;

The callback runs and, if it fails (by throwing an Exception), it is retried until either it is successful
or the implementation aborts. There are a number of overloaded execute methods in the
RetryOperations interface. Those methods deal with various use cases for recovery when all retry
attempts are exhausted and deal with retry state, which allows clients and implementations to store

175

https://github.com/spring-projects/spring-retry

information between calls (we cover this in more detail later in the chapter).

The simplest general purpose implementation of RetryOperations is RetryTemplate. It can be used as
follows:

RetryTemplate template = new RetryTemplate();

TimeoutRetryPolicy policy = new TimeoutRetryPolicy();
policy.setTimeout(30000L);

template.setRetryPolicy(policy);
Foo result = template.execute(new RetryCallback<Foo>() {

public Foo doWithRetry(RetryContext context) {
// Do stuff that might fail, e.g. webservice operation
return result;

b

In the preceding example, we make a web service call and return the result to the user. If that call
fails, then it is retried until a timeout is reached.

9.1.1. RetryContext

The method parameter for the RetryCallback is a RetryContext. Many callbacks ignore the context,
but, if necessary, it can be used as an attribute bag to store data for the duration of the iteration.

A RetryContext has a parent context if there is a nested retry in progress in the same thread. The
parent context is occasionally useful for storing data that need to be shared between calls to
execute.

9.1.2. RecoveryCallback

When a retry is exhausted, the RetryOperations can pass control to a different callback, called the
RecoveryCallback. To use this feature, clients pass in the callbacks together to the same method, as
shown in the following example:

Foo foo = template.execute(new RetryCallback<Foo>() {
public Foo doWithRetry(RetryContext context) {
// business logic here
b
new RecoveryCallback<Foo>() {
Foo recover(RetryContext context) throws Exception {
// recover logic here
}
3

176

If the business logic does not succeed before the template decides to abort, then the client is given
the chance to do some alternate processing through the recovery callback.

9.1.3. Stateless Retry

In the simplest case, a retry is just a while loop. The RetryTemplate can just keep trying until it either
succeeds or fails. The RetryContext contains some state to determine whether to retry or abort, but
this state is on the stack and there is no need to store it anywhere globally, so we call this stateless
retry. The distinction between stateless and stateful retry is contained in the implementation of the
RetryPolicy (the RetryTemplate can handle both). In a stateless retry, the retry callback is always
executed in the same thread it was on when it failed.

9.1.4. Stateful Retry

Where the failure has caused a transactional resource to become invalid, there are some special
considerations. This does not apply to a simple remote call because there is no transactional
resource (usually), but it does sometimes apply to a database update, especially when using
Hibernate. In this case it only makes sense to re-throw the exception that called the failure
immediately, so that the transaction can roll back and we can start a new, valid transaction.

In cases involving transactions, a stateless retry is not good enough, because the re-throw and roll
back necessarily involve leaving the RetryOperations.execute() method and potentially losing the
context that was on the stack. To avoid losing it we have to introduce a storage strategy to lift it off
the stack and put it (at a minimum) in heap storage. For this purpose, Spring Batch provides a
storage strategy called RetryContextCache, which can be injected into the RetryTemplate. The default
implementation of the RetryContextCache is in memory, using a simple Map. Advanced usage with
multiple processes in a clustered environment might also consider implementing the
RetryContextCache with a cluster cache of some sort (however, even in a clustered environment, this
might be overkill).

Part of the responsibility of the RetryOperations is to recognize the failed operations when they
come back in a new execution (and usually wrapped in a new transaction). To facilitate this, Spring
Batch provides the RetryState abstraction. This works in conjunction with a special execute
methods in the RetryOperations interface.

The way the failed operations are recognized is by identifying the state across multiple invocations
of the retry. To identify the state, the user can provide a RetryState object that is responsible for
returning a unique key identifying the item. The identifier is used as a key in the RetryContextCache
interface.

Be very careful with the implementation of Object.equals() and Object.hashCode()
A in the key returned by RetryState. The best advice is to use a business key to
identify the items. In the case of a JMS message, the message ID can be used.

When the retry is exhausted, there is also the option to handle the failed item in a different way,
instead of calling the RetryCallback (which is now presumed to be likely to fail). Just like in the
stateless case, this option is provided by the RecoveryCallback, which can be provided by passing it
in to the execute method of RetryOperations.

177

The decision to retry or not is actually delegated to a regular RetryPolicy, so the usual concerns
about limits and timeouts can be injected there (described later in this chapter).

9.2. Retry Policies

Inside a RetryTemplate, the decision to retry or fail in the execute method is determined by a
RetryPolicy, which is also a factory for the RetryContext. The RetryTemplate has the responsibility to
use the current policy to create a RetryContext and pass that in to the RetryCallback at every
attempt. After a callback fails, the RetryTemplate has to make a call to the RetryPolicy to ask it to
update its state (which is stored in the RetryContext) and then asks the policy if another attempt can
be made. If another attempt cannot be made (such as when a limit is reached or a timeout is
detected) then the policy is also responsible for handling the exhausted state. Simple
implementations throw RetryExhaustedException, which causes any enclosing transaction to be
rolled back. More sophisticated implementations might attempt to take some recovery action, in
which case the transaction can remain intact.

Failures are inherently either retryable or not. If the same exception is always
going to be thrown from the business logic, it does no good to retry it. So do not

Q retry on all exception types. Rather, try to focus on only those exceptions that you
expect to be retryable. It is not usually harmful to the business logic to retry more
aggressively, but it is wasteful, because, if a failure is deterministic, you spend time
retrying something that you know in advance is fatal.

Spring Batch provides some simple general purpose implementations of stateless RetryPolicy, such
as SimpleRetryPolicy and TimeoutRetryPolicy (used in the preceding example).

The SimpleRetryPolicy allows a retry on any of a named list of exception types, up to a fixed
number of times. It also has a list of "fatal" exceptions that should never be retried, and this list
overrides the retryable list so that it can be used to give finer control over the retry behavior, as
shown in the following example:

SimpleRetryPolicy policy = new SimpleRetryPolicy();

// Set the max retry attempts

policy.setMaxAttempts(5);

// Retry on all exceptions (this is the default)
policy.setRetryableExceptions(new Class[] {Exception.class});

// ... but never retry IllegalStateException
policy.setFatalExceptions(new Class[] {I1legalStateException.class});

// Use the policy...
RetryTemplate template = new RetryTemplate();
template.setRetryPolicy(policy);
template.execute(new RetryCallback<Foo>() {

public Foo doWithRetry(RetryContext context) {

// business logic here

}

});

178

There is also a more flexible implementation called ExceptionClassifierRetryPolicy, which allows
the user to configure different retry behavior for an arbitrary set of exception types though the
Exception(Classifier abstraction. The policy works by calling on the classifier to convert an
exception into a delegate RetryPolicy. For example, one exception type can be retried more times
before failure than another by mapping it to a different policy.

Users might need to implement their own retry policies for more customized decisions. For
instance, a custom retry policy makes sense when there is a well-known, solution-specific
classification of exceptions into retryable and not retryable.

9.3. Backoff Policies

When retrying after a transient failure, it often helps to wait a bit before trying again, because
usually the failure is caused by some problem that can only be resolved by waiting. If a
RetryCallback fails, the RetryTemplate can pause execution according to the BackoffPolicy.

The following code shows the interface definition for the BackOffPolicy interface:

public interface BackoffPolicy {
BackOffContext start(RetryContext context);

void backOff(BackOffContext backOffContext)
throws BackOffInterruptedException;

A BackoffPolicy is free to implement the backOff in any way it chooses. The policies provided by
Spring Batch out of the box all use Object.wait(). A common use case is to backoff with an
exponentially increasing wait period, to avoid two retries getting into lock step and both failing
(this is a lesson learned from ethernet). For this purpose, Spring Batch provides the
ExponentialBackoffPolicy.

9.4. Listeners

Often, it is useful to be able to receive additional callbacks for cross cutting concerns across a
number of different retries. For this purpose, Spring Batch provides the RetrylListener interface.
The RetryTemplate lets users register RetryListeners, and they are given callbacks with RetryContext
and Throwable where available during the iteration.

The following code shows the interface definition for RetryListener:

179

public interface RetrylListener {

<T, E extends Throwable> boolean open(RetryContext context, RetryCallback<T, E>
callback);

<T, E extends Throwable> void onError(RetryContext context, RetryCallback<T, E>
callback, Throwable throwable);

<T, E extends Throwable> void close(RetryContext context, RetryCallback<T, E>
callback, Throwable throwable);
}

The open and close callbacks come before and after the entire retry in the simplest case, and onError
applies to the individual RetryCallback calls. The close method might also receive a Throwable. If
there has been an error, it is the last one thrown by the RetryCallback.

Note that, when there is more than one listener, they are in a list, so there is an order. In this case,
open is called in the same order while onError and close are called in reverse order.

9.5. Declarative Retry

Sometimes, there is some business processing that you know you want to retry every time it
happens. The classic example of this is the remote service call. Spring Batch provides an AOP
interceptor that wraps a method call in a RetryOperations implementation for just this purpose. The
RetryOperationsInterceptor executes the intercepted method and retries on failure according to the
RetryPolicy in the provided RetryTemplate.

The following example shows a declarative retry that uses the Spring AOP namespace to retry a
service call to a method called remoteCall (for more detail on how to configure AOP interceptors,
see the Spring User Guide):

<aop:config>
<aop:pointcut id="transactional"
expression="execution(* com..*Service.remoteCall(..))" />
<aop:advisor pointcut-ref="transactional"
advice-ref="retryAdvice" order="-1"/>
</aop:config>

<bean id="retryAdvice"
class="org.springframework.retry.interceptor.RetryOperationsInterceptor"/>

The following example shows a declarative retry that uses java configuration to retry a service call
to a method called remoteCall (for more detail on how to configure AOP interceptors, see the Spring
User Guide):

180

public MyService myService() {
ProxyFactory factory = new ProxyFactory(RepeatOperations.class.getClassLoader());
factory.setInterfaces(MyService.class);
factory.setTarget(new MyService());
MyService service = (MyService) factory.getProxy();
JdkRegexpMethodPointcut pointcut = new JdkRegexpMethodPointcut();
pointcut.setPatterns(".*remoteCall.*");
RetryOperationsInterceptor interceptor = new RetryOperationsInterceptor();

((Advised) service).addAdvisor(new DefaultPointcutAdvisor(pointcut, interceptor));

return service;

The preceding example uses a default RetryTemplate inside the interceptor. To change the policies
or listeners, you can inject an instance of RetryTemplate into the interceptor.

181

Chapter 10. Unit Testing

As with other application styles, it is extremely important to unit test any code written as part of a
batch job. The Spring core documentation covers how to unit and integration test with Spring in
great detail, so it is not be repeated here. It is important, however, to think about how to 'end to
end' test a batch job, which is what this chapter covers. The spring-batch-test project includes
classes that facilitate this end-to-end test approach.

10.1. Creating a Unit Test Class

In order for the unit test to run a batch job, the framework must load the job’s ApplicationContext.
Two annotations are used to trigger this behavior:

* @RunWith(SpringJUnit4ClassRunner.class): Indicates that the class should use Spring’s JUnit
facilities

* @ContextConfiguration(::+): Indicates which resources to configure the ApplicationContext with.
The following example shows the two annotations in use:

Using Java Configuration

(SpringJUnit4ClassRunner.class)
(classes=SkipSampleConfiguration.class)
public class SkipSampleFunctionalTests { ... }

Using XML Configuration

(SpringJUnit4ClassRunner.class)
(locations = { "/simple-job-launcher-context.xml",
"/jobs/skipSampleJob.xml" })
public class SkipSampleFunctionalTests { ... }

10.2. End-To-End Testing of Batch Jobs

'End To End' testing can be defined as testing the complete run of a batch job from beginning to
end. This allows for a test that sets up a test condition, executes the job, and verifies the end result.

In the following example, the batch job reads from the database and writes to a flat file. The test
method begins by setting up the database with test data. It clears the CUSTOMER table and then
inserts 10 new records. The test then launches the Job by using the launchJob() method. The
launchJob() method is provided by the JobLauncherTestUtils class. The JobLauncherTestUtils class
also provides the launchJob(JobParameters) method, which allows the test to give particular
parameters. The launchJob() method returns the JobExecution object, which is useful for asserting
particular information about the Job run. In the following case, the test verifies that the Job ended
with status "COMPLETED":

182

XML Based Configuration

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations = { "/simple-job-launcher-context.xml",
"/jobs/skipSampleJob.xml" })

public class SkipSampleFunctionalTests {

@Autowired
private JoblLauncherTestUtils joblLauncherTestUtils;

private SimpleJdbcTemplate simpleldbcTemplate;

@Autowired
public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleldbcTemplate(dataSource);

}

@Test
public void testJob() throws Exception {
simpleJdbcTemplate.update("delete from CUSTOMER");
for (int i =1; i <=10; i++) {
simpleJdbcTemplate.update("insert into CUSTOMER values (?, 0, ?, 100000)",
i, "customer" + i);

}

JobExecution jobExecution = jobLauncherTestUtils.launchJob();

Assert.assertEquals("COMPLETED", jobExecution.getExitStatus().getExitCode());

183

Java Based Configuration

(SpringJUnit4ClassRunner.class)
(classes=SkipSampleConfiguration.class)
public class SkipSampleFunctionalTests {

private JobLauncherTestUtils jobLauncherTestUtils;

private SimpleJdbcTemplate simpleldbcTemplate;

public void setDataSource(DataSource dataSource) {
this.simple]dbcTemplate = new SimpleldbcTemplate(dataSource);

}

public void testJob() throws Exception {
simpleldbcTemplate.update("delete from CUSTOMER");
for (int i =1; 1 <= 10; i++) {
simpleJdbcTemplate.update("insert into CUSTOMER values (?, @, 7, 100000)",
i, "customer" + i);

}

JobExecution jobExecution = jobLauncherTestUtils.launchJob();

Assert.assertEquals("COMPLETED", jobExecution.getExitStatus().getExitCode());

10.3. Testing Individual Steps

For complex batch jobs, test cases in the end-to-end testing approach may become unmanageable. It
these cases, it may be more useful to have test cases to test individual steps on their own. The
JobLauncherTestUtils class contains a method called launchStep, which takes a step name and runs
just that particular Step. This approach allows for more targeted tests letting the test set up data for
only that step and to validate its results directly. The following example shows how to use the
launchStep method to load a Step by name:

JobExecution jobExecution = jobLauncherTestUtils.launchStep("loadFileStep");

10.4. Testing Step-Scoped Components

Often, the components that are configured for your steps at runtime use step scope and late binding
to inject context from the step or job execution. These are tricky to test as standalone components,
unless you have a way to set the context as if they were in a step execution. That is the goal of two

184

components in Spring Batch: StepScopeTestExecutionListener and StepScopeTestUtils.

The listener is declared at the class level, and its job is to create a step execution context for each
test method, as shown in the following example:

@ContextConfiguration

@TestExecutionlisteners({ DependencyInjectionTestExecutionListener.class,
StepScopeTestExecutionlListener.class })

@RunWith(SpringJUnit4ClassRunner.class)

public class StepScopeTestExecutionListenerIntegrationTests {

// This component is defined step-scoped, so it cannot be injected unless
// a step is active...

@Autowired

private ItemReader<String> reader;

public StepExecution getStepExection() {
StepExecution execution = MetaDatalnstanceFactory.createStepExecution();
execution.getExecutionContext().putString("input.data", "foo,bar,spam");
return execution;

@Test

public void testReader() {
// The reader is initialized and bound to the input data
assertNotNull(reader.read());

There are two TestExecutionListeners. One is the regular Spring Test framework, which handles
dependency injection from the configured application context to inject the reader. The other is the
Spring Batch StepScopeTestExecutionListener. It works by looking for a factory method in the test
case for a StepExecution, using that as the context for the test method, as if that execution were
active in a Step at runtime. The factory method is detected by its signature (it must return a
StepExecution). If a factory method is not provided, then a default StepExecution is created.

