Spring Boot Gradle Plugin Reference
Guide

Andy Wilkinson

Table of Contents

1 INTrOdUCTION ..ottt ettt e 1
2. GettINg STATTEA . ..o vt e 2
3. Managing dePendenCies.ttt e 3
3.1. Customizing managed VEISIONSutiiititiiitiiiiiiiett e, 3
3.2. Using Spring Boot’s dependency management in isolation...................cooiiii.n. 3
3.3. Learning INOTEttt ettt et ettt ettt ettt e 4

4. Packaging executable archives. e 5
4.1. Packaging executable jars e 5
4.2. Packaging executable Wars e 5
4.2.1. Packaging executable and deployablewarso o i il 5

4.3. Packaging executable and normal archives i 5
4.4. Configuring executable archive packaging 6
4.4.1. Configuring the main class.ttt e 6
4.4.2. EXCluding DevioolS. 7
4.4.3. Configuring libraries that require unpackingoco ... 7
4.4.4. Making an archive fully executable.............. . i i i 7
4.4.5. Using the Propertieslauncher. oo i 8

5. Publishing your application i e 9
5.1. Publishing with the maven plugin i e 9
5.2. Publishing with the maven-publishplugin it 9
5.3. Distributing with the applicationplugin........ ..o 9

6. Running your application with Gradle.o i 10
6.1. Reloading FESOUICES\ttt ettt eeaaas 10

7. Integrating with ACtUATOT ot i 12
7.1. Generating build information.o i e 12

8. Reacting to other pIUGINS e 14
8.1. Reacting to the Java PIUgIn ...t i e 14
8.2. Reacting to the KOotlin PIUGIN.t e 14
8.3. Reacting to the war pIUIN. ...ttt e e 14
8.4. Reacting to the dependency management plugin, 14
8.5. Reacting to the application plugin.......... ..o e 15

8.6. Reacting to the Maven plugin ... e 15

Chapter 1. Introduction

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, allowing you to package
executable jar or war archives, run Spring Boot applications, and use the dependency management
provided by spring-boot-dependencies. Spring Boot’s Gradle plugin requires Gradle 4.0 or later.

In addition to this user guide, API documentation is also available.

https://gradle.org
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api

Chapter 2. Getting started

To get started with the plugin it needs to be applied to your project.

The plugin is published to Gradle’s plugin portal and can be applied using the plugins block:

plugins {
id 'org.springframework.boot' version '2.0.7.RELEASE'
}

Applied in isolation the plugin makes few changes to a project. Instead, the plugin detects when
certain other plugins are applied and reacts accordingly. For example, when the java plugin is
applied a task for building an executable jar is automatically configured.

A typical Spring Boot project will apply the groovy, java, or org.jetbrains.kotlin.jvm plugin and the

i0.spring.dependency-management plugin as a minimum. For example:

apply plugin: 'java'
apply plugin: 'io.spring.dependency-management'’

To learn more about how the Spring Boot plugin behaves when other plugins are applied please see
the section on reacting to other plugins.

https://plugins.gradle.org/plugin/org.springframework.boot
https://docs.gradle.org/current/userguide/groovy_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.htmljava_plugin.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://github.com/spring-gradle-plugins/dependency-management-plugin

Chapter 3. Managing dependencies

When you apply the io.spring.dependency-management plugin, Spring Boot’s plugin will
automatically import the spring-boot-dependencies bom from the version of Spring Boot that you
are using. This provides a similar dependency management experience to the one that’s enjoyed by
Maven users. For example, it allows you to omit version numbers when declaring dependencies
that are managed in the bom. To make use of this functionality, simply declare dependencies in the
usual way but omit the version number:

dependencies {
compile 'org.springframework.boot:spring-boot-starter-web'
compile 'org.springframework.boot:spring-boot-starter-data-jpa’

3.1. Customizing managed versions

The spring-boot-dependencies bom that is automatically imported when the dependency
management plugin is applied uses properties to control the versions of the dependencies that it
manages. Please refer to the bom for a complete list of these properties.

To customize a managed version you set its corresponding property. For example, to customize the

version of SLF4] which is controlled by the s1f4j.version property:

ext['slf4j.version'] = '1.7.20'

Each Spring Boot release is designed and tested against a specific set of third-
A party dependencies. Overriding versions may cause compatibility issues and
should be done with care.

3.2. Using Spring Boot’s dependency management in
isolation

Spring Boot’s dependency management can be used in a project without applying Spring Boot’s
plugin to that project. The SpringBootPlugin class provides a BOM_COORDINATES constant that can be
used to import the bom without having to know its group ID, artifact ID, or version.

