Spring Data GemFire Reference Guide

1.3.2.RELEASE

Costin Leau SpringSource, a division of VMware , Oliver Gierke SpringSource, a division
of VMware , David Turanski SpringSource, a division of VMware , Lyndon Adams VMware

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data GemFire

Table of Contents

L 1= 7= Lo iv
I 01 oo [N o1 o] o H PP PSPPSR 1
I [011 oo (1 Tod 1T o KPP PPN 2
2. REQUITBIMENES ..ttt ittt et e et e ettt e e et et e e e e et e e e eabereeeeata s e eeentnneeeenes 3
3. NEW FRAIUIES ...eeiiiii e 4
3.1. New in the 1.3.0 REICASEceeniiiii e 4

3.2. NeW iN the 1.2.1 REIEASEuoveeniiiii ettt e e e e e e eeees 4

3.3. New in the 1.2.0 REICASEc.cevriiiiiiie et 4

[I. REFEIENCE GUITE ...niieieii ettt e et et e e et e e et e e et e e e an e e e e eennns 5
4. DOCUMENT SITUCTUIE ..ottt ettt ettt et ettt et et et e e et e e e e e e e e e e enen 6
5. Bootstrapping GemFire through the Spring Containerccooevviiiiiiiiii e, 7
5.1. Advantages of using Spring over GemFire cache. xm ..., 7

5.2. Using the Core Spring Data GemFire NameSPaCecc.uuvvevieiiineiiiiineeeieineeeeeiinnn 7

5.3. Configuring the GemFire Cachecccooviiiiii i 9
Advanced Cache Configurationcocoiiiiiiii e 10

Enabling PDX Serializationcccoiiiiiiiiiiiiiiii e 11

Configuring a GemFire Cache SEIVErcocouiiiiiiii e 11
Configuring a GemFire Client Cachecooiiiiiiiiii e 12

5.4. Using the GemFire Data ACCESS NAMESPACEccevvuriiieriiieieiiiiieeeeii e e eeaanns 13

An Easy Way to Connect t0 GEMFINEiciviiiiiiieiii e 13

5.5. Configuring @ GemFire RegIONiiiiiiiiiii e 14
Using an externally configured REJIONccouuiiiiiiiiiiiiii e 14
Configuring REGIONS .. .ouuiiii e r e e 15

Common Region ARINDULESoieuiiiie e 15

(O Tt Lo T I] 1= 1= 16

Cache Loaders and Cache WILErSuvviiiiiieiiiiiiiii e 17

SUDIEGIONS e et e 17

[ez B o 6] 1S =T o o= 18
Subscription INtErest POICYcovuiiiiiiiiie e 18

Data Eviction and OVerfloWiNgcc..ooiuiiiiii e 19

Data EXPIFALIONoiieiiiieii et 19

(oY= LI = L= o) o [19
Replicated REGIONoiieiiiiie e 20
Partitioned REGIONuuiiiiiiiii e 20
partitioned-regi 0N OPLONSccuviiiiiiiiiie e 20

(11T o1l =To (o] o TP 21

(O 1T | a1 (=TS 22

JSON SUP PO et 22

5.6. Creating an INAEXco.uiiii ittt e e e ea e 23

5.7. Configuring @ DiSK StOMEiiiiiiiiiiiiiiiii et 23

5.8. Configuring GemFire's FUNCLION SEIVICEccceviiiiiiiiii e, 24

5.9. Configuring WAN GatEWAYSoieuueiiiaiiiatii e e e e e et e e e et eeeaaaeanaas 24
WAN Configuration in GEMFIre 7.0ooiiiiiiiiiiii e 24

WAN Configuration in GEMFIrE 6.6cc.uiiviiiiiiiiiiii e 26

6. Working with the GemEFIre APIS ... e e 27
6.1. EXCepLion tranSIationc.uuiiiiiiiiiiii e 27

6.2. GEMFIrETEMPIALEceee i e 27

Spring Data GemFire
1.3.2.RELEASE Reference Guide ii

Spring Data GemFire

6.3. Support for Spring Cache AbSIractioncccovviiiiiiiii i 28
6.4. Transaction ManNAgEMIENTc..uiiitn it e e e e e e eaaaeeaes 28
6.5. GemFire Continuous QUEry CONLAINETccouuuiiiiiiiii e 29
Continuous Query Listener CONLAINETccuuieieiieiiie e e e e e e e e 29

The Cont i nuousQuer yLi st ener Adapt er and
Cont i NUOUSQUET YLI ST ENEI .. e 29
6.6. Wiring Decl ar abl @ COMPONENESovieiiii e 31
Configuration using template definitionscooooiiiiii 32
Configuration using auto-wiring and annotationscccceeeeiiiiiieiiinevineee e, 33
7. Working with GemFire SerialiZationoiiiiiiiiiii e 35
7.1. Wiring deserialized INSTANCESccuuiiiiiiiiiiee e 35
7.2. Auto-generating custom I NSt anti @t OF'Sooeiuiiiiiiiiii e 35
ST = O N L@ 110 - o] o 11 o P 37
8. 1. ENTILY MEPPING . ntitniiieeii ettt et et e et et e et e et et e et e e et eea e aaans 37
8.2. MappiNg PDX SEIAIIZENccuuiiiiiiii et 37
9. GEMFIIrE REPOSITONES ...iiiiieii ettt e et e e e e e e e e e e e e et e e eaneeean s 38
9.1, INTrOTUCTION .ttt et ettt e e e e e et e e e en e e e enna e eeenns 38
9.2. SPriNg CONFIGUIALION ..oeuui i 38
9.3. ExecUting OQL QUETIES ...vvuiiiiiieeiii ettt e e e e e et e e e e e et e e e e eanaeeaen 38
10. Annotation Support for FUNCHION EXECULIONoiiuiiiiiiiiiei e 40
00 O 0 T [T o) o 40
10.2. Implementation VS EXECULIONcccuuiiiii i e e e e e e e e e e aaas 40
10.3. Implementing @ FUNCHONoouuiiiie et e 40
Annotations for Function Implementation ..o 41
BatChing RESUILS ...ovuiiiiii e e e e e s 42
Enabling Annotation ProCeSSINGovieuiiiiiiiiiieii e 42
10.4. EXECULING @ FUNCLION ...couvtiiiiiii et 42
Annotations for FUNCION EXECULIONccocoviiiiiiiiieeiiieeii e 43
Enabling Annotation ProCeSSINGovieuiiiiiiiiiieii e 43
10.5. Programmatic FUNCLION EXECULIONccoouuiiiiiiiiiiiiii e 43
ST T o o] LI Y o] o] o 1 o] o <N 45
11.0. HEllo WOTIA ..ot 45
Starting and stopping the Samplecoooiiiiii 45
USING the SAMPIE .eeieei e e e 45
Hello World Sample EXplainedcoouiiiiiiiii e 46
LTI 1 T g = Lo T Yo TU o= PP 47
12, USETIUL LINKS .ttt e e et e e e e e e e 48
Y Y o] o 1=T o To | ol =2 PP UPPPRUPIN 49
A. Spring Data GemMFIre SCREMEAiiiiiiiiiee e e 50

Spring Data GemFire
1.3.2.RELEASE Reference Guide iii

Spring Data GemFire

Preface

Spring Data GemFire focuses on integrating Spring Framework's powerful, non-invasive programming
model and concepts with vFabric GemFire, simplifying configuration, development and providing high-
level abstractions. This document assumes the reader already has a basic familiarity with the Spring
Framework and vFabric GemFire concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are
no errors, some topics might require more explanation and some typos might have crept in. If you do
spot any mistakes or even more serious errors and you can spare a few cycles during lunch, please do
bring the error to the attention of the Spring Data GemFire team by raising an issue. Thank you.

Spring Data GemFire
1.3.2.RELEASE Reference Guide iv

http://jira.springframework.org

Part I. Introduction

Spring Data GemFire

1. Introduction

This reference guide for the Spring Data GemFire project explains how to use Spring framework to
configure and develop applications with vFabric GemFire. It presents the basic concepts, semantics

and provides numerous examples to help you get started.

© Note
Spring Data GemFire started as a top level Spring project called Spring GemFire (SGF) and has
since moved under the Spring Data umbrella project and has been renamed accordingly.

Spring Data GemFire
1.3.2.RELEASE Reference Guide

Spring Data GemFire

2. Requirements

Spring Data GemFire requires JDK level 6.0 and above, Spring Framework 3 and vFabric GemFire 6.6
and above (version 7 or above is recommended).

Spring Data GemFire
1.3.2.RELEASE Reference Guide 3

http://www.springsource.org/about
http://www.vmware.com/support/pubs/vfabric-gemfire.html

Spring Data GemFire

3. New Features

© Note

As of the 1.2.0 release, this project, formerly known as Spring GemFire, has been renamed to
Spring Data GemFire to reflect that it is now a component of the Spring Data project.

3.1 New in the 1.3.0 Release

« Annotation support for GemFire functions. It is now possible to declare and register functions written
as POJOs with annotations. In addition function executions are defined as annotated interfaces,
similar to the way Spring Data repositories work. See Chapter 10, Annotation Support for Function
Execution

« We have added a <dat asour ce> tag to the gfe-data XML namespace. This simplifies establishing
a basic client connection to a GemFire data grid.

* To support JSON features introduced in GemFire 7.0, we have added a ,<j son-regi on-
aut opr oxy> tag to the gfe-data XML namespace, enabling Spring AOP to perform the necessary
conversions automatically on region operations.

e Upgraded to GemFire 7.0.1 and added namespace support for new AsyncEventQueue attributes

» Added support for setting subscription interest policy on regions

3.2 New in the 1.2.1 Release

» WAN Gateway Support for GemFire 7.0

3.3 New in the 1.2.0 Release

 Full support for GemFire configuration via the gfe namespace. Now GemFire components may be
configured completely without requiring a native cache.xml file.

* WAN Gateway support for GemFire 6.6.x. See Section 5.9, “Configuring WAN Gateways”

» Spring Data Repository support with a dedicated namespace, gfe-data. See Chapter 9, GemFire
Repositories

» Namespace support for registering GemFire functions. See Section 5.8, “Configuring GemFire's
Function Service”

« A top level <di sk- st or e> element has been added to the gfe namespace to allow sharing of
persist stores among regions, and other components that support persistent backup. See Section 5.7,
“Configuring a Disk Store”

© Caution

The <*-r egi on> elements no longer allow a nested <di sk- st or e>
» GemkFire subregions are supported via nested <* - r egi on> elements

* A<l ocal - regi on> element has been added to configure a local region

Spring Data GemFire
1.3.2.RELEASE Reference Guide 4

http://www.springsource.org/spring-data

Part Il. Reference Guide

Spring Data GemFire

4. Document structure

The following chapters explain the core functionality offered by Spring Data GemFire.

Chapter 5, Bootstrapping GemFire through the Spring Container describes the configuration support
provided for bootstrapping, initializing, configuring, and accessing GemFire caches, cache servers,
regions, and related distributed system components

Chapter 6, Working with the GemFire APIs explains the integration between the GemFire APIs and
the various data access features available in Spring, such as transaction management and exception
translation.

Chapter 7, Working with GemFire Serialization describes the enhancements for GemFire
(de)serialization and management of associated objects.

Chapter 8, POJO mapping describes persistence mapping for POJOs stored in GemFire using Spring
Data

Chapter 9, GemFire Repositories describes how to create and use GemFire Repositories using Spring
Data

Chapter 10, Annotation Support for Function Execution describes how to create and use GemkFire
Functions using Spring Data

Chapter 11, Sample Applications describes the samples provided with the distribution to illustrate the
various features available in Spring Data GemFire.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 6

Spring Data GemFire

5. Bootstrapping GemFire through the Spring
Container

Spring Data GemFire provides full configuration and initialization of the GemFire data grid through
Spring's 1oC container and provides several classes that simplify the configuration of GemFire
components including caches, regions, WAN gateways, persistence backup, and other distributed
system components to support a variety of scenarios with minimal effort.

© Note

This section assumes basic familiarity with GemFire. For more information see the product
documentation.

5.1 Advantages of using Spring over GemFire cache. xm

As of release 1.2.0, Spring Data GemFire's XML namespace supports full configuration of the data
grid. In fact, the Spring namespace is considered the preferred way to configure GemFire. GemFire will
continue to support cache. xm for legacy reasons, but you can now do everything in Spring XML and
take advantage of the many wonderful things Spring has to offer such as modular XML configuration,
property placeholders, SpEL, and environment profiles. Behind the namespace, Spring Data GemFire
makes extensive use of Spring's Fact or yBean pattern to simplify the creation and initialization of
GemFire components.

For example, GemFire provides several callback interfaces such as Cacheli st ener, CacheWi ter,
CachelLoader to allow developers to add custom event handlers. Using the Spring loC container, these
may configured as normal Spring beans and injected into GemFire components. This is a significant
improvement over cache.xml which provides relatively limited configuration options and requires
callbacks to implement GemkFire's Decl ar abl e interface (see Section 6.6, “Wiring Decl ar abl e
components” to see how you can still use Declarables within Spring's DI container).