The listener approach is convenient if you want the duration of the step scope to be the execution
of the test method. For a more flexible but more invasive approach, you can use the
StepScopeTestUtils. The following example counts the number of items available in the reader
shown in the previous example:

185

int count = StepScopeTestUtils.doInStepScope(stepExecution,
new Callable<Integer>() {
public Integer call() throws Exception {

int count = 0;

while (reader.read() !'= null) {
count++;

}

return count;

}
H;

10.5. Validating Output Files

When a batch job writes to the database, it is easy to query the database to verify that the output is
as expected. However, if the batch job writes to a file, it is equally important that the output be
verified. Spring Batch provides a class called AssertFile to facilitate the verification of output files.
The method called assertFileEquals takes two File objects (or two Resource objects) and asserts, line
by line, that the two files have the same content. Therefore, it is possible to create a file with the
expected output and to compare it to the actual result, as shown in the following example:

private static final String EXPECTED_FILE = "src/main/resources/data/input.txt";
private static final String OUTPUT_FILE = "target/test-outputs/output.txt";

AssertFile.assertFileEquals(new FileSystemResource(EXPECTED_FILE),
new FileSystemResource(OUTPUT_FILE));

10.6. Mocking Domain Objects

Another common issue encountered while writing unit and integration tests for Spring Batch
components is how to mock domain objects. A good example is a StepExecutionlListener, as
illustrated in the following code snippet:

public class NoWorkFoundStepExecutionListener extends StepExecutionListenerSupport {

public ExitStatus afterStep(StepExecution stepExecution) {
if (stepExecution.getReadCount() == 0) {
return ExitStatus.FAILED;

}

return null;

The preceding listener example is provided by the framework and checks a StepExecution for an

186

empty read count, thus signifying that no work was done. While this example is fairly simple, it
serves to illustrate the types of problems that may be encountered when attempting to unit test
classes that implement interfaces requiring Spring Batch domain objects. Consider the following
unit test for the listener’s in the preceding example:

private NoWorkFoundStepExecutionListener tested = new
NoWorkFoundStepExecutionListener();

public void noWork() {
StepExecution stepExecution = new StepExecution("NoProcessingStep"”,
new JobExecution(new JobInstance(1L, new JobParameters(),
"NoProcessingJob")));

stepExecution.setExitStatus(ExitStatus.COMPLETED);
stepExecution.setReadCount(0);

ExitStatus exitStatus = tested.afterStep(stepExecution);
assertEquals(ExitStatus.FAILED.getExitCode(), exitStatus.getExitCode());

Because the Spring Batch domain model follows good object-oriented principles, the StepExecution
requires a JobExecution, which requires a JobInstance and JobParameters, to create a valid
StepExecution. While this is good in a solid domain model, it does make creating stub objects for
unit testing verbose. To address this issue, the Spring Batch test module includes a factory for
creating domain objects: MetaDatalnstanceFactory. Given this factory, the unit test can be updated to
be more concise, as shown in the following example:

private NoWorkFoundStepExecutionListener tested = new
NoWorkFoundStepExecutionListener();

public void testAfterStep() {
StepExecution stepExecution = MetaDatalnstanceFactory.createStepExecution();

stepExecution.setExitStatus(ExitStatus.COMPLETED);
stepExecution.setReadCount(0);

ExitStatus exitStatus = tested.afterStep(stepExecution);
assertEquals(ExitStatus.FAILED.getExitCode(), exitStatus.getExitCode());

The preceding method for creating a simple StepExecution is just one convenience method available
within the factory. A full method listing can be found in its Javadoc.

187

https://docs.spring.io/spring-batch/apidocs/org/springframework/batch/test/MetaDataInstanceFactory.html

Chapter 11. Common Batch Patterns

Some batch jobs can be assembled purely from off-the-shelf components in Spring Batch. For
instance, the ItemReader and ItemWriter implementations can be configured to cover a wide range
of scenarios. However, for the majority of cases, custom code must be written. The main API entry
points for application developers are the Tasklet, the ItemReader, the ItemWriter, and the various
listener interfaces. Most simple batch jobs can use off-the-shelf input from a Spring Batch
I'temReader, but it is often the case that there are custom concerns in the processing and writing that
require developers to implement an ItemiWriter or ItemProcessor.

In this chapter, we provide a few examples of common patterns in custom business logic. These
examples primarily feature the listener interfaces. It should be noted that an ItemReader or
ItemWriter can implement a listener interface as well, if appropriate.

11.1. Logging Item Processing and Failures

A common use case is the need for special handling of errors in a step, item by item, perhaps
logging to a special channel or inserting a record into a database. A chunk-oriented Step (created
from the step factory beans) lets users implement this use case with a simple ItemReadListener for
errors on read and an ItemWritelistener for errors on write. The following code snippet illustrates a
listener that logs both read and write failures:

public class ItemFailureloggerListener extends ItemListenerSupport {
private static Log logger = LogFactory.getlLog("item.error");

public void onReadError(Exception ex) {
logger.error("Encountered error on read", e);

}

public void onWriteError(Exception ex, List<? extends Object> items) {
logger.error("Encountered error on write", ex);

}

Having implemented this listener, it must be registered with a step, as shown in the following
example:

188

XML Configuration
<step id="simpleStep">

<listeners>
<listener>
<bean class="org.example...ItemFailurelLoggerlListener"/>
</listener>
</listeners>
</step>

Java Configuration

public Step simpleStep() {
return this.stepBuilderFactory.get("simpleStep")

.listener(new ItemFailurelLoggerListener())
.build();

if your listener does anything in an onError() method, it must be inside a
transaction that is going to be rolled back. If you need to use a transactional

o resource, such as a database, inside an onError() method, consider adding a
declarative transaction to that method (see Spring Core Reference Guide for
details), and giving its propagation attribute a value of REQUIRES_NEW.

11.2. Stopping a Job Manually for Business Reasons

Spring Batch provides a stop() method through the JobLauncher interface, but this is really for use
by the operator rather than the application programmer. Sometimes, it is more convenient or
makes more sense to stop a job execution from within the business logic.

The simplest thing to do is to throw a RuntimeException (one that is neither retried indefinitely nor
skipped). For example, a custom exception type could be used, as shown in the following example:

public class PoisonPillltemProcessor<T> implements ItemProcessor<T, T> {

public T process(T item) throws Exception {
if (isPoisonPill(item)) {
throw new PoisonPillException("Poison pill detected:

+ item);

}

return item;

189

Another simple way to stop a step from executing is to return null from the ItemReader, as shown in
the following example:

public class EarlyCompletionItemReader implements ItemReader<T> {

private ItemReader<T> delegate;
public void setDelegate(ItemReader<T> delegate) { ... }

public T read() throws Exception {
T item = delegate.read();
if (isEndItem(item)) {
return null; // end the step here
}

return item;

The previous example actually relies on the fact that there is a default implementation of the
CompletionPolicy strategy that signals a complete batch when the item to be processed is null. A
more sophisticated completion policy could be implemented and injected into the Step through the
SimpleStepFactoryBean, as shown in the following example:

XML Configuration

<step id="simpleStep">
<tasklet>
<chunk reader="reader" writer="writer" commit-interval="10"
chunk-completion-policy="completionPolicy"/>
</tasklet>
</step>

<bean id="completionPolicy" class="org.example...SpecialCompletionPolicy"/>

Java Configuration

@Bean
public Step simpleStep() {
return this.stepBuilderFactory.get("simpleStep")
.<String, String>chunk(new SpecialCompletionPolicy())
.reader(reader())
writer(writer())
.build();

An alternative is to set a flag in the StepExecution, which is checked by the Step implementations in
the framework in between item processing. To implement this alternative, we need access to the

190

current StepExecution, and this can be achieved by implementing a StepListener and registering it
with the Step. The following example shows a listener that sets the flag:

public class CustomItemWriter extends ItemListenerSupport implements StepListener {
private StepExecution stepExecution;

public void beforeStep(StepExecution stepExecution) {
this.stepExecution = stepExecution;

}

public void afterRead(Object item) {
if (isPoisonPill(item)) {
stepExecution.setTerminateOnly(true);

When the flag is set, the default behavior is for the step to throw a JobInterruptedException. This
behavior can be controlled through the StepInterruptionPolicy. However, the only choice is to
throw or not throw an exception, so this is always an abnormal ending to a job.

11.3. Adding a Footer Record

Often, when writing to flat files, a "footer" record must be appended to the end of the file, after all
processing has be completed. This can be achieved using the FlatFileFooterCallback interface
provided by Spring Batch. The FlatFileFooterCallback (and its counterpart, the
FlatFileHeaderCallback) are optional properties of the FlatFileItemWriter and can be added to an
item writer as shown in the following example:

XML Configuration

<bean id="itemWriter" class="org.spr...FlatFileltemWriter">
<property name="resource" ref="outputResource" />
<property name="lineAggregator" ref="lineAggregator"/>
<property name="headerCallback" ref="headerCallback" />
<property name="footerCallback" ref="footerCallback" />
</bean>

191

Java Configuration

public FlatFileItemWriter<String> itemWriter(Resource outputResource) {
return new FlatFileItemWriterBuilder<String>()

.name("itemWriter")
.resource(outputResource)
.lineAggregator(lineAggregator())
.headerCallback(headerCallback())
.footerCallback(footerCallback())
.build();

The footer callback interface has just one method that is called when the footer must be written, as
shown in the following interface definition:

public interface FlatFileFooterCallback {

void writeFooter(Writer writer) throws IOException;

11.3.1. Writing a Summary Footer

A common requirement involving footer records is to aggregate information during the output
process and to append this information to the end of the file. This footer often serves as a
summarization of the file or provides a checksum.

For example, if a batch job is writing Trade records to a flat file, and there is a requirement that the
total amount from all the Trades is placed in a footer, then the following ItemWriter implementation
can be used:

192

public class TradeltemWriter implements ItemWriter<Trade>,
FlatFileFooterCallback {

private ItemWriter<Trade> delegate;
private BigDecimal totalAmount = BigDecimal.ZERQ;

public void write(List<? extends Trade> items) throws Exception {
BigDecimal chunkTotal = BigDecimal.ZERO;
for (Trade trade : items) {
chunkTotal = chunkTotal.add(trade.getAmount());
}

delegate.write(items);

// After successfully writing all items
totalAmount = totalAmount.add(chunkTotal);
}

public void writeFooter(Writer writer) throws IOException {
writer.write("Total Amount Processed: " + totalAmount);

}

public void setDelegate(ItemWriter delegate) {...}

This TradeItemWriter stores a totalAmount value that is increased with the amount from each Trade
item written. After the last Trade is processed, the framework calls writeFooter, which puts the
totalAmount into the file. Note that the write method makes use of a temporary variable, chunkTotal,
that stores the total of the Trade amounts in the chunk. This is done to ensure that, if a skip occurs
in the write method, the totalAmount is left unchanged. It is only at the end of the write method,
once we are guaranteed that no exceptions are thrown, that we update the totalAmount.

In order for the writeFooter method to be called, the TradeltemWriter (which implements
FlatFileFooterCallback) must be wired into the FlatFileltemWriter as the footerCallback. The
following example shows how to do so:

XML Configuration

<bean id="tradeItemWriter" class="..TradeItemWriter">
<property name="delegate" ref="flatFileltemWriter" />
</bean>

<bean id="flatFileItemWriter" class="org.spr...FlatFileItemWriter">
<property name="resource" ref="outputResource" />
<property name="lineAggregator" ref="1lineAggregator"/>
<property name="footerCallback" ref="tradeItemWriter" />

</bean>

193

Java Configuration

public TradeItemWriter tradeltemWriter() {
TradeItemWriter itemWriter = new TradeltemWriter();

itemWriter.setDelegate(flatFileltemWriter(null));

return itemWriter;

public FlatFileItemWriter<String> flatFileItemWriter(Resource outputResource) {
return new FlatFileItemWriterBuilder<String>()
.name("itemWriter")
.resource(outputResource)
.lineAggregator(lineAggregator())
.footerCallback(tradeItemWriter())
.build();

The way that the TradeItemWriter has been written so far functions correctly only if the Step is not
restartable. This is because the class is stateful (since it stores the totalAmount), but the totalAmount
is not persisted to the database. Therefore, it cannot be retrieved in the event of a restart. In order
to make this class restartable, the ItemStream interface should be implemented along with the
methods open and update, as shown in the following example:

public void open(ExecutionContext executionContext) {
if (executionContext.containsKey("total.amount") {
totalAmount = (BigDecimal) executionContext.get("total.amount");

}
}

public void update(ExecutionContext executionContext) {
executionContext.put("total.amount"”, totalAmount);

}

The update method stores the most current version of totalAmount to the ExecutionContext just
before that object is persisted to the database. The open method retrieves any existing totalAmount
from the ExecutionContext and uses it as the starting point for processing, allowing the
TradeltemWriter to pick up on restart where it left off the previous time the Step was run.

11.4. Driving Query Based ItemReaders

In the chapter on readers and writers, database input using paging was discussed. Many database
vendors, such as DB2, have extremely pessimistic locking strategies that can cause issues if the
table being read also needs to be used by other portions of the online application. Furthermore,
opening cursors over extremely large datasets can cause issues on databases from certain vendors.

194

readersAndWriters.html

Therefore, many projects prefer to use a 'Driving Query' approach to reading in data. This approach
works by iterating over Kkeys, rather than the entire object that needs to be returned, as the
following image illustrates:

Select ID from FOO
where id > 1 and id < 7

D NAME |BAR
1 foo1 bar1
2 foo?2 bar2
3 foo3 bar3
2 || 4 food | bard
5 foodS bar5
6 foo6 baré
7 foo7 bar?
8 foo8 barg

Figure 25. Driving Query Job

As you can see, the example shown in the preceding image uses the same 'FOO' table as was used in
the cursor-based example. However, rather than selecting the entire row, only the IDs were selected
in the SQL statement. So, rather than a FO0 object being returned from read, an Integer is returned.
This number can then be used to query for the 'details’, which is a complete Foo object, as shown in
the following image:

£
L] (o ;
5 |8 |£
4 8 %
|| * E ﬁ.? ™ @ * Database
2 |5 |2
kY o = 1’,
. =
1 1
__ Query for details using
‘. Existing |, -~ key as parameter
Keys ohtained at step initialization DAO

Figure 26. Driving Query Example

An ItemProcessor should be used to transform the key obtained from the driving query into a full
'Foo' object. An existing DAO can be used to query for the full object based on the key.

11.5. Multi-Line Records

While it is usually the case with flat files that each record is confined to a single line, it is common
that a file might have records spanning multiple lines with multiple formats. The following excerpt

195

from a file shows an example of such an arrangement:

HEA;0013100345;2007-02-15
NCU;Smith;Peter;;T;20014539;F

BAD; ;0ak Street 31/A;;Small Town;00235;IL;US
FOT;2;2;267.34

Everything between the line starting with 'HEA' and the line starting with 'FOT" is considered one
record. There are a few considerations that must be made in order to handle this situation
correctly:

* Instead of reading one record at a time, the ItemReader must read every line of the multi-line
record as a group, so that it can be passed to the ItemWriter intact.

* Each line type may need to be tokenized differently.

Because a single record spans multiple lines and because we may not know how many lines there
are, the ItemReader must be careful to always read an entire record. In order to do this, a custom
ItemReader should be implemented as a wrapper for the FlatFileltemReader, as shown in the
following example:

XML Configuration

<bean id="itemReader" class="org.spr...MultilLineTradeItemReader">
<property name="delegate">
<bean class="org.springframework.batch.item.file.FlatFileItemReader">
<property name="resource" value="data/iosample/input/multiline.txt" />
<property name="lineMapper">
<bean class="org.spr...DefaultLineMapper">
<property name="lineTokenizer" ref="orderFileTokenizer"/>
<property name="fieldSetMapper" ref="orderFieldSetMapper"/>
</bean>
</property>
</bean>
</property>
</bean>

196

Java Configuration

@Bean
public MultilineTradeItemReader itemReader() {
MultilineTradeItemReader itemReader = new MultilineTradeItemReader();

itemReader.setDelegate(flatFileltemReader());

return itemReader;

@Bean
public FlatFileItemReader flatFileItemReader() {
FlatFileItemReader<Trade> reader = new FlatFileltemReaderBuilder<Trade>()
.name("flatFileItemReader")
.resource(new ClassPathResource("data/iosample/input/multiline.txt"))
.lineTokenizer(orderFileTokenizer())
.fieldSetMapper(orderFieldSetMapper())
.build();
return reader;

To ensure that each line is tokenized properly, which is especially important for fixed-length input,
the PatternMatchingCompositelLineTokenizer can be used on the delegate FlatFileltemReader. See
FlatFileItemReader in the Readers and Writers chapter for more details. The delegate reader then
uses a PassThroughFieldSetMapper to deliver a FieldSet for each line back to the wrapping
ItemReader, as shown in the following example:

XML Content

<bean id="orderFileTokenizer" class="org.spr...PatternMatchingCompositelLineTokenizer">
<property name="tokenizers">
<map>
<entry key="HEA*" value-ref="headerRecordTokenizer" />
<entry key="FOT*" value-ref="footerRecordTokenizer" />
<entry key="NCU*" value-ref="customerLineTokenizer" />
<entry key="BAD*" value-ref="billingAddressLineTokenizer" />
</map>
</property>
</bean>

197

readersAndWriters.html#flatFileItemReader
readersAndWriters.html#flatFileItemReader

Java Content

public PatternMatchingCompositelLineTokenizer orderFileTokenizer() {
PatternMatchingCompositelineTokenizer tokenizer =
new PatternMatchingCompositelineTokenizer();

Map<String, LineTokenizer> tokenizers = new HashMap<>(4);
tokenizers.put("HEA*", headerRecordTokenizer());
tokenizers.put("FOT*", footerRecordTokenizer());
tokenizers.put("NCU*", customerLineTokenizer());
tokenizers.put("BAD*", billingAddressLineTokenizer());

tokenizer.setTokenizers(tokenizers);

return tokenizer;

This wrapper has to be able to recognize the end of a record so that it can continually call read() on
its delegate until the end is reached. For each line that is read, the wrapper should build up the item
to be returned. Once the footer is reached, the item can be returned for delivery to the
ItemProcessor and ItemWriter, as shown in the following example:

198

private FlatFileltemReader<FieldSet> delegate;

public Trade read() throws Exception {
Trade t = null;

for (FieldSet line = null; (line = this.delegate.read()) != null;) {

String prefix = line.readString(2);

if (prefix.equals("HEA")) {
t = new Trade(); // Record must start with header

}

else if (prefix.equals("NCU")) {
Assert.notNull(t, "No header was found.");
t.setlast(line.readString(1));
t.setFirst(line.readString(2));

}
else if (prefix.equals("BAD")) {

Assert.notNull(t, "No header was found.");
t.setCity(line.readString(4));
t.setState(line.readString(6));

}
else if (prefix.equals("FOT")) {
return t; // Record must end with footer

}

}
Assert.isNull(t, "No 'END' was found.");

return null;

11.6. Executing System Commands

Many batch jobs require that an external command be called from within the batch job. Such a
process could be kicked off separately by the scheduler, but the advantage of common metadata
about the run would be lost. Furthermore, a multi-step job would also need to be split up into
multiple jobs as well.