First, configure the project to depend on the Spring Boot plugin but do not apply it:

plugins {
id 'org.springframework.boot' version '{version}' apply false

}

The Spring Boot plugin’s dependency on the dependency management plugin means that you can

https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-projects/spring-boot/tree/v2.0.1.RELEASE/spring-boot-project/spring-boot-dependencies/pom.xml

use the dependency management plugin without having to declare a dependency on it. This also
means that you will automatically use the same version of the dependency management plugin as
Spring Boot uses.

Apply the dependency management plugin and then configure it to import Spring Boot’s bom:

apply plugin: 'io.spring.dependency-management'’

dependencyManagement {
imports {
mavenBom
org.springframework.boot.gradle.plugin.SpringBootPlugin.BOM_COORDINATES

}
}

3.3. Learning more

To learn more about the capabilities of the dependency management plugin, please refer to its
documentation.

https://github.com/spring-gradle-plugins/dependency-management-plugin/blob/master/README.md

Chapter 4. Packaging executable archives

The plugin can create executable archives (jar files and war files) that contain all of an application’s
dependencies and can then be run with java -jar.

4.1. Packaging executable jars

Executable jars can be built using the bootJar task. The task is automatically created when the java
plugin is applied and is an instance of BootJar. The assemble task is automatically configured to
depend upon the bootJar task so running assemble (or build) will also run the bootJar task.

4.2. Packaging executable wars

Executable wars can be built using the bootWar task. The task is automatically created when the war
plugin is applied and is an instance of BootWar. The assemble task is automatically configured to
depend upon the bootlWar task so running assemble (or build) will also run the bootWar task.

4.2.1. Packaging executable and deployable wars

A war file can be packaged such that it can be executed using java -jar and deployed to an external
container. To do so, the embedded servlet container dependencies should be added to the
providedRuntime configuration, for example:

dependencies {
compile 'org.springframework.boot:spring-boot-starter-web'
providedRuntime 'org.springframework.boot:spring-boot-starter-tomcat'

This ensures that they are package in the war file’s WEB-INF/1ib-provided directory from where they
will not conflict with the external container’s own classes.

providedRuntime is preferred to Gradle’s compileOnly configuration as, among
other limitations, compileOnly dependencies are not on the test classpath so any
web-based integration tests will fail.

4.3. Packaging executable and normal archives

By default, when the bootJar or bootWar tasks are configured, the jar or war tasks are disabled. A
project can be configured to build both an executable archive and a normal archive at the same
time by enabling the jar or war task:

jar {
enabled = true

}

https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootJar.html
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootWar.html

To avoid the executable archive and the normal archive from being written to the same location,
one or the other should be configured to use a different location. One way to do so is by configuring
a classifier:

bootJar {
classifier = 'boot'

}

4.4. Configuring executable archive packaging

The BootJar and BootlWar tasks are subclasses of Gradle’s Jar and War tasks respectively. As a result,
all of the standard configuration options that are available when packaging a jar or war are also
available when packaging an executable jar or war. A number of configuration options that are
specific to executable jars and wars are also provided.

4.4.1. Configuring the main class

By default, the executable archive’s main class will be configured automatically by looking for a
class with a public static void main(String[]) method in directories on the task’s classpath.

The main class can also be configured explicitly using the task’s mainClassName property:

bootJar {
mainClassName = 'com.example.ExampleApplication’

}

Alternatively, the main class name can be configured project-wide using the mainClassName property
of the Spring Boot DSL:

springBoot {
mainClassName = 'com.example.ExampleApplication’

}

If the application plugin has been applied its mainClassName project property can be used for the
same purpose:

mainClassName = 'com.example.ExampleApplication’

Lastly, the Start-Class attribute can be configured on the task’s manifest:

https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootJar.html
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootWar.html
https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html

bootJar {
manifest {
attributes 'Start-Class': 'com.example.ExampleApplication'

}

4.4.2. Excluding Devtools

By default, Spring Boot’s Devtools module, org.springframework.boot:spring-boot-devtools, will be
excluded from an executable jar or war. If you want to include Devtools in your archive set the
excludeDevtools property to false:

bootWar {
excludeDevtools = false

}

4.4.3. Configuring libraries that require unpacking

Most libraries can be used directly when nested in an executable archive, however certain libraries
can have problems. For example, JRuby includes its own nested jar support which assumes that
jruby-complete.jar is always directly available on the file system.

To deal with any problematic libraries, an executable archive can be configured to unpack specific
nested jars to a temporary folder when the executable archive is run. Libraries can be identified as
requiring unpacking using Ant-style patterns that match against the absolute path of the source jar
file:

bootJar {
requiresUnpack '**/jruby-complete-*.jar'

}

For more control a closure can also be used. The closure is passed a FileTreeElement and should
return a boolean indicating whether or not unpacking is required.