In addition, IDEs such as the Spring Tool Suite (STS) provide excellent support for Spring XML
namespaces, such as code completion, pop-up annotations, and real time validation, making them easy
to use.

5.2 Using the Core Spring Data GemFire Namespace

To simplify configuration, Spring Data GemFire provides a dedicated XML namespace for configuring
core GemFire components. It is also possible to configure the beans directly through Springs standard
<bean> definition. However, as of Spring Data GemFire 1.2.0, all bean properties are exposed via
the namespace so there is little benefit to using raw bean definitions. For more information about
XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

© Note

Spring Data Repository support uses a separate XML namespace. See Chapter 9, GemFire
Repositories for more information on how to configure GemFire Repositories.

To use the Spring Data GemFire namespace, simply declare it in your Spring XML configuration:

Spring Data GemFire
1.3.2.RELEASE Reference Guide 7

http://www.vmware.com/products/application-platform/vfabric-gemfire
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/xsd-config.html

Spring Data GemFire

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: Ogf e="http://ww. springframework. org/ schema/ genfire"O
xsi : schenmaLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranmework. org/ schema/
beans/ spri ng- beans. xsd
Ohttp://ww. spri ngfranework. org/ schema/genfire http://ww.spri ngfranmework. org/
schema/ genfire/spring-genfire.xsd">

<bean id ... >
O<gf e: cache ...>
</ beans>

O Spring GemFire namespace prefix. Any name will do but through out the reference documentation,
gf e will be used.

O The namespace URI.

0 The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring
Data GemFire library.

O Declaration example for the GemFire namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned
prefix.

© Note

It is possible to change the default namespace, for example from beans to gf e. This is useful
for configuration composed mainly of GemFire components as it avoids declaring the prefix. To
achieve this, simply swap the namespace prefix declaration above:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="0Ohttp://ww. spri ngframewor k. or g/ schena/ genfire"
xm xsi ="http://ww. w3. or g/ 2001/ XM_Schenra- i nst ance"
O
xm ns: beans="http://ww. spri ngf ramewor k. or g/ schema/ beans"
Xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. org/
schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ genfire http://ww. springframework. org/
schema/ genfire/spring-genfire.xsd">

O<beans: bean id ... >
O<cache ...>
</ beans>

O The default namespace declaration for this XML file points to the Spring Data GemFire
namespace.

0 The beans namespace prefix declaration.

0 Bean declaration using the beans namespace. Notice the prefix.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 8

Spring Data GemFire

0 Bean declaration using the gf e namespace. Notice the lack of prefix (as the default
namespace is used).

5.3 Configuring the GemFire Cache

In order to use GemFire, one needs to either create a new Cache or connect to an existing one. In
the current version of GemFire, there can be only one opened cache per VM (or per classloader to be
technically correct). In most cases the cache is created once.

© Note

This section describes the creation and configuration of a full cache member, appropriate for
peer to peer cache topologies and cache servers. A full cache is also commonly used for
standalone applications, integration tests and proofs of concept. In a typical production system,
most application processes will act as cache clients and will create a ClientCache instance
instead. This is described in the sections the section called “Configuring a GemFire Client Cache”
and the section called “Client Region”

A cache with default configuration can be created with a very simple declaration:

<gf e: cache/ >

A Spring application context containing this definition will, upon initialization, will register a
CacheFact or yBean to create a Spring bean named genf i r eCache referencing a GemFire Cache
instance. This will be either an existing cache, or if one does not exist, a newly created one. Since no
additional properties were specified, a newly created cache will apply the default cache configuration.

All Spring Data GemFire components which depend on the Cache respect this naming convention so
that there is no need to explicitly declare the Cache dependency. If you prefer, you can make the
dependence explicit via the cache-r ef attribute provided by various namespace elements. Also you
can easily override the Cache's bean name:

<gf e: cache id="my-cache"/>

Starting with Spring Data GemFire 1.2.0, The GemFire Cache may be fully configured using Spring.
However, GemFire's native XML configuration file (e.g., cache.xml) is also supported. For scenarios
in which the GemFire cache needs to be configured natively, simply provide a reference the GemFire
configuration file using the cache- xm - | ocat i on attribute:

<gf e: cache id="cache-w th-xm " cache-xnm -1 ocati on="cl asspat h: cache. xm "/ >

In this example, if the cache needs to be created, it will use the file named cache. xm located in the
classpath root.

© Note

Note that the configuration makes use of Spring's Resour ce_abstraction to locate the file. This
allows various search patterns to be used, depending on the runtime environment or the prefix
specified (if any) in the resource location.

In addition to referencing an external configuration file one can specify GemFire properties using
any of Spring's common properties support features. For example, one can use the properties

Spring Data GemFire
1.3.2.RELEASE Reference Guide 9

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/resources.html
http://pubs.vmware.com/vfabricNoSuite/topic/com.vmware.vfabric.gemfire.7.0/reference/topics/gemfire_properties.html

Spring Data GemFire

element defined in the ut i | namespace to define properties directly or load properties from properties
files. The latter is recommended for externalizing environment specific settings outside the application
configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: gf e="http://ww. springfranmewor k. org/ schema/ genfire"
xm ns:util="http://ww. springfranework. org/schema/util"
xsi : schemaLocati on="htt p://wmv spri ngfranmewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ genfire http://ww. springfranmework. org/
schema/ genfirel/spring-genfire.xsd
http://ww. springfranmework. org/schema/util http://ww. springfranmework. org/ schema/
util/spring-util.xsd">

<gf e: cache properties-ref="props"/>

<util:properties id="props" |ocation="file:/vfabric/genfire/genfire.properties"/>
</ beans>

© Note

The cache settings apply only if a new cache needs to be created. If an open cache already
exists in the JVM, these settings will be ignored.

Advanced Cache Configuration

For advanced cache configuration, the cache element provides a number of configuration options
exposed as attributes or child elements

O

<gf e: cache
copy-on-read="true"
critical - heap- per cent age="70"
evi cti on- heap- per cent age="60"
| ock- 1 ease="120"
| ock-ti neout =" 60"
pdx-serial i zer="myPdxSerializer"
pdx- di sk- st or e="di skSt or e"
pdx-i gnor e-unread-fi el ds="true"
pdx- persi stent ="true"
pdx-read-serialized="fal se"
message- sync-i nterval =" 1"
sear ch-ti neout =" 300"
cl ose="fal se"
lazy-init="true"

>

O<gf e:transaction-1istener ref="nyTransacti onLi stener"/>

O<gfe:transaction-witer>
<bean cl ass="org. spri ngframewor k. dat a. genfire. exanpl e. Transacti onLi st ener"/ >
</gfe:transaction-witer>

O<gf e: dynam c-regi on-factory/ >
O<gf e:] ndi - bi ndi ng j ndi - nane="ryDat aSour ce" type="ManagedDat aSource"/ >
</ gf e: cache>

Spring Data GemFire
1.3.2.RELEASE Reference Guide 10

Spring Data GemFire

0 Various cache options are supported by attributes. For further information regarding anything
shown in this example, please consult the GemFire product documentation

The cl ose attribute determines if the cache should be closed when the Spring application context
is closed. The default is t r ue however for cases in which multiple application contexts use the
cache (common in web applications), set this value to f al se.

The |l azy-init attribute determines if the cache should be initialized before another bean
references it. The default is t r ue however in some cases it may be convenient to set this value
tof al se.

O An example of a Transacti onLi st ener callback declaration using a bean reference. The
referenced bean must implement TransactionListener

O Anexample of a Transacti onW i t er callback declaration using an inner bean declaration this
time. The bean must implement TransactionWriter

0 Enable GemFire's DynamicRegionFactory

0 Declares a JNDI binding to enlist an external datasource in a GemFire transaction

© Note

The use- bean-f act ory-1| ocat or attribute (not shown) deserves a mention. The factory bean
responsible for creating the cache uses an internal Spring type called a BeanFact or yLocat or
to enable user classes declared in GemFire's native cache. xnl to be registered as Spring
beans. The BeanFact or yLocat or implementation also permits only one bean definition for a
cache with a given id. In certain situations, such as running JUnit integration tests from within
Eclipse, it is necessary to disable the BeanFact or yLocat or by setting this value to f al se to
prevent an exception. This exception may also arise during JUnit tests running from a build script.
In this case the test runner should be configured to fork a new JVM for each test (in maven, set
<f or knode>al ways</ f or knode>) . Generally there is no harm in setting this value to false.

Enabling PDX Serialization

The example above includes a number of attributes related to GemGire's enhanced serialization
framework, PDX. While a complete discussion of PDX is beyond the scope of this reference
guide, it is important to note that PDX is enabled by registering a PDX serializer which
is done via the pdx-serializer attribute. GemFire provides an implementation class
com genst one. genfire. pdx. Refl ecti onBasedAut oSeri al i zer, however it is common for
developers to provide their own implementation. The value of the attribute is simply a reference to a
Spring bean that implements the required interface. More information on serialization support can be
found in Chapter 7, Working with GemFire Serialization

Configuring a GemFire Cache Server

In Spring Data GemFire 1.1 dedicated support for configuring a CacheServer was added, allowing
complete configuration through the Spring container:

Spring Data GemFire
1.3.2.RELEASE Reference Guide 11

http://www.vmware.com/support/pubs/vfabric-gemfire.html
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/TransactionListener.html
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/TransactionWriter.html
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/DynamicRegionFactory.html
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/server/CacheServer.html

Spring Data GemFire

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: gf e="http://ww. springframewor k. org/ schena/ genfire"

xm ns: cont ext ="http://wwmv springfranmewor k. or g/ schema/ cont ext "

xsi : schemaLocati on="http://ww. spri ngframewor k. org/ schena/ genfire http://
www. spri ngf ranewor k. or g/ schema/ genfi re/ spring-genfire. xsd

spri ng- beans. xsd
http://ww. springframework. org/ schema/ cont ext http://wwm. springframework. or g/ schema/
cont ext/spring-cont ext.xsd">

<gf e: cache />

<! -- Advanced exanpl e depicting vari ous cache server configuration options -->
<gf e: cache-server id="advanced-config" auto-startup="true"
bi nd- address="1 ocal host" port="${gfe. port.6}" host-nanme-for-clients="|ocal host"
| oad- pol | -i nterval ="2000" max-connecti ons="22" max-threads="16"
max- nessage- count =" 1000" max-ti ne- bet ween- pi ngs="30000"
groups="test-server">

<gf e: subscri ption-config eviction-type="ENTRY" capacity="1000" disk-store="file://
${java.io.tnpdir}"/>
</ gf e: cache-server>

<cont ext : property-pl acehol der | ocati on="cl asspat h: cache-server. properties"/>

</ beans>

The configuration above illustrates the cache- ser ver element and the many options available.

© Note

http: //ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngfranmewor k. or g/ schema/ beans/

Rather than hard-coding the port, this configuration uses Spring's cont ext namespace to
declare a pr operty- pl acehol der. The property placeholder reads one or more properties
file and then replaces property placeholders with values at runtime. This allows administrators
to change such values without having to touch the main application configuration. Spring also
provides SpEL and the environment abstraction one to support externalization of environment
specific properties from the main code base, easing the deployment across multiple machines.

@ Note

To avoid initialization problems, the CacheSer ver s started by Spring Data GemFire will start
after the container has been fully initialized. This allows potential regions, listeners, writers or
instantiators defined declaratively to be fully initialized and registered before the server starts
accepting connections. Keep this in mind when programmatically configuring these items as the
server might start after your components and thus not be seen by the clients connecting right

away.

Configuring a GemFire Client Cache

Another configuration addition in Spring Data GemFire 1.1 is the dedicated support for configuring
ClientCache. This is similar to a cache in both usage and definition and supported by

org. springfranmework. data. genfire.clientd ientCacheFact oryBean.

Spring Data GemFire
1.3.2.RELEASE Reference Guide

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-context
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/new-in-3.0.html#new-feature-el
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/new-in-3.1.html#new-in-3.1-environment-abstraction
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/client/ClientCache.html

Spring Data GemFire

<beans>
<gfe:client-cache />
</ beans>

cl i ent - cache supports much of the same options as the cache element. However as opposed to a
full cache, a client cache connects to a remote cache server through a pool. By default a pool is created
to connect to a server on | ocal host port 40404. The the default pool is used by all client regions
unless the region is configured to use a different pool.

Pools can be defined through the pool element; The client side pool can be used to configure
connectivity to the server for individual entities or for the entire cache. For example, to customize the
default pool used by cl i ent - cache, one needs to define a pool and wire it to cache definition:

<beans>
<gfe:client-cache id="si nple" pool - name="ny- pool "/ >

<gf e: pool id="my-pool" subscription-enabl ed="true">
<gfe:locator host="${l ocatorHost}" port="%${locatorPort}"/>
</ gf e: pool >
</ beans>

The <client-cache> tag also includes a r eady- f or - event s attribute. If set to t r ue, the client cache
initialization will include ClientCache.readyForEvents().

Client side configuration is covered in more detail in the section called “Client Region”.