Because the need is so common, Spring Batch provides a Tasklet implementation for calling system
commands, as shown in the following example:

XML Configuration

<bean class="org.springframework.batch.core.step.tasklet.SystemCommandTasklet">
<property name="command" value="echo hello" />
<!-- 5 second timeout for the command to complete -->
<property name="timeout" value="5000" />

</bean>

199

Java Configuration

public SystemCommandTasklet tasklet() {
SystemCommandTasklet tasklet = new SystemCommandTasklet();

tasklet.setCommand("echo hello");
tasklet.setTimeout(5000);

return tasklet;

11.7. Handling Step Completion When No Input is
Found

In many batch scenarios, finding no rows in a database or file to process is not exceptional. The
Step is simply considered to have found no work and completes with 0 items read. All of the
ItemReader implementations provided out of the box in Spring Batch default to this approach. This
can lead to some confusion if nothing is written out even when input is present (which usually
happens if a file was misnamed or some similar issue arises). For this reason, the metadata itself
should be inspected to determine how much work the framework found to be processed. However,
what if finding no input is considered exceptional? In this case, programmatically checking the
metadata for no items processed and causing failure is the best solution. Because this is a common
use case, Spring Batch provides a listener with exactly this functionality, as shown in the class
definition for NoWorkFoundStepExecutionListener:

public class NoWorkFoundStepExecutionListener extends StepExecutionlListenerSupport {

public ExitStatus afterStep(StepExecution stepExecution) {
if (stepExecution.getReadCount() == 0) {
return ExitStatus.FAILED;
}

return null;

The preceding StepExecutionListener inspects the readCount property of the StepExecution during
the 'afterStep' phase to determine if no items were read. If that is the case, an exit code of FAILED is
returned, indicating that the Step should fail. Otherwise, null is returned, which does not affect the
status of the Step.

11.8. Passing Data to Future Steps

It is often useful to pass information from one step to another. This can be done through the
ExecutionContext. The catch is that there are two ExecutionContexts: one at the Step level and one at

200

the Job level. The Step ExecutionContext remains only as long as the step, while the Job
ExecutionContext remains through the whole Job. On the other hand, the Step ExecutionContext is
updated every time the Step commits a chunk, while the Job ExecutionContext is updated only at the
end of each Step.

The consequence of this separation is that all data must be placed in the Step ExecutionContext
while the Step is executing. Doing so ensures that the data is stored properly while the Step runs. If
data is stored to the Job ExecutionContext, then it is not persisted during Step execution. If the Step
fails, that data is lost.

public class SavingltemWriter implements ItemWriter<Object> {
private StepExecution stepExecution;

public void write(List<? extends Object> items) throws Exception {
/] ...

ExecutionContext stepContext = this.stepExecution.getExecutionContext();
stepContext.put("someKey", someObject);

public void saveStepExecution(StepExecution stepExecution) {
this.stepExecution = stepExecution;

}

To make the data available to future Steps, it must be "promoted" to the Job ExecutionContext after
the step has finished. Spring Batch provides the ExecutionContextPromotionListener for this purpose.
The listener must be configured with the keys related to the data in the ExecutionContext that must
be promoted. It can also, optionally, be configured with a list of exit code patterns for which the
promotion should occur (COMPLETED is the default). As with all listeners, it must be registered on the
Step as shown in the following example:

201

XML Configuration

<job id="job1">
<step id="step1">
<tasklet>
<chunk reader="reader" writer="savingWriter" commit-interval="10"/>
</tasklet>
<listeners>
<listener ref="promotionListener"/>
</listeners>
</step>

<step id="step2">
</step>
</job>
<beans:bean id="promotionListener" class="
org.spr....ExecutionContextPromotionListener">
<beans:property name="keys">
<list>
<value>someKey</value>
</list>

</beans:property>
</beans:bean>

202

Java Configuration

public Job job1() {
return this.jobBuilderFactory.qget("job1")
.start(step1())
.next(step1())
.build();

public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(reader())
writer(savingWriter())
.listener(promotionListener())
.build();

public ExecutionContextPromotionListener promotionListener() {
ExecutionContextPromotionListener listener = new
ExecutionContextPromotionlListener();

listener.setKeys(new String[] {"someKey" });

return listener;

Finally, the saved values must be retrieved from the Job ExecutionContext, as shown in the following
example:

public class RetrievingItemWriter implements ItemWriter<Object> {
private Object someObject;

public void write(List<? extends Object> items) throws Exception {
/] ...
}

public void retrievelnterstepData(StepExecution stepExecution) {
JobExecution jobExecution = stepExecution.getJobExecution();
ExecutionContext jobContext = jobExecution.getExecutionContext();
this.someObject = jobContext.get("someKey");

203

Chapter 12. JSR-352 Support

As of Spring Batch 3.0 support for JSR-352 has been fully implemented. This section is not a
replacement for the spec itself and instead, intends to explain how the JSR-352 specific concepts
apply to Spring Batch. Additional information on JSR-352 can be found via the JCP here:
https://jcp.org/en/jsr/detail?id=352

12.1. General Notes about Spring Batch and JSR-352

Spring Batch and JSR-352 are structurally the same. They both have jobs that are made up of steps.
They both have readers, processors, writers, and listeners. However, their interactions are subtly
different. For example, the org.springframework.batch.core.SkipListenerfonSkipInWrite(S item,
Throwable t) within Spring Batch receives two parameters: the item that was skipped and the
Exception that caused the skip. The JSR-352 version of the same method
(javax.batch.api.chunk.listener.SkipWriteListener#onSkipWriteItem(List<Object> items, Exception
ex)) also receives two parameters. However the first one is a List of all the items within the current
chunk with the second being the Exception that caused the skip. Because of these differences, it is
important to note that there are two paths to execute a job within Spring Batch: either a traditional
Spring Batch job or a JSR-352 based job. While the use of Spring Batch artifacts (readers, writers,
etc) will work within a job configured via JSR-352’s JSL and executed via the JsrJobOperator, they
will behave according to the rules of JSR-352. It is also important to note that batch artifacts that
have been developed against the JSR-352 interfaces will not work within a traditional Spring Batch
job.

12.2. Setup

12.2.1. Application Contexts

All JSR-352 based jobs within Spring Batch consist of two application contexts. A parent context,
that contains beans related to the infrastructure of Spring Batch such as the JobRepository,
PlatformTransactionManager, etc and a child context that consists of the configuration of the job to be
run. The parent context is defined via the jsrBaseContext.xml provided by the framework. This
context may be overridden via the JSR-352-BASE-CONTEXT system property.

The base context is not processed by the JSR-352 processors for things like

property injection so no components requiring that additional processing should
be configured there.

12.2.2. Launching a JSR-352 based job

JSR-352 requires a very simple path to executing a batch job. The following code is all that is needed
to execute your first batch job:

JobOperator operator = BatchRuntime.getJobOperator();
jobOperator.start("myJob", new Properties());

204

https://jcp.org/en/jsr/detail?id=352

While that is convenient for developers, the devil is in the details. Spring Batch bootstraps a bit of
infrastructure behind the scenes that a developer may want to override. The following is

bootstrapped the first time BatchRuntime.getJobOperator() is called:

Bean Name

dataSource

transactionManager

A Datasource initializer

jobRepository

jobLauncher

batchJobOperator

jobExplorer

jobParametersConverter

jobRegistry

placeholderProperties

Default Configuration

Apache DBCP BasicDataSource
with configured values.

org.springframework.jdbc.datas
ource.DataSourceTransactionMan
ager

A JDBC based
SimpleJobRepository.

org.springframework.batch.core
.launch.support.SimpleJoblLaunc
her

org.springframework.batch.core
.launch.support.SimpleJobOpera
tor

org.springframework.batch.core
.explore.support.JobExplorerFa
ctoryBean

org.springframework.batch.core
.jsr.JsrJobParametersConverter

org.springframework.batch.core
.configuration.support.MapJobR
egistry

org.springframework.beans.fact
ory.config.PropertyPlaceholder
Confiqure

Notes

By default, HSQLDB is
bootstrapped.

References the dataSource bean
defined above.

This is configured to execute
the scripts configured via the
batch.drop.script and
batch.schema.script properties.
By default, the schema scripts
for HSQLDB are executed. This
behavior can be disabled via
batch.data.source.init
property.

This JobRepository uses the
previously mentioned data
source and transaction
manager. The schema’s table
prefix is configurable (defaults
to BATCH_) via the
batch.table.prefix property.

Used to launch jobs.

The JsrJobOperator wraps this
to provide most of it’s
functionality.

Used to address lookup
functionality provided by the
JsrJobOperator.

JSR-352 specific implementation
of the JobParametersConverter.

Used by the SimpleJobOperator.

Loads the properties file batch-
${ENVIRONMENT :hsql}.properties
to configure the properties
mentioned above.
ENVIRONMENT is a System
property (defaults to hsql) that
can be used to specify any of
the supported databases Spring
Batch currently supports.

205

ﬂ None of the above beans are optional for executing JSR-352 based jobs. All may be
overriden to provide customized functionality as needed.

12.3. Dependency Injection

JSR-352 is based heavily on the Spring Batch programming model. As such, while not explicitly
requiring a formal dependency injection implementation, DI of some kind implied. Spring Batch
supports all three methods for loading batch artifacts defined by JSR-352:

* Implementation Specific Loader - Spring Batch is built upon Spring and so supports Spring
dependency injection within JSR-352 batch jobs.

* Archive Loader - JSR-352 defines the existing of a batch.xml file that provides mappings
between a logical name and a class name. This file must be found within the /META-INF/
directory if it is used.

* Thread Context Class Loader - JSR-352 allows configurations to specify batch artifact
implementations in their JSL by providing the fully qualified class name inline. Spring Batch
supports this as well in JSR-352 configured jobs.

To use Spring dependency injection within a JSR-352 based batch job consists of configuring batch
artifacts using a Spring application context as beans. Once the beans have been defined, a job can
refer to them as it would any bean defined within the batch.xml.

XML Configuration

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-
beans.xsd
http://xmlns.jcp.org/xml/ns/javaee
https://xmlns.jcp.org/xml/ns/javaee/jobXML_1_0.xsd">

<!-- javax.batch.api.Batchlet implementation -->

<bean id="fooBatchlet" class="1io.spring.FooBatchlet">
<property name="prop" value="bar"/>

</bean>

<!-- Job is defined using the JSL schema provided in JSR-352 -->
<job id="foolob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="step1">
<batchlet ref="fooBatchlet"/>
</step>
</job>
</beans>

206

Java Configuration
public class BatchConfiguration {

public Batchlet fooBatchlet() {
FooBatchlet batchlet = new FooBatchlet();
batchlet.setProp("bar");
return batchlet;
}

<?xml version="1.0" encoding="UTF-8"7>
<job id="fooJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="step1" >
<batchlet ref="fooBatchlet" />
</step>
</job>

The assembly of Spring contexts (imports, etc) works with JSR-352 jobs just as it would with any
other Spring based application. The only difference with a JSR-352 based job is that the entry point
for the context definition will be the job definition found in /META-INF/batch-jobs/.

To use the thread context class loader approach, all you need to do is provide the fully qualified
class name as the ref. It is important to note that when using this approach or the batch.xml
approach, the class referenced requires a no argument constructor which will be used to create the
bean.

<?xml version="1.0" encoding="UTF-8"7>
<job id="fooJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="step1" >
<batchlet ref="io.spring.FooBatchlet" />
</step>
</job>

12.4. Batch Properties

12.4.1. Property Support

JSR-352 allows for properties to be defined at the Job, Step and batch artifact level by way of
configuration in the JSL. Batch properties are configured at each level in the following way:

207

<properties>
<property name="propertyName1" value="propertyValuel"/>
<property name="propertyName2" value="propertyValue2"/>
</properties>

Properties may be configured on any batch artifact.

12.4.2. @BatchProperty annotation

Properties are referenced in batch artifacts by annotating class fields with the @BatchProperty and
@Inject annotations (both annotations are required by the spec). As defined by JSR-352, fields for
properties must be String typed. Any type conversion is up to the implementing developer to
perform.

An javax.batch.api.chunk.ItemReader artifact could be configured with a properties block such as

the one described above and accessed as such:

public class MyItemReader extends AbstractItemReader {

private String propertyNamel;

The value of the field "propertyName1" will be "propertyValuel"

12.4.3. Property Substitution

Property substitution is provided by way of operators and simple conditional expressions. The
general usage is #{operator['key"']}.

Supported operators:

* jobParameters - access job parameter values that the job was started/restarted with.
* jobProperties - access properties configured at the job level of the JSL.
* systemProperties - access named system properties.

* partitionPlan - access named property from the partition plan of a partitioned step.
#{jobParameters['unresolving.prop']}?:#{systemProperties['file.separator']}

The left hand side of the assignment is the expected value, the right hand side is the default value.
In this example, the result will resolve to a value of the system property file.separator as
#i{jobParameters['unresolving.prop']} is assumed to not be resolvable. If neither expressions can be
resolved, an empty String will be returned. Multiple conditions can be used, which are separated by

208

12.5. Processing Models

JSR-352 provides the same two basic processing models that Spring Batch does:

e Item based processing - Using an javax.batch.api.chunk.ItemReader, an optional
javax.batch.api.chunk.ItemProcessor, and an javax.batch.api.chunk.ItemWriter.

» Task based processing - Using a javax.batch.api.Batchlet implementation. This processing
model is the same as the org.springframework.batch.core.step.tasklet.Tasklet based processing
currently available.

12.5.1. Item based processing

Item based processing in this context is a chunk size being set by the number of items read by an
ItemReader. To configure a step this way, specify the item-count (Which defaults to 10) and optionally
configure the checkpoint-policy as item (this is the default).

<step id="step1">
<chunk checkpoint-policy="item" item-count="3">
<reader ref="fooReader"/>
<processor ref="fooProcessor"/>
<writer ref="foolWriter"/>
</chunk>
</step>

If item based checkpointing is chosen, an additional attribute time-1limit is supported. This sets a
time limit for how long the number of items specified has to be processed. If the timeout is reached,
the chunk will complete with however many items have been read by then regardless of what the
item-count is configured to be.

12.5.2. Custom checkpointing

JSR-352 calls the process around the commit interval within a step "checkpointing”. Item based
checkpointing is one approach as mentioned above. However, this will not be robust enough in
many cases. Because of this, the spec allows for the implementation of a custom checkpointing
algorithm by implementing the javax.batch.api.chunk.CheckpointAlgorithm interface. This
functionality is functionally the same as Spring Batch’s custom completion policy. To use an
implementation of CheckpointAlgorithm, configure your step with the custom checkpoint-policy as
shown below where fooCheckpointer refers to an implementation of CheckpointAlgorithm.