4.4.4. Making an archive fully executable

Spring Boot provides support for fully executable archives. An archive is made fully executable by
prepending a shell script that knows how to launch the application. On Unix-like platforms, this
launch script allows the archive to be run directly like any other executable or to be installed as a
service.

To use this feature, the inclusion of the launch script must be enabled:

bootJar {
launchScript()
}

This will add Spring Boot’s default launch script to the archive. The default launch script includes
several properties with sensible default values. The values can be customized using the properties

property:

bootJar {
launchScript {
properties 'logFilename': 'example-app.log'

}

If the default launch script does not meet your needs, the script property can be used to provide a
custom launch script:

bootJar {
launchScript {
script = file('src/custom.script’)

}

4.4.5. Using the PropertiesLauncher

To use the PropertiesLauncher to launch an executable jar or war, configure the task’s manifest to
set the Main-Class attribute:

bootWar {
manifest {
attributes 'Main-Class': 'org.springframework.boot.loader.PropertiesLauncher’

}

Chapter 5. Publishing your application

5.1. Publishing with the maven plugin

When the maven plugin is applied, an Upload task for the bootArchives configuration named
uploadBootArchives is automatically created. By default, the bootArchives configuration contains the
archive produced by the bootJar or bootWar task. The uploadBootArchives task can be configured to
publish the archive to a Maven repository:

uploadBootArchives {
repositories {
mavenDeployer {
repository url: 'https://repo.example.com'

}

5.2. Publishing with the maven-publish plugin

To publish your Spring Boot jar or war, add it to the publication using the artifact method on
MavenPublication. Pass the task that produces that artifact that you wish to publish to the artifact
method. For example, to publish the artifact produced by the default bootJar task:

publishing {
publications {
bootJava(MavenPublication) {
artifact bootlar

}
}
repositories {
maven {
url "https://repo.example.com’
}
}

5.3. Distributing with the application plugin

When the application plugin is applied a distribution named boot is created. This distribution
contains the archive produced by the bootJar or bootWar task and scripts to launch it on Unix-like
platforms and Windows. Zip and tar distributions can be built by the bootDistZip and bootDistTar
tasks respectively.

https://docs.gradle.org/current/userguide/maven_plugin.html
https://docs.gradle.org/current/userguide/maven_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html

Chapter 6. Running your application with
Gradle

To run your application without first building an archive use the bootRun task:
$./gradlew bootRun

The bootRun task is an instance of BootRun which is a JavaExec subclass. As such, all of the usual
configuration options for executing a Java process in Gradle are available to you. The task is
automatically configured to use the runtime classpath of the main source set.

By default, the main class will be configured automatically by looking for a class with a public
static void main(String[]) method in directories on the task’s classpath.

The main class can also be configured explicitly using the task’s main property:

bootRun {
main = 'com.example.ExampleApplication'

}

Alternatively, the main class name can be configured project-wide using the mainClassName property
of the Spring Boot DSL:

springBoot {
mainClassName = 'com.example.ExampleApplication’

}

If the application plugin has been applied, its mainClassName project property can be used for the
same purpose:

mainClassName = 'com.example.ExampleApplication’

6.1. Reloading resources

If devtools has been added to your project it will automatically monitor your application for
changes. Alternatively, you can configure bootRun such that your application’s static resources are
loaded from their source location:

bootRun {
sourceResources sourceSets.main

}

10

https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/run/BootRun.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html

This makes them reloadable in the live application which can be helpful at development time.

11

Chapter 7. Integrating with Actuator

7.1. Generating build information

Spring Boot Actuator’s info endpoint automatically publishes information about your build in the
presence of a META-INF/build-info.properties file. A BuildInfo task is provided to generate this file.
The easiest way to use the task is via the plugin’s DSL:

springBoot {
buildInfo()
}

This will configure a BuildInfo task named bootBuildInfo and, if it exists, make the Java plugin’s
classes task depend upon it. The task’s destination directory will be META-INF in the output directory
of the main source set’s resources (typically build/resources/main).

By default, the generated build information is derived from the project:

Property Default value

build.artifact The base name of the bootJar or bootWar task, or
unspecified if no such task exists

build.group The group of the project

build.name The name of the project

build.version The version of the project

build.time The time at which the project is being built

The properties can be customized using the DSL:

springBoot {
buildInfo {
properties {
artifact = 'example-app'
version = '1.2.3'
group = 'com.example'
name = 'Example application'

The default value for build.time is the instant at which the project is being built. A side-effect of this
is that the task will never be up-to-date and, therefore, builds will take slightly longer as more tasks
will have to be executed. Another side-effect is that the task’s output will always change and,
therefore, the build will not be truly repeatable. If you value build performance or repeatability

12

https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/buildinfo/BuildInfo.html
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/buildinfo/BuildInfo.html

more highly than the accuracy of the build.time property, set time to null or a fixed value.