5.4 Using the GemFire Data Access Namespace

In addition to the core gf e namespace, Spring Data GemFire provides a gf e- dat a namespace
intended primarily to simplify the development of GempFire client applications. This namespace currently
supports for GemFire repositories and function execution and a <dat asour ce> tag that offers a
convenient way to connect to the data grid.

An Easy Way to Connect to GemFire

For many applications, A basic connection to a GemFire grid, using default values is sufficient. Spring
Data GemFire's <dat asour ce> tag provides a simple way to access data. The data source creates
a client cache and connection pool. In addition, it will query the member servers for all existing root
regions and create a proxy (empty) client region for each one.

<gf e- dat a: dat asour ce>
<l ocat or host="sonehost" port="1234"/>
</ gf e- dat a: dat asour ce>

The datasource tag is synactically similar to <gf e: pool >. It may be configured with one or more locator
or server tags to connect to an existing data grid. Additionally, all attributes available to configure a pool
are supported. This configuration will automatically create ClientRegion beans for each region defined
on members connected to the locator, so they may be seamlessly referenced by Spring Data mapping
annotations, GemfireTemplate, and wired into application classes.

Of course, you can explicitly configure client regions. For example, if you want to cache data in local
memory:

Spring Data GemFire
1.3.2.RELEASE Reference Guide 13

http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/client/ClientCache.html#readyForEvents()

Spring Data GemFire

<gf e- dat a: dat asour ce>
<l ocat or host="sonehost" port="1234"/>
</ gf e- dat a: dat asour ce>

<gfe:client-region id="Customer" short cut="CACH NG_PROXY"/ >

5.5 Configuring a GemFire Region

A region is required to store and retrieve data from the cache. Regi on is an interface extends
java. util . nmap used to perform basic data access using familiar key-value semantics. The Regi on
interface is wired into classes that require it so the actual region type is decoupled from the programming
model . Typically each region is associated with one domain object, similar to a table in a relational
database.

GemFire implements the following types of regions:

» Replicated - Data is replicated across all cache members that define the region. This provides very
high read performance but writes take longer to perform the replication.

» Partioned - Data is partitioned into buckets among cache members that define the region. This
provides high read and write performance and is suitable for very large data sets that are too big for
a single node.

 Local - Data only exists on the local node.

 Client - Technically a client region is a local region that acts as a proxy to a replicated or partitioned
region hosted on cache servers. It may hold data created or fetched locally, alternately it can be
empty. Local updates are synchronized to the cache server. Also, a client region may subscribe to
events in order to stay synchronized with changes originating from remote processes that access the
same region.

For more information about the various region types and their capabilities as well as configuration
options, please refer to the GemFire Developer's Guide and community site.

Using an externally configured Region

For referencing Regions already configured through GemFire native configuration, e.g., a cache. xm
file, use the | ookup- r egi on element. Simply declare the target region name with the nane attribute;
for example to declare a bean definition, named r egi on- bean for an existing region named or der s
one can use the following definition:

<gf e: | ookup-regi on i d="regi on-bean" nane="orders"/>

If the name is not specified, the bean's i d will be used. The example above becomes:

<l-- lookup for a region called 'orders' -->
<gf e: | ookup-regi on i d="orders"/>

© Note

If the region does not exist, an initialization exception will be thrown. For configuring new GemFire
regions, proceed to the appropriate sections below.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 14

http://pubs.vmware.com/vfabricNoSuite/index.jsp?topic=/com.vmware.vfabric.gemfire.7.0/developing/book_intro.html
http://communities.vmware.com/community/vmtn/appplatform/vfabric_gemfire

Spring Data GemFire

Note that in the previous examples, since no cache name was defined, the default naming convention
(genf i reCache) was used. Alternately, one can reference the cache bean through the cache-r ef
attribute:

<gf e: cache i d="cache"/>
<gf e: | ookup-regi on i d="regi on- bean" name="orders" cache-ref="cache"/>

The | ookup-regi on provides a simple way of retrieving existing, pre-configured regions without
exposing the region semantics or setup infrastructure.

Configuring Regions

Spring Data GemFire provides comprehensive support for configuring any type of GemFire Region via
the following elements:

» Local Region <I ocal - r egi on>
» Replicated Region <r epl i cat ed-r egi on>
» Partitioned Region <partiti oned-regi on>

» Client Region <cl i ent - r egi on>
For a comprehensive description of region types please consult the GemFire product documentation.

Common Region Attributes

The following table(s) list attributes available for various region types:

Table 5.1. Common Region Attributes

Name Values Description

cache-ref GemFire cache bean name The name of the bean defining
the GemFire cache (by default
‘gemfireCache’).

close boolean, default:false (Note: The Indicates whether the region should be
default was true prior to 1.3.0) closed at shutdown
data-policy See GemkFire's Data Policy The region's data policy. Note not all
data policies are supported for every
region type
destroy boolean, default:false Indicates whether the region should be

destroyed at shutdown

disk-store-ref The name of a configured disk store A reference to a bean created via
the di sk- st ore element. Note: This
will automatically enable persistence. If
persistent is explicitly set to false, an
exception will be thrown.

disk-synchronous boolean, default:false Indicates whether disk store writes
are synchronous. Note: This will
automatically enable persistence. If
persistent is explicitly set to false, an
exception will be thrown.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 15

http://pubs.vmware.com/vfabricNoSuite/topic/com.vmware.vfabric.gemfire.7.0/developing/region_options/region_types.html
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/DataPolicy.html

Spring Data GemFire

Name

Values

Description

enable-gateway

boolean, default:false

Indicates whether the region will

synchronize entries over a WAN
gateway.

hub-id The name of the Gateway Hub This will automatically set enable-
gateway to true. If enable-gateway is
explicitly set to false, an exception will
be thrown.

id any valid bean name Will also be the region name by default

ignore-jta boolean, default:false Indicates whether the region
participates in JTA transactions

index-update-type synchronous or asynchronous, Indicates whether indices will

default:asynchronous be updated synchronously or

asynchronously on entry creation

initial-capacity

key-constraint

integer, default:16

any valid java class name

The initial memory allocation for

number of entries

The expected key type

name any valid region name The name of the region definition. If no
specified, it will assume the value of the
id attribute (the bean name).

persistent boolean, default:false Indicates whether the region persists
entries to a disk store

statistics boolean, default:false Indicates whether the region reports

value-constraint

Cache Listeners

any valid java class name

statistics

The expected value type

Cache Listeners are registered with a region to handle region events such as entries being created,
updated, destroyed, etc. A Cache Listener can be any bean that implements the Cacheli st ener
interface. A region may have multiple listeners, declared using the cache- | i st ener element enclosed
in a *-regi on element. In the example below, there are two CachelLi st ener s declared. The first
references a top level named Spring bean; the second is an anonymous inner bean definition.

<gfe:replicated-region id="region-wth-1isteners">
<gf e: cache-1|i st ener >
<I-- nested cache |istener reference -->
<ref bean="c-listener"/>
<I-- nested cache |istener declaration -->
<bean cl ass="sone. pkg. Anot her Si npl eCacheli st ener"/ >
</ gf e: cache-1|i st ener >

<bean id="c-listener" class="sone. pkg. Si npl eCachelLi stener"/>
</ gfe:replicated-regi on>

Spring Data GemFire

1.3.2.RELEASE Reference Guide 16

http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/CacheListener.html

Spring Data GemFire

The following example uses an alternate form of the cache- 1 i st ener element with a r ef attribute.
This allows for more concise configuration for a single cache listener. Note that the namespace only
allows a single cache-1i st ener element so either the style above or below must be used.

© Caution

Usingr ef and a nested declarationinacache-1i st ener, or similar element, isillegal. The two
options are mutually exclusive and using both on the same element will result in an exception.

<beans>
<gfe:replicated-region id="region-w th-one |istener">
<gfe: cache-listener ref="c-listener"/>
</ gfe:replicated-regi on>

<bean id="c-listener" class="sone. pkg. Si npl eCachelLi stener"/>
</ beans>

© Bean Reference Conventions

The cache- i st ener element is an example of a common pattern used in the namespace
anywhere GemkFire provides a callback interface to be implemented in order to invoke custom
code in response to cache or region events. Using Spring's IoC container, the implementation
is a standard Spring bean. In order to simplify the configuration, the schema allows a single
occurrence of the cache-1i st ener element, but it may contain nested bean references and
inner bean definitions in any combination if multiple instances are permitted. The convention is
to use the singular form (i.e., cache- | i st ener vscache-1i st ener s) reflecting that the most
common scenario will in fact be a single instance. We have already seen examples of this pattern
in the advanced cache configuration example.

Cache Loaders and Cache Writers

Similar to cache- | i st ener, the namespace provides cache-| oader andcache-w it er elements
to register these respective components for a region. A CachelLoader is invoked on a cache miss
to allow an entry to be loaded from an external source, a database for example. A CacheWiter is
invoked afer an entry is created or updated,intended for synchronizing to an external data source. The
difference is GemFire only supports at most a single instance of each for each region. However, either
declaration style may be used. See CachelLoader and CacheWiter for more details.

Subregions

In Release 1.2.0, Spring Data GemFire added support for subregions, allowing regions to be arranged
in a hierarchical relationship. For example, GemFire allows for a /Customer/Address region and a
different /Employee/Address region. Additionally, a subregion may have it's own subregions and its
own configuration. A subregion does not inherit attributes from the parent region. Regions types may
be mixed and matched subject to GemFire constraints. A subregion is naturally declared as a child
element of a region. The subregion's name attribute is the simple name. The above example might be
configured as:

Spring Data GemFire
1.3.2.RELEASE Reference Guide 17

http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/CacheLoader.html
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/CacheWriter.html

Spring Data GemFire

<beans>

<gfe:replicated-regi on name="Cust onmer" >
<gf e:repli cat ed-regi on nane="Address"/>
</ gfe:replicated-regi on>

<gf e:repli cat ed-regi on nane="Enpl oyee" >
<gf e:replicated-regi on nane="Address"/>

</ gfe:replicated-regi on>

</ beans>

Note thatthe id attribute is not permitted for a subregion. The subregions will be created with bean
names /Customer/Address and /Employee/Address, respectively. So they may be injected using the full
path name into other beans that use them, such as Genfi r eTenpl at e. The full path should also be
used in OQL query strings.

Data Persistence

Regions can be made persistent. GemFire ensures that all the data you put into a region that is
configured for persistence will be written to disk in a way that it can be recovered the next time you
create the region. This allows data to be recovered after a machine or process failure or after an orderly
shutdown and restart of GemFire.

With Spring Data GemFire, to enable persistence, simply set the per si st ent attribute to true:

<gfe:partitioned-region id="persitent-partition" persistent="true"/>

© Important

Persistence for partitioned regions is supported from GemFire 6.5 onwards - configuring this
option on a previous release will trigger an initialization exception.

When persisting regions, it is recommended to configure the storage through the di sk- st or e element
for maximum efficiency. The diskstore is referenced using the disk-store-ref attribute. Additionally, the
region may perform disk writes synchronously or asynchronously:

<gfe:partitioned-region id="persitent-partition" persistent="true" di sk-store-
ref ="nyDi skSt ore" di sk-synchronous="true"/>

This is discussed further in Section 5.7, “Configuring a Disk Store”

Subscription Interest Policy

GemFire allows configuration of subscriptions to control peer to peer event handling. Spring Data
GemFire provides a <gf e: subscri pti on/ > to set the interest policy on replicated and partitioned
regions to either ALL or CACHE_CONTENT.

<gfe:partitioned-region i d="subscription-partition">
<gf e: subscri ption type="CACHE_CONTENT"/ >
</gfe:partitioned-regi on>

Spring Data GemFire
1.3.2.RELEASE Reference Guide 18

http://pubs.vmware.com//vfabricNoSuite/topic/com.vmware.vfabric.gemfire.7.0/developing/events/configure_p2p_event_messaging.html

Spring Data GemFire

Data Eviction and Overflowing

Based on various constraints, each region can have an eviction policy in place for evi ct i ng data from
memory. Currently, in GemFire eviction applies to the least recently used entry (also known as LRU).
Evicted entries are either destroyed or paged to disk (also known as overflow).

Spring Data GemFire supports all eviction policies (entry count, memory and heap usage) for both
partitioned-regionandreplicated-regi onaswellasclient-regi on, through the nested
evi cti on element. For example, to configure a partition to overflow to disk if its size is more then 512
MB, one could use the following configuration:

<gfe:partitioned-region id="overflow partition">
<gfe:eviction type="MEMORY_SI ZE" t hreshol d="512" acti on="OVERFLOWN TO DI SK"/ >
</gfe:partitioned-regi on>

© Important

Replicas cannot use a | ocal destroy eviction since that would invalidate them. See the
GemkFire docs for more information.

When configuring regions for oveflow, it is recommended to configure the storage through the di sk-
st or e element for maximum efficiency.

For a detailed description of eviction policies, see the GemFire documentation (such as this page).