209

<step id="step1">
<chunk checkpoint-policy="custom">
<checkpoint-algorithm ref="fooCheckpointer"/>
<reader ref="fooReader"/>
<processor ref="fooProcessor"/>
<writer ref="fooWriter"/>
</chunk>
</step>

12.6. Running a job

The entrance to executing a JSR-352 based job is through the javax.batch.operations.JobOperator.
Spring Batch provides its own implementation of this interface
(org.springframework.batch.core.jsr.launch.JsrJobOperator). This implementation is loaded via the
javax.batch.runtime.BatchRuntime. Launching a JSR-352 based batch job is implemented as follows:

JobOperator jobOperator = BatchRuntime.getJobOperator();
long jobExecutionId = jobOperator.start("fooJob", new Properties());

The above code does the following:

» Bootstraps a base ApplicationContext - In order to provide batch functionality, the framework
needs some infrastructure bootstrapped. This occurs once per JVM. The components that are
bootstrapped are similar to those provided by @EnableBatchProcessing. Specific details can be
found in the javadoc for the JsrJobOperator.

* Loads an ApplicationContext for the job requested - In the example above, the framework will
look in /META-INF/batch-jobs for a file named fooJob.xml and load a context that is a child of the
shared context mentioned previously.

* Launch the job - The job defined within the context will be executed asynchronously. The
JobExecution’s id will be returned.

0 All JSR-352 based batch jobs are executed asynchronously.

When JobOperator#start is called using SimpleJobOperator, Spring Batch determines if the call is an
initial run or a retry of a previously executed run. Using the JSR-352 based
JobOperator#fstart(String jobXMLName, Properties jobParameters), the framework will always create
a new JobInstance (JSR-352 job parameters are non-identifying). In order to restart a job, a call to
JobOperatorffrestart(long executionld, Properties restartParameters) is required.

12.7. Contexts

JSR-352 defines two context objects that are used to interact with the meta-data of a job or step from
within a batch artifact: javax.batch.runtime.context.JobContext and

210

javax.batch.runtime.context.StepContext. Both of these are available in any step level artifact
(Batchlet, ItemReader, etc) with the JobContext being available to job level artifacts as well
(JobListener for example).

To obtain a reference to the JobContext or StepContext within the current scope, simply use the
@Inject annotation:

JobContext jobContext;

0 @Autowire for JSR-352 contexts

Using Spring’s @Autowire is not supported for the injection of these contexts.

In Spring Batch, the JobContext and StepContext wrap their corresponding execution objects
(JobExecution and StepExecution respectively). Data stored via
StepContext#fsetPersistentUserData(Serializable data) 1is stored in the Spring Batch
StepExecution#texecutionContext.

12.8. Step Flow

Within a JSR-352 based job, the flow of steps works similarly as it does within Spring Batch.
However, there are a few subtle differences:

* Decision’s are steps - In a regular Spring Batch job, a decision is a state that does not have an
independent StepExecution or any of the rights and responsibilities that go along with being a
full step.. However, with JSR-352, a decision is a step just like any other and will behave just as
any other steps (transactionality, it gets a StepExecution, etc). This means that they are treated
the same as any other step on restarts as well.

* next attribute and step transitions - In a regular job, these are allowed to appear together in the
same step. JSR-352 allows them to both be used in the same step with the next attribute taking
precedence in evaluation.

* Transition element ordering - In a standard Spring Batch job, transition elements are sorted
from most specific to least specific and evaluated in that order. JSR-352 jobs evaluate transition
elements in the order they are specified in the XML.

12.9. Scaling a JSR-352 batch job

Traditional Spring Batch jobs have four ways of scaling (the last two capable of being executed
across multiple JVMs):

* Split - Running multiple steps in parallel.

* Multiple threads - Executing a single step via multiple threads.

* Partitioning - Dividing the data up for parallel processing (master/slave).

* Remote Chunking - Executing the processor piece of logic remotely.

211

JSR-352 provides two options for scaling batch jobs. Both options support only a single JVM:

 Split - Same as Spring Batch

* Partitioning - Conceptually the same as Spring Batch however implemented slightly different.

12.9.1. Partitioning

Conceptually, partitioning in JSR-352 is the same as it is in Spring Batch. Meta-data is provided to
each slave to identify the input to be processed with the slaves reporting back to the master the
results upon completion. However, there are some important differences:

* Partitioned Batchlet - This will run multiple instances of the configured Batchlet on multiple
threads. Each instance will have it’s own set of properties as provided by the JSL or the
PartitionPlan

* PartitionPlan - With Spring Batch’s partitioning, an ExecutionContext is provided for each
partition. With JSR-352, a single javax.batch.api.partition.PartitionPlan is provided with an
array of Properties providing the meta-data for each partition.

» PartitionMapper - JSR-352 provides two ways to generate partition meta-data. One is via the JSL
(partition properties). The second is via an implementation of the
javax.batch.api.partition.PartitionMapper interface. Functionally, this interface is similar to
the org.springframework.batch.core.partition.support.Partitioner interface provided by Spring
Batch in that it provides a way to programmatically generate meta-data for partitioning.

» StepExecutions - In Spring Batch, partitioned steps are run as master/slave. Within JSR-352, the
same configuration occurs. However, the slave steps do not get official StepExecutions. Because
of that, calls to JsrlobOperator#getStepExecutions(long jobExecutionId) will only return the
StepExecution for the master.

0 The child StepExecutions still exist in the job repository and are available via the
JobExplorer and Spring Batch Admin.

* Compensating logic - Since Spring Batch implements the master/slave logic of partitioning using
steps, StepExecutionlListeners can be used to handle compensating logic if something goes
wrong. However, since the slaves JSR-352 provides a collection of other components for the
ability to provide compensating logic when errors occur and to dynamically set the exit status.
These components include the following:

Artifact Interface Description

javax.batch.api.partition.PartitionCollector provides a way for slave steps to send
information back to the master. There is one
instance per slave thread.

javax.batch.api.partition.PartitionAnalyzer ~ End point that receives the information collected
by the PartitionCollector as well as the
resulting statuses from a completed partition.

javax.batch.api.partition.PartitionReducer Provides the ability to provide compensating
logic for a partitioned step.

212

12.10. Testing

Since all JSR-352 based jobs are executed asynchronously, it can be difficult to determine when a
job has completed. To help with testing, Spring Batch provides the
org.springframework.batch.test.JsrTestUtils. This utility class provides the ability to start a job and
restart a job and wait for it to complete. Once the job completes, the associated JobExecution is
returned.

213

Chapter 13. Spring Batch Integration

13.1. Spring Batch Integration Introduction

Many users of Spring Batch may encounter requirements that are outside the scope of Spring Batch
but that may be efficiently and concisely implemented by using Spring Integration. Conversely,
Spring Integration users may encounter Spring Batch requirements and need a way to efficiently
integrate both frameworks. In this context, several patterns and use-cases emerge, and Spring
Batch Integration addresses those requirements.

The line between Spring Batch and Spring Integration is not always clear, but two pieces of advice
can help: Think about granularity, and apply common patterns. Some of those common patterns
are described in this reference manual section.

Adding messaging to a batch process enables automation of operations and also separation and
strategizing of key concerns. For example, a message might trigger a job to execute, and then the
sending of the message can be exposed in a variety of ways. Alternatively, when a job completes or
fails, that event might trigger a message to be sent, and the consumers of those messages might
have operational concerns that have nothing to do with the application itself. Messaging can also be
embedded in a job (for example reading or writing items for processing via channels). Remote
partitioning and remote chunking provide methods to distribute workloads over a number of
workers.

This section covers the following key concepts:
* Namespace Support

* Launching Batch Jobs through Messages
* Providing Feedback with Informational Messages
* Asynchronous Processors

» Externalizing Batch Process Execution

13.1.1. Namespace Support

Since Spring Batch Integration 1.3, dedicated XML Namespace support was added, with the aim to
provide an easier configuration experience. In order to activate the namespace, add the following
namespace declarations to your Spring XML Application Context file:

214

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:batch-int="http://www.springframework.org/schema/batch-integration"
xsi:schemalocation="
http://www.springframework.org/schema/batch-integration
https://www.springframework.org/schema/batch-integration/spring-batch-
integration.xsd">

</beans>

A fully configured Spring XML Application Context file for Spring Batch Integration may look like
the following:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:int="http://www.springframework.org/schema/integration"
xmlns:batch="http://www.springframework.org/schema/batch"
xmlns:batch-int="http://www.springframework.org/schema/batch-integration”
xsi:schemalocation="
http://www.springframework.org/schema/batch-integration
https://www.springframework.org/schema/batch-integration/spring-batch-
integration.xsd
http://www.springframework.org/schema/batch
https://www.springframework.org/schema/batch/spring-batch.xsd
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
https://www.springframework.org/schema/integration/spring-integration.xsd">

</beans>

Appending version numbers to the referenced XSD file is also allowed, but, as a version-less
declaration always uses the latest schema, we generally do not recommend appending the version
number to the XSD name. Adding a version number could possibly create issues when updating the
Spring Batch Integration dependencies, as they may require more recent versions of the XML
schema.

13.1.2. Launching Batch Jobs through Messages
When starting batch jobs by using the core Spring Batch API, you basically have 2 options:

e From the command line, with the CommandLineJobRunner

* Programmatically, with either JobOperator.start() or JobLauncher.run()

215

For example, you may want to use the CommandLineJobRunner when invoking Batch Jobs by using a
shell script. Alternatively, you may use the JobOperator directly (for example, when using Spring
Batch as part of a web application). However, what about more complex use cases? Maybe you
need to poll a remote (S)FTP server to retrieve the data for the Batch Job or your application has to
support multiple different data sources simultaneously. For example, you may receive data files not
only from the web, but also from FTP and other sources. Maybe additional transformation of the
input files is needed before invoking Spring Batch.

Therefore, it would be much more powerful to execute the batch job using Spring Integration and
its numerous adapters. For example, you can use a File Inbound Channel Adapter to monitor a
directory in the file-system and start the Batch Job as soon as the input file arrives. Additionally,
you can create Spring Integration flows that use multiple different adapters to easily ingest data for
your batch jobs from multiple sources simultaneously using only configuration. Implementing all
these scenarios with Spring Integration is easy, as it allows for decoupled, event-driven execution of
the JobLauncher.

Spring Batch Integration provides the JobLaunchingMessageHandler class that you can use to launch
batch jobs. The input for the JoblLaunchingMessageHandler is provided by a Spring Integration
message, which has a payload of type JobLaunchRequest. This class is a wrapper around the Job that
needs to be launched and around the JobParameters necessary to launch the Batch job.

The following image illustrates the typical Spring Integration message flow in order to start a Batch
job. The EIP (Enterprise Integration Patterns) website provides a full overview of messaging icons
and their descriptions.

Inbound Channel Adapter Transformer
-) D H=HEH=
T
% :
File

-
JobLaunchRequest l
Figure 27. Launch Batch Job

Transforming a file into a JobLaunchRequest

216

https://www.enterpriseintegrationpatterns.com/toc.html

package i0.spring.sbi;

import org.springframework.batch.core.Job;

import org.springframework.batch.core.JobParametersBuilder;

import org.springframework.batch.integration.launch.JobLaunchRequest;
import org.springframework.integration.annotation.Transformer;

import org.springframework.messaging.Message;

import java.io.File;

public class FileMessageToJobRequest {
private Job job;
private String fileParameterName;

public void setFileParameterName(String fileParameterName) {
this.fileParameterName = fileParameterName;

}

public void setJob(Job job) {
this.job = job;
}

public JobLaunchRequest toRequest(Message<File> message) {
JobParametersBuilder jobParametersBuilder =
new JobParametersBuilder();

jobParametersBuilder.addString(fileParameterName,
message.getPayload().getAbsolutePath());

return new JobLaunchRequest(job, jobParametersBuilder.toJobParameters());

The JobExecution Response

When a batch job is being executed, a JobExecution instance is returned. This instance can be used
to determine the status of an execution. If a JobExecution is able to be created successfully, it is
always returned, regardless of whether or not the actual execution is successful.

The exact behavior on how the JobExecution instance is returned depends on the provided
TaskExecutor. If a synchronous (single-threaded) TaskExecutor implementation is used, the
JobExecution response is returned only after the job completes. When using an asynchronous
TaskExecutor, the JobExecution instance is returned immediately. Users can then take the id of
JobExecution instance (with JobExecution.getJobId()) and query the JobRepository for the job’s
updated status using the JobExplorer. For more information, please refer to the Spring Batch
reference documentation on Querying the Repository.

217

Spring Batch Integration Configuration

The following configuration creates a file inbound-channel-adapter to listen for CSV files in the
provided directory, hand them off to our transformer (FileMessageToJobRequest), launch the job via
the Job Launching Gateway, and then log the output of the JobExecution with the logging-channel-
adapter.

XML Configuration

<int:channel id="inboundFileChannel"/>
<int:channel id="outboundJobRequestChannel"/>
<int:channel id="jobLaunchReplyChannel"/>

<int-file:inbound-channel-adapter id="filePoller"
channel="inboundFileChannel"
directory="file:/tmp/myfiles/"
filename-pattern="*.csv">
<int:poller fixed-rate="1000"/>
</int-file:inbound-channel-adapter>

<int:transformer input-channel="inboundFileChannel"
output-channel="outboundJobRequestChannel">
<bean class="io.spring.sbi.FileMessageToJobRequest">
<property name="job" ref="personlob"/>
<property name="fileParameterName" value="input.file.name"/>
</bean>
</int:transformer>

<batch-int:job-launching-gateway request-channel="outboundJobRequestChannel"
reply-channel="jobLaunchReplyChannel"/>

<int:logging-channel-adapter channel="jobLaunchReplyChannel"/>

218

Java Configuration

public FileMessageToJobRequest fileMessageToJobRequest() {
FileMessageToJobRequest fileMessageToJobRequest = new FileMessageToJobRequest();
fileMessageToJobRequest.setFileParameterName("input.file.name");
fileMessageToJobRequest.setJob(personJob());
return fileMessageToJobRequest;

public JoblLaunchingGateway jobLaunchingGateway() {
SimpleJobLauncher simpleJobLauncher = new SimpleJobLauncher();
simpleJobLauncher.setJobRepository(jobRepository);
simpleJobLauncher.setTaskExecutor(new SyncTaskExecutor());
JobLaunchingGateway joblLaunchingGateway = new JoblLaunchingGateway
(simpleJoblLauncher);

return jobLaunchingGateway;

public IntegrationFlow integrationFlow(JobLaunchingGateway jobLaunchingGateway) {
return IntegrationFlows.from(Files.inboundAdapter(new File("/tmp/myfiles")).
filter(new SimplePatternFileListFilter("*.csv")),
c -> c.poller(Pollers.fixedRate(1000).maxMessagesPerPoll(1))).
handle(fileMessageToJobRequest()).
handle(jobLaunchingGateway).
log(LoggingHandler.Level.WARN, "headers.id + ': ' + payload").
get();

Example ItemReader Configuration

Now that we are polling for files and launching jobs, we need to configure our Spring Batch
ItemReader (for example) to use the files found at the location defined by the job parameter called
"input.file.name", as shown in the following bean configuration:

XML Configuration
<bean id="itemReader" class="org.springframework.batch.item.file.FlatFileItemReader"
scope="step">

<property name="resource" value="file://#{jobParameters['input.file.name']}"/>

</bean>

219

Java Configuration

public ItemReader sampleReader (("#{jobParameters[input.file.name]}") String
resource) {

FlatFileItemReader flatFileItemReader = new FlatFileItemReader();
flatFileItemReader.setResource(new FileSystemResource(resource));

return flatFileItemReader;

The main points of interest in the preceding example are injecting the value of
#{jobParameters['input.file.name']} as the Resource property value and setting the ItemReader
bean to have Step scope. Setting the bean to have Step scope takes advantage of the late binding
support, which allows access to the jobParameters variable.

13.2. Available Attributes of the Job-Launching
Gateway

The job-launching gateway has the following attributes that you can set to control a job:

id: Identifies the underlying Spring bean definition, which is an instance of either:
o EventDrivenConsumer

o PollingConsumer (The exact implementation depends on whether the component’s input
channel is a SubscribableChannel or PollableChannel.)

* auto-startup: Boolean flag to indicate that the endpoint should start automatically on startup.
The default is true.

* request-channel: The input MessageChannel of this endpoint.
* reply-channel: MessageChannel to which the resulting JobExecution payload is sent.

* reply-timeout: Lets you specify how long (in milliseconds) this gateway waits for the reply
message to be sent successfully to the reply channel before throwing an exception. This
attribute only applies when the channel might block (for example, when using a bounded
queue channel that is currently full). Also, keep in mind that, when sending to a DirectChannel,
the invocation occurs in the sender’s thread. Therefore, the failing of the send operation may be
caused by other components further downstream. The reply-timeout attribute maps to the
sendTimeout property of the underlying MessagingTemplate instance. If not specified, the attribute
defaults to<emphasis>-1</emphasis>, meaning that, by default, the Gateway waits indefinitely.

* job-launcher: Optional. Accepts a custom JobLauncher bean reference. If not specified the
adapter re-uses the instance that is registered under the id of jobLauncher. If no default instance
exists, an exception is thrown.