Additional properties can also be added to the build information:

springBoot {
buildInfo {
properties {
additional = [
'a': 'alpha',
'b': 'bravo'

13

Chapter 8. Reacting to other plugins

When another plugin is applied the Spring Boot plugin reacts by making various changes to the
project’s configuration. This section describes those changes.

8.1. Reacting to the Java plugin
When Gradle’s java plugin is applied to a project, the Spring Boot plugin:

1. Creates a BootJar task named bootJar that will create an executable, fat jar for the project. The
jar will contain everything on the runtime classpath of the main source set; classes are
packaged in BOOT-INF/classes and jars are packaged in BOOT-INF/1ib

Configures the assemble task to depend on the bootJar task.
Disables the jar task.

Creates a BootRun task named bootRun that can be used to run your application.

1ok WD

Creates a configuration named bootArchives that contains the artifact produced by the bootJar
task.

6. Configures any JavaCompile tasks with no configured encoding to use UTF-8.

7. Configures any JavaCompile tasks to use the -parameters compiler argument.

8.2. Reacting to the Kotlin plugin

When Kotlin’s Gradle plugin is applied to a project, the Spring Boot plugin:

1. Aligns the Kotlin version used in Spring Boot’s dependency management with the version of the
plugin. This is achieved by setting the kotlin.version property with a value that matches the
version of the Kotlin plugin.

2. Configures any KotlinCompile tasks to use the -java-parameters compiler argument.

8.3. Reacting to the war plugin
When Gradle’s war plugin is applied to a project, the Spring Boot plugin:

1. Creates a BootlWar task named bootWar that will create an executable, fat war for the project. In
addition to the standard packaging, everything in the providedRuntime configuration will be
packaged in WEB-INF/1ib-provided.

2. Configures the assemble task to depend on the bootWar task.
3. Disables the war task.

4. Configures the bootArchives configuration to contain the artifact produced by the bootWar task.

8.4. Reacting to the dependency management plugin

When the io0.spring.dependency-management plugin is applied to a project, the Spring Boot plugin will

14

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootJar.html
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/run/BootRun.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootWar.html
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

automatically import the spring-boot-dependencies bom.

8.5. Reacting to the application plugin

When Gradle’s application plugin is applied to a project, the Spring Boot plugin:

1.

Creates a CreateStartScripts task named bootStartScripts that will creates scripts that launch
the artifact in the bootArchives configuration using java -jar.

Creates a new distribution named boot and configures it to contain the artifact in the
bootArchives configuration in its 1ib directory and the start scripts in its bin directory.
Configures the bootRun task to use the mainClassName property as a convention for its main
property.

Configures the bootRun task to use the applicationDefaultJvmArgs property as a convention for its
jvmArgs property.

Configures the bootJar task to use the mainClassName property as a convention for the Start-

(lass entry in its manifest.

Configures the bootWar task to use the mainClassName property as a convention for the Start-
(lass entry in its manifest.

8.6. Reacting to the Maven plugin

When Gradle’s maven plugin is applied to a project, the Spring Boot plugin will configure the
uploadBootArchives Upload task to ensure that no dependencies are declared in the pom that it
generates.

15

https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/maven_plugin.html
https://docs.gradle.org/current/userguide/maven_plugin.html

	Spring Boot Gradle Plugin Reference Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting started
	Chapter 3. Managing dependencies
	3.1. Customizing managed versions
	3.2. Using Spring Boot’s dependency management in isolation
	3.3. Learning more

	Chapter 4. Packaging executable archives
	4.1. Packaging executable jars
	4.2. Packaging executable wars
	4.2.1. Packaging executable and deployable wars

	4.3. Packaging executable and normal archives
	4.4. Configuring executable archive packaging
	4.4.1. Configuring the main class
	4.4.2. Excluding Devtools
	4.4.3. Configuring libraries that require unpacking
	4.4.4. Making an archive fully executable
	4.4.5. Using the PropertiesLauncher

	Chapter 5. Publishing your application
	5.1. Publishing with the maven plugin
	5.2. Publishing with the maven-publish plugin
	5.3. Distributing with the application plugin

	Chapter 6. Running your application with Gradle
	6.1. Reloading resources

	Chapter 7. Integrating with Actuator
	7.1. Generating build information

	Chapter 8. Reacting to other plugins
	8.1. Reacting to the Java plugin
	8.2. Reacting to the Kotlin plugin
	8.3. Reacting to the war plugin
	8.4. Reacting to the dependency management plugin
	8.5. Reacting to the application plugin
	8.6. Reacting to the Maven plugin