Data Expiration

GemFire allows you to control how long entries exist in the cache. Eviction is driven by elapsed time,
as opposed to eviction which is driven by memory usage. Once an entry expires it may no longer be
accessed from the cache. GemFire supports the following expiration types:

* Time to live (TTL) - The amount of time, in seconds, the object may remain in the cache after the
last creation or update. For entries, the counter is set to zero for create and put operations. Region
counters are reset when the region is created and when an entry has its counter reset.

« Idle timeout - The amount of time, in seconds, the object may remain in the cache after the last access.
The idle timeout counter for an object is reset any time its TTL counter is reset. In addition, an entry’s
idle timeout counter is reset any time the entry is accessed through a get operation or a netSearch .
The idle timeout counter for a region is reset whenever the idle timeout is reset for one of its entries.

Each of these may be applied to the region itself or entries in the region. Spring Data GemFire provides
<region-ttl> <region-tti> <entry-ttl>and<entry-tti>region child elements to specify
timeout values and expiration actions.

Local Region

Spring Data GemFire offers a dedicated | ocal - r egi on element for creating local regions. Local
regions, as the name implies, are standalone meaning they do not share data with any other distributed
system member. Other than that, all common region configuration options are supported. A minimal
declaration looks as follows (again, the example relies on the Spring Data GemFire namespace naming
conventions to wire the cache):

<gf e:local -regi on i d="myLocal Regi on" />

Spring Data GemFire
1.3.2.RELEASE Reference Guide 19

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://pubs.vmware.com/vfabricNoSuite/topic/com.vmware.vfabric.gemfire.7.0/developing/eviction/how_eviction_works.html

Spring Data GemFire

Here, a local region is created (if one doesn't exist already). The name of the region is the same
as the bean id (myLocalRegion) and the bean assumes the existence of a GemFire cache named
genfireCache.

Replicated Region

One of the common region types is a replicated region or replica. In short, when a region is configured to
be a replicated region, every member that hosts that region stores a copy of the region's entries locally.
Any update to a replicated region is distributed to all copies of the region. When a replica is created, it
goes through an initialization stage in which it discovers other replicas and automatically copies all the
entries. While one replica is initializing you can still continue to use the other rep

Spring Data GemFire offers ar epl i cat ed- r egi on element. A minimal declaration looks as follows.
All common configuration options are available for replicated regions.

<gfe:replicated-region i d="si npl eReplica" />

Partitioned Region

Another region type supported out of the box by the Spring Data GemFire namespace, is the partitioned
region. To quote the GemFire docs:

"A partitioned region is a region where data is divided between peer servers hosting the region so that
each peer stores a subset of the data. When using a partitioned region, applications are presented with
a logical view of the region that looks like a single map containing all of the data in the region. Reads
or writes to this map are transparently routed to the peer that hosts the entry that is the target of the
operation. [...] GemFire divides the domain of hashcodes into buckets. Each bucket is assigned to a
specific peer, but may be relocated at any time to another peer in order to improve the utilization of
resources across the cluster."

A partition is created using the parti t i oned- r egi on element. Its configuration options are similar to
that of the r epl i cat ed- r egi on plus the partion specific features such as the number of redundant
copies, total maximum memory, number of buckets, partition resolver and so on. Below is a quick
example on setting up a partition region with 2 redundant copies:

<l -- bean definition naned 'distributed-partition' backed by a regi on named 'redundant'’
with 2 copies
and a nested resol ver declaration -->

<gfe:partitioned-region id="distributed-partition" copi es="2" total -
bucket s="4" nane="redundant ">
<gf e:partition-resol ver>
<bean cl ass="sone. pkg. Si npl ePartitionResol ver"/>
</gfe:partition-resol ver>
</ gfe:partitioned-regi on>

partitioned-regi on Options

The following table offers a quick overview of configuration options specific to partitioned regions. These
are in addition to the common region configuration options described above.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 20

Spring Data GemFire

Table 5.2. partitioned-region options

Name Values Description

partition-resolver bean name The name of the partitioned resolver
used by this region, for custom
partitioning.

partition-listener bean name The name of the partitioned listener

used by this region, for handling
partition events.

copies 0.4 The number of copies for each patrtition
for high-availability. By default, no
copies are created meaning there is no
redundancy. Each copy provides extra
backup at the expense of extra storage.

colocated-with valid region name The name of the partitioned region with
which this newly created partitioned
region is colocated.

local-max- positive integer The maximum amount of memory, in
memory megabytes, to be used by the region in
this process.

total-max-memory any integer value The maximum amount of memory, in
megabytes, to be used by the region in
all processes.

recovery-delay any long value The delay in milliseconds that existing
members will wait before satisfying
redundancy after another member
crashes. -1 (the default) indicates that
redundancy will not be recovered after

a failure.
startup-recovery- any long value The delay in milliseconds that new
delay members will wait before satisfying

redundancy. -1 indicates that adding
new members will not trigger
redundancy recovery. The default is to
recover redundancy immediately when
a new member is added.

Client Region

GemFire supports various deployment topologies for managing and distributing data. The topic is
outside the scope of this documentation however to quickly recap, they can be classified in short in:
peer-to-peer (p2p), client-server, and wide area cache network (or WAN). In the last two scenarios,
it is common to declare client regions which connect to a cache server. Spring Data GemFire offers
dedicated support for such configuration through the section called “Configuring a GemkFire Client
Cache”, cl i ent - regi on and pool elements. As the names imply, the former defines a client region
while the latter defines connection pools to be used/shared by the various client regions.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 21

Spring Data GemFire

Below is a typical client region configuration:G

<I-- client region using the default client-cache pool -->
<gfe:client-region id="sinple">

<gf e: cache-listener ref="c-listener"/>
</gfe:client-regi on>

<l-- region using its own dedi cated pool -->
<gfe:client-region id="conpl ex" pool-nanme="genfire-pool">

<gfe: cache-listener ref="c-listener"/>
</gfe:client-regi on>

<bean id="c-listener" class="sone. pkg. Si npl eCacheli stener"/>

<I-- pool declaration -->

<gfe: pool id="genfire-pool" subscription-enabl ed="true">
<gf e:l ocat or host="someHost" port="40403"/>

</ gf e: pool >

As with the other region types, cl i ent - r egi on supports CachelLi st ener s (but not CachelLoaders
or CacheWriters). It also requires a connection pool for connecting to a server. Each client can have
its own pool or they can share the same one.

© Note

In the above example, the pool is configured with a | ocat or . The locator is a separate process
used to discover cache servers in the distributed system and are recommended for production
systems. It is also possible to configure the pool to connect directly to one or more cache servers
using the ser ver element.

For a full list of options to set on the client and especially on the pool, please refer to the Spring Data
GemFire schema (Appendix A, Spring Data GemFire Schema) and the GemFire documentation.

Client Interests

To minimize network traffic, each client can define its own 'interest’, pointing out to GemFire, the data
it actually needs. In Spring Data GemFire, interests can be defined for each client, both key-based and
regular-expression-based types being supported; for example:

<gfe:client-region id="conplex" pool-nanme="genfire-pool">
<gf e: key-i nterest durable="true" result-policy="KEYS">
<bean id="key" class="java.lang. String">
<constructor-arg val ue="sonmeKey" />
</ bean>
</ gf e: key-interest>
<gfe:regex-interest pattern=".*" receive-val ues="fal se"/>
</gfe:client-regi on>

A special key ALL_KEYS means interest is registered for all keys (identical to a regex interest of . *).
The r ecei ve- val ues attribute indicates whether or not the values are received for create and update
events. If true, values are received,; if false, only invalidation events are received - refer to the GemFire
documentation for more details.

JSON Support

Gemfire 7.0 introduced support for caching JSON documents with OQL query support. These are
stored internally as PdxlInstance types using the JSONFormatter to perform conversion to and from

Spring Data GemFire
1.3.2.RELEASE Reference Guide 22

http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/pdx/PdxInstance.html
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/pdx/JSONFormatter.html

Spring Data GemFire

JSON strings. Spring Data GemFire provides a <gf e- dat a: j son-r egi on- aut opr oxy/ > tag to
enable a Spring AOP component to advise appropropriate region operations, effectively encapsulating
the JSONFormatter, allowing your application to work directly with JSON strings. In addition, Java
objects written to JSON configured regions will be automatically converted to JSON using the Jackson
ObjectMapper. Reading these values will return a JSON string.

By default, <gf e- dat a: j son- r egi on- aut opr oxy/ > will perform the conversion on all regions. To
apply this feature to selected regions, provide a comma delimited list of their ids viathe r egi on-ref s
attribute. Other attributes include a pretty- pri nt flag (false by default) and convert - r et ur ned-
col I ecti ons. By default the results of region operations getAll() and values() will be converted
for configured regions. This is done by creating a parallel structure in local memory. This can incur
significant overhead for large collections. Set this flag to false to disable automatic conversion for these
operation.

© Note

Certain region operations, specifically those that use GemFire's proprietary Region.Entry such
as entries(boolean), entrySet(boolean) and getEntry() type are not targeted for AOP advice. In
addition, the entrySet() method which returns a Set<java.util.Map.Entry<?,?>> is not affected.

<gf e-dat a: j son-regi on-aut oproxy pretty-print="true" region-
ref s="nmyJsonRegi on" convert-returned-collections="true"/>

This feature also works with seamlessly with GemfireTemplate operations, provided that the template
is declared as a Spring bean. Currently native QueryService operations are not supported.

5.6 Creating an Index

GemFire allows creation on indexes (or indices) to improve the performance of (common) queries.
Spring Data GemFire allows indecies to be declared through the i ndex element:

<gfe:index id="nyl ndex" expression="soneFi eld" fron¥"/soneRegi on"/>

Before creating an index, Spring Data GemFire will verify whether one with the same name already
exists. If it does, it will compare the properties and if they don't match, will remove the old one to create
a new one. If the properties match, Spring Data GemFire will simply return the index (in case it does not
exist it will simply create one). To prevent the update of the index, even if the properties do not match,
set the property overri de to false.

Note that index declaration are not bound to a region but rather are top-level elements (just like
gf e: cache). This allows one to declare any number of indecies on any region whether they are just
created or already exist - an improvement versus the GemFire cache. xmni . By default the index relies
on the default cache declaration but one can customize it accordingly or use a pool (if need be) - see
the namespace schema for the full set of options.

5.7 Configuring a Disk Store

As of Release 1.2.0, Spring Data GemFire supports disk store configuration via a top level di sk- st ore
element.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 23

http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/#aop-introduction

Spring Data GemFire

© Note

Prior to Release 1.2.0, di sk-st or e was a child element of *-r egi on. If you have regions
configured with disk storage using a prior release of Spring Data GemFire and want to upgrade to
the latest release, move the disk-store element to the top level, assign an id and use the region's
di sk-store-ref attribute. Also, di sk- synchr onous is now a region level attribute.

<gf e: di sk-store id="di skStorel" queue-size="50" auto-conmpact="true"
max- opl og- si ze="10" time-interval ="9999">
<gfe:disk-dir |ocation="/genfire/storel/" max-size="20"/>
<gfe:disk-dir location="/genfirel/store2/" max-size="20"/>
</ gf e: di sk-store>

Disk stores are used by regions for file system persistent backup or overflow storage of evicted entries,
and persistent backup of WAN gateways. Note that multiple components may share the same disk
store. Also multiple directories may be defined for a single disk store. Please refer to the GemFire
documentation for an explanation of the configuration options.

5.8 Configuring GemFire's Function Service

As of Release 1.3.0, Spring Data GemFire provides annotation support for implementing and
registering functions. Spring Data GemFire also provides hamespace support for registering GemFire
Functions for remote function execution. Please refer to the GemFire documentation for more
information on the function execution framework. Functions are declared as Spring beans and
must implement the com genst one. genfire. cache. execut e. Functi on interface or extend
com genst one. genfire. cache. execut e. Functi onAdapt er. The namespace uses a familiar
pattern to declare functions:

<gf e: functi on-service>
<gf e: functi on>
<bean cl ass="com conpany. exanpl e. Functi onl"/>
<ref bean="function2"/>
</ gfe: function>
</ gfe:function-service>

<bean id="function2" cl ass="com conpany. exanpl e. Functi on2"/>

5.9 Configuring WAN Gateways

WAN gateways provide a way to synchronize GemkFire distributed systems across geographic
distributed areas. As of Release 1.2.0, Spring Data GemkFire provides namespace support for
configuring WAN gateways as illustrated in the following examples:

WAN Configuration in GemFire 7.0

GemFire 7.0 introduces new APIs for WAN configuration. While the original APIs provided in GemFire 6
are still supported, itis recommended that you use the new APIs if you are using GemFire 7.0. The Spring
Data GemFire namespace supports either. In the example below, Gat eway Sender s are configured for
a partitioned region by adding child elements to the region (gat eway- sender and gat eway- sender -
r ef). The Gat eway Sender may register Event Fi | t er sand Transport Fi | t er s. Also shown below
is an example configuration of an AsyncEvent Queue which must also be wired into a region (not
shown).