* order: Specifies the order of invocation when this endpoint is connected as a subscriber to a
SubscribableChannel.

220

13.3. Sub-Elements

When this Gateway is receiving messages from a PollableChannel, you must either provide a global
default Poller or provide a Poller sub-element to the Job Launching Gateway, as shown in the
following example:

XML Configuration

<batch-int:job-launching-gateway request-channel="queueChannel"
reply-channel="replyChannel" job-launcher="jobLauncher">
<int:poller fixed-rate="1000">
</batch-int:job-launching-gateway>

Java Configuration

(inputChannel = "queueChannel", poller = (fixedRate="1000"))
public JoblLaunchingGateway sampleloblLaunchingGateway() {
JobLaunchingGateway joblLaunchingGateway = new JobLaunchingGateway(jobLauncher());
jobLaunchingGateway.setOutputChannel(replyChannel());
return joblLaunchingGateway;

13.3.1. Providing Feedback with Informational Messages

As Spring Batch jobs can run for long times, providing progress information is often critical. For
example, stake-holders may want to be notified if some or all parts of a batch job have failed.
Spring Batch provides support for this information being gathered through:

* Active polling

* Event-driven listeners
When starting a Spring Batch job asynchronously (for example, by using the Job Launching
Gateway), a JobExecution instance is returned. Thus, JobExecution.getJobId() can be used to
continuously poll for status updates by retrieving updated instances of the JobExecution from the

JobRepository by using the JobExplorer. However, this is considered sub-optimal, and an event-
driven approach should be preferred.

Therefore, Spring Batch provides listeners, including the three most commonly used listeners:

» StepListener

* ChunkListener

* JobExecutionListener
In the example shown in the following image, a Spring Batch job has been configured with a
StepExecutionListener. Thus, Spring Integration receives and processes any step before or after

events. For example, the received StepExecution can be inspected by using a Router. Based on the
results of that inspection, various things can occur (such as routing a message to a Mail Outbound

221

Channel Adapter), so that an Email notification can be sent out based on some condition.

Status Status] Email
Changes Router Emails Adapter

—p_'//._—p
(" Listener) (=== Iy “—"E;;;;a—'ﬂi*ﬁ%

Relaunch

—
]

N/
r
A
4

Figure 28. Handling Informational Messages

The following two-part example shows how a listener is configured to send a message to a Gateway
for a StepExecution events and log its output to a logging-channel-adapter.

First, create the notification integration beans:

XML Configuration
<int:channel id="stepExecutionsChannel"/>

<int:gateway id="notificationExecutionsListener"
service-interface="org.springframework.batch.core.StepExecutionListener"
default-request-channel="stepExecutionsChannel"/>

<int:logging-channel-adapter channel="stepExecutionsChannel"/>

Java Configuration

@Bean

@ServiceActivator(inputChannel = "stepExecutionsChannel™)

public LoggingHandler loggingHandler() {
LoggingHandler adapter = new LoggingHandler(LoggingHandler.Level.WARN);
adapter.setlLoggerName("TEST_LOGGER");
adapter.setlLogExpressionString("headers.id + ': ' + payload");
return adapter;

}

@MessagingGateway(name = "notificationExecutionsListener", defaultRequestChannel =
"stepExecutionsChannel")

public interface NotificationExecutionListener extends StepExecutionListener {}

0 You will need to add the @IntegrationComponentScan annotation to your
configuration.

Second, modify your job to add a step-level listener:

222

XML Configuration

<job id="importPayments">
<step id="step1">
<tasklet ../>
<chunk ../>
<listeners>
<listener ref="notificationExecutionsListener"/>
</listeners>
</tasklet>
</step>
</job>

Java Configuration

public Job importPaymentsJob() {
return jobBuilderFactory.get("importPayments")
.start(stepBuilderFactory.get("step1")
.chunk(200)
.listener(notificationExecutionsListener())

13.3.2. Asynchronous Processors

Asynchronous Processors help you to scale the processing of items. In the asynchronous processor
use case, an AsyncItemProcessor serves as a dispatcher, executing the logic of the ItemProcessor for
an item on a new thread. Once the item completes, the Future is passed to the AsynchItemWriter to be
written.

Therefore, you can increase performance by using asynchronous item processing, basically
allowing you to implement fork-join scenarios. The AsyncItemliriter gathers the results and writes
back the chunk as soon as all the results become available.

The following example shows how to configuration the AsyncItemProcessor:

XML Configuration

<bean id="processor"
class="org.springframework.batch.integration.async.AsyncItemProcessor">
<property name="delegate">
<bean class="your.ItemProcessor"/>
</property>
<property name="taskExecutor">
<bean class="org.springframework.core.task.SimpleAsyncTaskExecutor"/>
</property>
</bean>

223

Java Configuration

public AsyncItemProcessor processor(ItemProcessor itemProcessor, TaskExecutor
taskExecutor) {
AsyncItemProcessor asyncItemProcessor = new AsyncItemProcessor();
asyncItemProcessor.setTaskExecutor(taskExecutor);
asyncItemProcessor.setDelegate(itemProcessor);
return asyncItemProcessor;

The delegate property refers to your ItemProcessor bean, and the taskExecutor property refers to
the TaskExecutor of your choice.

The following example shows how to configure the AsyncItemliriter:

XML Configuration

<bean id="itemWriter"
class="org.springframework.batch.integration.async.AsyncItemWriter">
<property name="delegate">
<bean id="itemWriter" class="your.ItemWriter"/>
</property>
</bean>

Java Configuration

public AsyncItemWriter writer(ItemWriter itemWriter) {
AsyncItemWriter asyncItemWriter = new AsyncItemWriter();
asyncltemWriter.setDelegate(itemWriter);
return asyncItemWriter;

Again, the delegate property is actually a reference to your Itemliriter bean.

13.3.3. Externalizing Batch Process Execution

The integration approaches discussed so far suggest use cases where Spring Integration wraps
Spring Batch like an outer-shell. However, Spring Batch can also use Spring Integration internally.
Using this approach, Spring Batch users can delegate the processing of items or even chunks to
outside processes. This allows you to offload complex processing. Spring Batch Integration provides
dedicated support for:

* Remote Chunking

* Remote Partitioning

224

Remote Chunking

Step1

ltemReader

ItemProcessor

ItemWriter

Step2

ItemReader

ItemWriter

ltemReader

ItemProcessor

ItemWriter

- I

Step2a

ItemProcessor

Item\Writer

Step2b

ItemProcessor

ltemWriter

Step2c

ItemProcessor

ltemWriter

Figure 29. Remote Chunking

Taking things one step further, one can also externalize the chunk processing by using the
ChunkMessageChannelItemWriter (provided by Spring Batch Integration), which sends items out and
collects the result. Once sent, Spring Batch continues the process of reading and grouping items,
without waiting for the results. Rather, it is the responsibility of the ChunkMessageChannelItemWriter
to gather the results and integrate them back into the Spring Batch process.

With Spring Integration, you have full control over the concurrency of your processes (for instance,
by using a QueueChannel instead of a DirectChannel). Furthermore, by relying on Spring Integration’s
rich collection of Channel Adapters (such as JMS and AMQP), you can distribute chunks of a Batch
job to external systems for processing.

A simple job with a step to be remotely chunked might have a configuration similar to the
following:

XML Configuration

<job id="personJob">
<step id="step1">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="200"/>
</tasklet>
</step>
</job>

225

Java Configuration

public Job chunkJob() {
return jobBuilderFactory.get("personJob")

.start(stepBuilderFactory.qget("step1")
.<Person, Person>chunk(200)
.reader (itemReader())
writer(itemWriter())
.build())

.build();

The ItemReader reference points to the bean you want to use for reading data on the master. The
ItemWriter reference points to a special ItemWriter (called ChunkMessageChannelItemWriter), as
described above. The processor (if any) is left off the master configuration, as it is configured on the
worker. The following configuration provides a basic master setup. You should check any
additional component properties, such as throttle limits and so on, when implementing your use
case.

XML Configuration

<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<int-jms:outbound-channel-adapter id="jmsRequests" destination-name="requests"/>

<bean id="messagingTemplate"
class="org.springframework.integration.core.MessagingTemplate">
<property name="defaultChannel" ref="requests"/>
<property name="receiveTimeout" value="2000"/>
</bean>

<bean id="itemWriter"
class="org.springframework.batch.integration.chunk.ChunkMessageChannelltemWriter"
scope="step">
<property name="messagingOperations" ref="messagingTemplate"/>
<property name="replyChannel" ref="replies"/>
</bean>

<int:channel id="replies">
<int:queue/>
</int:channel>
<int-jms:message-driven-channel-adapter id="jmsReplies"

destination-name="replies"
channel="replies"/>

Java Configuration

226

@Bean

public org.apache.activemg.ActiveMQConnectionFactory connectionFactory() {
ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory();
factory.setBrokerURL("tcp://localhost:61616");
return factory;

}

/*
* Configure outbound flow (requests going to workers)
*/

@Bean
public DirectChannel requests() {
return new DirectChannel();

}

@Bean
public IntegrationFlow outboundFlow(ActiveMQConnectionFactory connectionFactory) {
return IntegrationFlows

.from(requests())
.handle(Jms.outboundAdapter(connectionFactory).destination("requests"))
.get();

}

/*

* Configure inbound flow (replies coming from workers)

*/

@Bean

public QueueChannel replies() {
return new QueueChannel();

}

@Bean
public IntegrationFlow inboundFlow(ActiveMQConnectionFactory connectionFactory) {
return IntegrationFlows
.from(Jms.messageDrivenChannelAdapter(connectionFactory).destination(

"replies"))
.channel(replies())
.9et();
}
/*
* Configure the ChunkMessageChannelIltemWriter
*/
@Bean

public ItemWriter<Integer> itemWriter() {
MessagingTemplate messagingTemplate = new MessagingTemplate();
messagingTemplate.setDefaultChannel(requests());
messagingTemplate.setReceiveTimeout(2000);

227

ChunkMessageChannelItemWriter<Integer> chunkMessageChannelltemWriter

= new ChunkMessageChannelltemWriter<>();
chunkMessageChannelItemWriter.setMessagingOperations(messagingTemplate);
chunkMessageChannelItemWriter.setReplyChannel(replies());
return chunkMessageChannelltemWriter;

The preceding configuration provides us with a number of beans. We configure our messaging
middleware using ActiveMQ and the inbound/outbound JMS adapters provided by Spring
Integration. As shown, our itemWriter bean, which is referenced by our job step, uses the
ChunkMessageChannelItemWriter for writing chunks over the configured middleware.

Now we can move on to the worker configuration, as shown in the following example:

228

XML Configuration

<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<int:channel id="requests"/>
<int:channel id="replies"/>

<int-jms:message-driven-channel-adapter id="incomingRequests"
destination-name="requests"
channel="requests"/>

<int-jms:outbound-channel-adapter id="outgoingReplies"
destination-name="replies"
channel="replies">
</int-jms:outbound-channel-adapter>

<int:service-activator id="serviceActivator"
input-channel="requests"
output-channel="replies"
ref="chunkProcessorChunkHandler"
method="hand1leChunk"/>

<bean id="chunkProcessorChunkHandler"
class="org.springframework.batch.integration.chunk.ChunkProcessorChunkHandler">
<property name="chunkProcessor">
<bean class="org.springframework.batch.core.step.item.SimpleChunkProcessor">
<property name="1itemWriter">
<bean class="io0.spring.sbi.PersonItemWriter"/>
</property>
<property name="1itemProcessor">
<bean class="i0.spring.sbi.PersonItemProcessor"/>
</property>
</bean>
</property>
</bean>

Java Configuration

@Bean

public org.apache.activemg.ActiveMQConnectionFactory connectionFactory() {
ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory();
factory.setBrokerURL("tep://localhost:61616");
return factory;

}
/*

* Configure inbound flow (requests coming from the master)
*/

229

public DirectChannel requests() {
return new DirectChannel();

}

public IntegrationFlow inboundFlow(ActiveMQConnectionFactory connectionFactory) {
return IntegrationFlows
.from(Jms.messageDrivenChannelAdapter(connectionFactory).destination(
"requests"))

.channel(requests())
.get();
}
/*
* Configure outbound flow (replies going to the master)
*/

public DirectChannel replies() {
return new DirectChannel();

}

public IntegrationFlow outboundFlow(ActiveMQConnectionFactory connectionFactory) {
return IntegrationFlows

.from(replies())
.handle(Jms.outboundAdapter(connectionFactory).destination("replies"))
.get();

}

/~k

* Configure the ChunkProcessorChunkHandler

*

/

(inputChannel = "requests", outputChannel = "replies")
public ChunkProcessorChunkHandler<Integer> chunkProcessorChunkHandler() {

ChunkProcessor<Integer> chunkProcessor

= new SimpleChunkProcessor<>(itemProcessor(), itemWriter());
ChunkProcessorChunkHandler<Integer> chunkProcessorChunkHandler

= new ChunkProcessorChunkHandler<>();
chunkProcessorChunkHandler.setChunkProcessor(chunkProcessor);
return chunkProcessorChunkHandler;

Most of these configuration items should look familiar from the master configuration. Workers do
not need access to the Spring Batch JobRepository nor to the actual job configuration file. The main
bean of interest is the chunkProcessorChunkHandler. The chunkProcessor property of

230

ChunkProcessorChunkHandler takes a configured SimpleChunkProcessor, which is where you would
provide a reference to your ItemWriter (and, optionally, your ItemProcessor) that will run on the
worker when it receives chunks from the master.

For more information, see the section of the "Scalability" chapter on Remote Chunking.

You can find a complete example of a remote chunking job here.

Remote Partitioning

Step Master

ItemReader ItemReader

—_— o —_—
ItemProcessor ItemProcessor

ItemWriter ltemWriter

|
' ! !
Slave 1 Slave 2 Slave 3

ItemReader ItemReader ItemReader

ItemProcessor ItemProcessor ItemProcessor

IltemWriter ItemWriter IltemWriter

Figure 30. Remote Partitioning

Remote Partitioning, on the other hand, is useful when it is not the processing of items but rather
the associated I/O that causes the bottleneck. Using Remote Partitioning, work can be farmed out to
workers that execute complete Spring Batch steps. Thus, each worker has its own ItemReader,
ItemProcessor, and ItemWriter. For this purpose, Spring Batch Integration provides the
MessageChannelPartitionHandler.

This implementation of the PartitionHandler interface uses MessageChannel instances to send
instructions to remote workers and receive their responses. This provides a nice abstraction from
the transports (such as JMS and AMQP) being used to communicate with the remote workers.

The section of the "Scalability" chapter that addresses remote partitioning provides an overview of
the concepts and components needed to configure remote partitioning and shows an example of
using the default TaskExecutorPartitionHandler to partition in separate local threads of execution.
For remote partitioning to multiple JVMs, two additional components are required:

* Aremoting fabric or grid environment
* A PartitionHandler implementation that supports the desired remoting fabric or grid

environment

Similar to remote chunking, JMS can be used as the "remoting fabric". In that case, use a
MessageChannelPartitionHandler instance as the PartitionHandler implementation, as described
above. The following example assumes an existing partitioned job and focuses on the
MessageChannelPartitionHandler and JMS configuration:

XML Configuration

231

https://docs.spring.io/spring-batch/reference/html/scalability.html#remoteChunking
https://github.com/spring-projects/spring-batch/tree/master/spring-batch-samples#remote-chunking-sample

<bean id="partitionHandler"
class=
"org.springframework.batch.integration.partition.MessageChannelPartitionHandler">
<property name="stepName" value="step1"/>
<property name="gridSize" value="3"/>
<property name="replyChannel" ref="outbound-replies"/>
<property name="messagingOperations">
<bean class="org.springframework.integration.core.MessagingTemplate">
<property name="defaultChannel" ref="outbound-requests"/>
<property name="receiveTimeout" value="100000"/>
</bean>
</property>
</bean>

<int:channel id="outbound-requests"/>
<int-jms:outbound-channel-adapter destination="requestsQueue"
channel="outbound-requests"/>

<int:channel id="inbound-requests"/>
<int-jms:message-driven-channel-adapter destination="requestsQueue"
channel="1inbound-requests"/>

<bean id="stepExecutionRequestHandler"
class="
org.springframework.batch.integration.partition.StepExecutionRequestHandler">
<property name="jobExplorer" ref="jobExplorer"/>
<property name="steplLocator" ref="steplLocator"/>
</bean>

<int:service-activator ref="stepExecutionRequestHandler" input-channel="1inbound-
requests”
output-channel="outbound-staging"/>

<int:channel id="outbound-staging"/>
<int-jms:outbound-channel-adapter destination="stagingQueue"
channel="outbound-staging"/>

<int:channel id="1inbound-staging"/>
<int-jms:message-driven-channel-adapter destination="stagingQueue"
channel="1inbound-staging"/>

<int:aggregator ref="partitionHandler" input-channel="inbound-staging"
output-channel="outbound-replies"/>

<int:channel id="outbound-replies">
<int:queue/>

</int:channel>

<bean id="steplLocator"
class="org.springframework.batch.integration.partition.BeanFactoryStepLocator" />

232

Java Configuration

/*
* Configuration of the master side
*/

public PartitionHandler partitionHandler() {
MessageChannelPartitionHandler partitionHandler = new

MessageChannelPartitionHandler();
partitionHandler.setStepName("step1");
partitionHandler.setGridSize(3);
partitionHandler.setReplyChannel(outboundReplies());
MessagingTemplate template = new MessagingTemplate();
template.setDefaultChannel(outboundRequests());
template.setReceiveTimeout(100000);
partitionHandler.setMessagingOperations(template);
return partitionHandler;

public QueueChannel outboundReplies() {
return new QueueChannel();

}

public DirectChannel outboundRequests() {
return new DirectChannel();

}

public IntegrationFlow outboundJmsRequests() {
return IntegrationFlows.from("outboundRequests")
.handle(Jms.outboundGateway(connectionFactory())
.requestDestination("requestsQueue"))
.get();

(inputChannel = "inboundStaging")
public AggregatorFactoryBean partitioningMessageHandler() throws Exception {
AggregatorFactoryBean aggregatorFactoryBean = new AggregatorFactoryBean();
aggregatorFactoryBean.setProcessorBean(partitionHandler());
aggregatorFactoryBean.setOutputChannel(outboundReplies());
// configure other propeties of the aggregatorFactoryBean
return aggregatorFactoryBean;

public DirectChannel inboundStaging() {
return new DirectChannel();

}

233

public IntegrationFlow inboundJImsStaging() {
return IntegrationFlows
.from(Jms.messageDrivenChannelAdapter(connectionFactory())
.configurelListenerContainer(c -> c.subscriptionDurable(false))
.destination("stagingQueue"))
.channel(inboundStaging())

-get();
}
/*
* Configuration of the worker side
*/

public StepExecutionRequestHandler stepExecutionRequestHandler() {
StepExecutionRequestHandler stepExecutionRequestHandler = new

StepExecutionRequestHandler();
stepExecutionRequestHandler.setJobExplorer(jobExplorer);
stepExecutionRequestHandler.setSteplLocator(stepLocator());
return stepExecutionRequestHandler;

(inputChannel = "inboundRequests", outputChannel = "outboundStaging")
public StepExecutionRequestHandler serviceActivator() throws Exception {
return stepExecutionRequestHandler();

}

public DirectChannel inboundRequests() {
return new DirectChannel();

}

public IntegrationFlow inboundJmsRequests() {
return IntegrationFlows
.from(Jms.messageDrivenChannelAdapter(connectionFactory())
.configurelListenerContainer(c -> c.subscriptionDurable(false))
.destination("requestsQueue"))
.channel(inboundRequests())

.get();

public DirectChannel outboundStaging() {
return new DirectChannel();

}

public IntegrationFlow outboundImsStaging() {
return IntegrationFlows.from("outboundStaging")

234

.handle(Jms.outboundGateway(connectionFactory())
.requestDestination("stagingQueue"))
.get();

You must also ensure that the partition handler attribute maps to the partitionHandler bean, as
shown in the following example:

XML Configuration

<job id="personJob">
<step id="stepl.master">
<partition partitioner="partitioner" handler="partitionHandler"/>
</step>
</job>

Java Configuration

public Job personlob() {
return jobBuilderFactory.get("personJob")
.start(stepBuilderFactory.get("stepl.master")
.partitioner("stepl.worker", partitioner())
.partitionHandler(partitionHandler())
.build())
.build();

You can find a complete example of a remote partitioning job here.

235

https://github.com/spring-projects/spring-batch/tree/master/spring-batch-samples#remote-partitioning-sample

Appendix A: List of ItemReaders and

ItemWriters

A.1. Item Readers

Table 19. Available Item Readers
Item Reader

AbstractltemCountingltemStreamItemReader

AggregateltemReader

AmgpltemReader

FlatFileItemReader
HibernateCursorltemReader

HibernatePagingltemReader
ItemReaderAdapter

JdbcCursorltemReader

JdbcPagingltemReader

JmsItemReader

JpaPagingltemReader

ListIltemReader

MongoltemReader

236

Description

Abstract base class that provides basic restart
capabilities by counting the number of items
returned from an ItemReader.

An ItemReader that delivers a list as its item,
storing up objects from the injected ItemReader
until they are ready to be packed out as a
collection. This ItemReader should mark the
beginning and end of records with the constant
values in FieldSetMapper
AggregateltemReader#BEGIN_RECORD and
AggregateltemReader#END_RECORD.

Given a Spring AmgpTemplate, it provides
synchronous receive methods. The
receiveAndConvert() method lets you receive
POJO objects.

Reads from a flat file. Includes ItemStream and
Skippable functionality. See FlatFileItemReader.

Reads from a cursor based on an HQL query. See
Cursor-based ItemReaders.

Reads from a paginated HQL query
Adapts any class to the ItemReader interface.

Reads from a database cursor via JDBC. See
Cursor-based ItemReaders.

Given an SQL statement, pages through the
rows, such that large datasets can be read
without running out of memory.

Given a Spring JmsOperations object and a JMS
Destination or destination name to which to
send errors, provides items received through the
injected JmsOperations#receive() method.

Given a JPQL statement, pages through the rows,
such that large datasets can be read without
running out of memory.

Provides the items from a list, one at a time.

Given a MongoOperations object and a JSON-based
MongoDB query, provides items received from
the MongoOperations#find() method.

readersAndWriters.html#flatFileItemReader
readersAndWriters.html#cursorBasedItemReaders
readersAndWriters.html#cursorBasedItemReaders

Item Reader

Neo4jltemReader

RepositoryltemReader

StoredProcedureltemReader

StaxEventItemReader

A.2. Item Writers

Table 20. Available Item Writers
Item Writer

AbstractIltemStreamItemWriter

AmqgpltemWriter

CompositeltemWriter
FlatFileIltemWriter

GemfireltemWriter

HibernateItemWriter

ItemWriterAdapter
JdbcBatchItemWriter

JmsItemWriter

Description

Given a Neo4jOperations object and the
components of a Cyhper query, items are
returned as the result of the
Neo4jOperations.query method.

Given a Spring Data PagingAndSortingRepository
object, a Sort, and the name of method to
execute, returns items provided by the Spring
Data repository implementation.

Reads from a database cursor resulting from the

execution of a database stored procedure. See
StoredProcedureltemReader

Reads via StAX. see FlatFileItemReader.

Description

Abstract base class that combines the ItemStream
and ItemWriter interfaces.

Given a Spring AmgpTemplate, it provides for a
synchronous send method. The
convertAndSend(Object) method lets you send
POJO objects.

Passes an item to the write method of each in an
injected List of ItemWriter objects.

Writes to a flat file. Includes ItemStream and
Skippable functionality. See FlatFileItemWriter.

Using a GemfireOperations object, items are
either written or removed from the Gemfire
instance based on the configuration of the delete
flag.

This item writer is Hibernate-session aware and
handles some transaction-related work that a
non-"hibernate-aware" item writer would not
need to know about and then delegates to
another item writer to do the actual writing.

Adapts any class to the ItemiWriter interface.

Uses batching features from a PreparedStatement,
if available, and can take rudimentary steps to
locate a failure during a flush.

Using a JmsOperations object, items are written
to the default queue through the
JmsOperations#convertAndSend() method.

237

readersAndWriters.html#StoredProcedureItemReader
readersAndWriters.html#flatFileItemReader
readersAndWriters.html#flatFileItemWriter

Item Writer

JpaltemWriter

MimeMessageltemWriter

MongoltemWriter

Neo4jltemWriter

PropertyExtractingDelegatingltemWriter

RepositoryltemWriter

StaxEventIltemWriter

238

Description

This item writer is JPA EntityManager-aware
and handles some transaction-related work that
a non-"JPA-aware" ItemWriter would not need to
know about and then delegates to another
writer to do the actual writing.

Using Spring’s JavaMailSender, items of type
MimeMessage are sent as mail messages.

Given a MongoOperations object, items are written
through the MongoOperations.save(Object)
method. The actual write is delayed until the last
possible moment before the transaction
commits.

Given a Neo4jOperations object, items are
persisted through the save(Object) method or
deleted through the delete(Object) per the
ItemWriter’s configuration

Extends AbstractMethodInvokingDelegator
creating arguments on the fly. Arguments are
created by retrieving the values from the fields
in the item to be processed (through a
SpringBeanlWirapper), based on an injected array of
field names.

Given a Spring Data CrudRepository
implementation, items are saved through the
method specified in the configuration.

Uses a Marshaller implementation to convert
each item to XML and then writes it to an XML
file using StAX.

Appendix B: Meta-Data Schema

B.1. Overview

The Spring Batch Metadata tables closely match the Domain objects that represent them in Java. For
example, JobInstance, JobExecution, JobParameters, and StepExecution map to BATCH_JOB_INSTANCE,
BATCH_JOB_EXECUTION, BATCH_JOB_EXECUTION_PARAMS, and BATCH_STEP_EXECUTION, respectively.
ExecutionContext maps to both BATCH_JOB_EXECUTION_CONTEXT and BATCH_STEP_EXECUTION_CONTEXT. The
JobRepository is responsible for saving and storing each Java object into its correct table. This
appendix describes the metadata tables in detail, along with many of the design decisions that were
made when creating them. When viewing the various table creation statements below, it is
important to realize that the data types used are as generic as possible. Spring Batch provides many
schemas as examples, all of which have varying data types, due to variations in how individual
database vendors handle data types. The following image shows an ERD model of all 6 tables and
their relationships to one another:

j BATCH_STEP_EXECUTION_CONTEXT ¥
STEP_EXECUTION_ID BIGINT(20)

» SHORT_CONTEXT VARCHAR(2500)

> SERIALIZED_CONTEXT TEXT

T

j BATCH_JOB_INSTANCE v
» JOB_INSTANCE_ID BIGINT(20)
> VERSION BIGINT(20)
 JOB_NAME VARGHAR(100)

 JOB_KEY VARCHAR(32)

] BATCH_STEP_EXECUTION ¥ s
STEP_EXECUTIOM_ID BIGINT{20) +
> VERSION BIGINT(20) [
» STEP_NAME VARCHAR(100) *
% JOB_EXECUTION_ID BIGINT(20) | BATCH_JOB_EXECUTION ¥
 START TIME DATETIME JOB_EXECUTION_ID BIGINT(20) | BATCH_JOB_EXECUTION_PARAMS ¥
> END_TIME DATETIME > VERSION BIGINT{20) % JOB_EXECUTION_ID BIGINT(20)
 STATUS VARCHAR{10) 4 JOB_INSTANCE_ID BIGINT(20) TYPE_CD VARCHARI(E)
> COMMIT_COUNT BIGINT(20) > CREATE_TIME DATETIME 2 KEY_NAME VARCHAR(100)
> READ_COUNT BIGINT{20) > START_TIME DATETIME > STRING_VAL VARCHAR(250)
> FILTER_COUNT BIGINT(20) =4, EMND_TIME DATETIME g, DATE VAL DATETIME
> WRITE_COUNT BIGINT(20) > STATUS VARCHAR(10) > LONG_VAL BIGINT(20)
> READ_SKIP_COUNT BIGINT(20) » EXIT_CODE VARCHAR(100) > DOUBLE_VAL DOUBLE
> WRITE_SKIP_COUNT BIGINT{20) > EXIT_MESSAGE VARCHAR(2500) 2 IDENTIFYING CHAR(1)
> PROCESS_SKIP_COUNT BIGINT(20) > LAST_UPDATED DATETIME >
> ROLLBACK_COUNT BIGINT{20) >
 EXIT_CODE VARCHAR(100)
> EXIT_MESSAGE VARCHAR(2500) 1
> LAST_UPDATED DATETIME

» j BATCH_JOB_EXECUTION_CONTEXT ¥
JOB_EXECUTION_ID BIGINT(20)

 SHORT_CONTEXT VARCHAR(2500)

> SERIALIZED_CONTEXT TEXT

»

Figure 31. Spring Batch Meta-Data ERD

B.1.1. Example DDL Scripts

The Spring Batch Core JAR file contains example scripts to create the relational tables for a number
of database platforms (which are, in turn, auto-detected by the job repository factory bean or
namespace equivalent). These scripts can be used as is or modified with additional indexes and
constraints as desired. The file names are in the form schema-*.sql, where "*" is the short name of
the target database platform. The scripts are in the package org.springframework.batch.core.

B.1.2. Version

Many of the database tables discussed in this appendix contain a version column. This column is
important because Spring Batch employs an optimistic locking strategy when dealing with updates
to the database. This means that each time a record is 'touched' (updated) the value in the version

239

column is incremented by one. When the repository goes back to save the value, if the version
number has changed it throws an OptimisticLockingFailureException, indicating there has been an
error with concurrent access. This check is necessary, since, even though different batch jobs may
be running in different machines, they all use the same database tables.

B.1.3. Identity

BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION, and BATCH_STEP_EXECUTION each contain columns ending in
_ID. These fields act as primary keys for their respective tables. However, they are not database
generated keys. Rather, they are generated by separate sequences. This is necessary because, after
inserting one of the domain objects into the database, the key it is given needs to be set on the
actual object so that they can be uniquely identified in Java. Newer database drivers (JDBC 3.0 and
up) support this feature with database-generated keys. However, rather than require that feature,
sequences are used. Each variation of the schema contains some form of the following statements:

CREATE SEQUENCE BATCH_STEP_EXECUTION_SEQ;
CREATE SEQUENCE BATCH_JOB_EXECUTION_SEQ;
CREATE SEQUENCE BATCH_JOB_SEQ;

Many database vendors do not support sequences. In these cases, work-arounds are used, such as
the following statements for MySQL.:

CREATE TABLE BATCH_STEP_EXECUTION_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_STEP_EXECUTION_SEQ values(0);

CREATE TABLE BATCH_JOB_EXECUTION_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_JOB_EXECUTION_SEQ values(9);

CREATE TABLE BATCH_JOB_SEQ (ID BIGINT NOT NULL) type=InnoDB;

INSERT INTO BATCH_JOB_SEQ values(0);

In the preceding case, a table is used in place of each sequence. The Spring core class,
MySQLMaxValueIncrementer, then increments the one column in this sequence in order to give similar
functionality.

B.2. BATCH_JOB_INSTANCE

The BATCH_JOB_INSTANCE table holds all information relevant to a JobInstance, and serves as the top
of the overall hierarchy. The following generic DDL statement is used to create it:

CREATE TABLE BATCH_JOB_INSTANCE (
JOB_INSTANCE_ID BIGINT PRIMARY KEY ,
VERSION BIGINT,

JOB_NAME VARCHAR(100) NOT NULL ,
JOB_KEY VARCHAR(2500)

¥

The following list describes each column in the table:

240

» JOB_INSTANCE_ID: The unique ID that identifies the instance. It is also the primary key. The value
of this column should be obtainable by calling the getId method on JobInstance.

e VERSION: See Version.

* JOB_NAME: Name of the job obtained from the Job object. Because it is required to identify the
instance, it must not be null.

» JOB_KEY: A serialization of the JobParameters that uniquely identifies separate instances of the
same job from one another. (JobInstances with the same job name must have different
JobParameters and, thus, different JOB_KEY values).

B.3. BATCH_JOB_EXECUTION_PARAMS

The BATCH_JOB_EXECUTION_PARAMS table holds all information relevant to the JobParameters object. It
contains 0 or more key/value pairs passed to a Job and serves as a record of the parameters with
which a job was run. For each parameter that contributes to the generation of a job’s identity, the
IDENTIFYING flag is set to true. Note that the table has been denormalized. Rather than creating a
separate table for each type, there is one table with a column indicating the type, as shown in the
following listing:

CREATE TABLE BATCH_JOB_EXECUTION_PARAMS (
JOB_EXECUTION_ID BIGINT NOT NULL ,
TYPE_CD VARCHAR(6) NOT NULL ,
KEY_NAME VARCHAR(100) NOT NULL ,
STRING_VAL VARCHAR(250) ,
DATE_VAL DATETIME DEFAULT NULL ,
LONG_VAL BIGINT ,
DOUBLE VAL DOUBLE PRECISION ,
IDENTIFYING CHAR(1) NOT NULL ,
constraint JOB_EXEC_PARAMS_FK foreign key (JOB_EXECUTION_ID)
references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
¥

The following list describes each column:

* JOB_EXECUTION_ID: Foreign key from the BATCH_JOB_EXECUTION table that indicates the job
execution to which the parameter entry belongs. Note that multiple rows (that is, key/value
pairs) may exist for each execution.