Spring Data GemFire
1.3.2.RELEASE Reference Guide 24

https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/Function.html

Spring Data GemFire

<gf e: partitioned-regi on i d="regi on-i nner-gat eway-sender" >
<gf e: gat eway- sender
renmot e-di stri but ed-systemid="1">
<gfe:event-filter>
<bean cl ass="org. spri ngfranewor k. dat a. genfire. exanpl e. SoneEventFi lter"/>
</gfe:event-filter>
<gfe:transport-filter>

<bean cl ass="org. spri ngframewor k. dat a. genfire. exanpl e. SoneTransportFilter"/>
</gfe:transport-filter>
</ gf e: gat eway- sender >
<gf e: gat eway- sender - ref bean="gat eway- sender"/ >
</gfe:partitioned-regi on>

<gf e: async- event - queue i d="async-event - queue" batch-si ze="10" persistent="true" disk-
store-ref="di skstore"
maxi num queue- nenor y="50" >
<gf e: async-event-|istener>
<bean cl ass="org. spri ngframewor k. dat a. genfire. exanpl e. SoneAsyncEvent Li st ener"/ >
</ gf e: async-event-|i stener>
</ gf e: async- event - queue>

<gf e: gat eway- sender id="gat eway-sender" renote-distributed-systemid="2">
<gfe:event-filter>
<ref bean="event-filter"/>
<bean cl ass="org. spri ngframewor k. dat a. genfire. exanpl e. SoneEventFilter"/>
</gfe:event-filter>
<gfe:transport-filter>
<ref bean="transport-filter"/>
<bean cl ass="org. spri ngframewor k. dat a. genfire. exanpl e. SoneTransportFilter"/>
</gfe:transport-filter>
</ gf e: gat eway- sender >

<bean i d="event -

filter" class="org.springfranmework. data.genfire.exanpl e. Anot herEventFilter"/>
<bean i d="transport -

filter" class="org.springfranmework. data.genfire.exanpl e. Anot her TransportFilter"/>

On the other end of a GatewaySender is a corresponding Gat ewayRecei ver to receive
gateway events. The GatewayReceiver may also be configured with EventFilters and
TransportFilters.

<gf e: gat eway-recei ver i d="gat eway-receiver"
start-port="12345" end-port="23456" bi nd-address="192. 168. 0. 1">
<gfe:transport-filter>
<bean cl ass="org. spri ngframewor k. dat a. genfire. exanpl e. SoneTransportFilter"/>
</gfe:transport-filter>
</ gf e: gat eway- r ecei ver >

Please refer to the GemFire product document for a detailed explanation of all the configuration options.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 25

Spring Data GemFire

WAN Configuration in GemFire 6.6

<gf e: cache/ >

<gfe:replicated-region id="regi on-w t h-gat eway" enabl e-gat eway="true" hub-i d="gat enay-
hub"/ >

<gf e: gat eway- hub i d="gat eway- hub" manual -start="true">
<gf e: gat eway gateway-i d="gat eway" >
<gf e: gat eway- | i st ener >
<bean cl ass="com conpany. exanpl e. MyGat ewayLi st ener"/ >
</ gf e: gat eway- | i st ener >

batch-ti nme-interval ="10" />
</ gf e: gat eway>

<gf e: gat eway gat eway-i d="gat eway2" >
<gf e: gat eway- endpoi nt port="1234" host="host1" endpoi nt-id="endpoint1"/>
<gf e: gat eway- endpoi nt port="2345" host="host 2" endpoi nt -i d="endpoi nt2"/>
</ gf e: gat enay>
</ gf e: gat eway- hub>

A region may synchronize all or part of its contents to a gateway hub used to access one or more remote
systems. The region must set enabl e- gat eway to t r ue and specify the hub-i d.

© Note

If just a hub-id is specified, Spring Data GemFire automatically assumes that the gateway should
be enabled.

Please refer to the GemFire product document for a detailed explanation of all the configuration options.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 26

Spring Data GemFire

6. Working with the GemFire APIs

Once the GemFire cache and regions have been configured they can injected and used inside
application objects. This chapter describes the integration with Spring's transaction management
functionality and DaoExcept i on hierarchy. It also covers support for dependency injection of GemFire
managed objects.

6.1 Exception translation

Using a new data access technology requires not just accommodating to a new API but also
handling exceptions specific to that technology. To accommodate this case, Spring Framework
provides a technology agnostic, consistent exception hierarchy that abstracts one from proprietary
(and usually checked) exceptions to a set of focused runtime exceptions. As mentioned in
the Spring Framework documentation, exception translation can be applied transparently to your
data access objects through the use of the @Repository annotation and AOP by defining a
Per si st enceExcepti onTr ansl ati onPost Processor bean. The same exception translation
functionality is enabled when using GemFire as long as at least a CacheFact or yBean is declared,
e.g., using a <gf e: cache/ > declaration) as it acts as an exception translator which is automatically
detected by the Spring infrastructure and used accordingly.

6.2 GemfireTemplate

As with many other high-level abstractions provided by the Spring projects, Spring Data GemFire
provides a template that simplifies GemFire data access. The class provides several one-line methods,
for common region operations but also the ability to execute code against the native GemFire API without
having to deal with GemFire checked exceptions for example through the Genfi r eCal | back.

The template class requires a GemFire Regi on instance and once configured is thread-safe and should
be reused across multiple classes:

<bean id="genfireTenpl ate" class="org.springframework. data.genfire. GenfireTenpl ate" p:region-
ref =" sonmeRegi on"/ >

Once the template is configured, one can use it alongside Genf i r eCal | back to work directly with the
GemFire Regi on, without having to deal with checked exceptions, threading or resource management
concerns:

tenpl at e. execut e(new GenfireCal | back<lterabl e<String>>() {
public Iterable<String> dol nGenfire(Region reg) throws GenFireCheckedException
GentFi reException {
/1 working agai nst a Region of String
Regi on<String, String> region = reg

region.put("1", "one");
region.put("3", "three");

return region.query("length < 5");
}
1)

For accessing the full power of the GemFire query language, one can use the fi nd and f i ndUni que
which, as opposed to the query method, can execute queries across multiple regions, execute
projections, and the like. The fi nd method should be used when the query selects multiple items

Spring Data GemFire
1.3.2.RELEASE Reference Guide 27

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation

Spring Data GemFire

(through Sel ect Resul t s) and the latter, f i ndUni que, as the name suggests, when only one object
is returned.

6.3 Support for Spring Cache Abstraction

Since 1.1, Spring GemFire provides an implementation for Spring 3.1 cache abstraction. To use
GemFire as a backing implementation, simply add Genf i r eCacheManager to your configuration:

<beans xm ns="http://ww spri ngfranmewor k. or g/ schema/ beans" xml ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schene- i nst ance"

xm ns: cache="htt p: //ww. spri ngfranewor k. or g/ schena/ cache"

xm ns: gf e="http://wwm. springfranmewor k. org/ schema/ genfire"

xm ns: p="http://ww. springfranmework. org/ schema/ p"

xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springfranmework. org/ schema/ genfire http://ww. springframework. org/ schema/
genfire/spring-genfire.xsd
http: //ww. spri ngfranewor k. or g/ schema/ cache http://ww. spri ngfranmewor k. or g/ schema/

cache/ spring- cache. xsd" >

<l-- turn on declarative caching -->

<cache: annotation-driven />

<gf e: cache id="genfire-cache" />

<!-- declare GenFire Cache Manager -->

<bean i d="cacheManager" cl ass="org. spri ngfranework. data. genfire.support. GenfireCacheManager" p:cache-
ref ="genfire-cache">
</ beans>

6.4 Transaction Management

One of the most popular features of Spring Framework is transaction management. If you are not familiar
with it, we strongly recommend looking into it as it offers a consistent programming model that works
transparently across multiple APIs that can be configured either programmatically or declaratively (the
most popular choice).

For GemFire, Spring Data GemFire provides a dedicated, per-cache, transaction manager that once
declared, allows region operations to be executed atomically through Spring:

<gfe:transacti on- manager id="tx-manager" cache-ref="cache"/>

@ Note

The example above can be simplified even more by eliminating the cache- r ef attribute if the
GempFire cache is defined under the default name genf i r eCache. As with the other Spring
Data GemFire namespace elements, if the cache name is not configured, the aforementioned
naming convention will used. Additionally, the transaction manager name, if not specified is
genfireTransacti onManager.

Note that currently GemFire supports optimistic transactions with read committed isolation. Furthermore,
to guarantee this isolation, developers should avoid making in-place changes, that is manually modifying
the values present in the cache. To prevent this from happening, the transaction manager configured
the cache to use copy on read semantics, meaning a clone of the actual value is created, each time
a read is performed. This behavior can be disabled if needed through the copy OnRead property. For

Spring Data GemFire
1.3.2.RELEASE Reference Guide 28

http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#cache
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#transaction
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#transaction-motivation

Spring Data GemFire

more information on the semantics of the underlying GemFire transaction manager, see the GemFire
documentation.

6.5 GemFire Continuous Query Container

A powerful functionality offered by GemFire is continuous querying (or CQ). In short, CQ
allows one to create a query and automatically be notified when new data that gets added to
GemFire matches the query. Spring GemFire provides dedicated support for CQs through the
org. springframework. data. genfire.|istener package and its listener container; very similar
in functionality and naming to the JMS integration in Spring Framework; in fact, users familiar with the
JMS support in Spring, should feel right at home. Basically Spring Data GemFire allows methods on
POJOs to become end-points for CQ - simply define the query and indicate the method that should be
notified when there is a match - Spring Data GemFire takes care of the rest. This is similar Java EE's
message-driven bean style, but without any requirement for base class or interface implementations,
based on GemFire.

@ Note

Currently, continuous queries are supported by GemFire only in client/server topologies.
Additionally the pool used is required to have the subscr i pti on property enabled. Please refer
to the documentation for more information.

Continuous Query Listener Container

Spring Data GemFire simplifies the creation, registration, life-cycle and dispatch of CQs by taking care of
the infrastructure around them through Cont i nuousQuer yLi st ener Cont ai ner which does all the
heavy lifting on behalf of the user - users familiar with EJB and JMS should find the concepts familiar as
it is designed as close as possible to the support in Spring Framework and its message-driven POJOs
(MDPs)

Cont i nuousQuer yLi st ener Cont ai ner acts as an event (or message) listener container; it is used
to receive the events from the registered CQs and drive the POJOs that are injected into it. The listener
container is responsible for all threading of message reception and dispatches into the listener for
processing. It acts as the intermediary between an EDP (Event Driven POJO) and the event provider
and takes care of creation and registration of CQs (to receive events), resource acquisition and release,
exception conversion and the like. This allows you as an application developer to write the (possibly
complex) business logic associated with receiving an event (and reacting to it), and delegates boilerplate
GemFire infrastructure concerns to the framework.

The container is fully customizable - one can chose either to use the CQ thread to perform the dispatch
(synchronous delivery) or a new thread (from an existing pool for examples) for an asynchronous
approach by defining the suitablej ava. uti | . concurrent . Execut or (or Spring's TaskExecut or).
Depending on the load, the number of listeners or the runtime environment, one should change or tweak
the executor to better serve her needs - in particular in managed environments (such as app servers),
it is highly recommended to pick a a proper TaskExecut or to take advantage of its runtime.

The Cont i nuousQuer yLi st ener Adapt er and
Cont i nuousQuer yLi st ener

The Cont i nuousQueryLi st ener Adapt er class is the final component in Spring Data GemFire
CQ support: in a nutshell, it allows you to expose almost any class as a EDP (there are of course

Spring Data GemFire
1.3.2.RELEASE Reference Guide 29

https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/CacheTransactionManager.html
http://community.gemstone.com/display/gemfire/Continuous+Querying

Spring Data GemFire

some constraints) - it implements Cont i nuousQuer yLi st ener, a simpler listener interface similar to
GemFire Cglistener.

Consider the following interface definition. Notice the various event handling methods and their
parameters:

public interface EventDel egate {
voi d handl eEvent (CgEvent event);
voi d handl eEvent (Qperati on baseQp);
voi d handl eEvent (bj ect key);
voi d handl eEvent (Cbj ect key, Object newval ue);
voi d handl eEvent (Throwabl e th);
voi d handl eQuery(CqQuery cq);
voi d handl eEvent (CgEvent event, Operation baseOp, byte[] deltaVal ue);
voi d handl eEvent (CgEvent event, QOperation baseOp, Operation queryQp, bject key,
bj ect newval ue);
}

public class DefaultEventDel egate inplenments EventDel egate {
/] inplenmentation elided for clarity..

In particular, note how the above implementation of the Event Del egat e interface (the above
Def aul t Event Del egat e class) has no GemFire dependencies at all. It truly is a POJO that we will
make into an EDP via the following configuration (note that the class doesn't have to implement an
interface, one is present only to better show case the decoupling between contract and implementation).