» TYPE_CD: String representation of the type of value stored, which can be a string, a date, a long,
or a double. Because the type must be known, it cannot be null.

* KEY_NAME: The parameter key.

« STRING_VAL: Parameter value, if the type is string.

* DATE_VAL: Parameter value, if the type is date.

* LONG_VAL: Parameter value, if the type is long.

* DOUBLE_VAL: Parameter value, if the type is double.

« IDENTIFYING: Flag indicating whether the parameter contributed to the identity of the related

241

JobInstance.

Note that there is no primary key for this table. This is because the framework has no use for one
and, thus, does not require it. If need be, you can add a primary key may be added with a database
generated key without causing any issues to the framework itself.

B.

4. BATCH_JOB_EXECUTION

The BATCH_JOB_EXECUTION table holds all information relevant to the JobExecution object. Every time
a Job is run, there is always a new JobExecution, and a new row in this table. The following listing
shows the definition of the BATCH_JOB_EXECUTION table:

CREATE TABLE BATCH_JOB_EXECUTION (

) I

JOB_EXECUTION_ID BIGINT PRIMARY KEY ,

VERSION BIGINT,

JOB_INSTANCE_ID BIGINT NOT NULL,

CREATE_TIME TIMESTAMP NOT NULL,

START_TIME TIMESTAMP DEFAULT NULL,

END_TIME TIMESTAMP DEFAULT NULL,

STATUS VARCHAR(10),

EXIT_CODE VARCHAR(20),

EXIT_MESSAGE VARCHAR(2500),

LAST_UPDATED TIMESTAMP,
JOB_CONFIGURATION_LOCATION VARCHAR(2500) NULL,
constraint JOB_INSTANCE_EXECUTION_FK foreign key (JOB_INSTANCE_ID)
references BATCH_JOB_INSTANCE(JOB_INSTANCE_ID)

The following list describes each column:

242

JOB_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this column
is obtainable by calling the getId method of the JobExecution object.

VERSION: See Version.

JOB_INSTANCE_ID: Foreign key from the BATCH_JOB_INSTANCE table. It indicates the instance to
which this execution belongs. There may be more than one execution per instance.

CREATE_TIME: Timestamp representing the time when the execution was created.
START_TIME: Timestamp representing the time when the execution was started.

END_TIME: Timestamp representing the time when the execution finished, regardless of success
or failure. An empty value in this column when the job is not currently running indicates that
there has been some type of error and the framework was unable to perform a last save before
failing.

STATUS: Character string representing the status of the execution. This may be COMPLETED, STARTED,
and others. The object representation of this column is the BatchStatus enumeration.

EXIT_CODE: Character string representing the exit code of the execution. In the case of a
command-line job, this may be converted into a number.

» EXIT_MESSAGE: Character string representing a more detailed description of how the job exited. In
the case of failure, this might include as much of the stack trace as is possible.

» LAST_UPDATED: Timestamp representing the last time this execution was persisted.

B.5. BATCH_STEP_EXECUTION

The BATCH_STEP_EXECUTION table holds all information relevant to the StepExecution object. This
table is similar in many ways to the BATCH_JOB_EXECUTION table, and there is always at least one entry

per Step for each JobExecution created. The following listing shows the definition of the
BATCH_STEP_EXECUTION table:

CREATE TABLE BATCH_STEP_EXECUTION (

STEP_EXECUTION_ID BIGINT PRIMARY KEY ,

VERSION BIGINT NOT NULL,

STEP_NAME VARCHAR(100) NOT NULL,

JOB_EXECUTION_ID BIGINT NOT NULL,

START_TIME TIMESTAMP NOT NULL ,

END_TIME TIMESTAMP DEFAULT NULL,

STATUS VARCHAR(10),

COMMIT_COUNT BIGINT ,

READ_COUNT BIGINT ,

FILTER_COUNT BIGINT ,

WRITE_COUNT BIGINT ,

READ_SKIP_COUNT BIGINT ,

WRITE_SKIP_COUNT BIGINT ,

PROCESS_SKIP_COUNT BIGINT ,

ROLLBACK_COUNT BIGINT ,

EXIT_CODE VARCHAR(20) ,

EXIT_MESSAGE VARCHAR(2500) ,

LAST_UPDATED TIMESTAMP,

constraint JOB_EXECUTION_STEP_FK foreign key (JOB_EXECUTION_ID)
references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
I

The following list describes for each column:
o STEP_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this column
should be obtainable by calling the getId method of the StepExecution object.
» VERSION: See Version.
» STEP_NAME: The name of the step to which this execution belongs.

* JOB_EXECUTION_ID: Foreign key from the BATCH_JOB_EXECUTION table. It indicates the JobExecution
to which this StepExecution belongs. There may be only one StepExecution for a given
JobExecution for a given Step name.

o START_TIME: Timestamp representing the time when the execution was started.

* END_TIME: Timestamp representing the time the when execution was finished, regardless of
success or failure. An empty value in this column, even though the job is not currently running,

243

indicates that there has been some type of error and the framework was unable to perform a
last save before failing.

» STATUS: Character string representing the status of the execution. This may be COMPLETED, STARTED,
and others. The object representation of this column is the BatchStatus enumeration.

o COMMIT_COUNT: The number of times in which the step has committed a transaction during this
execution.

* READ_COUNT: The number of items read during this execution.

e FILTER_COUNT: The number of items filtered out of this execution.

* WRITE_COUNT: The number of items written and committed during this execution.

* READ_SKIP_COUNT: The number of items skipped on read during this execution.

o WRITE_SKIP_COUNT: The number of items skipped on write during this execution.

* PROCESS_SKIP_COUNT: The number of items skipped during processing during this execution.

* ROLLBACK_COUNT: The number of rollbacks during this execution. Note that this count includes
each time rollback occurs, including rollbacks for retry and those in the skip recovery
procedure.

» EXIT_CODE: Character string representing the exit code of the execution. In the case of a
command-line job, this may be converted into a number.

o EXIT_MESSAGE: Character string representing a more detailed description of how the job exited. In
the case of failure, this might include as much of the stack trace as is possible.

» LAST_UPDATED: Timestamp representing the last time this execution was persisted.

B.6. BATCH_JOB_EXECUTION_CONTEXT

The BATCH_JOB_EXECUTION_CONTEXT table holds all information relevant to the ExecutionContext of a
Job. There is exactly one Job ExecutionContext per JobExecution, and it contains all of the job-level
data that is needed for a particular job execution. This data typically represents the state that must
be retrieved after a failure, so that a JobInstance can "start from where it left off". The following
listing shows the definition of the BATCH_JOB_EXECUTION_CONTEXT table:

CREATE TABLE BATCH_JOB_EXECUTION_CONTEXT (
JOB_EXECUTION_ID BIGINT PRIMARY KEY,
SHORT_CONTEXT VARCHAR(2500) NOT NULL,
SERIALIZED_CONTEXT CLOB,
constraint JOB_EXEC_CTX_FK foreign key (JOB_EXECUTION_ID)
references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
)

The following list describes each column:

* JOB_EXECUTION_ID: Foreign key representing the JobExecution to which the context belongs. There
may be more than one row associated with a given execution.

* SHORT_CONTEXT: A string version of the SERIALIZED_CONTEXT.

244

e SERIALIZED CONTEXT: The entire context, serialized.

B.7. BATCH_STEP_EXECUTION_CONTEXT

The BATCH_STEP_EXECUTION_CONTEXT table holds all information relevant to the ExecutionContext of a
Step. There is exactly one ExecutionContext per StepExecution, and it contains all of the data that
needs to be persisted for a particular step execution. This data typically represents the state that
must be retrieved after a failure, so that a JobInstance can 'start from where it left off'. The
following listing shows the definition of the BATCH_STEP_EXECUTION_CONTEXT table:

CREATE TABLE BATCH_STEP_EXECUTION_CONTEXT (
STEP_EXECUTION_ID BIGINT PRIMARY KEY,
SHORT_CONTEXT VARCHAR(2500) NOT NULL,
SERIALIZED_CONTEXT CLOB,
constraint STEP_EXEC_CTX_FK foreign key (STEP_EXECUTION_ID)
references BATCH_STEP_EXECUTION(STEP_EXECUTION_ID)
)

The following list describes each column:
o STEP_EXECUTION_ID: Foreign key representing the StepExecution to which the context belongs.
There may be more than one row associated to a given execution.
» SHORT_CONTEXT: A string version of the SERIALIZED_CONTEXT.
e SERIALIZED_CONTEXT: The entire context, serialized.

B.8. Archiving

Because there are entries in multiple tables every time a batch job is run, it is common to create an
archive strategy for the metadata tables. The tables themselves are designed to show a record of
what happened in the past and generally do not affect the run of any job, with a few notable
exceptions pertaining to restart:

* The framework uses the metadata tables to determine whether a particular JobInstance has
been run before. If it has been run and if the job is not restartable, then an exception is thrown.

 If an entry for a JobInstance is removed without having completed successfully, the framework
thinks that the job is new rather than a restart.

» If ajob is restarted, the framework uses any data that has been persisted to the ExecutionContext
to restore the Job’s state. Therefore, removing any entries from this table for jobs that have not
completed successfully prevents them from starting at the correct point if run again.

B.9. International and Multi-byte Characters

If you are using multi-byte character sets (such as Chinese or Cyrillic) in your business processing,
then those characters might need to be persisted in the Spring Batch schema. Many users find that
simply changing the schema to double the length of the VARCHAR columns is enough. Others prefer to

245

configure the JobRepository with max-varchar-length half the value of the VARCHAR column length.
Some users have also reported that they use NVARCHAR in place of VARCHAR in their schema definitions.
The best result depends on the database platform and the way the database server has been
configured locally.

B.10. Recommendations for Indexing Meta Data Tables

Spring Batch provides DDL samples for the metadata tables in the core jar file for several common
database platforms. Index declarations are not included in that DDL, because there are too many
variations in how users may want to index, depending on their precise platform, local conventions,
and the business requirements of how the jobs are operated. The following below provides some
indication as to which columns are going to be used in a WHERE clause by the DAO implementations
provided by Spring Batch and how frequently they might be used, so that individual projects can
make up their own minds about indexing:

Table 21. Where clauses in SQL statements (excluding primary keys) and their approximate frequency of
use.

Default Table Name Where Clause Frequency

BATCH_JOB_INSTANCE JOB_NAME =? and JOB_KEY =? Every time a job is launched

BATCH_JOB_EXECUTION JOB_INSTANCE_ID =? Every time a job is restarted

BATCH_EXECUTION_CONTEXT EXECUTION ID =? and On commit interval, a.k.a.

KEY NAME =? chunk

BATCH_STEP _EXECUTION VERSION =7? On commit interval, a.k.a.
chunk (and at start and end of
step)

BATCH_STEP EXECUTION STEP_NAME =? and Before each step execution

JOB_EXECUTION_ID =?

246

Appendix C: Batch Processing and
Transactions

C.1. Simple Batching with No Retry

Consider the following simple example of a nested batch with no retries. It shows a common
scenario for batch processing: An input source is processed until exhausted, and we commit
periodically at the end of a "chunk" of processing.

| REPEAT(until=exhausted) {

TX {
REPEAT (size=5) {
input;
output;

The input operation (3.1) could be a message-based receive (such as from JMS), or a file-based read,
but to recover and continue processing with a chance of completing the whole job, it must be
transactional. The same applies to the operation at 3.2. It must be either transactional or
idempotent.

If the chunk at REPEAT (3) fails because of a database exception at 3.2, then TX (2) must roll back the
whole chunk.

C.2. Simple Stateless Retry

It is also useful to use a retry for an operation which is not transactional, such as a call to a web-
service or other remote resource, as shown in the following example:

0 | TX{

1 | input;

1.1 | output;

2 | RETRY {

2.1 | remote access;
|}

|}

This is actually one of the most useful applications of a retry, since a remote call is much more
likely to fail and be retryable than a database update. As long as the remote access (2.1) eventually
succeeds, the transaction, TX (0), commits. If the remote access (2.1) eventually fails, then the
transaction, TX (0), is guaranteed to roll back.

247

C.3. Typical Repeat-Retry Pattern

The most typical batch processing pattern is to add a retry to the inner block of the chunk, as shown
in the following example:

| REPEAT(until=exhausted, exception=not critical) {

| X {
| REPEAT(size=h) {

| RETRY(stateful, exception=deadlock loser) {
| input;
| } PROCESS {
| output;
| } SKIP and RECOVER {
notify;
}

—_———— - — o U U A DR — W N—
—

The inner RETRY (4) block is marked as "stateful". See the typical use case for a description of a
stateful retry. This means that if the retry PROCESS (5) block fails, the behavior of the RETRY (4) is as
follows:

1. Throw an exception, rolling back the transaction, TX (2), at the chunk level, and allowing the
item to be re-presented to the input queue.

2. When the item re-appears, it might be retried depending on the retry policy in place, executing
PROCESS (5) again. The second and subsequent attempts might fail again and re-throw the
exception.

3. Eventually, the item reappears for the final time. The retry policy disallows another attempt, so
PROCESS (5) is never executed. In this case, we follow the RECOVER (6) path, effectively "skipping"
the item that was received and is being processed.

Note that the notation used for the RETRY (4) in the plan above explicitly shows that the input step
(4.1) is part of the retry. It also makes clear that there are two alternate paths for processing: the
normal case, as denoted by PROCESS (5), and the recovery path, as denoted in a separate block by
RECOVER (6). The two alternate paths are completely distinct. Only one is ever taken in normal
circumstances.

In special cases (such as a special TranscationValidException type), the retry policy might be able to
determine that the RECOVER (6) path can be taken on the last attempt after PROCESS (5) has just failed,
instead of waiting for the item to be re-presented. This is not the default behavior, because it
requires detailed knowledge of what has happened inside the PROCESS (5) block, which is not usually
available. For example, if the output included write access before the failure, then the exception

248

should be re-thrown to ensure transactional integrity.

The completion policy in the outer REPEAT (1) is crucial to the success of the above plan. If the output
(5.1) fails, it may throw an exception (it usually does, as described), in which case the transaction, TX
(2), fails, and the exception could propagate up through the outer batch REPEAT (1). We do not want
the whole batch to stop, because the RETRY (4) might still be successful if we try again, so we add
exception=not critical to the outer REPEAT (1).

Note, however, that if the TX (2) fails and we do try again, by virtue of the outer completion policy,
the item that is next processed in the inner REPEAT (3) is not guaranteed to be the one that just failed.
It might be, but it depends on the implementation of the input (4.1). Thus, the output (5.1) might fail
again on either a new item or the old one. The client of the batch should not assume that each RETRY
(4) attempt is going to process the same items as the last one that failed. For example, if the
termination policy for REPEAT (1) is to fail after 10 attempts, it fails after 10 consecutive attempts but
not necessarily at the same item. This is consistent with the overall retry strategy. The inner RETRY
(4) is aware of the history of each item and can decide whether or not to have another attempt at it.

C.4. Asynchronous Chunk Processing

The inner batches or chunks in the typical example can be executed concurrently by configuring
the outer batch to use an AsyncTaskExecutor. The outer batch waits for all the chunks to complete
before completing. The following example shows asynchronous chunk processing:

| REPEAT(until=exhausted, concurrent, exception=not critical) {

| X {
| REPEAT(size=h) {

| RETRY(stateful, exception=deadlock loser) {
N input;
| } PROCESS {
output;
| } RECOVER {
recover;

}

_———— — OO — U~ B — W N—

C.5. Asynchronous Item Processing

The individual items in chunks in the typical example can also, in principle, be processed
concurrently. In this case, the transaction boundary has to move to the level of the individual item,
so that each transaction is on a single thread, as shown in the following example:

249

| REPEAT(until=exhausted, exception=not critical) {
| REPEAT(size=5, concurrent) {

| TX {
| RETRY(stateful, exception=deadlock loser) {
a0 input;
| } PROCESS {
output;
| } RECOVER {
recover;
¥
}

—_—— o — U A WwW— N —

This plan sacrifices the optimization benefit, which the simple plan had, of having all the
transactional resources chunked together. It is only useful if the cost of the processing (5) is much
higher than the cost of transaction management (3).

C.6. Interactions Between Batching and Transaction
Propagation

There is a tighter coupling between batch-retry and transaction management than we would
ideally like. In particular, a stateless retry cannot be used to retry database operations with a
transaction manager that does not support NESTED propagation.

The following example uses retry without repeat:

1T | TX{

|

1.1 | input;

2.2 | database access;
2 | RETRY {

3 TX {

3.1 | database access;
| }

|}

|

| }

Again, and for the same reason, the inner transaction, TX (3), can cause the outer transaction, TX (1),
to fail, even if the RETRY (2) is eventually successful.