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: gf e="http://ww. springfranmewor k. or g/ schema/ genfire"

Xxsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans http://
www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springfranmework. org/ schema/ genfire http://ww. springframework. org/

schema/ genfire/spring-genfire.xsd">

<gfe:client-cache pool -nane="client"/>

<gfe: pool id="client" subscription-enabl ed="true">
<gf e: server host="Iocal host" port="40404"/>
</ gf e: pool >

<gf e: cq-1istener-contai ner>
<!-- default handle nethod -->
<gfe:listener ref="listener" query="SELECT * from/region"/ >
<gfe:listener ref="another-listener" query="SELECT * from/another-region" nane="nmny-
query" net hod="handl eQuery"/>
</ gf e:cqg-1i st ener-contai ner>

<bean id="listener" class="genfireexanpl e. Def aul t MessageDel egate"/ >
<bean id="anot her-listener" class="genfireexanpl e. Def aul t MessageDel egate"/ >

<beans>

© Note

The example above shows some of the various forms that a listener can have; at its minimum the
listener reference and the actual query definition are required. It's possible however to specify a

Spring Data GemFire
1.3.2.RELEASE Reference Guide 30

https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/query/CqListener.html

Spring Data GemFire

name for the resulting continuous query (useful for monitoring) but also the name of the method
(the default is handl eEvent). The specified method can have various argument types, the
Event Del egat e interface lists the allowed types.

The example above uses the Spring Data GemFire namespace to declare the event listener container
and automatically register the listeners. The full blown, beans definition is displayed below:

<I-- this is the Event Driven PQIO (MDP) -->
<bean i d="event Li st ener"
class="org. springframework. data. genfire.|istener.adapter. Conti nuousQueryLi stener Adapter">
<const ruct or - ar g>
<bean cl ass="genfireexanpl e. Def aul t Event Del egat e"/ >
</ constructor-ar g>
</ bean>

<l-- and this is the event |istener container... -->
<bean i d="genfireListenerContainer" class="org.springfranework. data.genfire.listener.ContinuousQueryLi stene
<property nane="cache" ref="genfireCache"/>
<property nanme="queryLi steners">
<!-- set of listeners -->
<set >
<bean cl ass="org. spri ngfranework. data.genfire.|istener.Conti nuousQueryDefinition"

<constructor-arg val ue="SELECT * from/regi on" />
<constructor-arg ref="eventListener" />
</ bean>
</ set >
</ property>
</ bean>

Each time an event is received, the adapter automatically performs type translation between the
GemFire event and the required method argument(s) transparently. Any exception caused by the
method invocation is caught and handled by the container (by default, being logged).

6.6 Wiring Decl ar abl e components

GemFire XML configuration (usually named cache. xm allows user objects to be declared as part of
the configuration. Usually these objects are CachelLoader s or other pluggable callback components
supported by GemFire. Using native GemFire configuration, each user type declared through XML must
implement the Decl ar abl e interface which allows arbitrary parameters to be passed to the declared
class through a Pr operti es instance.

In this section we describe how you can configure these pluggable components defined in cache. xni
using Spring while keeping your Cache/Region configuration defined in cache. xm This allows your
pluggable components to focus on the application logic and not the location or creation of DataSources
or other collaboration objects.

However, if you are starting a green field project, it is recommended that you configure Cache, Region,
and other pluggable components directly in Spring. This avoids inheriting from the Decl ar abl e
interface or the base class presented in this section. See the following sidebar for more information on
this approach.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 31

Spring Data GemFire

Eliminate Decl ar abl e components

One can configure custom types entirely through Spring as mentioned in Section 5.5, “Configuring
a GemFire Region”. That way, one does not have to implement the Decl ar abl e interface and
also benefits from all the features of the Spring 10C container (not just dependency injection but
also life-cycle and instance management).

As an example of configuring a Decl ar abl e component using Spring, consider the following
declaration (taken from the Decl ar abl e javadoc):

<cache- | oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<par anet er nanme="URL" >
<string=>jdbc://12.34.56. 78/ mydb</string>
</ par anet er >
</ cache-| oader >

To simplify the task of parsing, converting the parameters and initializing the object, Spring Data
GemFire offers a base class (W ri ngDecl ar abl eSupport) that allows GemFire user objects
to be wired through a template bean definition or, in case that is missing, perform autowiring
through the Spring container. To take advantage of this feature, the user objects need to extend
W ri ngDecl ar abl eSupport which automatically locates the declaring BeanFact or y and performs
wiring as part of the initialization process.

Why is a base class needed?

In the current GemFire release there is no concept of an object factory and the types declared
are instantiated and used as is. In other words, there is no easy way to manage object creation
outside GemFire.

Configuration using template definitions

When used, W ri ngDecl ar abl eSupport tries to first locate an existing bean definition and use
that as wiring template. Unless specified, the component class name will be used as an implicit bean
definition name. Let's see how our DBLoader declaration would look in that case:

public class DBLoader extends WringDecl arabl eSupport inplenments CachelLoader {
private DataSource dataSource;

public voi d set Dat aSour ce(Dat aSour ce ds){
thi s. dat aSource = ds;

}

public Object |oad(LoaderHel per helper) { ... }
}

<cache- | oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l-- no paraneter is passed (use the bean inplicit name
that is the class nane) -->

</ cache- | oader >

Spring Data GemFire
1.3.2.RELEASE Reference Guide 32

Spring Data GemFire

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="dat aSource" ... />
<l-- tenplate bean definition -->

<bean i d="com conpany. app. DBLoader" abstract="true" p:dataSource-ref="dataSource"/>
</ beans>

In the scenario above, as no parameter was specified, a bean with the id/name
com conpany. app. DBLoader was used as a template for wiring the instance created by GemFire.
For cases where the bean name uses a different convention, one can pass in the bean- nane parameter
in the GemFire configuration:

<cache- | oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l -- pass the bean definition tenplate nanme
as paraneter -->
<par anet er nanme="bean- nane" >
<string>tenpl at e- bean</ string>
</ par anet er >
</ cache-| oader >

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schema/ p"
xsi : schemaLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="dataSource" ... />

<I-- tenplate bean definition -->
<bean i d="tenpl at e-bean" abstract="true" p:dataSource-ref="dataSource"/>

</ beans>

© Note

The template bean definitions do not have to be declared in XML - any format is allowed (Groovy,
annotations, etc..).

Configuration using auto-wiring and annotations

If no bean definition is found, by default, W ri ngDecl ar abl eSupport will autowire the declaring
instance. This means that unless any dependency injection metadata is offered by the instance, the
container will find the object setters and try to automatically satisfy these dependencies. However, one
can also use JDK 5 annotations to provide additional information to the auto-wiring process. We strongly
recommend reading the dedicated chapter in the Spring documentation for more information on the
supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured
DataSource in the following way:

Spring Data GemFire
1.3.2.RELEASE Reference Guide 33

http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-factory-autowire
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-annotation-config

Spring Data GemFire

public class DBLoader extends WringDecl arabl eSupport inplements CachelLoader {
/'l use annotations to 'mark' the needed dependencies
@ avax. inject.|nject
private DataSource dataSource

public Object |oad(LoaderHel per helper) { ... }

<cache- | oader >
<cl ass- name>com conpany. app. DBLoader </ cl ass- nane>
<I-- no need to declare any paraneters anynore
since the class is auto-wired -->
</ cache-| oader >

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: context="http://wwm. spri ngframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<l-- enabl e annotation processing -->
<cont ext : annot at i on- confi g/ >

</ beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and
creation of the DataSource has been externalized and the user code is concerned only with the loading
process. The Dat aSour ce might be transactional, created lazily, shared between multiple objects or
retrieved from JNDI - these aspects can be easily configured and changed through the Spring container
without touching the DBLoader code.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 34

Spring Data GemFire

7. Working with GemFire Serialization

To improve overall performance of the data grid, GemFire supports a dedicated serialization protocol
(PDX) that is both faster and offers more compact results over the standard Java serialization and works
transparently across various language platforms (such as Java, .NET and C++). This chapter discusses
the various ways in which Spring Data GemFire simplifies and improves GemFire custom serialization
in Java.

7.1 Wiring deserialized instances

It is fairly common for serialized objects to have transient data. Transient data is often dependent on
the node or environment where it lives at a certain point in time, for example a DataSource. Serializing
such information is useless (and potentially even dangerous) since it is local to a certain VM/machine.
For such cases, Spring Data GemFire offers a special | nst anti at or that performs wiring for each
new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain
dependencies making it easy to split transient from persistent data and have rich domain objects in a
transparent manner (Spring users might find this approach similar to that of @onf i gur abl e). The
W ringl nstantiat or works just like W ri ngDecl ar abl eSupport, trying to first locate a bean
definition as a wiring template and following to autowiring otherwise. Please refer to the previous section
(Section 6.6, “Wiring Decl ar abl e components”) for more details on wiring functionality.

To use this | nst anti at or, simply declare it as a usual bean:

<bean id="instantiator" class="org.springfranework.data.genfire.serialization. Wringlnstantiator">
<!-- DataSerializable type -->
<constructor-arg>org. pkg. SoneDat aSeri al i zabl eCl ass</ constructor-arg>
<l-- type id -->
<const ruct or - ar g>95</ const r uct or - ar g>
</ bean>

During the container startup, once it is being initialized, the i nst ant i at or will, by default, register
itself with the GemFire system and perform wiring on all instances of SoneDat aSeri al i zabl eCl ass
created by GemFire during deserialization.

7.2 Auto-generating custom | nst anti ators

For data intensive applications, a large number of instances might be created on each machine as data
flows in. Out of the box, GemFire uses reflection to create new types but for some scenarios, this might
prove to be expensive. As always, it is good to perform profiling to quantify whether this is the case or
not. For such cases, Spring Data GemFire allows the automatic generation of | nst at i at or classes
which instantiate a new type (using the default constructor) without the use of reflection:

<bean id="instanti at or -
factory" class="org.springframework. data.genfire.serialization.|nstantiatorFactoryBean">
<property name="customlypes">
<rTap>
<entry key="org. pkg. Cust onTypeA" val ue="1025"/>
<entry key="org. pkg. Cust onfTypeB" val ue="1026"/>
</ map>
</ property>
</ bean>

Spring Data GemFire
1.3.2.RELEASE Reference Guide 35

http://community.gemstone.com/display/gemfire/Interoperability
http://community.gemstone.com/display/gemfire/Serialization+in+Java
http://community.gemstone.com/display/gemfire/Serialization+in+.NET
https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/Instantiator.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-atconfigurable

Spring Data GemFire

The definition above, automatically generated two |nstantiators for two classes, namely
Cust onTypeA and Cust omTypeB and registers them with GemFire, under user id 1025 and 1026.
The two instantiators avoid the use of reflection and create the instances directly through Java code.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 36

Spring Data GemFire

8. POJO mapping

8.1 Entity mapping

Spring Data GemkFire provides support to map entities to be stored in a GemFire grid. The mapping
metadata is define by using annotations at the domain classes just like this:

@Regi on(" myRegi on")
public class Person {

@d Long id;
String firstname;
String | astnane;

@per si st enceConst ruct or
public Person(String firstnanme, String |astnane) {
/...

}

}
Example 8.1 Mapping a domain class to GemFire

The first thing you see here is the @Regi on annotation that can be used to customize the region
instances of the Per son class are stored in. The @ d annotation can be used to annotate the
property that shall be used as cache key. The @er si st enceConst r uct or annotation actually helps
disambiguating multiple potentially available constructors taking parameters and explicitly marking the
one annotated as the one to be used to create entities. With none or only a single constructor you can
omit the annotation.

8.2 Mapping PDX serializer

Spring Data GemkFire provides a custom PDXSeri al i zer implementation that uses the mapping
information to customize entity serialization. Beyond that it allows customizing the entity instantiation
by using the Spring Data Entityl nstanti ator abstraction. By default the serializer uses a
Ref | ecti onEntityl nstanti ator that will use the persistence constructor of the mapped entity
(either the single declared one or explicitly annoted with @Per si st enceConst r uct or). To provide
values for constructor parameters it will read fields with name of the constructor parameters from the
PDXReader supplied.

public class Person {

public Person(@al ue("#root.foo") String firstname, @alue("bean") String |astnanme) {
/...

}

}
Example 8.2 Using @Value on entity constructor parameters

The entity annotated as such will get the field f oo read from the PDXReader and handed as constructor
parameter value for f i r st nane. The value for | ast nane will be the Spring bean with name bean.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 37

Spring Data GemFire

9. GemFire Repositories

9.1 Introduction
Spring Data GemFire provides support to use the Spring Data repository abstraction to easily persist

entities into GemFire and execute queries. A general introduction into the repository programming model
is been provided here .

9.2 Spring configuration

To bootstrap Spring Data repositories you use the <r eposi tori es /> element from the GemFire
namespace:

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: gf e-dat a="htt p: / / www. spri ngf ramewor k. or g/ schema/ dat a/ genfire"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http: //wwv. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ data/ genfire
http://ww. springframewor k. or g/ scherma/ dat a/ genfire/ spring-dat a-
genfire. xsd>

<gf e-dat a: reposi tori es base- package="com acne. repository" />

</ beans>

Example 9.1 Bootstrap GemFire repositories

This configuration snippet will look for interfaces below the configured base package and create
repository instances for those interfaces backed by a Si npl eGenti r eReposi t ory. Note that you
have to have your domain classes correctly mapped to configured regions as the bottstrap process will
fail otherwise.

9.3 Executing OQL queries

The GempFire repositories allow the definition of query methods to easily execute OQL queries against
the Region the managed entity is mapped to.

@Regi on(" nyRegi on")
public class Person { ...}

public interface PersonRepository extends CrudRepository<Person, Long> {
Person findByEnai | Address(String emai | Address);
Col | ecti on<Person> findByFirstname(String firstnane);

@uery("SELECT * FROM /Person p WHERE p.firstnane = $1")
Col | ecti on<Per son> fi ndByFirst nameAnnot ated(String firstnane);

@uery("SELECT * FROM /Person p WHERE p.firstname IN SET $1")
Col | ecti on<Per son> fi ndByFirst namesAnnot at ed(Col | ecti on<Stri ng> firstnanes);

}
Example 9.2 Sample repository

Spring Data GemFire
1.3.2.RELEASE Reference Guide 38

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories

Spring Data GemFire

The first method listed here will cause the following query to be derived: SELECT x FROM / nyRegi on
X WHERE x. enmi | Address = $1. The second method works the same way except it's returning all
entities found whereas the first one expects a single result value. In case the supported keywords are
not sufficient to declare your query or the method name gets to verbose you can annotate the query
methods with @uer y as seen for methods 3 and 4.

Table 9.1. Supported keywords for query methods

Keyword Sample Logical result

G eat er Than fi ndByAgeG eat er Than(i nt age) x.age > $1

G eat er ThanEquaf i ndByAgeG eat er ThanEqual (i nt x.age >= $1

age)

LessThan fi ndByAgeLessThan(i nt age) X.age < $1

LessThanEqual fi ndByAgelLessThanEqual (i nt X.age <= $1
age)

I sNot Nul |, findByFirstnameNot Nul | () x.firstname =!I NULL

Not Nul |

I sNul I, Nul | findByFirstnaneNul | () x.firstname = NULL

In fi ndByFirstnanel n(Col | ecti on<Skrfhngstnanme | N SET $1
X)

Not I n findByFi rst nameNot I n(Col | ecti or<8t rshgane NOT I N SET $1
X)

(No keyword) findByFirstnane(String nane) x.firstname = $1

Not findByFirstnaneNot (String x.firstnane !'= $1
nane)

| sTrue, True findByActivel sTrue() X.active = true

| sFal se, Fal se findByActivel sFal se() x.active = fal se

Spring Data GemFire
1.3.2.RELEASE Reference Guide 39

Spring Data GemFire

10. Annotation Support for Function Execution

10.1 Introduction

Spring Data GemFire 1.3.0 introduces annotation support to simplify working with GemFire function
execution. The GemFire API provides classes to implement and register Functions deployed to cache
servers that may be invoked remotely by member applications, typically cache clients. Functions may
execute in parallel, distributed among multiple servers, combining results in a map-reduce pattern, or
may be targeted to a single server. A Function execution may be also be targeted to a specific region.

GemFire's also provides APIs to support remote execution of functions targeted to various defined
scopes (region, member groups, servers, etc.) and the ability to aggregate results. The API also
provides certain runtime options. The implementation and execution of remote functions, as with any
RPC protocol, requires some boilerplate code. Spring Data GemFire, true to Spring's core value
proposition, aims to hide the mechanics of remote function execution and allow developers to focus on
POJO programming and business logic. To this end, Spring Data GemFire introduces annotations to
declaratively register public methods as functions, and the ability to invoke registered functions remotely
via annotated interfaces.

10.2 Implementation vs Execution

There are two separate concerns to address. First is the function implementation (server) which
must interact with the FunctionContext to obtain the invocation arguments, the ResultsSender and
other execution context information. The function implementation typically accesses the Cache and or
Region and is typically registered with the FunctionService under a unique Id. The application invoking
a function (the client) does not depend on the implementation. To invoke a function remotely, the
application instantiates an Execution providing the function ID, invocation arguments, the function target
or scope (region, server, servers, member, members). If the function produces a result, the invoker
uses a ResultCollector to aggregate and acquire the execution results. In certain scenarios, a custom
ResultCollector implementation is required and may be registered with the Execution.

© Note

'Client’ and 'Server' are used here in the context of function execution which may have a different
meaning then client and server in a client-server cache topology. While it is common for a member
with a Client Cache to invoke a function on one or more Cache Server members it is also possible
to execute functions in a peer-to-peer configuration

10.3 Implementing a Function

Using GemFire APIs, the FunctionContext provides a runtime invocation context including the client's
calling arguments and a ResultSender interface to send results back to the client. Additionally, if the
function is executed on a Region, the FunctionContext is an instance of RegionFunctionContext which
provides additional context such as the target Region and any Filter (set of specific keys) associated
with the Execution. If the Region is a Partition Region, the function should use the PartitonRegionHelper
to extract only the local data.

Using Spring, one can write a simple POJO and enable the Spring container bind one or more of it's
public methods to a Function. The signature for a POJO method intended to be used as a function must

Spring Data GemFire
1.3.2.RELEASE Reference Guide 40

http://pubs.vmware.com/vfabricNoSuite/index.jsp?topic=/com.vmware.vfabric.gemfire.7.0/developing/function_exec/chapter_overview.html??
http://pubs.vmware.com/vfabricNoSuite/index.jsp?topic=/com.vmware.vfabric.gemfire.7.0/developing/function_exec/chapter_overview.html??
https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/Function.html
https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/FunctionContext.html
https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/ResultSender.html
https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/FunctionService.html
https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/Execution.html
https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/ResultCollector.html

Spring Data GemFire

generally conform to the the client's execution arguments. However, in the case of a region execution,
the region data must also be provided (presumably the data held in the local partition if the region is a
partition region). Additionally the function may require the filter that was applied, if any. This suggests
that the client and server may share a contract for the calling arguments but that the method signature
may include additional parameters to pass values provided by the FunctionContext. One possibility is
that the client and server share a common interface, but this is not required. The only constraint is that
the method signature includes the same sequence of calling arguments with which the function was
invoked after the additional parameters are resolved. For example, suppose the client provides a String
and int as the calling arguments. These are provided by the FunctionContext as an array:

oject[] args = new Ghject[]{"hello", 123}

Then the Spring container should be able to bind to any method signature similar to the following. Let's
ignore the return type for the moment:

public Object methodl(String s1, int i2) {...}

public Object nethod2(Map<?,?> data, String s1, int i2) {...}

public Object nmethod3(String sl, Map<?,?>data, int i2) {...}

public Object nmethod4(String sl, Map<?,?> data, Set<?> filter, int i2) {...}
public void nethod4(String s1, Set<?> filter, int i2, Region<?, ?> data) {...}
public void nethod5(String s1, ResultSender rs, int i2);

public void nethod6(FunctionContest fc);

The general rule is that once any additional arguments, i.e., region data and filter, are resolved the
remaining arguments must correspond exactly, in order and type, to the expected calling parameters.
The method's return type must be void or a type that may be serialized (either java.io.Serializable,
DataSerializable, or PDX serializable). The latter is also a requirement for the calling arguments. The
Region data should normally be defined as a Map, to facilitate unit testing, but may also be of type
Region if necessary. As shown in the example above, it is also valid to pass the FunctionContext itself,
or the ResultSender, if you need to control how the results are returned to the client.

Annotations for Function Implementation

The following example illustrates how annotations are used to expose a POJO as a GemFire function:

@Conponent
public class MyFunctions {
@zenfireFunction
public String functionl(String sl, @regionbData Map<?,?> data, int i2) { ... }

@zenfireFunction("myFunction", HA=true, optim zedForWite=true, batchSize=100)
public List<String> function2(String sl, @regionbata Map<?,?> data, int i2, @ilter
Set<?> keys) { ... }

@zenfireFunction(hasResul t =true)
public void functi onWthContext (FunctionContext functionContext) { ... }

}

Note that the class itself must be registered as a Spring bean. Here the @onponent annotation is
used, but you may register the bean by any method provided by Spring (e.g. XML configuration or Java
configuration class). This allows the Spring container to create an instance of this class and wrap it
in a PojoFunctionWrapper(PFW). Spring creates one PFW instance for each method annotated with
@enf i reFuncti on. Each will all share the same target object instance to invoke the corresponding
method.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 41

https://github.com/SpringSource/spring-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/function/PojoFunctionWrapper.java

Spring Data GemFire

© Note

The fact that the function class is a Spring bean may offer other benefits since it shares the
application context with GemFire components such as a Cache and Regions. These may be
injected into the class if necessary.

Spring creates the wrapper class, and registers the function with GemFire's Function Service. The
function id used to register the functions must be unique. By convention it defaults to the simple
(unqualified) method name. Note that this annotation also provides configuration attributes, HA and
opti m zedFor Wi t e which correspond to properties defined by GemFire's Function interface. If the
method's return type is void, then the hasResul t property is automatically set to f al se; otherwise
itistrue.

For voi d return types, the annotation provides a hasResul t attribute that can be set to true to override
this convention, as shown in the f unct i onW t hCont ext method above. Presumably, the intention is
to use the ResultSender directly to send results to the caller.

The PFW implements GemFire's Function interface, binds the method parameters, and invokes the
target method inits execut e() method. It also sends the method's return value using the ResultSender.

Batching Results

If the return type is a Collection or Array, then some consideration must be given to how the results are
returned. By default, the PFW returns the entire collection at once. If the number of items is large, this
may incur a performance penalty. To divide the payload into small sections (sometimes called chunking),
you can set the bat chSi ze attribute, as illustrated in f unct i on2, above.

© Note

If you need more control of the ResultSender, especially if the method itself would use too
much memory to create the collection, you can pass the ResultSender, or access it via the
FunctionContext, to use it directly within the method.

Enabling Annotation Processing

In accordance with Spring standards, you must explicitly activate annotation processing for
@GemfireFunction using XML:

‘ <gf e: annot ati on-dri ven/>

or by annotating a Java configuration class:

‘ @nabl eGenfireFunctions

10.4 Executing a Function

A process invoking a remote function needs to provide calling arguments, a function id, the execution
target (onRegion, onServers, onServer, onMember, onMembers) and optionally a Filter set. All you
need to do is define an interface supported by annotations. Spring will create a dynamic proxy the
interface which will use the FunctionService to create an Execution, invoke the execution and coerce
the results to a defined return type, if necessary. This technique is very similar to the way Spring Data
repositories work, thus some of the configuration and concepts should be familiar. Generally a single

Spring Data GemFire
1.3.2.RELEASE Reference Guide 42

Spring Data GemFire

interface definition maps to multiple function executions, one corresponding to each method defined
in the interface.

Annotations for Function Execution

To support client side function execution, the following annotations are provided: @nRegi on,
@nServer, @nServers, @nMenber, @nMenbers. These correspond to the Execution
implementations GemFire's FunctionService provides. Each annotation exposes the appropriate
attributes. These annotations also provide an optional r esul t Col | ect or attribute whose value is the
name of a Spring bean implementing ResultCollector to use for the execution.

© Note

The proxy interface binds all declared methods to the same execution configuration. Although it
is expected that single method interfaces will be common, all methods in the interface are backed
by the same proxy instance and therefore are all share the same configuration.

Here are some examples:

@nRegi on(regi on="sonmeRegi on", resultCollector="nyCollector")
public interface FunctionExecution {
@-unctionld("functionl")
public String dolt(String s1, int i2);
public String getString(Object argl, @ilter Set<Object> keys) ;

By default, the function id is the simple (unqualified) method name. @unct i onl d is used to bind this
invocation to a different function id.

Enabling Annotation Processing

The client side uses Spring's component scanning capability to discover annotated interfaces. To enable
function execution annotation processing, you can use XML:

<gf e-dat a: f uncti on- executi ons base- package="or g. exanpl e. nyapp. f uncti ons"/ >

Note that the functi on-executi ons tag is provided in the gf e- dat a namespace. The base-
package attribute is required to avoid scanning the entiire class path. Additional filters are provided as
described in the Spring reference.

Or annotate your Java configuration class:

‘ @Enabl eGenfi reFuncti onExecut i ons(basePackages = "org. exanpl e. myapp. functions")

10.5 Programmatic Function Execution

Using the annotated interface as described in the previous section, simply wire your interface into a
bean that will invoke the function:

Spring Data GemFire
1.3.2.RELEASE Reference Guide 43

https://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/execute/ResultCollector.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters

Spring Data GemFire

@Conponent
public class M/App {

@wtow red FunctionExecution functi onExecution;

public void doSonething() {
functi onExecution.dolt("hello", 123);

}

Alternately, you can wuse a Function Execution template directly. For example
GemfireOnRegionFunctionTemplate creates an onRegion execution. For example:

Set<?,?> nyFilter = getFilter();

Regi on<?, ?> nyRegi on = get Regi on();

GenfireOnRegi onOperations tenplate = new GenfireOnRegi onFuncti onTenpl at e(myRegi on) ;
String result = tenpl ate. execut eAndExt ract (" sonmeFuncti on", nyFilter, "hello","worl d", 1234);

Internally, function executions always return a List. execut eAndExt r act assumes a singleton list
containing the result and will attempt to coerce that value into the requested type. There is also an

execut e method that returns the List itself. The first parameter is the function id. The filter argument is
optional. The following arguments are a variable argument list.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 44

Spring Data GemFire

11. Sample Applications

© Note

Sample applications are now maintained in the Spring Data GemFire Examples repository.