Unfortunately, the same effect percolates from the retry block up to the surrounding repeat batch if

250

there is one, as shown in the following example:

1T] TX{

|

2 | REPEAT(size=5) {
2.1 | input;

2.2 | database access;
3] RETRY {

4 | X {

4.1 | database access;
| }

| }

|}

|

|}

Now, if TX (3) rolls back, it can pollute the whole batch at TX (1) and force it to roll back at the end.
What about non-default propagation?

* In the preceding example, PROPAGATION_REQUIRES_NEW at TX (3) prevents the outer TX (1) from
being polluted if both transactions are eventually successful. But if TX (3) commits and TX (1)
rolls back, then TX (3) stays committed, so we violate the transaction contract for TX (1). If TX (3)
rolls back, TX (1) does not necessarily (but it probably does in practice, because the retry throws
a roll back exception).

» PROPAGATION_NESTED at TX (3) works as we require in the retry case (and for a batch with skips): TX
(3) can commit but subsequently be rolled back by the outer transaction, TX (1). If TX (3) rolls
back, TX (1) rolls back in practice. This option is only available on some platforms, not including
Hibernate or JTA, but it is the only one that consistently works.

Consequently, the NESTED pattern is best if the retry block contains any database access.

C.7. Special Case: Transactions with Orthogonal
Resources

Default propagation is always OK for simple cases where there are no nested database transactions.
Consider the following example, where the SESSION and TX are not global XA resources, so their
resources are orthogonal:

251

@ | SESSION {

1T input;

2 | RETRY {

3| TX {

3.1 | database access;
| }

|}

| 3}

Here there is a transactional message SESSION (0), but it does not participate in other transactions
with PlatformTransactionManager, so it does not propagate when TX (3) starts. There is no database
access outside the RETRY (2) block. If TX (3) fails and then eventually succeeds on a retry, SESSION (0)
can commit (independently of a TX block). This is similar to the vanilla "best-efforts-one-phase-
commit" scenario. The worst that can happen is a duplicate message when the RETRY (2) succeeds
and the SESSION (0) cannot commit (for example, because the message system is unavailable).

C.8. Stateless Retry Cannot Recover

The distinction between a stateless and a stateful retry in the typical example above is important. It
is actually ultimately a transactional constraint that forces the distinction, and this constraint also
makes it obvious why the distinction exists.

We start with the observation that there is no way to skip an item that failed and successfully
commit the rest of the chunk unless we wrap the item processing in a transaction. Consequently, we
simplify the typical batch execution plan to be as follows:

| REPEAT(until=exhausted) {

| TXA{
| REPEAT(size=5) {

RETRY(stateless) {
TX {
input;
database access;

| } RECOVER {
a0 skip;

_——— U — DD PAEADEW— N —

The preceding example shows a stateless RETRY (3) with a RECOVER (5) path that kicks in after the
final attempt fails. The stateless label means that the block is repeated without re-throwing any

252

exception up to some limit. This only works if the transaction, TX (4), has propagation NESTED.

If the inner TX (4) has default propagation properties and rolls back, it pollutes the outer TX (1). The
inner transaction is assumed by the transaction manager to have corrupted the transactional
resource, so it cannot be used again.

Support for NESTED propagation is sufficiently rare that we choose not to support recovery with
stateless retries in the current versions of Spring Batch. The same effect can always be achieved (at
the expense of repeating more processing) by using the typical pattern above.

253

Appendix D: Glossary

D.1. Spring Batch Glossary

Batch

An accumulation of business transactions over time.

Batch Application Style

Term used to designate batch as an application style in its own right, similar to online, Web, or
SOA. It has standard elements of input, validation, transformation of information to business
model, business processing, and output. In addition, it requires monitoring at a macro level.

Batch Processing

The handling of a batch of many business transactions that have accumulated over a period of
time (such as an hour, a day, a week, a month, or a year). It is the application of a process or set
of processes to many data entities or objects in a repetitive and predictable fashion with either
no manual element or a separate manual element for error processing.

Batch Window

The time frame within which a batch job must complete. This can be constrained by other
systems coming online, other dependent jobs needing to execute, or other factors specific to the
batch environment.

Step

The main batch task or unit of work. It initializes the business logic and controls the transaction
environment, based on commit interval setting and other factors.

Tasklet

A component created by an application developer to process the business logic for a Step.

Batch Job Type

Job types describe application of jobs for particular types of processing. Common areas are
interface processing (typically flat files), forms processing (either for online PDF generation or
print formats), and report processing.

Driving Query
A driving query identifies the set of work for a job to do. The job then breaks that work into
individual units of work. For instance, a driving query might be to identify all financial
transactions that have a status of "pending transmission" and send them to a partner system.
The driving query returns a set of record IDs to process. Each record ID then becomes a unit of
work. A driving query may involve a join (if the criteria for selection falls across two or more
tables) or it may work with a single table.

Item

An item represents the smallest amount of complete data for processing. In the simplest term:s,
this might be a line in a file, a row in a database table, or a particular element in an XML file.

254

Logicial Unit of Work (LUW)

A batch job iterates through a driving query (or other input source, such as a file) to perform the
set of work that the job must accomplish. Each iteration of work performed is a unit of work.

Commit Interval

A set of LUWSs processed within a single transaction.

Partitioning

Splitting a job into multiple threads where each thread is responsible for a subset of the overall
data to be processed. The threads of execution may be within the same JVM or they may span
JVMs in a clustered environment that supports workload balancing.

Staging Table
A table that holds temporary data while it is being processed.

Restartable

A job that can be executed again and assumes the same identity as when run initially. In other
words, it is has the same job instance ID.

Rerunnable

A job that is restartable and manages its own state in terms of the previous run’s record
processing. An example of a rerunnable step is one based on a driving query. If the driving
query can be formed so that it limits the processed rows when the job is restarted, then it is re-
runnable. This is managed by the application logic. Often, a condition is added to the where
statement to limit the rows returned by the driving query with logic resembling "and
processedFlag!= true".

Repeat

One of the most basic units of batch processing, it defines by repeatability calling a portion of
code until it is finished and while there is no error. Typically, a batch process would be
repeatable as long as there is input.

Retry

Simplifies the execution of operations with retry semantics most frequently associated with
handling transactional output exceptions. Retry is slightly different from repeat, rather than
continually calling a block of code, retry is stateful and continually calls the same block of code
with the same input, until it either succeeds or some type of retry limit has been exceeded. It is
only generally useful when a subsequent invocation of the operation might succeed because
something in the environment has improved.

Recover

Recover operations handle an exception in such a way that a repeat process is able to continue.

Skip
Skip is a recovery strategy often used on file input sources as the strategy for ignoring bad input
records that failed validation.

255

	Spring Batch - Reference Documentation
	Table of Contents
	Chapter 1. Spring Batch Introduction
	1.1. Background
	1.2. Usage Scenarios
	1.3. Spring Batch Architecture
	1.4. General Batch Principles and Guidelines
	1.5. Batch Processing Strategies

	Chapter 2. What’s New in Spring Batch 4.0
	2.1. Java 8 Requirement
	2.2. Dependencies Re-baseline
	2.3. Provide builders for the ItemReaders, ItemProcessors, and ItemWriters

	Chapter 3. The Domain Language of Batch
	3.1. Job
	3.1.1. JobInstance
	3.1.2. JobParameters
	3.1.3. JobExecution

	3.2. Step
	3.2.1. StepExecution

	3.3. ExecutionContext
	3.4. JobRepository
	3.5. JobLauncher
	3.6. Item Reader
	3.7. Item Writer
	3.8. Item Processor
	3.9. Batch Namespace

	Chapter 4. Configuring and Running a Job
	4.1. Configuring a Job
	4.1.1. Restartability
	4.1.2. Intercepting Job Execution
	4.1.3. Inheriting from a Parent Job
	4.1.4. JobParametersValidator

	4.2. Java Config
	4.3. Configuring a JobRepository
	4.3.1. Transaction Configuration for the JobRepository
	4.3.2. Changing the Table Prefix
	4.3.3. In-Memory Repository
	4.3.4. Non-standard Database Types in a Repository

	4.4. Configuring a JobLauncher
	4.5. Running a Job
	4.5.1. Running Jobs from the Command Line
	The CommandLineJobRunner
	ExitCodes

	4.5.2. Running Jobs from within a Web Container

	4.6. Advanced Meta-Data Usage
	4.6.1. Querying the Repository
	4.6.2. JobRegistry
	JobRegistryBeanPostProcessor
	AutomaticJobRegistrar

	4.6.3. JobOperator
	4.6.4. JobParametersIncrementer
	4.6.5. Stopping a Job
	4.6.6. Aborting a Job

	Chapter 5. Configuring a Step
	5.1. Chunk-oriented Processing
	5.1.1. Configuring a Step
	5.1.2. Inheriting from a Parent Step
	Abstract Step
	Merging Lists

	5.1.3. The Commit Interval
	5.1.4. Configuring a Step for Restart
	Setting a Start Limit
	Restarting a Completed Step
	Step Restart Configuration Example

	5.1.5. Configuring Skip Logic
	5.1.6. Configuring Retry Logic
	5.1.7. Controlling Rollback
	Transactional Readers

	5.1.8. Transaction Attributes
	5.1.9. Registering ItemStream with a Step
	5.1.10. Intercepting Step Execution
	StepExecutionListener
	ChunkListener
	ItemReadListener
	ItemProcessListener
	ItemWriteListener
	SkipListener

	5.2. TaskletStep
	5.2.1. TaskletAdapter
	5.2.2. Example Tasklet Implementation

	5.3. Controlling Step Flow
	5.3.1. Sequential Flow
	5.3.2. Conditional Flow
	Batch Status Versus Exit Status

	5.3.3. Configuring for Stop
	Ending at a Step
	Failing a Step
	Stopping a Job at a Given Step

	5.3.4. Programmatic Flow Decisions
	5.3.5. Split Flows
	5.3.6. Externalizing Flow Definitions and Dependencies Between Jobs

	5.4. Late Binding of Job and Step Attributes
	5.4.1. Step Scope
	5.4.2. Job Scope

	Chapter 6. ItemReaders and ItemWriters
	6.1. ItemReader
	6.2. ItemWriter
	6.3. ItemProcessor
	6.3.1. Chaining ItemProcessors
	6.3.2. Filtering Records
	6.3.3. Fault Tolerance

	6.4. ItemStream
	6.5. The Delegate Pattern and Registering with the Step
	6.6. Flat Files
	6.6.1. The FieldSet
	6.6.2. FlatFileItemReader
	LineMapper
	LineTokenizer
	FieldSetMapper
	DefaultLineMapper
	Simple Delimited File Reading Example
	Mapping Fields by Name
	Automapping FieldSets to Domain Objects
	Fixed Length File Formats
	Multiple Record Types within a Single File
	Exception Handling in Flat Files

	6.6.3. FlatFileItemWriter
	LineAggregator
	Simplified File Writing Example
	FieldExtractor
	Delimited File Writing Example
	Fixed Width File Writing Example
	Handling File Creation

	6.7. XML Item Readers and Writers
	6.7.1. StaxEventItemReader
	6.7.2. StaxEventItemWriter

	6.8. Multi-File Input
	6.9. Database
	6.9.1. Cursor-based ItemReader Implementations
	JdbcCursorItemReader
	HibernateCursorItemReader
	StoredProcedureItemReader

	6.9.2. Paging ItemReader Implementations
	JdbcPagingItemReader
	JpaPagingItemReader

	6.9.3. Database ItemWriters

	6.10. Reusing Existing Services
	6.11. Validating Input
	6.12. Preventing State Persistence
	6.13. Creating Custom ItemReaders and ItemWriters
	6.13.1. Custom ItemReader Example
	Making the ItemReader Restartable

	6.13.2. Custom ItemWriter Example
	Making the ItemWriter Restartable

	6.14. Item Reader and Writer Implementations
	6.14.1. Decorators
	SynchronizedItemStreamReader
	SingleItemPeekableItemReader
	MultiResourceItemWriter
	ClassifierCompositeItemWriter
	ClassifierCompositeItemProcessor

	6.14.2. Messaging Readers And Writers
	AmqpItemReader
	AmqpItemWriter
	JmsItemReader
	JmsItemWriter

	6.14.3. Database Readers
	Neo4jItemReader
	MongoItemReader
	HibernateCursorItemReader
	HibernatePagingItemReader
	RepositoryItemReader

	6.14.4. Database Writers
	Neo4jItemWriter
	MongoItemWriter
	RepositoryItemWriter
	HibernateItemWriter
	JdbcBatchItemWriter
	JpaItemWriter
	GemfireItemWriter

	6.14.5. Specialized Readers
	LdifReader
	MappingLdifReader

	6.14.6. Specialized Writers
	SimpleMailMessageItemWriter

	6.14.7. Specialized Processors
	ScriptItemProcessor

	Chapter 7. Scaling and Parallel Processing
	7.1. Multi-threaded Step
	7.2. Parallel Steps
	7.3. Remote Chunking
	7.4. Partitioning
	7.4.1. PartitionHandler
	7.4.2. Partitioner
	7.4.3. Binding Input Data to Steps

	Chapter 8. Repeat
	8.1. RepeatTemplate
	8.1.1. RepeatContext
	8.1.2. RepeatStatus

	8.2. Completion Policies
	8.3. Exception Handling
	8.4. Listeners
	8.5. Parallel Processing
	8.6. Declarative Iteration

	Chapter 9. Retry
	9.1. RetryTemplate
	9.1.1. RetryContext
	9.1.2. RecoveryCallback
	9.1.3. Stateless Retry
	9.1.4. Stateful Retry

	9.2. Retry Policies
	9.3. Backoff Policies
	9.4. Listeners
	9.5. Declarative Retry

	Chapter 10. Unit Testing
	10.1. Creating a Unit Test Class
	10.2. End-To-End Testing of Batch Jobs
	10.3. Testing Individual Steps
	10.4. Testing Step-Scoped Components
	10.5. Validating Output Files
	10.6. Mocking Domain Objects

	Chapter 11. Common Batch Patterns
	11.1. Logging Item Processing and Failures
	11.2. Stopping a Job Manually for Business Reasons
	11.3. Adding a Footer Record
	11.3.1. Writing a Summary Footer

	11.4. Driving Query Based ItemReaders
	11.5. Multi-Line Records
	11.6. Executing System Commands
	11.7. Handling Step Completion When No Input is Found
	11.8. Passing Data to Future Steps

	Chapter 12. JSR-352 Support
	12.1. General Notes about Spring Batch and JSR-352
	12.2. Setup
	12.2.1. Application Contexts
	12.2.2. Launching a JSR-352 based job

	12.3. Dependency Injection
	12.4. Batch Properties
	12.4.1. Property Support
	12.4.2. @BatchProperty annotation
	12.4.3. Property Substitution

	12.5. Processing Models
	12.5.1. Item based processing
	12.5.2. Custom checkpointing

	12.6. Running a job
	12.7. Contexts
	12.8. Step Flow
	12.9. Scaling a JSR-352 batch job
	12.9.1. Partitioning

	12.10. Testing

	Chapter 13. Spring Batch Integration
	13.1. Spring Batch Integration Introduction
	13.1.1. Namespace Support
	13.1.2. Launching Batch Jobs through Messages
	Transforming a file into a JobLaunchRequest
	The JobExecution Response
	Spring Batch Integration Configuration
	Example ItemReader Configuration

	13.2. Available Attributes of the Job-Launching Gateway
	13.3. Sub-Elements
	13.3.1. Providing Feedback with Informational Messages
	13.3.2. Asynchronous Processors
	13.3.3. Externalizing Batch Process Execution
	Remote Chunking
	Remote Partitioning

	Appendix A: List of ItemReaders and ItemWriters
	A.1. Item Readers
	A.2. Item Writers

	Appendix B: Meta-Data Schema
	B.1. Overview
	B.1.1. Example DDL Scripts
	B.1.2. Version
	B.1.3. Identity

	B.2. BATCH_JOB_INSTANCE
	B.3. BATCH_JOB_EXECUTION_PARAMS
	B.4. BATCH_JOB_EXECUTION
	B.5. BATCH_STEP_EXECUTION
	B.6. BATCH_JOB_EXECUTION_CONTEXT
	B.7. BATCH_STEP_EXECUTION_CONTEXT
	B.8. Archiving
	B.9. International and Multi-byte Characters
	B.10. Recommendations for Indexing Meta Data Tables

	Appendix C: Batch Processing and Transactions
	C.1. Simple Batching with No Retry
	C.2. Simple Stateless Retry
	C.3. Typical Repeat-Retry Pattern
	C.4. Asynchronous Chunk Processing
	C.5. Asynchronous Item Processing
	C.6. Interactions Between Batching and Transaction Propagation
	C.7. Special Case: Transactions with Orthogonal Resources
	C.8. Stateless Retry Cannot Recover

	Appendix D: Glossary
	D.1. Spring Batch Glossary