The Spring Data GemFire project also includes one sample application. Named "Hello World", the
sample demonstrates how to configure and use GemFire inside a Spring application. At runtime, the
sample offers a shell to the user allowing him to run various commands against the grid. It provides an
excellent starting point for users unfamiliar with the essential components or the Spring and GemFire
concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into any
Maven-aware IDE (such as SpringSource Tool Suite) or run them from the command-line.

11.1 Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps
GemFire, configures it, executes arbitrary commands against it and shuts it down when the application
exits. Multiple instances can be started at the same time as they will work with each other sharing data
without any user intervention.

@ Running under Linux

If you experience networking problems when starting GemFire or the samples, try adding the
following system property j ava. net. pref er| Pv4St ack=t r ue to the command line (insert
- Dj ava. net . preferl Pv4St ack=t r ue). For an alternative (global) fix especially on Ubuntu
see this link

Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a Mai n class which can be started
either from your IDE of choice (in Eclipse/STS through Run As/ Java Appl i cati on) or from the
command line through Maven using mvn exec: j ava. One can also use j ava directly on the resulting
artifact if the classpath is properly set.

To stop the sample, simply type exi t at the command line or press Ctrl +C to stop the VM and
shutdown the Spring container.

Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands against
it. The output will likely look as follows:

INFO Created GenFire Cache [Spring GenFire World] v. X VY.Z
INFO Created new cache region [nyWrl d]

INFO Menber xxxxxx:50694/51611 connecting to region [nyWrl d]
Hello World

Want to interact with the world ? ...

Supported comrands are

get <key> - retrieves an entry (by key) fromthe grid
put <key> <value> - puts a new entry into the grid
renmove <key> - renoves an entry (by key) fromthe grid

Spring Data GemFire
1.3.2.RELEASE Reference Guide 45

https://github.com/SpringSource/spring-gemfire-examples
http://www.springsource.com/products/sts
https://jira.springsource.org/browse/SGF-28

Spring Data GemFire

For example to add new items to the grid one can use:

-> put 1 unu

INFO Added [1=unu] to the cache
nul |

-> put 1 one

INFO Updated [1] from[unu] to [one]
unu

-> size

1

-> put 2 two

I NFO Added [2=two] to the cache
nul |

-> size

2

Multiple instances can be created at the same time. Once started, the new VMs automatically see the
existing region and its information:

I NFO. Connected to Distributed System[' Spring GenFire Wrld' =xxxx: 56218/ 49320@yyyy]
Hel l o Worl d!

-> size

2

-> map

[2=two] [1=one]

-> query length = 3
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in
one instance and see how the others react. To preserve data, at least one instance needs to be alive all
times - if all instances are shutdown, the grid data is completely destroyed (in this example - to preserve
data between runs, see the GemFire documentations).

Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping
configuration is app- cont ext . xml which includes the cache configuration, defined under cache-
cont ext . xm file and performs classpath scanning for Spring components. The cache configuration
defines the GemFire cache, region and for illustrative purposes a simple cache listener that acts as a
logger.

The main beans are Hel | oWor | d and ConmmandPr ocessor which rely on the Genf i reTenpl at e to
interact with the distributed fabric. Both classes use annotations to define their dependency and life-
cycle callbacks.

Spring Data GemFire
1.3.2.RELEASE Reference Guide 46

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-classpath-scanning
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factorybeans-annotations

Part Ill. Other Resources

In addition to this reference documentation, there are a number of other resources that may help
you learn how to use GemFire and Spring framework. These additional, third-party resources are
enumerated in this section.

Spring Data GemFire

12. Useful Links

Spring Data GemFire Home Page

vFabric GemFire Home Page

vFabric GemFire Documentation

GemFire Community Home Page

» Spring Data GemFire Forum

1.3.2.RELEASE

Spring Data GemFire
Reference Guide

48

http://www.springsource.org/spring-gemfire
http://www.vmware.com/products/application-platform/vfabric-gemfire/overview.html
https://www.vmware.com/support/pubs/vfabric-gemfire.html
http://communities.vmware.com/community/vmtn/appplatform/vfabric_gemfire
http://forum.springsource.org/forumdisplay.php?77-GemFire

Part IV. Appendices

Spring Data GemFire

Appendix A. Spring Data GemFire
Schema

Spring Data GemFire Core Schema (gfe)

Spring Data GemFire
1.3.2.RELEASE Reference Guide

50

Spring Data GemFire

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<xsd: schena xm ns="http://ww. spri ngfranework. org/ schena/ genfire"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" xm ns: beans="htt p://ww. spri ngfranmewor k. or g/
schema/ beans"
xm ns: tool ="http://wmv springfranmewor k. org/ schema/tool " xml ns: context="http://
www. spri ngframewor k. or g/ schema/ cont ext "
xm ns: repository="http://ww.springframework. org/ schena/ dat a/ r eposi tory"
tar get Nanmespace="htt p: //ww. spri ngf ramewor k. or g/ schenma/ genfire"
el enent For nDef aul t =" qual i fi ed" attri buteFornDefaul t="unqualified"
version="1.3">
<xsd: i nport nanespace="http://ww. spri ngfranmework. org/ schema/ beans" />
<xsd: i nport nanespace="http://ww. springfranmework. org/schema/tool" />
<xsd: i nport namespace="http://ww. springfranework. org/ schema/ context" />
<l-- -->
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA]
Nanespace support for the Spring GenFire project.
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
<l-- -->
<xsd: conpl exType nanme="cacheBaseType" >
<xsd: sequence>
<xsd: el enent nane="transaction-|istener" type="beanDecl arationType"
m nQccur s="0" maxQccur s="unbounded" >
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Regi sters a bean as a TransactionLi stener with the CacheTransacti onManager. The bean nust
i npl enent com genst one. genfire. cache. Transacti onLi st ener
and may be nested or referenced
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el enent nane="transaction-witer" type="beanDecl arationType"
m nCccur s="0" maxCccurs="1">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Regi sters a bean as a TransactionWiter with the CacheTransacti onManager. The bean mnust
i npl enent com genst one. genfire. cache. Transacti onWi ter
and may be nested or referenced
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el ement name="gat eway-conflict-resolver" m nCccurs="0"
maxCccur s="1">
<xsd: annot at i on>
<xsd: docunent ati on
sour ce="com genst one. genfire.cache. util.GatewayConflictResol ver"><![CDATA[
A gateway conflict resolver for this cache. A gateway conflict resolver handles conflicts
in the case of concurrent updates using a WAN gateway. The bean
must i npl enent com genstone. genfire.cache. util.GatewayConflictResolver. Requires Genfire
version 7.0 or higher
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports
type="com genst one. genfire.cache. util.GtewayConflictResol ver" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: any nanespace="##ot her" processCont ent s="ski p"
m nQccur s="0" maxQccur s="unbounded" >
o <xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
1 nner bean definition of the gateway conflict resol ver
]1></ xsd: docunent ati on>
</ xsd: annot at i on>

ol wverd Aarnvi~s

Spring Data GemFire

Spring Data GemFire Data Access Schema (gfe-data)

Spring Data GemFire
1.3.2.RELEASE Reference Guide

52

Spring Data GemFire

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<xsd: schema xm ns="http://wwv spri ngfranmewor k. org/ schema/ dat a/ genfire" xm ns: xsd="http://
www. W3. or g/ 2001/ XM_Schema" xnl ns: beans="htt p: //ww. spri ngfranewor k. or g/ schenma/ beans"
xm ns: tool ="http://ww. springfranework. org/ schema/ t ool "
xm ns: repository="http://ww. springfranmework. or g/ schema/ dat a/ r eposi t ory"
xm ns: cont ext ="htt p://ww. spri ngfranewor k. or g/ schena/ cont ext "
xm ns: gf e="http://ww. spri ngframewor k. org/ schena/ genfire"
tar get Nanmespace="htt p: // ww. spri ngframewor k. or g/ schenma/ dat a/
genfire" el ement FornDef aul t ="qual i fied" attributeFornDefaul t="unqualified" version="1.3">
<xsd:inmport namespace="htt p://ww. spri ngfranework. org/ schema/ beans"/ >
<xsd: i nport nanespace="http://ww. spri ngfranmework. org/schema/tool"/>
<xsd: i nport nanmespace="htt p://ww. spri ngfranework. org/ schema/ dat a/ r eposi t ory"
schemaLocat i on="htt p: //ww. spri ngfranewor k. or g/ schema/ dat a/ r eposi t ory/ spri ng-
repository. xsd"/ >
<xsd: i nport namespace="http://ww. spri ngfranework. org/ schena/ genfire"
schemaLocat i on="htt p://ww. spri ngfranewor k. or g/ schema/ genfire/spring-genfire.xsd"/>
<xsd: i nport nanespace="http://ww. spri ngfranework. or g/ schena/ cont ext "
schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng-cont ext . xsd" />
<l-- -->
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Narmespace support for the Spring Data GenFire Cient side data access
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
dlos oo
<I-- Repositories -->
<xsd: el ement nanme="repositories">
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="repository:repositories">
<xsd:attributeG oup ref="genfire-repository-attributes"/>
<xsd: attributeG oup ref="repository:repository-attributes"/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >
dlos oo
<xsd: el enent nanme="functi on-executions">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Enabl es conponent scanning for annotated function execution interfaces
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="i ncl ude-
filter" type="context:filterType" mi nCccurs="0" naxCccurs="unbounded">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Controls which eligible types to include for conponent scanning
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement name="excl ude-
filter" type="context:filterType" m nCccurs="0" nmaxCccurs="unbounded">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA]
Controls which eligible types to exclude for conponent scanni ng
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
</ xsd: sequence>
- <xsd:attribute name="base-package" type="xsd:string" use="required">
<xsd: annot at i on>

1 <xsd: docunent at i on><! [CDATA[
Defines the base package where function execution interfaces will be tried to be
det ect ed.

11~/ ved: Aacriimmaanrnt At 1 AR

	Spring Data GemFire Reference Guide
	Table of Contents
	Preface
	Part I. Introduction
	1. Introduction
	2. Requirements
	3. New Features
	3.1 New in the 1.3.0 Release
	3.2 New in the 1.2.1 Release
	3.3 New in the 1.2.0 Release

	Part II. Reference Guide
	4. Document structure
	5. Bootstrapping GemFire through the Spring Container
	5.1 Advantages of using Spring over GemFire cache.xml
	5.2 Using the Core Spring Data GemFire Namespace
	5.3 Configuring the GemFire Cache
	Advanced Cache Configuration
	Enabling PDX Serialization

	Configuring a GemFire Cache Server
	Configuring a GemFire Client Cache

	5.4 Using the GemFire Data Access Namespace
	An Easy Way to Connect to GemFire

	5.5 Configuring a GemFire Region
	Using an externally configured Region
	Configuring Regions
	Common Region Attributes
	Cache Listeners
	Cache Loaders and Cache Writers
	Subregions

	Data Persistence
	Subscription Interest Policy
	Data Eviction and Overflowing
	Data Expiration
	Local Region
	Replicated Region
	Partitioned Region
	partitioned-region Options

	Client Region
	Client Interests

	JSON Support

	5.6 Creating an Index
	5.7 Configuring a Disk Store
	5.8 Configuring GemFire's Function Service
	5.9 Configuring WAN Gateways
	WAN Configuration in GemFire 7.0
	WAN Configuration in GemFire 6.6

	6. Working with the GemFire APIs
	6.1 Exception translation
	6.2 GemfireTemplate
	6.3 Support for Spring Cache Abstraction
	6.4 Transaction Management
	6.5 GemFire Continuous Query Container
	Continuous Query Listener Container
	The ContinuousQueryListenerAdapter and ContinuousQueryListener

	6.6 Wiring Declarable components
	Configuration using template definitions
	Configuration using auto-wiring and annotations

	7. Working with GemFire Serialization
	7.1 Wiring deserialized instances
	7.2 Auto-generating custom Instantiators

	8. POJO mapping
	8.1 Entity mapping
	8.2 Mapping PDX serializer

	9. GemFire Repositories
	9.1 Introduction
	9.2 Spring configuration
	9.3 Executing OQL queries

	10. Annotation Support for Function Execution
	10.1 Introduction
	10.2 Implementation vs Execution
	10.3 Implementing a Function
	Annotations for Function Implementation
	Batching Results
	Enabling Annotation Processing

	10.4 Executing a Function
	Annotations for Function Execution
	Enabling Annotation Processing

	10.5 Programmatic Function Execution

	11. Sample Applications
	11.1 Hello World
	Starting and stopping the sample
	Using the sample
	Hello World Sample Explained

	Part III. Other Resources
	12. Useful Links

	Part IV. Appendices
	Appendix A. Spring Data GemFire Schema

